

Groundwater Sample Results, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, Sample Location Report, SDG 1701439

NAS Chase Field TX

December 2020

November 10, 2017

Vista Work Order No. 1701439

Ms. Nia Nikmanesh KMEA 2423 Hoover Avenue National City, CA 91950

Dear Ms. Nikmanesh,

Enclosed are the additional results for the sample set received at Vista Analytical Laboratory on October 07, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'BRAC PFAS,NAS Chase Field,TX-TO 0008'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 1701439 Case Narrative

Sample Condition on Receipt:

Two groundwater samples and three blank water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. As requested, the date was added after each of the blank samples as YYYMMDD.

As requested on the CoC, the following samples were placed on extract and hold: "FRB05_20171005", "FRB04_20171005", and "FRB06_20171006".

As requested on November 2, 2017, samples "FRB05_20171005" and "FRB06_20171006" were removed from hold. The results for these samples are included within this report.

Analytical Notes:

Modified EPA Method 537

The samples were extracted and analyzed for a selected list of PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration met the method acceptance criteria. The concentrations of PFDA and MeFOSAA were 139.6% and 133.5%, respectively, of the true values in the Continuing Calibration Verification; however, these analytes were not detected in the sample "FRB05_20171005".

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	14
Certifications	15
Sample Receipt	18
Extraction Information	21
Sample Data - Modified EPA Method 537	25
ICAL with ICV and IB	152

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1701439-01	FRB05_20171005	05-Oct-17 13:15	07-Oct-17 09:23	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1701439-02	Site 3-GW-03GW02-20171005	05-Oct-17 16:30	07-Oct-17 09:23	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1701439-03	FRB04_20171005	05-Oct-17 16:35	07-Oct-17 09:23	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1701439-04	Site 4-GW-04GW01-20171006	06-Oct-17 08:00	07-Oct-17 09:23	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1701439-05	FRB06_20171006	06-Oct-17 08:08	07-Oct-17 09:23	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

Vista Project: 1701439 Client Project: BRAC PFAS,NAS Chase Field,TX-TO 0008

ANALYTICAL RESULTS

Sample ID: Method Blank Modified EPA Method 537

Client Data Laboratory Data

Name: KMEA Matrix: Aqueous Lab Sample: B7J0092-BLK1 Column: BEH C18

Project: BRAC PFAS,NAS Chase Field,TX-TO 0008

Project: BRAC PFAS,I	NAS Chase Field,TX-TO	0008									
Analyte		Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		ND	0.000729	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFPeA		ND	0.00128	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFBS		ND	0.00179	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFHxA		ND	0.00218	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFHpA		ND	0.000591	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFHxS		ND	0.000947	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFOA		ND	0.000651	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFOS		ND	0.000807	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFNA		ND	0.000810	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFDA		ND	0.00149	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFOSA		ND	0.00177	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
MeFOSAA		ND	0.00165	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFDS		ND	0.00123	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFUnA		ND	0.00105	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
EtFOSAA		ND	0.00137	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFDoA		ND	0.000792	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
PFTrDA		ND	0.000494	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	
PFTeDA		ND	0.000755	0.00500	0.00800		B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
Labeled Standards	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	89.9		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C3-PFPeA	IS	82.8		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C3-PFBS	IS	95.4		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C2-PFHxA	IS	87.5		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C4-PFHpA	IS	86.9		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
18O2-PFHxS	IS	89.9		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C2-PFOA	IS	82.4		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C8-PFOS	IS	102		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C5-PFNA	IS	83.4		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C2-PFDA	IS	72.7		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C8-PFOSA	IS	53.6		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
d3-MeFOSAA	IS	64.4		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
13C2-PFUnA				50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	
	IS	70.7		30 - 130							
d5-EtFOSAA		73.0		50 - 150			B7J0092	17-Oct-17	0.125 L	26-Oct-17 13:10	1
d5-EtFOSAA 13C2-PFDoA	IS IS IS						B7J0092 B7J0092	17-Oct-17 17-Oct-17	0.125 L 0.125 L	26-Oct-17 13:10 26-Oct-17 13:10	

Work Order 1701439 Revision 1 Page 6 of 402

DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation LCL-UCL- Lower control limit - upper control limit
Results reported to the DL.
When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Work Order 1701439 Revision 1 Page 7 of 402

Sample ID: OPR

Modified EPA Method 537

Client Data Laboratory Data

Name: KMEA Matrix: Aqueous Lab Sample: B7J0092-BS1 Column: BEH C18

Project: BRAC PFAS,NAS Chase Field,TX-TO 0008

Analyte	Amt Found (ug/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	0.0699	0.0800	87.3	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFPeA	0.0707	0.0800	88.3	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFBS	0.0714	0.0800	89.2	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFHxA	0.0741	0.0800	92.7	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFHpA	0.0708	0.0800	88.5	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFHxS	0.0743	0.0800	92.9	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFOA	0.0667	0.0800	83.4	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFOS	0.0606	0.0800	75.7	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFNA	0.0696	0.0800	87.1	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFDA	0.0818	0.0800	102	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFOSA	0.0596	0.0800	74.6	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
MeFOSAA	0.0715	0.0800	89.4	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFDS	0.0997	0.0800	125	60-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFUnA	0.0707	0.0800	88.3	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
EtFOSAA	0.0622	0.0800	77.8	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFDoA	0.0766	0.0800	95.7	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFTrDA	0.0917	0.0800	115	60-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
PFTeDA	0.0582	0.0800	72.8	70-130		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
Labeled Standards	Туре		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS		89.9	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
13C3-PFPeA	IS		79.3	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
13C3-PFBS	IS		81.8	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
13C2-PFHxA	IS		83.1	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
13C4-PFHpA	IS		84.8	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
18O2-PFHxS	IS		82.4	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
13C2-PFOA	IS		82.5	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
13C8-PFOS	IS		97.7	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
13C5-PFNA	IS		81.7	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
13C2-PFDA	IS		68.7	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
13C8-PFOSA	IS		57.8	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
d3-MeFOSAA	IS		57.6	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
13C2-PFUnA	IS		66.4	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	
d5-EtFOSAA	IS		61.9	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
13C2-PFDoA	IS		66.6	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1
13C2-PFTeDA	IS		92.0	50- 150		B7J0092	17-Oct-17	0.125 L	26-Oct-17 12:03	1

Work Order 1701439 Revision 1 Page 8 of 402

Work Order 1701439 Revision 1 Page 9 of 402

Sample ID: FRB05_20171005 **Modified EPA Method 537**

Client Data Laboratory Data

Lab Sample: Name: **KMEA** Matrix: Blank Water 1701439-01 Column: BEH C18 Project:

Date Collected: 05-Oct-17 13:15 BRAC PFAS,NAS Chase Field,TX-TO 0008 Date Received: 07-Oct-17 09:23

Analyte		Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
						Quanners					
PFBA		ND	0.000759	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFPeA PFBS		ND	0.00133	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
		ND	0.00186	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFHxA		ND	0.00227	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFHpA		ND	0.000615	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFHxS		ND	0.000986	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFOA		ND	0.000678	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFOS		ND	0.000840	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
PFNA		ND	0.000843	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
PFDA		ND	0.00155	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	- 1
PFOSA		ND	0.00184	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
MeFOSAA		ND	0.00172	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFDS		ND	0.00128	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFUnA		ND	0.00109	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
EtFOSAA		ND	0.00143	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFDoA		ND	0.000825	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	
PFTrDA		ND	0.000514	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
PFTeDA		ND	0.000786	0.00521	0.00833		B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
Labeled Standards	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	84.5		50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C3-PFPeA	IS	83.5		50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C3-PFBS	IS	88.1		50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C2-PFHxA	IS	82.8		50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C4-PFHpA	IS	82.1		50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
18O2-PFHxS	IS	80.2		50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C2-PFOA	IS	78.2		50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C8-PFOS	IS	98.7		50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C5-PFNA	IS	78.6		50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
IJCJ-I FINA	13			50 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C2-PFDA	IS	57.3		50 - 150							
		57.3 82.8		50 - 150 50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C2-PFDA	IS						B7J0092 B7J0092	17-Oct-17 17-Oct-17	0.120 L 0.120 L	07-Nov-17 22:17 07-Nov-17 22:17	
13C2-PFDA 13C8-PFOSA	IS IS	82.8		50 - 150							1
13C2-PFDA 13C8-PFOSA d3-MeFOSAA	IS IS IS IS	82.8 68.8		50 - 150 50 - 150			B7J0092	17-Oct-17	0.120 L	07-Nov-17 22:17	1
13C2-PFDA 13C8-PFOSA d3-MeFOSAA 13C2-PFUnA	IS IS IS	82.8 68.8 69.9		50 - 150 50 - 150 50 - 150			B7J0092 B7J0092	17-Oct-17 17-Oct-17	0.120 L 0.120 L	07-Nov-17 22:17 07-Nov-17 22:17	1 1 1

Work Order 1701439 Revision 1 Page 10 of 402

DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation LCL-UCL- Lower control limit - upper control limit
Results reported to the DL.
When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Work Order 1701439 Revision 1 Page 11 of 402

Sample ID: FRB06_20171006 Modified EPA Method 537

Client Data **Laboratory Data**

Lab Sample: Name: **KMEA** Matrix: Blank Water 1701439-05 Column: BEH C18 Project:

Date Collected: 06-Oct-17 08:08 BRAC PFAS,NAS Chase Field,TX-TO 0008 Date Received: 07-Oct-17 09:23

Analyte		Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		ND	0.000763	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFPeA		ND	0.00134	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFBS		ND	0.00187	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFHxA		ND	0.00228	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFHpA		ND	0.000618	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFHxS		ND	0.000991	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFOA		ND	0.000681	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFOS		ND	0.000844	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFNA		ND	0.000847	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFDA		ND	0.00156	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFOSA		ND	0.00185	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
MeFOSAA		ND	0.00173	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFDS		ND	0.00129	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFUnA		ND	0.00110	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
EtFOSAA		ND	0.00143	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFDoA		ND	0.000829	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFTrDA		ND	0.000517	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
PFTeDA		ND	0.000790	0.00525	0.00837		B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
Labeled Standards	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	86.2		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C3-PFPeA	IS	86.3		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C3-PFBS	IS	94.6		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C2-PFHxA	IS	85.6		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C4-PFHpA	IS	88.3		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
18O2-PFHxS	IS	86.3		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C2-PFOA	IS	73.2		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C8-PFOS	IS	74.6		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C5-PFNA	IS	74.9		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C2-PFDA	IS	56.2		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C8-PFOSA	IS	56.1		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
d3-MeFOSAA	IS	64.8		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
13C2-PFUnA	IS	72.2		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
d5-EtFOSAA	IS	64.8		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1
us-Lu Obrari											
13C2-PFDoA	IS	79.3		50 - 150			B7J0092	17-Oct-17	0.119 L	03-Nov-17 14:08	1

Work Order 1701439 Revision 1 Page 12 of 402

DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation LCL-UCL- Lower control limit - upper control limit
Results reported to the DL.
When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Work Order 1701439 Revision 1 Page 13 of 402

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The associated compound concentration exceeded the calibration range of

the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Reporting Limit/LOQ.

M Estimated Maximum Possible Concentration. (CA Region 2 projects only)

* See Cover Letter

Conc. Concentration

NA Not applicable

ND Not Detected

TEQ Toxic Equivalency

U Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	17-015-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Vista Analytical

1104 Windfield Way El Dorado Hills, CA 95762

TEL: 916-673-1520

Vista PM: Karen Volpendesta

CHAIN OF CUSTODY RECORD

DATE: 10/5/2017 - 10/6/2017

PAGE: 3 OF 3

AME	ATORY CLIENT: C Foster Wheeler E & I, Inc.			ENT PROJE				200000	- Walliam 1		W-0000						NO.:		Tall Management of						
ADDRE					RAC P		AS (Chas	e Fi	eld,	TX -	TO (3000					MEA					_		
CITY:	Sky Park Court			****			ledora		r/N/In	rio E	20vii	25								NTRAG 6247			405		
San [Diego, CA 92123						MPLER(S): (iiie i	,	51								USE			.403		18 18 18 18
TEL:	E-Mail		E-MAIL						el	Rul	h									1	٦.,۲	$\neg r$			
	39.3400 medora.hackler@amecfw.c	om	marie.bevi	er@amecfw	.com	_			ι					•					Bana	dilaa		and b			200
	AME DAY								REC	QUE	STE	D A	NA	LYS	SIS										
SPECIA	L REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)		200														П								
	RWQCB REPORTING ARCHIVE SAMPLES	S UNTIL .	1	_/																					
	LINSTRUCTIONS			l 86	PFBS																				
7.50 7.50 000	samples are only to be analyzed if associated associate			and PFBS Mod.)	D D																				
dete	ection at or above LOQ.						an Z	and (
							V, PFOS, and PF EPA 537 Mod.)	OS, a 537)																ii.	
				W/		Level	H A	PF EPA																	
LAB USE	SAMPLE ID	SAMI	PLING	Matrix	*Cone	F.	PFOA, (U.S. El	PFOA, PFC (U.S. EPA																	
ONLY	000-00-	DATE	TIME	74	J.	ဗ္ဗ	품글	품의																	
	FRB 05	1015/17	13:15	ßw	2		7		1+	0	4	9													
	Site3-GW-03G402-20171005	ч	16:30	GW	2	V	X																		
	FR304	ч	16:35	13 4	2		×		4	0	1	0													
	Site 4-GW-04GW01-20171006	10/6/17	8.00	GW	2		×				26														П
	FRB06	ч	8:08	BW	2		1		#	0	L	9													П
																				-		_		_	
							ne 1	0/6/1	7					_	_	The state of the s			0.00						
									AND STATE OF THE PARTY OF THE P						\neg					П		\neg			\Box
													\neg	\dashv	\neg					\Box	\neg	\neg			\square
													\neg	\dashv	\dashv	\neg					\dashv	\neg			\Box
Relingu	ished by: (Signature)			Received by	/: (Signa	ture) /	Carrier Tr	acking Nu	mber									Date				Time			\dashv
	Clef Ruste														10	161	17		1:	5:0	U				
Relinqu	ished by: (Signature) FELEX	/: (Signa	ture)	l. v												671		\neg	Time	100		\neg			
	Relinquished by: (Signature) Felex																			17					
Relinqu	uished by: (Signature)	y: (Šign a	(ure)												Date	Date: Time:									

Vista Analytical

1104 Windfield Way El Dorado Hills, CA 95762 1701439

CHAIN OF CUSTODY RECORD

	Committee of the second		many	
PAGE:	7	OF)	
Lugie	<u> </u>	_ ~	-	-

	C Foster Wheeler E & I, Inc.							TNAMET			Ci-	14 7	v -	.O 00	ing.			P.O.		PO 5	55		
210	Sky Park Court			Service Sur		PRO.	ECT CON	AS, N	AS C	nase	rie	ia, i	<u> </u>	000	700			CON	TRAC	TNO:		25	
an I	Diego, CA 92123							Hackle		ie Be	vie						-		USE 6		D-24	15	
EL	539,3400 E-Mail mediora hackler@amectw.	com	E-MAIL marie bevi	er@amectw	com			u	41	Zuil]-[I
JRINA	AROUND TIME		CHEDICAL V	10 DAYS							1	REQ	UES	TE	ANA	LYS	IS						
	SAME DAY 24 HR 48HR 72 HR	_ p U/	ars Dr	HUDAIS			15	TE.			T	T	T	T					-				
	RWQCB REPORTING ARCHIVE SAMPLE	SUNTIL	1	1			Ibio od	THE PERMIT															
	ALINSTRUCTIONS B samples are only to be analyzed if associa	ted field s	amples e	xhibit			1 =	10-					-										
							Mod.)											100					
4	ection at or above LOQ. PFAS-18 compound list; see st	P WZ#	12				537	53.	1336				100										
ì.	1				- 1	1 20	24 点	24 8															
I	SAMPLE ID	DATE	TIME	Water .	*Con	ac Le	U.S. I	U.S. U															
1	FR305	10/5/17	131,15	ßW	Z	G	بد	45	+	0	4	9	1	Ex-	trac	1	to).	5	KA	loli	-		
-	Site3-GW-03G402-20171065	4	16:30	GW	2	V	X											13				-	1
		ч	16:35	AV	2	186	×	THE REAL PROPERTY.	4	0	-	2	1	X	nuct	Ho	10) ic	wir	-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	FR.304		The second second			-		-		AND DESCRIPTION OF			- 1				10000000	100			The same of the same of		
+	FRIO 04 5-124-GW-04-GW01-2017-1006	10/6/17	8.00	GW	Z		×									1. 1.		1	-			-	
	5 k 4 - GW - 04 GW01-2017006	0/6/17	8:08	BW	2		*		44	0	L	9	(Exc	na	- ! #	d	1	اعران	7			_
					-		*			0	L	9	()	Exe	70,64	-!#	M	201	ofiel	4			=
	5 k 4 - GW - 04 GW01-2017006				-		*	0[6]		0	L	9	(Exe	70.64	! #) ld	03	of lest	4			
	5 k 4 - GW - 04 GW01-2017006				-		*	0[6]		0		9	(- x-	70.64	-! 4) Id	01	اعالما	7			
	5 k 4 - GW - 04 GW01-2017006				-		*	0[6]		0		9	(- Xd	77.64	-!#!	Id	D1	que	3			
	Sik 4 - GW - 04 GW01-2017 1006 FRB 06			BW	2		x !		7	0		9	(Ext	70.0	-! 4	Da	ate			Time		
Iqu	Sik 4 - GW - 04 GW01-2017 1006 FRB 06				2		x !		7	0		9	(Exe	70.61	1 14	Da fe	ate: 0 (6	(13		1	530	
b	Sik 4 - GW - 04 GW01-2017 1006 FRB 06			Received to	2	ature) /	x !		7	0		9	(-	77.64	-! 14	Da fe	ate			Time (530	- 2

revised COC received via smail 450 10/10/17

Sample Log-in Checklist

	Vista Work Orde	r#: 17042	2 17	01439		TAT_) busin	ess da	gys	
	Samples Arrival:	Date/Time 10/07/17 09	23	Initials:		Location: Shelf/Rack	,			
	Logged In:	Date/Time // O	61910/17 947- 1025	Initials:	SB	Location: Shelf/Rack	WR-2	·		ar
	Delivered By:	FedEx UPS			DHL	Deliver		Oth		
	Preservation:	(lce ³)	BI	ue Ice		Dry Ice		Noi	ne	
	Temp °C: 0		Time: 0	36 ed: Yes□	No ¤	Thermomet	er ID:	IR-1		
			mmmmm	mmmmm			VEC	NO	NIA	ı
							YES	NO	NA	
	Adequate Sample	e Volume Receive	ed?				Y			
	Holding Time Acc	ceptable?					✓			
	Shipping Contain	er(s) Intact?					√			
	Shipping Custody	y Seals Intact?					✓			
	Shipping Docume	entation Present?	1				1			
	Airbill	Trk # 8081	00-10-5	5264			√			
	Sample Containe		WIL	3-01			1			
	Sample Custody								√	
15		/ Sample Docum	entation Pr	resent?			1			
		ample Acceptance						1	/	
	1000 Allomaly/38	ample Acceptance	C I OIIII COII	ipicicu !						
	If Chlorinated or I	Drinking Water Sa	amples, Aco	ceptable Pre	eservat	50	/			
	Preservation Doc	umented:	Na₂S₂O₃	Trizma)(N	lone (*)	Yes)	No	NA	
	Shipping Contain	er (Vista	Client	Re	tain Re	turn	Disp	ose	
WO# 701	Comments: Sample & FRBU & EBO & DUPO Site & Site	es received in 12 th 1_20171005 1_20171002 11 (B bottle has 3-GW-42164 3-DW-42164	Some Hope low volume 18 - was of 18 - 2017 (bottles with 09119 085 (Bbo	h an ex ttle ha	ception of a * receive * tricma s low volu	emples of in 2 oprese one)	: 250 ml nt for	MQ.	ie bottle: sample

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

EXTRACTION INFORMATION

Process Sheet

Workorder: 1701439

Prep Expiration: 2017-Oct-19

Client: KMEA

Workorder Due: 23-Oct-17 00:00

TAT: 16

Method: 537M PFAS DOD (LOQ as mRL)

Matrix: Aqueous

Prep Batch: <u>B750092</u>

Prep Data Entered:

10-18-17 7tc

Version: TX+MeFOSAA+EtFOSAA (18 Analytes)

DoD: DoD QSM 5.1

Initial Sequence:

LabSampID	A/B	Prep Rec_	Spike Rec ClientSampleID	Comments	Location	Container
1701439-01	A		FRB05_20171005 FRB05"	Ext and Hold	WR-2 B-5	HDPE Bottle, 125 mL
1701439-02	T	U	Site 3-GW-03GW02-20171005		WR-2 B-5	HDPE Bottle, 125 mL
1701439-03			☐ FRB04_20171005 FRB04"/	Ext and Hold	WR-2 B-5	HDPE Bottle, 125 mL
1701439-04		V	Site 4-GW-04GW01-20171006		WR-2 B-5	HDPE Bottle, 125 mL
1701439-05	V		☐ FRB06_20171006 FRB00'' ✓	Ext and Hold	WR-2 B-5	HDPE Bottle, 125 mL

Pre-Prep Check Out: 10 10/17
Pre-Prep Check In: 10/14/17

Prep Check Out: (C 10 17 17

Prep Reconciled Initals/Date: KC 10|16|17

Spike Reconciled Initals/Date: HC 10|16|17

VialBoxID: Funday

Page 1 of 2

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537M PFAS DOD (LOQ as mRL)

B7J0092	

Prep Date/Time: 16-0ct-17 08:43

Prepared using: LCMS - SPE Extraction-LCMS

		Date/Inita	ıls: K	10/16/1	7	BalanceID:	JU2-8				
Cen	VISTA Sample ID	pH Before	pH After	Chlorine (Cl)	Drops HCl Added	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	IS/NS CHEM/WIT DATE	SPE VC13	THE RS CHEM/WIT DATE
	B7J0092-BLK1	5	2	0	2	NA	NA	(0.125)	THE KC 10-17-1		1/2 KC 10.17.17
	B7J0092-BS1	5	2	0	2	Ţ	-	(0.125)		T	-
	1701432-08RE1	7	2	0	3	88.07	27.17	0.06090			
	1701439-01	5	2	0	2		24.22	0.12006			
	1701439-02	U	2	0	3		27.18	0.11578	///		
	1701439-03	4	2	0	2		27.17	0.12041	X		
	1701439-04	5	2	0	4	146.69	27.09	0.119601	/		
	1701439-05	5	2	0	2	146.65	27.18	0.11947	d	4/	4

15: 17 I 3002, 194 (V4)	SPE Chem: Strata X AW 33um with	Notes: (A) Spiled while prepaine, 1000 volume. KC 10/16/17
IS SUP: NA	ELE SOLV: MUTH 1.5° LO NIHWOH in MEDIT	·
NS: 1762428, 10pl (VI)	Final Volume(s)	
RS: 1772619, 10pl (13)		

Batch: B7J0092

Matrix: Aqueous

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1701432-08RE1	0.0609 /	MA	NA	1000	17-Oct-17 08:43	HAC			Groundwater	537M PFAS DOD (LOQ as
1701439-01	0.12006		7	1000	17-Oct-17 08:43	HAC			Blank Water	537M PFAS DOD (LOQ as
1701439-02	0.11578			1000	17-Oct-17 08:43	HAC			Blank Water	537M PFAS DOD (LOQ as
1701439-03	0.12041 /			1000	17-Oct-17 08:43	HAC			Blank Water	537M PFAS DOD (LOQ as
1701439-04	0.1196			1000	17-Oct-17 08:43	HAC			Blank Water	537M PFAS DOD (LOQ as
1701439-05	0.11947			1000	17-Oct-17 08:43	HAC			Blank Water	537M PFAS DOD (LOQ as
B7J0092-BLK1	0.125			1000	17-Oct-17 08:43	HAC	_			QC
B7J0092-BS1	0.125	4	4	1000	17-Oct-17 08:43	HAC	17G2428	10 /		QC

SAMPLE DATA – MODIFIED EPA METHOD 537

Quantify Sample Summary Report Vista Analytical Laboratory

Rev'd: MM 10/27/17

Page 1 of 1

Dataset: U:\Q4.PRO\results\171026M1\171026M1-22.qld

Last Altered: Friday, October 27, 2017 13:08:18 Pacific Daylight Time Printed: Friday, October 27, 2017 13:09:01 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 11:45:01 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Name: 171026M1_22, Date: 26-Oct-2017, Time: 13:10:47, ID: B7J0092-BLK1 Method Blank 0.125, Description: Method Blank

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBA	213.0 > 168.8		6.75e3	0.125		1.32				
2	2 PFPeA	263.1 > 218.9		7.35e3	0.125		2.31				
3	3 PFBS	299.0 > 79.7		1.02e3	0.125		2.59				
4	4 PFHxA	313.2 > 268.9		3.04e3	0.125		3.08				
5	5 PFHpA	363.0 > 318.9		6.97e3	0.125		3.70				
6	6 L-PFHxS	398.9 > 79.6	4.23e0	8.55e2	0.125		3.86	3.76	0.0619	0.849	
7	9 L-PFOA	413 > 368.7	2.11e2	1.05e4	0.125		4.23	4.15	0.252		
8	12 PFNA	463.0 > 418.8		9.67e3	0.125		4.67				
9	13 PFOSA	498.1 > 77.8		2.01e3	0.125		4.72				
10	14 L-PFOS	499 > 79.9		2.53e3	0.125		4.76				
11	16 PFDA	513 > 468.8		9.48e3	0.125		5.05				
12	18 N-MeFOSAA	570.1 > 419		3.51e3	0.125		5.21				
13	19 N-EtFOSAA	584.2 > 419		3.99e3	0.125		5.37				
14	20 PFUnA	563.0 > 518.9	4.71e1	1.12e4	0.125		5.38	5.30	0.0523	0.140	
15	21 PFDS	598.8 > 80		1.12e4	0.125		5.43				
16	22 PFDoA	612.9 > 569.0		1.08e4	0.125		5.67				
17	24 PFTrDA	662.9 > 618.9		1.08e4	0.125		5.92				

Dataset: U:\Q4.PRO\results\171026M1\171026M1-22.qld

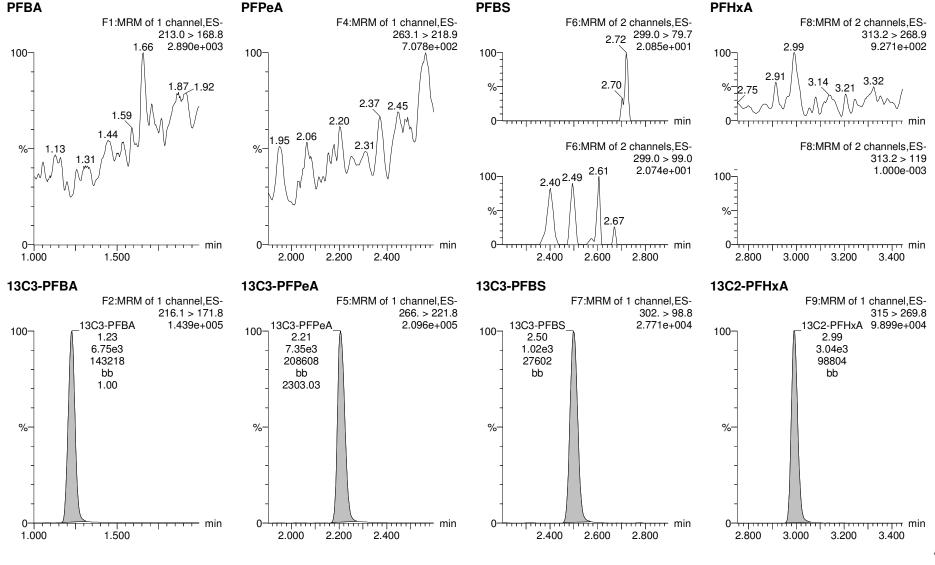
Last Altered: Friday, October 27, 2017 13:08:18 Pacific Daylight Time Printed: Friday, October 27, 2017 13:09:15 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 11:45:01 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Name: 171026M1_22, Date: 26-Oct-2017, Time: 13:10:47, ID: B7J0092-BLK1 Method Blank 0.125, Description: Method Blank

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	25 PFTeDA	712.9 > 668.8	Alea	8.97e3	0.125	nnı	6.13	n i	y Axis nesp.	COIIC.	/onec
2	31 13C3-PFBA	216.1 > 171.8	6.75e3	8.09e3	0.125	0.928	1.33	1.23	10.4	89.9	89.9
2	32 13C3-PFPeA	266. > 221.8	7.35e3	1.17e4	0.125	0.757	2.31	2.21	7.83	82.8	82.8
4	33 13C3-PFBS	302. > 98.8	1.02e3	1.17e4 1.17e4	0.125	0.757	2.51	2.50	1.08	95.4	95.4
5	34 13C2-PFHxA	315 > 269.8	3.04e3	1.17e4 1.17e4	0.125	0.739	3.08	2.99	3.23	35.0	87.5
6	35 13C4-PFHpA	367.2 > 321.8	6.97e3	1.17e4 1.17e4	0.125	0.739	3.70	3.62	7.43	86.9	86.9
7	36 18O2-PFHxS	403.0 > 102.6	8.55e2	2.31e3	0.125	0.664	3.85	3.78	4.63	89.9	89.9
8	37 13C2-6:2 FTS	429.1 > 408.9	2.40e3	1.13e4	0.125	0.412	4.18	4.09	2.65	85.4	85.4
9	38 13C2-PFOA	414.9 > 369.7	2.40e3 1.05e4	1.13e4 1.13e4	0.125	1.120	4.18	4.09	11.5	82.4	82.4
10	39 13C5-PFNA	468.2 > 422.9	9.67e3	1.13e4 1.25e4	0.125	0.929	4.23	4.13	9.68	83.4	83.4
11	40 13C8-PFOSA	506.1 > 77.7	2.01e3	1.52e4	0.125	0.929	4.07	4.64	1.65	53.6	53.6
12	41 13C8-PFOS	507.0 > 79.9	2.01e3 2.53e3	2.41e3	0.125	1.027	4.72	4.68	13.1	102	102.2
13	42 13C2-PFDA	515.1 > 469.9	2.33e3 9.48e3	1.38e4	0.125	0.946	5.05	4.98	8.59	72.7	72.7
14	43 13C2-8:2 FTS	529.1 > 508.7	9.46e3 2.05e3	1.38e4	0.125	0.946	5.03	4.96 4.95	1.86	86.8	86.8
15	44 d3-N-MeFOSAA	573.3 > 419	2.05e3 3.51e3	1.50e4 1.52e4	0.125	0.171	5.03	5.13	2.88	64.4	64.4
16	45 d5-N-EtFOSAA	589.3 > 419	3.99e3	1.52e4 1.52e4	0.125	0.360	5.36	5.13	3.28	73.0	73.0
17	46 13C2-PFUdA	565 > 519.8	3.99e3 1.12e4	1.52e4 1.52e4	0.125	1.045	5.38	5.26	9.24	73.0 70.7	
18	47 13C2-PFDoA	615.0 > 569.7	1.12e4 1.08e4	1.52e4 1.52e4	0.125	1.045	5.36 5.67	5.60	9.24 8.84	70.7 62.0	70.7 62.0
19							6.13				63.1
	49 13C2-PFTeDA	714.8 > 669.6	8.97e3	1.52e4	0.125	0.934		6.07	7.37	63.1	
20	54 13C4-PFBA	217. > 171.8	8.09e3	8.09e3	0.125	1.000	1.33	1.23	12.5	100	100.0
21	55 13C5-PFHxA	318 > 272.9	1.17e4	1.17e4	0.125	1.000	3.08	2.99	12.5	100	100.0
22	56 13C3-PFHxS	401.9 > 79.9	2.31e3	2.31e3	0.125	1.000	3.85	3.77	12.5	100	100.0
23	57 13C8-PFOA	421.3 > 376	1.13e4	1.13e4	0.125	1.000	4.23	4.15	12.5	100	100.0
24	58 13C9-PFNA	472.2 > 426.9	1.25e4	1.25e4	0.125	1.000	4.67	4.59	12.5	100	100.0
25 26	59 13C4-PFOS	503 > 79.9	2.41e3	2.41e3	0.125	1.000	4.76	4.68	12.5	100	100.0
26	60 13C6-PFDA	519.1 > 473.7	1.38e4	1.38e4	0.125	1.000	5.05	4.97	12.5	100	100.0
27	61 13C7-PFUnA	570.1 > 524.8	1.52e4	1.52e4	0.125	1.000	5.38	5.31	12.5	100	100.0
28	62 Total PFHxS	398.9 > 79.6		8.55e2						0.849	9
29	63 Total PFOA	413 > 368.7	2.11e2	1.05e4	0.125		4.23		0.000		
30	64 Total PFOS	499 > 79.9	0.00e0	2.53e3	0.125		4.67		0.000		
31	65 Total N-MeFOSAA	570.1 > 419	0.00e0	3.51e3	0.125		5.21		0.000		
32	66 Total N-EtFOSAA	584.2 > 419	0.00e0_	3.99e3_	0.125_		5.37_		0.000_		

AC 10/27/17


Work Order 1701439 Revision 1

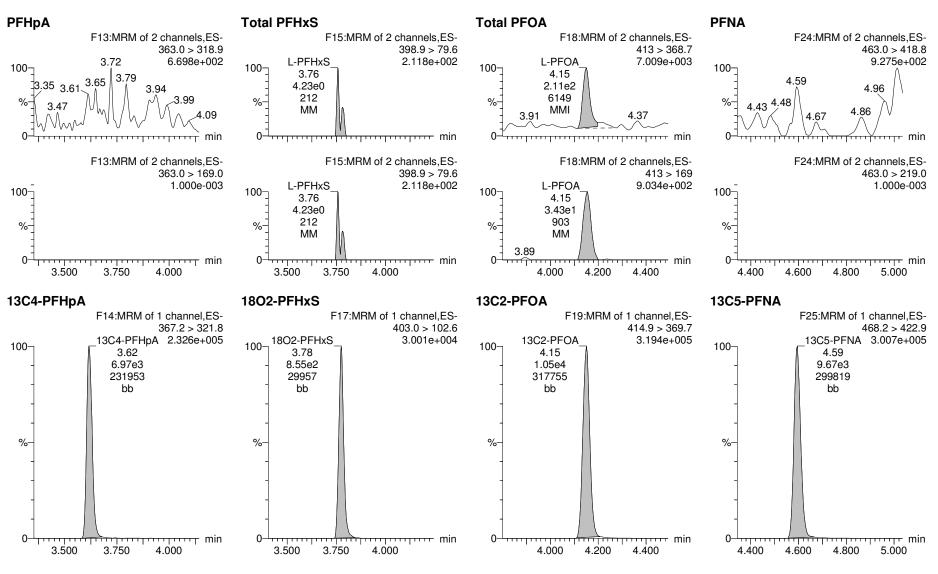
Dataset: U:\Q4.PRO\results\171026M1\171026M1-22.qld

Last Altered: Friday, October 27, 2017 13:08:18 Pacific Daylight Time Printed: Friday, October 27, 2017 13:09:15 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 11:45:01 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Name: 171026M1_22, Date: 26-Oct-2017, Time: 13:10:47, ID: B7J0092-BLK1 Method Blank 0.125, Description: Method Blank

AC 10/27/17


Work Order 1701439 Revision 1

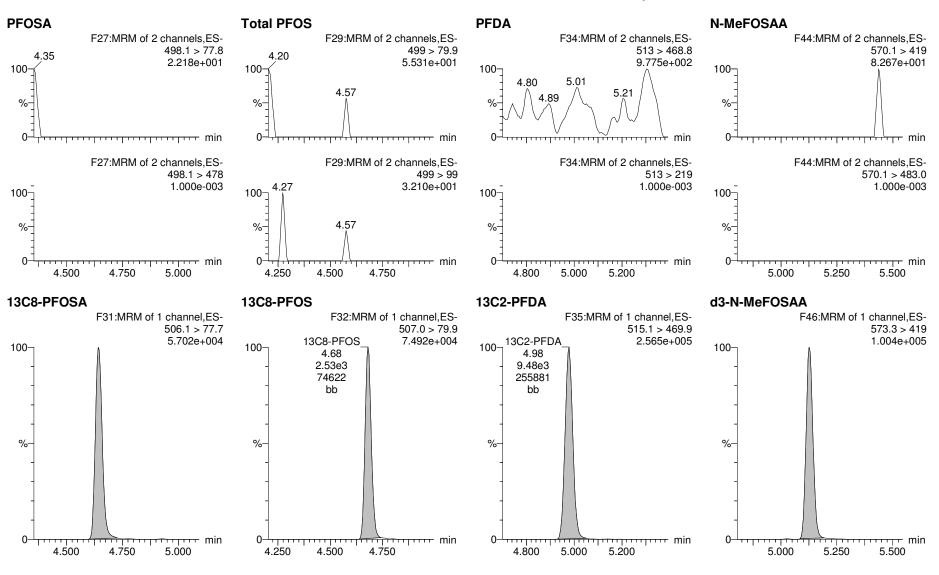
Page 28 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-22.qld

Last Altered: Friday, October 27, 2017 13:08:18 Pacific Daylight Time Printed: Friday, October 27, 2017 13:09:15 Pacific Daylight Time

Name: 171026M1_22, Date: 26-Oct-2017, Time: 13:10:47, ID: B7J0092-BLK1 Method Blank 0.125, Description: Method Blank

AC 10/27/17

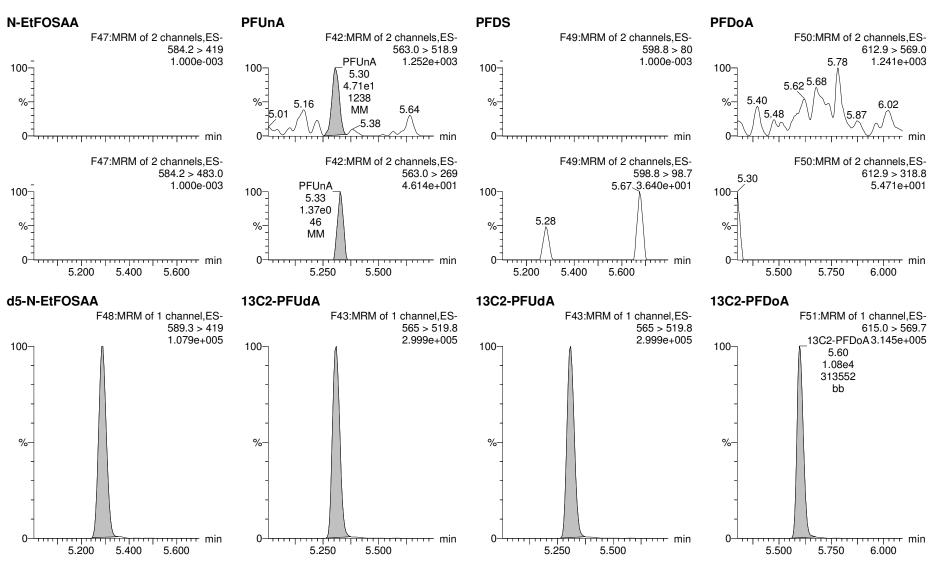

Work Order 1701439 Revision 1 Page 29 of 402

Rev'd: MM 10/27/17

Dataset: U:\Q4.PRO\results\171026M1\171026M1-22.gld

Last Altered: Friday, October 27, 2017 13:08:18 Pacific Daylight Time Printed: Friday, October 27, 2017 13:09:15 Pacific Daylight Time

Name: 171026M1_22, Date: 26-Oct-2017, Time: 13:10:47, ID: B7J0092-BLK1 Method Blank 0.125, Description: Method Blank


AC 10/27/17

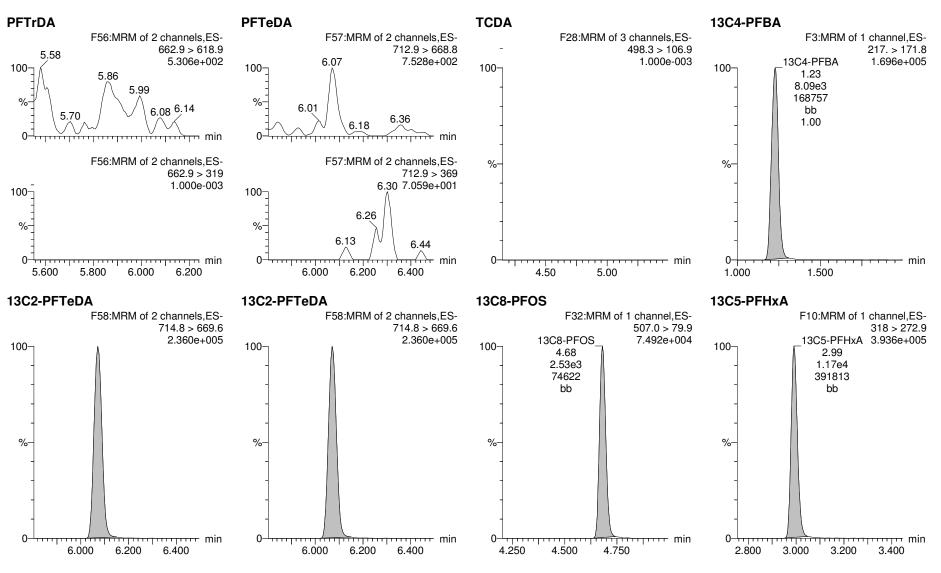
Work Order 1701439 Revision 1 Page 30 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-22.qld

Last Altered: Friday, October 27, 2017 13:08:18 Pacific Daylight Time Printed: Friday, October 27, 2017 13:09:15 Pacific Daylight Time

Name: 171026M1_22, Date: 26-Oct-2017, Time: 13:10:47, ID: B7J0092-BLK1 Method Blank 0.125, Description: Method Blank

AC 10/27/17


Work Order 1701439 Revision 1
Page 31 of 402

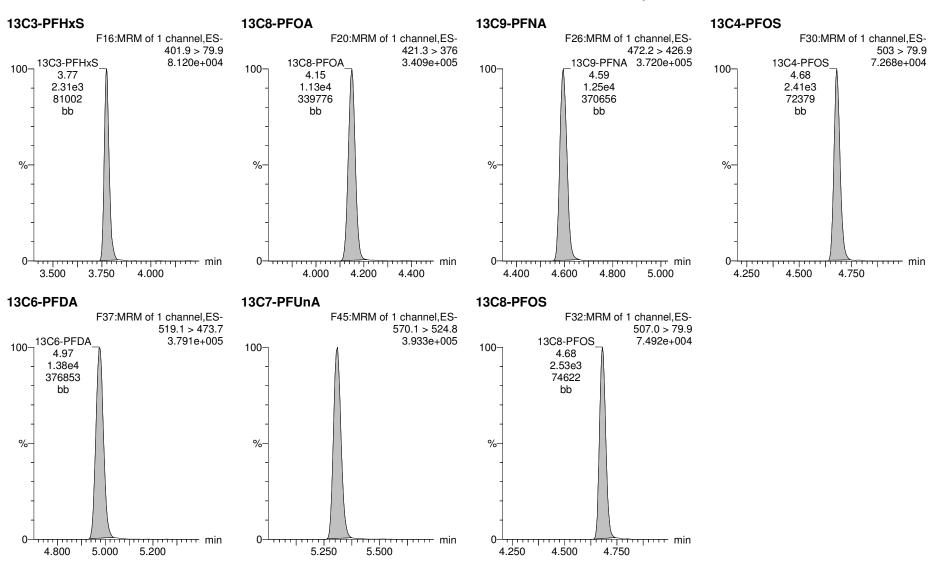
Dataset: U:\Q4.PRO\results\171026M1\171026M1-22.qld

Quantify Sample Report

Last Altered: Friday, October 27, 2017 13:08:18 Pacific Daylight Time Printed: Friday, October 27, 2017 13:09:15 Pacific Daylight Time

Name: 171026M1_22, Date: 26-Oct-2017, Time: 13:10:47, ID: B7J0092-BLK1 Method Blank 0.125, Description: Method Blank

AC 10/27/17


Work Order 1701439 Revision 1 Page 32 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-22.qld

Quantify Sample Report

Last Altered: Friday, October 27, 2017 13:08:18 Pacific Daylight Time Printed: Friday, October 27, 2017 13:09:15 Pacific Daylight Time

Name: 171026M1_22, Date: 26-Oct-2017, Time: 13:10:47, ID: B7J0092-BLK1 Method Blank 0.125, Description: Method Blank

AC 10/27/17

Work Order 1701439 Revision 1 Page 33 of 402

Vista Analytical Laboratory

Rev'd: MM 10/29/17

Dataset: U:\Q4.PRO\results\171026M1\171026M1-16.qld

Last Altered: Friday, October 27, 2017 12:58:27 Pacific Daylight Time Printed: Friday, October 27, 2017 13:05:00 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 11:45:01 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Name: 171026M1_16, Date: 26-Oct-2017, Time: 12:03:33, ID: B7J0092-BS1 OPR 0.125, Description: OPR

	# N.I.	-		10.4	144.07.1	222	D IDT	DT	4 : D		0/ D
	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBA	213.0 > 168.8	6.57e3	7.51e3	0.125		1.32	1.23	10.9	69.9	87.3
2	2 PFPeA	263.1 > 218.9	6.52e3	8.00e3	0.125		2.31	2.21	10.2	70.7	88.3
3	3 PFBS	299.0 > 79.7	1.72e3	9.89e2	0.125		2.59	2.51	21.7	71.4	89.2
4	4 PFHxA	313.2 > 268.9	1.01e4	3.27e3	0.125		3.08	3.00	15.5	74.1	92.7
5	5 PFHpA	363.0 > 318.9	8.27e3	7.73e3	0.125		3.70	3.62	13.4	70.8	88.5
6	6 L-PFHxS	398.9 > 79.6	1.46e3	8.12e2	0.125		3.86	3.78	22.5	74.3	92.9
7	9 L-PFOA	413 > 368.7	8.48e3	1.09e4	0.125		4.23	4.15	9.69	66.7	83.4
8	12 PFNA	463.0 > 418.8	9.89e3	9.79e3	0.125		4.67	4.59	12.6	69.6	87.1
9	13 PFOSA	498.1 > 77.8	1.50e3	2.15e3	0.125		4.72	4.64	8.70	59.6	74.6
10	14 L-PFOS	499 > 79.9	1.95e3	2.79e3	0.125		4.76	4.68	8.73	60.6	75.7
11	16 PFDA	513 > 468.8	1.03e4	9.27e3	0.125		5.05	4.98	13.8	81.8	102.2
12	18 N-MeFOSAA	570.1 > 419	3.52e3	3.11e3	0.125		5.21	5.13	14.2	71.5	89.4
13	19 N-EtFOSAA	584.2 > 419	2.66e3	3.36e3	0.125		5.37	5.29	9.87	62.2	77.8
14	20 PFUnA	563.0 > 518.9	8.48e3	1.05e4	0.125		5.38	5.31	10.1	70.7	88.3
15	21 PFDS	598.8 > 80	2.05e3	1.05e4	0.125		5.43	5.36	2.44	99.7	124.6
16	22 PFDoA	612.9 > 569.0	1.12e4	1.15e4	0.125		5.67	5.60	12.2	76.6	95.7
17	24 PFTrDA	662.9 > 618.9	1.41e4	1.15e4	0.125		5.92	5.86	15.4	91.7	114.6

Dataset: U:\Q4.PRO\results\171026M1\171026M1-16.qld

Last Altered: Friday, October 27, 2017 12:58:27 Pacific Daylight Time Friday, October 27, 2017 13:12:38 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 11:45:01 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Name: 171026M1_16, Date: 26-Oct-2017, Time: 12:03:33, ID: B7J0092-BS1 OPR 0.125, Description: OPR

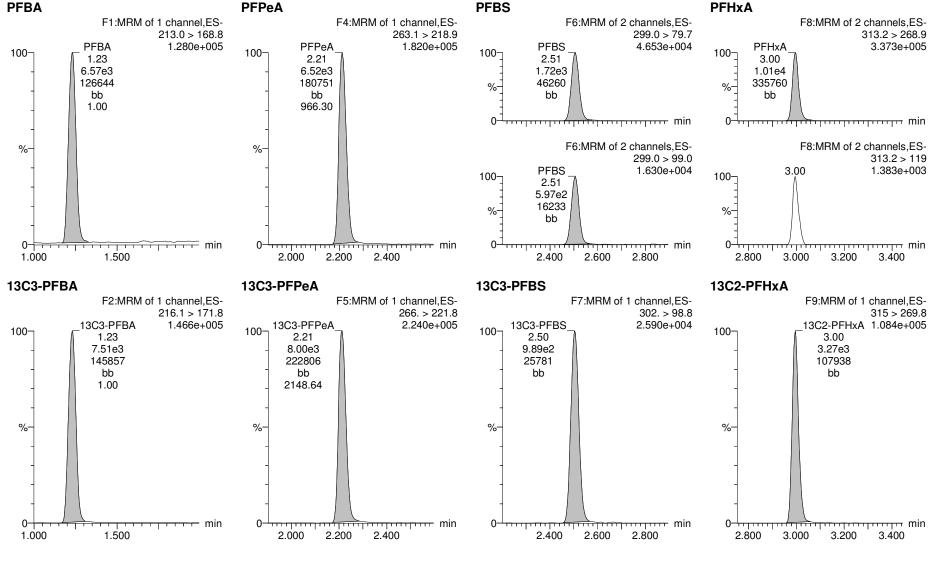
2 3 4 5	25 PFTeDA 31 13C3-PFBA 32 13C3-PFPeA 33 13C3-PFBS 34 13C2-PFHxA	712.9 > 668.8 216.1 > 171.8 266. > 221.8 302. > 98.8	1.25e4 7.51e3 8.00e3	1.30e4 9.00e3	0.125		6.13	6.07	12.1	58.2	72.8
4 5	32 13C3-PFPeA 33 13C3-PFBS 34 13C2-PFHxA	266. > 221.8		9.00e3	0.405						
4 5	33 13C3-PFBS 34 13C2-PFHxA		8.00e3		0.125	0.928	1.33	1.23	10.4	89.9	89.9
5	34 13C2-PFHxA	302. > 98.8		1.33e4	0.125	0.757	2.31	2.21	7.50	79.3	79.3
			9.89e2	1.33e4	0.125	0.091	2.59	2.50	0.928	81.8	81.8
6		315 > 269.8	3.27e3	1.33e4	0.125	0.739	3.08	3.00	3.07	33.2	83.1
	35 13C4-PFHpA	367.2 > 321.8	7.73e3	1.33e4	0.125	0.684	3.70	3.62	7.25	84.8	84.8
6 7	36 18O2-PFHxS	403.0 > 102.6	8.12e2	2.39e3	0.125	0.412	3.85	3.78	4.25	82.4	82.4
8	37 13C2-6:2 FTS	429.1 > 408.9	2.57e3	1.18e4	0.125	0.248	4.18	4.10	2.71	87.6	87.6
9	38 13C2-PFOA	414.9 > 369.7	1.09e4	1.18e4	0.125	1.120	4.23	4.15	11.6	82.5	82.5
10	39 13C5-PFNA	468.2 > 422.9	9.79e3	1.29e4	0.125	0.929	4.67	4.59	9.49	81.7	81.7
11	40 13C8-PFOSA	506.1 > 77.7	2.15e3	1.51e4	0.125	0.246	4.72	4.65	1.78	57.8	57.8
12	41 13C8-PFOS	507.0 > 79.9	2.79e3	2.78e3	0.125	1.027	4.76	4.68	12.5	97.7	97.7
13	42 13C2-PFDA	515.1 > 469.9	9.27e3	1.43e4	0.125	0.946	5.05	4.98	8.12	68.7	68.7
14	43 13C2-8:2 FTS	529.1 > 508.7	2.36e3	1.43e4	0.125	0.171	5.03	4.95	2.07	96.6	96.6
15	44 d3-N-MeFOSAA	573.3 > 419	3.11e3	1.51e4	0.125	0.358	5.20	5.13	2.57	57.6	57.6
16	45 d5-N-EtFOSAA	589.3 > 419	3.36e3	1.51e4	0.125	0.360	5.36	5.29	2.78	61.9	61.9
17	46 13C2-PFUdA	565 > 519.8	1.05e4	1.51e4	0.125	1.045	5.38	5.31	8.68	66.4	66.4
18	47 13C2-PFDoA	615.0 > 569.7	1.15e4	1.51e4	0.125	1.141	5.67	5.60	9.50	66.6	66.6
19	49 13C2-PFTeDA	714.8 > 669.6	1.30e4	1.51e4	0.125	0.934	6.13	6.07	10.7	92.0	92.0
20	54 13C4-PFBA	217. > 171.8	9.00e3	9.00e3	0.125	1.000	1.33	1.23	12.5	100	100.0
21	55 13C5-PFHxA	318 > 272.9	1.33e4	1.33e4	0.125	1.000	3.08	2.99	12.5	100	100.0
22	56 13C3-PFHxS	401.9 > 79.9	2.39e3	2.39e3	0.125	1.000	3.85	3.78	12.5	100	100.0
23	57 13C8-PFOA	421.3 > 376	1.18e4	1.18e4	0.125	1.000	4.23	4.15	12.5	100	100.0
24	58 13C9-PFNA	472.2 > 426.9	1.29e4	1.29e4	0.125	1.000	4.67	4.59	12.5	100	100.0
25	59 13C4-PFOS	503 > 79.9	2.78e3	2.78e3	0.125	1.000	4.76	4.68	12.5	100	100.0
26	60 13C6-PFDA	519.1 > 473.7	1.43e4	1.43e4	0.125	1.000	5.05	4.98	12.5	100	100.0
27	61 13C7-PFUnA	570.1 > 524.8	1.51e4	1.51e4	0.125	1.000	5.38	5.31	12.5	100	100.0
28	62 Total PFHxS	398.9 > 79.6		8.12e2							
29	63 Total PFOA	413 > 368.7	8.48e3	1.09e4	0.125		4.23		9.69	66.7	
30	64 Total PFOS	499 > 79.9	1.95e3	2.79e3	0.125		4.67		8.73	60.6	
31	65 Total N-MeFOSAA	570.1 > 419	3.52e3	3.11e3	0.125		5.21		14.2	71.5	
32	66 Total N-EtFOSAA	584.2 > 419	2.66e3	3.36e3	0.125		5.37		9.87	62.2	

AC 10/27/17

Work Order 1701439 Revision 1

Page 1 of 6

Vista Analytical Laboratory


Rev'd: MM 10/29/17

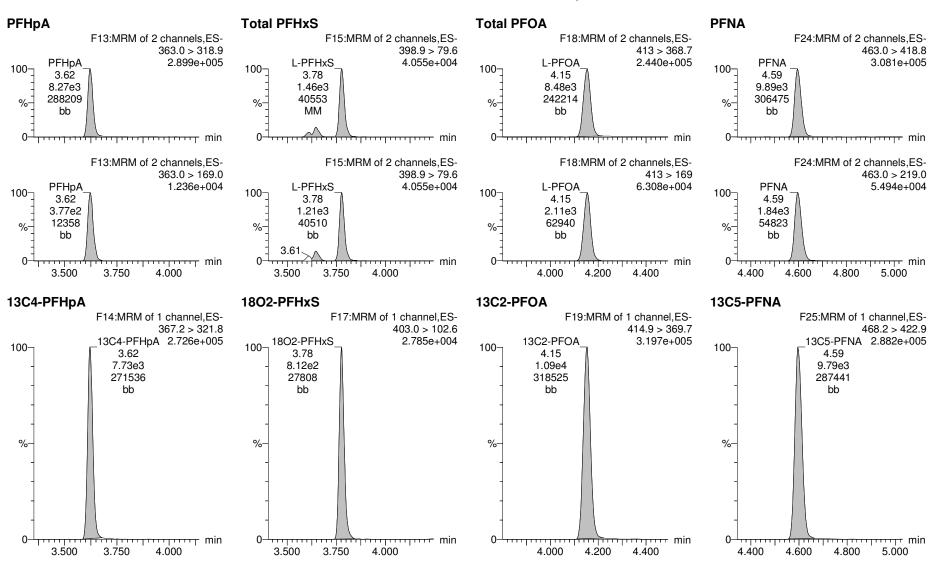
Dataset: U:\Q4.PRO\results\171026M1\171026M1-16.qld

Last Altered: Friday, October 27, 2017 12:58:27 Pacific Daylight Time Printed: Friday, October 27, 2017 13:05:00 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 11:45:01 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Name: 171026M1_16, Date: 26-Oct-2017, Time: 12:03:33, ID: B7J0092-BS1 OPR 0.125, Description: OPR

AC 10/27/17

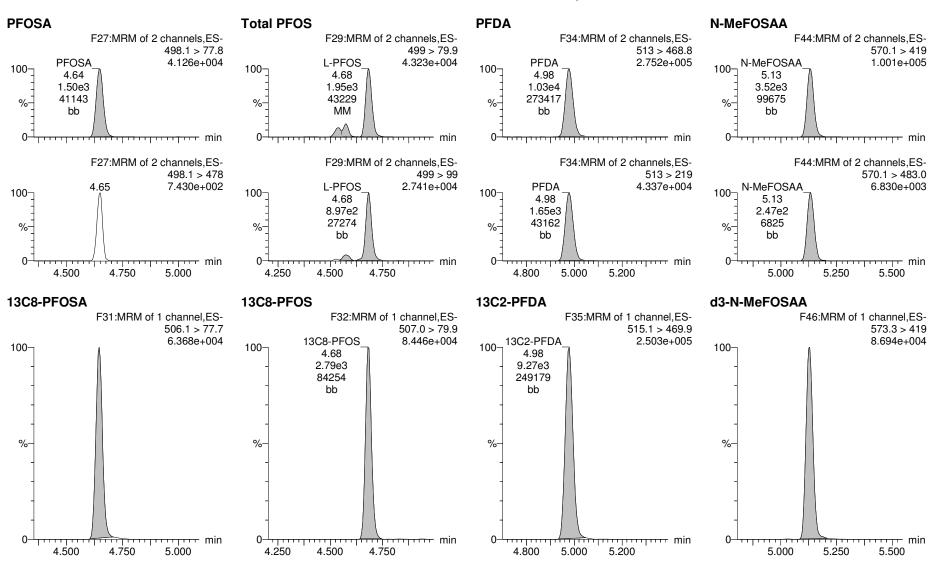

Work Order 1701439 Revision 1

Page 36 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-16.qld

Last Altered: Friday, October 27, 2017 12:58:27 Pacific Daylight Time Printed: Friday, October 27, 2017 13:05:00 Pacific Daylight Time

Name: 171026M1_16, Date: 26-Oct-2017, Time: 12:03:33, ID: B7J0092-BS1 OPR 0.125, Description: OPR

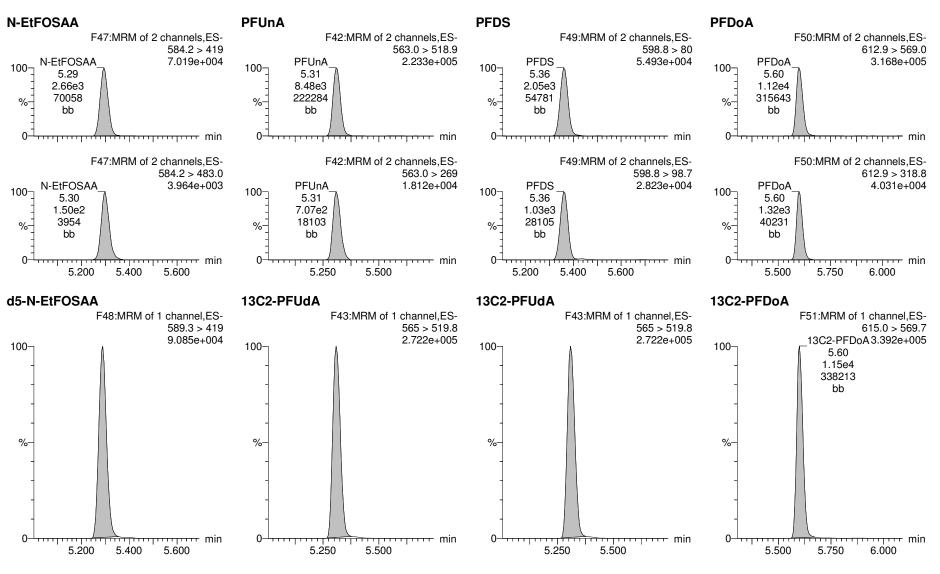

AC 10/27/17

Work Order 1701439 Revision 1 Page 37 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-16.qld

Last Altered: Friday, October 27, 2017 12:58:27 Pacific Daylight Time Printed: Friday, October 27, 2017 13:05:00 Pacific Daylight Time

Name: 171026M1_16, Date: 26-Oct-2017, Time: 12:03:33, ID: B7J0092-BS1 OPR 0.125, Description: OPR


AC 10/27/17

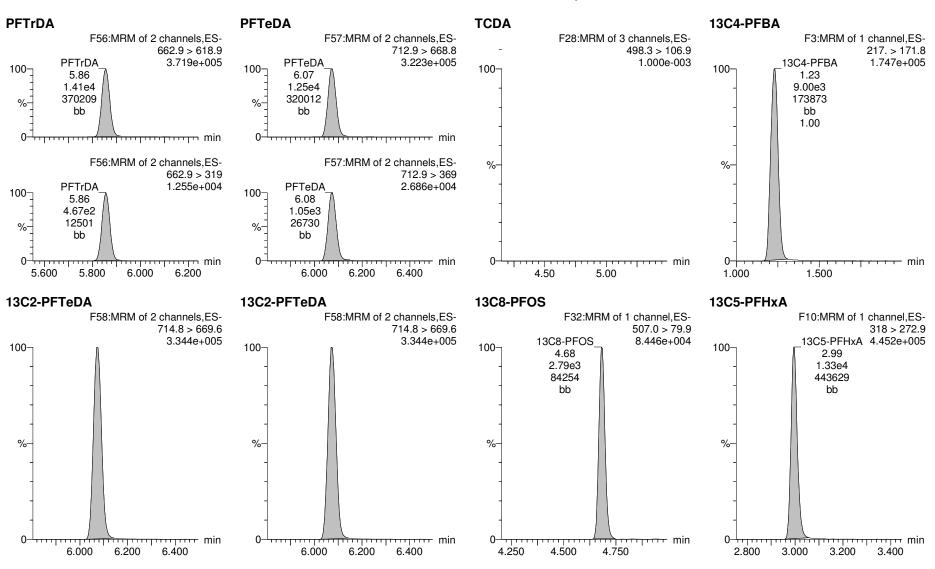
Work Order 1701439 Revision 1 Page 38 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-16.qld

Last Altered: Friday, October 27, 2017 12:58:27 Pacific Daylight Time Printed: Friday, October 27, 2017 13:05:00 Pacific Daylight Time

Name: 171026M1_16, Date: 26-Oct-2017, Time: 12:03:33, ID: B7J0092-BS1 OPR 0.125, Description: OPR

AC 10/27/17


Work Order 1701439 Revision 1 Page 39 of 402

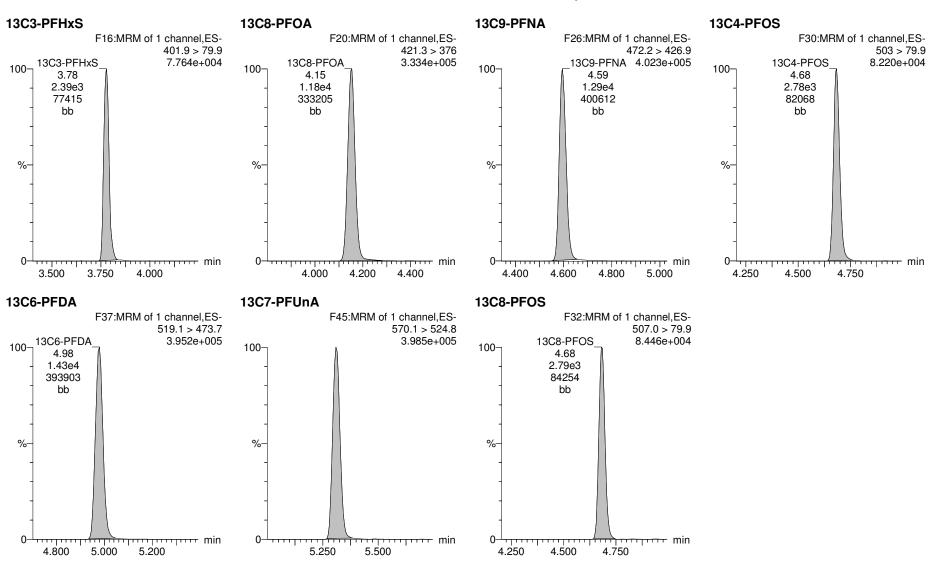
Dataset: U:\Q4.PRO\results\171026M1\171026M1-16.qld

Quantify Sample Report

Last Altered: Friday, October 27, 2017 12:58:27 Pacific Daylight Time Printed: Friday, October 27, 2017 13:05:00 Pacific Daylight Time

Name: 171026M1_16, Date: 26-Oct-2017, Time: 12:03:33, ID: B7J0092-BS1 OPR 0.125, Description: OPR

AC 10/27/17


Work Order 1701439 Revision 1 Page 40 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-16.qld

Quantify Sample Report

Last Altered: Friday, October 27, 2017 12:58:27 Pacific Daylight Time Friday, October 27, 2017 13:05:00 Pacific Daylight Time

Name: 171026M1_16, Date: 26-Oct-2017, Time: 12:03:33, ID: B7J0092-BS1 OPR 0.125, Description: OPR

AC 10/27/17

Work Order 1701439 Revision 1 Page 41 of 402

Dataset: U:\Q4.PRO\results\171107M2\171107M2-4.qld

Last Altered: Wednesday, November 08, 2017 10:31:11 Pacific Standard Time Printed: Wednesday, November 08, 2017 16:13:39 Pacific Standard Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_110617_AC.mdb 07 Nov 2017 07:51:36

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 08:42:13

Name: 171107M2_4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05_20171005 0.125, Description: FRB05_20171005

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBA	213.0 > 168.8		5.56e3	0.1201		1.64				
2	2 PFPeA	263.1 > 218.9		6.35e3	0.1201		2.63				
3	3 PFBS	299.0 > 79.7		7.60e2	0.1201		2.89				
4	4 PFHxA	313.2 > 268.9		2.44e3	0.1201		3.39				
5	5 PFHpA	363.0 > 318.9		5.68e3	0.1201		4.02				
6	6 L-PFHxS	398.9 > 79.6	1.24e0	5.56e2	0.1201		4.16	3.95	0.0278		
7	9 L-PFOA	413 > 368.7		7.95e3	0.1201		4.53				
8	12 PFNA	463.0 > 418.8		6.45e3	0.1201		4.96				
9	13 PFOSA	498.1 > 77.8		1.66e3	0.1201		5.01				
10	14 L-PFOS	499 > 79.9		1.67e3	0.1201		5.03				
11	16 PFDA	513 > 468.8		5.46e3	0.1201		5.33				
12	18 N-MeFOSAA	570.1 > 419		2.46e3	0.1201		5.48				
13	19 N-EtFOSAA	584.2 > 419		2.68e3	0.1201		5.63				
14	20 PFUdA	563.0 > 518.9		6.67e3	0.1201		5.65				
15	21 PFDS	598.8 > 80		6.67e3	0.1201		5.70				
16	22 PFDoA	612.9 > 569.0		9.23e3	0.1201		5.92				
17	24 PFTrDA	662.9 > 618.9		9.23e3	0.1201		6.16				

Dataset: U:\Q4.PRO\results\171107M2\171107M2-4.qld

Last Altered: Wednesday, November 08, 2017 10:31:11 Pacific Standard Time Wednesday, November 08, 2017 16:13:52 Pacific Standard Time

 $Method: U: \Q4.PRO\\MethDB\\PFAS_FULL_80C_110617_AC.mdb\ 07\ Nov\ 2017\ 07:51:36$

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 08:42:13

Name: 171107M2_4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05_20171005 0.125, Description: FRB05_20171005

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	25 PFTeDA	712.9 > 668.8		1.06e4	0.1201		6.36				
2	31 13C3-PFBA	216.1 > 171.8	5.56e3	6.93e3	0.1201	0.949	1.64	1.43	10.0	87.985	84.5
3	32 13C3-PFPeA	266. > 221.8	6.35e3	9.74e3	0.1201	0.781	2.63	2.41	8.16	86.959	83.5
4	33 13C3-PFBS	302. > 98.8	7.60e2	9.74e3	0.1201	0.089	2.89	2.69	0.975	91.705	88.1
5	34 13C2-PFHxA	315 > 269.8	2.44e3	9.74e3	0.1201	0.755	3.39	3.18	3.13	34.482	82.8
6	35 13C4-PFHpA	367.2 > 321.8	5.68e3	9.74e3	0.1201	0.711	4.02	3.81	7.29	85.435	82.1
7	36 18O2-PFHxS	403.0 > 102.6	5.56e2	1.64e3	0.1201	0.423	4.16	3.96	4.24	83.500	80.2
8	38 13C2-PFOA	414.9 > 369.7	7.95e3	7.77e3	0.1201	1.310	4.53	4.33	12.8	81.393	78.2
9	39 13C5-PFNA	468.2 > 422.9	6.45e3	8.38e3	0.1201	0.979	4.96	4.76	9.63	81.872	78.6
10	40 13C8-PFOSA	506.1 > 77.7	1.66e3	9.71e3	0.1201	0.207	5.01	4.82	2.14	86.222	82.8
11	41 13C8-PFOS	507.0 > 79.9	1.67e3	1.58e3	0.1201	1.072	5.03	4.85	13.2	102.788	98.7
12	42 13C2-PFDA	515.1 > 469.9	5.46e3	9.41e3	0.1201	1.014	5.33	5.14	7.26	59.607	57.3
13	44 d3-N-MeFOSAA	573.3 > 419	2.46e3	9.71e3	0.1201	0.368	5.48	5.29	3.16	71.609	68.8
14	45 d5-N-EtFOSAA	589.3 > 419	2.68e3	9.71e3	0.1201	0.389	5.63	5.44	3.45	73.908	71.0
15	46 13C2-PFUdA	565 > 519.8	6.67e3	9.71e3	0.1201	0.983	5.65	5.46	8.59	72.764	69.9
16	47 13C2-PFDoA	615.0 > 569.7	9.23e3	9.71e3	0.1201	0.997	5.92	5.74	11.9	99.319	95.4
17	49 13C2-PFTeDA	714.8 > 669.6	1.06e4	9.71e3	0.1201	1.039	6.36	6.20	13.7	109.750	105.4

Page 1 of 1

Page 1 of 1

Vista Analytical Laboratory Rev'd: MM 11/9/17

Dataset: U:\Q4.PRO\results\171107M2\171107M2-4.qld

Last Altered: Wednesday, November 08, 2017 10:31:11 Pacific Standard Time Printed: Wednesday, November 08, 2017 16:14:07 Pacific Standard Time

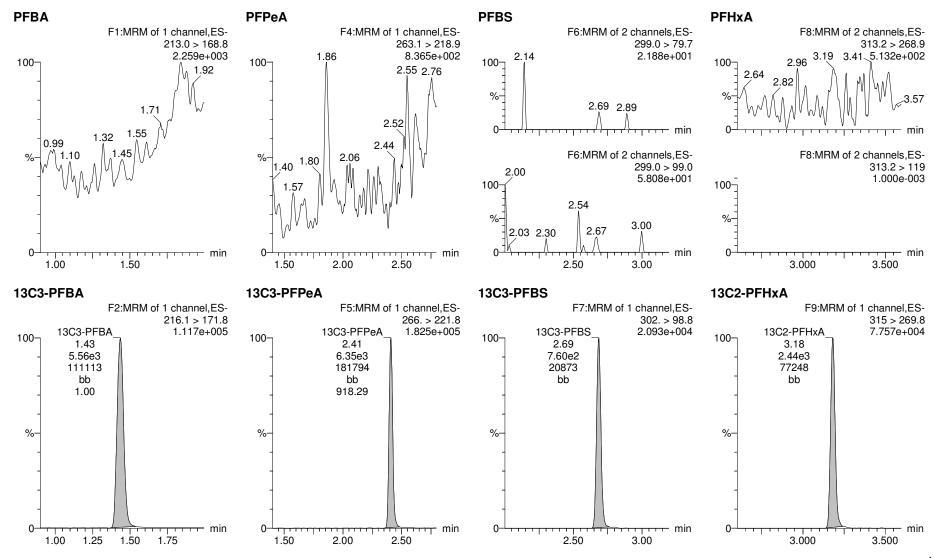
Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_110617_AC.mdb 07 Nov 2017 07:51:36

Calibration: U:\Q4.PRO\CurveDB\C18 VAL-PFAS Q4 10-31-17-FULL OLD.cdb 01 Nov 2017 08:42:13

Name: 171107M2_4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05_20171005 0.125, Description: FRB05_20171005

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	54 13C4-PFBA	217. > 171.8	6.93e3	6.93e3	0.1201	1.000	1.64	1.43	12.5	104.115	100.0
2	55 13C5-PFHxA	318 > 272.9	9.74e3	9.74e3	0.1201	1.000	3.39	3.18	12.5	104.115	100.0
3	56 13C3-PFHxS	401.9 > 79.9	1.64e3	1.64e3	0.1201	1.000	4.16	3.95	12.5	104.115	100.0
4	57 13C8-PFOA	421.3 > 376	7.77e3	7.77e3	0.1201	1.000	4.53	4.33	12.5	104.115	100.0
5	58 13C9-PFNA	472.2 > 426.9	8.38e3	8.38e3	0.1201	1.000	4.96	4.76	12.5	104.115	100.0
6	59 13C4-PFOS	503 > 79.9	1.58e3	1.58e3	0.1201	1.000	5.03	4.85	12.5	104.115	100.0
7	60 13C6-PFDA	519.1 > 473.7	9.41e3	9.41e3	0.1201	1.000	5.33	5.14	12.5	104.115	100.0
8	61 13C7-PFUdA	570.1 > 524.8	9.71e3	9.71e3	0.1201	1.000	5.65	5.46	12.5	104.115	100.0
9	62 Total PFHxS	398.9 > 79.6	1.24e0	5.56e2	0.1201		4.16		0.000		
10	63 Total PFOA	413 > 368.7	0.00e0	7.95e3	0.1201		4.53		0.000		
11	64 Total PFOS	499 > 79.9	0.00e0	1.67e3	0.1201		5.03		0.000		
12	65 Total N-MeFOSAA	570.1 > 419	0.00e0	2.46e3	0.1201		5.48		0.000		
13	66 Total N-EtFOSAA	584.2 > 419	0.00e0	2.68e3	0.1201		5.63		0.000		
14	67 TCDA	498.3>106.9			0.1201		4.76				

Page 1 of 6


Rev'd: MM 11/9/17

Dataset: U:\Q4.PRO\results\171107M2\171107M2-4.qld

Last Altered: Wednesday, November 08, 2017 10:31:11 Pacific Standard Time Printed: Wednesday, November 08, 2017 16:14:07 Pacific Standard Time

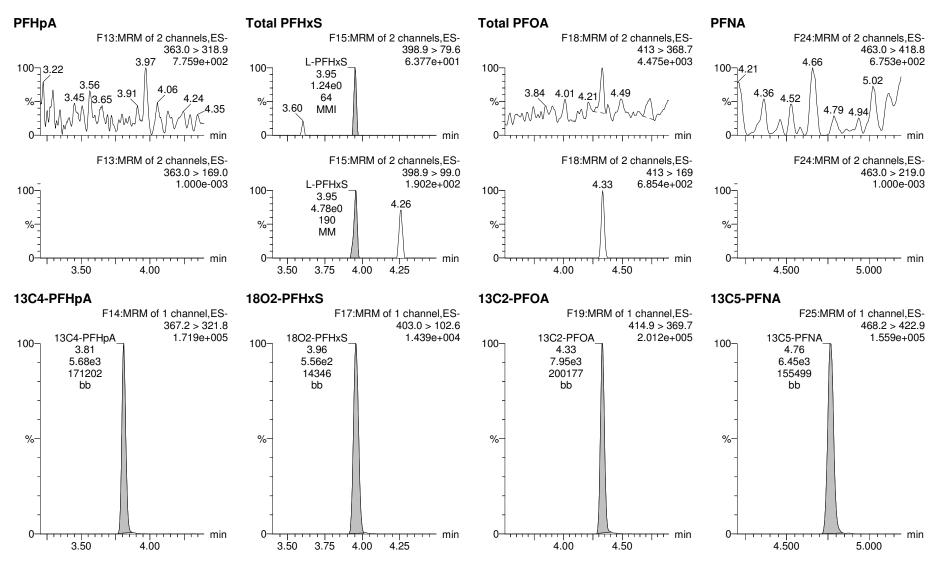
Method: U:\Q4.PRO\MethDB\PFAS FULL 80C 110617 AC.mdb 07 Nov 2017 07:51:36 Calibration: U:\Q4.PRO\CurveDB\C18 VAL-PFAS Q4 10-31-17-FULL OLD.cdb 01 Nov 2017 08:42:13

Name: 171107M2 4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05 20171005 0.125, Description: FRB05 20171005

LA 11/8/2017

Work Order 1701439 Revision 1

Page 45 of 402

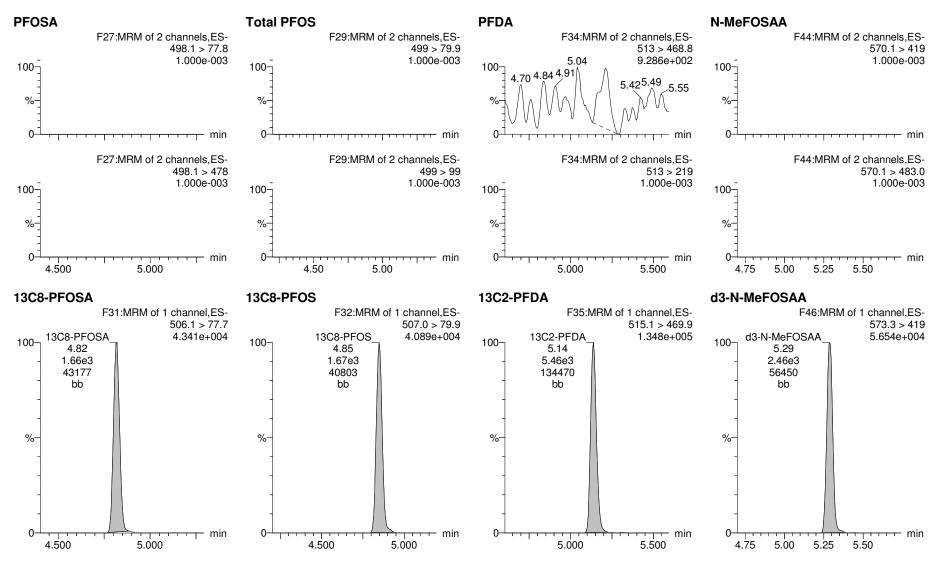

Rev'd: MM 11/9/17

Page 2 of 6

Dataset: U:\Q4.PRO\results\171107M2\171107M2-4.qld

Last Altered: Wednesday, November 08, 2017 10:31:11 Pacific Standard Time Printed: Wednesday, November 08, 2017 16:14:07 Pacific Standard Time

Name: 171107M2_4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05_20171005 0.125, Description: FRB05_20171005

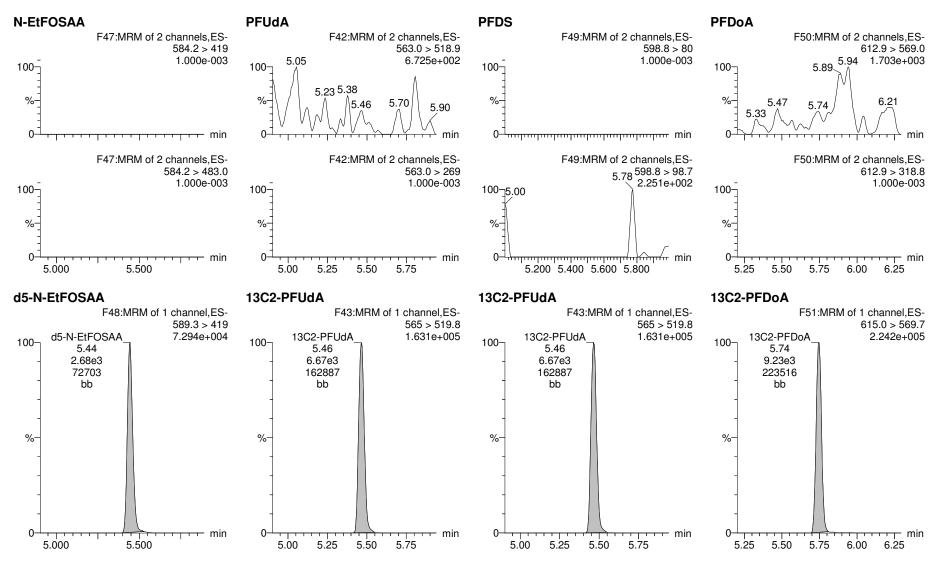

LA 11/8/2017

Work Order 1701439 Revision 1 Page 46 of 402

Dataset: U:\Q4.PRO\results\171107M2\171107M2-4.qld

Last Altered: Wednesday, November 08, 2017 10:31:11 Pacific Standard Time Printed: Wednesday, November 08, 2017 16:14:07 Pacific Standard Time

Name: 171107M2_4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05_20171005 0.125, Description: FRB05_20171005

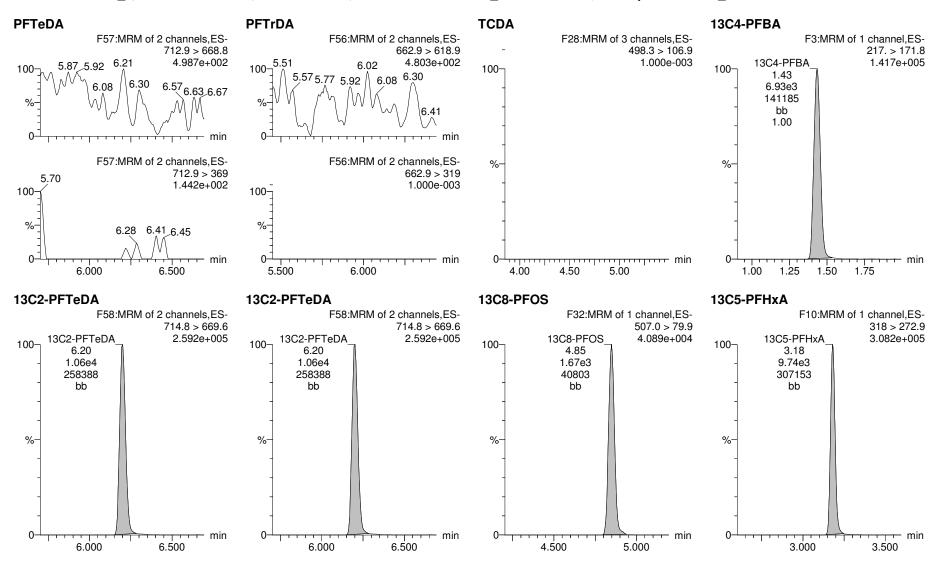

LA 11/8/2017

Work Order 1701439 Revision 1 Page 47 of 402

Dataset: U:\Q4.PRO\results\171107M2\171107M2-4.qld

Last Altered: Wednesday, November 08, 2017 10:31:11 Pacific Standard Time Printed: Wednesday, November 08, 2017 16:14:07 Pacific Standard Time

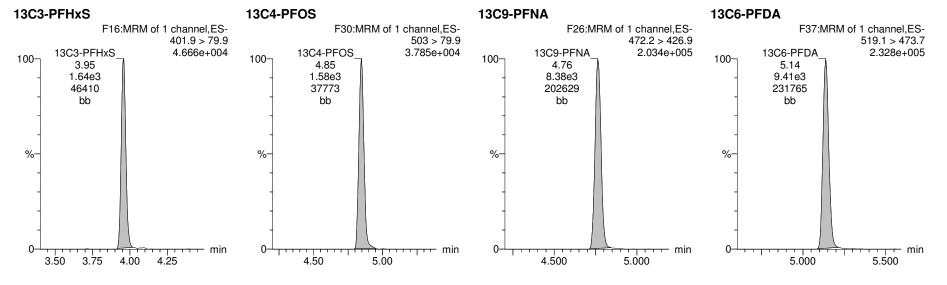
Name: 171107M2_4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05_20171005 0.125, Description: FRB05_20171005


LA 11/8/2017

Work Order 1701439 Revision 1 Page 48 of 402

Dataset: U:\Q4.PRO\results\171107M2\171107M2-4.qld

Last Altered: Wednesday, November 08, 2017 10:31:11 Pacific Standard Time Printed: Wednesday, November 08, 2017 16:14:07 Pacific Standard Time


Name: 171107M2_4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05_20171005 0.125, Description: FRB05_20171005

Dataset: U:\Q4.PRO\results\171107M2\171107M2-4.qld

Last Altered: Wednesday, November 08, 2017 10:31:11 Pacific Standard Time Printed: Wednesday, November 08, 2017 16:14:07 Pacific Standard Time

Name: 171107M2_4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05_20171005 0.125, Description: FRB05_20171005

Dataset: U:\Q4.PRO\results\171103M1\171103M1-5.qld

Last Altered: Friday, November 03, 2017 16:03:56 Pacific Daylight Time Printed: Friday, November 03, 2017 16:04:20 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

Name: 171103M1_5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06_20171006 0.125, Description: FRB06_20171006

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBA	213.0 > 168.8		6.04e3	0.1195		1.17				
2	2 PFPeA	263.1 > 218.9		6.30e3	0.1195		2.15				
3	3 PFBS	299.0 > 79.7		7.82e2	0.1195		2.44				
4	4 PFHxA	313.2 > 268.9		2.41e3	0.1195		2.93				
5	5 PFHpA	363.0 > 318.9		5.87e3	0.1195		3.56				
6	6 L-PFHxS	398.9 > 79.6	2.29e0	6.18e2	0.1195		3.71	3.59	0.0462		
7	9 L-PFOA	413 > 368.7		7.84e3	0.1195		4.05				
8	12 PFNA	463.0 > 418.8		6.26e3	0.1195		4.55				
9	13 PFOSA	498.1 > 77.8		1.20e3	0.1195		4.59				
10	14 L-PFOS	499 > 79.9		1.60e3	0.1195		4.63				
11	16 PFDA	513 > 468.8		6.06e3	0.1195		4.92				
12	18 N-MeFOSAA	570.1 > 419		2.47e3	0.1195		5.08				
13	19 N-EtFOSAA	584.2 > 419		2.61e3	0.1195		5.24				
14	20 PFUdA	563.0 > 518.9		7.33e3	0.1195		5.25				
15	21 PFDS	598.8 > 80		7.33e3	0.1195		5.31				
16	22 PFDoA	612.9 > 569.0		8.18e3	0.1195		5.55				
17	24 PFTrDA	662.9 > 618.9		8.18e3	0.1195		5.80				

Dataset: U:\Q4.PRO\results\171103M1\171103M1-5.qld

Last Altered: Friday, November 03, 2017 16:03:56 Pacific Daylight Time Printed: Friday, November 03, 2017 16:04:28 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

Name: 171103M1_5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06_20171006 0.125, Description: FRB06_20171006

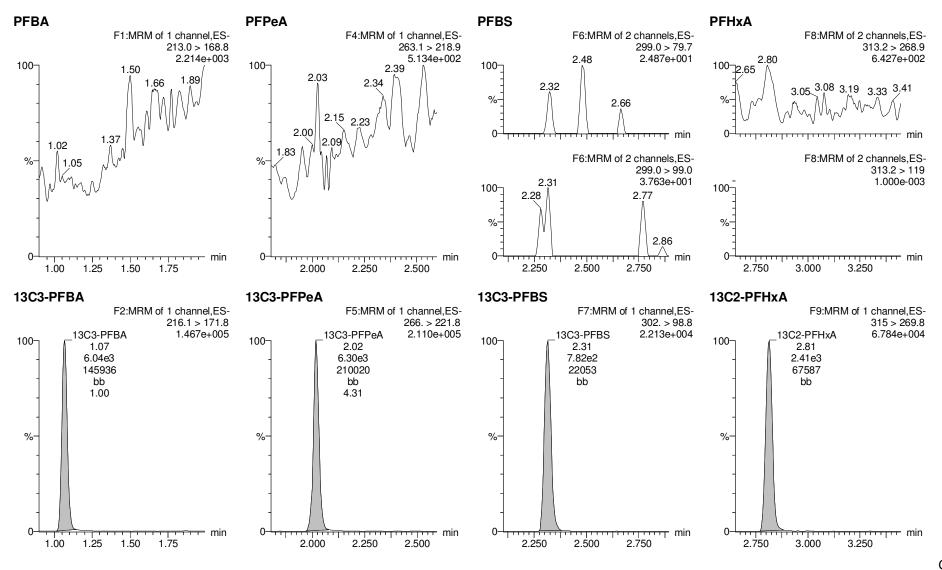
	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	25 PFTeDA	712.9 > 668.8		5.82e3	0.1195		6.02				
2	31 13C3-PFBA	216.1 > 171.8	6.04e3	7.38e3	0.1195	0.949	1.17	1.07	10.2	90.229	86.2
3	32 13C3-PFPeA	266. > 221.8	6.30e3	9.34e3	0.1195	0.781	2.15	2.02	8.43	90.342	86.3
4	33 13C3-PFBS	302. > 98.8	7.82e2	9.34e3	0.1195	0.089	2.44	2.31	1.05	98.952	94.6
5	34 13C2-PFHxA	315 > 269.8	2.41e3	9.34e3	0.1195	0.755	2.93	2.81	3.23	35.812	85.6
6	35 13C4-PFHpA	367.2 > 321.8	5.87e3	9.34e3	0.1195	0.711	3.56	3.43	7.85	92.422	88.3
7	36 18O2-PFHxS	403.0 > 102.6	6.18e2	1.69e3	0.1195	0.423	3.71	3.59	4.57	90.316	86.3
8	37 13C2-6:2 FTS	429.1 > 408.9	1.93e3	8.18e3	0.1195	0.286	4.03	3.91	2.95	86.382	82.6
9	38 13C2-PFOA	414.9 > 369.7	7.84e3	8.18e3	0.1195	1.310	4.05	3.96	12.0	76.597	73.2
10	39 13C5-PFNA	468.2 > 422.9	6.26e3	8.53e3	0.1195	0.979	4.55	4.41	9.17	78.373	74.9
11	40 13C8-PFOSA	506.1 > 77.7	1.20e3	1.03e4	0.1195	0.207	4.59	4.47	1.45	58.733	56.1
12	41 13C8-PFOS	507.0 > 79.9	1.60e3	2.00e3	0.1195	1.072	4.63	4.50	10.0	78.088	74.6
13	42 13C2-PFDA	515.1 > 469.9	6.06e3	1.06e4	0.1195	1.014	4.92	4.80	7.12	58.767	56.2
14	43 13C2-8:2 FTS	529.1 > 508.7	1.98e3	1.06e4	0.1195	0.216	4.89	4.76	2.33	90.286	86.3
15	44 d3-N-MeFOSAA	573.3 > 419	2.47e3	1.03e4	0.1195	0.368	5.08	4.95	2.98	67.821	64.8
16	45 d5-N-EtFOSAA	589.3 > 419	2.61e3	1.03e4	0.1195	0.389	5.24	5.11	3.15	67.850	64.8
17	46 13C2-PFUdA	565 > 519.8	7.33e3	1.03e4	0.1195	0.983	5.25	5.13	8.87	75.499	72.2
18	47 13C2-PFDoA	615.0 > 569.7	8.18e3	1.03e4	0.1195	0.997	5.55	5.42	9.89	83.023	79.3
19	49 13C2-PFTeDA	714.8 > 669.6	5.82e3	1.03e4	0.1195	1.039	6.02	5.90	7.03	56.616	54.1
20	54 13C4-PFBA	217. > 171.8	7.38e3	7.38e3	0.1195	1.000	1.17	1.07	12.5	104.629	100.0
21	55 13C5-PFHxA	318 > 272.9	9.34e3	9.34e3	0.1195	1.000	2.93	2.81	12.5	104.629	100.0
22	56 13C3-PFHxS	401.9 > 79.9	1.69e3	1.69e3	0.1195	1.000	3.71	3.59	12.5	104.629	100.0
23	57 13C8-PFOA	421.3 > 376	8.18e3	8.18e3	0.1195	1.000	4.05	3.96	12.5	104.629	100.0
24	58 13C9-PFNA	472.2 > 426.9	8.53e3	8.53e3	0.1195	1.000	4.55	4.41	12.5	104.629	100.0
25	59 13C4-PFOS	503 > 79.9	2.00e3	2.00e3	0.1195	1.000	4.63	4.50	12.5	104.629	100.0
26	60 13C6-PFDA	519.1 > 473.7	1.06e4	1.06e4	0.1195	1.000	4.92	4.80	12.5	104.629	100.0
27	61 13C7-PFUdA	570.1 > 524.8	1.03e4	1.03e4	0.1195	1.000	5.25	5.13	12.5	104.629	100.0
28	62 Total PFHxS	398.9 > 79.6	2.29e0	6.18e2	0.1195		3.71		0.000		
29	63 Total PFOA	413 > 368.7	0.00e0	7.84e3	0.1195		4.05		0.000		
30	64 Total PFOS	499 > 79.9	0.00e0	1.60e3	0.1195		4.63		0.000		
31	65 Total N-MeFOSAA	570.1 > 419	0.00e0	2.47e3	0.1195		5.08		0.000		
32	66 Total N-EtFOSAA	584.2 > 419	0.00e0	2.61e3	0.1195		5.24		0.000		

GM 11/3/17

Page 1 of 6

Vista Analytical Laboratory

Rev'd: MM 11/4/17


Dataset: U:\Q4.PRO\results\171103M1\171103M1-5.qld

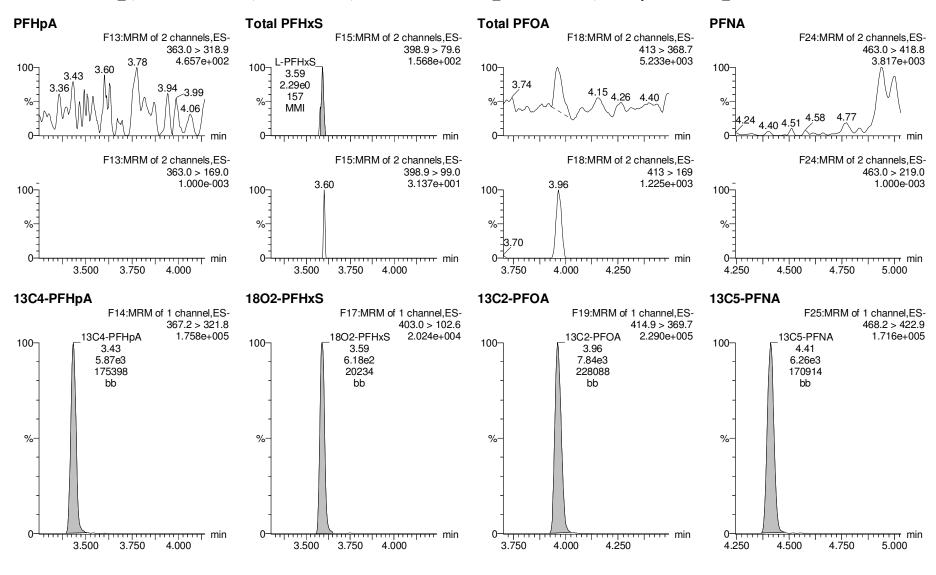
Last Altered: Friday, November 03, 2017 16:03:56 Pacific Daylight Time Friday, November 03, 2017 16:04:28 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

Name: 171103M1_5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06_20171006 0.125, Description: FRB06_20171006

GM 11/3/17

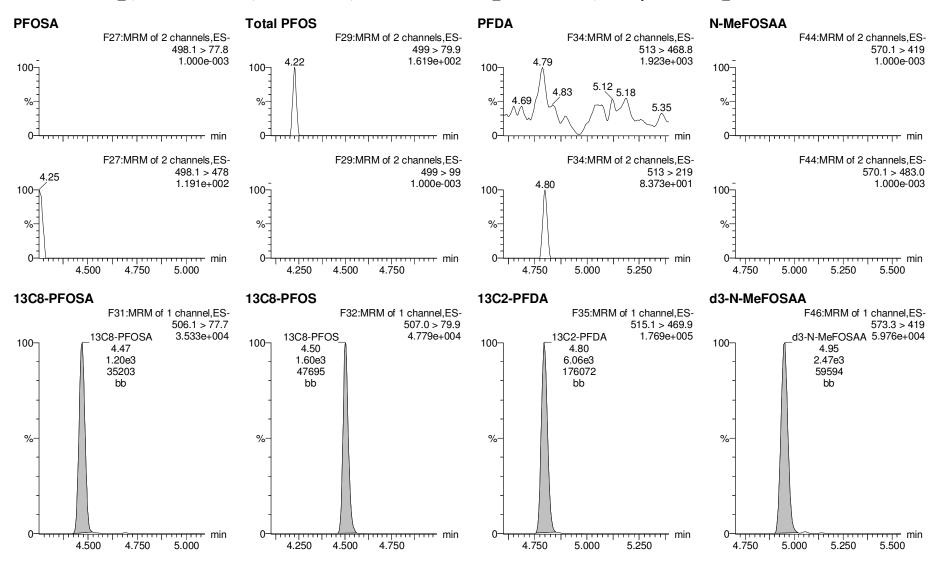

Work Order 1701439 Revision 1

Page 53 of 402

Dataset: U:\Q4.PRO\results\171103M1\171103M1-5.qld

Last Altered: Friday, November 03, 2017 16:03:56 Pacific Daylight Time Printed: Friday, November 03, 2017 16:04:28 Pacific Daylight Time

Name: 171103M1_5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06_20171006 0.125, Description: FRB06_20171006

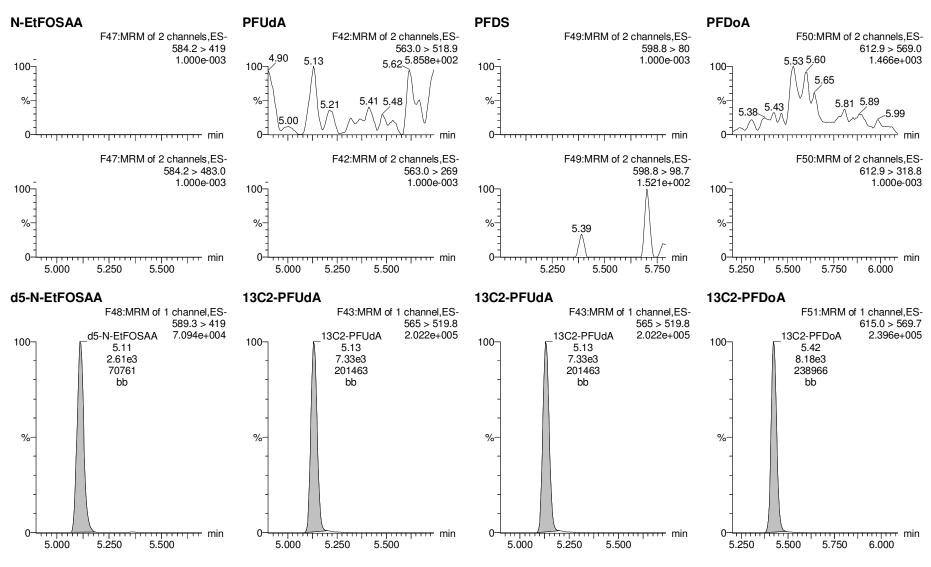

GM 11/3/17

Work Order 1701439 Revision 1 Page 54 of 402

Dataset: U:\Q4.PRO\results\171103M1\171103M1-5.qld

Last Altered: Friday, November 03, 2017 16:03:56 Pacific Daylight Time Printed: Friday, November 03, 2017 16:04:28 Pacific Daylight Time

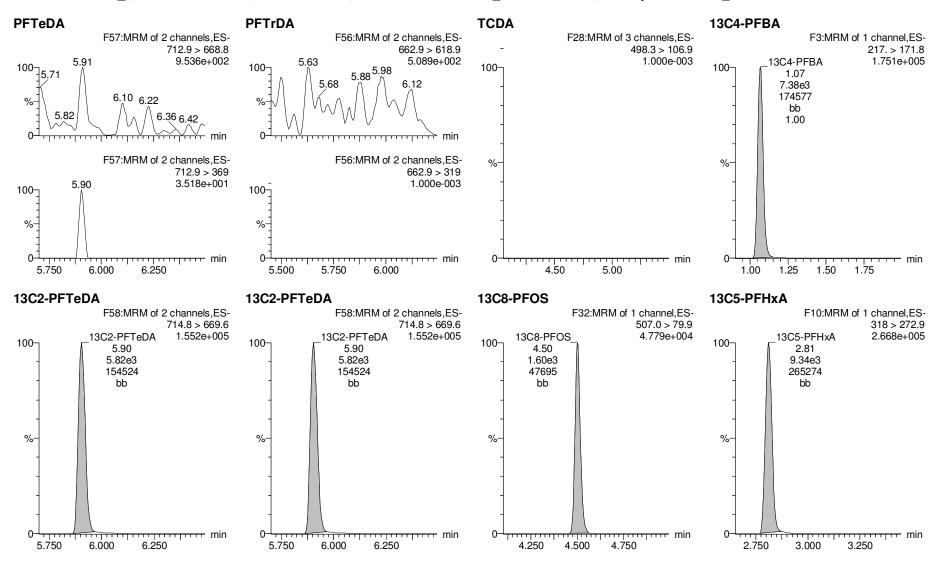
Name: 171103M1_5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06_20171006 0.125, Description: FRB06_20171006



Work Order 1701439 Revision 1 Page 55 of 402

Dataset: U:\Q4.PRO\results\171103M1\171103M1-5.qld

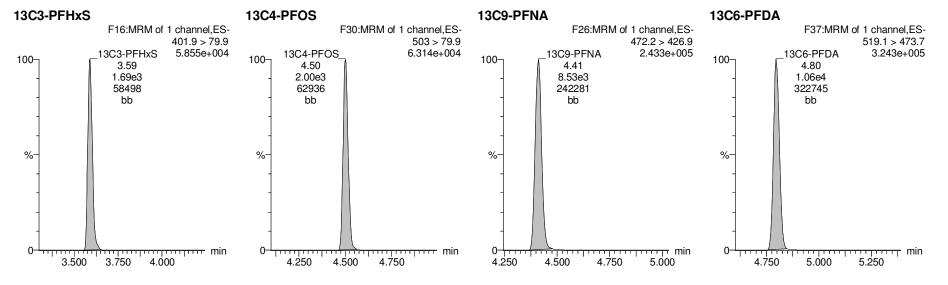
Last Altered: Friday, November 03, 2017 16:03:56 Pacific Daylight Time Printed: Friday, November 03, 2017 16:04:28 Pacific Daylight Time


Name: 171103M1_5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06_20171006 0.125, Description: FRB06_20171006

Dataset: U:\Q4.PRO\results\171103M1\171103M1-5.qld

Last Altered: Friday, November 03, 2017 16:03:56 Pacific Daylight Time Printed: Friday, November 03, 2017 16:04:28 Pacific Daylight Time

Name: 171103M1_5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06_20171006 0.125, Description: FRB06_20171006



Work Order 1701439 Revision 1

Dataset: U:\Q4.PRO\results\171103M1\171103M1-5.qld

Last Altered: Friday, November 03, 2017 16:03:56 Pacific Daylight Time Printed: Friday, November 03, 2017 16:04:28 Pacific Daylight Time

Name: 171103M1_5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06_20171006 0.125, Description: FRB06_20171006

INJECTION INTERNAL STANDARD (IIS) AREAS, INSTRUMENT BLANKS (IB)

AND

CONTINUTING CALIBRATION VERIFICATIONS CCV)

Dataset: Untitled

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Printed: Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS RS-10-27-17.mdb 27 Oct 2017 15:32:48

Calibration: 27 Oct 2017 15:35:32

Name: 171026M1_7, Date: 26-Oct-2017, Time: 10:22:11, ID: ST171026M1-6 PFC CS3 17J1806, Description: PFC CS3 17J1806

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171026M1-6 PFC CS3 17J1806	9.46e3	100.0	NO
2	2 13C5-PFHxA	ST171026M1-6 PFC CS3 17J1806	1.31e4	100.0	NO
3	3 13C3-PFHxS	ST171026M1-6 PFC CS3 17J1806	2.28e3	100.0	NO
4	4 13C8-PFOA	ST171026M1-6 PFC CS3 17J1806	1.18e4	100.0	NO
5	5 13C9-PFNA	ST171026M1-6 PFC CS3 17J1806	1.12e4	100.0	NO
6	6 13C4-PFOS	ST171026M1-6 PFC CS3 17J1806	2.51e3	100.0	NO
7	7 13C6-PFDA	ST171026M1-6 PFC CS3 17J1806	1.20e4	100.0	NO
8	8 13C7-PFUnA	ST171026M1-6 PFC CS3 17J1806	1.38e4	100.0	NO

Name: 171026M1_8, Date: 26-Oct-2017, Time: 10:33:24, ID: ST171026M1-7 PFC CS4 17J2102, Description: PFC CS4 17J2102

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171026M1-7 PFC CS4 17J2102	8.00e3	84.5	NO
2	2 13C5-PFHxA	ST171026M1-7 PFC CS4 17J2102	1.17e4	89.3	NO
3	3 13C3-PFHxS	ST171026M1-7 PFC CS4 17J2102	1.96e3	85.7	NO
4	4 13C8-PFOA	ST171026M1-7 PFC CS4 17J2102	9.34e3	79.4	NO
5	5 13C9-PFNA	ST171026M1-7 PFC CS4 17J2102	1.05e4	94.3	NO
6	6 13C4-PFOS	ST171026M1-7 PFC CS4 17J2102	2.33e3	92.9	NO
7	7 13C6-PFDA	ST171026M1-7 PFC CS4 17J2102	1.10e4	91.9	NO
8	8 13C7-PFUnA	ST171026M1-7 PFC CS4 17J2102	1.30e4	94.1	NO

Name: 171026M1_9, Date: 26-Oct-2017, Time: 10:44:36, ID: ST171026M1-8 PFC CS5 17J2101, Description: PFC CS5 17J2101

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171026M1-8 PFC CS5 17J2101	7.89e3	83.3	NO
2	2 13C5-PFHxA	ST171026M1-8 PFC CS5 17J2101	9.83e3	75.0	NO
3	3 13C3-PFHxS	ST171026M1-8 PFC CS5 17J2101	1.91e3	83.6	NO
4	4 13C8-PFOA	ST171026M1-8 PFC CS5 17J2101	9.00e3	76.5	NO
5	5 13C9-PFNA	ST171026M1-8 PFC CS5 17J2101	9.96e3	89.1	NO
6	6 13C4-PFOS	ST171026M1-8 PFC CS5 17J2101	2.00e3	80.0	NO
7	7 13C6-PFDA	ST171026M1-8 PFC CS5 17J2101	1.03e4	86.1	NO
8	8 13C7-PFUnA	ST171026M1-8 PFC CS5 17J2101	1.00e4	72.3	NO

Name: 171026M1_10, Date: 26-Oct-2017, Time: 10:55:46, ID: ST171026M1-9 PFC CS6 17J2517, Description: PFC CS6 17J2517

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171026M1-9 PFC CS6 17J2517	7.54e3	79.6	NO
2	2 13C5-PFHxA	ST171026M1-9 PFC CS6 17J2517	9.52e3	72.6	NO
3	3 13C3-PFHxS	ST171026M1-9 PFC CS6 17J2517	1.81e3	79.2	NO
4	4 13C8-PFOA	ST171026M1-9 PFC CS6 17J2517	8.18e3	69.5	NO
5	5 13C9-PFNA	ST171026M1-9 PFC CS6 17J2517	9.05e3	81.0	NO
6	6 13C4-PFOS	ST171026M1-9 PFC CS6 17J2517	1.94e3	77.3	NO
7	7 13C6-PFDA	ST171026M1-9 PFC CS6 17J2517	8.81e3	73.4	NO
8	8 13C7-PFUnA	ST171026M1-9 PFC CS6 17J2517	9.76e3	70.5	NO

Untitled Dataset:

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Printed: Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_11, Date: 26-Oct-2017, Time: 11:07:20, ID: ST171026M1-10 PFC CS7 17J2518, Description: PFC CS7 17J2518

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171026M1-10 PFC CS7 17J2518	7.99e3	84.5	NO
2	2 13C5-PFHxA	ST171026M1-10 PFC CS7 17J2518	9.61e3	73.3	NO
3	3 13C3-PFHxS	ST171026M1-10 PFC CS7 17J2518	1.76e3	77.0	NO
4	4 13C8-PFOA	ST171026M1-10 PFC CS7 17J2518	9.10e3	77.3	NO
5	5 13C9-PFNA	ST171026M1-10 PFC CS7 17J2518	9.34e3	83.5	NO
6	6 13C4-PFOS	ST171026M1-10 PFC CS7 17J2518	1.80e3	72.0	NO
7	7 13C6-PFDA	ST171026M1-10 PFC CS7 17J2518	1.02e4	85.1	NO
8	8 13C7-PFUnA	ST171026M1-10 PFC CS7 17J2518	1.04e4	74.8	NO

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Name: 171026M1_13, Date: 26-Oct-2017, Time: 11:30:01, ID: ICV171026M1-1 PFC ICV 17I3003, Description: PFC ICV 17I3003

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ICV171026M1-1 PFC ICV 17I3003	8.85e3	93.5	NO
2	2 13C5-PFHxA	ICV171026M1-1 PFC ICV 17I3003	1.20e4	91.7	NO
3	3 13C3-PFHxS	ICV171026M1-1 PFC ICV 17I3003	2.17e3	94.8	NO
4	4 13C8-PFOA	ICV171026M1-1 PFC ICV 17I3003	1.14e4	96.5	NO
5	5 13C9-PFNA	ICV171026M1-1 PFC ICV 17I3003	1.20e4	107.0	NO
6	6 13C4-PFOS	ICV171026M1-1 PFC ICV 17I3003	2.51e3	100.0	NO
7	7 13C6-PFDA	ICV171026M1-1 PFC ICV 17I3003	1.25e4	104.5	NO
8	8 13C7-PFUnA	ICV171026M1-1 PFC ICV 17I3003	1.46e4	105.8	NO

Name: 171026M1 14, Date: 26-Oct-2017, Time: 11:41:12, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Dataset: Untitled

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_15, Date: 26-Oct-2017, Time: 11:52:22, ID: B7J0122-BS1 OPR 0.125, Description: OPR

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0122-BS1 OPR 0.125	8.21e3	86.7	NO
2	2 13C5-PFHxA	B7J0122-BS1 OPR 0.125	1.13e4	86.5	NO
3	3 13C3-PFHxS	B7J0122-BS1 OPR 0.125	2.22e3	97.1	NO
4	4 13C8-PFOA	B7J0122-BS1 OPR 0.125	1.05e4	89.6	NO
5	5 13C9-PFNA	B7J0122-BS1 OPR 0.125	1.16e4	104.1	NO
6	6 13C4-PFOS	B7J0122-BS1 OPR 0.125	2.60e3	103.6	NO
7	7 13C6-PFDA	B7J0122-BS1 OPR 0.125	1.19e4	99.2	NO
8	8 13C7-PFUnA	B7J0122-BS1 OPR 0.125	1.39e4	100.6	NO

Name: 171026M1_16, Date: 26-Oct-2017, Time: 12:03:33, ID: B7J0092-BS1 OPR 0.125, Description: OPR

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0092-BS1 OPR 0.125	9.00e3	95.2	NO
2	2 13C5-PFHxA	B7J0092-BS1 OPR 0.125	1.33e4	101.6	NO
3	3 13C3-PFHxS	B7J0092-BS1 OPR 0.125	2.39e3	104.7	NO
4	4 13C8-PFOA	B7J0092-BS1 OPR 0.125	1.18e4	100.5	NO
5	5 13C9-PFNA	B7J0092-BS1 OPR 0.125	1.29e4	115.4	NO
6	6 13C4-PFOS	B7J0092-BS1 OPR 0.125	2.78e3	111.1	NO
7	7 13C6-PFDA	B7J0092-BS1 OPR 0.125	1.43e4	118.8	NO
8	8 13C7-PFUnA	B7J0092-BS1 OPR 0.125	1.51e4	109.0	NO

Name: 171026M1_17, Date: 26-Oct-2017, Time: 12:14:43, ID: B7J0152-BS1 OPR 0.005, Description: OPR

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0152-BS1 OPR 0.005	7.91e3	83.6	NO
2	2 13C5-PFHxA	B7J0152-BS1 OPR 0.005	1.03e4	78.7	NO
3	3 13C3-PFHxS	B7J0152-BS1 OPR 0.005	2.04e3	89.3	NO
4	4 13C8-PFOA	B7J0152-BS1 OPR 0.005	9.39e3	79.8	NO
5	5 13C9-PFNA	B7J0152-BS1 OPR 0.005	9.53e3	85.3	NO
6	6 13C4-PFOS	B7J0152-BS1 OPR 0.005	1.51e3	60.1	NO
7	7 13C6-PFDA	B7J0152-BS1 OPR 0.005	7.87e3	65.6	NO
8	8 13C7-PFUnA	B7J0152-BS1 OPR 0.005	4.15e3	29.9	YES

Name: 171026M1_18, Date: 26-Oct-2017, Time: 12:25:54, ID: B7J0136-BS1 OPR 1, Description: OPR

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-BS1 OPR 1	7.43e3	78.5	NO
2	2 13C5-PFHxA	B7J0136-BS1 OPR 1	1.02e4	78.2	NO
3	3 13C3-PFHxS	B7J0136-BS1 OPR 1	2.04e3	89.4	NO
4	4 13C8-PFOA	B7J0136-BS1 OPR 1	9.77e3	83.0	NO
5	5 13C9-PFNA	B7J0136-BS1 OPR 1	1.04e4	93.3	NO
6	6 13C4-PFOS	B7J0136-BS1 OPR 1	1.91e3	76.3	NO
7	7 13C6-PFDA	B7J0136-BS1 OPR 1	9.16e3	76.4	NO
8	8 13C7-PFUnA	B7J0136-BS1 OPR 1	6.42e3	46.4	YES

Dataset: Untitled

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_19, Date: 26-Oct-2017, Time: 12:37:09, ID: B7J0136-BSD1 LCS Dup 1, Description: LCS Dup

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-BSD1 LCS Dup 1	6.85e3	72.4	NO
2	2 13C5-PFHxA	B7J0136-BSD1 LCS Dup 1	9.37e3	71.5	NO
3	3 13C3-PFHxS	B7J0136-BSD1 LCS Dup 1	1.86e3	81.3	NO
4	4 13C8-PFOA	B7J0136-BSD1 LCS Dup 1	8.53e3	72.5	NO
5	5 13C9-PFNA	B7J0136-BSD1 LCS Dup 1	9.09e3	81.3	NO
6	6 13C4-PFOS	B7J0136-BSD1 LCS Dup 1	1.68e3	66.9	NO
7	7 13C6-PFDA	B7J0136-BSD1 LCS Dup 1	7.63e3	63.6	NO
8	8 13C7-PFUnA	B7J0136-BSD1 LCS Dup 1	4.59e3	33.1	YES

Name: 171026M1_20, Date: 26-Oct-2017, Time: 12:48:25, ID: IPA, Description: IPA

	# Name	ĪD	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Name: 171026M1_21, Date: 26-Oct-2017, Time: 12:59:36, ID: B7J0122-BLK1 Method Blank 0.125, Description: Method Blank

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0122-BLK1 Method Blank 0.125	7.89e3	83.4	NO
2	2 13C5-PFHxA	B7J0122-BLK1 Method Blank 0.125	1.07e4	81.3	NO
3	3 13C3-PFHxS	B7J0122-BLK1 Method Blank 0.125	1.95e3	85.4	NO
4	4 13C8-PFOA	B7J0122-BLK1 Method Blank 0.125	9.63e3	81.9	NO
5	5 13C9-PFNA	B7J0122-BLK1 Method Blank 0.125	1.09e4	97.8	NO
6	6 13C4-PFOS	B7J0122-BLK1 Method Blank 0.125	2.37e3	94.7	NO
7	7 13C6-PFDA	B7J0122-BLK1 Method Blank 0.125	1.12e4	93.3	NO
8	8 13C7-PFUnA	B7J0122-BLK1 Method Blank 0.125	1.44e4	103.8	NO

Name: 171026M1 22, Date: 26-Oct-2017, Time: 13:10:47, ID: B7J0092-BLK1 Method Blank 0.125, Description: Method Blank

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0092-BLK1 Method Blank 0.125	8.09e3	85.5	NO
2	2 13C5-PFHxA	B7J0092-BLK1 Method Blank 0.125	1.17e4	89.5	NO
3	3 13C3-PFHxS	B7J0092-BLK1 Method Blank 0.125	2.31e3	101.0	NO
4	4 13C8-PFOA	B7J0092-BLK1 Method Blank 0.125	1.13e4	96.4	NO
5	5 13C9-PFNA	B7J0092-BLK1 Method Blank 0.125	1.25e4	111.8	NO
6	6 13C4-PFOS	B7J0092-BLK1 Method Blank 0.125	2.41e3	96.1	NO
7	7 13C6-PFDA	B7J0092-BLK1 Method Blank 0.125	1.38e4	114.9	NO
8	8 13C7-PFUnA	B7J0092-BLK1 Method Blank 0.125	1.52e4	109.9	NO

Untitled Dataset:

Friday, October 27, 2017 15:35:32 Pacific Daylight Time Last Altered: Printed: Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_23, Date: 26-Oct-2017, Time: 13:21:58, ID: B7J0152-BLK1 Method Blank 0.005, Description: Method Blank

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0152-BLK1 Method Blank 0.005	6.71e3	70.9	NO
2	2 13C5-PFHxA	B7J0152-BLK1 Method Blank 0.005	9.43e3	71.9	NO
3	3 13C3-PFHxS	B7J0152-BLK1 Method Blank 0.005	1.81e3	79.2	NO
4	4 13C8-PFOA	B7J0152-BLK1 Method Blank 0.005	8.55e3	72.7	NO
5	5 13C9-PFNA	B7J0152-BLK1 Method Blank 0.005	8.47e3	75.8	NO
6	6 13C4-PFOS	B7J0152-BLK1 Method Blank 0.005	1.69e3	67.6	NO
7	7 13C6-PFDA	B7J0152-BLK1 Method Blank 0.005	7.70e3	64.1	NO
8	8 13C7-PFUnA	B7J0152-BLK1 Method Blank 0.005	5.27e3	38.0	YES

Name: 171026M1_24, Date: 26-Oct-2017, Time: 13:33:09, ID: B7J0136-BLK1 Method Blank 1, Description: Method Blank

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-BLK1 Method Blank 1	7.31e3	77.3	NO
2	2 13C5-PFHxA	B7J0136-BLK1 Method Blank 1	1.01e4	76.9	NO
3	3 13C3-PFHxS	B7J0136-BLK1 Method Blank 1	2.16e3	94.5	NO
4	4 13C8-PFOA	B7J0136-BLK1 Method Blank 1	9.47e3	80.5	NO
5	5 13C9-PFNA	B7J0136-BLK1 Method Blank 1	9.36e3	83.7	NO
6	6 13C4-PFOS	B7J0136-BLK1 Method Blank 1	1.84e3	73.4	NO
7	7 13C6-PFDA	B7J0136-BLK1 Method Blank 1	8.57e3	71.4	NO
8	8 13C7-PFUnA	B7J0136-BLK1 Method Blank 1	5.54e3	40.0	YES

Name: 171026M1_25, Date: 26-Oct-2017, Time: 13:44:19, ID: B7J0136-MS1 Matrix Spike 1.1, Description: Matrix Spike

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MS1 Matrix Spike 1.1	7.03e3	74.3	NO
2	2 13C5-PFHxA	B7J0136-MS1 Matrix Spike 1.1	9.40e3	71.7	NO
3	3 13C3-PFHxS	B7J0136-MS1 Matrix Spike 1.1	1.95e3	85.5	NO
4	4 13C8-PFOA	B7J0136-MS1 Matrix Spike 1.1	8.98e3	76.3	NO
5	5 13C9-PFNA	B7J0136-MS1 Matrix Spike 1.1	1.04e4	93.1	NO
6	6 13C4-PFOS	B7J0136-MS1 Matrix Spike 1.1	2.08e3	83.0	NO
7	7 13C6-PFDA	B7J0136-MS1 Matrix Spike 1.1	1.24e4	103.3	NO
8	8 13C7-PFUnA	B7J0136-MS1 Matrix Spike 1.1	1.16e4	83.5	NO

Name: 171026M1 26, Date: 26-Oct-2017, Time: 13:55:30, ID: B7J0136-MSD1 Matrix Spike Dup 1.1, Description: Matrix Spike Dup

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MSD1 Matrix Spike Dup 1.1	7.63e3	80.6	NO
2	2 13C5-PFHxA	B7J0136-MSD1 Matrix Spike Dup 1.1	1.04e4	79.4	NO
3	3 13C3-PFHxS	B7J0136-MSD1 Matrix Spike Dup 1.1	2.36e3	103.4	NO
4	4 13C8-PFOA	B7J0136-MSD1 Matrix Spike Dup 1.1	1.05e4	89.2	NO
5	5 13C9-PFNA	B7J0136-MSD1 Matrix Spike Dup 1.1	1.06e4	95.0	NO
6	6 13C4-PFOS	B7J0136-MSD1 Matrix Spike Dup 1.1	2.23e3	89.1	NO
7	7 13C6-PFDA	B7J0136-MSD1 Matrix Spike Dup 1.1	1.12e4	93.0	NO
8	8 13C7-PFUnA	B7J0136-MSD1 Matrix Spike Dup 1.1	1.01e4	72.8	NO

Dataset: Untitled

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_27, Date: 26-Oct-2017, Time: 14:06:41, ID: B7J0136-MS2 Matrix Spike 1.12, Description: Matrix Spike

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MS2 Matrix Spike 1.12	8.42e3	89.0	NO
2	2 13C5-PFHxA	B7J0136-MS2 Matrix Spike 1.12	1.05e4	80.3	NO
3	3 13C3-PFHxS	B7J0136-MS2 Matrix Spike 1.12	2.27e3	99.4	NO
4	4 13C8-PFOA	B7J0136-MS2 Matrix Spike 1.12	7.89e3	67.1	NO
5	5 13C9-PFNA	B7J0136-MS2 Matrix Spike 1.12	1.17e4	105.0	NO
6	6 13C4-PFOS	B7J0136-MS2 Matrix Spike 1.12	2.32e3	92.4	NO
7	7 13C6-PFDA	B7J0136-MS2 Matrix Spike 1.12	6.49e3	54.1	NO
8	8 13C7-PFUnA	B7J0136-MS2 Matrix Spike 1.12	1.47e4	105.8	NO

Name: 171026M1_28, Date: 26-Oct-2017, Time: 14:17:51, ID: B7J0136-MSD2 Matrix Spike Dup 1.18, Description: Matrix Spike Dup

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MSD2 Matrix Spike Dup 1.18	7.00e3	74.0	NO
2	2 13C5-PFHxA	B7J0136-MSD2 Matrix Spike Dup 1.18	8.82e3	67.3	NO
3	3 13C3-PFHxS	B7J0136-MSD2 Matrix Spike Dup 1.18	1.95e3	85.3	NO
4	4 13C8-PFOA	B7J0136-MSD2 Matrix Spike Dup 1.18	6.71e3	57.0	NO
5	5 13C9-PFNA	B7J0136-MSD2 Matrix Spike Dup 1.18	9.22e3	82.4	NO
6	6 13C4-PFOS	B7J0136-MSD2 Matrix Spike Dup 1.18	1.77e3	70.7	NO
7	7 13C6-PFDA	B7J0136-MSD2 Matrix Spike Dup 1.18	5.29e3	44.1	YES
8	8 13C7-PFUnA	B7J0136-MSD2 Matrix Spike Dup 1.18	9.79e3	70.7	NO

Name: 171026M1_29, Date: 26-Oct-2017, Time: 14:29:02, ID: 1701430-02RE2@20X Foam-6603 Loud 0.04537, Description: Foam-6603 Loud

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701430-02RE2@20X Foam-6603 Lou	3.54e2	3.7	YES
2	2 13C5-PFHxA	1701430-02RE2@20X Foam-6603 Lou	5.28e2	4.0	YES
3	3 13C3-PFHxS	1701430-02RE2@20X Foam-6603 Lou	9.71e1	4.3	YES
4	4 13C8-PFOA	1701430-02RE2@20X Foam-6603 Lou	4.96e2	4.2	YES
5	5 13C9-PFNA	1701430-02RE2@20X Foam-6603 Lou	5.35e2	4.8	YES
6	6 13C4-PFOS	1701430-02RE2@20X Foam-6603 Lou	1.13e2	4.5	YES
7	7 13C6-PFDA	1701430-02RE2@20X Foam-6603 Lou	5.45e2	4.5	YES
8	8 13C7-PFUnA	1701430-02RE2@20X Foam-6603 Lou	6.74e2	4.9	YES

Name: 171026M1_30, Date: 26-Oct-2017, Time: 14:40:13, ID: 1701430-02RE2 Foam-6603 Loud 0.04537, Description: Foam-6603 Loud

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701430-02RE2 Foam-6603 Loud 0.045	7.69e3	81.2	NO
2	2 13C5-PFHxA	1701430-02RE2 Foam-6603 Loud 0.045	1.06e4	81.1	NO
3	3 13C3-PFHxS	1701430-02RE2 Foam-6603 Loud 0.045	1.98e3	86.7	NO
4	4 13C8-PFOA	1701430-02RE2 Foam-6603 Loud 0.045	9.21e3	78.3	NO
5	5 13C9-PFNA	1701430-02RE2 Foam-6603 Loud 0.045	1.06e4	95.0	NO
6	6 13C4-PFOS	1701430-02RE2 Foam-6603 Loud 0.045	2.04e3	81.5	NO
7	7 13C6-PFDA	1701430-02RE2 Foam-6603 Loud 0.045	1.20e4	100.1	NO
8	8 13C7-PFUnA	1701430-02RE2 Foam-6603 Loud 0.045	1.44e4	103.8	NO

Vista Analytical Laboratory

Dataset: Untitled

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_31, Date: 26-Oct-2017, Time: 14:51:24, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Name: 171026M1_32, Date: 26-Oct-2017, Time: 15:02:34, ID: 1701432-08RE1 Site 4-GW-04GW03-20171004 0.11516, Description: Site 4-GW-04GW03-20171004

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701432-08RE1 Site 4-GW-04GW03-2	7.96e3	84.1	NO
2	2 13C5-PFHxA	1701432-08RE1 Site 4-GW-04GW03-2	1.08e4	82.5	NO
3	3 13C3-PFHxS	1701432-08RE1 Site 4-GW-04GW03-2	1.93e3	84.6	NO
4	4 13C8-PFOA	1701432-08RE1 Site 4-GW-04GW03-2	9.84e3	83.6	NO
5	5 13C9-PFNA	1701432-08RE1 Site 4-GW-04GW03-2	1.16e4	103.5	NO
6	6 13C4-PFOS	1701432-08RE1 Site 4-GW-04GW03-2	2.44e3	97.3	NO
7	7 13C6-PFDA	1701432-08RE1 Site 4-GW-04GW03-2	1.22e4	101.7	NO
8	8 13C7-PFUnA	1701432-08RE1 Site 4-GW-04GW03-2	1.22e4	87.9	NO

Name: 171026M1_33, Date: 26-Oct-2017, Time: 15:13:45, ID: 1701384-01@10X MW-6 0.125, Description: MW-6

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701384-01@10X MW-6 0.125	3.54e3	18.7	YES
2	2 13C5-PFHxA	1701384-01@10X MW-6 0.125	5.19e3	19.8	YES
3	3 13C3-PFHxS	1701384-01@10X MW-6 0.125	1.01e3	22.1	YES
4	4 13C8-PFOA	1701384-01@10X MW-6 0.125	4.96e3	21.1	YES
5	5 13C9-PFNA	1701384-01@10X MW-6 0.125	5.68e3	25.4	YES
6	6 13C4-PFOS	1701384-01@10X MW-6 0.125	1.21e3	24.1	YES
7	7 13C6-PFDA	1701384-01@10X MW-6 0.125	5.36e3	22.3	YES
8	8 13C7-PFUnA	1701384-01@10X MW-6 0.125	6.05e3	21.9	YES

Name: 171026M1_34, Date: 26-Oct-2017, Time: 15:24:56, ID: 1701385-05@10X B-E-GW 0.11326, Description: B-E-GW

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701385-05@10X B-E-GW 0.11326	3.69e3	19.5	YES
2	2 13C5-PFHxA	1701385-05@10X B-E-GW 0.11326	4.71e3	18.0	YES
3	3 13C3-PFHxS	1701385-05@10X B-E-GW 0.11326	9.70e2	21.2	YES
4	4 13C8-PFOA	1701385-05@10X B-E-GW 0.11326	4.34e3	18.4	YES
5	5 13C9-PFNA	1701385-05@10X B-E-GW 0.11326	4.74e3	21.2	YES
6	6 13C4-PFOS	1701385-05@10X B-E-GW 0.11326	9.47e2	18.9	YES
7	7 13C6-PFDA	1701385-05@10X B-E-GW 0.11326	4.73e3	19.7	YES
8	8 13C7-PFUnA	1701385-05@10X B-E-GW 0.11326	5.45e3	19.7	YES

Dataset: Untitled

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_35, Date: 26-Oct-2017, Time: 15:36:06, ID: 1701385-06@10X B-H-GW 0.11258, Description: B-H-GW

	# Name	ĪD	Area	%Rec	Area Out
1	1 13C4-PFBA	1701385-06@10X B-H-GW 0.11258	3.34e3	17.6	YES
2	2 13C5-PFHxA	1701385-06@10X B-H-GW 0.11258	4.43e3	16.9	YES
3	3 13C3-PFHxS	1701385-06@10X B-H-GW 0.11258	8.81e2	19.3	YES
4	4 13C8-PFOA	1701385-06@10X B-H-GW 0.11258	4.20e3	17.8	YES
5	5 13C9-PFNA	1701385-06@10X B-H-GW 0.11258	4.08e3	18.2	YES
6	6 13C4-PFOS	1701385-06@10X B-H-GW 0.11258	9.42e2	18.8	YES
7	7 13C6-PFDA	1701385-06@10X B-H-GW 0.11258	5.26e3	21.9	YES
8	8 13C7-PFUnA	1701385-06@10X B-H-GW 0.11258	5.48e3	19.8	YES

Name: 171026M1_36, Date: 26-Oct-2017, Time: 15:47:17, ID: 1701385-07@10X B-I-GW 0.11542, Description: B-I-GW

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701385-07@10X B-I-GW 0.11542	2.92e3	15.4	YES
2	2 13C5-PFHxA	1701385-07@10X B-I-GW 0.11542	3.99e3	15.2	YES
3	3 13C3-PFHxS	1701385-07@10X B-I-GW 0.11542	7.76e2	17.0	YES
4	4 13C8-PFOA	1701385-07@10X B-I-GW 0.11542	3.57e3	15.2	YES
5	5 13C9-PFNA	1701385-07@10X B-I-GW 0.11542	3.96e3	17.7	YES
6	6 13C4-PFOS	1701385-07@10X B-I-GW 0.11542	7.93e2	15.8	YES
7	7 13C6-PFDA	1701385-07@10X B-I-GW 0.11542	3.99e3	16.6	YES
8	8 13C7-PFUnA	1701385-07@10X B-I-GW 0.11542	4.70e3	17.0	YES

Name: 171026M1_37, Date: 26-Oct-2017, Time: 15:58:27, ID: 1701385-08@10X B-J-GW 0.11666, Description: B-J-GW

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701385-08@10X B-J-GW 0.11666	3.84e3	20.3	YES
2	2 13C5-PFHxA	1701385-08@10X B-J-GW 0.11666	5.15e3	19.6	YES
3	3 13C3-PFHxS	1701385-08@10X B-J-GW 0.11666	9.41e2	20.6	YES
4	4 13C8-PFOA	1701385-08@10X B-J-GW 0.11666	4.93e3	20.9	YES
5	5 13C9-PFNA	1701385-08@10X B-J-GW 0.11666	4.54e3	20.3	YES
6	6 13C4-PFOS	1701385-08@10X B-J-GW 0.11666	1.07e3	21.4	YES
7	7 13C6-PFDA	1701385-08@10X B-J-GW 0.11666	5.06e3	21.1	YES
8	8 13C7-PFUnA	1701385-08@10X B-J-GW 0.11666	5.13e3	18.5	YES

Name: 171026M1_38, Date: 26-Oct-2017, Time: 16:09:38, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Untitled Dataset:

Friday, October 27, 2017 15:35:32 Pacific Daylight Time Last Altered: Printed: Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_39, Date: 26-Oct-2017, Time: 16:20:49, ID: 1701505-01 Breastmilk #1 0.005, Description: Breastmilk #1

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701505-01 Breastmilk #1 0.005	7.46e3	78.9	NO
2	2 13C5-PFHxA	1701505-01 Breastmilk #1 0.005	1.09e4	83.2	NO
3	3 13C3-PFHxS	1701505-01 Breastmilk #1 0.005	2.00e3	87.5	NO
4	4 13C8-PFOA	1701505-01 Breastmilk #1 0.005	8.60e3	73.1	NO
5	5 13C9-PFNA	1701505-01 Breastmilk #1 0.005	8.27e3	74.0	NO
6	6 13C4-PFOS	1701505-01 Breastmilk #1 0.005	1.57e3	62.8	NO
7	7 13C6-PFDA	1701505-01 Breastmilk #1 0.005	5.84e3	48.6	YES
8	8 13C7-PFUnA	1701505-01 Breastmilk #1 0.005	6.79e3	49.0	YES

Name: 171026M1_40, Date: 26-Oct-2017, Time: 16:32:00, ID: 1701505-02 Breastmilk #2 0.005, Description: Breastmilk #2

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701505-02 Breastmilk #2 0.005	7.65e3	80.9	NO
2	2 13C5-PFHxA	1701505-02 Breastmilk #2 0.005	1.06e4	81.0	NO
3	3 13C3-PFHxS	1701505-02 Breastmilk #2 0.005	1.89e3	82.6	NO
4	4 13C8-PFOA	1701505-02 Breastmilk #2 0.005	9.51e3	80.8	NO
5	5 13C9-PFNA	1701505-02 Breastmilk #2 0.005	7.59e3	67.9	NO
6	6 13C4-PFOS	1701505-02 Breastmilk #2 0.005	1.35e3	53.9	NO
7	7 13C6-PFDA	1701505-02 Breastmilk #2 0.005	4.96e3	41.4	YES
8	8 13C7-PFUnA	1701505-02 Breastmilk #2 0.005	4.45e3	32.1	YES

Name: 171026M1_41, Date: 26-Oct-2017, Time: 16:43:10, ID: IPA, Description: IPA

	# Name	ID	А	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA				NO
2	2 13C5-PFHxA	IPA				NO
3	3 13C3-PFHxS	IPA				NO
4	4 13C8-PFOA	IPA				NO
5	5 13C9-PFNA	IPA				NO
6	6 13C4-PFOS	IPA				NO
7	7 13C6-PFDA	IPA				NO
8	8 13C7-PFUnA	IPA				NO

Name: 171026M1 42, Date: 26-Oct-2017, Time: 16:54:21, ID: ST171026M1-11 PFC CS3 17J1806, Description: PFC CS3 17J1806

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171026M1-11 PFC CS3 17J1806	9.63e3	101.8	NO
2	2 13C5-PFHxA	ST171026M1-11 PFC CS3 17J1806	1.29e4	98.3	NO
3	3 13C3-PFHxS	ST171026M1-11 PFC CS3 17J1806	2.20e3	96.3	NO
4	4 13C8-PFOA	ST171026M1-11 PFC CS3 17J1806	1.15e4	98.0	NO
5	5 13C9-PFNA	ST171026M1-11 PFC CS3 17J1806	1.30e4	116.5	NO
6	6 13C4-PFOS	ST171026M1-11 PFC CS3 17J1806	2.66e3	105.9	NO
7	7 13C6-PFDA	ST171026M1-11 PFC CS3 17J1806	1.49e4	124.3	NO
8	8 13C7-PFUnA	ST171026M1-11 PFC CS3 17J1806	1.77e4	127.5	NO

Dataset: Untitled

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_43, Date: 26-Oct-2017, Time: 17:05:32, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Name: 171026M1_44, Date: 26-Oct-2017, Time: 17:16:50, ID: 1701378-01 BRDLY-02-SB01-0-2 1.07, Description: BRDLY-02-SB01-0-2

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-01 BRDLY-02-SB01-0-2 1.07	7.82e3	82.7	NO
2	2 13C5-PFHxA	1701378-01 BRDLY-02-SB01-0-2 1.07	1.13e4	86.0	NO
3	3 13C3-PFHxS	1701378-01 BRDLY-02-SB01-0-2 1.07	2.11e3	92.4	NO
4	4 13C8-PFOA	1701378-01 BRDLY-02-SB01-0-2 1.07	9.27e3	78.8	NO
5	5 13C9-PFNA	1701378-01 BRDLY-02-SB01-0-2 1.07	9.39e3	84.0	NO
6	6 13C4-PFOS	1701378-01 BRDLY-02-SB01-0-2 1.07	1.95e3	77.7	NO
7	7 13C6-PFDA	1701378-01 BRDLY-02-SB01-0-2 1.07	8.88e3	74.0	NO
8	8 13C7-PFUnA	1701378-01 BRDLY-02-SB01-0-2 1.07	6.13e3	44.2	YES

Name: 171026M1_45, Date: 26-Oct-2017, Time: 17:28:15, ID: 1701378-02 BRDLY-02-SB01-13-15 1.2, Description: BRDLY-02-SB01-13-15

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-02 BRDLY-02-SB01-13-15 1.2	7.63e3	80.7	NO
2	2 13C5-PFHxA	1701378-02 BRDLY-02-SB01-13-15 1.2	1.06e4	80.9	NO
3	3 13C3-PFHxS	1701378-02 BRDLY-02-SB01-13-15 1.2	1.97e3	86.2	NO
4	4 13C8-PFOA	1701378-02 BRDLY-02-SB01-13-15 1.2	9.38e3	79.7	NO
5	5 13C9-PFNA	1701378-02 BRDLY-02-SB01-13-15 1.2	9.54e3	85.3	NO
6	6 13C4-PFOS	1701378-02 BRDLY-02-SB01-13-15 1.2	1.81e3	72.3	NO
7	7 13C6-PFDA	1701378-02 BRDLY-02-SB01-13-15 1.2	8.33e3	69.4	NO
8	8 13C7-PFUnA	1701378-02 BRDLY-02-SB01-13-15 1.2	4.69e3	33.9	YES

Name: 171026M1_46, Date: 26-Oct-2017, Time: 17:39:56, ID: 1701378-03 BRDLY-02-SB02-0-2 1.08, Description: BRDLY-02-SB02-0-2

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-03 BRDLY-02-SB02-0-2 1.08	7.13e3	75.3	NO
2	2 13C5-PFHxA	1701378-03 BRDLY-02-SB02-0-2 1.08	1.02e4	77.7	NO
3	3 13C3-PFHxS	1701378-03 BRDLY-02-SB02-0-2 1.08	2.15e3	94.0	NO
4	4 13C8-PFOA	1701378-03 BRDLY-02-SB02-0-2 1.08	1.07e4	90.6	NO
5	5 13C9-PFNA	1701378-03 BRDLY-02-SB02-0-2 1.08	9.78e3	87.5	NO
6	6 13C4-PFOS	1701378-03 BRDLY-02-SB02-0-2 1.08	2.59e3	103.4	NO
7	7 13C6-PFDA	1701378-03 BRDLY-02-SB02-0-2 1.08	1.07e4	89.3	NO
8	8 13C7-PFUnA	1701378-03 BRDLY-02-SB02-0-2 1.08	1.09e4	79.1	NO

Dataset: Untitled

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time

Printed: Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_47, Date: 26-Oct-2017, Time: 17:51:07, ID: 1701378-04 BRDLY-02-SB02-13-15 1.29, Description: BRDLY-02-SB02-13-15

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-04 BRDLY-02-SB02-13-15 1.29	8.42e3	88.9	NO
2	2 13C5-PFHxA	1701378-04 BRDLY-02-SB02-13-15 1.29	1.13e4	86.4	NO
3	3 13C3-PFHxS	1701378-04 BRDLY-02-SB02-13-15 1.29	2.37e3	103.9	NO
4	4 13C8-PFOA	1701378-04 BRDLY-02-SB02-13-15 1.29	1.07e4	91.1	NO
5	5 13C9-PFNA	1701378-04 BRDLY-02-SB02-13-15 1.29	1.17e4	104.6	NO
6	6 13C4-PFOS	1701378-04 BRDLY-02-SB02-13-15 1.29	1.99e3	79.3	NO
7	7 13C6-PFDA	1701378-04 BRDLY-02-SB02-13-15 1.29	1.02e4	85.0	NO
8	8 13C7-PFUnA	1701378-04 BRDLY-02-SB02-13-15 1.29	6.58e3	47.5	YES

Name: 171026M1_48, Date: 26-Oct-2017, Time: 18:02:17, ID: 1701378-05 BRDLY-02-SB03-0-2 1.08, Description: BRDLY-02-SB03-0-2

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-05 BRDLY-02-SB03-0-2 1.08	7.98e3	84.3	NO
2	2 13C5-PFHxA	1701378-05 BRDLY-02-SB03-0-2 1.08	1.07e4	81.9	NO
3	3 13C3-PFHxS	1701378-05 BRDLY-02-SB03-0-2 1.08	2.01e3	87.8	NO
4	4 13C8-PFOA	1701378-05 BRDLY-02-SB03-0-2 1.08	9.50e3	80.8	NO
5	5 13C9-PFNA	1701378-05 BRDLY-02-SB03-0-2 1.08	9.92e3	88.8	NO
6	6 13C4-PFOS	1701378-05 BRDLY-02-SB03-0-2 1.08	2.12e3	84.7	NO
7	7 13C6-PFDA	1701378-05 BRDLY-02-SB03-0-2 1.08	8.99e3	74.9	NO
8	8 13C7-PFUnA	1701378-05 BRDLY-02-SB03-0-2 1.08	6.93e3	50.0	NO

Name: 171026M1_49, Date: 26-Oct-2017, Time: 18:13:28, ID: 1701378-06 BRDLY-02-SB03-13-15 1.17, Description: BRDLY-02-SB03-13-15

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-06 BRDLY-02-SB03-13-15 1.17	7.11e3	75.2	NO
2	2 13C5-PFHxA	1701378-06 BRDLY-02-SB03-13-15 1.17	9.68e3	73.9	NO
3	3 13C3-PFHxS	1701378-06 BRDLY-02-SB03-13-15 1.17	2.01e3	88.1	NO
4	4 13C8-PFOA	1701378-06 BRDLY-02-SB03-13-15 1.17	9.18e3	78.1	NO
5	5 13C9-PFNA	1701378-06 BRDLY-02-SB03-13-15 1.17	8.22e3	73.5	NO
6	6 13C4-PFOS	1701378-06 BRDLY-02-SB03-13-15 1.17	1.55e3	62.0	NO
7	7 13C6-PFDA	1701378-06 BRDLY-02-SB03-13-15 1.17	8.42e3	70.2	NO
8	8 13C7-PFUnA	1701378-06 BRDLY-02-SB03-13-15 1.17	5.47e3	39.5	YES

Name: 171026M1_50, Date: 26-Oct-2017, Time: 18:24:38, ID: 1701378-07 BRDLY-05-SB01-0-2 1.08, Description: BRDLY-05-SB01-0-2

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-07 BRDLY-05-SB01-0-2 1.08	7.93e3	83.8	NO
2	2 13C5-PFHxA	1701378-07 BRDLY-05-SB01-0-2 1.08	1.07e4	81.5	NO
3	3 13C3-PFHxS	1701378-07 BRDLY-05-SB01-0-2 1.08	2.22e3	97.1	NO
4	4 13C8-PFOA	1701378-07 BRDLY-05-SB01-0-2 1.08	1.03e4	87.6	NO
5	5 13C9-PFNA	1701378-07 BRDLY-05-SB01-0-2 1.08	1.03e4	92.1	NO
6	6 13C4-PFOS	1701378-07 BRDLY-05-SB01-0-2 1.08	2.29e3	91.2	NO
7	7 13C6-PFDA	1701378-07 BRDLY-05-SB01-0-2 1.08	1.01e4	83.9	NO
8	8 13C7-PFUnA	1701378-07 BRDLY-05-SB01-0-2 1.08	9.15e3	66.1	NO

Untitled Dataset:

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time Printed:

Name: 171026M1_51, Date: 26-Oct-2017, Time: 18:35:49, ID: 1701378-08 BRDLY-05-SB02-0-2 1.07, Description: BRDLY-05-SB02-0-2

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-08 BRDLY-05-SB02-0-2 1.07	7.24e3	76.5	NO
2	2 13C5-PFHxA	1701378-08 BRDLY-05-SB02-0-2 1.07	9.77e3	74.6	NO
3	3 13C3-PFHxS	1701378-08 BRDLY-05-SB02-0-2 1.07	1.87e3	81.8	NO
4	4 13C8-PFOA	1701378-08 BRDLY-05-SB02-0-2 1.07	8.59e3	73.0	NO
5	5 13C9-PFNA	1701378-08 BRDLY-05-SB02-0-2 1.07	1.12e4	100.4	NO
6	6 13C4-PFOS	1701378-08 BRDLY-05-SB02-0-2 1.07	2.22e3	88.5	NO
7	7 13C6-PFDA	1701378-08 BRDLY-05-SB02-0-2 1.07	9.53e3	79.4	NO
8	8 13C7-PFUnA	1701378-08 BRDLY-05-SB02-0-2 1.07	9.29e3	67.1	NO

Name: 171026M1_52, Date: 26-Oct-2017, Time: 18:47:00, ID: 1701378-09 BRDLY-05-SB02-9-11 1.07, Description: BRDLY-05-SB02-9-11

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-09 BRDLY-05-SB02-9-11 1.07	8.09e3	85.5	NO
2	2 13C5-PFHxA	1701378-09 BRDLY-05-SB02-9-11 1.07	1.08e4	82.4	NO
3	3 13C3-PFHxS	1701378-09 BRDLY-05-SB02-9-11 1.07	1.97e3	86.4	NO
4	4 13C8-PFOA	1701378-09 BRDLY-05-SB02-9-11 1.07	9.21e3	78.3	NO
5	5 13C9-PFNA	1701378-09 BRDLY-05-SB02-9-11 1.07	1.03e4	91.7	NO
6	6 13C4-PFOS	1701378-09 BRDLY-05-SB02-9-11 1.07	2.06e3	82.1	NO
7	7 13C6-PFDA	1701378-09 BRDLY-05-SB02-9-11 1.07	9.53e3	79.4	NO
8	8 13C7-PFUnA	1701378-09 BRDLY-05-SB02-9-11 1.07	5.93e3	42.9	YES

Name: 171026M1_53, Date: 26-Oct-2017, Time: 18:58:11, ID: 1701378-10 BRDLY-05-SB03-0-2 1.05, Description: BRDLY-05-SB03-0-2

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-10 BRDLY-05-SB03-0-2 1.05	7.07e3	74.7	NO
2	2 13C5-PFHxA	1701378-10 BRDLY-05-SB03-0-2 1.05	9.56e3	72.9	NO
3	3 13C3-PFHxS	1701378-10 BRDLY-05-SB03-0-2 1.05	1.84e3	80.5	NO
4	4 13C8-PFOA	1701378-10 BRDLY-05-SB03-0-2 1.05	8.19e3	69.6	NO
5	5 13C9-PFNA	1701378-10 BRDLY-05-SB03-0-2 1.05	9.31e3	83.3	NO
6	6 13C4-PFOS	1701378-10 BRDLY-05-SB03-0-2 1.05	2.04e3	81.4	NO
7	7 13C6-PFDA	1701378-10 BRDLY-05-SB03-0-2 1.05	1.01e4	84.1	NO
8	8 13C7-PFUnA	1701378-10 BRDLY-05-SB03-0-2 1.05	9.38e3	67.8	NO

Name: 171026M1 54, Date: 26-Oct-2017, Time: 19:09:21, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
			71104	701 100	
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Printed: Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_55, Date: 26-Oct-2017, Time: 19:20:33, ID: ST171026M1-12 PFC CS3 17J1806, Description: PFC CS3 17J1806

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171026M1-12 PFC CS3 17J1806	9.88e3	104.4	NO
2	2 13C5-PFHxA	ST171026M1-12 PFC CS3 17J1806	1.32e4	100.7	NO
3	3 13C3-PFHxS	ST171026M1-12 PFC CS3 17J1806	2.41e3	105.5	NO
4	4 13C8-PFOA	ST171026M1-12 PFC CS3 17J1806	1.20e4	102.1	NO
5	5 13C9-PFNA	ST171026M1-12 PFC CS3 17J1806	1.30e4	116.2	NO
6	6 13C4-PFOS	ST171026M1-12 PFC CS3 17J1806	2.89e3	115.2	NO
7	7 13C6-PFDA	ST171026M1-12 PFC CS3 17J1806	1.50e4	124.7	NO
8	8 13C7-PFUnA	ST171026M1-12 PFC CS3 17J1806	1.91e4	137.9	NO

Name: 171026M1_56, Date: 26-Oct-2017, Time: 19:31:43, ID: IPA, Description: IPA

	# Name	ĪD	_	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA				NO
2	2 13C5-PFHxA	IPA				NO
3	3 13C3-PFHxS	IPA				NO
4	4 13C8-PFOA	IPA				NO
5	5 13C9-PFNA	IPA				NO
6	6 13C4-PFOS	IPA				NO
7	7 13C6-PFDA	IPA				NO
8	8 13C7-PFUnA	IPA				NO

Name: 171026M1_57, Date: 26-Oct-2017, Time: 19:42:53, ID: 1701378-11 BRDLY-05-SB03-9-11 1.38, Description: BRDLY-05-SB03-9-11

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-11 BRDLY-05-SB03-9-11 1.38	6.92e3	73.2	NO
2	2 13C5-PFHxA	1701378-11 BRDLY-05-SB03-9-11 1.38	9.77e3	74.6	NO
3	3 13C3-PFHxS	1701378-11 BRDLY-05-SB03-9-11 1.38	1.96e3	85.6	NO
4	4 13C8-PFOA	1701378-11 BRDLY-05-SB03-9-11 1.38	7.62e3	64.8	NO
5	5 13C9-PFNA	1701378-11 BRDLY-05-SB03-9-11 1.38	9.02e3	80.7	NO
6	6 13C4-PFOS	1701378-11 BRDLY-05-SB03-9-11 1.38	1.54e3	61.5	NO
7	7 13C6-PFDA	1701378-11 BRDLY-05-SB03-9-11 1.38	5.96e3	49.6	YES
8	8 13C7-PFUnA	1701378-11 BRDLY-05-SB03-9-11 1.38	3.42e3	24.7	YES

Name: 171026M1_58, Date: 26-Oct-2017, Time: 19:54:04, ID: 1701378-13 BRDLY-03-SB03-0-2 1.13, Description: BRDLY-03-SB03-0-2

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-13 BRDLY-03-SB03-0-2 1.13	7.09e3	75.0	NO
2	2 13C5-PFHxA	1701378-13 BRDLY-03-SB03-0-2 1.13	9.41e3	71.8	NO
3	3 13C3-PFHxS	1701378-13 BRDLY-03-SB03-0-2 1.13	1.98e3	86.6	NO
4	4 13C8-PFOA	1701378-13 BRDLY-03-SB03-0-2 1.13	9.65e3	82.0	NO
5	5 13C9-PFNA	1701378-13 BRDLY-03-SB03-0-2 1.13	1.10e4	98.8	NO
6	6 13C4-PFOS	1701378-13 BRDLY-03-SB03-0-2 1.13	2.15e3	85.9	NO
7	7 13C6-PFDA	1701378-13 BRDLY-03-SB03-0-2 1.13	1.13e4	94.3	NO
8	8 13C7-PFUnA	1701378-13 BRDLY-03-SB03-0-2 1.13	1.23e4	88.6	NO

_

Dataset: Untitled

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_59, Date: 26-Oct-2017, Time: 20:05:15, ID: 1701378-14 BRDLY-05-SB01-9-11 1.15, Description: BRDLY-05-SB01-9-11

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701378-14 BRDLY-05-SB01-9-11 1.15	7.71e3	81.4	NO
2	2 13C5-PFHxA	1701378-14 BRDLY-05-SB01-9-11 1.15	1.03e4	78.2	NO
3	3 13C3-PFHxS	1701378-14 BRDLY-05-SB01-9-11 1.15	2.14e3	93.5	NO
4	4 13C8-PFOA	1701378-14 BRDLY-05-SB01-9-11 1.15	9.66e3	82.1	NO
5	5 13C9-PFNA	1701378-14 BRDLY-05-SB01-9-11 1.15	1.10e4	98.0	NO
6	6 13C4-PFOS	1701378-14 BRDLY-05-SB01-9-11 1.15	2.09e3	83.3	NO
7	7 13C6-PFDA	1701378-14 BRDLY-05-SB01-9-11 1.15	9.36e3	78.0	NO
8	8 13C7-PFUnA	1701378-14 BRDLY-05-SB01-9-11 1.15	7.46e3	53.9	NO

Name: 171026M1_60, Date: 26-Oct-2017, Time: 20:16:25, ID: 1701411-01 BRDLY-03-SB03-11-13 1.21, Description: BRDLY-03-SB03-11-13

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701411-01 BRDLY-03-SB03-11-13 1.21	8.44e3	89.2	NO
2	2 13C5-PFHxA	1701411-01 BRDLY-03-SB03-11-13 1.21	1.14e4	87.2	NO
3	3 13C3-PFHxS	1701411-01 BRDLY-03-SB03-11-13 1.21	2.17e3	95.2	NO
4	4 13C8-PFOA	1701411-01 BRDLY-03-SB03-11-13 1.21	1.00e4	85.2	NO
5	5 13C9-PFNA	1701411-01 BRDLY-03-SB03-11-13 1.21	1.06e4	94.6	NO
6	6 13C4-PFOS	1701411-01 BRDLY-03-SB03-11-13 1.21	2.01e3	80.2	NO
7	7 13C6-PFDA	1701411-01 BRDLY-03-SB03-11-13 1.21	1.04e4	86.7	NO
8	8 13C7-PFUnA	1701411-01 BRDLY-03-SB03-11-13 1.21	9.15e3	66.1	NO

Name: 171026M1_61, Date: 26-Oct-2017, Time: 20:27:36, ID: 1701429-02 H1-SB-135-0'-2'-1017 1.2, Description: H1-SB-135-0'-2'-1017

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701429-02 H1-SB-135-0'-2'-1017 1.2	7.05e3	74.5	NO
2	2 13C5-PFHxA	1701429-02 H1-SB-135-0'-2'-1017 1.2	9.42e3	71.8	NO
3	3 13C3-PFHxS	1701429-02 H1-SB-135-0'-2'-1017 1.2	1.99e3	87.2	NO
4	4 13C8-PFOA	1701429-02 H1-SB-135-0'-2'-1017 1.2	9.33e3	79.3	NO
5	5 13C9-PFNA	1701429-02 H1-SB-135-0'-2'-1017 1.2	1.07e4	95.6	NO
6	6 13C4-PFOS	1701429-02 H1-SB-135-0'-2'-1017 1.2	2.26e3	90.2	NO
7	7 13C6-PFDA	1701429-02 H1-SB-135-0'-2'-1017 1.2	1.02e4	85.3	NO
8	8 13C7-PFUnA	1701429-02 H1-SB-135-0'-2'-1017 1.2	1.03e4	74.3	NO

Name: 171026M1_62, Date: 26-Oct-2017, Time: 20:38:47, ID: 1701429-03 H1-SB-136-0'-2'-1017 1.14, Description: H1-SB-136-0'-2'-1017

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701429-03 H1-SB-136-0'-2'-1017 1.14	7.97e3	84.2	NO
2	2 13C5-PFHxA	1701429-03 H1-SB-136-0'-2'-1017 1.14	1.06e4	80.5	NO
3	3 13C3-PFHxS	1701429-03 H1-SB-136-0'-2'-1017 1.14	2.02e3	88.5	NO
4	4 13C8-PFOA	1701429-03 H1-SB-136-0'-2'-1017 1.14	9.70e3	82.4	NO
5	5 13C9-PFNA	1701429-03 H1-SB-136-0'-2'-1017 1.14	1.04e4	93.3	NO
6	6 13C4-PFOS	1701429-03 H1-SB-136-0'-2'-1017 1.14	2.10e3	83.7	NO
7	7 13C6-PFDA	1701429-03 H1-SB-136-0'-2'-1017 1.14	1.04e4	86.5	NO
8	8 13C7-PFUnA	1701429-03 H1-SB-136-0'-2'-1017 1.14	1.02e4	73.6	NO

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time

Name: 171026M1_63, Date: 26-Oct-2017, Time: 20:49:57, ID: 1701429-04 H1-SB-137-0'-2'-1017 1.18, Description: H1-SB-137-0'-2'-1017

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701429-04 H1-SB-137-0'-2'-1017 1.18	7.73e3	81.7	NO
2	2 13C5-PFHxA	1701429-04 H1-SB-137-0'-2'-1017 1.18	1.11e4	84.6	NO
3	3 13C3-PFHxS	1701429-04 H1-SB-137-0'-2'-1017 1.18	2.16e3	94.7	NO
4	4 13C8-PFOA	1701429-04 H1-SB-137-0'-2'-1017 1.18	9.70e3	82.4	NO
5	5 13C9-PFNA	1701429-04 H1-SB-137-0'-2'-1017 1.18	1.07e4	95.7	NO
6	6 13C4-PFOS	1701429-04 H1-SB-137-0'-2'-1017 1.18	1.97e3	78.7	NO
7	7 13C6-PFDA	1701429-04 H1-SB-137-0'-2'-1017 1.18	9.87e3	82.2	NO
8	8 13C7-PFUnA	1701429-04 H1-SB-137-0'-2'-1017 1.18	6.98e3	50.4	NO

Name: 171026M1_64, Date: 26-Oct-2017, Time: 21:01:09, ID: 1701429-05 H1-SB-138-0'-2'-1017 1.1, Description: H1-SB-138-0'-2'-1017

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701429-05 H1-SB-138-0'-2'-1017 1.1	6.86e3	72.5	NO
2	2 13C5-PFHxA	1701429-05 H1-SB-138-0'-2'-1017 1.1	9.17e3	70.0	NO
3	3 13C3-PFHxS	1701429-05 H1-SB-138-0'-2'-1017 1.1	1.88e3	82.4	NO
4	4 13C8-PFOA	1701429-05 H1-SB-138-0'-2'-1017 1.1	7.11e3	60.4	NO
5	5 13C9-PFNA	1701429-05 H1-SB-138-0'-2'-1017 1.1	9.04e3	80.9	NO
6	6 13C4-PFOS	1701429-05 H1-SB-138-0'-2'-1017 1.1	1.87e3	74.8	NO
7	7 13C6-PFDA	1701429-05 H1-SB-138-0'-2'-1017 1.1	6.33e3	52.7	NO
8	8 13C7-PFUnA	1701429-05 H1-SB-138-0'-2'-1017 1.1	1.15e4	83.3	NO

Name: 171026M1_65, Date: 26-Oct-2017, Time: 21:12:19, ID: 1701426-05RE1@5x FOAM1710050900JNR 0.00104, Description: FOAM1710050900JNR

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701426-05RE1@5x FOAM171005090	4.24e3	44.9	YES
2	2 13C5-PFHxA	1701426-05RE1@5x FOAM171005090	5.65e3	43.1	YES
3	3 13C3-PFHxS	1701426-05RE1@5x FOAM171005090	1.09e3	47.8	YES
4	4 13C8-PFOA	1701426-05RE1@5x FOAM171005090	5.30e3	45.1	YES
5	5 13C9-PFNA	1701426-05RE1@5x FOAM171005090	5.85e3	52.3	NO
6	6 13C4-PFOS	1701426-05RE1@5x FOAM171005090	1.12e3	44.6	YES
7	7 13C6-PFDA	1701426-05RE1@5x FOAM171005090	5.94e3	49.5	YES
8	8 13C7-PFUnA	1701426-05RE1@5x FOAM171005090	7.58e3	54.8	NO

Name: 171026M1_66, Date: 26-Oct-2017, Time: 21:23:30, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Page 16 of 16

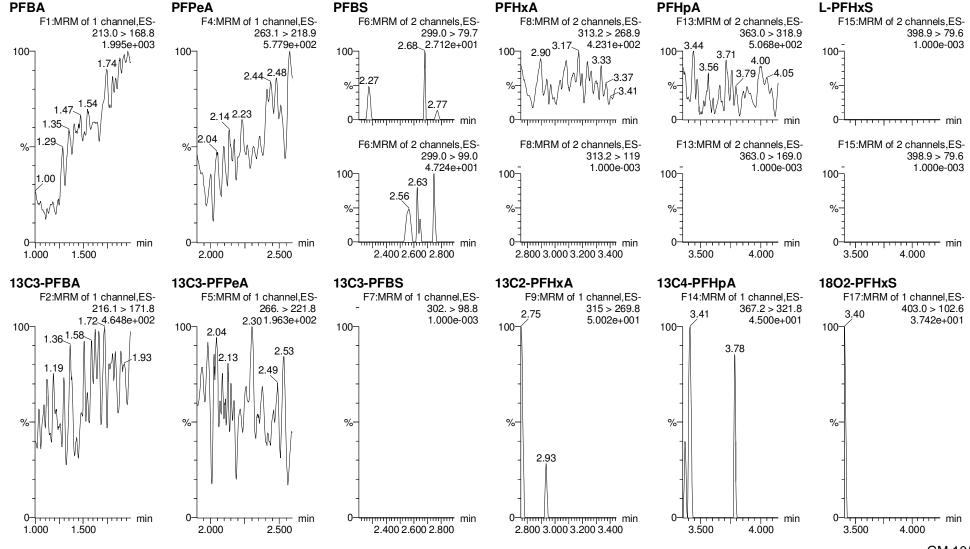
Untitled Dataset:

Last Altered: Friday, October 27, 2017 15:35:32 Pacific Daylight Time Friday, October 27, 2017 15:36:12 Pacific Daylight Time Printed:

Name: 171026M1_67, Date: 26-Oct-2017, Time: 21:34:41, ID: ST171026M1-13 PFC CS3 17J1806, Description: PFC CS3 17J1806

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171026M1-13 PFC CS3 17J1806	1.02e4	108.3	NO
2	2 13C5-PFHxA	ST171026M1-13 PFC CS3 17J1806	1.37e4	104.2	NO
3	3 13C3-PFHxS	ST171026M1-13 PFC CS3 17J1806	2.65e3	116.0	NO
4	4 13C8-PFOA	ST171026M1-13 PFC CS3 17J1806	1.25e4	105.9	NO
5	5 13C9-PFNA	ST171026M1-13 PFC CS3 17J1806	1.35e4	121.1	NO
6	6 13C4-PFOS	ST171026M1-13 PFC CS3 17J1806	2.64e3	105.3	NO
7	7 13C6-PFDA	ST171026M1-13 PFC CS3 17J1806	1.39e4	116.2	NO
8	8 13C7-PFUnA	ST171026M1-13 PFC CS3 17J1806	1.73e4	124.8	NO

Name: 171026M1_68, Date: 26-Oct-2017, Time: 21:45:51, ID: IPA, Description: IPA


	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

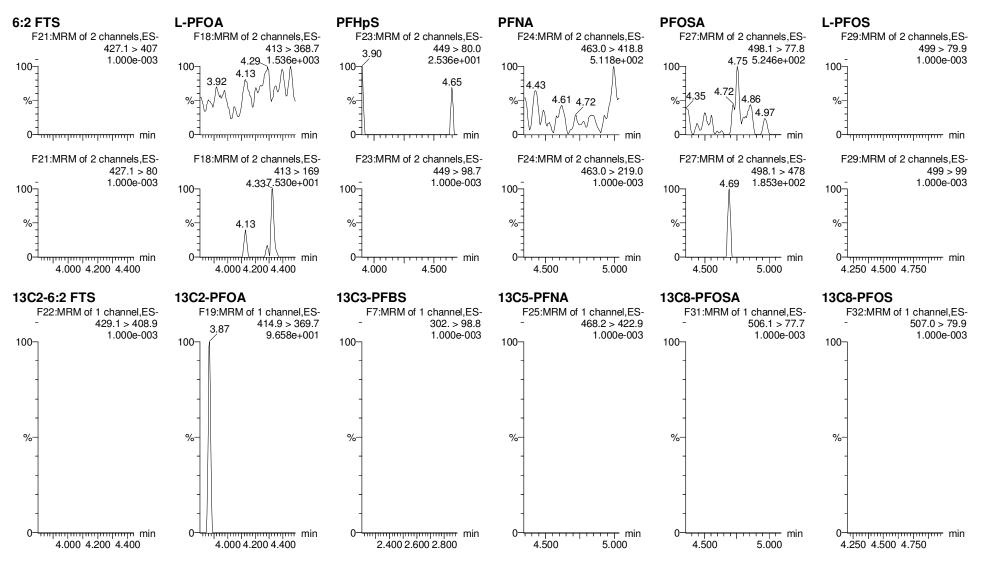
Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Printed: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 26 Oct 2017 08:20:12

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 26 Oct 2017 16:54:06

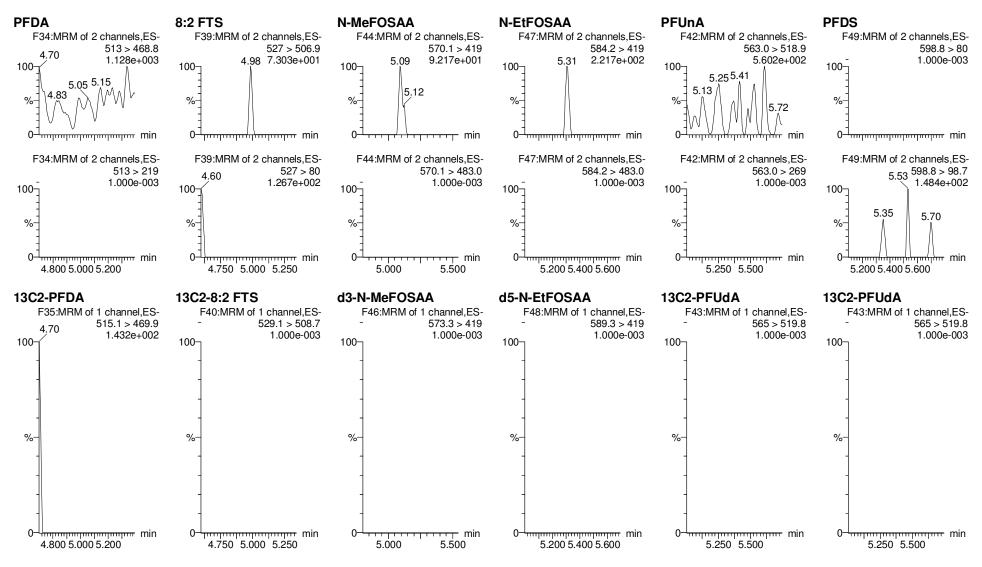
Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA

GM 10/26/17


Work Order 1701439 Revision 1

Page 76 of 402

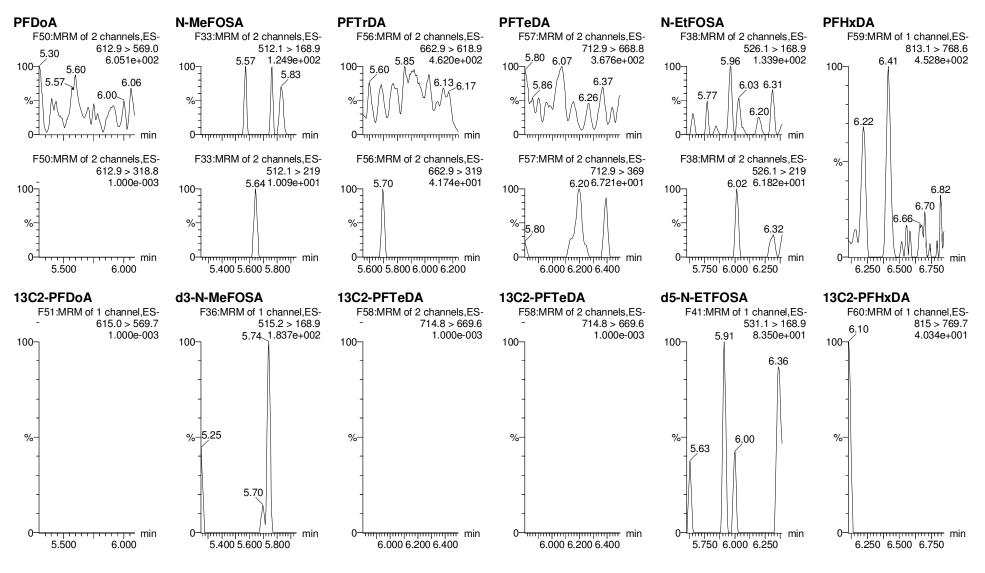
Untitled


Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Last Altered: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time Printed:

Name: 171026M1 12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA

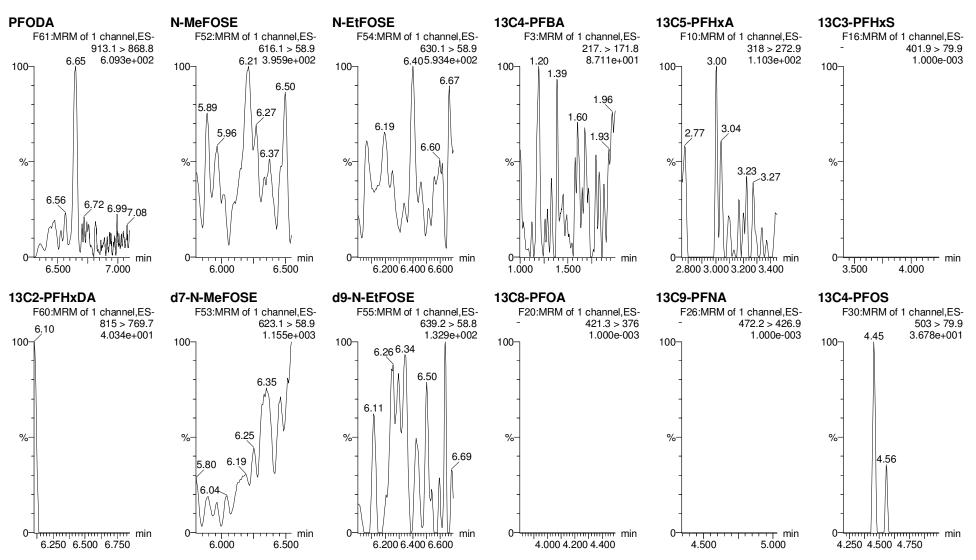
Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Printed: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA



GM 10/26/17

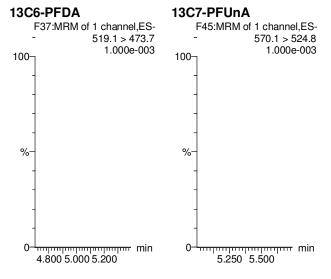
Untitled


Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Thursday, October 26, 2017 16:59:18 Pacific Daylight Time Printed:

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA

Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Printed: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA



Vista Analytical Laboratory

Untitled Dataset:

Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Printed: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA

U:\Q4.PRO\results\171026M1\171026M1-42.qld

Last Altered: Printed:

Friday, October 27, 2017 10:51:51 Pacific Daylight Time Friday, October 27, 2017 10:52:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 10:03:44

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

(A) Alban Innit Inforce

Name: 171026M1_42, Date: 26-Oct-2017, Time: 16:54:21, ID: ST171026M1-11 PFC CS3 17J1806, Description: PFC CS3 17J1806

1630 (1841) (1341) 1741 (1841) (1842)	# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	⊎y Axis Resp.	Conc.	%Rec	
1	1 PFBA	213.0 > 168.8	9.56e3	8.95e3	IXIXI	1.32	1.22	13.4	10.7	106.7	n-120
2	2 PFPeA	263.1 > 218.9	9.69e3	9.79e3		2.31	2.20	12.4	10.7	107.2	1
3	3 PFBS	299.0 > 79.7	2.34e3	1.22e3		2.59	2.50	23.9	9.82	98.2	
4	4 PFHxA	313.2 > 268.9	1.42e4	3.89e3		3.08	2.99	18.2	10.9	109.2	
5	5 PFHpA	363.0 > 318.9	1.20e4	9.39e3		3.70	3.61	15.9	10.5	105.2	
6	6 L-PFHxS	398.9 > 79.6	2.02e3	9.52e2		3.86	3.77	26.5	11.0	109.5	
7	8 6:2 FTS	427.1 > 407	2.63e3	2.78e3		4.18	4.09	11.8	11.5	115.4	
8 of differentiality	9 L-PFOA	413 > 368.7	1.35e4	1.29e4		4.23	4.14	13.1	11.4	113.8	
9	11 PFHpS	449 > 80.0	2.34e3	1.29e4		4.34	4.26	2.27	11.0	110.2	
10	12 PFNA	463.0 > 418.8	1.50e4	1.17e4		4.67	4.59	16.0	11.1	110.5	
11	13 PFOSA	498.1 > 77.8	3.83e3	3.74e3		4.72	4.64	12.8	11.0	109.9	OM 10/27/127 10/27/2017
12	14 L-PFOS	499 > 79.9	2.39e3	2.79e3		4.76	4.68	10.7	9.29	92.9	Dhy
13	16 PFDA	513 > 468.8	1.87e4	1.37e4		5.05	4.97	17.0	12.6	125.9	1-2/14
14	17 8:2 FTS	527 > 506.9	3.10e3	2.41e3		5.03	4.94	16.1	12.1	121.2	10/2/
15	18 N-MeFOSAA	570.1 > 419	7.81e3	5.29e3		5.21	5.13	18.5	11.7	116.8	1
16 Sugar	19 N-EtFOSAA	584.2 > 419	6.38e3	5.40e3		5.37	5.29	14.8	11.7	116.5	l νWA.
17	20 PFUnA	563.0 > 518.9	1.69e4	1.61e4		5.38	5.30	13.1	11.5	114.9	1 Millockou
18	21 PFDS	598.8 > 80	3.47e3	1.61e4		5.43	5.36	2.70	13.8	137.8	0 10 120 17
19	22 PFDoA	612.9 > 569.0	2.16e4	1.67e4		5.67	5.59	16.2	12.8	128.2	
20	23 N-MeFOSA	512.1 > 168.9	5.74e3	1.35e4		5.63	5.59	64.0	52.8	105.5	
21	24 PFTrDA	662.9 > 618.9	2.30e4	1.67e4		5.92	5.85	17.3	12.9	128.7	
22	25 PFTeDA	712.9 > 668.8	1.82e4	1.43e4		6.13	6.06	16.0	9.74	97.4	
23	26 N-EtFOSA	526.1 > 168.9	6.68e3	1.95e4		6.04	6.03	51.4	50.7	101.3	
24	27 PFHxDA	813.1 > 768.6	5.50e3	2.88e3		6.46	6.40	9.55	13.0	129.7	1
25	29 N-MeFOSE	616.1 > 58.9	9.78e3	2.31e4		6.23	6.24	63.5	59.2	118.4	
26 m	30 N-EtFOSE	630.1 > 58.9	9.95e3	2.00e4		6.39	6.40	74.5	57.7	115.4	.
27	31 13C3-PFBA	216.1 > 171.8	8.95e3	9.63e3	0.928	1.33	1.22	11.6	12.5	100.2	9-170
28	32 13C3-PFPeA	266. > 221.8	9.79e3	1.29e4	0.757	2.31	2.20	9.50	12.5	100.4	
29	33 13C3-PFBS	302. > 98.8	1.22e3	1.29e4	0.091	2.59	2.50	1.19	13.1	104.6	1
30	34 13C2-PFHxA	315 > 269.8	3.89e3	1.29e4	0.739	3.08	2.99	3.77	5.10	102.0	.1,
31 Work	35d3C478F489 Revision 1	367.2 > 321.8	9.39e3	1.29e4	0.684	3.70	3.61	9.11	13.3	106.6	Page 82 of 402

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-42.qld

Last Altered: Printed:

Friday, October 27, 2017 10:51:51 Pacific Daylight Time Friday, October 27, 2017 10:52:07 Pacific Daylight Time

Name: 171026M1_42, Date: 26-Oct-2017, Time: 16:54:21, ID: ST171026M1-11 PFC CS3 17J1806, Description: PFC CS3 17J1806

estras termologija e estra Albejes olidijas karikes	# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
32	36 1802-PFHxS	403.0 > 102.6	9.52e2	2.20e3	0.412	3.85	3.77	5.40	13.1	104.7 50-15
33	37 13C2-6:2 FTS	429.1 > 408.9	2.78e3	1.15e4	0.248	4.18	4.08	3.01	12.1	97.2
34	38 13C2-PFOA	414.9 > 369.7	1.29e4	1.15e4	1.120	4.23	4.15	13.9	12.4	99.6
35	39 13C5-PFNA	468.2 > 422.9	1.17e4	1.30e4	0.929	4.67	4.59	11.2	12.1	96.9
36	40 13C8-PFOSA	506.1 > 77.7	3.74e3	1.77e4	0.246	4.72	4.64	2.65	10.7	85.9
37	41 13C8-PFOS	507.0 > 79.9	2.79e3	2.66e3	1.027	4.76	4.67	13.1	12.8	102.1
38	42 13C2-PFDA	515.1 > 469.9	1.37e4	1.49e4	0.946	5.05	4.97	11.5	12.2	97.4
39	43 13C2-8:2 FTS	529.1 > 508.7	2.41e3	1.49e4	0.171	5.03	4.94	2.02	11.8	94.3
40	44 d3-N-MeFOSAA	573.3 > 419	5.29e3	1.77e4	0.358	5.20	5.12	3.74	10.5	83.7
41	45 d5-N-EtFOSAA	589.3 > 419	5.40e3	1.77e4	0.360	5.36	5.28	3.82	10.6	84.9
42	46 13C2-PFUdA	565 > 519.8	1.61e4	1.77e4	1.045	5.38	5.30	11.4	10.9	87.1
43	47 13C2-PFDoA	615.0 > 569.7	1.67e4	1.77e4	1.141	5.67	5.59	11.8	10.3	82.7
44	48 d3-N-MeFOSA	515.2 > 168.9	1.35e4	1.77e4	0.093	5.65	5.62	9.53	102	68.0
45	49 13C2-PFTeDA	714.8 > 669.6	1.43e4	1.77e4	0.934	6.13	6.07	10.1	10.8	86.6
46	50 d5-N-ETFOSA	531.1 > 168.9	1.95e4	1.77e4	0.132	6.06	6.04	13.8	105	69.7
47	51 13C2-PFHxDA	815 > 769.7	2.88e3	1.77e4	0.809	6.45	6.40	2.04	2.52	50.4
48	52 d7-N-MeFOSE	623.1 > 58.9	2.31e4	1.77e4	0.142	6.22	6.23	16.3	115	76.7
49	53 d9-N-EtFOSE	639.2 > 58.8	2.00e4	1.77e4	0.131	6.37	6.39	14.2	109	72.4
50	54 13C4-PFBA	217. > 171.8	9.63e3	9.63e3	1.000	1.33	1.22	12.5	12.5	100.0
51	55 13C5-PFHxA	318 > 272.9	1.29e4	1.29e4	1.000	3.08	2.99	12.5	12.5	100.0
52	56 13C3-PFHxS	401.9 > 79.9	2.20e3	2.20e3	1.000	3.85	3.77	12.5	12.5	100.0
53	57 13C8-PFOA	421.3 > 376	1.15e4	1.15e4	1.000	4.23	4.15	12.5	12.5	100.0
54	58 13C9-PFNA	472.2 > 426.9	1.30e4	1.30e4	1.000	4.67	4.59	12.5	12.5	100.0
55	59 13C4-PFOS	503 > 79.9	2.66e3	2.66e3	1.000	4.76	4.68	12.5	12.5	100.0
56	60 13C6-PFDA	519.1 > 473.7	1.49e4	1.49e4	1.000	5.05	4.97	12.5	12.5	100.0
57	61 13C7-PFUnA	570.1 > 524.8	1.77e4	1.77e4	1.000	5.38	5.30	12.5	12.5	100.0

Page 83 of 402 Work Order 1701439 Revision 1

Untitled

Last Altered: Printed:

Friday, October 27, 2017 09:45:04 Pacific Daylight Time Friday, October 27, 2017 09:46:52 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 26 Oct 2017 08:20:12 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 26 Oct 2017 16:54:06

Compound name: PFBA

	Name		Acq.Date	Acq.Time
1	171026M1_1	IPA	26-Oct-17	09:14:50
2	171026M1_2	ST171026M1-1 PFC CS-2 17I3006	26-Oct-17	09:26:00
3	171026M1_3	ST171026M1-2 PFC CS-1 17I3007	26-Oct-17	09:37:20
4	171026M1_4	ST171026M1-3 PFC CS0 17J1805	26-Oct-17	09:48:39
5	171026M1_5	ST171026M1-4 PFC CS1 17J3009	26-Oct-17	09:59:50
6	171026M1_6	ST171026M1-5 PFC CS2 17J2519	26-Oct-17	10:11:00
7	171026M1_7	ST171026M1-6 PFC CS3 17J1806	26-Oct-17	10:22:11
8	171026M1_8	ST171026M1-7 PFC CS4 17J2102	26-Oct-17	10:33:24
9	171026M1_9	ST171026M1-8 PFC CS5 17J2101	26-Oct-17	10:44:36
10	171026M1_10	ST171026M1-9 PFC CS6 17J2517	26-Oct-17	10:55:46
11	171026M1_11	ST171026M1-10 PFC CS7 17J2518	26-Oct-17	11:07:20
12	171026M1_12	IPA	26-Oct-17	11:18:50
13	171026M1_13	ICV171026M1-1 PFC ICV 17I3003	26-Oct-17	11:30:01
14	171026M1_14	IPA	26-Oct-17	11:41:12
15	171026M1_15	B7J0122-BS1 OPR 0.125	26-Oct-17	11:52:22
16	171026M1_16	B7J0092-BS1 OPR 0.125	26-Oct-17	12:03:33
17	171026M1_17	B7J0152-BS1 OPR 0.005	26-Oct-17	12:14:43
18	171026M1_18	B7J0136-BS1 OPR 1	26-Oct-17	12:25:54
19	171026M1_19	B7J0136-BSD1 LCS Dup 1	26-Oct-17	12:37:09
20	171026M1_20	IPA	26-Oct-17	12:48:25
21	171026M1_21	B7J0122-BLK1 Method Blank 0.125	26-Oct-17	12:59:36
22	171026M1_22	B7J0092-BLK1 Method Blank 0.125	26-Oct-17	13:10:47
23	171026M1_23	B7J0152-BLK1 Method Blank 0.005	26-Oct-17	13:21:58
24	171026M1_24	B7J0136-BLK1 Method Blank 1	26-Oct-17	13:33:09
25	171026M1_25	B7J0136-MS1 Matrix Spike 1.1	26-Oct-17	13:44:19
26	171026M1_26	B7J0136-MSD1 Matrix Spike Dup 1.1	26-Oct-17	13:55:30
27	171026M1_27	B7J0136-MS2 Matrix Spike 1.12	26-Oct-17	14:06:41
28	171026M1_28	B7J0136-MSD2 Matrix Spike Dup 1.18	26-Oct-17	14:17:51
29	171026M1_29	1701430-02RE2@20X Foam-6603 Loud 0.04	26-Oct-17	14:29:02
30	171026M1_30	1701430-02RE2 Foam-6603 Loud 0.04537	26-Oct-17	. 14:40:13
31	171026M1_31	IPA	26-Oct-17	14:51:24

Work Order 1701439 Revision 1

Untitled

Last Altered: Printed:

Friday, October 27, 2017 09:45:04 Pacific Daylight Time Friday, October 27, 2017 09:46:52 Pacific Daylight Time

Compound name: PFBA

and the	Name	er (IDHEHKA	Acq.Date	Acq.Time
32	171026M1 32	1701432-08RE1 Site 4-GW-04GW03-201710	CONTRACTOR CANADA CONTRACTOR CONT	15:02:34
33	171026M1_32	1701384-01@10X MW-6 0.125	26-Oct-17	15:13:45
34	171026M1_33	1701385-05@10X B-E-GW 0.11326	26-Oct-17	15:24:56
35	171026M1_34	1701385-06@10X B-H-GW 0.11258	26-Oct-17	15:36:06
36	171026M1_33	1701385-07@10X B-I-GW 0.11238	26-Oct-17	15:47:17
37	171026M1_36	1701385-07@10X B-J-GW 0.11642	26-Oct-17 26-Oct-17	15:58:27
Mark State of the Carlo	10011400	IPA		16:09:38
38	171026M1_38		26-Oct-17	
39	171026M1_39	1701505-01 Breastmilk #1 0.005	26-Oct-17	16:20:49
40	171026M1_40	1701505-02 Breastmilk #2 0.005	26-Oct-17	16:32:00
41	171026M1_41	IPA	26-Oct-17	16:43:10
42	171026M1_42	ST171026M1-11 PFC CS3 17J1806	26-Oct-17	16:54:21
43	171026M1_43	IPA	26-Oct-17	17:05:32
44	171026M1_44	1701378-01 BRDLY-02-SB01-0-2 1.07	26-Oct-17	17:16:50
45	171026M1_45	1701378-02 BRDLY-02-SB01-13-15 1.2	26-Oct-17	17:28:15
46	171026M1_46	1701378-03 BRDLY-02-SB02-0-2 1.08	26-Oct-17	17:39:56
47	171026M1_47	1701378-04 BRDLY-02-SB02-13-15 1.29	26-Oct-17	17:51:07
48	171026M1_48	1701378-05 BRDLY-02-SB03-0-2 1.08	26-Oct-17	18:02:17
49	171026M1_49	1701378-06 BRDLY-02-SB03-13-15 1.17	26-Oct-17	18:13:28
50	171026M1_50	1701378-07 BRDLY-05-SB01-0-2 1.08	26-Oct-17	18:24:38
51	171026M1_51	1701378-08 BRDLY-05-SB02-0-2 1.07	26-Oct-17	18:35:49
52	171026M1_52	1701378-09 BRDLY-05-SB02-9-11 1.07	26-Oct-17	18:47:00
53	171026M1_53	1701378-10 BRDLY-05-SB03-0-2 1.05	26-Oct-17	18:58:11
54	171026M1_54	IPA	26-Oct-17	19:09:21
55	171026M1_55	ST171026M1-12 PFC CS3 17J1806	26-Oct-17	19:20:33
56	171026M1_56	IPA	26-Oct-17	19:31:43
57	171026M1_57	1701378-11 BRDLY-05-SB03-9-11 1.38	26-Oct-17	19:42:53
58	171026M1_58	1701378-13 BRDLY-03-SB03-0-2 1.13	26-Oct-17	19:54:04
59	171026M1_59	1701378-14 BRDLY-05-SB01-9-11 1.15	26-Oct-17	20:05:15
60	171026M1 60	1701411-01 BRDLY-03-SB03-11-13 1.21	26-Oct-17	20:16:25
61	171026M1_61	1701429-02 H1-SB-135-0'-2'-1017 1.2	26-Oct-17	20:27:36
62	171026M1 62	1701429-03 H1-SB-136-0'-2'-1017 1.14	26-Oct-17	20:38:47
63	171026M1 63	1701429-04 H1-SB-137-0'-2'-1017 1.18	26-Oct-17	20:49:57
64	171026M1_64	1701429-05 H1-SB-138-0'-2'-1017 1.1	26-Oct-17	21:01:09
65	171026M1 65	1701426-05RE1@5x FOAM1710050900JNR	26-Oct-17	21:12:19

Work Order 1701439 Revision 1 Page 85 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: Untitled

Last Altered: Friday, October 27, 2017 09:45:04 Pacific Daylight Time Friday, October 27, 2017 09:46:52 Pacific Daylight Time

Compound name: PFBA

Name		Acq.Date	Acq.Time
66 171026M1_66	IPA	26-Oct-17	21:23:30
67 171026M1_67	ST171026M1-13 PFC CS3 17J1806	26-Oct-17	21:34:41

Work Order 1701439 Revision 1 Page 86 of 402

Page 3 of 3

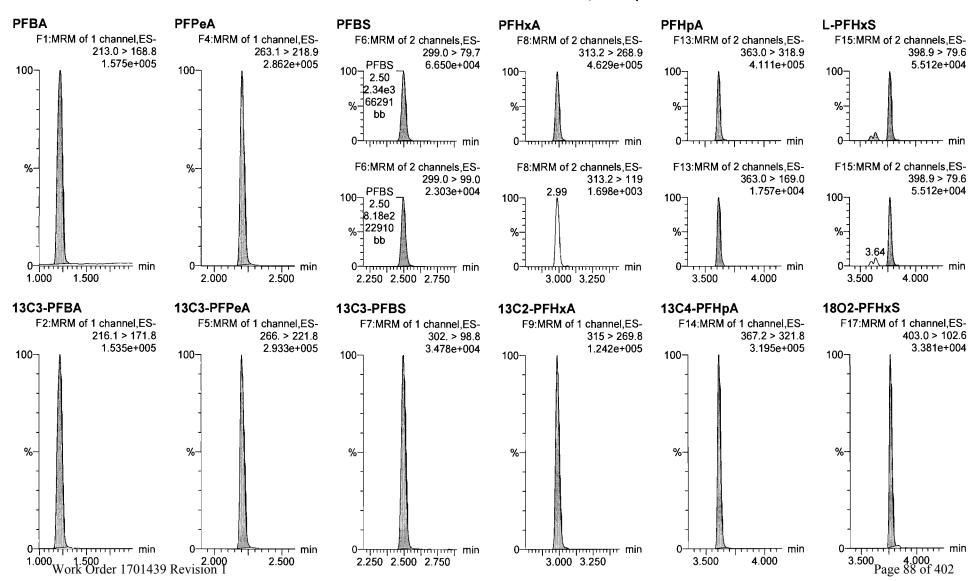
LC Calibration Standards Review Checklist								
		ION Ratio	Concentration	C-Cals Name	Sign Date	Correct I-Cal	Manual Integrations	
Calibration ID: ST 17 De M -11	LM H	4	© □ (0)	回		v		ф
Calibration ID: 12	_ L (M) Н -	ф		a	\(\sigma^{\frac{1}{2}}\)	d		ф
Calibration ID:	LMH-		$\mathbb{A}_{\mathbb{Q}}$	Ū		\forall	Image: Control of the	
Calibration ID:	LMH							
Calibration ID:	LMH							
Calibration ID:	LMH							
Calibration ID:	LMH				- L			
Calibration ID:	LMH							
Calibration ID:	LMH -							
Calibration ID:	LMH							
					Full Ma	ıss Cal. D	Pate: <u>V(2 </u>	17
Run Log Present: \overline{igvee}				_				
# of Samples per Sequence Checked: # OF Samples per Sequence Chec								
Reviewed By: 10 127/2017	_`				_		9 86. B(2PF	txDA:35.3/

ID: LR - LCSRC Work Order 1701439 Revision 1 Rev. No.: 0

Rev. Date: 06/06/2017

Page: 1 of 1

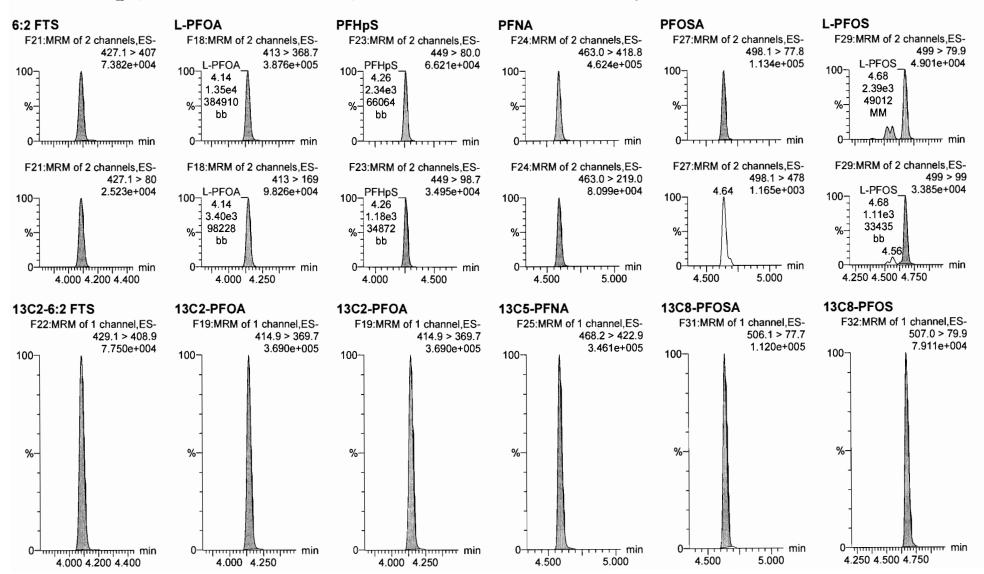
Page 87 of 402


U:\Q4.PRO\results\171026M1\171026M1-42.qld

Last Altered: Printed: Friday, October 27, 2017 10:51:51 Pacific Daylight Time Friday, October 27, 2017 10:52:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 10:03:44

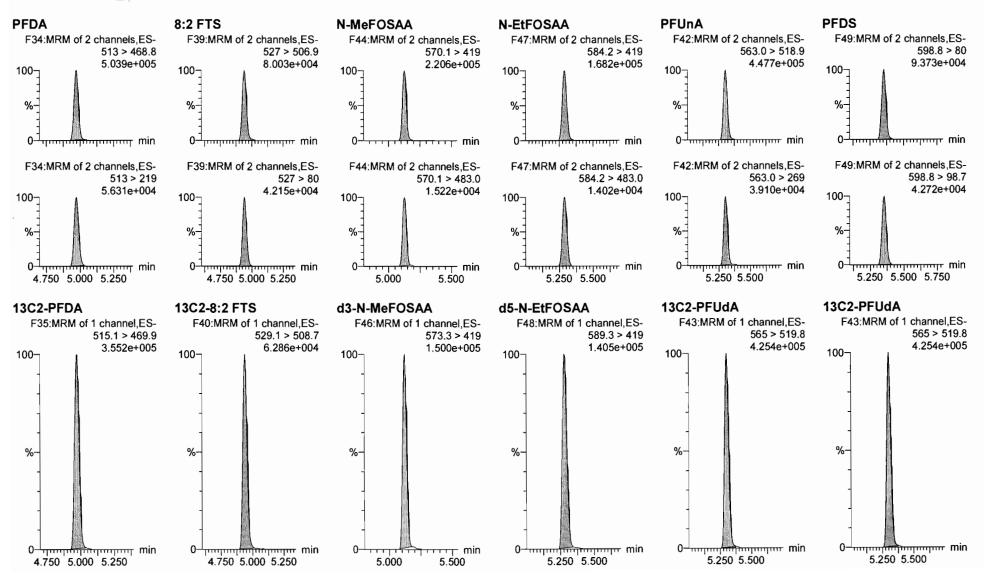
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14


Name: 171026M1_42, Date: 26-Oct-2017, Time: 16:54:21, ID: ST171026M1-11 PFC CS3 17J1806, Description: PFC CS3 17J1806

U:\Q4.PRO\results\171026M1\171026M1-42.qld

Last Altered: Printed: Friday, October 27, 2017 10:51:51 Pacific Daylight Time Friday, October 27, 2017 10:52:07 Pacific Daylight Time

Name: 171026M1_42, Date: 26-Oct-2017, Time: 16:54:21, ID: ST171026M1-11 PFC CS3 17J1806, Description: PFC CS3 17J1806

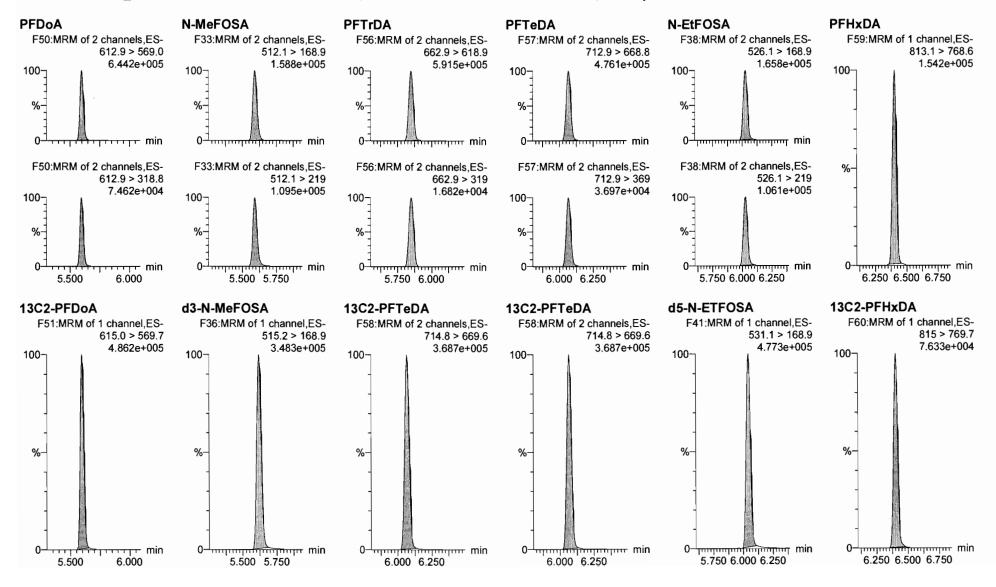


Work Order 1701439 Revision 1 Page 89 of 402

U:\Q4.PRO\results\171026M1\171026M1-42.qld

Last Altered: Printed: Friday, October 27, 2017 10:51:51 Pacific Daylight Time Friday, October 27, 2017 10:52:07 Pacific Daylight Time

Name: 171026M1_42, Date: 26-Oct-2017, Time: 16:54:21, ID: ST171026M1-11 PFC CS3 17J1806, Description: PFC CS3 17J1806

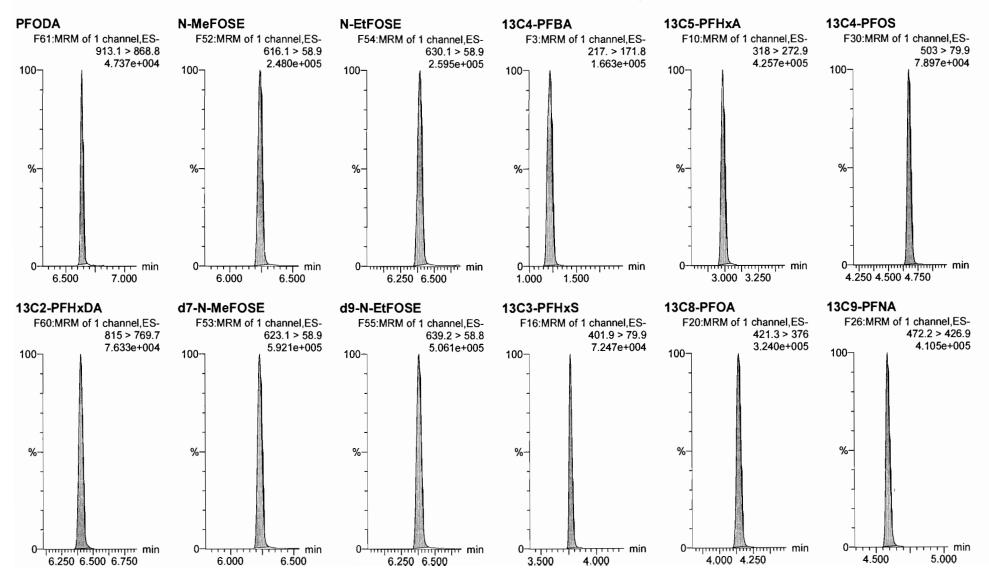


Work Order 1701439 Revision 1

Dataset: U:\Q4.PRO\results\171026M1\171026M1-42.qld

Last Altered: Friday, October 27, 2017 10:51:51 Pacific Daylight Time Printed: Friday, October 27, 2017 10:52:07 Pacific Daylight Time

Name: 171026M1_42, Date: 26-Oct-2017, Time: 16:54:21, ID: ST171026M1-11 PFC CS3 17J1806, Description: PFC CS3 17J1806

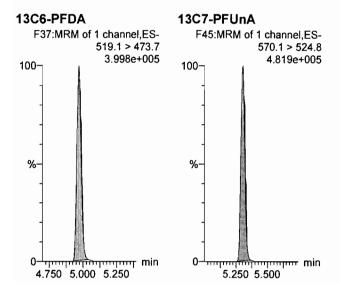


Work Order 1701439 Revision 1 Page 91 of 402

U:\Q4.PRO\results\171026M1\171026M1-42.qld

Last Altered: Printed: Friday, October 27, 2017 10:51:51 Pacific Daylight Time Friday, October 27, 2017 10:52:07 Pacific Daylight Time

Name: 171026M1_42, Date: 26-Oct-2017, Time: 16:54:21, ID: ST171026M1-11 PFC CS3 17J1806, Description: PFC CS3 17J1806



Dataset: U:\Q4.PRO\results\171026M1\171026M1-42.qld

Last Altered: Printed:

Friday, October 27, 2017 10:51:51 Pacific Daylight Time Friday, October 27, 2017 10:52:07 Pacific Daylight Time

Name: 171026M1_42, Date: 26-Oct-2017, Time: 16:54:21, ID: ST171026M1-11 PFC CS3 17J1806, Description: PFC CS3 17J1806

Last Altered: Friday, November 03, 2017 15:35:49 Pacific Daylight Time Friday, November 03, 2017 15:36:06 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_RS-10-27-17.mdb 27 Oct 2017 15:32:48

Calibration: 03 Nov 2017 15:35:49

Name: 171103M1_2, Date: 03-Nov-2017, Time: 13:35:14, ID: ST171103M1-1 PFC CS0 17J2807, Description: PFC CS0 17J2807

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171103M1-1 PFC CS0 17J2807	7.33e3	100.0	NO
2	2 13C5-PFHxA	ST171103M1-1 PFC CS0 17J2807	9.41e3	100.0	NO
3	3 13C3-PFHxS	ST171103M1-1 PFC CS0 17J2807	1.71e3	100.0	NO
4	4 13C8-PFOA	ST171103M1-1 PFC CS0 17J2807	7.90e3	100.0	NO
5	5 13C9-PFNA	ST171103M1-1 PFC CS0 17J2807	8.20e3	100.0	NO
6	6 13C4-PFOS	ST171103M1-1 PFC CS0 17J2807	2.24e3	100.0	NO
7	7 13C6-PFDA	ST171103M1-1 PFC CS0 17J2807	8.32e3	100.0	NO
8	8 13C7-PFUnA	ST171103M1-1 PFC CS0 17J2807	9.08e3	100.0	NO

Name: 171103M1_3, Date: 03-Nov-2017, Time: 13:46:25, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Name: 171103M1_4, Date: 03-Nov-2017, Time: 13:57:38, ID: 1701439-03 FRB04_20171005 0.125, Description: FRB04_20171005

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701439-03 FRB04_20171005 0.125	7.15e3	97.6	NO
2	2 13C5-PFHxA	1701439-03 FRB04_20171005 0.125	8.79e3	93.5	NO
3	3 13C3-PFHxS	1701439-03 FRB04_20171005 0.125	1.66e3	96.9	NO
4	4 13C8-PFOA	1701439-03 FRB04_20171005 0.125	8.11e3	102.7	NO
5	5 13C9-PFNA	1701439-03 FRB04_20171005 0.125	9.94e3	121.3	NO
6	6 13C4-PFOS	1701439-03 FRB04_20171005 0.125	1.78e3	79.3	NO
7	7 13C6-PFDA	1701439-03 FRB04_20171005 0.125	8.94e3	107.5	NO
8	8 13C7-PFUnA	1701439-03 FRB04_20171005 0.125	8.91e3	98.1	NO

Name: 171103M1_5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06_20171006 0.125, Description: FRB06_20171006

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701439-05 FRB06_20171006 0.125	7.38e3	100.7	NO
2	2 13C5-PFHxA	1701439-05 FRB06_20171006 0.125	9.34e3	99.3	NO
3	3 13C3-PFHxS	1701439-05 FRB06_20171006 0.125	1.69e3	98.8	NO
4	4 13C8-PFOA	1701439-05 FRB06_20171006 0.125	8.18e3	103.5	NO
5	5 13C9-PFNA	1701439-05 FRB06_20171006 0.125	8.53e3	104.1	NO
6	6 13C4-PFOS	1701439-05 FRB06_20171006 0.125	2.00e3	89.3	NO
7	7 13C6-PFDA	1701439-05 FRB06_20171006 0.125	1.06e4	127.9	NO
8	8 13C7-PFUnA	1701439-05 FRB06_20171006 0.125	1.03e4	113.9	NO

Last Altered: Friday, November 03, 2017 15:35:49 Pacific Daylight Time Friday, November 03, 2017 15:36:06 Pacific Daylight Time

Name: 171103M1_6, Date: 03-Nov-2017, Time: 14:20:00, ID: B7J0136-MS2@5X Matrix Spike 1.12, Description: Matrix Spike

	# Name	ĪD	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MS2@5X Matrix Spike 1.12	1.60e3	21.8	YES
2	2 13C5-PFHxA	B7J0136-MS2@5X Matrix Spike 1.12	2.32e3	24.7	YES
3	3 13C3-PFHxS	B7J0136-MS2@5X Matrix Spike 1.12	3.50e2	20.5	YES
4	4 13C8-PFOA	B7J0136-MS2@5X Matrix Spike 1.12	1.69e3	21.3	YES
5	5 13C9-PFNA	B7J0136-MS2@5X Matrix Spike 1.12	1.91e3	23.3	YES
6	6 13C4-PFOS	B7J0136-MS2@5X Matrix Spike 1.12	3.83e2	17.1	YES
7	7 13C6-PFDA	B7J0136-MS2@5X Matrix Spike 1.12	2.07e3	24.9	YES
8	8 13C7-PFUnA	B7J0136-MS2@5X Matrix Spike 1.12	2.30e3	25.4	YES

Name: 171103M1_7, Date: 03-Nov-2017, Time: 14:31:11, ID: B7J0136-MSD2@5X Matrix Spike Dup 1.18, Description: Matrix Spike Dup

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MSD2@5X Matrix Spike Dup	1.35e3	18.4	YES
2	2 13C5-PFHxA	B7J0136-MSD2@5X Matrix Spike Dup	2.00e3	21.3	YES
3	3 13C3-PFHxS	B7J0136-MSD2@5X Matrix Spike Dup	3.50e2	20.4	YES
4	4 13C8-PFOA	B7J0136-MSD2@5X Matrix Spike Dup	1.49e3	18.8	YES
5	5 13C9-PFNA	B7J0136-MSD2@5X Matrix Spike Dup	1.59e3	19.4	YES
6	6 13C4-PFOS	B7J0136-MSD2@5X Matrix Spike Dup	5.34e2	23.8	YES
7	7 13C6-PFDA	B7J0136-MSD2@5X Matrix Spike Dup	2.03e3	24.4	YES
8	8 13C7-PFUnA	B7J0136-MSD2@5X Matrix Spike Dup	2.94e3	32.4	YES

Name: 171103M1_8, Date: 03-Nov-2017, Time: 14:42:22, ID: B7J0136-MSD2 Matrix Spike Dup 1.18, Description: Matrix Spike Dup

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MSD2 Matrix Spike Dup 1.18	6.81e3	93.0	NO
2	2 13C5-PFHxA	B7J0136-MSD2 Matrix Spike Dup 1.18	8.60e3	91.5	NO
3	3 13C3-PFHxS	B7J0136-MSD2 Matrix Spike Dup 1.18	1.69e3	98.8	NO
4	4 13C8-PFOA	B7J0136-MSD2 Matrix Spike Dup 1.18	6.59e3	83.5	NO
5	5 13C9-PFNA	B7J0136-MSD2 Matrix Spike Dup 1.18	1.10e4	134.7	NO
6	6 13C4-PFOS	B7J0136-MSD2 Matrix Spike Dup 1.18	3.13e3	139.4	NO
7	7 13C6-PFDA	B7J0136-MSD2 Matrix Spike Dup 1.18	7.31e3	87.9	NO
8	8 13C7-PFUnA	B7J0136-MSD2 Matrix Spike Dup 1.18	1.76e4	194.2	YES

Name: 171103M1_9, Date: 03-Nov-2017, Time: 14:54:57, ID: 1701528-05@30X STWRT-RPTSW01 0.11748, Description: STWRT-RPTSW01

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701528-05@30X STWRT-RPTSW01	2.01e2	2.7	YES
2	2 13C5-PFHxA	1701528-05@30X STWRT-RPTSW01	2.76e2	2.9	YES
3	3 13C3-PFHxS	1701528-05@30X STWRT-RPTSW01	3.55e1	2.1	YES
4	4 13C8-PFOA	1701528-05@30X STWRT-RPTSW01	2.02e2	2.6	YES
5	5 13C9-PFNA	1701528-05@30X STWRT-RPTSW01	2.43e2	3.0	YES
6	6 13C4-PFOS	1701528-05@30X STWRT-RPTSW01	3.43e1	1.5	YES
7	7 13C6-PFDA	1701528-05@30X STWRT-RPTSW01	3.45e2	4.1	YES
8	8 13C7-PFUnA	1701528-05@30X STWRT-RPTSW01	2.51e2	2.8	YES

Vista Analytical Laboratory

Dataset: Untitled

Last Altered: Friday, November 03, 2017 15:35:49 Pacific Daylight Time Printed: Friday, November 03, 2017 15:36:06 Pacific Daylight Time

Name: 171103M1_10, Date: 03-Nov-2017, Time: 15:06:05, ID: IPA, Description: IPA

	# Name	ĪD	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Name: 171103M1_11, Date: 03-Nov-2017, Time: 15:17:27, ID: ST171103M1-2 PFC CS3 17J2810, Description: PFC CS3 17J2810

	# Name	ĪD	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171103M1-2 PFC CS3 17J2810	7.57e3	103.3	NO
2	2 13C5-PFHxA	ST171103M1-2 PFC CS3 17J2810	1.06e4	112.2	NO
3	3 13C3-PFHxS	ST171103M1-2 PFC CS3 17J2810	1.82e3	106.4	NO
4	4 13C8-PFOA	ST171103M1-2 PFC CS3 17J2810	6.90e3	87.3	NO
5	5 13C9-PFNA	ST171103M1-2 PFC CS3 17J2810	9.52e3	116.1	NO
6	6 13C4-PFOS	ST171103M1-2 PFC CS3 17J2810	2.00e3	89.1	NO
7	7 13C6-PFDA	ST171103M1-2 PFC CS3 17J2810	8.56e3	102.9	NO
8	8 13C7-PFUnA	ST171103M1-2 PFC CS3 17J2810	9.81e3	108.1	NO

Last Altered: Friday, November 03, 2017 15:35:49 Pacific Daylight Time Printed: Friday, November 03, 2017 15:36:06 Pacific Daylight Time

 $Method: U: \Q4.PRO\MethDB\PFAS_RS-10-27-17.mdb\ 27\ Oct\ 2017\ 15:32:48$

Calibration: 03 Nov 2017 15:35:49

Name: 171103M1_2, Date: 03-Nov-2017, Time: 13:35:14, ID: ST171103M1-1 PFC CS0 17J2807, Description: PFC CS0 17J2807

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171103M1-1 PFC CS0 17J2807	7.33e3	100.0	NO
2	2 13C5-PFHxA	ST171103M1-1 PFC CS0 17J2807	9.41e3	100.0	NO
3	3 13C3-PFHxS	ST171103M1-1 PFC CS0 17J2807	1.71e3	100.0	NO
4	4 13C8-PFOA	ST171103M1-1 PFC CS0 17J2807	7.90e3	100.0	NO
5	5 13C9-PFNA	ST171103M1-1 PFC CS0 17J2807	8.20e3	100.0	NO
6	6 13C4-PFOS	ST171103M1-1 PFC CS0 17J2807	2.24e3	100.0	NO
7	7 13C6-PFDA	ST171103M1-1 PFC CS0 17J2807	8.32e3	100.0	NO
8	8 13C7-PFUnA	ST171103M1-1 PFC CS0 17J2807	9.08e3	100.0	NO

Name: 171103M1_3, Date: 03-Nov-2017, Time: 13:46:25, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA	_	_	NO

Name: 171103M1_4, Date: 03-Nov-2017, Time: 13:57:38, ID: 1701439-03 FRB04_20171005 0.125, Description: FRB04_20171005

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701439-03 FRB04_20171005 0.125	7.15e3	97.6	NO
2	2 13C5-PFHxA	1701439-03 FRB04_20171005 0.125	8.79e3	93.5	NO
3	3 13C3-PFHxS	1701439-03 FRB04_20171005 0.125	1.66e3	96.9	NO
4	4 13C8-PFOA	1701439-03 FRB04_20171005 0.125	8.11e3	102.7	NO
5	5 13C9-PFNA	1701439-03 FRB04_20171005 0.125	9.94e3	121.3	NO
6	6 13C4-PFOS	1701439-03 FRB04_20171005 0.125	1.78e3	79.3	NO
7	7 13C6-PFDA	1701439-03 FRB04_20171005 0.125	8.94e3	107.5	NO
8	8 13C7-PFUnA	1701439-03 FRB04_20171005 0.125	8.91e3	98.1	NO

Name: 171103M1 5, Date: 03-Nov-2017, Time: 14:08:50, ID: 1701439-05 FRB06 20171006 0.125, Description: FRB06 20171006

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701439-05 FRB06_20171006 0.125	7.38e3	100.7	NO
2	2 13C5-PFHxA	1701439-05 FRB06_20171006 0.125	9.34e3	99.3	NO
3	3 13C3-PFHxS	1701439-05 FRB06_20171006 0.125	1.69e3	98.8	NO
4	4 13C8-PFOA	1701439-05 FRB06_20171006 0.125	8.18e3	103.5	NO
5	5 13C9-PFNA	1701439-05 FRB06_20171006 0.125	8.53e3	104.1	NO
6	6 13C4-PFOS	1701439-05 FRB06_20171006 0.125	2.00e3	89.3	NO
7	7 13C6-PFDA	1701439-05 FRB06_20171006 0.125	1.06e4	127.9	NO
8	8 13C7-PFUnA	1701439-05 FRB06_20171006 0.125	1.03e4	113.9	NO

Last Altered: Friday, November 03, 2017 15:35:49 Pacific Daylight Time Friday, November 03, 2017 15:36:06 Pacific Daylight Time

Name: 171103M1_6, Date: 03-Nov-2017, Time: 14:20:00, ID: B7J0136-MS2@5X Matrix Spike 1.12, Description: Matrix Spike

	# Name	ĪD	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MS2@5X Matrix Spike 1.12	1.60e3	21.8	YES
2	2 13C5-PFHxA	B7J0136-MS2@5X Matrix Spike 1.12	2.32e3	24.7	YES
3	3 13C3-PFHxS	B7J0136-MS2@5X Matrix Spike 1.12	3.50e2	20.5	YES
4	4 13C8-PFOA	B7J0136-MS2@5X Matrix Spike 1.12	1.69e3	21.3	YES
5	5 13C9-PFNA	B7J0136-MS2@5X Matrix Spike 1.12	1.91e3	23.3	YES
6	6 13C4-PFOS	B7J0136-MS2@5X Matrix Spike 1.12	3.83e2	17.1	YES
7	7 13C6-PFDA	B7J0136-MS2@5X Matrix Spike 1.12	2.07e3	24.9	YES
8	8 13C7-PFUnA	B7J0136-MS2@5X Matrix Spike 1.12	2.30e3	25.4	YES

Name: 171103M1_7, Date: 03-Nov-2017, Time: 14:31:11, ID: B7J0136-MSD2@5X Matrix Spike Dup 1.18, Description: Matrix Spike Dup

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MSD2@5X Matrix Spike Dup	1.35e3	18.4	YES
2	2 13C5-PFHxA	B7J0136-MSD2@5X Matrix Spike Dup	2.00e3	21.3	YES
3	3 13C3-PFHxS	B7J0136-MSD2@5X Matrix Spike Dup	3.50e2	20.4	YES
4	4 13C8-PFOA	B7J0136-MSD2@5X Matrix Spike Dup	1.49e3	18.8	YES
5	5 13C9-PFNA	B7J0136-MSD2@5X Matrix Spike Dup	1.59e3	19.4	YES
6	6 13C4-PFOS	B7J0136-MSD2@5X Matrix Spike Dup	5.34e2	23.8	YES
7	7 13C6-PFDA	B7J0136-MSD2@5X Matrix Spike Dup	2.03e3	24.4	YES
8	8 13C7-PFUnA	B7J0136-MSD2@5X Matrix Spike Dup	2.94e3	32.4	YES

Name: 171103M1_8, Date: 03-Nov-2017, Time: 14:42:22, ID: B7J0136-MSD2 Matrix Spike Dup 1.18, Description: Matrix Spike Dup

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	B7J0136-MSD2 Matrix Spike Dup 1.18	6.81e3	93.0	NO
2	2 13C5-PFHxA	B7J0136-MSD2 Matrix Spike Dup 1.18	8.60e3	91.5	NO
3	3 13C3-PFHxS	B7J0136-MSD2 Matrix Spike Dup 1.18	1.69e3	98.8	NO
4	4 13C8-PFOA	B7J0136-MSD2 Matrix Spike Dup 1.18	6.59e3	83.5	NO
5	5 13C9-PFNA	B7J0136-MSD2 Matrix Spike Dup 1.18	1.10e4	134.7	NO
6	6 13C4-PFOS	B7J0136-MSD2 Matrix Spike Dup 1.18	3.13e3	139.4	NO
7	7 13C6-PFDA	B7J0136-MSD2 Matrix Spike Dup 1.18	7.31e3	87.9	NO
8	8 13C7-PFUnA	B7J0136-MSD2 Matrix Spike Dup 1.18	1.76e4	194.2	YES

Name: 171103M1_9, Date: 03-Nov-2017, Time: 14:54:57, ID: 1701528-05@30X STWRT-RPTSW01 0.11748, Description: STWRT-RPTSW01

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701528-05@30X STWRT-RPTSW01	2.01e2	2.7	YES
2	2 13C5-PFHxA	1701528-05@30X STWRT-RPTSW01	2.76e2	2.9	YES
3	3 13C3-PFHxS	1701528-05@30X STWRT-RPTSW01	3.55e1	2.1	YES
4	4 13C8-PFOA	1701528-05@30X STWRT-RPTSW01	2.02e2	2.6	YES
5	5 13C9-PFNA	1701528-05@30X STWRT-RPTSW01	2.43e2	3.0	YES
6	6 13C4-PFOS	1701528-05@30X STWRT-RPTSW01	3.43e1	1.5	YES
7	7 13C6-PFDA	1701528-05@30X STWRT-RPTSW01	3.45e2	4.1	YES
8	8 13C7-PFUnA	1701528-05@30X STWRT-RPTSW01	2.51e2	2.8	YES

Vista Analytical Laboratory

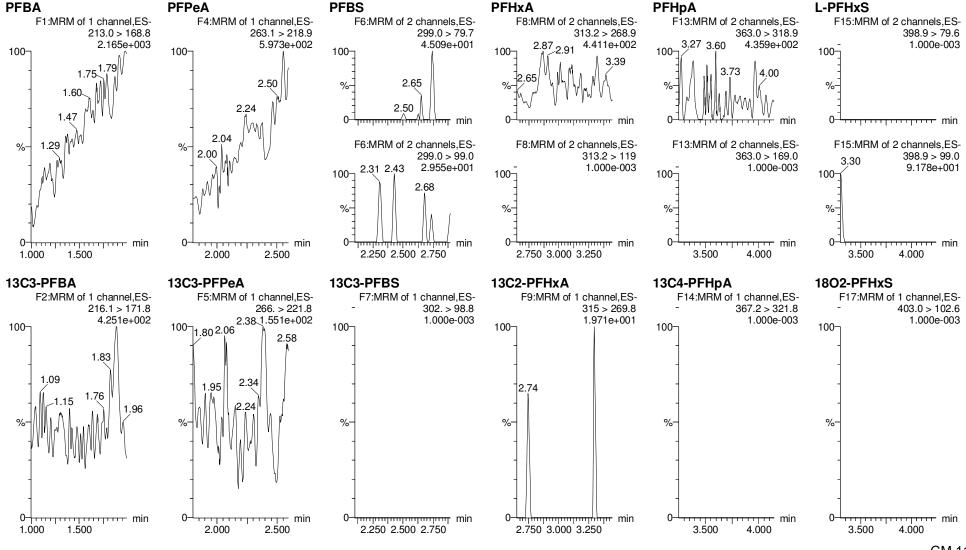
Dataset: Untitled

Last Altered: Friday, November 03, 2017 15:35:49 Pacific Daylight Time Printed: Friday, November 03, 2017 15:36:06 Pacific Daylight Time

Name: 171103M1_10, Date: 03-Nov-2017, Time: 15:06:05, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

Name: 171103M1_11, Date: 03-Nov-2017, Time: 15:17:27, ID: ST171103M1-2 PFC CS3 17J2810, Description: PFC CS3 17J2810


		_			
	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171103M1-2 PFC CS3 17J2810	7.57e3	103.3	NO
2	2 13C5-PFHxA	ST171103M1-2 PFC CS3 17J2810	1.06e4	112.2	NO
3	3 13C3-PFHxS	ST171103M1-2 PFC CS3 17J2810	1.82e3	106.4	NO
4	4 13C8-PFOA	ST171103M1-2 PFC CS3 17J2810	6.90e3	87.3	NO
5	5 13C9-PFNA	ST171103M1-2 PFC CS3 17J2810	9.52e3	116.1	NO
6	6 13C4-PFOS	ST171103M1-2 PFC CS3 17J2810	2.00e3	89.1	NO
7	7 13C6-PFDA	ST171103M1-2 PFC CS3 17J2810	8.56e3	102.9	NO
8	8 13C7-PFUnA	ST171103M1-2 PFC CS3 17J2810	9.81e3	108.1	NO

Dataset: Untitled

Last Altered: Friday, November 03, 2017 15:14:25 Pacific Daylight Time Printed: Friday, November 03, 2017 15:15:10 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

Name: 171103M1_3, Date: 03-Nov-2017, Time: 13:46:25, ID: IPA, Description: IPA

GM 11/3/17

Work Order 1701439 Revision 1

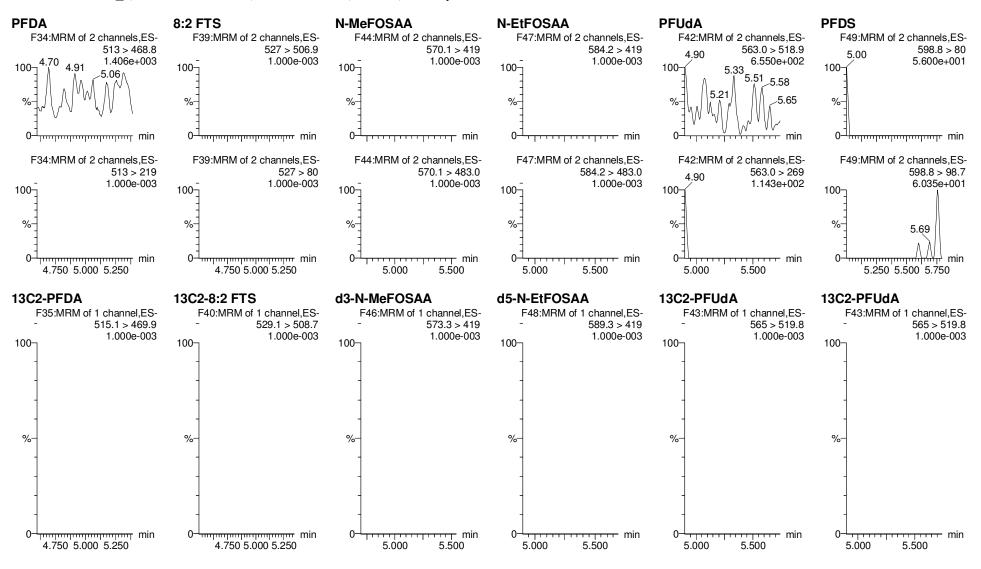
Page 100 of 402

Vista Analytical Laboratory

Dataset: Untitled

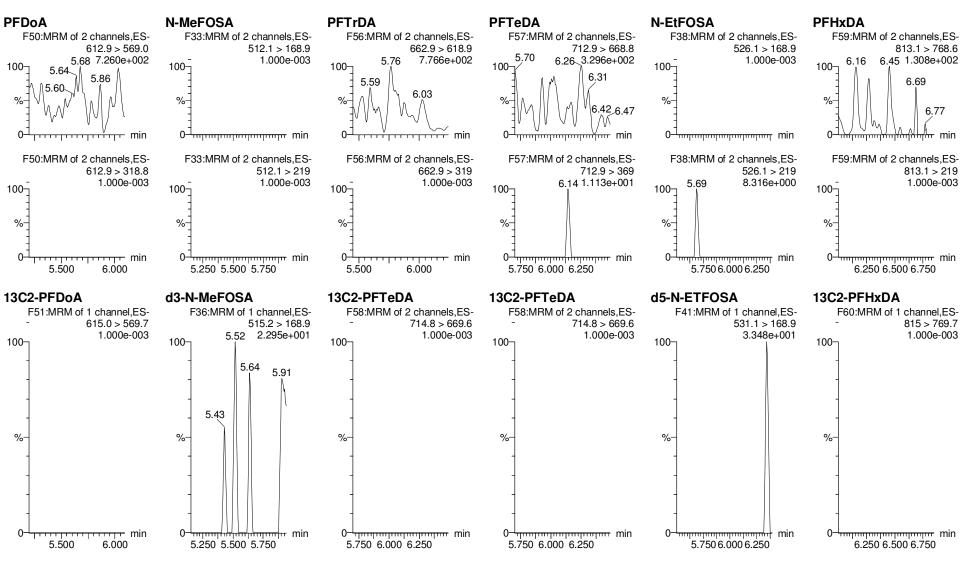
Last Altered: Friday, November 03, 2017 15:14:25 Pacific Daylight Time Printed: Friday, November 03, 2017 15:15:10 Pacific Daylight Time

Name: 171103M1_3, Date: 03-Nov-2017, Time: 13:46:25, ID: IPA, Description: IPA



.

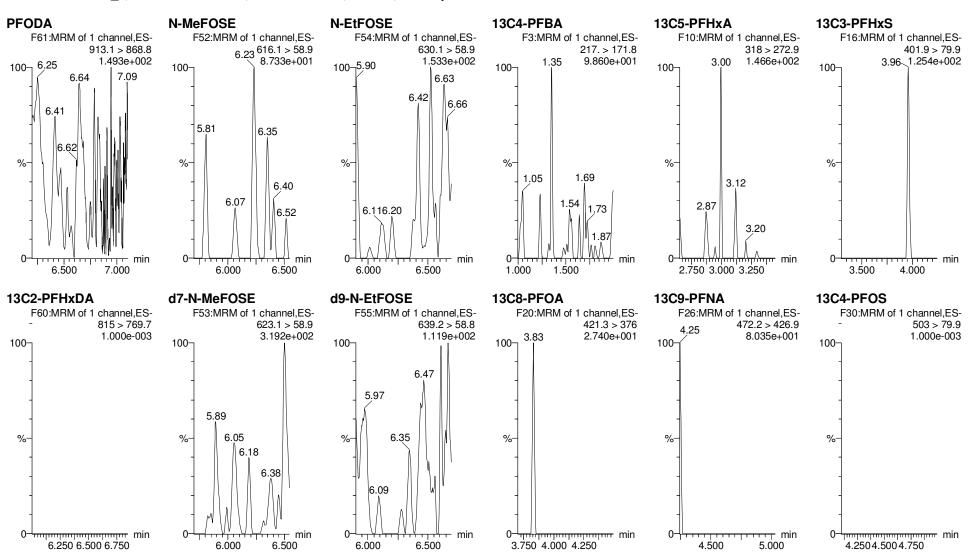
Dataset: Untitled


Last Altered: Friday, November 03, 2017 15:14:25 Pacific Daylight Time Printed: Friday, November 03, 2017 15:15:10 Pacific Daylight Time

Name: 171103M1_3, Date: 03-Nov-2017, Time: 13:46:25, ID: IPA, Description: IPA

Last Altered: Friday, November 03, 2017 15:14:25 Pacific Daylight Time Printed: Friday, November 03, 2017 15:15:10 Pacific Daylight Time

Name: 171103M1_3, Date: 03-Nov-2017, Time: 13:46:25, ID: IPA, Description: IPA



,

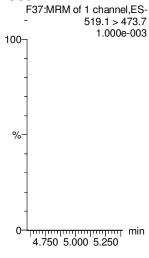
Dataset: Untitled

Last Altered: Friday, November 03, 2017 15:14:25 Pacific Daylight Time Printed: Friday, November 03, 2017 15:15:10 Pacific Daylight Time

Name: 171103M1_3, Date: 03-Nov-2017, Time: 13:46:25, ID: IPA, Description: IPA

GM 11/3/17

Work Order 1701439 Revision 1 Page 104 of 402


Quantify Sample Report Vista Analytical Laboratory

Dataset: Untitled

Last Altered: Friday, November 03, 2017 15:14:25 Pacific Daylight Time Printed: Friday, November 03, 2017 15:15:10 Pacific Daylight Time

Name: 171103M1_3, Date: 03-Nov-2017, Time: 13:46:25, ID: IPA, Description: IPA

13C6-PFDA

Quantify Sample Summary Report Vista Analytical Laboratory

MassLynx MassLynx V4.1 SCN945 SCN960

Page 1 of 2

Dataset:

U:\Q4.PRO\results\171103M1\171103M1-2.qld

Last Altered: Printed:

Friday, November 03, 2017 14:24:40 Pacific Daylight Time Friday, November 03, 2017 14:26:24 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

Name: 171103M1_2, Date: 03-Nov-2017, Time: 13:35:14, ID: ST171103M1-1 PFC CS0 17J2807, Description: PFC CS0 17J2807

er gag ir ta		# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec	
1	original Color	1 PFBA	213.0 > 168.8	6.59e2	7.15e3	scalare vr Mitdaaacsess	1.17	1.07	1.15	1.04	104.1	70-130
2		2 PFPeA	263.1 > 218.9	6.41e2	7.67e3		2.15	2.02	1.04	0.996	99.6	
3		3 PFBS	299.0 > 79.7	1.52e2	9.21e2		2.44	2.32	2.07	0.930	93.0	
4		4 PFHxA	313.2 > 268.9	9.72e2	3.04e3		2.93	2.81	1.60	0.995	99.5	
5		5 PFHpA	363.0 > 318.9	7.67e2	6.96e3		3.56	3.44	1.38	0.971	97.1	
6		6 L-PFHxS	398.9 > 79.6	1.02e2	7.00e2		3.71	3.59	1.82	0.864	86.4	
7.0.5	Dermander den Mag	8 6:2 FTS	427.1 > 407	1.55e2	2.04e3		4.03	3.90	0.952	0.990	99.0	
8		9 L-PFOA	413 > 368.7	9.76e2	9.65e3		4.05	3.96	1.26	1.00	100.4	
9	Ministerijas (n Prisiper Medicilia) Post	11 PFHpS	449 > 80.0	1.81e2	9.65e3		4.20	4.08	0.234	1.26	126.2	
10	Missing to the	12 PFNA	463.0 > 418.8	7.62e2	9.25e3		4.55	4.41	1.03	0.856	85.6	OM.
11	lässen ja lajana. Jan	13 PFOSA	498.1 > 77.8	2.17e2	2.10e3		4.59	4.46	1.29	1.17	117.0	W
12	ini Zapania Visionalia Visionalia	14 L-PFOS	499 > 79.9	1.67e2	2.39e3		4.63	4.50	0.872	0.898	89.8	1 1/2/17
13	labisa politika ja Mag	16 PFDA	513 > 468.8	1.04e3	8.85e3		4.92	4.80	1.46	1.12	111.8	1 ((13
14	t pater state of the later.	17 8:2 FTS	527 > 506.9	1.92e2	1.32e3		4.89	4.76	1.81	1.30	129.9	1 40
15	(4) (13, 13, 13) 2) 7) (13, 13, 13, 13, 13, 13, 13, 13, 13, 13,	18 N-MeFOSAA	570.1 > 419	3.94e2	3.36e3		5.08	4.96	1.47	0.921	92.1	V 14.
16		19 N-EtFOSAA	584.2 > 419	3.97e2	4.06e3		5.24	5.11	1.22	1.05	105.2	1 (11/03/201
17	e kelijang pana	20 PFUdA	563.0 > 518.9	8.92e2	1.05e4		5.25	5.13	1.06	1.03	102.5	
18	Minalospoolebajos Sees valans seedaa Ressa, jõpavõda saa	21 PFDS	598.8 > 80	2.12e2	1.05e4		5.31	5.18	0.252	1.29	129.1	
19	(1) (5) (2) (1) (2)	22 PFDoA	612.9 > 569.0	9.66e2	9.87e3		5.55	5.43	1.22	0.925	92.5	
20	er sate en de	23 N-MeFOSA	512.1 > 168.9	3.86e2	1.08e4		5.56	5.50	5.35	5.06	101.2	
21	n den paris Diagram	24 PFTrDA	662.9 > 618.9	8.17e2	9.87e3		5.80	5.68	1.03	0.808	80.8	
22	nasite filoso michalos	25 PFTeDA	712.9 > 668.8	8.42e2	9.54e3		6.02	5.90	1.10	0.857	85.7	
23	un programa Un generalisa	26 N-EtFOSA	526.1 > 168.9	5.59e2	1.72e4		6.01	5.96	4.87	4.82	96.4	1
24		27 PFHxDA	813.1 > 768.6	5.79e2	3.74e3		6.32	6.27	0.773	1.16	116.3	\ \
25		28 PFODA	913.1 > 868.8	2.85e2	3.74e3		6.61	6.52	0.380	0.989	98.9	
26	erongay Adlebij Sii databilada	29 N-MeFOSE	616.1 > 58.9	5.65e2	1.52e4		6.23	6.19	5.56	5.48	109.7	
27	Papelia.	30 N-EtFOSE	630.1 > 58.9	4.83e2	1.44e4		6.39	6.35	5.04	4.20	84.0	
28	l Magapallind Shir Marajan diga shir	31 13C3-PFBA	216.1 > 171.8	7.15e3	7.34e3	0.949	1.17	1.07	12.2	12.8	102.8	90-150
29		32 13C3-PFPeA	266. > 221.8	7.67e3	9.41e3	0.781	2.15	2.02	10.2	13.1	104.4	
30		33 13C3-PFBS	302. > 98.8	9.21e2	9.41e3	0.089	2.44	2.32	1.22	13.8	110.5	
31	Work	O4dlaC270F14849 Revision 1	315 > 269.8	3.04e3	9.41e3	0.755	2.93	2.81	4.04	5.35	107.0	Page 106 of 402

U:\Q4.PRO\results\171103M1\171103M1-2.qld

Last Altered: Printed:

Friday, November 03, 2017 14:24:40 Pacific Daylight Time Friday, November 03, 2017 14:26:24 Pacific Daylight Time

Name: 171103M1_2, Date: 03-Nov-2017, Time: 13:35:14, ID: ST171103M1-1 PFC CS0 17J2807, Description: PFC CS0 17J2807

	# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
32	35 13C4-PFHpA	367.2 > 321.8	6.96e3	9.41e3	0.711	3.56	3.43	9.25	13.0	104.1
33	36 18O2-PFHxS	403.0 > 102.6	7.00e2	1.71e3	0.423	3.71	3.59	5.11	12.1	96.6
34	37 13C2-6:2 FTS	429.1 > 408.9	2.04e3	7.90e3	0.286	4.03	3.90	3.23	11.3	90.4
35	38 13C2-PFOA	414.9 > 369.7	9.65e3	7.90e3	1.310	4.05	3.96	15.3	11.7	93.3
36	39 13C5-PFNA	468.2 > 422.9	9.25e3	8.20e3	0.979	4.55	4.41	14.1	14.4	115.3
37	40 13C8-PFOSA	506.1 > 77.7	2.10e3	9.08e3	0.207	4.59	4.46	2.89	14.0	111.7
38	41 13C8-PFOS	507.0 > 79.9	2.39e3	2.24e3	1.072	4.63	4.50	13.3	12.4	99.3
39	42 13C2-PFDA	515.1 > 469.9	8.85e3	8.30e3	1.014	4.92	4.80	13.3	13.1	105.1
40	43 13C2-8:2 FTS	529.1 > 508.7	1.32e3	8.30e3	0.216	4.89	4.76	1.99	9.20	73.6
41	44 d3-N-MeFOSAA	573.3 > 419	3.36e3	9.08e3	0.368	5.08	4.95	4.62	12.6	100.5
42	45 d5-N-EtFOSAA	589.3 > 419	4.06e3	9.08e3	0.389	5.24	5.11	5.59	14.4	115.1
43	46 13C2-PFUdA	565 > 519.8	1.05e4	9.08e3	0.983	5.25	5.13	14.4	14.7	117.6
44	47 13C2-PFDoA	615.0 > 569.7	9.87e3	9.08e3	0.997	5.55	5.42	13.6	13.6	109.1
45	48 d3-N-MeFOSA	515.2 > 168.9	1.08e4	9.08e3	0.096	5.56	5.53	14.9	156	103.7
46	49 13C2-PFTeDA	714.8 > 669.6	9.54e3	9.08e3	1.039	6.02	5.90	13.1	12.6	101.1
47	50 d5-N-ETFOSA	531.1 > 168.9	1.72e4	9.08e3	0.144	6.01	5.98	23.7	165	109.8
48	51 13C2-PFHxDA	815 > 769.7	3.74e3	9.08e3	1.032	6.32	6.27	5.16	4.99	99.9
49	52 d7-N-MeFOSE	623.1 > 58.9	1.52e4	9.08e3	0.133	6.23	6.19	21.0	158	105.2
50	53 d9-N-EtFOSE	639.2 > 58.8	1.44e4	9.08e3	0.128	6.39	6.34	19.8	155	103.2
51	54 13C4-PFBA	217. > 171.8	7.34e3	7.34e3	1.000	1.17	1.07	12.5	12.5	100.0
52	55 13C5-PFHxA	318 > 272.9	9.41e3	9.41e3	1.000	2.93	2.81	12.5	12.5	100.0
53	56 13C3-PFHxS	401.9 > 79.9	1.71e3	1.71e3	1.000	3.71	3.59	12.5	12.5	100.0
54	57 13C8-PFOA	421.3 > 376	7.90e3	7.90e3	1.000	4.05	3.96	12.5	12.5	100.0
55	58 13C9-PFNA	472.2 > 426.9	8.20e3	8.20e3	1.000	4.55	4.41	12.5	12.5	100.0
56	59 13C4-PFOS	503 > 79.9	2.24e3	2.24e3	1.000	4.63	4.50	12.5	12.5	100.0
57	60 13C6-PFDA	519.1 > 473.7	8.30e3	8.30e3	1.000	4.92	4.80	12.5	12.5	100.0
58	61 13C7-PFUdA	570.1 > 524.8	9.08e3	9.08e3	1.000	5.25	5.13	12.5	12.5	100.0

Work Order 1701439 Revision 1 Page 107 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Page 1 of 1

Vista Analytical Laboratory

Dataset:

Untitled

Last Altered: Printed: Friday, November 03, 2017 15:33:44 Pacific Daylight Time Friday, November 03, 2017 15:34:28 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

Compound name: PFBA

	Name	ID ID	Acq.Date	Acq.Time
1	171103M1_1	IPA	03-Nov-17	13:24:06
2	171103M1_2	ST171103M1-1 PFC CS0 17J2807	03-Nov-17	13:35:14
3	171103M1_3	IPA	03-Nov-17	13:46:25
4	171103M1_4	1701439-03 FRB04_20171005 0.125	03-Nov-17	13:57:38
5	171103M1_5	1701439-05 FRB06_20171006 0.125	03-Nov-17	14:08:50
6	171103M1_6	B7J0136-MS2@5X Matrix Spike 1.12	03-Nov-17	14:20:00
7	171103M1_7	B7J0136-MSD2@5X Matrix Spike Dup 1.18	03-Nov-17	14:31:11
8	171103M1_8	B7J0136-MSD2 Matrix Spike Dup 1.18	03-Nov-17	14:42:22
9	171103M1_9	1701528-05@30X STWRT-RPTSW01 0.11748	03-Nov-17	14:54:57
10	171103M1_10	IPA	03-Nov-17	15:06:05
11	171103M1_11	ST171103M1-2 PFC CS3 17J2810	03-Nov-17	15:17:27
12	171103M1_12	IPA	03-Nov-17	15:28:59

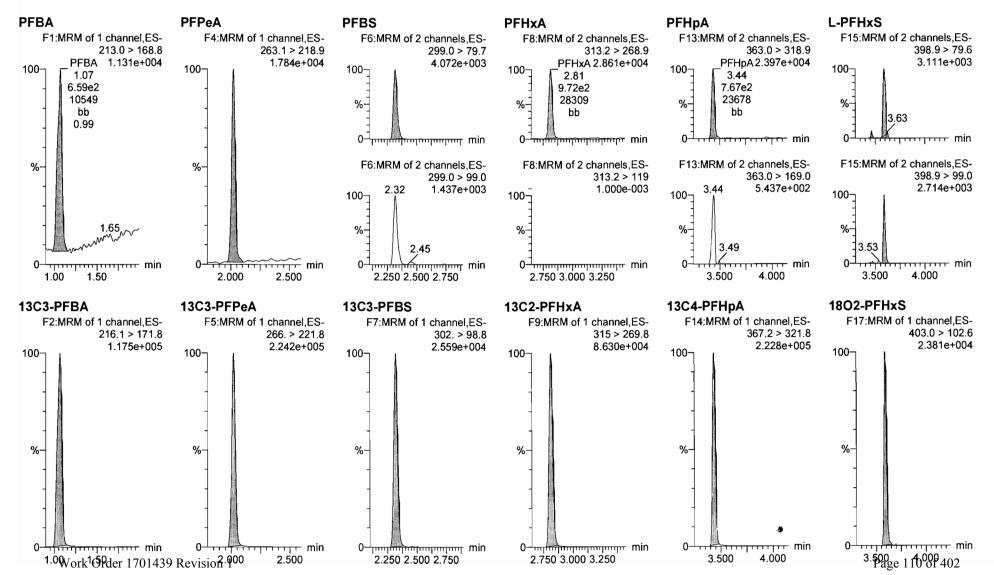
Work Order 1701439 Revision 1 Page 108 of 402

LC Ca	LC Calibration Standards Review Checklist(
		ION Ratio	Concentration	C-Cals Name	Sign Date	Correct I-Cal	Manual Integrations	A		
Calibration ID: ST 17 1103 M 1 - 1	(L)M H	#		V	U	V	\triangleleft	中		
Calibration ID: ———————————————————————————————————	L(M)H	₫⁄	'	ď	回	V	□√	4		
Calibration ID:	L M H —									
Calibration ID:	LМН —									
Calibration ID:	LМН —									
Calibration ID:	LМН —									
Calibration ID:	L M H -									
Calibration ID:	L M H -									
Calibration ID:	L M H -									
Calibration ID:	L M H -									
					Full Ma	ss Cal. D	Pate: 4/21/7			
Run Log Present:					_					
# of Samples per Sequence Checked:	4				Comme Fi	ents:) (\ (OLD			
Reviewed By: 1 03 20 (7 Initials/Date										

ID: LR - LCSRC Work Order 1701439 Revision 1

Rev. No.: 0

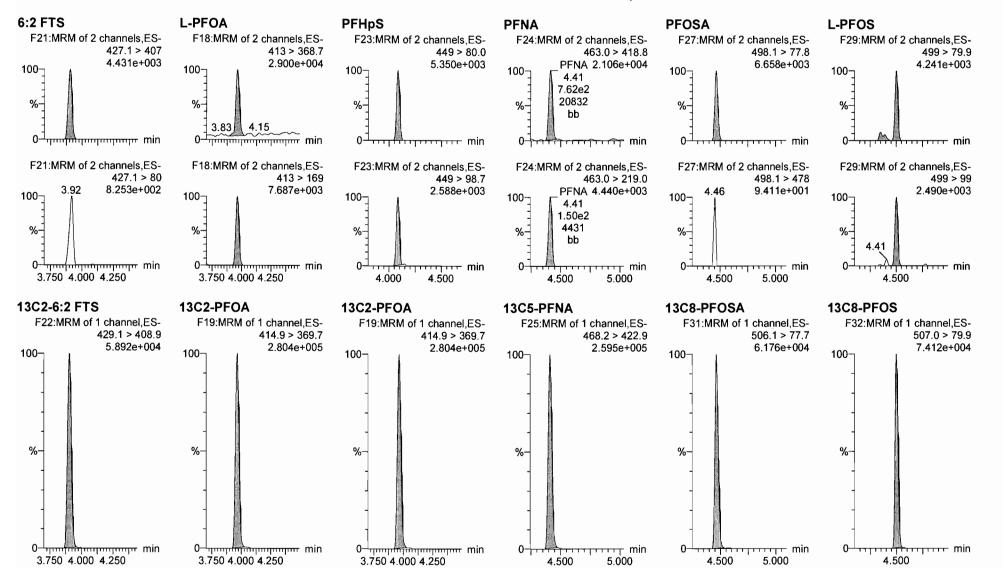
Rev. Date: 06/06/2017


Page: 1 of 1Page 109 of 402

U:\Q4.PRO\results\171103M1\171103M1-2.qld

Last Altered: Printed: Friday, November 03, 2017 14:24:40 Pacific Daylight Time Friday, November 03, 2017 14:26:24 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51


Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

U:\Q4.PRO\results\171103M1\171103M1-2.qld

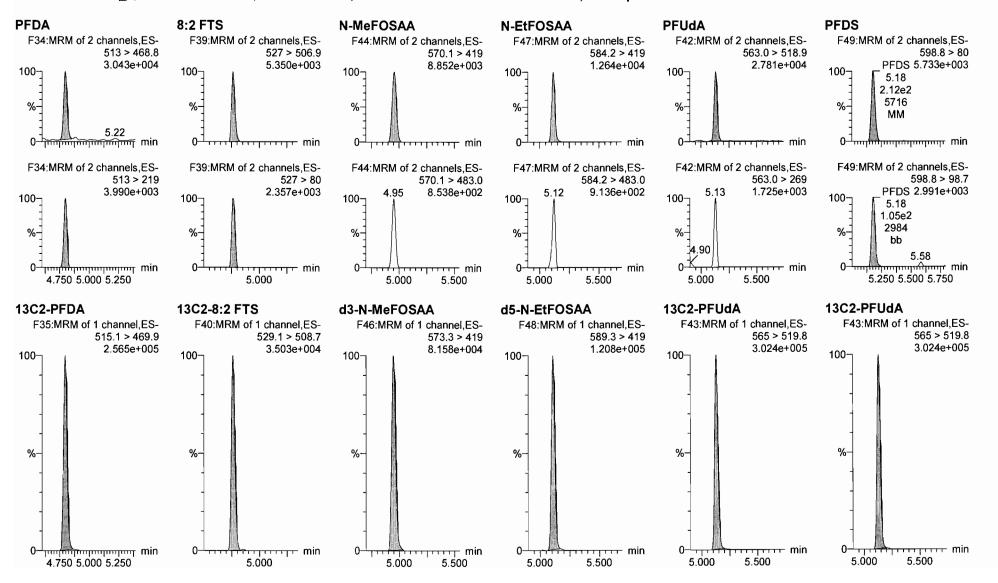
Last Altered: Printed: Friday, November 03, 2017 14:24:40 Pacific Daylight Time Friday, November 03, 2017 14:26:24 Pacific Daylight Time

Name: 171103M1_2, Date: 03-Nov-2017, Time: 13:35:14, ID: ST171103M1-1 PFC CS0 17J2807, Description: PFC CS0 17J2807

Work Order 1701439 Revision 1 Page 111 of 402

Page 112 of 402

Dataset:

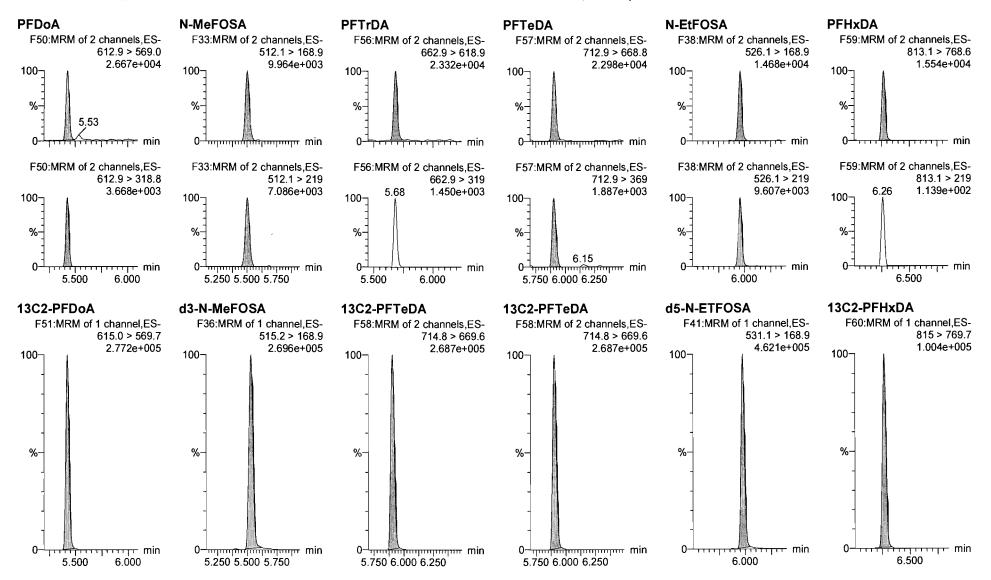

U:\Q4.PRO\results\171103M1\171103M1-2.qld

Last Altered:

Friday, November 03, 2017 14:24:40 Pacific Daylight Time

Printed: Friday, November 03, 2017 14:26:24 Pacific Daylight Time

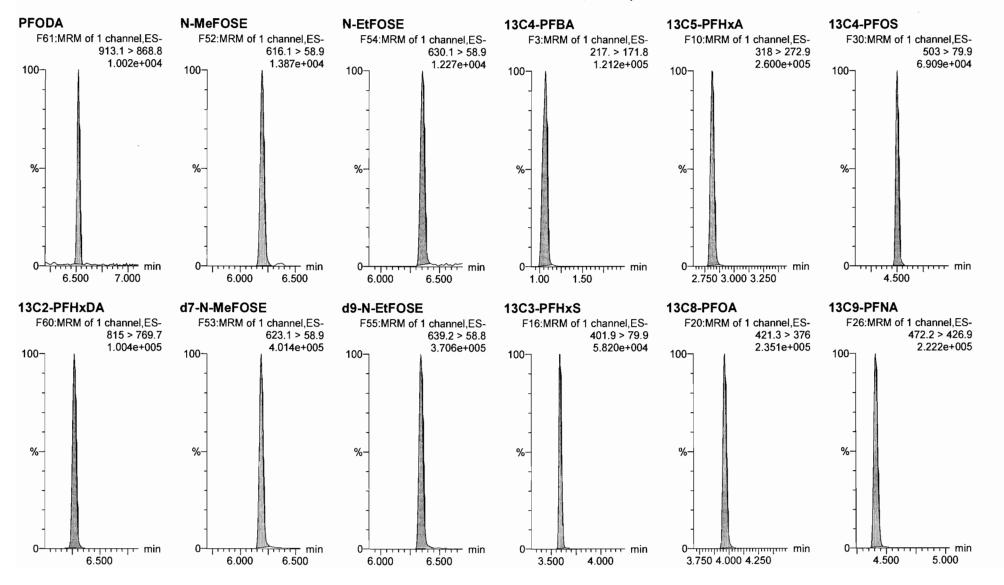
Name: 171103M1_2, Date: 03-Nov-2017, Time: 13:35:14, ID: ST171103M1-1 PFC CS0 17J2807, Description: PFC CS0 17J2807


Work Order 1701439 Revision 1

U:\Q4.PRO\results\171103M1\171103M1-2.qld

Last Altered:

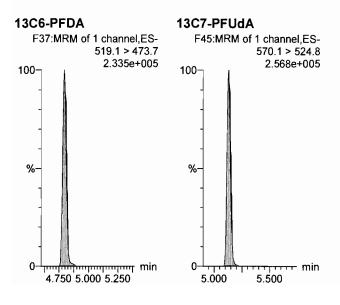
Friday, November 03, 2017 14:24:40 Pacific Daylight Time


Printed: Friday, November 03, 2017 14:26:24 Pacific Daylight Time

U:\Q4.PRO\results\171103M1\171103M1-2.gld

Last Altered: Printed:

Friday, November 03, 2017 14:24:40 Pacific Daylight Time Friday, November 03, 2017 14:26:24 Pacific Daylight Time



U:\Q4.PRO\results\171103M1\171103M1-2.qld

Last Altered: Printed:

Friday, November 03, 2017 14:24:40 Pacific Daylight Time Friday, November 03, 2017 14:26:24 Pacific Daylight Time

Name: 171103M1_2, Date: 03-Nov-2017, Time: 13:35:14, ID: ST171103M1-1 PFC CS0 17J2807, Description: PFC CS0 17J2807

Work Order 1701439 Revision 1 Page 115 of 402

U:\Q4.PRO\results\171103M1\171103M1-113.qld

Last Altered: Printed:

Friday, November 03, 2017 15:31:35 Pacific Daylight Time Friday, November 03, 2017 15:31:46 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

en en aktoriste a en en aktoriste a	# Name	Trace	Area	IS Area	RRF I	Pred.RT	RT	y Axis Resp.	Conc.	%Rec	
1	1 PFBA	213.0 > 168.8	6.42e3	7.20e3	Ougs.	1.17	1.07	11.2	10.4	104.0	70-130
2 3	2 PFPeA	263.1 > 218.9	6.38e3	7.78e3		2.15	2.03	10.3	10.7	106.9	T
3	3 PFBS	299.0 > 79.7	1.66e3	8.58e2		2.44	2.32	24.2	11.9	119.3	ì
4	4 PFHxA	313.2 > 268.9	9.21e3	3.06e3		2.93	2.81	15.1	10.6	105.9	
5	5 PFHpA	363.0 > 318.9	7.34e3	6.76e3		3.56	3.44	13.6	10.4	104.2	
6	6 L-PFHxS	398.9 > 79.6	1.31e3	7.49e2		3.71	3.59	21.9	10.8	108.0	
7	8 6:2 FTS	427.1 > 407	1.84e3	2.26e3		4.03	3.90	10.2	10.8	108.1	
8 9	9 L-PFOA	413 > 368.7	7.95e3	9.99e3		4.05	3.96	9.95	10.2	102.1	W 113/17
9	11 PFHpS	449 > 80.0	1.46e3	9.99e3		4.20	4.09	1.82	9.93	99.3	J W
10	12 PFNA	463.0 > 418.8	9.25e3	9.14e3		4.55	4.41	12.6	10.1	101.0	113/17
11	13 PFOSA	498.1 > 77.8	1.75e3	1.95e3		4.59	4.47	11.2	10.4	104.2	(1)
12	14 L-PFOS	499 > 79.9	1.71e3	2.20e3		4.63	4.50	9.69	9.56	95.6	
13	16 PFDA	513 > 468.8	9.67e3	9.08e3		4.92	4.80	13.3	10.4	103.7	<i>μ</i> ΙιΔ
14	17 8:2 FTS	527 > 506.9	2.38e3	1.98e3		4.89	4.76	15.1	10.6	106.1	VIA.
15	18 N-MeFOSAA	570.1 > 419	4.78e3	4.45e3		5.08	4.95	13.4	9.25	92.5	0 11103120
16	19 N-EtFOSAA	584.2 > 419	4.03e3	4.01e3		5.24	5.11	12.6	10.7	107.0	
17	20 PFUdA	563.0 > 518.9	7.58e3	9.91e3		5.25	5.13	9.55	9.85	98.5	
18	21 PFDS	598.8 > 80	1.66e3	9.91e3		5.31	5.18	2.09	9.41	94.1	
19	22 PFDoA	612.9 > 569.0	1.04e4	1.08e4		5.55	5.42	12.1	9.78	97.8	
20	23 N-MeFOSA	512.1 > 168.9	3.58e3	9.84e3		5.56	5.51	54.5	54.6	109.2	
21	24 PFTrDA	662.9 > 618.9	9.30e3	1.08e4		5.80	5.68	10.8	8.44	84.4	
22	25 PFTeDA	712.9 > 668.8	6.91e3	8.60e3		6.02	5.90	10.1	7.83	78.3	
23	26 N-EtFOSA	526.1 > 168.9	4.95e3	1.56e4		6.01	5.96	47.5	51.8	103.6	
24	27 PFHxDA	813.1 > 768.6	3.94e3	3.68e3		6.32	6.27	5.35	9.20	92.0	
25	28 PFODA	913.1 > 868.8	2.28e3	3.68e3		6.61	6.52	3.09	7.51	75.1	
26	29 N-MeFOSE	616.1 > 58.9	4.67e3	1.71e4		6.23	6.20	41.0	44.4	88.9	1
27	30 N-EtFOSE	630.1 > 58.9	5.71e3	1.52e4		6.39	6.35	56.3	55.2	110.4	V
28	31 13C3-PFBA	216.1 > 171.8	7.20e3	7.57e3	0.949	1.17	1.07	11.9	12.5		50-150
29	32 13C3-PFPeA	266. > 221.8	7.78e3	1.06e4	0.781	2.15	2.03	9.21	11.8	94.3	
30	33 13C3-PFBS	302. > 98.8	8.58e2	1.06e4	0.089	2.44	2.32	1.02	11.5	91.8	(,
31	Work O4de3 9270 F 489 Revision 1	315 > 269.8	3.06e3	1.06e4	0.755	2.93	2.81	3.62	4.80	96.0	V Page 116 of 402

U:\Q4.PRO\results\171103M1\171103M1-113.qld

Last Altered: Printed:

Friday, November 03, 2017 15:31:35 Pacific Daylight Time Friday, November 03, 2017 15:31:46 Pacific Daylight Time

Name: 171103M1_11, Date: 03-Nov-2017, Time: 15:17:27, ID: ST171103M1-2 PFC CS3 17J2810, Description: PFC CS3 17J2810

	# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	⊪%Rec
32	35 13C4-PFHpA	367.2 > 321.8	6.76e3	1.06e4	0.711	3.56	3.44	8.00	11.3	90.0 50 -150
33	36 1802-PFHxS	403.0 > 102.6	7.49e2	1.82e3	0.423	3.71	3.59	5.13	12.1	97.0
34	37 13C2-6:2 FTS	429.1 > 408.9	2.26e3	6.90e3	0.286	4.03	3.91	4.10	14.3	114.8
35	38 13C2-PFOA	414.9 > 369.7	9.99e3	6.90e3	1.310	4.05	3.96	18.1	13.8	110.6
36	39 13C5-PFNA	468.2 > 422.9	9.14e3	9.52e3	0.979	4.55	4.41	12.0	12.3	98.0
37	40 13C8-PFOSA	506.1 > 77.7	1.95e3	9.81e3	0.207	4.59	4.47	2.49	12.0	96.3
38	41 13C8-PFOS	507.0 > 79.9	2.20e3	2.00e3	1.072	4.63	4.50	13.8	12.9	102.9
39	42 13C2-PFDA	515.1 > 469.9	9.08e3	8.56e3	1.014	4.92	4.80	13.3	13.1	104.6
40	43 13C2-8:2 FTS	529.1 > 508.7	1.98e3	8.56e3	0.216	4.89	4.76	2.89	13.4	107.0
41	44 d3-N-MeFOSAA	573.3 > 419	4.45e3	9.81e3	0.368	5.08	4.95	5.66	15.4	123.1
42	45 d5-N-EtFOSAA	589.3 > 419	4.01e3	9.81e3	0.389	5.24	5.11	5.10	13.1	105.1
43	46 13C2-PFUdA	565 > 519.8	9.91e3	9.81e3	0.983	5.25	5.13	12.6	12.8	102.8
44	47 13C2-PFDoA	615.0 > 569.7	1.08e4	9.81e3	0.997	5.55	5.42	13.7	13.8	110.0
45	48 d3-N-MeFOSA	515.2 > 168.9	9.84e3	9.81e3	0.096	5.56	5.53	12.5	131	87.4
46	49 13C2-PFTeDA	714.8 > 669.6	8.60e3	9.81e3	1.039	6.02	5.91	10.9	10.5	84.3
47	50 d5-N-ETFOSA	531.1 > 168.9	1.56e4	9.81e3	0.144	6.01	5.98	19.9	138	92.1
48	51 13C2-PFHxDA	815 > 769.7	3.68e3	9.81e3	1.032	6.32	6.27	4.69	4.54	90.8
49	52 d7-N-MeFOSE	623.1 > 58.9	1.71e4	9.81e3	0.133	6.23	6.19	21.7	163	108.9
50	53 d9-N-EtFOSE	639.2 > 58.8	1.52e4	9.81e3	0.128	6.39	6.34	19.4	152	101.2
51.	54 13C4-PFBA	217. > 171.8	7.57e3	7.57e3	1.000	1.17	1.07	12.5	12.5	100.0
52	55 13C5-PFHxA	318 > 272.9	1.06e4	1.06e4	1.000	2.93	2.81	12.5	12.5	100.0
53	56 13C3-PFHxS	401.9 > 79.9	1.82e3	1.82e3	1.000	3.71	3.59	12.5	12.5	100.0
54	57 13C8-PFOA	421.3 > 376	6.90e3	6.90e3	1.000	4.05	3.96	12.5	12.5	100.0
55	58 13C9-PFNA	472.2 > 426.9	9.52e3	9.52e3	1.000	4.55	4.41	12.5	12.5	100.0
56	59 13C4-PFOS	503 > 79.9	2.00e3	2.00e3	1.000	4.63	4.50	12.5	12.5	100.0
57	60 13C6-PFDA	519.1 > 473.7	8.56e3	8.56e3	1.000	4.92	4.79	12.5	12.5	100.0
58	61 13C7-PFUdA	570.1 > 524.8	9.81e3	9.81e3	1.000	5.25	5.13	12.5	12.5	100.0

Work Order 1701439 Revision 1 Page 117 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Page 1 of 1

Vista Analytical Laboratory

Dataset: Untitled

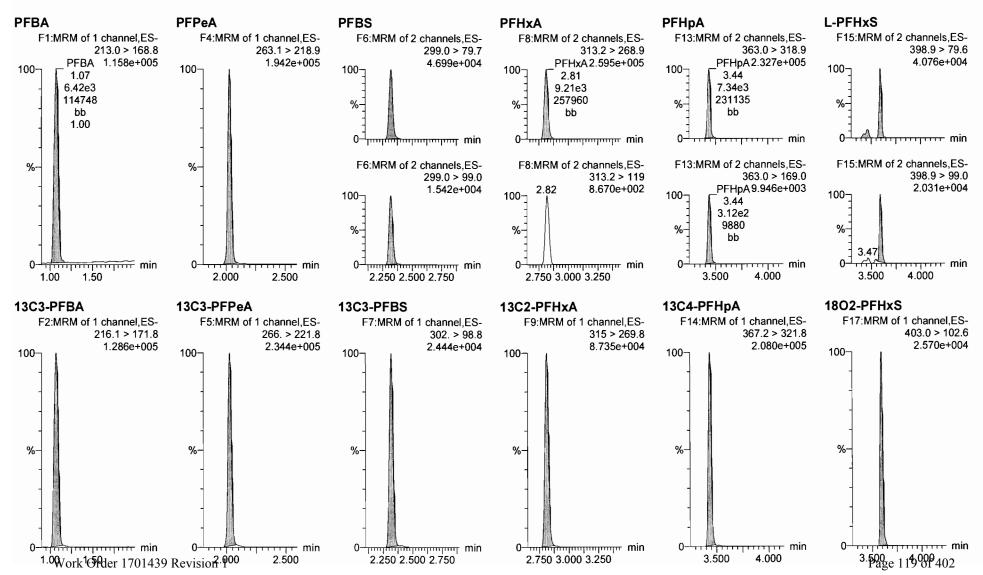
Last Altered: Friday, November 03, 2017 15:33:44 Pacific Daylight Time Printed: Friday, November 03, 2017 15:34:28 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

Compound name: PFBA

	Name	ID .	Acq.Date	Acq.Time
1	171103M1_1	IPA	03-Nov-17	13:24:06
2	171103M1_2	ST171103M1-1 PFC CS0 17J2807	03-Nov-17	13:35:14
3	171103M1_3	IPA ·	03-Nov-17	13:46:25
4 mali proposition	171103M1_4	1701439-03 FRB04_20171005 0.125	03-Nov-17	13:57:38
5	171103M1_5	1701439-05 FRB06_20171006 0.125	03-Nov-17	14:08:50
6	171103M1_6	B7J0136-MS2@5X Matrix Spike 1.12	03-Nov-17	14:20:00
7	171103M1_7	B7J0136-MSD2@5X Matrix Spike Dup 1.18	03-Nov-17	14:31:11
8	171103M1_8	B7J0136-MSD2 Matrix Spike Dup 1.18	03-Nov-17	14:42:22
9	171103M1_9	1701528-05@30X STWRT-RPTSW01 0.11748	03-Nov-17	14:54:57
10	171103M1_10	IPA	03-Nov-17	15:06:05
11	171103M1_11	ST171103M1-2 PFC CS3 17J2810	03-Nov-17	15:17:27
12	171103M1_12	IPA	03-Nov-17	15:28:59

Work Order 1701439 Revision 1 Page 118 of 402

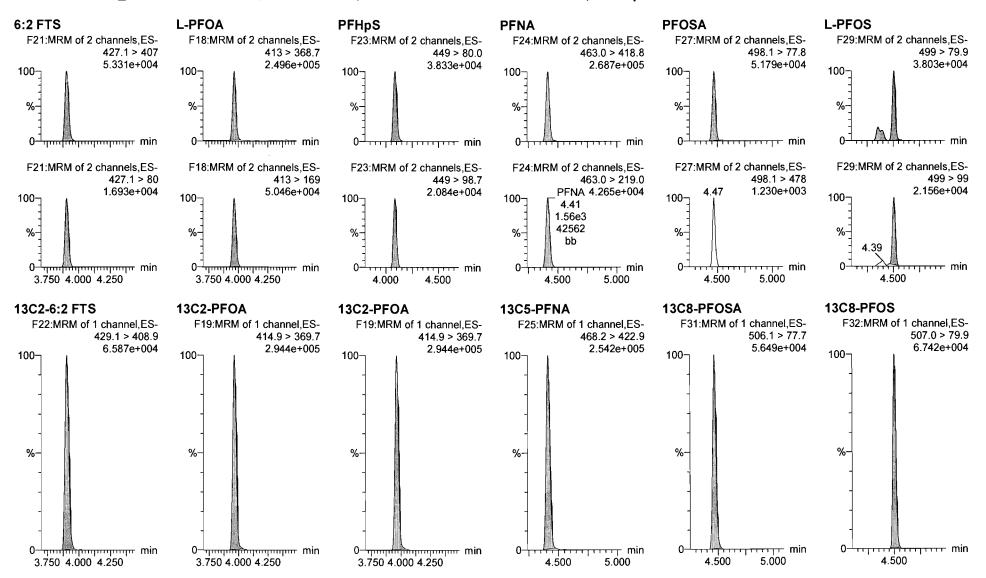

U:\Q4.PRO\results\171103M1\171103M1-113.qld

Last Altered: Printed:

Friday, November 03, 2017 15:31:35 Pacific Daylight Time Friday, November 03, 2017 15:31:46 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 01 Nov 2017 11:32:51

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

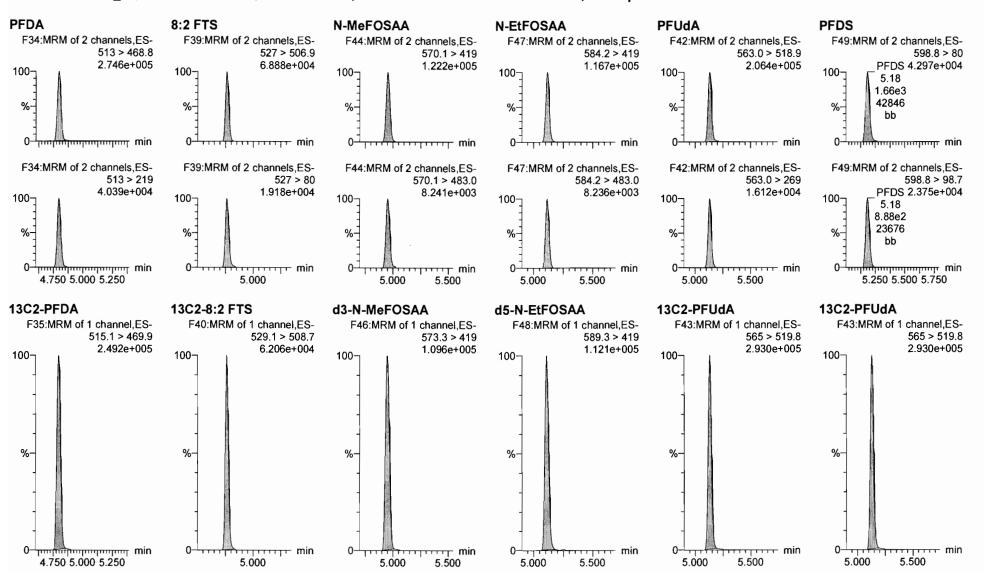

U:\Q4.PRO\results\171103M1\171103M1-113.qld

Last Altered:

Friday, November 03, 2017 15:31:35 Pacific Daylight Time

Printed: Friday, November 03, 2017 15:31:46 Pacific Daylight Time

Name: 171103M1_11, Date: 03-Nov-2017, Time: 15:17:27, ID: ST171103M1-2 PFC CS3 17J2810, Description: PFC CS3 17J2810



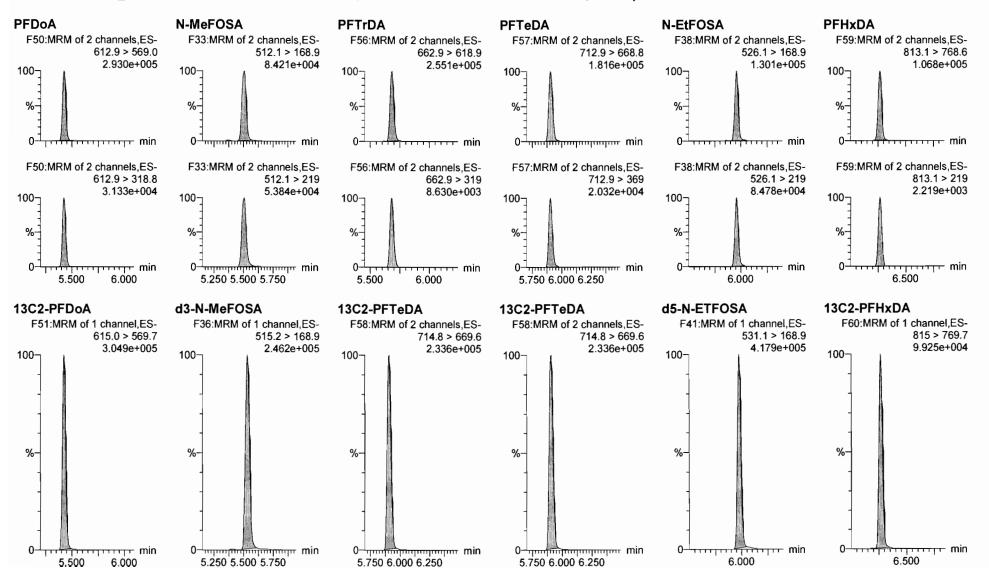
Work Order 1701439 Revision 1 Page 120 of 402

U:\Q4.PRO\results\171103M1\171103M1-113.qld

Last Altered: Printed: Friday, November 03, 2017 15:31:35 Pacific Daylight Time Friday, November 03, 2017 15:31:46 Pacific Daylight Time

Name: 171103M1_11, Date: 03-Nov-2017, Time: 15:17:27, ID: ST171103M1-2 PFC CS3 17J2810, Description: PFC CS3 17J2810

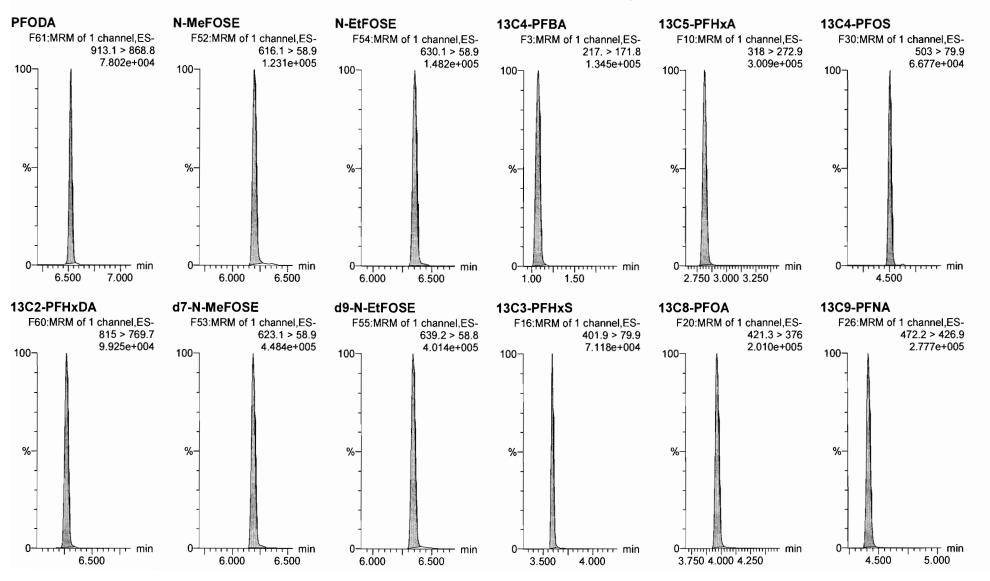
Work Order 1701439 Revision 1 Page 121 of 402


U:\Q4.PRO\results\171103M1\171103M1-113.qld

Last Altered:

Friday, November 03, 2017 15:31:35 Pacific Daylight Time

Printed:


Friday, November 03, 2017 15:31:46 Pacific Daylight Time

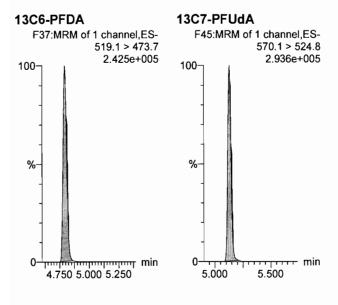
U:\Q4.PRO\results\171103M1\171103M1-113.qld

Last Altered: Printed:

Friday, November 03, 2017 15:31:35 Pacific Daylight Time Friday, November 03, 2017 15:31:46 Pacific Daylight Time

Page 6 of 6

Dataset:


U:\Q4.PRO\results\171103M1\171103M1-113.qld

Last Altered:

Friday, November 03, 2017 15:31:35 Pacific Daylight Time

Printed:

Friday, November 03, 2017 15:31:46 Pacific Daylight Time

Dataset: Untitled

Last Altered: Wednesday, November 08, 2017 09:31:13 Pacific Standard Time Printed: Wednesday, November 08, 2017 09:33:03 Pacific Standard Time

Method: U:\Q4.PRO\MethDB\PFAS_RS-11-08-17.mdb 08 Nov 2017 09:01:48

Calibration: 08 Nov 2017 09:31:13

Name: 171107M2_2, Date: 07-Nov-2017, Time: 21:55:33, ID: ST171107M2-1 PFC CS0 17J2707, Description: PFC CS0 17J2707

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171107M2-1 PFC CS0 17J2707	8.42e3	100.0	NO
2	2 13C5-PFHxA	ST171107M2-1 PFC CS0 17J2707	1.10e4	100.0	NO
3	3 13C3-PFHxS	ST171107M2-1 PFC CS0 17J2707	2.06e3	100.0	NO
4	4 13C8-PFOA	ST171107M2-1 PFC CS0 17J2707	9.95e3	100.0	NO
5	5 13C9-PFNA	ST171107M2-1 PFC CS0 17J2707	1.03e4	100.0	NO
6	6 13C4-PFOS	ST171107M2-1 PFC CS0 17J2707	2.03e3	100.0	NO
7	7 13C6-PFDA	ST171107M2-1 PFC CS0 17J2707	1.19e4	100.0	NO
8	8 13C7-PFUnA	ST171107M2-1 PFC CS0 17J2707	1.25e4	100.0	NO

Name: 171107M2_3, Date: 07-Nov-2017, Time: 22:06:44, ID: IPA, Description: IPA

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA	_	_	NO

Name: 171107M2_4, Date: 07-Nov-2017, Time: 22:17:55, ID: 1701439-01 FRB05_20171005 0.125, Description: FRB05_20171005

	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	1701439-01 FRB05_20171005 0.125	6.93e3	82.4	NO
2	2 13C5-PFHxA	1701439-01 FRB05_20171005 0.125	9.74e3	88.5	NO
3	3 13C3-PFHxS	1701439-01 FRB05_20171005 0.125	1.64e3	79.6	NO
4	4 13C8-PFOA	1701439-01 FRB05_20171005 0.125	7.77e3	78.0	NO
5	5 13C9-PFNA	1701439-01 FRB05_20171005 0.125	8.38e3	81.5	NO
6	6 13C4-PFOS	1701439-01 FRB05_20171005 0.125	1.58e3	77.8	NO
7	7 13C6-PFDA	1701439-01 FRB05_20171005 0.125	9.41e3	79.0	NO
8	8 13C7-PFUnA	1701439-01 FRB05_20171005 0.125	9.71e3	77.6	NO

Name: 171107M2 5, Date: 07-Nov-2017, Time: 22:29:06, ID: IPA, Description: IPA

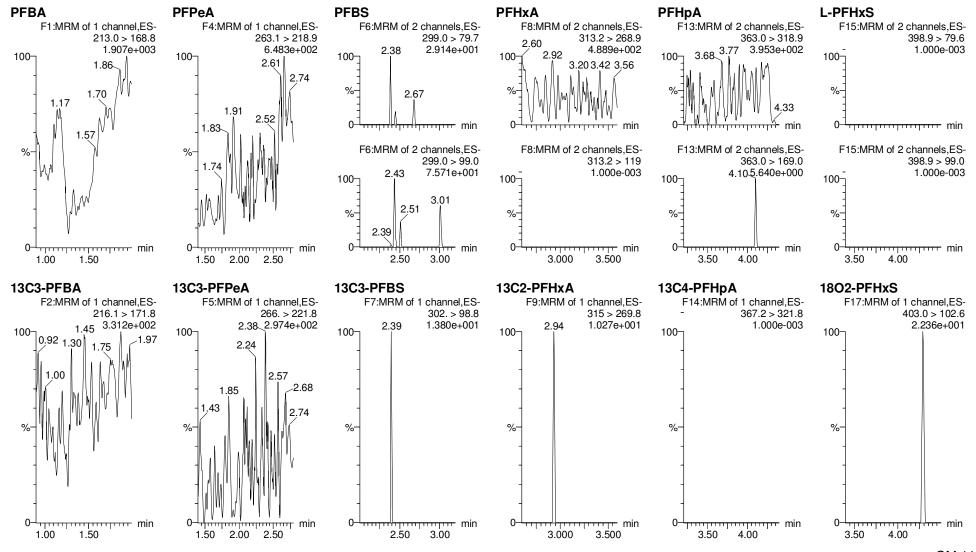
	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUnA	IPA			NO

GM 11/8/17

Vista Analytical Laboratory

Dataset: Untitled

Last Altered: Wednesday, November 08, 2017 09:31:13 Pacific Standard Time Printed: Wednesday, November 08, 2017 09:33:03 Pacific Standard Time


	# Name	ID	Area	%Rec	Area Out
1	1 13C4-PFBA	ST171107M2-2 PFC CS3 17J2710	9.02e3	107.2	NO
2	2 13C5-PFHxA	ST171107M2-2 PFC CS3 17J2710	1.11e4	100.5	NO
3	3 13C3-PFHxS	ST171107M2-2 PFC CS3 17J2710	2.09e3	101.6	NO
4	4 13C8-PFOA	ST171107M2-2 PFC CS3 17J2710	9.94e3	99.9	NO
5	5 13C9-PFNA	ST171107M2-2 PFC CS3 17J2710	1.06e4	103.1	NO
6	6 13C4-PFOS	ST171107M2-2 PFC CS3 17J2710	2.24e3	110.2	NO
7	7 13C6-PFDA	ST171107M2-2 PFC CS3 17J2710	1.09e4	91.4	NO
8	8 13C7-PFUnA	ST171107M2-2 PFC CS3 17J2710	1.25e4	100.0	NO

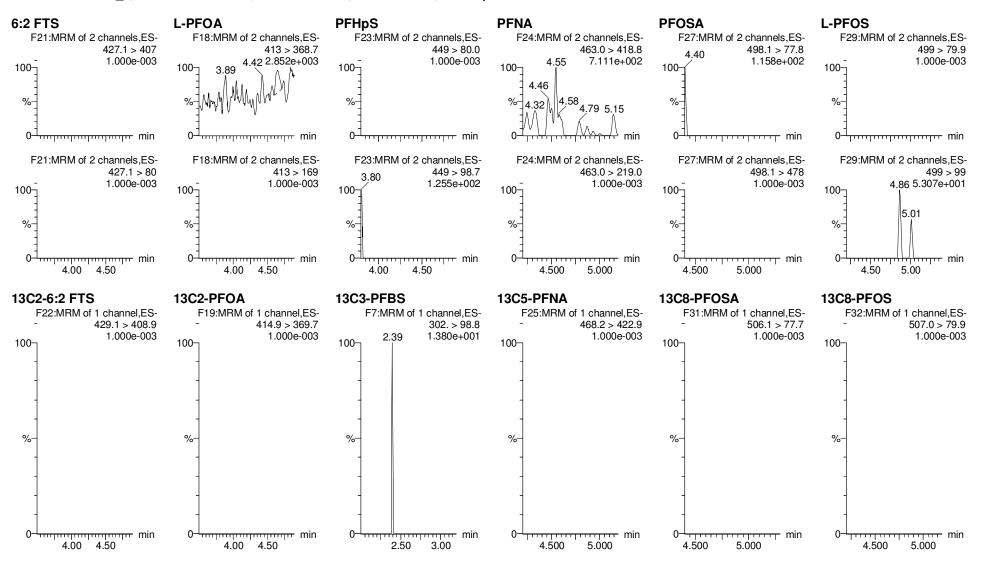
Dataset: Untitled

Last Altered: Tuesday, November 07, 2017 16:39:55 Pacific Standard Time Printed: Tuesday, November 07, 2017 16:41:03 Pacific Standard Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_110617_AC.mdb 07 Nov 2017 07:51:36 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_11-06-17-FULL_NOPFDS.cdb 07 Nov 2017 09:14:26

Name: 171107M1 7, Date: 07-Nov-2017, Time: 13:41:03, ID: blk tester, Description: 17k0701

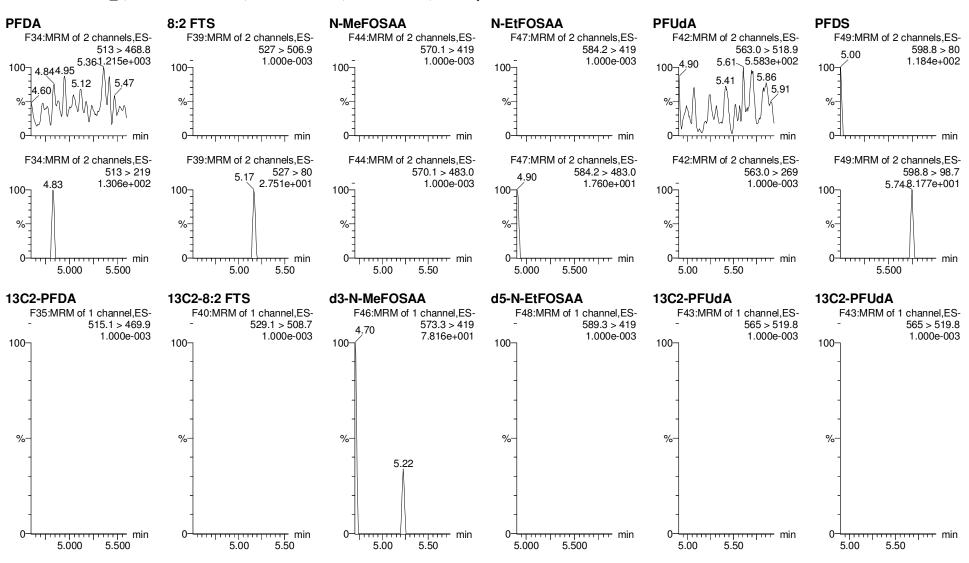
GM 11/7/17


Work Order 1701439 Revision 1

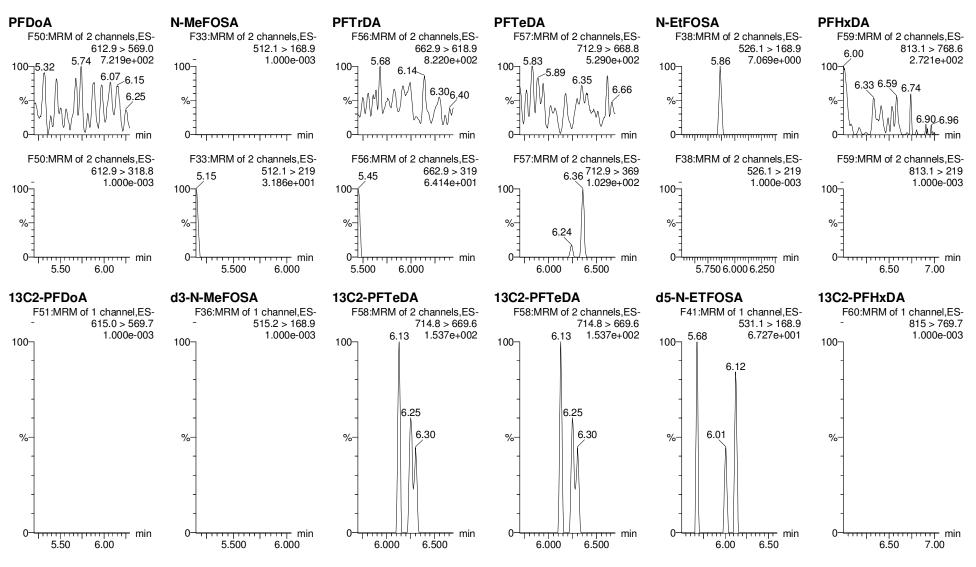
Page 127 of 402

Vista Analytical Laboratory

Dataset: Untitled

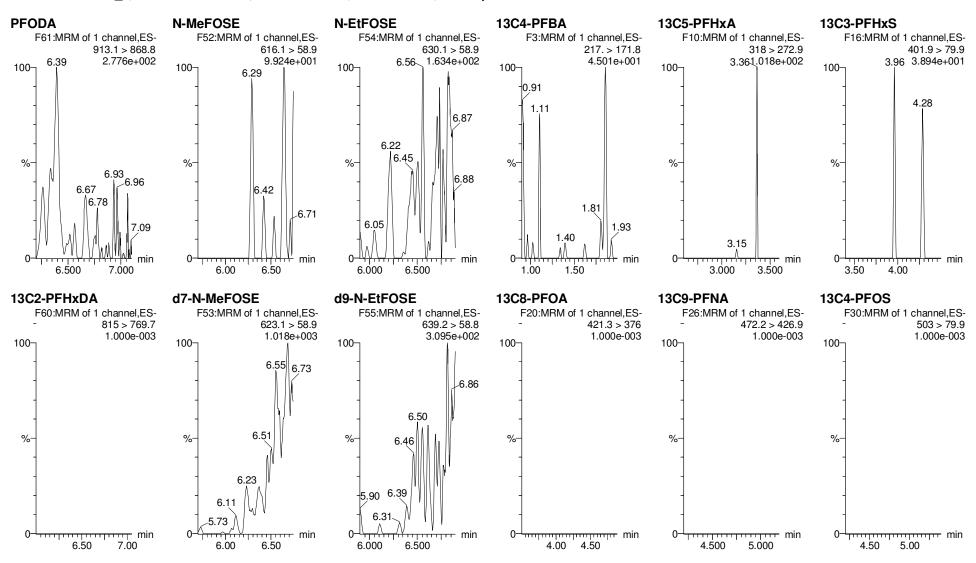

Last Altered: Tuesday, November 07, 2017 16:39:55 Pacific Standard Time Printed: Tuesday, November 07, 2017 16:41:03 Pacific Standard Time

riota / tilaly tioa. Laboratory

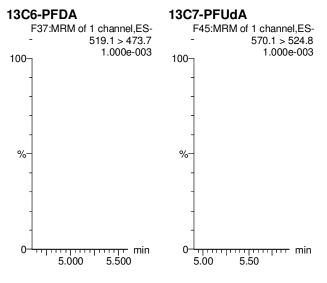

Dataset: Untitled

Last Altered: Tuesday, November 07, 2017 16:39:55 Pacific Standard Time Printed: Tuesday, November 07, 2017 16:41:03 Pacific Standard Time

Dataset: Untitled


Last Altered: Tuesday, November 07, 2017 16:39:55 Pacific Standard Time Printed: Tuesday, November 07, 2017 16:41:03 Pacific Standard Time

,


Dataset: Untitled

Last Altered: Tuesday, November 07, 2017 16:39:55 Pacific Standard Time Printed: Tuesday, November 07, 2017 16:41:03 Pacific Standard Time

Untitled Dataset:

Last Altered: Tuesday, November 07, 2017 16:39:55 Pacific Standard Time Printed: Tuesday, November 07, 2017 16:41:03 Pacific Standard Time

Page 1 of 2

Dataset:

U:\Q4.PRO\results\171107M2\171107M2-2.qld

Last Altered:

Wednesday, November 08, 2017 09:24:49 Pacific Standard Time

Printed:

Wednesday, November 08, 2017 09:27:10 Pacific Standard Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_110617_AC.mdb 07 Nov 2017 07:51:36

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 08:42:13

(b) phone (mit mitoria)

	# Name	Trace	Area	IS Area	RRF F	red.RT	RT	y Axis Resp.	Conc.	%Rec	.26
1	1 PFBA	213.0 > 168.8	7.74e2	7.66e3	AND THE REAL PROPERTY AND	1.64	1.45	1.26	1.15	114.7 70-	- 130
2	2 PFPeA	263.1 > 218.9	7.49e2	8.29e3		2.63	2.41	1.13	1.08	108.4	
3	3 PFBS	299.0 > 79.7	2.08e2	1.03e3		2.89	2.69	2.53	1.16	116.3	
4	4 PFHxA	313.2 > 268.9	1.15e3	3.06e3		3.39	3.18	1.87	1.19	119.1	
5	5 PFHpA	363.0 > 318.9	9.65e2	7.07e3		4.02	3.81	1.71	1.23	122.6	
6	6 L-PFHxS	398.9 > 79.6	1.25e2	8.13e2		4.16	3.96	1.93	0.919	91.9	Δ14.Λ
7	8 6:2 FTS	427.1 > 407	1.73e2	2.49e3		4.48	4.27	0.871	0.906	90.6	om 11/0/17 VM. 11/08/2017
8	9 L-PFOA	413 > 368.7	1.20e3	1.12e4		4.53	4.33	1.34	1.08	108.0	(10)(7
9	11 PFHpS	449 > 80.0	1.21e2	1.12e4		4.64	4.45	0.135	0.723	72.3	1110.
10	12 PFNA	463.0 > 418.8	9.61e2	8.92e3		4.96	4.77	1.35	1.11	110.9	
11	13 PFOSA	498.1 > 77.8	3.14e2	2.93e3		5.01	4.82	1.34	1.21	121.2	.111
12	14 L-PFOS	499 > 79.9	1.79e2	2.39e3		5.03	4.85	0.933	0.958	95.8	V/14.
13	16 PFDA	513 > 468.8	1.19e3	1.00e4		5.33	5.14	1.49	1.14	113.6	0 11/08/2017
14	17 8:2 FTS	527 > 506.9	2.01e2	1.76e3		5.30	5.11	1.42	1.03	103.3	
15	18 N-MeFOSAA	570.1 > 419	5.86e2	4.37e3		5.48	5.30	1.68	1.07	106.7	
16	19 N-EtFOSAA	584.2 > 419	4.17e2	4.17e3		5.63	5.45	1.25	1.08	107.7	
17	20 PFUdA	563.0 > 518.9	9.48e2	1.16e4		5.65	5.47	1.02	0.980	98.0	
18	21 PFDS	598.8 > 80	2.06e2	1.16e4		5.70	5.52	0.221	1.15	115.3	
19	22 PFDoA	612.9 > 569.0	1.43e3	1.35e4		5.92	5.75	1.32	1.01	100.8	
20	23 N-MeFOSA	512.1 > 168.9	5.81e2	1.23e4		5.84	5.73	7.10	6.82	136.4	
21	24 PFTrDA	662.9 > 618.9	1.43e3	1.35e4		6.16	5.99	1.32	1.03	103.2	
22	25 PFTeDA	712.9 > 668.8	1.32e3	1.47e4		6.36	6.20	1.12	0.874	87.4	
23	26 N-EtFOSA	526.1 > 168.9	6.48e2	1.75e4		6.19	6.12	5.54	5.55	111.1	
24	27 PFHxDA	813.1 > 768.6	9.09e2	5.45e3		6.65	6.51	0.834	1.27	127.0	
25	28 PFODA	913.1 > 868.8	3.85e2	5.45e3		6.86	6.74	0.354	0.924	92.4	
26 min H	29 N-MeFOSE	616.1 > 58.9	5.99e2	1.57e4		6.30	6.28	5.70	5.65	112.9	1
27	30 N-EtFOSE	630.1 > 58.9	6.84e2	1.66e4		6.45	6.43	6.17	5.32	106.4	173
28	31 13C3-PFBA	216.1 > 171.8	7.66e3	8.42e3	0.949	1.64	1.45	11.4	12.0	95.9	110
29	32 13C3-PFPeA	266. > 221.8	8.29e3	1.10e4	0.781	2.63	2.41	9.41	12.1	96.4	
30	33 13C3-PFBS	302. > 98.8	1.03e3	1.10e4	0.089	2.89	2.69	1.17	13.2	105.4	
31 Wo	rk 04 dtaC270 ft 43A Revision 1	315 > 269.8	3.06e3	1.10e4	0.755	3.39	3.18	3.47	4.60	91.9	Page 133 of 402

Page 2 of 2

Dataset:

U:\Q4.PRO\results\171107M2\171107M2-2.qld

Last Altered: Printed:

Wednesday, November 08, 2017 09:24:49 Pacific Standard Time Wednesday, November 08, 2017 09:27:10 Pacific Standard Time

Name: 171107M2_2, Date: 07-Nov-2017, Time: 21:55:33, ID: ST171107M2-1 PFC CS0 17J2707, Description: PFC CS0 17J2707

92% au 1267 7191 2 729 6 12	# Name	Trace -	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
32	35 13C4-PFHpA	367.2 > 321.8	7.07e3	1.10e4	0.711	4.02	3.81	8.03	11.3	90.4 20-180
33	36 1802-PFHxS	403.0 > 102.6	8.13e2	2.07e3	0.423	4.16	3.96	4.92	11.6	92.9
34	37 13C2-6:2 FTS	429.1 > 408.9	2.49e3	9.95e3	0.286	4.48	4.28	3.13	10.9	87.5
35	38 13C2-PFOA	414.9 > 369.7	1.12e4	9.95e3	1.310	4.53	4.33	14.1	10.7	86.0
36	39 13C5-PFNA	468.2 > 422.9	8.92e3	1.03e4	0.979	4.96	4.76	10.8	11.1	88.6
37	40 13C8-PFOSA	506.1 > 77.7	2.93e3	1.25e4	0.207	5.01	4.82	2.93	14.2	113.5
38	41 13C8-PFOS	507.0 > 79.9	2.39e3	2.03e3	1.072	5.03	4.85	14.7	13.7	109.9
39	42 13C2-PFDA	515.1 > 469.9	1.00e4	1.19e4	1.014	5.33	5.14	10.5	10.4	82.8
40	43 13C2-8:2 FTS	529.1 > 508.7	1.76e3	1.19e4	0.216	5.30	5.11	1.85	8.57	68.5
41	44 d3-N-MeFOSAA	573.3 > 419	4.37e3	1.25e4	0.368	5.48	5.29	4.36	11.9	94.9
42	45 d5-N-EtFOSAA	589.3 > 419	4.17e3	1.25e4	0.389	5.63	5.45	4.17	10.7	85.8
43	46 13C2-PFUdA	565 > 519.8	1.16e4	1.25e4	0.983	5.65	5.47	11.6	11.8	94.7
44	47 13C2-PFDoA	615.0 > 569.7	1.35e4	1.25e4	0.997	5.92	5.75	13.5	13.6	108.4
45	48 d3-N-MeFOSA	515.2 > 168.9	1.23e4	1.25e4	0.096	5.84	5.75	12.3	128	85.5
46	49 13C2-PFTeDA	714.8 > 669.6	1.47e4	1.25e4	1.039	6.36	6.21	14.7	14.1	113.1
47	50 d5-N-ETFOSA	531.1 > 168.9	1.75e4	1.25e4	0.144	6.19	6.13	17.5	122	81.1
48	51 13C2-PFHxDA	815 > 769.7	5.45e3	1.25e4	1.032	6.65	6.52	5.44	5.27	105.5
49	52 d7-N-MeFOSE	623.1 > 58.9	1.57e4	1.25e4	0.133	6.30	6.27	15.7	118	78.9
50	53 d9-N-EtFOSE	639.2 > 58.8	1.66e4	1.25e4	0.128	6.45	6.42	16.6	130	86.8
51	54 13C4-PFBA	217. > 171.8	8.42e3	8.42e3	1.000	1.64	1.44	12.5	12.5	100.0
52	55 13C5-PFHxA	318 > 272.9	1.10e4	1.10e4	1.000	3.39	3.18	12.5	12.5	100.0
53	56 13C3-PFHxS	401.9 > 79.9	2.07e3	2.07e3	1.000	4.16	3.96	12.5	12.5	100.0
54	57 13C8-PFOA	421.3 > 376	9.95e3	9.95e3	1.000	4.53	4.33	12.5	12.5	100.0
55	58 13C9-PFNA	472.2 > 426.9	1.03e4	1.03e4	1.000	4.96	4.76	12.5	12.5	100.0
56	59 13C4-PFOS	503 > 79.9	2.03e3	2.03e3	1.000	5.03	4.85	12.5	12.5	100.0
57	60 13C6-PFDA	519.1 > 473.7	1.19e4	1.19e4	1.000	5.33	5.14	12.5	12.5	100.0
58	61 13C7-PFUdA	570.1 > 524.8	1.25e4	1.25e4	1.000	5.65	5.47	12.5	12.5 _	100.0

Work Order 1701439 Revision 1 Page 134 of 402

Quantify Compound Summary Report Vista Analytical Laboratory MassLynx MassLynx V4.1 SCN945 SCN960

Page 1 of 1

Dataset:

Untitled

Last Altered:

Wednesday, November 08, 2017 09:31:13 Pacific Standard Time

Printed:

Wednesday, November 08, 2017 09:32:12 Pacific Standard Time

Method: U:\Q4.PRO\MethDB\PFAS_RS-11-08-17.mdb 08 Nov 2017 09:01:48

Calibration: 08 Nov 2017 09:31:13

Compound name: 13C4-PFBA

100 marks 175	Name	ID to the same of	Acq.Date	Acq.Time
1	171107M2_2	ST171107M2-1 PFC CS0 17J2707	07-Nov-17	21:55:33
2	171107M2_3	IPA	07-Nov-17	22:06:44
3	171107M2_4	1701439-01 FRB05_20171005 0.125	07-Nov-17	22:17:55
4	171107M2_5	IPA	07-Nov-17	22:29:06
5	171107M2_6	ST171107M2-2 PFC CS3 17J2710	07-Nov-17	22:40:16

Work Order 1701439 Revision 1 Page 135 of 402

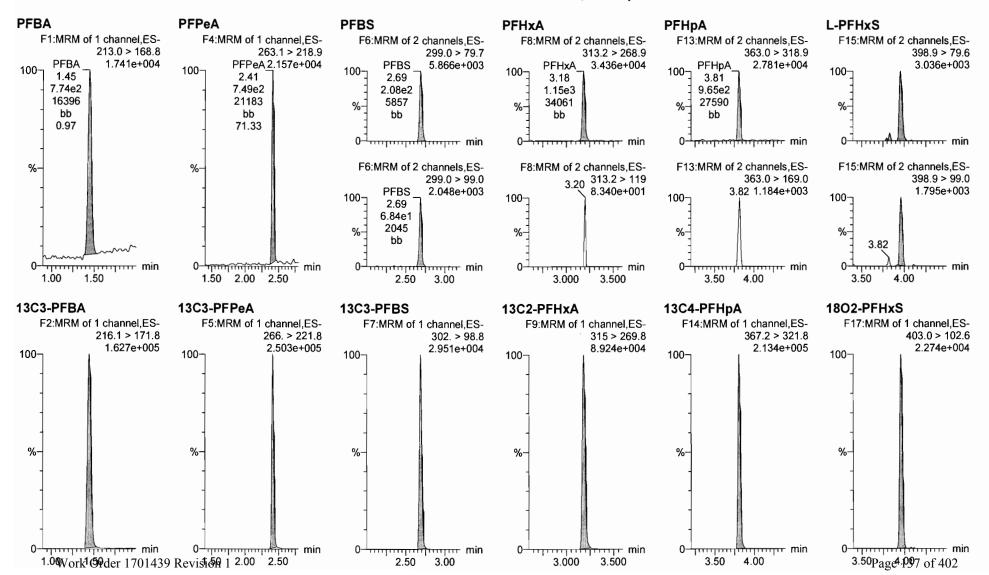
LC Calibration Standards Review Checklist $- \mathcal{Q}$

			ION Ratio	Concentration	C-Cals Name	Sign Date	Correct I-Cal	Manual Integrations	
Calibration ID:	51171107WZ-1	<u>Б</u> мн	1	₽ Ø	卤	Ø	ď	U	4
Calibration ID:	I r	LM H		□ B		□	Ċ	\Box	₩
Calibration ID:		LMH -							
Calibration ID:		LMH							
Calibration ID:		LMH -							
Calibration ID:		LMH -							
Calibration ID:		LMH							
Calibration ID:		LMH -							
Calibration ID:		LMH -							
Calibration ID:		LMH -							
	Full Mass Cal. Date:								

Run Log Present:

of Samples per Sequence Checked:

Reviewed By: 11/08/20 (7/

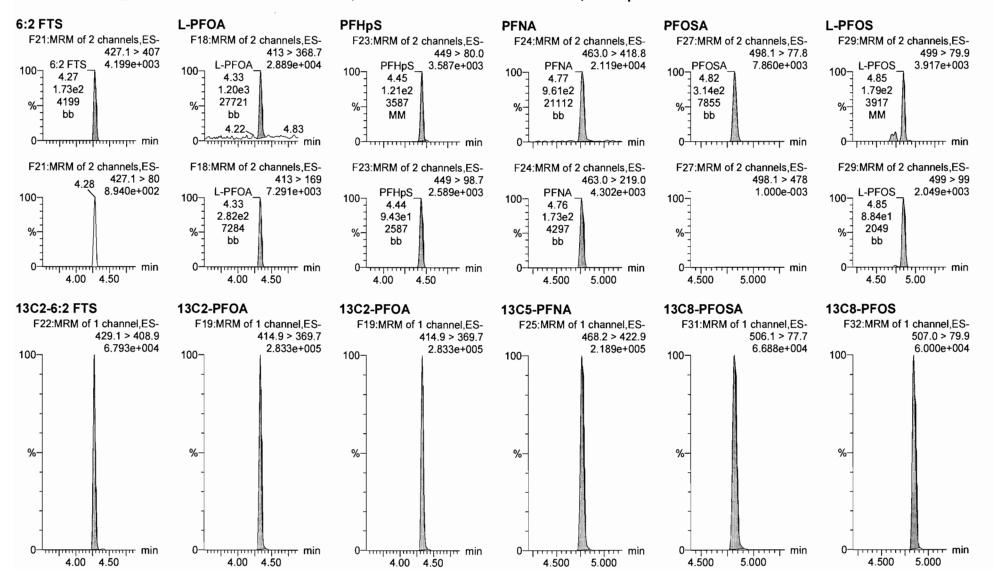

EDMATOSA > 1307.
(B) 6:2PTS, PFDA, METOSAA > 1307.

U:\Q4.PRO\results\171107M2\171107M2-2.qld

Last Altered: Printed: Wednesday, November 08, 2017 09:24:49 Pacific Standard Time Wednesday, November 08, 2017 09:27:10 Pacific Standard Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_110617_AC.mdb 07 Nov 2017 07:51:36

Calibration: U:\Q4.PRO\CurveDB\C18 VAL-PFAS Q4 10-31-17-FULL OLD.cdb 01 Nov 2017 08:42:13

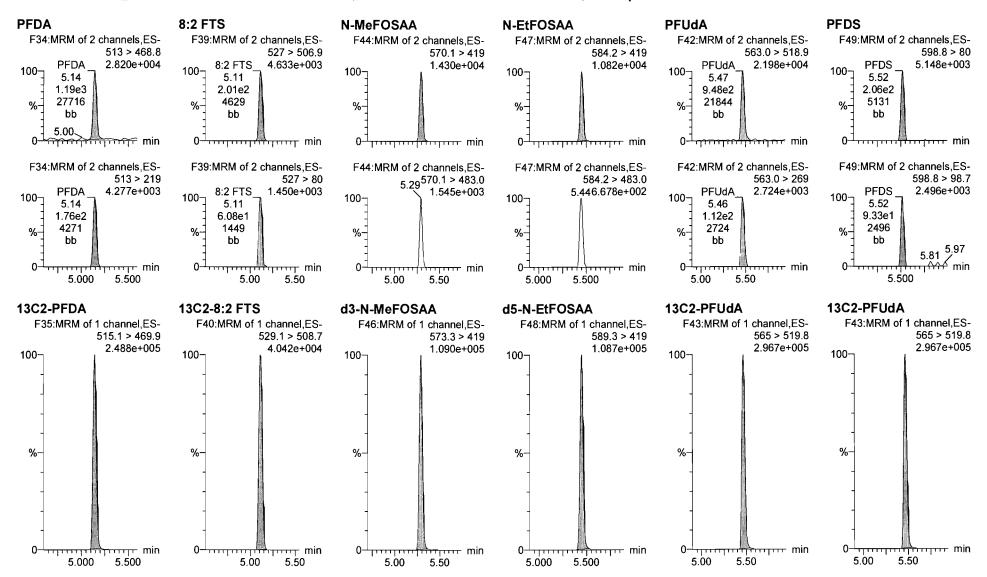

U:\Q4.PRO\results\171107M2\171107M2-2.qld

Last Altered:

Wednesday, November 08, 2017 09:24:49 Pacific Standard Time

Printed: Wednesday, November 08, 2017 09:27:10 Pacific Standard Time

Name: 171107M2_2, Date: 07-Nov-2017, Time: 21:55:33, ID: ST171107M2-1 PFC CS0 17J2707, Description: PFC CS0 17J2707

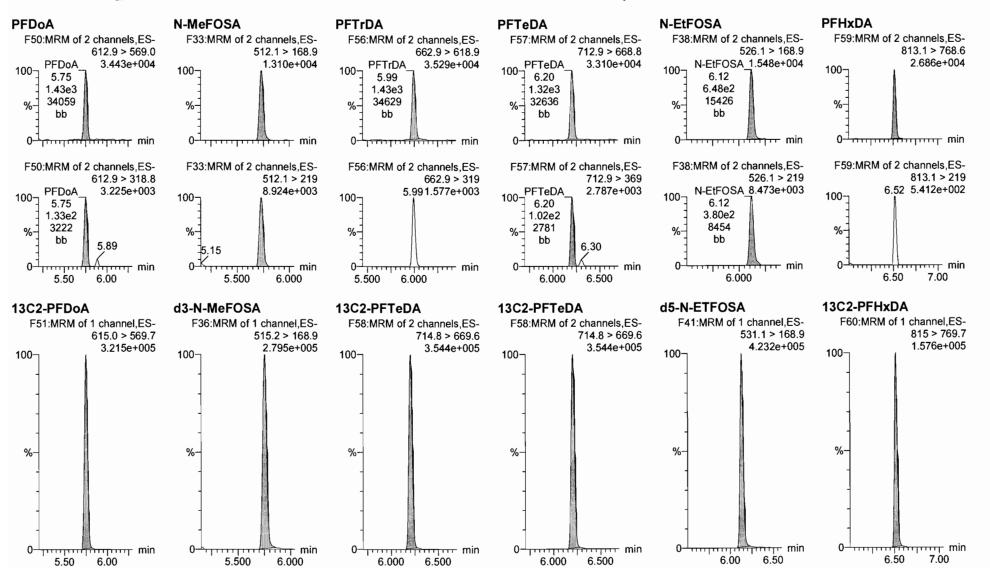

Work Order 1701439 Revision 1

U:\Q4.PRO\results\171107M2\171107M2-2.qld

Last Altered:

Wednesday, November 08, 2017 09:24:49 Pacific Standard Time

Printed: Wednesday, November 08, 2017 09:27:10 Pacific Standard Time

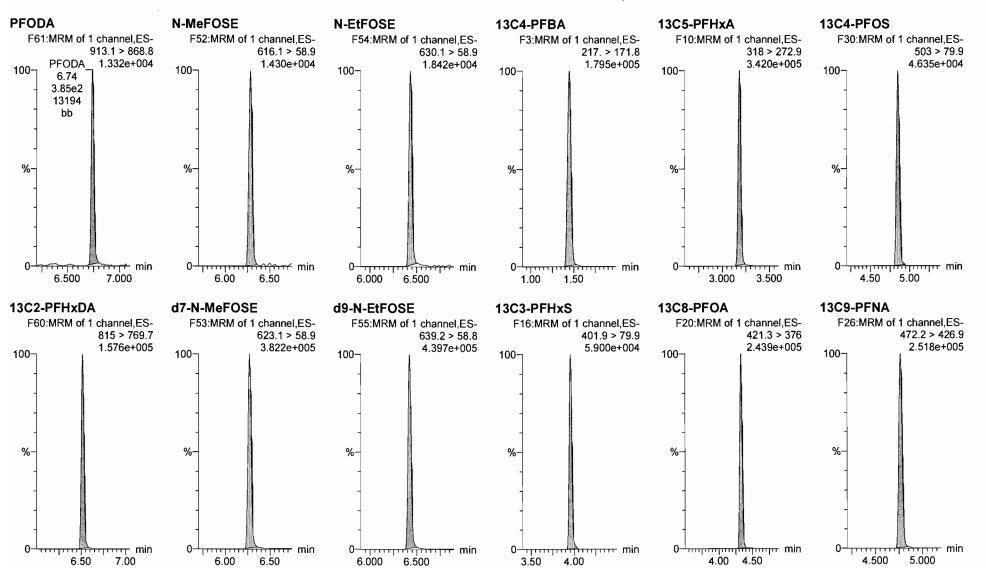


U:\Q4.PRO\results\171107M2\171107M2-2.qld

Last Altered: Printed:

Wednesday, November 08, 2017 09:24:49 Pacific Standard Time

Wednesday, November 08, 2017 09:27:10 Pacific Standard Time

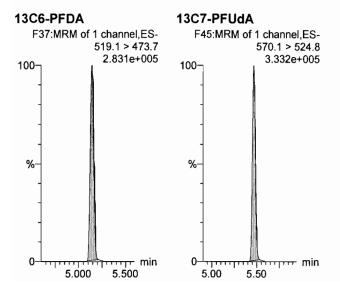


U:\Q4.PRO\results\171107M2\171107M2-2.qld

Last Altered:

Wednesday, November 08, 2017 09:24:49 Pacific Standard Time

Printed: Wednesday, November 08, 2017 09:27:10 Pacific Standard Time


U:\Q4.PRO\results\171107M2\171107M2-2.qld

Last Altered:

Wednesday, November 08, 2017 09:24:49 Pacific Standard Time

Printed: Wednesday, November 08, 2017 09:27:10 Pacific Standard Time

Name: 171107M2_2, Date: 07-Nov-2017, Time: 21:55:33, ID: ST171107M2-1 PFC CS0 17J2707, Description: PFC CS0 17J2707

Work Order 1701439 Revision 1 Page 142 of 402

U:\Q4.PRO\results\171107M2\171107M2-6.qld

Last Altered:

Wednesday, November 08, 2017 09:28:29 Pacific Standard Time

Printed:

Wednesday, November 08, 2017 09:29:08 Pacific Standard Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_110617_AC.mdb 07 Nov 2017 07:51:36

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 08:42:13

Name: 171107M2_6, Date: 07-Nov-2017, Time: 22:40:16, ID: ST171107M2-2 PFC CS3 17J2710, Description: PFC CS3 17J28710

£150	# Name	Trace	Area	- IS Area	RRF P	red.RT	RT	y Axis Resp.	Conc.	%Rec	
	1 PFBA	213.0 > 168.8	7.71e3	7.90e3		1.64	1.44	12.2	11.4	113.7	<u> 20-13</u> 0
2	2 PFPeA	263.1 > 218.9	7.77e3	8.63e3		2.63	2.41	11.2	11.7	117.3	1
3	3 PFBS	299.0 > 79.7	1.82e3	9.50e2		2.89	2.68	24.0	11.8	118.0	
4	4 PFHxA	313.2 > 268.9	1.06e4	2.95e3		3.39	3.18	18.0	12.7	126.8	
5	5 PFHpA	363.0 > 318.9	8.05e3	7.52e3		4.02	3.80	13.4	10.3	102.8	
6	6 L-PFHxS	398.9 > 79.6	1.58e3	7.83e2		4.16	3.95	25.2	12.4	124.3	
7	8 6:2 FTS	427.1 > 407	2.34e3	2.20e3		4.48	4.27	13.3	14.2	(1 7)142.4	
8	9 L-PFOA	413 > 368.7	9.45e3	1.10e4		4.53	4.32	10.7	11.0	110.2	
9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	11 PFHpS	449 > 80.0	1.95e3	1.10e4		4.64	4.43	2.20	12.0	120.0	
10	12 PFNA	463.0 > 418.8	1.16e4	1.00e4		4.96	4.76	14.4	11.5	114.9	OM
11	13 PFOSA	498.1 > 77.8	2.88e3	2.99e3		5.01	4.81	12.1	11.2	112.2	10/12
12	14 L-PFOS	499 > 79.9	2.14e3	2.27e3		5.03	4.84	11.8	11.6	116.4	111811
13	16 PFDA	513 > 468.8	1.26e4	8.77e3		5.33	5.14	17.9	14.0	(1 39.6	
14	17 8:2 FTS	527 > 506.9	2.32e3	1.98e3		5.30	5.11	14.6	10.3	102.8	V Va.
15	18 N-MeFOSAA	570.1 > 419	5.94e3	3.85e3		5.48	5.29	19.3	13.3	(A)133.5	1 / 11/00/20
16	19 N-EtFOSAA	584.2 > 419	3.88e3	4.25e3		5.63	5.44	11.4	9.73	97.3	0 4(0) 20
17	20 PFUdA	563.0 > 518.9	9.72e3	1.36e4		5.65	5.46	8.95	9.23	92.3	
18	21 PFDS	598.8 > 80	2.36e3	1.36e4		5.70	5.51	2.18	9.81	98.1	
19	22 PFDoA	612.9 > 569.0	1.29e4	1.45e4		5.92	5.75	11.2	9.05	90.5	,
20	23 N-MeFOSA	512.1 > 168.9	5.16e3	1.26e4		5.84	5.73	61.4	61.5	123.1	1
21	24 PFTrDA	662.9 > 618.9	1.72e4	1.45e4		6.16	5.98	14.8	11.6	116.0	
22	25 PFTeDA	712.9 > 668.8	1.58e4	1.35e4		6.36	6.20	14.6	11.4	113.7	
23	26 N-EtFOSA	526.1 > 168.9	6.10e3	1.78e4		6.19	6.12	51.6	56.3	112.5	
24	27 PFHxDA	813.1 > 768.6	8.31e3	5.88e3		6.65	6.51	7.07	12.2	122.2	1
25	28 PFODA	913.1 > 868.8	5.59e3	5.88e3		6.86	6.74	4.76	11.4	114.3	
26	29 N-MeFOSE	616.1 > 58.9	6.70e3	1.78e4		6.30	6.28	56.5	61.4	122.8	,
27	30 N-EtFOSE	630.1 > 58.9	6.74e3	1.60e4		6.45	6.43	63.3	62.2	124.3	20 VLA
28	31 13C3-PFBA	216.1 > 171.8	7.90e3	9.02e3	0.949	1.64	1.44	10.9	11.5	92.3	7
29	32 13C3-PFPeA	266. > 221.8	8.63e3	1.11e4	0.781	2.63	2.41	9.75	12.5	99.9	
30	33 13C3-PFBS	302. > 98.8	9.50e2	1.11e4	0.089	2.89	2.68	1.07	12.1	97.0	J
31 Wor	k 84rd8C2-70F1489 Revision	1 315 > 269.8	2.95e3	1.11e4	0.755	3.39	3.18	3.33	4.41	88.2	Page 143 of 40

(1) Ahous (mit criteria.

1017

102

Page 2 of 2

Dataset:

U:\Q4.PRO\results\171107M2\171107M2-6.qld

Last Altered: Printed:

Wednesday, November 08, 2017 09:28:29 Pacific Standard Time Wednesday, November 08, 2017 09:29:08 Pacific Standard Time

Name: 171107M2_6, Date: 07-Nov-2017, Time: 22:40:16, ID: ST171107M2-2 PFC CS3 17J2710, Description: PFC CS3 17J28710

Charles for a series of the control	# Name	Trace	Area	IS Area	RRF	Pred.RT	RT.	y Axis Resp.	Conc.	%Rec
32	35 13C4-PFHpA	367.2 > 321.8	7.52e3	1.11e4	0.711	4.02	3.80	8.49	11.9	95.6
33	36 1802-PFHxS	403.0 > 102.6	7.83e2	2.09e3	0.423	4.16	3.95	4.69	11.1	88.5
34	37 13C2-6:2 FTS	429.1 > 408.9	2.20e3	9.94e3	0.286	4.48	4.27	2.77	9.69	77.5
35	38 13C2-PFOA	414.9 > 369.7	1.10e4	9.94e3	1.310	4.53	4.32	13.9	10.6	84.7
36	39 13C5-PFNA	468.2 > 422.9	1.00e4	1.06e4	0.979	4.96	4.76	11.8	12.1	96.6
37	40 13C8-PFOSA	506.1 > 77.7	2.99e3	1.25e4	0.207	5.01	4.81	2.98	14.4	115.5
38	41 13C8-PFOS	507.0 > 79.9	2.27e3	2.24e3	1.072	5.03	4.84	12.7	11.8	94.6
39	42 13C2-PFDA	515.1 > 469.9	8.77e3	1.09e4	1.014	5.33	5.14	10.1	9.93	79.4
40	43 13C2-8:2 FTS	529.1 > 508.7	1.98e3	1.09e4	0.216	5.30	5.11	2.28	10.5	84.3
41	44 d3-N-MeFOSAA	573.3 > 419	3.85e3	1.25e4	0.368	5.48	5.29	3.84	10.4	83.6
42	45 d5-N-EtFOSAA	589.3 > 419	4.25e3	1.25e4	0.389	5.63	5.44	4.24	10.9	87.4
43	46 13C2-PFUdA	565 > 519.8	1.36e4	1.25e4	0.983	5.65	5.46	13.6	13.8	110.4
44	47 13C2-PFDoA	615.0 > 569.7	1.45e4	1.25e4	0.997	5.92	5.74	14.5	14.5	116.1
45	48 d3-N-MeFOSA	515.2 > 168.9	1.26e4	1.25e4	0.096	5.84	5.74	12.6	132	87.8
46	49 13C2-PFTeDA	714.8 > 669.6	1.35e4	1.25e4	1.039	6.36	6.20	13.5	13.0	104.2
47	50 d5-N-ETFOSA	531.1 > 168.9	1.78e4	1.25e4	0.144	6.19	6.13	17.7	123	82.1
48	51 13C2-PFHxDA	815 > 769.7	5.88e3	1.25e4	1.032	6.65	6.51	5.87	5.69	113.8
49	52 d7-N-MeFOSE	623.1 > 58.9	1.78e4	1.25e4	0.133	6.30	6.27	17.8	134	89.1
50	53 d9-N-EtFOSE	639.2 > 58.8	1.60e4	1.25e4	0.128	6.45	6.42	16.0	125	83.3
51	54 13C4-PFBA	217. > 171.8	9.02e3	9.02e3	1.000	1.64	1.43	12.5	12.5	100.0
52	55 13C5-PFHxA	318 > 272.9	1.11e4	1.11e4	1.000	3.39	3.18	12.5	12.5	100.0
53	56 13C3-PFHxS	401.9 > 79.9	2.09e3	2.09e3	1.000	4.16	3.95	12.5	12.5	100.0
54	57 13C8-PFOA	421.3 > 376	9.94e3	9.94e3	1.000	4.53	4.32	12.5	12.5	100.0
55	58 13C9-PFNA	472.2 > 426.9	1.06e4	1.06e4	1.000	4.96	4.76	12.5	12.5	100.0
56	59 13C4-PFOS	503 > 79.9	2.24e3	2.24e3	1.000	5.03	4.84	12.5	12.5	100.0
57	60 13C6-PFDA	519.1 > 473.7	1.09e4	1.09e4	1.000	5.33	5.14	12.5	12.5	100.0
58	61 13C7-PFUdA	570.1 > 524.8	1.25e4	1.25e4	1.000	5.65	5.46	12.5	12.5	100.0

Work Order 1701439 Revision 1 Page 144 of 402

Quantify Compound Summary Report Vista Analytical Laboratory

MassLynx MassLynx V4.1 SCN945 SCN960

Page 1 of 1

Dataset:

Untitled

Last Altered:

Wednesday, November 08, 2017 09:31:13 Pacific Standard Time

Printed:

Wednesday, November 08, 2017 09:32:12 Pacific Standard Time

Method: U:\Q4.PRO\MethDB\PFAS_RS-11-08-17.mdb 08 Nov 2017 09:01:48

Calibration: 08 Nov 2017 09:31:13

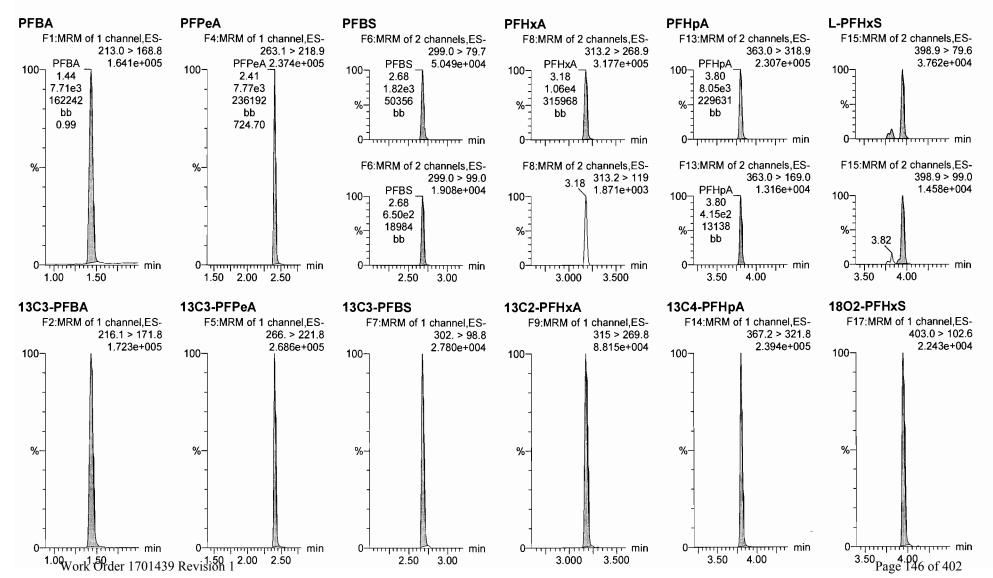
Compound name: 13C4-PFBA

	Name	ID III III III III III III III III III	Acq.Date	Acq.Time
1	171107M2_2	ST171107M2-1 PFC CS0 17J2707	07-Nov-17	21:55:33
2	171107M2_3	IPA	07-Nov-17	22:06:44
3	171107M2_4	1701439-01 FRB05_20171005 0.125	07-Nov-17	22:17:55
4	171107M2_5	IPA	07-Nov-17	22:29:06
5	171107M2_6	ST171107M2-2 PFC CS3 17J2710	07-Nov-17	22:40:16

Work Order 1701439 Revision 1 Page 145 of 402

U:\Q4.PRO\results\171107M2\171107M2-6.qld

Last Altered:


Wednesday, November 08, 2017 09:28:29 Pacific Standard Time

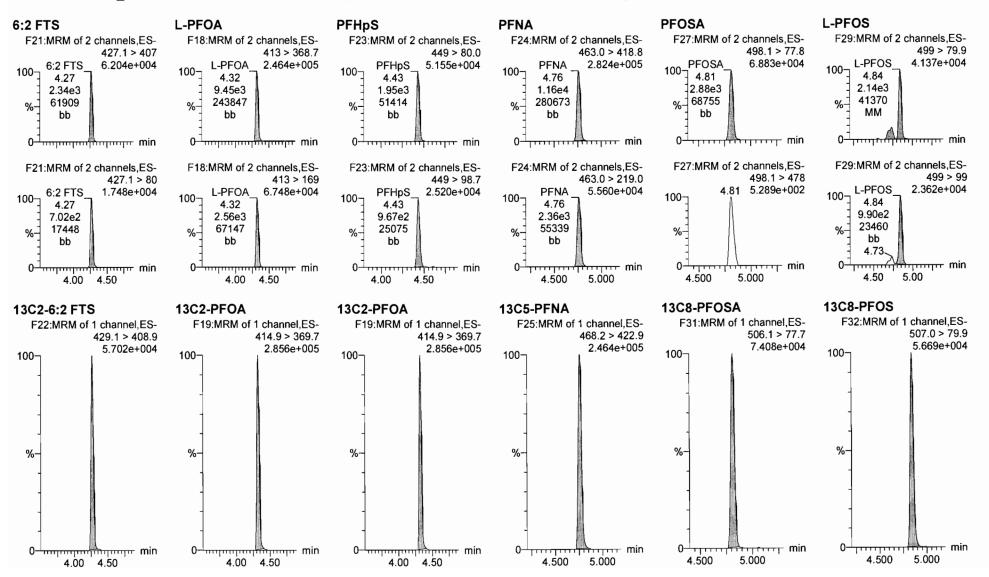
Printed:

Wednesday, November 08, 2017 09:29:08 Pacific Standard Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_110617_AC.mdb 07 Nov 2017 07:51:36

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 08:42:13

Page 2 of 6

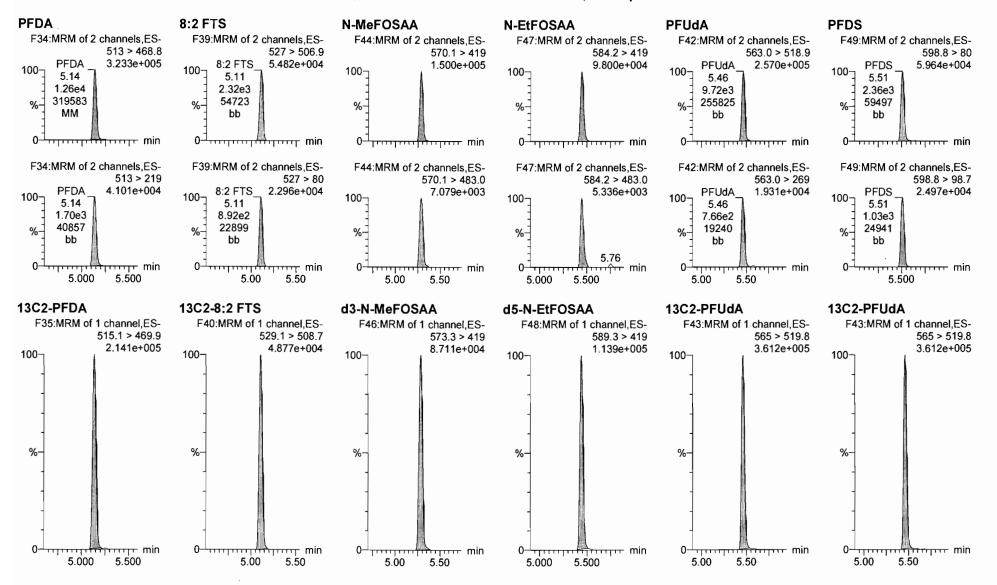

Dataset:

U:\Q4.PRO\results\171107M2\171107M2-6.qld

Last Altered:

Wednesday, November 08, 2017 09:28:29 Pacific Standard Time

Printed: Wednesday, November 08, 2017 09:29:08 Pacific Standard Time


Printed:

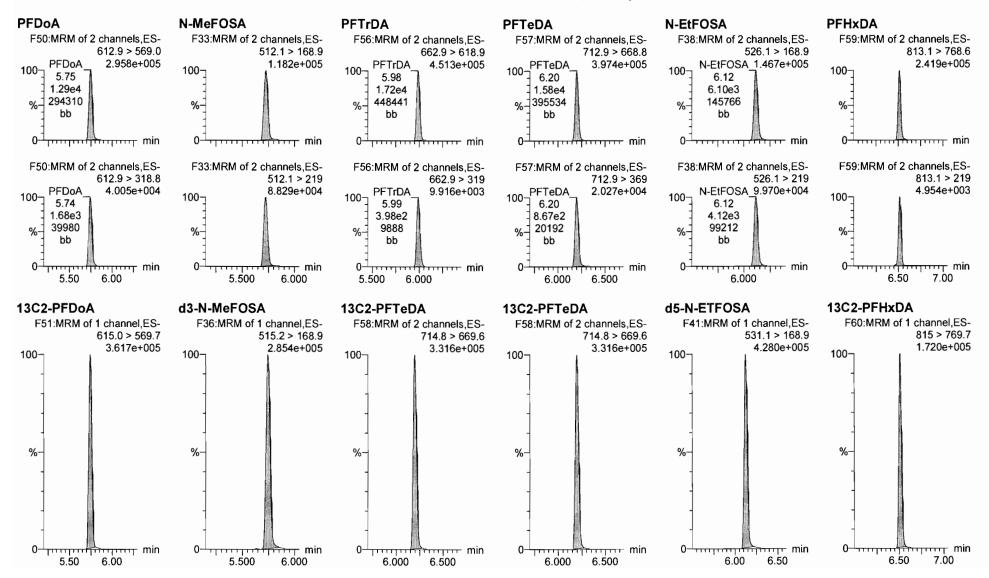
U:\Q4.PRO\results\171107M2\171107M2-6.qld

Last Altered:

Wednesday, November 08, 2017 09:28:29 Pacific Standard Time Wednesday, November 08, 2017 09:29:08 Pacific Standard Time

Name: 171107M2_6, Date: 07-Nov-2017, Time: 22:40:16, ID: ST171107M2-2 PFC CS3 17J2710, Description: PFC CS3 17J28710

Work Order 1701439 Revision 1 Page 148 of 402

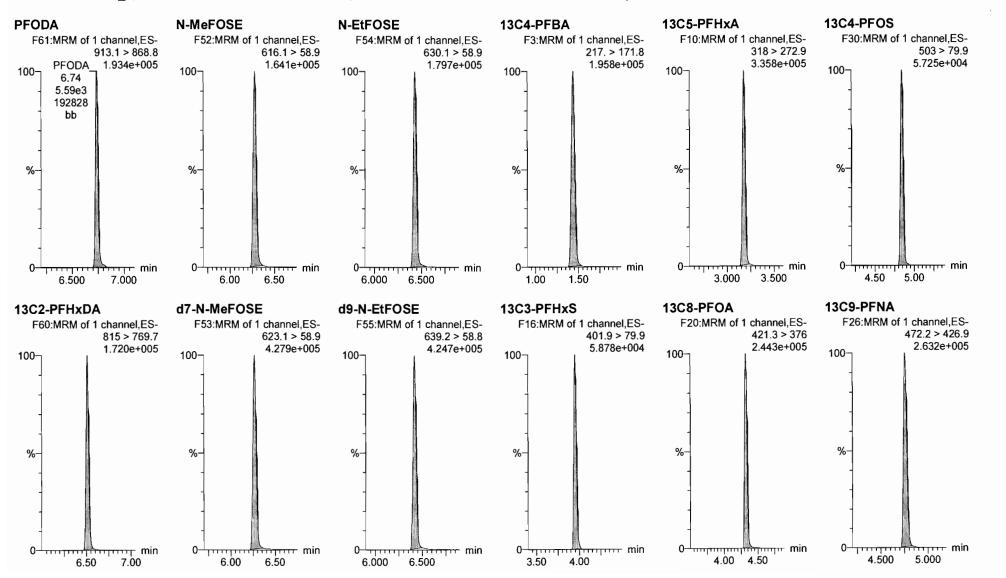

U:\Q4.PRO\results\171107M2\171107M2-6.qld

Last Altered:

Wednesday, November 08, 2017 09:28:29 Pacific Standard Time

Printed:

Wednesday, November 08, 2017 09:29:08 Pacific Standard Time

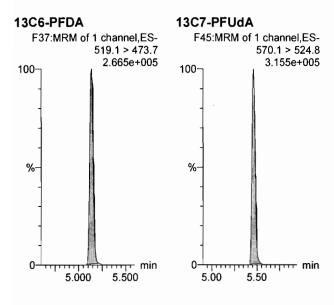


U:\Q4.PRO\results\171107M2\171107M2-6.gld

Last Altered:

Wednesday, November 08, 2017 09:28:29 Pacific Standard Time

Printed: Wednesday, November 08, 2017 09:29:08 Pacific Standard Time



U:\Q4.PRO\results\171107M2\171107M2-6.qld

Last Altered:

Wednesday, November 08, 2017 09:28:29 Pacific Standard Time

Printed: Wednesday, November 08, 2017 09:29:08 Pacific Standard Time

INITIAL CALIBRATION (ICAL)

INCLUDING ASSOCIATED

INITIAL CALIBRATION VERIFICATION (ICV) AND INSTRUMENT BLANK (IB)

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 26 Oct 2017 08:20:12

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:24:20

Compound name: PFBA

Correlation coefficient: r = 0.999162, $r^2 = 0.998324$

Calibration curve: 1.25384 * x + -0.0149356

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

ol27/17

/ JA. 10/24/2017

ingle to	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	1.25	169.410	7808.215	0.271	0.2	-8.7	NO	0.998	NO	MM
2	2 171026M1_3	Standard	0.500	1.25	378.556	8572.229	0.552	0.5	-9.6	NO	0.998	NO	ММ
3	3 171026M1_4	Standard	1.000	1.25	971.693	7984.760	1.521	1.2	22.5	NO	0.998	NO	MM
4	4 171026M1_5	Standard	2.000	1.25	1475.644	8054.466	2.290	1.8	-8.1	NO	0.998	NO	MM
5	5 171026M1_6	Standard	5.000	1.25	3254.984	6778.724	6.002	4.8	-4.0	NO	0.998	NO	bb
6	6 171026M1_7	Standard	10.000	1.23	9473.223	8629.076	13.723	11.0	9.6	NO	0.998	NO	bb
7	7 171026M1_8	Standard	50.000	1.25	36005.004	7455.317	60.368	48.2	-3.7	NO	0.998	NO	bb
8	8 171026M1_9	Standard	100.000	1.25	70425.258	7419.347	118.651	94.6	-5.4	NO	0.998	NO	bb
9	9 171026M1_10	Standard	250.000	1.25	177538.250	6902.076	321.531	256.4	2.6	NO	0.998	NO	bb

Compound name: PFPeA

Correlation coefficient: r = 0.999675, $r^2 = 0.999351$

Calibration curve: 1.1515 * x + 0.0271081

Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	2.22	195.461	8408.983	0.291	0.2	-8.5	NO	0.999	NO	MM
2	2 171026M1_3	Standard	0.500	2.22	410.022	8868.642	0.578	0.5	-4.3	NO	0.999	NO	bb
3	3 171026M1_4	Standard	1.000	2.23	957.906	8877.859	1.349	1.1	14.8	NO	0.999	NO	bb
4	4 171026M1_5	Standard	2.000	2.23	1564.483	8596.897	2.275	2.0	-2.4	NO	0.999	NO	bb
5	5 171026M1_6	Standard	5.000	2.22	3290.001	7755.411	5.303	4.6	-8.4	NO	0.999	NO	bb
6	6 171026M1_7	Standard	10.000	2.22	9504.004	9337.942	12.722	11.0	10.2	NO	0.999	NO	bb
7	7 171026M1_8	Standard	50.000	2.23	37194.707	8015.438	58.005	50.3	0.7	NO	0.999	NO	bb
8	8 171026M1_9	Standard	100.000	2.23	70141.914	7838.237	111.859	97.1	-2.9	NO	0.999	NO	bb
9 (100-10) (11) (11) (11) (11) (12)	9 171026M1_10	Standard	250.000	2.23	175476.359	7562.272	290.052	251.9	0.7	NO	0.999	NO	bb

Quantify Compound Summary Report MassLynx MassLynx V4
Vista Analytical Laboratory

Summary Report MassLynx MassLynx V4.1 SCN945 SCN960 Page 2 of 29

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: r = 0.998426, $r^2 = 0.996854$

Calibration curve: 2.43502 * x + 0.00496287

Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 September 1	1 171026M1_2	Standard	0.250	2.51	56.109	942.759	0.744	0.3	21.4	NO	0.997	NO	MM
2	2 171026M1_3	Standard	0.500	2.50	109.096	1150.455	1.185	0.5	-3.0	NO	0.997	NO	bb
3 minimum de la	3 171026M1_4	Standard	1.000	2.51	246.749	1085.497	2.841	1.2	16.5	NO	0.997	NO	bb
4	4 171026M1_5	Standard	2.000	2.51	350.747	1130.237	3.879	1.6	-20.4	NO	0.997	NO	bb
5	5 171026M1_6	Standard	5.000	2.51	808.830	946.956	10.677	4.4	-12.3	NO	0.997	NO	bb
600,000,000	6 171026M1_7	Standard	10.000	2.51	2276.402	1107.306	25.698	10.6	5.5	NO	0.997	NO	bb
7 managadyse	7 171026M1_8	Standard	50.000	2.51	8724.820	930.832	117.164	48.1	-3.8	NO	0.997	NO	bb
8	8 171026M1_9	Standard	100.000	2.51	16856.811	937.808	224.684	92.3	-7.7	NO	0.997	NO	bb
9	9 171026M1_10	Standard	250.000	2.51	41762.863	824.913	632.837	259.9	4.0	NO	0.997	NO	bb

Compound name: PFHxA

Correlation coefficient: r = 0.999732, $r^2 = 0.999465$

Calibration curve: 1.66208 * x + 0.0769658

Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	3.00	283.989	2942.526	0.483	0.2	-2.4	NO	0.999	NO	bb
2	2 171026M1_3	Standard	0.500	3.00	587.805	3685.471	0.797	0.4	-13.3	NO	0.999	NO	MM
3	3 171026M1_4	Standard	1.000	3.00	1424.702	3516.192	2.026	1.2	17.3	NO	0.999	NO	MM
4 100 m 100 mm	4 171026M1_5	Standard	2.000	3.00	2232.012	3262.653	3.421	2.0	0.6	NO	0.999	NO	bb
5	5 171026M1_6	Standard	5.000	3.00	4890.172	2910.139	8.402	5.0	0.2	NO	0.999	NO	bb
6	6 171026M1_7	Standard	10.000	3.00	13203.137	3962.694	16.659	10.0	-0.2	NO	0.999	NO	bb
7	7 171026M1_8	Standard	50.000	3.00	54375.723	3263.629	83.306	50.1	0.1	NO	0.999	NO	bb
8	8 171026M1_9	Standard	100.000	3.00	99396.352	3101.273	160.251	96.4	-3.6	NO	0.999	NO	bb
9	9 171026M1_10	Standard	250.000	3.00	243237.984	2886.449	421.345	253.5	1.4	NO	0.999	NO	bb

Work Order 1701439 Revision 1 Page 154 of 402

Quantify Compound Summary Report Vista Analytical Laboratory

MassLynx MassLynx V4.1 SCN945 SCN960

Page 3 of 29

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: r = 0.998813, $r^2 = 0.997628$ Calibration curve: 1.51217 * x + -0.00204214

Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std, Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 miles of publication of	1 171026M1_2	Standard	0.250	3.62	217.491	6975.456	0.390	0.3	3.6	NO	0.998	NO	MM
2	2 171026M1_3	Standard	0.500	3.62	435.150	8073.077	0.674	0.4	-10.6	NO	0.998	NO	bb
3	3 171026M1_4	Standard	1.000	3.62	1150.884	7874.637	1.827	1.2	20.9	NO	0.998	NO	bb
4	4 171026M1_5	Standard	2.000	3.62	1765.486	7732.312	2.854	1.9	-5.6	NO	0.998	NO	ММ
5	5 171026M1_6	Standard	5.000	3.62	3955.650	7137.554	6.928	4.6	-8.3	NO	0.998	NO	bb
6	6 171026M1_7	Standard	10.000	3.63	11140.995	8761.563	15.895	10.5	5.1	NO	0.998	NO	bb
7	7 171026M1_8	Standard	50.000	3.62	44386.152	7381.024	75.169	49.7	-0.6	NO	0.998	NO	bb
8	8 171026M1_9	Standard	100.000	3.63	82448.250	7389.083	139.476	92.2	-7.8	NO	0.998	NO	bb
9	9 171026M1_10	Standard	250.000	3.63	210467.547	6745.937	389.989	257.9	3.2	NO	0.998	NO	bb

Compound name: L-PFHxS

Correlation coefficient: r = 0.998527, r^2 = 0.997056

Calibration curve: 2.44187 * x + -0.197337

Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	3.77	33.810	852.741	0.496	0.3	13.5	NO	0.997	NO	ММ
2	2 171026M1_3	Standard	0.500	3.77	87.560	950.357	1.152	0.6	10.5	NO	0.997	NO	MM
3	3 171026M1_4	Standard	1.000	3.77	183.248	1000.627	2.289	1.0	1.8	NO	0.997	NO	ММ
47	4 171026M1_5	Standard	2.000	3.78	262.817	901.116	3.646	1.6	-21.3	NO	0.997	NO	ММ
5	5 171026M1_6	Standard	5.000	3.78	645.315	720.817	11.191	4.7	-6.7	NO	0.997	NO	ММ
6 4 4 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 171026M1_7	Standard	10.000	3.78	2009.132	930.634	26.986	11.1	11.3	NO	0.997	NO	ММ
7 ,000-2000/000	7 171026M1_8	Standard	50.000	3.78	7421.165	812.195	114.215	46.9	-6.3	NO	0.997	NO	MM
8	8 171026M1_9	Standard	100.000	3.78	14385.692	788.162	228.153	93.5	-6.5	NO	0.997	NO	MM
9	9 171026M1_10	Standard	250.000	3.78	34045.094	672.689	632.631	259.2	3.7	NO	0.997	NO	ММ

Page 155 of 402 Work Order 1701439 Revision 1

Quantify Compound Summary Report Vista Analytical Laboratory MassLynx WassLynx V4.1 SCN945 SCN960

Page 4 of 29

Dataset:

Printed:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: 6:2 FTS

Coefficient of Determination: R^2 = 0.990378

Calibration curve: -0.00338904 * x^2 + 1.06688 * x + -0.0276541 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

ng ar in in Tiple below	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	4.10	38.764	2164.565	0.224	0.2	-5.6	NO	0.990	NO	MM
2	2 171026M1_3	Standard	0.500	4.09	76.205	2370.950	0.402	0.4	-19.4	NO	0.990	NO	MM
3 7 11 1	3 171026M1_4	Standard	1.000	4.10	260.433	2607.028	1.249	1.2	20.1	NO	0.990	NO	MM
	4 171026M1_5	Standard	2.000	4.10	371.059	2213.204	2.096	2.0	0.2	NO	0.990	NO	MM
5	5 171026M1_6	Standard	5.000	4.10	723.532	2011.325	4.497	4.3	-14.0	NO	0.990	NO	bb
6	6 171026M1_7	Standard	10.000	4.10	2375.465	2322.365	12.786	12.5	25.1	NO	0.990	NO	bb
7	7 171026M1_8	Standard	50.000	4.10	8057.026	2423.382	41.559	45.6	-8.8	NO	0.990	NO	MM
8:00:36-300000	8 171026M1_9	Standard	100.000	4.10	16916.268	2849.847	74.198	103.8	3.8	NO	0.990	NO	MM
9	9 171026M1_10	Standard	250.000	4.10	42048.867	3989.678	131.743			NO _	0.990	NO	MMXI

Compound name: L-PFOA

Correlation coefficient: r = 0.999419, $r^2 = 0.998838$

Calibration curve: 1.12797 * x + 0.284504

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

200	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	4.15	471.538	9078.071	0.649	0.3	29.4	NO	0.999	NO	bb
2 111675	2 171026M1_3	Standard	0.500	4.15	637.530	11620.861	0.686	0.4	-28.9	NO	0.999	NO	bb
3 ////////////////////////////////////	3 171026M1_4	Standard	1.000	4.15	1432.158	11362.964	1.575	1.1	14.5	NO	0.999	NO	bb
4	4 171026M1_5	Standard	2.000	4.15	2028.134	10917.326	2.322	1.8	-9.7	NO	0.999	NO	bb
5 (104)	5 171026M1_6	Standard	5.000	4.15	4240.121	9732.542	5.446	4.6	-8.5	NO	0.999	NO	bb
6	6 171026M1_7	Standard	10.000	4.16	12624.870	12620.936	12.504	10.8	8.3	NO	0.999	NO	bb
7	7 171026M1_8	Standard	50.000	4.15	46626.160	10698.399	54.478	48.0	-3.9	NO	0.999	NO	bb
8	8 171026M1_9	Standard	100.000	4.15	87781.883	10016.809	109.543	96.9	-3.1	NO	0.999	NO	bb
guntangan antangan guntangan	9 171026M1_10	Standard	250.000	4.15	215229.203	9351.515	287.693	254.8	1.9	NO	0.999	NO	bb

Work Order 1701439 Revision 1 Page 156 of 402

Page 5 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: PFHpS

Coefficient of Determination: R^2 = 0.998365

Calibration curve: $4.65786e-005 * x^2 + 0.203609 * x + 0.0252184$ Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 Company	1 171026M1_2	Standard	0.250	4.26	60.156	9078.071	0.083	0.3	13.2	NO	0.998	NO	pp
2	2 171026M1_3	Standard	0.500	4.26	97.399	11620.861	0.105	0.4	-21.9	NO	0.998	NO	bb
3	3 171026M1_4	Standard	1.000	4.27	221.282	11362.964	0.243	1.1	7.1	NO	0.998	NO	bb
4	4 171026M1_5	Standard	2.000	4.27	363.685	10917.326	0.416	1.9	-4.0	NO	0.998	NO	bb
5	5 171026M1_6	Standard	5.000	4.26	747.675	9732.54	0.960	4.6	-8.2	NO	0.998	NO	bb
6	6 171026M1_7	Standard	10.000	4.27	2336.865	12620.936	2.314	11.2	12.1	NO	0.998	NO	bb
7	7 171026M1_8	Standard	50.000	4.27	9392.685	10698.399	10.974	53.1	6.3	NO	0.998	NO	bb
8 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 171026M1_9	Standard	100.000	4.27	15827.031	10016.809	19.751	94.8	-5.2	NO	0.998	NO	bb
9 10 10 10 10 10 10 10 10 10 10 10 10 10	9 171026M1_10	Standard	250.000	4.26	40503.746	9351.515	54.141	251.3	0.5	NO	0.998	NO	bb

Compound name: PFNA

Coefficient of Determination: R^2 = 0.997109

Calibration curve: -0.000379675 * x^2 + 1.44302 * x + 0.0895267 Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	4.59	298.739	10432.768	0.358	0.2	-25.6	NO	0.997	NO	bb
2	2 171026M1_3	Standard	0.500	4.59	616.104	10776.714	0.715	0.4	-13.4	NO	0.997	NO	bb
3	3 171026M1_4	Standard	1.000	4.59	1536.325	10136.376	1.895	1.3	25.1	NO	0.997	NO	bb
4 Maria Maria Maria	4 171026M1_5	Standard	2.000	4.59	2228.166	9401.615	2.962	2.0	-0.4	NO	0.997	NO	bb
5	5 171026M1_6	Standard	5.000	4.59	4653.905	8632.302	6.739	4.6	-7.7	NO	0.997	NO	bb
6	6 171026M1_7	Standard	10.000	4.60	15142.974	10614.531	17.833	12.3	23.4	NO	0.997	NO	bb
7	7 171026M1_8	Standard	50.000	4.59	54084.996	9136.932	73.992	51.9	3.8	NO	0.997	NO	bb
8	8 171026M1_9	Standard	100.000	4.59	99947.945	9445.277	132.272	93.9	-6.1	NO	0.997	NO	bb
9	9 171026M1_10	Standard	250.000	4.59	241162.719	8871.991	339.781	252.1	0.9	NO	0.997	NO	bb

Work Order 1701439 Revision 1 Page 157 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: r = 0.998461, $r^2 = 0.996924$

Calibration curve: 1.16388 * x + 0.0273367

Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

and Etran	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded_
1	1 171026M1_2	Standard	0.250	4.64	67.667	2860.033	0.296	0.2	-7.8	NO	0.997	NO	bb
2	2 171026M1_3	Standard	0.500	4.64	160.843	2971.727	0.677	0.6	11.6	NO	0.997	NO	bb
3	3 171026M1_4	Standard	1.000	4.64	330.443	3347.137	1.234	1.0	3.7	NO	0.997	NO	bb
4	4 171026M1_5	Standard	2.000	4.64	583.434	3119.570	2.338	2.0	-0.7	NO	0.997	NO	bb
5	5 171026M1_6	Standard	5.000	4.64	1163.094	2616.420	5.557	4.8	-5.0	NO	0.997	NO	bb
6	6 171026M1_7	Standard	10.000	4.65	3486.776	3417.714	12.753	10.9	9.3	NO	0.997	NO	bb
7	7 171026M1_8	Standard	50.000	4.64	12015.530	3010.790	49.885	42.8	-14.3	NO	0.997	NO	bb
8	8 171026M1_9	Standard	100.000	4.64	25235.262	2679.938	117.705	101.1	1.1	NO	0.997	NO	bb
9	9 171026M1_10	Standard	250.000	4.64	59672.262	2509.948	297.179	255.3	2.1	NO	0.997	NO	bb

Page 6 of 29

Compound name: L-PFOS

Correlation coefficient: r = 0.997357, $r^2 = 0.994721$

Calibration curve: 1.1564 * x + -0.0243452

Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	4.68	53.751	2514.781	0.267	0.3	0.8	NO	0.995	NO	MM
2	2 171026M1_3	Standard	0.500	4.68	89.260	2269.787	0.492	0.4	-10.8	NO	0.995	NO	ММ
3	3 171026M1_4	Standard	1.000	4.68	259.248	2388.392	1.357	1.2	19.4	NO	0.995	NO	ММ
4	4 171026M1_5	Standard	2.000	4.68	404.457	2373.570	2.130	1.9	-6.9	NO	0.995	NO	ММ
5	5 171026M1_6	Standard	5.000	4.68	742.283	2090.799	4.438	3.9	-22.8	NO	0.995	NO	MM
62-40-93 (00-97)	6 171026M1_7	Standard	10.000	4.68	2830.883	2570.850	13.764	11.9	19.2	NO	0.995	NO	MM
7	7 171026M1_8	Standard	50.000	4.68	9432.499	2064.157	57.121	49.4	-1.2	NO	0.995	NO	MM
8	8 171026M1_9	Standard	100.000	4.68	18509.137	2233.150	103.604	89.6	-10.4	NO	0.995	NO	ММ
9	9 171026M1_10	Standard	250.000	4.68	47303.645	1965.412	300.851	260.2	4.1	NO	0.995	NO	ММ

Work Order 1701439 Revision 1 Page 158 of 402

Page 7 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: R^2 = 0.998744

Calibration curve: 0.000670409 * x^2 + 1.3303 * x + 0.180081 Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Taki banah segahatahatek Taki cahilan kejahatahatek Taki cahilan kejahatahatek	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	4.97	372.370	9937.673	0.468	0.2	-13.3	NO	0.999	NO	MM
2	2 171026M1_3	Standard	0.500	4.97	652.787	10867.054	0.751	0.4	-14.2	NO	0.999	NO	MM
3	3 171026M1_4	Standard	1.000	4.97	1419.549	10060.540	1.764	1.2	19.0	NO	0.999	NO	bb
4	4 171026M1_5	Standard	2.000	4.97	2263.442	10558.938	2.680	1.9	-6.1	NO	0.999	NO	bb
5	5 171026M1_6	Standard	5.000	4.97	4849.386	9200.564	6.588	4.8	-3.9	NO	0.999	NO	bb
6	6 171026M1_7	Standard	10.000	4.98	15897.714	12043.707	16.500	12.2	21.9	NO	0.999	NO	bb
7. 1. 6. 8. 2. 10. 11. 10.	7 171026M1_8	Standard	50.000	4.97	50889.750	9506.485	66.915	49.0	-2.1	NO	0.999	NO	bb
8	8 171026M1_9	Standard	100.000	4.97	100970.852	9169.604	137.643	98.4	-1.6	NO	0.999	NO	bb
9	9 171026M1_10	Standard	250.000	4.97	271550.188	9033.771	375.743	250.7	0.3	NO	0.999	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: R^2 = 0.995715

Calibration curve: -0.00382414 * x^2 + 1.3379 * x + 0.459132 Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	4.94	81.448	1790.163	0.569	0.1	-67.2	NO	0.996	NO	bbX
2	2 171026M1_3	Standard	0.500	4.94	132.352	1649.670	1.003	0.4	-18.6	NO	0.996	NO	bb
3	3 171026M1_4	Standard	1.000	4.94	279.093	1643.484	2.123	1.2	24.8	NO	0.996	NO	bb
4	4 171026M1_5	Standard	2.000	4.94	305.201	1512.175	2.523	1.5	-22.5	NO	0.996	NO	bb
5 million security	5 171026M1_6	Standard	5.000	4.94	1052.290	1698.864	7.743	5.5	10.6	NO	0.996	NO	bb
6	6 171026M1_7	Standard	10.000	4.94	2300.402	1959.247	14.677	11.0	9.7	NO	0.996	NO	bb
7	7 171026M1_8	Standard	50.000	4.94	9184.235	2085.414	55.050	47.2	-5.7	NO	0.996	NO	bb
8	8 171026M1_9	Standard	100.000	4.94	18972.119	2439.029	97.232	102.2	2.2	NO	0.996	NO	bb
9	9 171026M1_10	Standard	250.000	4.94	47933.313	3475.574	172.394	_		NO _	0.996	NO	bbXI

Work Order 1701439 Revision 1 Page 159 of 402

Page 7 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: R^2 = 0.998744

Calibration curve: 0.000670409 * x^2 + 1.3303 * x + 0.180081 Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	4.97	372.370	9937.673	0.468	0.2	-13.3	NO	0.999	NO	MM
2	2 171026M1_3	Standard	0.500	4.97	652.787	10867.054	0.751	0.4	-14.2	NO	0.999	NO	ММ
3	3 171026M1_4	Standard	1.000	4.97	1419.549	10060.540	1.764	1.2	19.0	NO	0.999	NO	bb
4 HILL COUNTY	4 171026M1_5	Standard	2.000	4.97	2263.442	10558.938	2.680	1.9	-6.1	NO	0.999	NO	bb
5	5 171026M1_6	Standard	5.000	4.97	4849.386	9200.564	6.588	4.8	-3.9	NO	0.999	NO	bb
6	6 171026M1_7	Standard	10.000	4.98	15897.714	12043.707	16.500	12.2	21.9	NO	0.999	NO	bb
7	7 171026M1_8	Standard	50.000	4.97	50889.750	9506.485	66.915	49.0	-2.1	NO	0.999	NO	bb
8	8 171026M1_9	Standard	100.000	4.97	100970.852	9169.604	137.643	98.4	-1.6	NO	0.999	NO	bb
9 100 100 100 100 100 100 100 100 100 10	9 171026M1_10	Standard	250.000	4.97	271550.188	9033.771	375.743	250.7	0.3	NO	0.999	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: R^2 = 0.995715

Calibration curve: -0.00382414 * x^2 + 1.3379 * x + 0.459132 Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

200 (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	# Name	Туре	Std. Conc	. RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 manifest messes	1 171026M1_2	Standard	0.250	4.94	81.448	1790.163	0.569	0.1	-67.2	NO	0.996	NO	bbX
2	2 171026M1_3	Standard	0.500	4.94	132.352	1649.670	1.003	0.4	-18.6	NO	0.996	NO	bb
3	3 171026M1_4	Standard	1.000	4.94	279.093	1643.484	2.123	1.2	24.8	NO	0.996	NO	bb
4	4 171026M1_5	Standard	2.000	4.94	305.201	1512.175	2.523	1.5	-22.5	NO	0.996	NO	bb
5	5 171026M1_6	Standard	5.000	4.94	1052.290	1698.864	7.743	5.5	10.6	NO	0.996	NO	bb
6	6 171026M1_7	Standard	10.000	4.94	2300.402	1959.247	14.677	11.0	9.7	NO	0.996	NO	bb
7	7 171026M1_8	Standard	50.000	4.94	9184.235	2085.414	55.050	47.2	-5.7	NO	0.996	NO	bb
8	8 171026M1_9	Standard	100.000	4.94	18972.119	2439.029	97.232	102.2	2.2	NO	0.996	NO	bb
9	9 171026M1_10	Standard	250.000	4.94	47933.313	3475.574	172.394			NO	0.996	NO	bbXI

Work Order 1701439 Revision 1 Page 160 of 402

Vista Analytical Laboratory

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Dataset:

Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.997869

Calibration curve: -0.000267179 * x^2 + 1.57739 * x + 0.0787904 Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

user i sameri Altalopystina lipsi hajiri Altalopomi i sameri sameri sa	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	5.12	171.157	4283.565	0.499	0.3	6.7	NO	0.998	NO	bb
2	2 171026M1_3	Standard	0.500	5.12	251.886	4531.096	0.695	0.4	-21.9	NO	0.998	NO	bb
3	3 171026M1_4	Standard	1.000	5.13	611.555	4244.738	1.801	1.1	9.2	NO	0.998	NO	bb
4	4 171026M1_5	Standard	2.000	5.13	1014.820	4230.691	2.998	1.9	-7.4	NO	0.998	NO	bb
5	5 171026M1_6	Standard	5.000	5.13	2286.861	3763.122	7.596	4.8	-4.6	NO	0.998	NO	bb
6	6 171026M1_7	Standard	10.000	5.13	7505.110	5027.620	18.660	11.8	18.0	NO	0.998	NO	bb
7	7 171026M1_8	Standard	50.000	5.13	26761.980	4070.543	82.182	52.5	5.0	NO	0.998	NO	bb
8	8 171026M1_9	Standard	100.000	5.13	48675.637	4156.273	146.392	94.3	-5.7	NO	0.998	NO	bb
9	9 171026M1_10	Standard	250.000	5.13	120635.273	3964.672	380.344	251.8	0.7	NO _	0.998	NO	bb

Page 8 of 29

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.994831

Calibration curve: 5.282e-005 * x^2 + 1.26472 * x + 0.0301259 Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std, Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	5.28	128.703	4328.346	0.372	0.3	8.0	NO	0.995	NO	bb
2	2 171026M1_3	Standard	0.500	5.28	245.150	4608.545	0.665	0.5	0.4	NO	0.995	NO	bb
3	3 171026M1_4	Standard	1.000	5.29	479.197	4596.165	1.303	1.0	0.7	NO	0.995	NO	bb
4	4 171026M1_5	Standard	2.000	5.29	807.240	4598.011	2.195	1.7	-14.4	NO	0.995	NO	bb
5	5 171026M1_6	Standard	5.000	5.28	1751.644	4056.309	5.398	4.2	-15.1	NO	0.995	NO	bb
6	6 171026M1_7	Standard	10.000	5.29	6279.174	4795.402	16.368	12.9	29.1	NO	0.995	NO	bb
7	7 171026M1_8	Standard	50.000	5.29	21268.102	3860.981	68.856	54.3	8.6	NO	0.995	NO	bb
8	8 171026M1_9	Standard	100.000	5.29	38943.199	4197.738	115.965	91.3	-8.7	NO	0.995	NO	bb
9	9 171026M1_10	Standard	250.000	5.28	91337.641	3537.789	322.721	252.5	1.0	NO	0.995	NO_	bb

Work Order 1701439 Revision 1 Page 161 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Printed: Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: PFUnA

Coefficient of Determination: R^2 = 0.998990

Calibration curve: $-0.000325839 * x^2 + 1.14375 * x + 0.032356$ Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

10 (00) (177) (00) 10 (00) (177) (00)	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	5.30	333.859	11922.407	0.350	0.3	11.1	NO	0.999	NO	MM
2	2 171026M1_3	Standard	0.500	5.30	604.879	14098.658	0.536	0.4	-11.9	NO	0.999	NO	MM
3	3 171026M1_4	Standard	1.000	5.30	1430.892	14676.305	1.219	1.0	3.8	NO	0.999	NO	bb
4	4 171026M1_5	Standard	2.000	5.30	2224.770	13559.280	2.051	1.8	-11.7	NO	0.999	NO	bb
5	5 171026M1_6	Standard	5.000	5.30	5026.863	11695.059	5.373	4.7	-6.5	NO	0.999	NO	bb
6	6 171026M1_7	Standard	10.000	5.30	13767.616	12899.332	13.341	11.7	16.8	NO	0.999	NO	MM
7	7 171026M1_8	Standard	50.000	5.30	56903.492	12601.697	56.444	50.0	0.1	NO	0.999	NO	bb
8	8 171026M1_9	Standard	100.000	5.30	91266.719	10458.104	109.086	98.1	-1.9	NO	0.999	NO	bb
9	9 171026M1_10	Standard	250.000	5.30	226259.609	10618.298	266.356	250.8	0.3	NO	0.999	NO	bb

Page 9 of 29

Compound name: PFDS

Coefficient of Determination: R^2 = 0.994206

Calibration curve: 0.195972 * x

Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 171026M1_2	Standard	0.250	5.35	45.020	11922.407	0.047	0.2	-3.7	NO	0.994	NO	MMX
2	2 171026M1_3	Standard	0.500	5.35	151.486	14098.658	0.134	0.7	37.1	NO	0.994	NO	MMX
3	3 171026M1_4	Standard	1.000	5.36	213.721	14676.305	0.182	0.9	-7.1	NO	0.994	NO	ММ
4	4 171026M1_5	Standard	2.000	5.35	460.999	13559.280	0.425	2.2	8.4	NO	0.994	NO	ММ
5 a minimalization	5 171026M1_6	Standard	5.000	5.35	810.285	11695.059	0.866	4.4	-11.6	NO	0.994	NO	ММ
6	6 171026M1_7	Standard	10.000	5.36	2627.442	12899.332	2.546	13.0	29.9	NO	0.994	NO	ММ
7 - 4-111111-00-00-00-00-00-00-00-00-00-00-00	7 171026M1_8	Standard	50.000	5.35	9770.502	12601.697	9.692	49.5	-1.1	NO	0.994	NO	ММ
8	8 171026M1_9	Standard	100.000	5.35	22998.344	10458.104	27.489	140.3	40.3	NO	0.994	NO	MMX
9	9 171026M1_10	Standard	250.000	5.35	45583.809	10618.298	53.662	273.8	9.5	NO _	0.994	NO _	MMX

Work Order 1701439 Revision 1 Page 162 of 402

Vista Analytical Laboratory

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Fr

Dataset:

Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.997953

Calibration curve: -0.000109132 * x^2 + 1.24453 * x + 0.293856 Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
distriction of the second	1 171026M1_2	Standard	0.250	5.59	431.656	13820.625	0.390	0.1	-69.0	NO	0.998	NO	bbX
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 171026M1_3	Standard	0.500	5.59	915.266	14554.974	0.786	0.4	-20.9	NO	0.998	NO	MM
3	3 171026M1_4	Standard	1.000	5.59	1861.279	14053.078	1.656	1.1	9.4	NO	0.998	NO	bb
4	4 171026M1_5	Standard	2.000	5.59	3205.994	13740.559	2.917	2.1	5.4	NO	0.998	NO	bb
5 mentangan pengangan benterakan Samulangan pelangangan	5 171026M1_6	Standard	5.000	5.59	6002.763	12183.269	6.159	4.7	-5.7	NO	0.998	NO	bb
6	6 171026M1_7	Standard	10.000	5.59	19185.148	16125.540	14.872	11.7	17.3	NO	0.998	NO	bb
Zir branda landa	7 171026M1_8	Standard	50.000	5.59	65903.305	14441.244	57.044	45.8	-8.4	NO	0.998	NO	bb
8	8 171026M1_9	Standard	100.000	5.59	124742.266	12225.404	127.544	103.2	3.2	NO	0.998	NO	bb
9 100 100	9 171026M1_10	Standard	250.000	5.59	282094.188	11598.803	304.012	249.5	-0.2	NO	0.998	NO	bb

Page 10 of 29

Compound name: N-MeFOSA

Coefficient of Determination: R^2 = 0.999297

Calibration curve: -0.000149877 * x^2 + 1.21877 * x + 0.0856513 Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

annan paritagan da kanan ka Kanan kanan ka	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
Total Company of the Company	1 171026M1_2	Standard	1.250	5.59	150.739	13893.939	1.627	1.3	1.2	NO	0.999	NO	bb
2	2 171026M1_3	Standard	2.500	5.59	289.176	15405.037	2.816	2.2	-10.4	NO	0.999	NO	bb
3 Photographic and the control of th	3 171026M1_4	Standard	5.000	5.60	725.535	14020.292	7.762	6.3	26.1	NO	0.999	NO	bb
4 per usas market same	4 171026M1_5	Standard	10.000	5.60	1026.968	13929.710	11.059	9.0	-9.9	NO	0.999	NO	bb
5	5 171026M1_6	Standard	25.000	5.59	2433.160	12908.811	28.273	23.2	-7.2	NO	0.999	NO	bb
6	6 171026M1_7	Standard	50.000	5.60	5717.728	13491.567	63.570	52.4	4.9	NO	0.999	NO	bb
7	7 171026M1_8	Standard	250.000	5.60	25214.387	12434.965	304.155	257.7	3.1	NO	0.999	NO	bb
8	8 171026M1_9	Standard	500.000	5.60	44827.070	12026.860	559.087	487.9	-2.4	NO	0.999	NO	bb
9	9 171026M1_10	Standard	1250.000	5.60	102687.719	11915.382	1292.712	1254.0	0.3	NO	0.999	NO	bb

Work Order 1701439 Revision 1 Page 163 of 402

Page 11 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: PFTrDA

Coefficient of Determination: R^2 = 0.998625

Calibration curve: $0.000400269 * x^2 + 1.32903 * x + 0.10057$ Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

100000	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	5.84	421.703	13820.625	0.381	0.2	-15.5	NO	0.999	NO	MM
2	2 171026M1_3	Standard	0.500	5.84	788.318	14554.974	0.677	0.4	-13.3	NO	0.999	NO	bb
3	3 171026M1_4	Standard	1.000	5.85	1764.051	14053.078	1.569	1.1	10.5	NO	0.999	NO	bb
4	4 171026M1_5	Standard	2.000	5.85	2983.976	13740.559	2.715	2.0	-1.7	NO	0.999	NO	bb
5	5 171026M1_6	Standard	5.000	5.84	6940.688	12183.269	7.121	5.3	5.5	NO	0.999	NO	bb
6	6 171026M1_7	Standard	10.000	5.85	20751.439	16125.540	16.086	12.0	19.8	NO	0.999	NO	bb
7	7 171026M1_8	Standard	50.000	5.85	73393.203	14441.244	63.527	47.1	-5.9	NO	0.999	NO	bb
8	8 171026M1_9	Standard	100.000	5.85	134583.125	12225.404	137.606	100.4	0.4	NO	0.999	NO	bb
9	9 171026M1_10	Standard	250.000	5.84	332029.500	11598.803	357.827	250.3	0.1	NO	0.999	NO	bb

Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.990408

Calibration curve: -0.0116096 * $x^2 + 1.77597 * x + -0.229836$ Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	0.250	6.06	353.669	9377.037	0.471	0.4	58.4	NO	0.990	NO	MMX
2	2 171026M1_3	Standard	0.500	6.06	672.156	10575.495	0.794	0.6	15.8	NO	0.990	NO	bb
3	3 171026M1_4	Standard	1.000	6.06	1342.364	10644.371	1.576	1.0	2.4	NO	0.990	NO	bb
4	4 171026M1_5	Standard	2.000	6.06	2705.437	11884.834	2.845	1.8	-12.4	NO	0.990	NO	bb
5	5 171026M1_6	Standard	5.000	6.06	5888.760	10706.537	6.875	4.1	-17.8	NO	0.990	NO	bb
6	6 171026M1_7	Standard	10.000	6.06	18380.754	12533.464	18.332	11.3	12.8	NO	0.990	NO	bb
7	7 171026M1_8	Standard	50.000	6.06	61918.887	13048.656	59.315	49.6	-0.7	NO	0.990	NO	db
8,,,,,,,,,,,,,,,,	8 171026M1_9	Standard	100.000	6.06	113524.648	11072.916	128.156			NO	0.990	NO	bbXI
9	9 171026M1_10	Standard	250.000	6.06	265615.188	10205.076	325.347			NO	0.990	NO	dbXI

Work Order 1701439 Revision 1 Page 164 of 402

Page 12 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: N-EtFOSA

Coefficient of Determination: R^2 = 0.999879

Calibration curve: $1.51717e-005 * x^2 + 1.00753 * x + 0.283778$ Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	1.250	6.02	203.932	19832.848	1.542	1.2	-0.1	NO	1.000	NO	bb
2	2 171026M1_3	Standard	2.500	6.02	358.754	21744.625	2.475	2.2	-13.0	NO	1.000	NO	MM
3	3 171026M1_4	Standard	5.000	6.02	808.101	20019.549	6.055	5.7	14.5	NO	1.000	NO	bb
4	4 171026M1_5	Standard	10.000	6.03	1350.590	19708.096	10.279	9.9	-0.8	NO	1.000	NO	bb
5	5 171026M1_6	Standard	25.000	6.02	3120.174	19092.957	24.513	24.0	-3.8	NO	1.000	NO	bb
6	6 171026M1_7	Standard	50.000	6.03	6858.185	19619.416	52.434	51.7	3.4	NO	1.000	NO	bb
7	7 171026M1_8	Standard	250.000	6.03	30907.031	18301.496	253.316	250.2	0.1	NO	1.000	NO	bb
8	8 171026M1_9	Standard	500.000	6.03	57020.777	16908.625	505.843	498.0	-0.4	NO	1.000	NO	bb
9	9 171026M1_10	Standard	1250.000	6.03	127353.117	14876.408	1284.112	1250.7	0.1	NO	1.000	NO	bb

Compound name: PFHxDA

Coefficient of Determination: R^2 = 0.999290

Calibration curve: -0.000484189 * x^2 + 0.723946 * x + 0.0537259 Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 171026M1_2	Standard	0.250	6.39	213.157	4102.797	0.260	0.3	13.9	NO	0.999	NO	bb
2	2 171026M1_3	Standard	0.500	6.40	292.271	4597.595	0.318	0.4	-27.0	NO	0.999	NO	MM
3	3 171026M1_4	Standard	1.000	6.39	624.552	3582.335	0.872	1.1	13.1	NO	0.999	NO	bb
4	4 171026M1_5	Standard	2.000	6.40	1095.076	3826.472	1.431	1.9	-4.8	NO	0.999	NO	bb
5	5 171026M1_6	Standard	5.000	6.39	2960.819	4271.142	3.466	4.7	-5.4	NO	0.999	NO	bb
6	6 171026M1_7	Standard	10.000	6.40	5007.562	3093.651	8.093	11.2	11.9	NO	0.999	NO	bb
7	7 171026M1_8	Standard	50.000	6.40	27038.670	3894.998	34.709	49.5	-1.0	NO	0.999	NO	bb
8	8 171026M1_9	Standard	100.000	6.40	52087.980	3882.136	67.087	99.2	-0.8	NO	0.999	NO	bb
9	9 171026M1_10	Standard	250.000	6.40	137320.813	4546.360	151.023	250.5	0.2	NO	0.999	NO	bb

Work Order 1701439 Revision 1 Page 165 of 402

Page 13 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: N-MeFOSE

Correlation coefficient: r = 0.999413, $r^2 = 0.998826$

Calibration curve: 1.06845 * x + 0.279364

Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

ese de la Servicio Madricule de Recestrato das guardos estados de la dis- cultura de la Companya	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 200 m 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 171026M1_2	Standard	1.250	6.23	204.517	20802.461	1.475	1.1	-10.5	NO	0.999	NO	bb
2	2 171026M1_3	Standard	2.500	6.23	398.669	23510.152	2.544	2.1	-15.2	NO	0.999	NO	bb
3	3 171026M1_4	Standard	5.000	6.23	978.670	21267.461	6.903	6.2	24.0	NO	0.999	NO	bb
4	4 171026M1_5	Standard	10.000	6.23	1444.513	21867.092	9.909	9.0	-9.9	NO	0.999	NO	bb
5	5 171026M1_6	Standard	25.000	6.23	3483.212	20238.715	25.816	23.9	-4.4	NO	0.999	NO	bb
6	6 171026M1_7	Standard	50.000	6.23	9478.513	22323.734	63.689	59.3	18.7	NO	0.999	NO	bb
7	7 171026M1_8	Standard	250.000	6.23	32783.449	18689.719	263.113	246.0	-1.6	NO	0.999	NO	bb
8	8 171026M1_9	Standard	500.000	6.23	62656.301	17806.627	527.806	493.7	-1.3	NO	0.999	NO	bb
9	9 171026M1_10	Standard	1250.000	6.23	147733.016	16557.975	1338.325	1252.3	0.2	NO	0.999	NO	bb

Compound name: N-EtFOSE

Correlation coefficient: r = 0.996094, $r^2 = 0.992203$

Calibration curve: 1.29546 * x + -0.281193

Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	1.250	6.38	185.001	18723.795	1.482	1.4	8.9	NO	0.992	NO	bb
2	2 171026M1_3	Standard	2.500	6.38	430.795	21507.340	3.005	2.5	1.5	NO	0.992	NO	bb
3	3 171026M1_4	Standard	5.000	6.38	1034.048	19338.682	8.021	6.4	28.2	NO	0.992	NO	bb
4	4 171026M1_5	Standard	10.000	6.38	1584.456	20850.943	11.398	9.0	-9.8	NO	0.992	NO	bb
5	5 171026M1_6	Standard	25.000	6.38	3160.580	19199.350	24.693	19.3	-22.9	NO	0.992	NO	bb
6	6 171026M1_7	Standard	50.000	6.38	9352.294	21197.688	66.179	51.3	2.6	NO	0.992	NO	bb
7	7 171026M1_8	Standard	250.000	6.38	34461.918	16038.620	322.303	249.0	-0.4	NO	0.992	NO	bb
8	8 171026M1_9	Standard	500.000	6.38	62399.871	16802.908	557.045	430.2	-14.0	NO	0.992	NO	bb
9	9 171026M1_10	Standard	1250.000	6.38	169561.797	14824.236	1715.722	1324.6	6.0	NO	0.992	NO	bb

Work Order 1701439 Revision 1 Page 166 of 402

Vista Analytical Laboratory

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Printed: Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: 13C3-PFBA Response Factor: 0.927532

RRF SD: 0.0280799, Relative SD: 3.02738

Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)

Curve type: RF

Dataset:

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	1.24	7808.215	8131.078	12.004	12.9	3.5	NO	352333311311111111111111111111111111111	NO	MM
2	2 171026M1_3	Standard	12.500	1.25	8572.229	9182.603	11.669	12.6	0.6	NO		NO	MM
3	3 171026M1_4	Standard	12.500	1.25	7984.760	8448.222	11.814	12.7	1.9	NO		NO	MM
4	4 171026M1_5	Standard	12.500	1.25	8054.466	8533.363	11.798	12.7	1.8	NO		NO	ММ
5	5 171026M1_6	Standard	12.500	1.25	6778.724	7846.642	10.799	11.6	-6.9	NO		NO	bb
6	6 171026M1_7	Standard	12.500	1.23	8629.076	9461.365	11.400	12.3	-1.7	NO		NO	MM
7	7 171026M1_8	Standard	12.500	1.25	7455.317	7997.517	11.653	12.6	0.5	NO		NO	MM
8	8 171026M1_9	Standard	12.500	1.25	7419.347	7885.960	11.760	12.7	1.4	NO		NO	bb
9	9 171026M1_10	Standard	12.500	1.25	6902.076	7535.223	11.450	12.3	-1.2	NO		NO	ММ

Page 14 of 29

Compound name: 13C3-PFPeA

Response Factor: 0.756774

RRF SD: 0.0472101, Relative SD: 6.23833

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

erright de grand de de grande Grand Harden, er bliefdig ett aus	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 Harring and Commission of the State of the	1 171026M1_2	Standard	12.500	2.22	8408.983	10203.109	10.302	13.6	8.9	NO		NO	MM
2	2 171026M1_3	Standard	12.500	2.22	8868.642	12595.204	8.802	11.6	-7.0	NO		NO	ММ
3	3 171026M1_4	Standard	12.500	2.22	8877.859	11545.891	9.611	12.7	1.6	NO		NO	ММ
4	4 171026M1_5	Standard	12.500	2.23	8596.897	11375.869	9.446	12.5	-0.1	NO		NO	ММ
5	5 171026M1_6	Standard	12.500	2.22	7755.411	10076.924	9.620	12.7	1.7	NO		NO	ММ
6	6 171026M1_7	Standard	12.500	2.22	9337.942	13109.532	8.904	11.8	-5.9	NO		NO	ММ
7	7 171026M1_8	Standard	12.500	2.22	8015.438	11706.181	8.559	11.3	-9.5	NO		NO	ММ
8	8 171026M1_9	Standard	12.500	2.22	7838.237	9834.428	9.963	13.2	5.3	NO		NO	ММ
9	9 171026M1_10	Standard	12.500	2.23	7562.272	9519.610	9.930	13.1	5.0	NO		NO	ММ

Work Order 1701439 Revision 1 Page 167 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: 13C3-PFBS Response Factor: 0.0907865

RRF SD: 0.00614258, Relative SD: 6.76596

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 17	1 171026M1_2	Standard	12.500	2.51	942.759	10203.109	1.155	12.7	1.8	NO	71 (MASSEC - 12 - CARDO SOCIAL ASSECTION OF THE PROPERTY OF TH	NO	bb
2	2 171026M1_3	Standard	12.500	2.50	1150.455	12595.204	1.142	12.6	0.6	NO		NO	ММ
3	3 171026M1_4	Standard	12.500	2.51	1085.497	11545.891	1.175	12.9	3.6	NO		NO	MM
4	4 171026M1_5	Standard	12.500	2.51	1130.237	11375.869	1.242	13.7	9.4	NO		NO	ММ
5	5 171026M1_6	Standard	12.500	2.51	946.956	10076.924	1.175	12.9	3.5	NO		NO	bb
6	6 171026M1_7	Standard	12.500	2.51	1107.306	13109.532	1.056	11.6	-7.0	NO		NO	bb
7	7 171026M1_8	Standard	12.500	2.51	930.832	11706.181	0.994	10.9	-12.4	NO		NO	bb
8	8 171026M1_9	Standard	12.500	2.51	937.808	9834.428	1.192	13.1	5.0	NO		NO	bb
9	9 171026M1_10	Standard	12.500	2.51	824.913	9519.610	1.083	11.9	-4.6	NO		NO	bb

Page 15 of 29

Compound name: 13C2-PFHxA

Response Factor: 0.739103

RRF SD: 0.0284957, Relative SD: 3.85545

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171026M1_2	Standard	5.000	3.00	2942.526	10203.109	3.605	4.9	-2.5	NO	NO	bb
2	2 171026M1_3	Standard	5.000	3.00	3685.471	12595.204	3.658	4.9	-1.0	NO	NO	bb
3	3 171026M1_4	Standard	5.000	3.00	3516.192	11545.891	3.807	5.2	3.0	NO	NO	bb
4	4 171026M1_5	Standard	5.000	3.00	3262.653	11375.869	3.585	4.9	-3.0	NO	NO	bb
5	5 171026M1_6	Standard	5.000	3.00	2910.139	10076.924	3.610	4.9	-2.3	NO	NO	bb
6	6 171026M1_7	Standard	5.000	3.00	3962.694	13109.532	3.778	5.1	2.2	NO	NO	bb
7	7 171026M1_8	Standard	5.000	3.00	3263.629	11706.181	3.485	4.7	-5.7	NO	NO	bb
8 10 10 10 10 10 10 10 10 10 10 10 10 10	8 171026M1_9	Standard	5.000	3.00	3101.273	9834.428	3.942	5.3	6.7	NO	NO	MM
9	9 171026M1_10	Standard	5.000	3.00	2886.449	9519.610	3.790	5.1	2.6	NO	NO	bb

Work Order 1701439 Revision 1 Page 168 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: 13C4-PFHpA

Response Factor: 0.683724

RRF SD: 0.0365931, Relative SD: 5.35203

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

2 (200 A)	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	3.62	6975.456	10203.109	8.546	12.5	-0.0	NO	•	NO	bb
2	2 171026M1_3	Standard	12.500	3.62	8073.077	12595.204	8.012	11.7	-6.3	NO		NO	bb
3	3 171026M1_4	Standard	12.500	3.62	7874.637	11545.891	8.525	12.5	-0.2	NO		NO	bb
4	4 171026M1_5	Standard	12.500	3.62	7732.312	11375.869	8.496	12.4	-0.6	NO		NO	bb
5	5 171026M1_6	Standard	12.500	3.62	7137.554	10076.924	8.854	12.9	3.6	NO		NO	bb
6	6 171026M1_7	Standard	12.500	3.63	8761.563	13109.532	8.354	12.2	-2.3	NO		NO	bb
7	7 171026M1_8	Standard	12.500	3.62	7381.024	11706.181	7.882	11.5	-7.8	NO		NO	bb
8	8 171026M1_9	Standard	12.500	3.62	7389.083	9834.428	9.392	13.7	9.9	NO		NO	bb
9	9 171026M1_10	Standard	12.500	3.62	6745.937	9519.610	8.858	13.0	3.6	NO		NO	MM

Page 16 of 29

Compound name: 18O2-PFHxS

Response Factor: 0.412387

RRF SD: 0.0275105, Relative SD: 6.67104

Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std, Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	3.78	852.741	2092.944	5.093	12.3	-1.2	NO		NO	bb
2	2 171026M1_3	Standard	12.500	3.78	950.357	2304.136	5.156	12.5	0.0	NO		NO	bb
3	3 171026M1_4	Standard	12.500	3.78	1000.627	2153.796	5.807	14.1	12.7	NO		NO	bb
4	4 171026M1_5	Standard	12.500	3.78	901.116	2054.447	5.483	13.3	6.4	NO		NO	bb
5	5 171026M1_6	Standard	12.500	3.78	720.817	1888.806	4.770	11.6	-7.5	NO		NO	bb
6	6 171026M1_7	Standard	12.500	3.78	930.634	2284.629	5.092	12.3	-1.2	NO		NO	bb
7.080/00/00/00/00	7 171026M1_8	Standard	12.500	3.78	812.195	1956.825	5.188	12.6	0.6	NO		NO	bb
8 interpretations	8 171026M1_9	Standard	12.500	3.78	788.162	1910.957	5.156	12.5	0.0	NO		NO	bb
9ուսուրդ դրդունունին	9 171026M1_10	Standard	12.500	3.78	672.689	1808.740	4.649	11.3	-9.8	NO		NO	bb

Work Order 1701439 Revision 1 Page 169 of 402

Vista Analytical Laboratory

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:24:20 Pacific Daylight Time

Printed: Friday, October 27, 2017 10:25:44 Pacific Daylight Time

Compound name: 13C2-6:2 FTS

Response Factor: 0.247918

RRF SD: 0.0352641, Relative SD: 14.2241

Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)

Curve type: RF

Dataset:

Section Control of Con	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 September States	1 171026M1_2	Standard	12.500	4.09	2164.565	9163.441	2.953	11.9	-4.7	NO	EBSTREET AND ALL STREET	NO	MM
2	2 171026M1_3	Standard	12.500	4.09	2370.950	9974.912	2.971	12.0	-4.1	NO		NO	мм
3	3 171026M1_4	Standard	12.500	4.10	2607.028	9625.220	3.386	13.7	9.3	NO		NO	ММ
4 Julia Walangangangangan	4 171026M1_5	Standard	12.500	4.10	2213.204	9702.345	2.851	11.5	-8.0	NO		NO	ММ
5	5 171026M1_6	Standard	12.500	4.09	2011.325	8490.614	2.961	11.9	-4.4	NO		NO	ММ
6	6 171026M1_7	Standard	12.500	4.10	2322.365	11764.812	2.467	10.0	-20.4	NO		NO	bb
7	7 171026M1_8	Standard	12.500	4.10	2423.382	9341.111	3.243	13.1	4.6	NO		NO	bb
8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	8 171026M1_9	Standard	12.500	4.10	2849.847	8996.989	3.959	16.0	27.8	NO		NO	мм
9 11 11 11 11 11 11 11 11 11 11 11 11 11	9 171026M1_10	Standard	12.500	4.10	3989.678	8181.460	6.096	24.6	96.7	NO		NO	bbX

Page 17 of 29

Compound name: 13C2-PFOA

Response Factor: 1.12024

RRF SD: 0.0576361, Relative SD: 5.14497

Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)

Curve type: RF

Approved Tours	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	4.15	9078.071	9163.441	12.384	11.1	-11.6	NO		NO	bb
2 100 100 100 100 100 100 100 100 100 10	2 171026M1_3	Standard	12.500	4.15	11620.861	9974.912	14.563	13.0	4.0	NO		NO	bb
3 impressible	3 171026M1_4	Standard	12.500	4.15	11362.964	9625.220	14.757	13.2	5.4	NO		NO	bb
4	4 171026M1_5	Standard	12.500	4.15	10917.326	9702.345	14.065	12.6	0.4	NO		NO	bb
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 171026M1_6	Standard	12.500	4.15	9732.542	8490.614	14.328	12.8	2.3	NO		NO	bb
6	6 171026M1_7	Standard	12.500	4.15	12620.936	11764.812	13.410	12.0	-4.2	NO		NO	bb
7	7 171026M1_8	Standard	12.500	4.15	10698.399	9341.111	14.316	12.8	2.2	NO		NO	bb
8	8 171026M1_9	Standard	12.500	4.15	10016.809	8996.989	13.917	12.4	-0.6	NO		NO	bb
9 26511111111115	9 171026M1_10	Standard	12.500	4.15	9351.515	8181.460	14.288	12.8	2.0	NO		NO	bb

Work Order 1701439 Revision 1 Page 170 of 402

Page 1 of 12

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Printed:

Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 26 Oct 2017 08:20:12

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Compound name: 13C5-PFNA Response Factor: 0.92855

RRF SD: 0.0475421, Relative SD: 5.12003

Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)

Curve type: RF

rigia (1867), como englister, Post (1988)	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 militari di mandali di Amerikana di Amerik	1 171026M1_2	Standard	12.500	4.59	10432.768	11155.522	11.690	12.6	0.7	NO		NO	bb
2	2 171026M1_3	Standard	12.500	4.59	10776.714	11986.115	11.239	12.1	-3.2	NO		NO	bb
3 11 1	3 171026M1_4	Standard	12.500	4.59	10136.376	10054.865	12.601	13.6	8.6	NO		NO	bb
4	4 171026M1_5	Standard	12.500	4.59	9401.615	10542.347	11.147	12.0	-4.0	NO		NO	bb
5	5 171026M1_6	Standard	12.500	4.59	8632.302	9806.811	11.003	11.8	-5.2	NO		NO	bb
6	6 171026M1_7	Standard	12.500	4.59	10614.531	11208.414	11.838	12.7	2.0	NO		NO	bb
7	7 171026M1_8	Standard	12.500	4.59	9136.932	10537.382	10.839	11.7	-6.6	NO		NO	bb
8	8 171026M1_9	Standard	12.500	4.59	9445.277	9958.859	11.855	12.8	2.1	NO		NO	bb
9	9 171026M1_10	Standard	12.500	4.59	8871.991	9053.401	12.250	13.2	5.5	NO		NO	bb

Compound name: 13C8-PFOSA

Response Factor: 0.24645

RRF SD: 0.0130448, Relative SD: 5.29309

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	4.64	2860.033	11341.706	3.152	12.8	2.3	NO		NO	bb
2	2 171026M1_3	Standard	12.500	4.64	2971.727	12520.988	2.967	12.0	-3.7	NO		NO	bb
3	3 171026M1_4	Standard	12.500	4.65	3347.137	13233.268	3.162	12.8	2.6	NO		NO	bb
4	4 171026M1_5	Standard	12.500	4.65	3119.570	13777.145	2.830	11.5	-8.1	NO		NO	bb
5	5 171026M1_6	Standard	12.500	4.64	2616.420	10608.499	3.083	12.5	0.1	NO		NO	bb
6	6 171026M1_7	Standard	12.500	4.65	3417.714	13855.948	3.083	12.5	0.1	NO		NO	bb
7	7 171026M1_8	Standard	12.500	4.65	3010.790	13032.397	2.888	11.7	-6.3	NO		NO	bb
8	8 171026M1_9	Standard	12.500	4.65	2679.938	10013.455	3.345	13.6	8.6	NO		NO	bb
9 7 111	9 171026M1_10	Standard	12.500	4.64	2509.948	9757.946	3.215	13.0	4.4	NO		NO	bb

Work Order 1701439 Revision 1 Page 171 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: 13C8-PFOS

Response Factor: 1.02732

RRF SD: 0.0754427, Relative SD: 7.34362

Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)

Curve type: RF

er de de la companya	# Name	Туре	Std. Conc	, RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Fla	g x=excluded
1 Control of the Control	1 171026M1_2	Standard	12.500	4.68	2514.781	2234.531	14.068	13.7	9.5	NO	NO	bb
2	2 171026M1_3	Standard	12.500	4.68	2269.787	2402.855	11.808	11.5	-8.1	NO	NO	bb
3	3 171026M1_4	Standard	12.500	4.68	2388.392	2260.597	13.207	12.9	2.8	NO	NO	bb
4	4 171026M1_5	Standard	12.500	4.68	2373.570	2315.592	12.813	12.5	-0.2	NO	NO	bb
5	5 171026M1_6	Standard	12.500	4.68	2090.799	1986.232	13.158	12.8	2.5	NO	NO	bb
6	6 171026M1_7	Standard	12.500	4.68	2570.850	2506.243	12.822	12.5	-0.2	NO	NO	bb
7	7 171026M1_8	Standard	12.500	4.68	2064.157	2328.353	11.082	10.8	-13.7	NO	NO	bb
8	8 171026M1_9	Standard	12.500	4.68	2233.150	2003.810	13.931	13.6	8.5	NO	NO	bb
9	9 171026M1_10	Standard	12.500	4.68	1965.412	1936.583	12.686	12.3	-1.2	NO	NO NO	bb

Page 2 of 12

Compound name: 13C2-PFDA

Response Factor: 0.945709

RRF SD: 0.0821174, Relative SD: 8.68316

Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT -	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	4.97	9937.673	9533.811	13.030	13.8	10.2	NO		NO	bb
2	2 171026M1_3	Standard	12.500	4.97	10867.054	12756.174	10.649	11.3	-9.9	NO		NO	bb
3	3 171026M1_4	Standard	12.500	4.97	10060.540	9677.285	12.995	13.7	9.9	NO		NO	bb
4	4 171026M1_5	Standard	12.500	4.97	10558.938	11273.634	11.708	12.4	-1.0	NO		NO	bb
5	5 171026M1_6	Standard	12.500	4.97	9200.564	10655.413	10.793	11.4	-8.7	NO		NO	bb
6	6 171026M1_7	Standard	12.500	4.98	12043.707	12000.405	12.545	13.3	6.1	NO		NO	bb
7	7 171026M1_8	Standard	12.500	4.97	9506.485	11033.647	10.770	11.4	-8.9	NO		NO	bb
8	8 171026M1_9	Standard	12.500	4.97	9169.604	10335.311	11.090	11.7	-6.2	NO		NO	bb
9	9 171026M1_10	Standard	12.500	4.97	9033.771	8813.177	12.813	13.5	8.4	NO		NO	bb

Work Order 1701439 Revision 1 Page 172 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: 13C2-8:2 FTS

Response Factor: 0.171094

RRF SD: 0.0340588, Relative SD: 19.9065

Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	4.94	1790.163	9533.811	2.347	13.7	9.7	NO	000000000000000000000000000000000000000	NO	MM
2	2 171026M1_3	Standard	12.500	4.94	1649.670	12756.174	1.617	9.4	-24.4	NO		NO	bb
3	3 171026M1_4	Standard	12.500	4.94	1643.484	9677.285	2.123	12.4	-0.7	NO		NO	bb
4	4 171026M1_5	Standard	12.500	4.94	1512.175	11273.634	1.677	9.8	-21.6	NO		NO	bb
5	5 171026M1_6	Standard	12.500	4.94	1698.864	10655.413	1.993	11.6	-6.8	NO		NO	bb
6	6 171026M1_7	Standard	12.500	4.94	1959.247	12000.405	2.041	11.9	-4.6	NO		NO	bb
7	7 171026M1_8	Standard	12.500	4.94	2085.414	11033.647	2.363	13.8	10.5	NO		NO	bb
8	8 171026M1_9	Standard	12.500	4.94	2439.029	10335.311	2.950	17.2	37.9	NO		NO	MM
9	9 171026M1_10	Standard	12.500	4.94	3475.574	8813.177	4.930	28.8	130.5	NO		NO _	bbX

Page 3 of 12

Compound name: d3-N-MeFOSAA

Response Factor: 0.357633

RRF SD: 0.0388742, Relative SD: 10.8699

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

eranton en printipi de la como de La como de la como de l	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 - հետանանական հետանական հետանական հետանական հետանական հետանական հետանական հետանական հետանական հետանական հետա 1 - հետանական հետանա	1 171026M1_2	Standard	12.500	5.12	4283.565	11341.706	4.721	13.2	5.6	NO	AND THE PERSON NAMED IN COLUMN TO TH	NO	bb
2	2 171026M1_3	Standard	12.500	5.12	4531.096	12520.988	4.524	12.6	1.2	NO		NO	bb
3	3 171026M1_4	Standard	12.500	5.12	4244.738	13233.268	4.010	11.2	-10.3	NO		NO	bb
4	4 171026M1_5	Standard	12.500	5.12	4230.691	13777.145	3.839	10.7	-14.1	NO		NO	bb
5	5 171026M1_6	Standard	12.500	5.12	3763.122	10608.499	4.434	12.4	-0.8	NO		NO	bb
6	6 171026M1_7	Standard	12.500	5.13	5027.620	13855.948	4.536	12.7	1.5	NO		NO	bb
7	7 171026M1_8	Standard	12.500	5.13	4070.543	13032.397	3.904	10.9	-12.7	NO		NO	bb
8	8 171026M1_9	Standard	12.500	5.13	4156.273	10013.455	5.188	14.5	16.1	NO		NO	bb
9	9 171026M1_10	Standard	12.500	5.12	3964.672	9757.946	5.079	14.2	13.6	NO		NO	bb

Work Order 1701439 Revision 1 Page 173 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: d5-N-EtFOSAA

Response Factor: 0.359693

RRF SD: 0.0347331, Relative SD: 9.65633

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

2006	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	5.28	4328.346	11341.706	4.770	13.3	6.1	NO		NO	bb
2	2 171026M1_3	Standard	12.500	5.28	4608.545	12520.988	4.601	12.8	2.3	NO		NO	bb
3	3 171026M1_4	Standard	12.500	5.28	4596.165	13233.268	4.341	12.1	-3.4	NO		NO	bb
4	4 171026M1_5	Standard	12.500	5.28	4598.011	13777.145	4.172	11.6	-7.2	NO		NO	bb
5	5 171026M1_6	Standard	12.500	5.28	4056.309	10608.499	4.780	13.3	6.3	NO		NO	bb
6	6 171026M1_7	Standard	12.500	5.28	4795.402	13855.948	4.326	12.0	-3.8	NO		NO	bb
7	7 171026M1_8	Standard	12.500	5.28	3860.981	13032.397	3.703	10.3	-17.6	NO		NO	bb
8	8 171026M1_9	Standard	12.500	5.28	4197.738	10013.455	5.240	14.6	16.5	NO		NO	bb
9	9 171026M1_10	Standard	12.500	5.28	3537.789	9757.946	4.532	12.6	0.8	NO		NO _	bb

Page 4 of 12

Compound name: 13C2-PFUdA

Response Factor: 1.04482

RRF SD: 0.0695142, Relative SD: 6.65325

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

erroles repullulario da 11 de 2012, producia da Lucia 15 de 2013, producia da Lucia	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	5.30	11922.407	11341.706	13.140	12.6	0.6	NO	NO	bb
2	2 171026M1_3	Standard	12.500	5.30	14098.658	12520.988	14.075	13.5	7.8	NO	NO	ММ
3	3 171026M1_4	Standard	12.500	5.30	14676.305	13233.268	13.863	13.3	6.1	NO	NO	ММ
4	4 171026M1_5	Standard	12.500	5.30	13559.280	13777.145	12.302	11.8	-5.8	NO	NO	ММ
5	5 171026M1_6	Standard	12.500	5.30	11695.059	10608.499	13.780	13.2	5.5	NO	NO	MM
6	6 171026M1_7	Standard	12.500	5.30	12899.332	13855.948	11.637	11.1	-10.9	NO	NO	MM
7.2000 - 3.000	7 171026M1_8	Standard	12.500	5.30	12601.697	13032.397	12.087	11.6	-7.5	NO	NO	bb
8	8 171026M1_9	Standard	12.500	5.30	10458.104	10013.455	13.055	12.5	-0.0	NO	NO	bb
9	9 171026M1_10	Standard	12.500	5.30	10618.298	9757.946	13.602	13.0	4.1	NO	NO	bb

Work Order 1701439 Revision 1 Page 174 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: 13C2-PFDoA

Response Factor: 1.14113

RRF SD: 0.0738866, Relative SD: 6.47484

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

2 80 - 050 000	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	5.59	13820.625	11341.706	15.232	13.3	6.8	NO		NO	bb
2	2 171026M1_3	Standard	12.500	5.59	14554.974	12520.988	14.531	12.7	1.9	NO		NO	bb
3	3 171026M1_4	Standard	12.500	5.59	14053.078	13233.268	13.274	11.6	-6.9	NO		NO	bb
4 Page Manual Control of the Control	4 171026M1_5	Standard	12.500	5.59	13740.559	13777.145	12.467	10.9	-12.6	NO		NO	bb
5 June 1914	5 171026M1_6	Standard	12.500	5.59	12183.269	10608.499	14.356	12.6	0.6	NO		NO	bb
6	6 171026M1_7	Standard	12.500	5.59	16125.540	13855.948	14.547	12.7	2.0	NO		NO	bb
7	7 171026M1_8	Standard	12.500	5.59	14441.244	13032.397	13.851	12.1	-2.9	NO		NO	bb
8	8 171026M1_9	Standard	12.500	5.59	12225.404	10013.455	15.261	13.4	7.0	NO		NO	bb
9 proping the second	9 171026M1_10	Standard	12.500	5.59	11598.803	9757.946	14.858	13.0	4.2	NO		NO	bb

Page 5 of 12

Compound name: d3-N-MeFOSA

Response Factor: 0.0934516

RRF SD: 0.00993873, Relative SD: 10.6352

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

Carlos de la companya de la companya Carlos de la companya	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
richtenberchericher Landeren ender Pfak zweigen Herrentenberchertenbercher Landeren ernenbercher in bilder	1 171026M1_2	Standard	150.000	5.62	13893.939	11341.706	15.313	163.9	9.2	NO	6.9 1-0.0	NO	bb
2	2 171026M1_3	Standard	150.000	5.62	15405.037	12520.988	15.379	164.6	9.7	NO		NO	bb
3	3 171026M1_4	Standard	150.000	5.62	14020.292	13233.268	13.243	141.7	-5.5	NO		NO	bb
4	4 171026M1_5	Standard	150.000	5.63	13929.710	13777.145	12.638	135.2	-9.8	NO		NO	bb
5	5 171026M1_6	Standard	150.000	5.62	12908.811	10608.499	15.210	162.8	8.5	NO		NO	bd
6	6 171026M1_7	Standard	150.000	5.63	13491.567	13855.948	12.171	130.2	-13.2	NO		NO	bb
7	7 171026M1_8	Standard	150.000	5.63	12434.965	13032.397	11.927	127.6	-14.9	NO		NO	bb
8	8 171026M1_9	Standard	150.000	5.63	12026.860	10013.455	15.013	160.7	7.1	NO		NO	bb
9	9 171026M1_10	Standard	150.000	5.63	11915.382	9757.946	15.264	163.3	8.9	NO		NO	bb

Work Order 1701439 Revision 1 Page 175 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: 13C2-PFTeDA

Response Factor: 0.933898

RRF SD: 0.108658, Relative SD: 11.6349

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

ir a shiring or full think full thin gard	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	6.06	9377.037	11341.706	10.335	11.1	-11.5	NO	2000 g 1 10 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	NO	bb
2	2 171026M1_3	Standard	12.500	6.06	10575.495	12520.988	10.558	11.3	-9.6	NO		NO	bb
3	3 171026M1_4	Standard	12.500	6.06	10644.371	13233.268	10.055	10.8	-13.9	NO		NO	bb
4	4 171026M1_5	Standard	12.500	6.06	11884.834	13777.145	10.783	11.5	-7.6	NO		NO	bb
5	5 171026M1_6	Standard	12.500	6.06	10706.537	10608.499	12.616	13.5	8.1	NO		NO	bb
6	6 171026M1_7	Standard	12.500	6.06	12533.464	13855.948	11.307	12.1	-3.1	NO		NO	bb
7	7 171026M1_8	Standard	12.500	6.06	13048.656	13032.397	12.516	13.4	7.2	NO		NO	bb
8	8 171026M1_9	Standard	12.500	6.07	11072.916	10013.455	13.823	14.8	18.4	NO		NO	bb
9 partitude de la company	9 171026M1_10	Standard	12.500	6.06	10205.076	9757.946	13.073	14.0	12.0	NO		NO	bb

Page 6 of 12

Compound name: d5-N-ETFOSA

Response Factor: 0.132054

RRF SD: 0.0131962, Relative SD: 9.99304

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

Technical in the Manager of the	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	150.000	6.04	19832.848	11341.706	21.858	165.5	10.4	NO		NO	bb
2	2 171026M1_3	Standard	150.000	6.04	21744.625	12520.988	21.708	164.4	9.6	NO		NO	bb
3	3 171026M1_4	Standard	150.000	6.04	20019.549	13233.268	18.910	143.2	-4.5	NO		NO	bb
4 minute of the second	4 171026M1_5	Standard	150.000	6.04	19708.096	13777.145	17.881	135.4	-9.7	NO		NO	bb
5	5 171026M1_6	Standard	150.000	6.04	19092.957	10608.499	22.497	170.4	13.6	NO		NO	bb
6	6 171026M1_7	Standard	150.000	6.04	19619.416	13855.948	17.699	134.0	-10.6	NO		NO	bb
7	7 171026M1_8	Standard	150.000	6.04	18301.496	13032.397	17.554	132.9	-11.4	NO		NO	bb
8	8 171026M1_9	Standard	150.000	6.04	16908.625	10013.455	21.107	159.8	6.6	NO		NO	bb
9	9 171026M1_10	Standard	150.000	6.04	14876.408	9757.946	19.057	144.3	-3.8	NO		NO	bb

Work Order 1701439 Revision 1 Page 176 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: 13C2-PFHxDA

Response Factor: 0.809323

RRF SD: 0.161699, Relative SD: 19.9795

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

1100	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	5.000	6.39	4102.797	11341.706	4.522	5.6	11.7	NO		NO	MM
2	2 171026M1_3	Standard	5.000	6.39	4597.595	12520.988	4.590	5.7	13.4	NO		NO	MM
3	3 171026M1_4	Standard	5.000	6.39	3582.335	13233.268	3.384	4.2	-16.4	NO		NO	MM
4 management	4 171026M1_5	Standard	5.000	6.40	3826.472	13777.145	3.472	4.3	-14.2	NO		NO	MM
5	5 171026M1_6	Standard	5.000	6.39	4271.142	10608.499	5.033	6.2	24.4	NO		NO	MM
6	6 171026M1_7	Standard	5.000	6.40	3093.651	13855.948	2.791	3.4	-31.0	NO		NO	MM
7	7 171026M1_8	Standard	5.000	6.39	3894.998	13032.397	3.736	4.6	-7.7	NO		NO	MM
8	8 171026M1_9	Standard	5.000	6.40	3882.136	10013.455	4.846	6.0	19.8	NO		NO	MM
9	9 171026M1_10	Standard	5.000	6.40	4546.360	9757.946	5.824	7.2	43.9	NO		NO	MMX

Page 7 of 12

Compound name: d7-N-MeFOSE

Response Factor: 0.141984

RRF SD: 0.013133, Relative SD: 9.24964

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	150.000	6.22	20802.461	11341.706	22.927	161.5	7.7	NO		NO	bb
2	2 171026M1_3	Standard	150.000	6.22	23510.152	12520.988	23.471	165.3	10.2	NO		NO	bb
3	3 171026M1_4	Standard	150.000	6.22	21267.461	13233.268	20.089	141.5	-5.7	NO		NO	bb
4	4 171026M1_5	Standard	150.000	6.22	21867.092	13777.145	19.840	139.7	-6.8	NO		NO	bb
5 հունականությունը	5 171026M1_6	Standard	150.000	6.22	20238.715	10608.499	23.847	168.0	12.0	NO		NO	bb
6	6 171026M1_7	Standard	150.000	6.22	22323.734	13855.948	20.139	141.8	-5.4	NO		NO	bb
Z same spicusiting	7 171026M1_8	Standard	150.000	6.22	18689.719	13032.397	17.926	126.3	-15.8	NO		NO	bb
8	8 171026M1_9	Standard	150.000	6.22	17806.627	10013.455	22.228	156.6	4.4	NO		NO	bb
9	9 171026M1_10	Standard	150.000	6.22	16557.975	9757.946	21.211	149.4	-0.4	NO		NO _	bb

Work Order 1701439 Revision 1 Page 177 of 402

Page 8 of 12

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: d9-N-EtFOSE

Response Factor: 0.130657

RRF SD: 0.014186, Relative SD: 10.8574

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1 Company of the	1 171026M1_2	Standard	150.000	6.37	18723.795	11341.706	20.636	157.9	5.3	NO	NO	bb
2	2 171026M1_3	Standard	150.000	6.37	21507.340	12520.988	21.471	164.3	9.6	NO	NO	bb
3	3 171026M1_4	Standard	150.000	6.37	19338.682	13233.268	18.267	139.8	-6.8	NO	NO	bb
4 Surpring the second	4 171026M1_5	Standard	150.000	6.37	20850.943	13777.145	18.918	144.8	-3.5	NO	NO	bb
5	5 171026M1_6	Standard	150.000	6.37	19199.350	10608.499	22.623	173.1	15.4	NO	NO	bb
6 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 171026M1_7	Standard	150.000	6.37	21197.688	13855.948	19.123	146.4	-2.4	NO	NO	bb
7	7 171026M1_8	Standard	150.000	6.37	16038.620	13032.397	15.383	117.7	-21.5	NO	NO	bb
8	8 171026M1_9	Standard	150.000	6.37	16802.908	10013.455	20.975	160.5	7.0	NO	NO	bb
9	9 171026M1_10	Standard	150.000	6.37	14824.236	9757.946	18.990	145.3	-3.1	NO	NO	bb

Compound name: 13C4-PFBA

Response Factor: 1

RRF SD: 8.77708e-017, Relative SD: 8.77708e-015

Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std, Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	1.24	8131.078	8131.078	12.500	12.5	0.0	NO	NO	bb
2	2 171026M1_3	Standard	12.500	1.25	9182.603	9182.603	12.500	12.5	0.0	NO	NO	bb
3	3 171026M1_4	Standard	12.500	1.25	8448.222	8448.222	12.500	12.5	0.0	NO	NO	bb
4	4 171026M1_5	Standard	12.500	1.25	8533.363	8533.363	12.500	12.5	0.0	NO	NO	bb
5	5 171026M1_6	Standard	12.500	1.25	7846.642	7846.642	12.500	12.5	0.0	NO	NO	bb
6	6 171026M1_7	Standard	12.500	1.23	9461.365	9461.365	12.500	12.5	0.0	NO	NO	bb
700650000000	7 171026M1_8	Standard	12.500	1.25	7997.517	7997.517	12.500	12.5	0.0	NO	NO	bb
8	8 171026M1_9	Standard	12.500	1.25	7885.960	7885.960	12.500	12.5	0.0	NO	NO	bb
9	9 171026M1_10	Standard	12.500	1.25	7535.223	7535.223	12.500	12.5	0.0	NO	NO	bb

Work Order 1701439 Revision 1 Page 178 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: 13C5-PFHxA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Fla	ig x=excluded
1	1 171026M1_2	Standard	12.500	3.00	10203.109	10203.109	12.500	12.5	0.0	NO	NO	bb
2	2 171026M1_3	Standard	12.500	3.00	12595.204	12595.204	12.500	12.5	0.0	NO	NO	bb
3 April 18 The Special Control	3 171026M1_4	Standard	12.500	3.00	11545.891	11545.891	12.500	12.5	0.0	NO	NO	bb
4 maring and the barries	4 171026M1_5	Standard	12.500	3.00	11375.869	11375.869	12.500	12.5	0.0	NO	NO	bb
5	5 171026M1_6	Standard	12.500	3.00	10076.924	10076.924	12.500	12.5	0.0	NO	NO	bb
6	6 171026M1_7	Standard	12.500	3.00	13109.532	13109.532	12.500	12.5	0.0	NO	NO	bb
7	7 171026M1_8	Standard	12.500	3.00	11706.181	11706.181	12.500	12.5	0.0	NO	NO	bb
8	8 171026M1_9	Standard	12.500	3.00	9834.428	9834.428	12.500	12.5	0.0	NO	NO	bb
9 illi Lidaner kapasar in	9 171026M1_10	Standard	12.500	3.00	9519.610	9519.610	12.500	12.5	0.0	NO	NO	bb

Page 9 of 12

Compound name: 13C3-PFHxS

Response Factor: 1

RRF SD: 7.85046e-017, Relative SD: 7.85046e-015

Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	3.77	2092.944	2092.944	12.500	12.5	0.0	NO		NO	bb
2	2 171026M1_3	Standard	12.500	3.78	2304.136	2304.136	12.500	12.5	0.0	NO		NO	bb
3	3 171026M1_4	Standard	12.500	3.77	2153.796	2153.796	12.500	12.5	0.0	NO		NO	bb
4	4 171026M1_5	Standard	12.500	3.78	2054.447	2054.447	12.500	12.5	0.0	NO		NO	bb
5	5 171026M1_6	Standard	12.500	3.78	1888.806	1888.806	12.500	12.5	0.0	NO		NO	bb
6	6 171026M1_7	Standard	12.500	3.78	2284.629	2284.629	12.500	12.5	0.0	NO		NO	bb
7	7 171026M1_8	Standard	12.500	3.78	1956.825	1956.825	12.500	12.5	0.0	NO		NO	bb
8	8 171026M1_9	Standard	12.500	3.78	1910.957	1910.957	12.500	12.5	0.0	NO		NO	bb
9 100 100 miles (1916)	9 171026M1_10	Standard	12.500	3.78	1808.740	1808.740	12.500	12.5	0.0	NO		NO	bb

Work Order 1701439 Revision 1 Page 179 of 402

Quantify Compound Summary Report MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)

Curve type: RF

The second prior of the contract of the contra	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
Topics and the second	1 171026M1_2	Standard	12.500	4.15	9163.441	9163.441	12.500	12.5	0.0	NO		NO	bb
2	2 171026M1_3	Standard	12.500	4.15	9974.912	9974.912	12.500	12.5	0.0	NO		NO	bb
3	3 171026M1_4	Standard	12.500	4.15	9625.220	9625.220	12.500	12.5	0.0	NO		NO	bb
4	4 171026M1_5	Standard	12.500	4.15	9702.345	9702.345	12.500	12.5	0.0	NO		NO	bb
5	5 171026M1_6	Standard	12.500	4.15	8490.614	8490.614	12.500	12.5	0.0	NO		NO	bb
6	6 171026M1_7	Standard	12.500	4.15	11764.812	11764.812	12.500	12.5	0.0	NO		NO	bb
7	7 171026M1_8	Standard	12.500	4.15	9341.111	9341.111	12.500	12.5	0.0	NO		NO	bb
8 100 3000	8 171026M1_9	Standard	12.500	4.15	8996.989	8996.989	12.500	12.5	0.0	NO		NO	bb
9	9 171026M1_10	Standard	12.500	4.15	8181.460	8181. 4 60	12.500	12.5	0.0	NO		NO	bb

Page 10 of 12

Compound name: 13C9-PFNA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	4.59	11155.522	11155.522	12.500	12.5	0.0	NO		NO	bb
2	2 171026M1_3	Standard	12.500	4.59	11986.115	11986.115	12.500	12.5	0.0	NO		NO	bb
3	3 171026M1_4	Standard	12.500	4.59	10054.865	10054.865	12.500	12.5	0.0	NO		NO	bb
4	4 171026M1_5	Standard	12.500	4.59	10542.347	10542.347	12.500	12.5	0.0	NO		NO	bb
5	5 171026M1_6	Standard	12.500	4.59	9806.811	9806.811	12.500	12.5	0.0	NO		NO	bb
6	6 171026M1_7	Standard	12.500	4.59	11208.414	11208.414	12.500	12.5	0.0	NO		NO	bb
7,000-00-00-00-00-00-00-00-00-00-00-00-00	7 171026M1_8	Standard	12.500	4.59	10537.382	10537.382	12.500	12.5	0.0	NO		NO	bb
8	8 171026M1_9	Standard	12.500	4.59	9958.859	9958.859	12.500	12.5	0.0	NO		NO	bb
9	9 171026M1_10	Standard	12.500	4.59	9053.401	9053.401	12.500	12.5	0.0	NO		NO	bb

Work Order 1701439 Revision 1 Page 180 of 402

Quantify Compound Summary Report MassLynx W4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Printed: Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 1.17757e-016, Relative SD: 1.17757e-014

Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)

Curve type: RF

# 100 (100 (101) # 100 (100) (101)	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	4.68	2234.531	2234.531	12.500	12.5	0.0	NO		NO	bb
2	2 171026M1_3	Standard	12.500	4.68	2402.855	2402.855	12.500	12.5	0.0	NO		NO	bb
3	3 171026M1_4	Standard	12.500	4.68	2260.597	2260.597	12.500	12.5	0.0	NO		NO	bb
4	4 171026M1_5	Standard	12.500	4.68	2315.592	2315.592	12.500	12.5	0.0	NO		NO	bb
5	5 171026M1_6	Standard	12.500	4.68	1986.232	1986.232	12.500	12.5	0.0	NO		NO	bb
6	6 171026M1_7	Standard	12.500	4.68	2506.243	2506.243	12.500	12.5	0.0	NO		NO	bb
7	7 171026M1_8	Standard	12.500	4.68	2328.353	2328.353	12.500	12.5	0.0	NO		NO	bb
8	8 171026M1_9	Standard	12.500	4.68	2003.810	2003.810	12.500	12.5	0.0	NO		NO	bb
9	9 171026M1_10	Standard	12.500	4.68	1936.583	1936.583	12.500	12.5	0.0	NO		NO	bb

Page 11 of 12

Compound name: 13C6-PFDA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	4.97	9533.811	9533.811	12.500	12.5	0.0	NO		NO	bb
2	2 171026M1_3	Standard	12.500	4.97	12756.174	12756.174	12.500	12.5	0.0	NO		NO	bb
3	3 171026M1_4	Standard	12.500	4.97	9677.285	9677.285	12.500	12.5	0.0	NO		NO	bb
4	4 171026M1_5	Standard	12.500	4.97	11273.634	11273.634	12.500	12.5	0.0	NO		NO	bb
5	5 171026M1_6	Standard	12.500	4.97	10655.413	10655.413	12.500	12.5	0.0	NO		NO	bb
6	6 171026M1_7	Standard	12.500	4.97	12000.405	12000.405	12.500	12.5	0.0	NO		NO	bb
7. 19. 3. 10. 10. 10.	7 171026M1_8	Standard	12.500	4.97	11033.647	11033.647	12.500	12.5	0.0	NO		NO	bb
8	8 171026M1_9	Standard	12.500	4.97	10335.311	10335.311	12.500	12.5	0.0	NO		NO	bb
9	9 171026M1_10	Standard	12.500	4.97	8813.177	8813.177	12.500	12.5	0.0	NO		NO	bb

Work Order 1701439 Revision 1 Page 181 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:36:18 Pacific Daylight Time

Compound name: 13C7-PFUnA

Response Factor: 1

RRF SD: 5.55112e-017, Relative SD: 5.55112e-015

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171026M1_2	Standard	12.500	5.30	11341.706	11341.706	12.500	12.5	0.0	NO		NO	bb
2	2 171026M1_3	Standard	12.500	5.30	12520.988	12520.988	12.500	12.5	0.0	NO		NO	bb
3	3 171026M1_4	Standard	12.500	5.30	13233.268	13233.268	12.500	12.5	0.0	NO		NO	bb
4 Maria (1977)	4 171026M1_5	Standard	12.500	5.30	13777.145	13777.145	12.500	12.5	0.0	NO		NO	bb
5	5 171026M1_6	Standard	12.500	5.30	10608.499	10608.499	12.500	12.5	0.0	NO		NO	bb
6	6 171026M1_7	Standard	12.500	5.30	13855.948	13855.948	12.500	12.5	0.0	NO		NO	MM
7	7 171026M1_8	Standard	12.500	5.30	13032.397	13032.397	12.500	12.5	0.0	NO		NO	MM
8	8 171026M1_9	Standard	12.500	5.30	10013.455	10013.455	12.500	12.5	0.0	NO		NO	MM
9	9 171026M1_10	Standard	12.500	5.30	9757.946	9757.946	12.500	12.5	0.0	NO		NO	bb

Page 12 of 12

Work Order 1701439 Revision 1 Page 182 of 402

MassLynx MassLynx V4.1 SCN 945

Page 1 of 1

Dataset:

Untitled

Last Altered: Printed: Friday, October 27, 2017 08:48:34 Pacific Daylight Time Friday, October 27, 2017 08:48:47 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 26 Oct 2017 08:20:12 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 26 Oct 2017 16:54:06

Compound name: PFBA

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Name	ID .	Acq.Date	Acq.Time
1 1 1	171026M1_1	IPA	26-Oct-17	09:14:50
2	171026M1_2	ST171026M1-1 PFC CS-2 17I3006	26-Oct-17	09:26:00
3	171026M1_3	ST171026M1-2 PFC CS-1 17I3007	26-Oct-17	09:37:20
4	171026M1_4	ST171026M1-3 PFC CS0 17J1805	26-Oct-17	09:48:39
5	171026M1_5	ST171026M1-4 PFC CS1 17/3009 (0)	26-Oct-17	09:59:50
6	171026M1_6	ST171026M1-5 PFC CS2 17J2519	26-Oct-17	10:11:00
7	171026M1_7	ST171026M1-6 PFC CS3 17J1806	26-Oct-17	10:22:11
8	171026M1_8	ST171026M1-7 PFC CS4 17J2102	26-Oct-17	10:33:24
9	171026M1_9	ST171026M1-8 PFC CS5 17J2101	26-Oct-17	10:44:36
10	171026M1_10	ST171026M1-9 PFC CS6 17J2517	26-Oct-17	10:55:46
11	171026M1_11	ST171026M1-10 PFC CS7 17J2518	26-Oct-17	11:07:20
12	171026M1_12	IPA	26-Oct-17	11:18:50
13	171026M1_13	ICV171026M1-1 PFC ICV 17I3003	26-Oct-17	11:30:01
14	171026M1_14	IPA	26-Oct-17	11:41:12

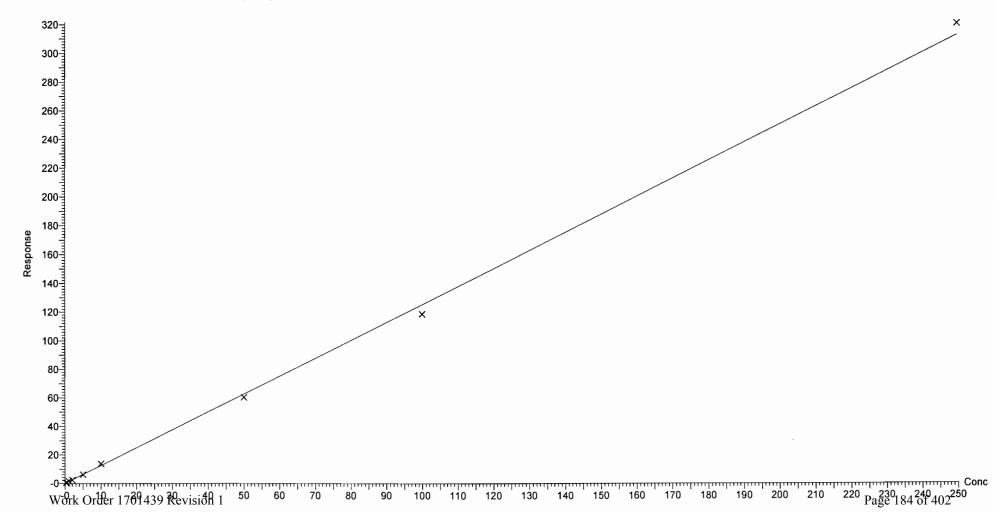
Work Order 1701439 Revision 1 Page 183 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 26 Oct 2017 08:20:12


Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Compound name: PFBA

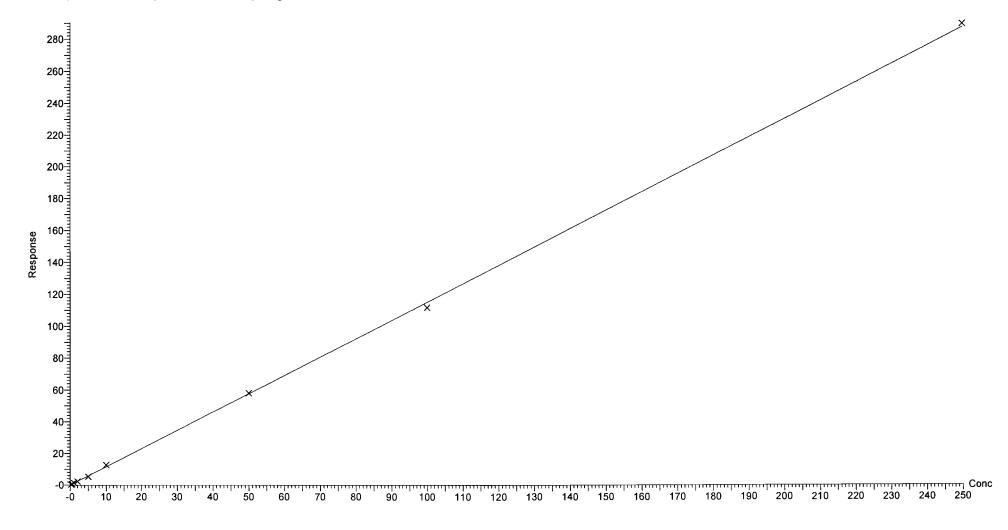
Correlation coefficient: r = 0.999162, r^2 = 0.998324

Calibration curve: 1.25384 * x + -0.0149356

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:


Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFPeA

Correlation coefficient: r = 0.999675, $r^2 = 0.999351$

Calibration curve: 1.1515 * x + 0.0271081

Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

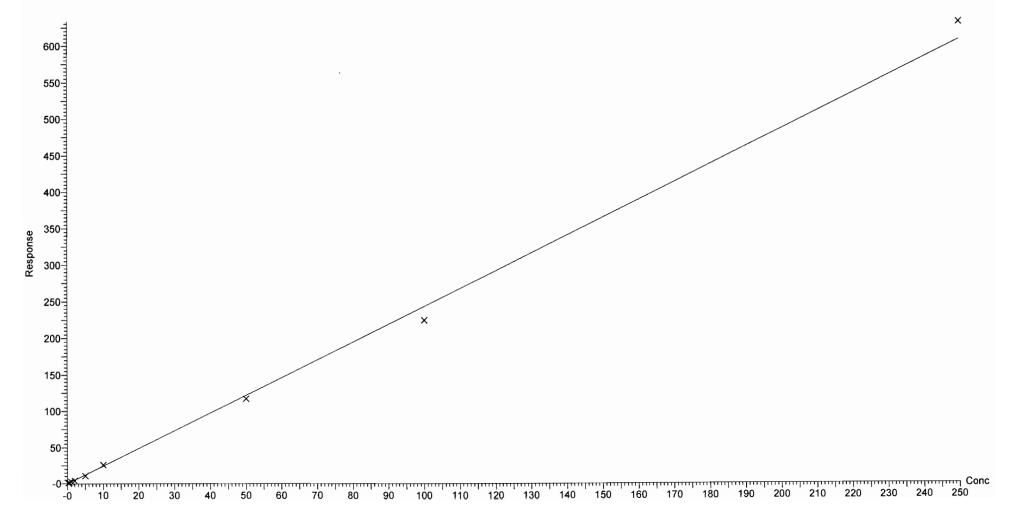
Work Order 1701439 Revision 1 Page 185 of 402

,

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Dataset:


Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFBS

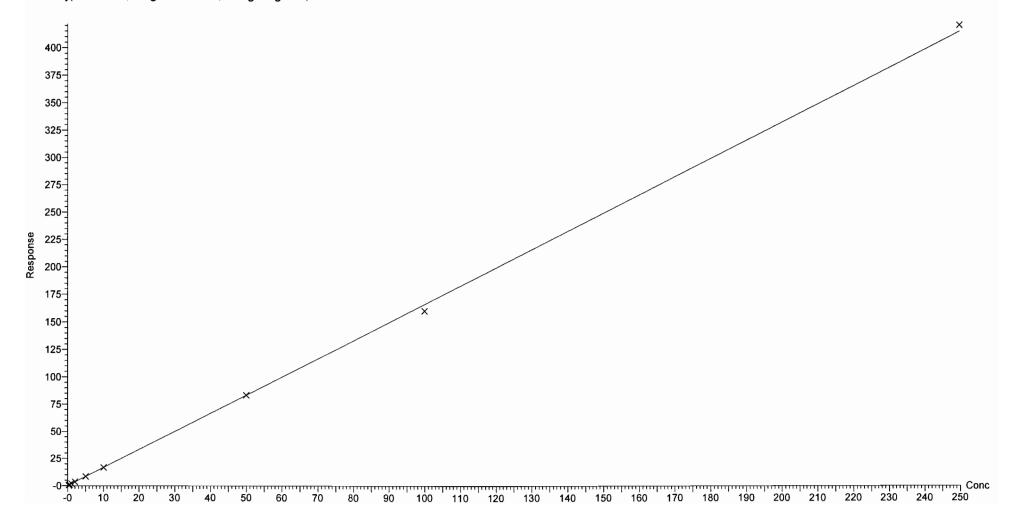
Correlation coefficient: r = 0.998426, $r^2 = 0.996854$

Calibration curve: 2.43502 * x + 0.00496287

Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 186 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.gld


Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Printed: Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: r = 0.999732, $r^2 = 0.999465$

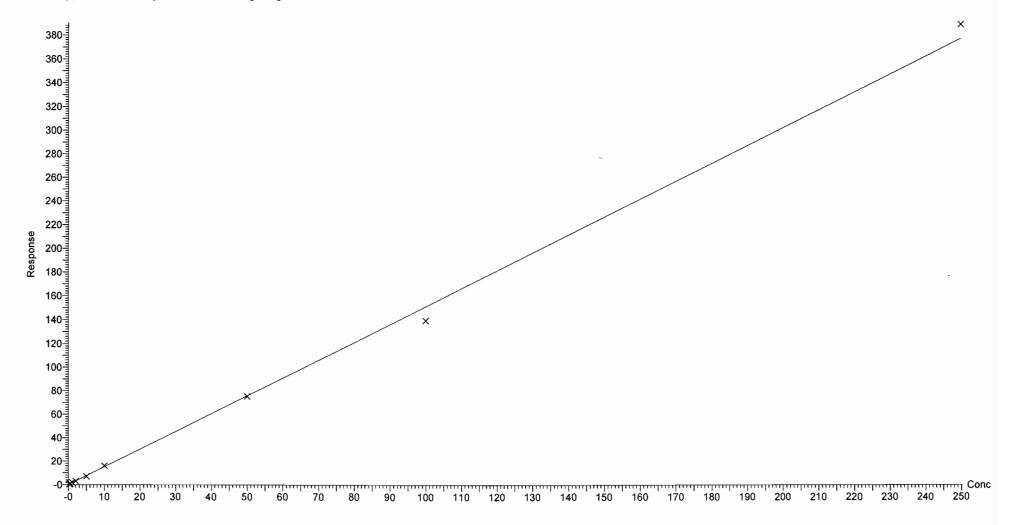
Calibration curve: 1.66208 * x + 0.0769658

Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 187 of 402

Dataset: U:\Q4.PF

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld


Last Altered: Printed:

Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

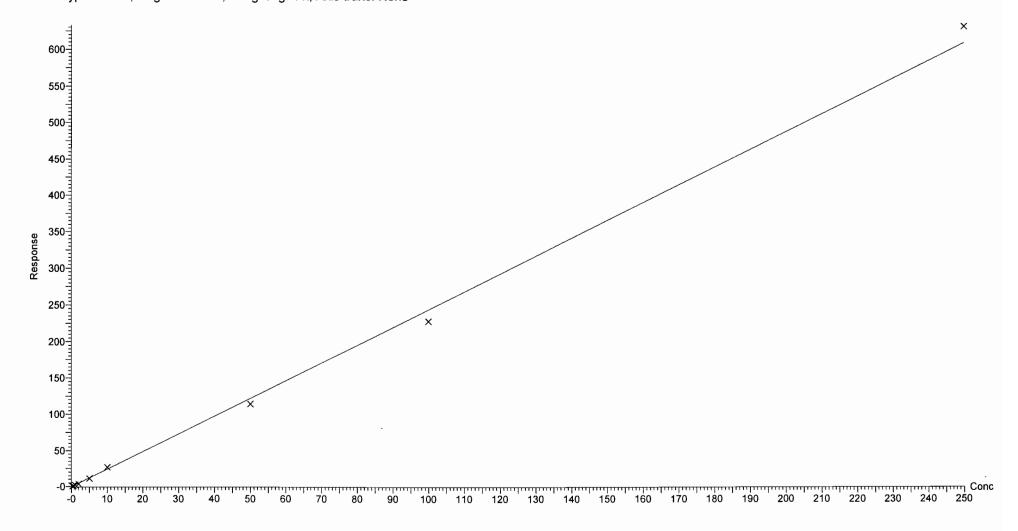
Compound name: PFHpA

Correlation coefficient: r = 0.998813, r^2 = 0.997628 Calibration curve: 1.51217 * x + -0.00204214

Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 188 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld


Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Printed: Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: L-PFHxS

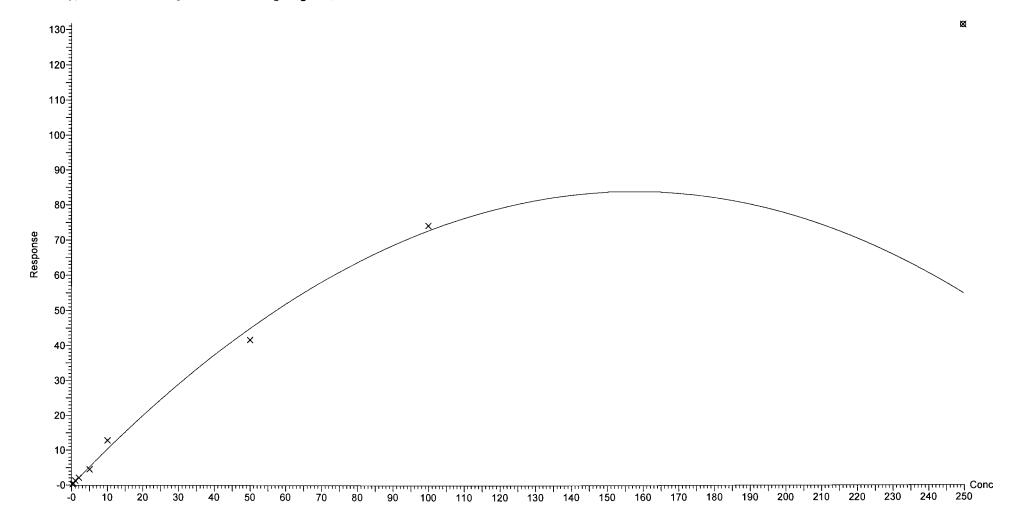
Correlation coefficient: r = 0.998527, $r^2 = 0.997056$

Calibration curve: 2.44187 * x + -0.197337

Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 189 of 402

Page 7 of 26


Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Printed: Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: 6:2 FTS

Coefficient of Determination: R^2 = 0.990378

Calibration curve: -0.00338904 * x^2 + 1.06688 * x + -0.0276541 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

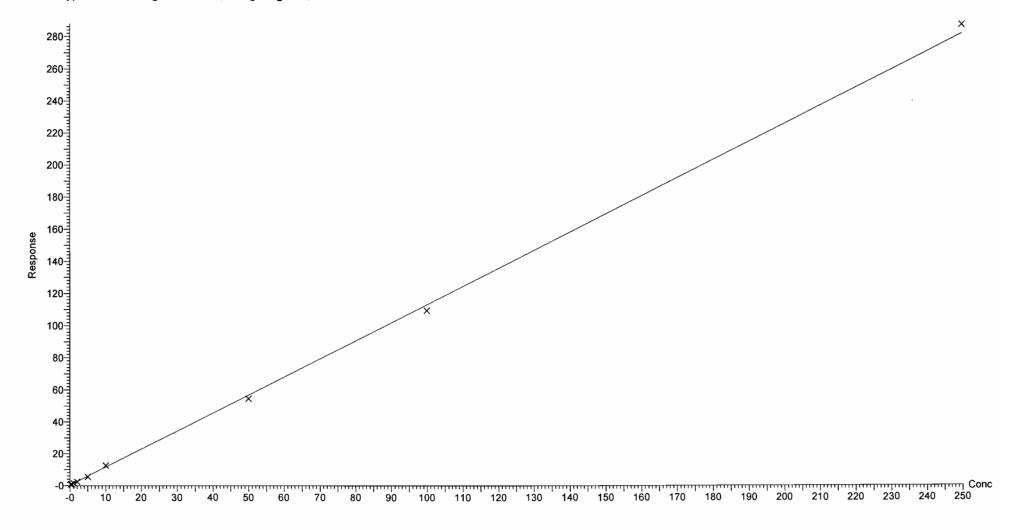
Work Order 1701439 Revision 1 Page 190 of 402

Vista Analytical Laboratory Q1

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:


Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: L-PFOA

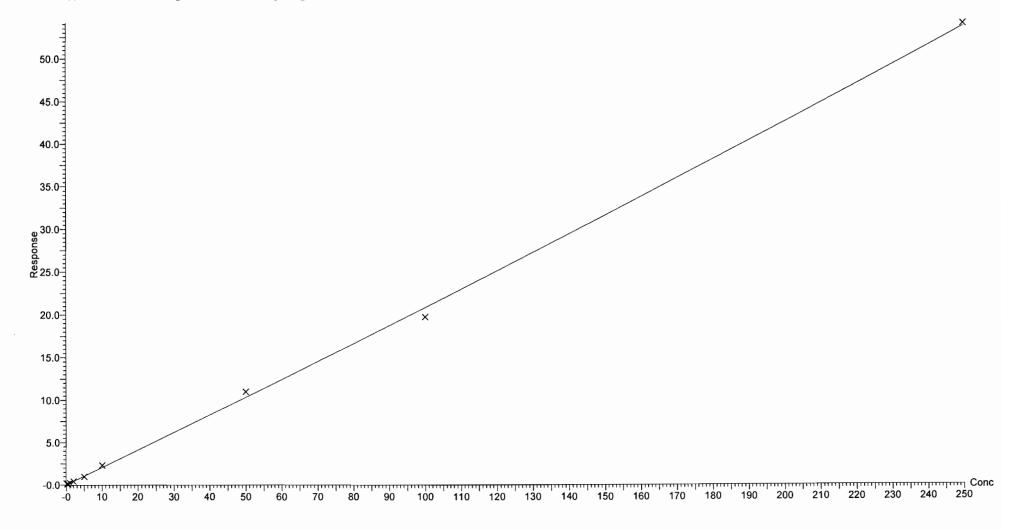
Correlation coefficient: r = 0.999419, $r^2 = 0.998838$

Calibration curve: 1.12797 * x + 0.284504

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld


Last Altered: Printed:

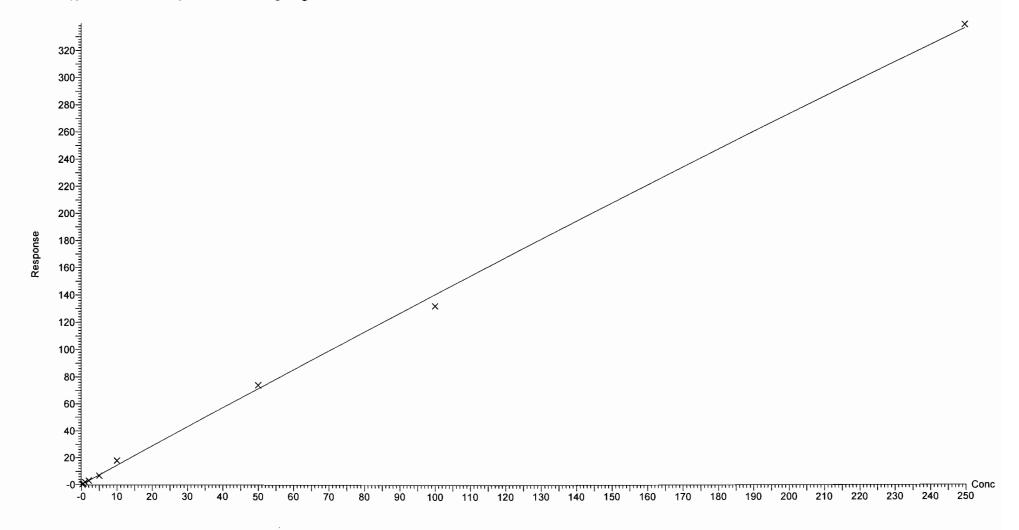
Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFHpS

Coefficient of Determination: R^2 = 0.998365

Calibration curve: 4.65786e-005 * x^2 + 0.203609 * x + 0.0252184 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Page 10 of 26


Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Printed: Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFNA

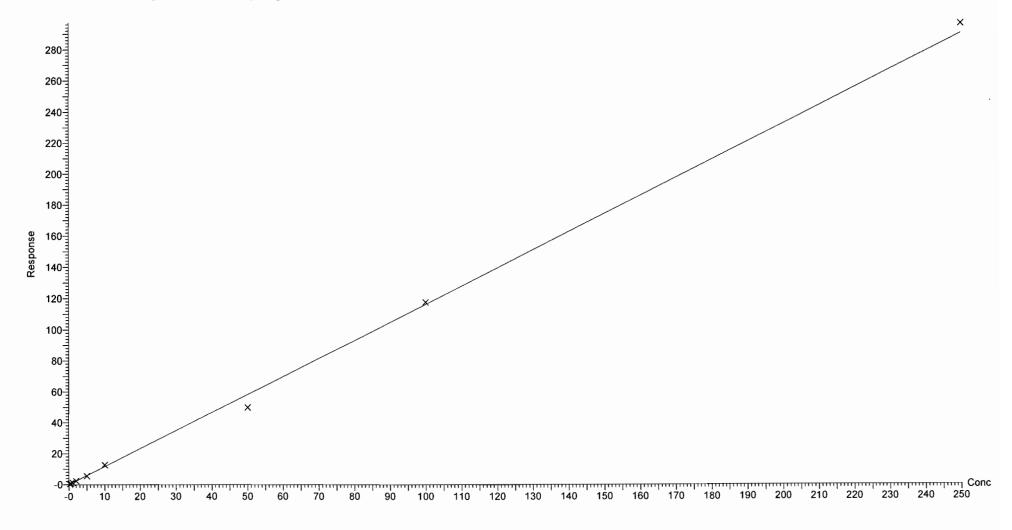
Coefficient of Determination: R^2 = 0.997109

Calibration curve: -0.000379675 * x^2 + 1.44302 * x + 0.0895267 Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 193 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:


Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFOSA

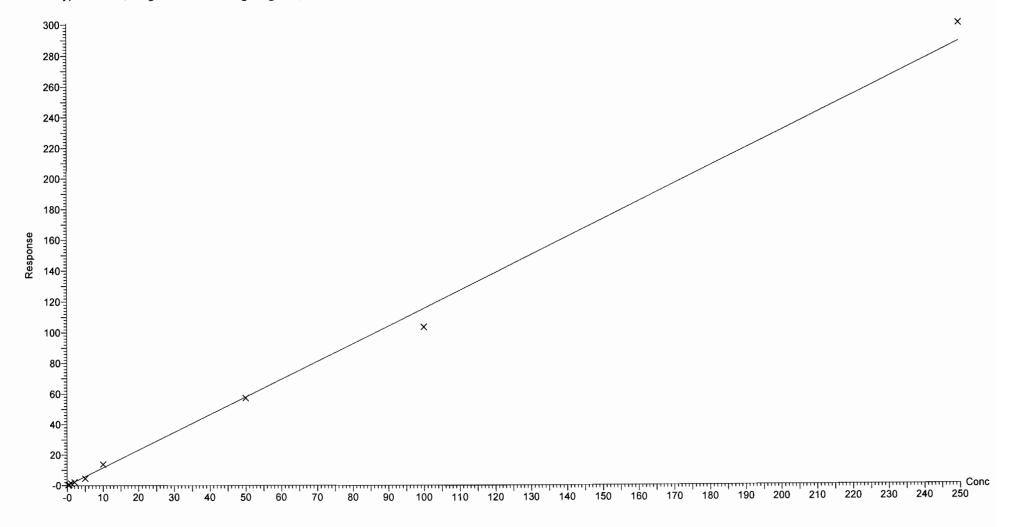
Correlation coefficient: r = 0.998461, $r^2 = 0.996924$

Calibration curve: 1.16388 * x + 0.0273367

Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:


Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: L-PFOS

Correlation coefficient: r = 0.997357, r^2 = 0.994721

Calibration curve: 1.1564 * x + -0.0243452

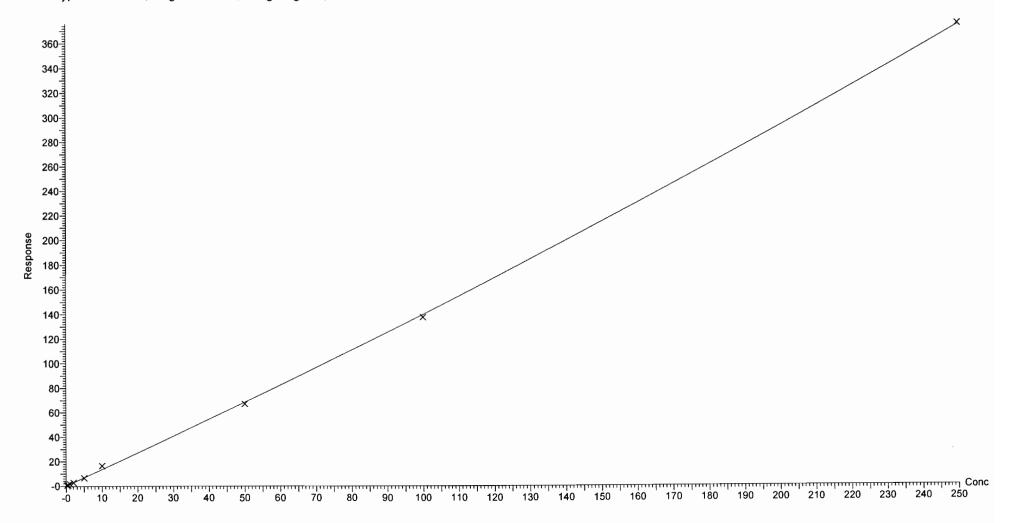
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1

Page 13 of 26

Dataset: U:\Q4.PR0

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld


Last Altered: Printed:

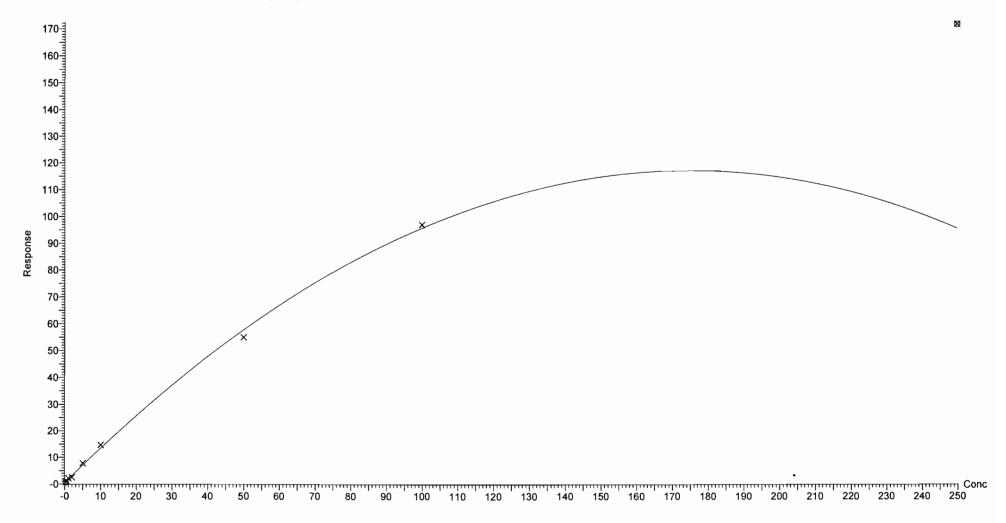
Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: R^2 = 0.998744

Calibration curve: 0.000670409 * x^2 + 1.3303 * x + 0.180081 Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1


Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: 8:2 FTS

Coefficient of Determination: R^2 = 0.995715

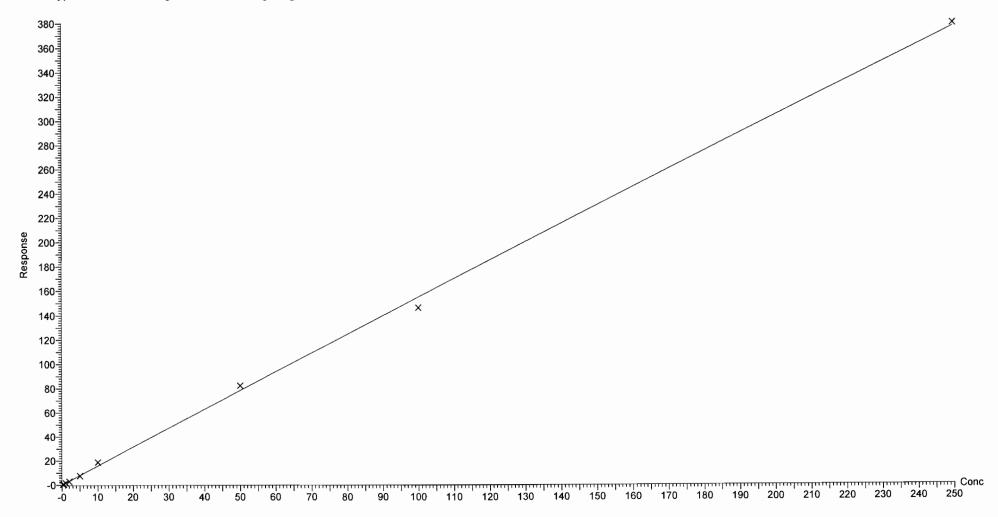
Calibration curve: -0.00382414 * x^2 + 1.3379 * x + 0.459132 Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 197 of 402

Vista Analytical Laboratory Q1

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

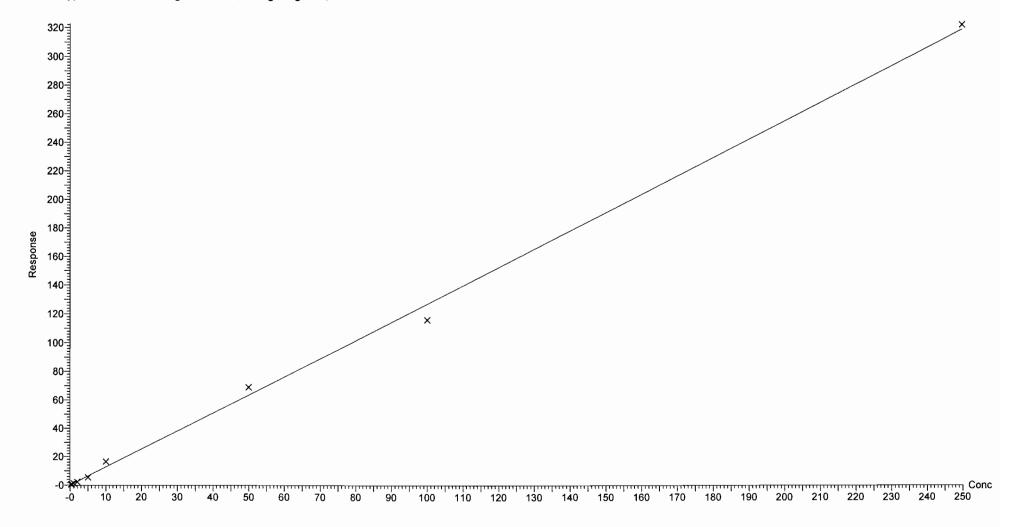

Last Altered: Printed:

Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.997869

Calibration curve: -0.000267179 * x^2 + 1.57739 * x + 0.0787904 Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

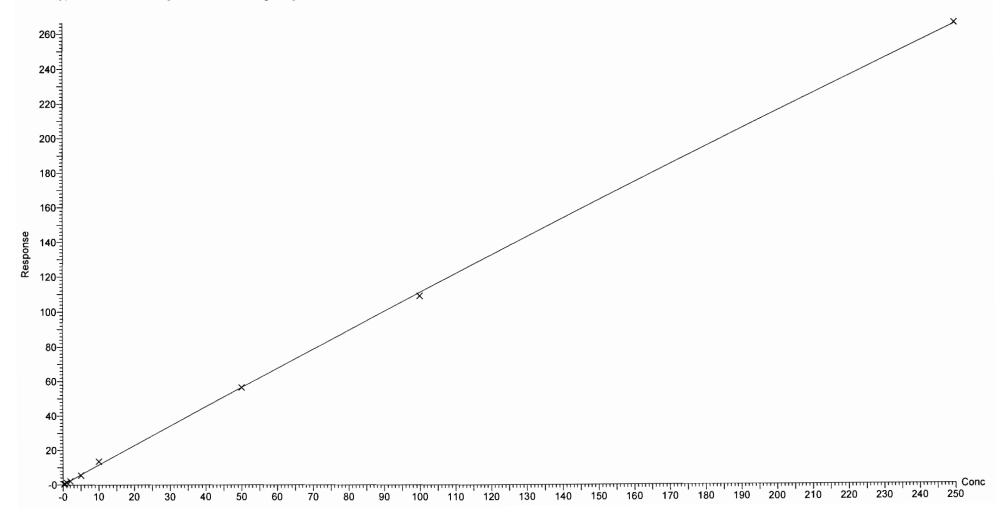
Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.994831

Calibration curve: 5.282e-005 * x^2 + 1.26472 * x + 0.0301259 Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Page 17 of 26

Vista Analytical Laboratory Q1


Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFUnA

Coefficient of Determination: R^2 = 0.998990

Calibration curve: $-0.000325839 * x^2 + 1.14375 * x + 0.032356$ Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

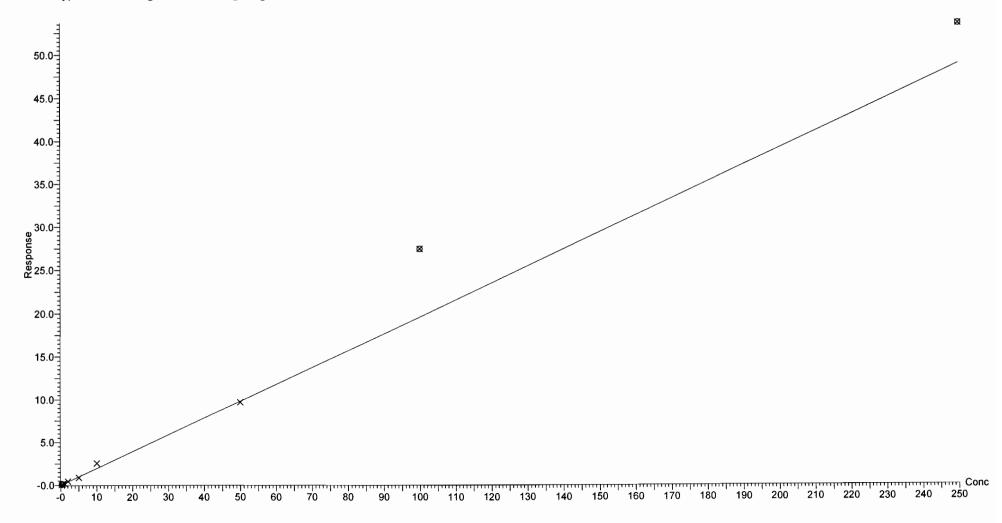
Work Order 1701439 Revision 1 Page 200 of 402

Page 18 of 26

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:


Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

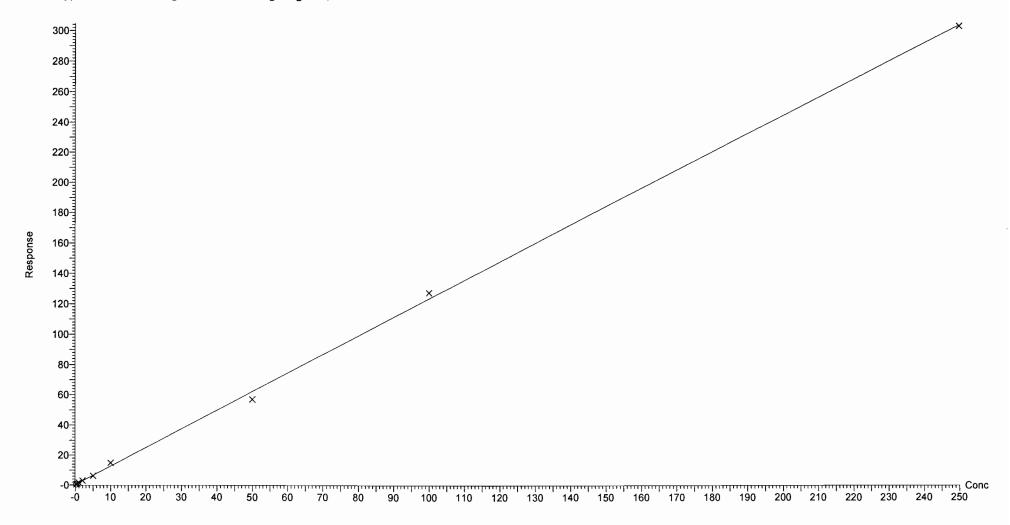
Compound name: PFDS

Coefficient of Determination: R^2 = 0.994206

Calibration curve: 0.195972 * x

Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld


Last Altered: Printed:

Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFDoA

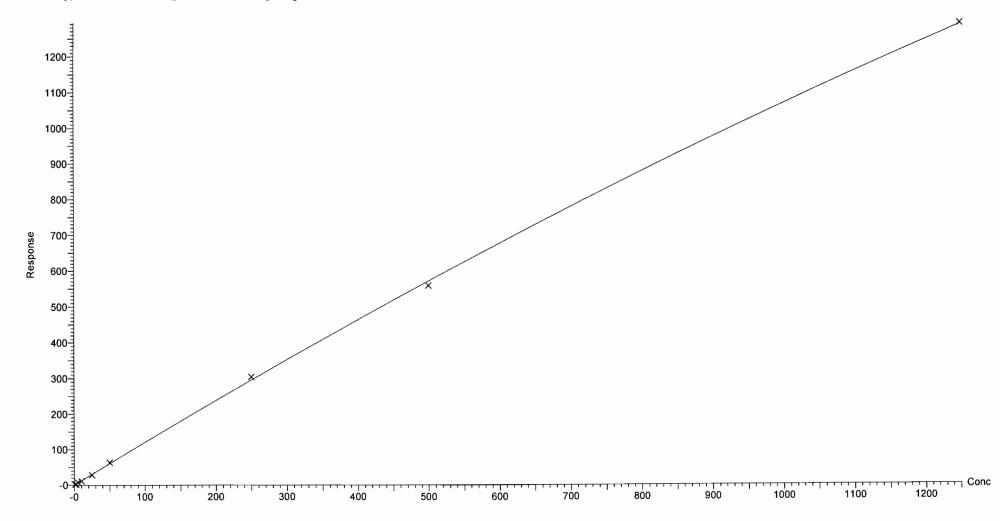
Coefficient of Determination: R^2 = 0.997953

Calibration curve: -0.000109132 * x^2 + 1.24453 * x + 0.293856 Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Page 20 of 26

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:


Dataset:

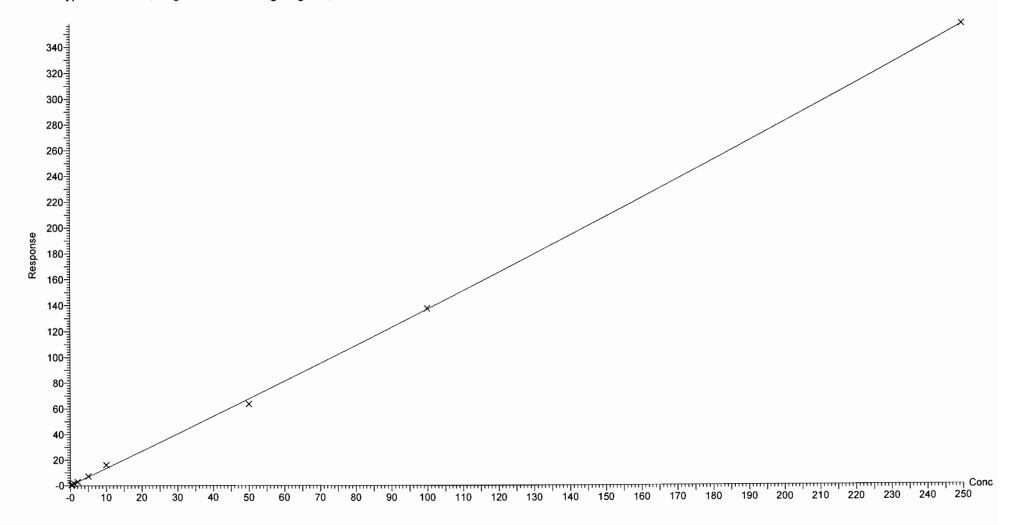
Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: N-MeFOSA

Coefficient of Determination: R^2 = 0.999297

Calibration curve: -0.000149877 * x^2 + 1.21877 * x + 0.0856513 Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1


Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Friday, October 27, 2017 10:26:14 Pacific Daylight Time Printed: Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFTrDA

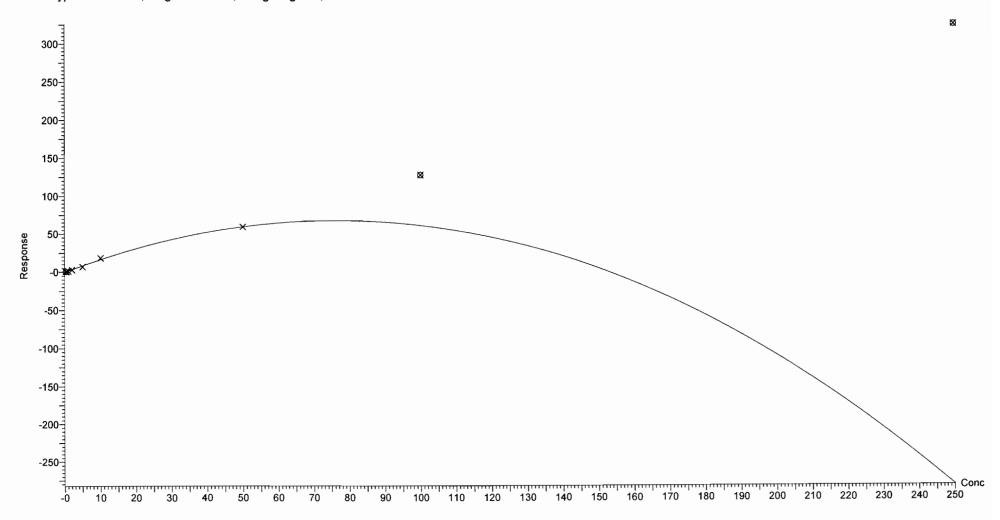
Coefficient of Determination: R^2 = 0.998625

Calibration curve: 0.000400269 * x^2 + 1.32903 * x + 0.10057 Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Page 22 of 26

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld


Last Altered: Printed:

Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

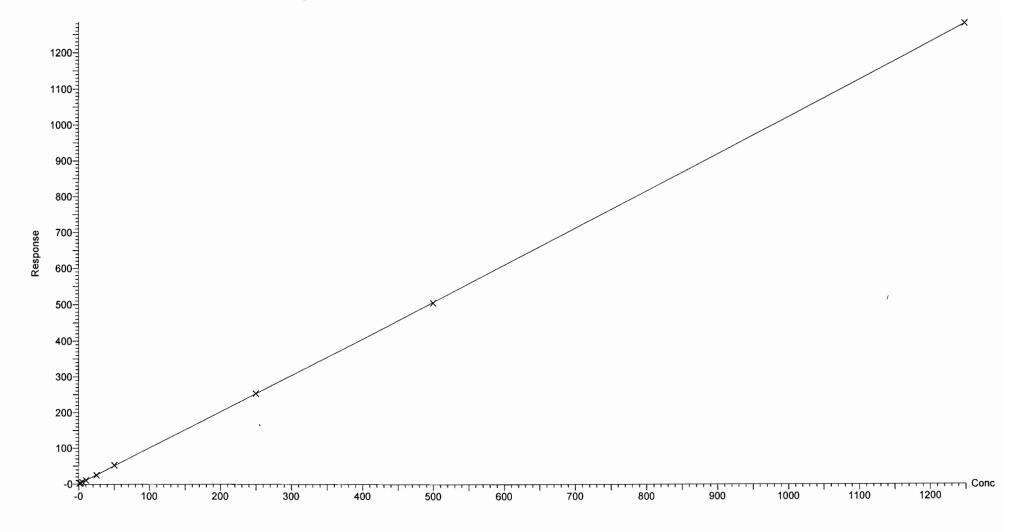
Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.990408

Calibration curve: -0.0116096 * x^2 + 1.77597 * x + -0.229836 Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld


Last Altered: Printed:

Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

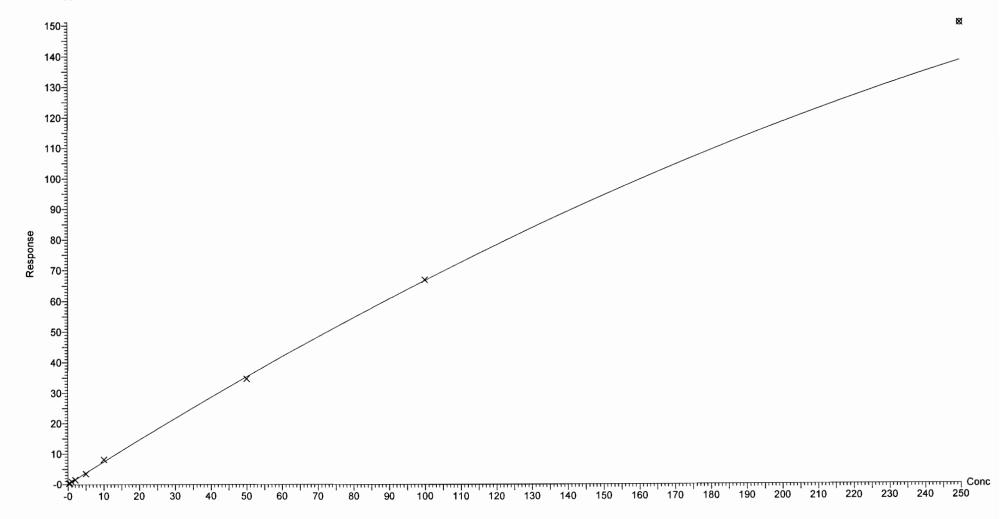
Compound name: N-EtFOSA

Coefficient of Determination: R^2 = 0.999879

Calibration curve: $1.51717e-005 * x^2 + 1.00753 * x + 0.283778$ Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:


Dataset:

Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: PFHxDA

Coefficient of Determination: R^2 = 0.998601

Calibration curve: $-0.000754699 * x^2 + 0.743417 * x + 0.0395372$ Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Page 25 of 26

Vista Analytical Laboratory Q1

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: N-MeFOSE

Correlation coefficient: r = 0.999413, $r^2 = 0.998826$

Calibration curve: 1.06845 * x + 0.279364

Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1

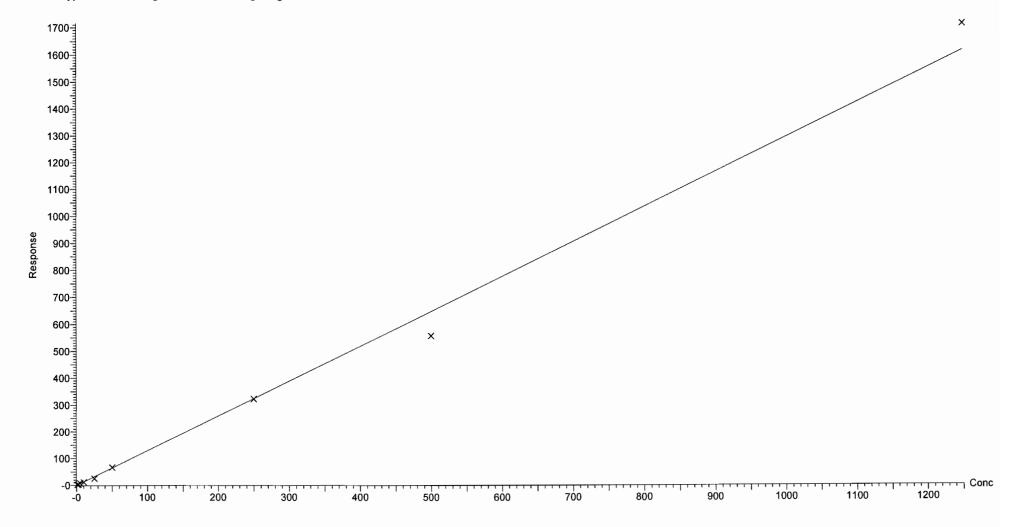
Page 208 of 402

Vista Analytical Laboratory Q1

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:


Friday, October 27, 2017 10:26:14 Pacific Daylight Time Friday, October 27, 2017 10:38:18 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: r = 0.996094, $r^2 = 0.992203$

Calibration curve: 1.29546 * x + -0.281193

Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 209 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

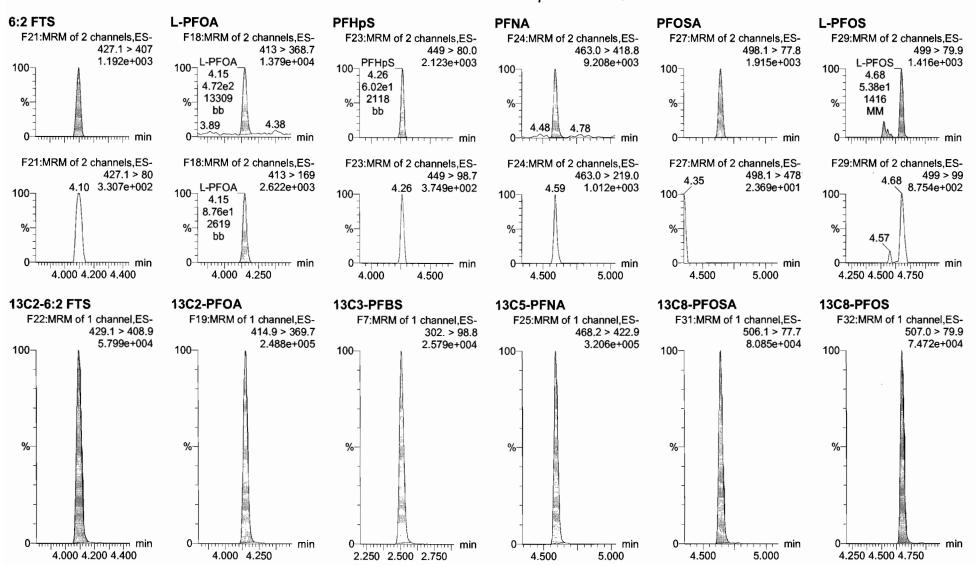
Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

6 cm 10/22/17

(R)

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 26 Oct 2017 08:20:12

Calibration: 26 Oct 2017 15:43:46

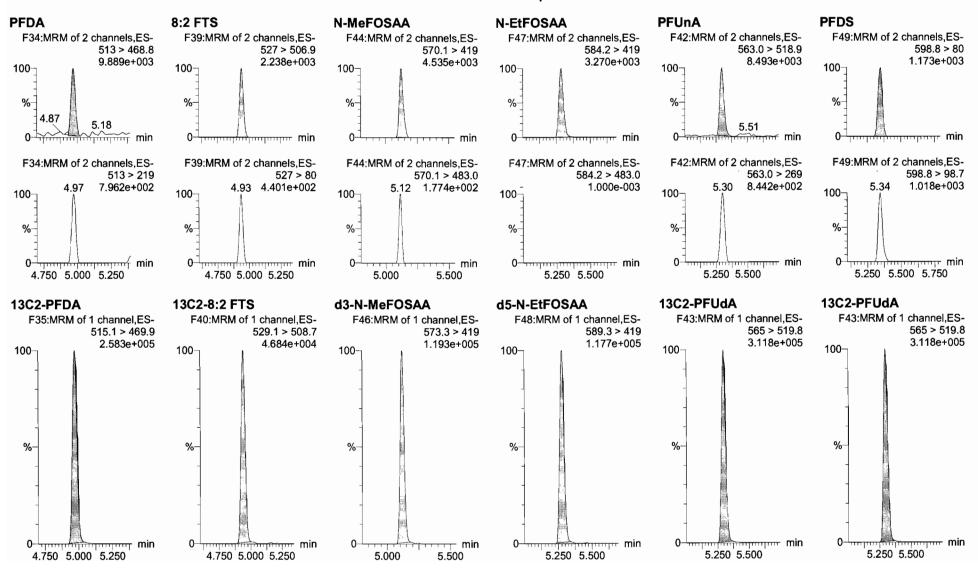

Name: 171026M1_2, Date: 26-Oct-2017, Time: 09:26:00, ID: ST171026M1-1 PFC CS-2 17 3006, Description: PFC CS-2 17 3006

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

Last Altered: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_2, Date: 26-Oct-2017, Time: 09:26:00, ID: ST171026M1-1 PFC CS-2 17/3006, Description: PFC CS-2 17J3006

Work Order 1701439 Revision 1 Page 211 of 402

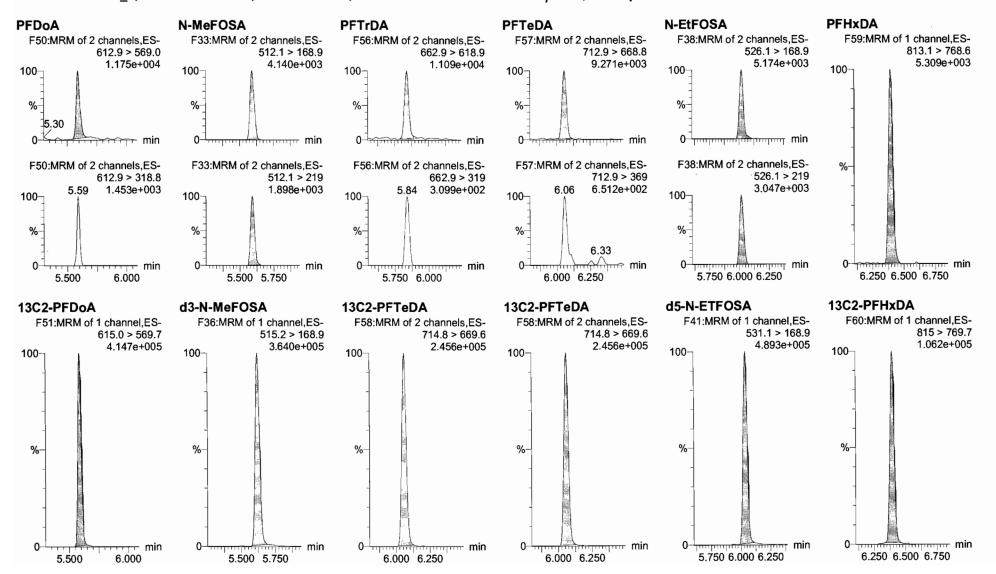

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_2, Date: 26-Oct-2017, Time: 09:26:00, ID: ST171026M1-1 PFC CS-2 17 3006, Description: PFC CS-2 17J3006

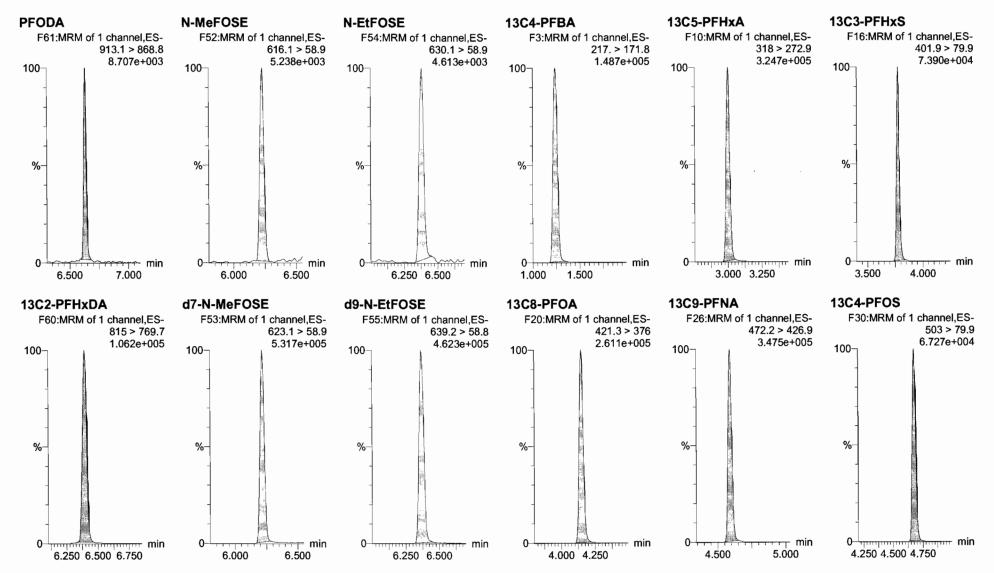


Work Order 1701439 Revision 1 Page 212 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_2, Date: 26-Oct-2017, Time: 09:26:00, ID: ST171026M1-1 PFC CS-2 17/3006, Description: PFC CS-2 17J3006


A

Work Order 1701439 Revision 1 Page 213 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time Printed:

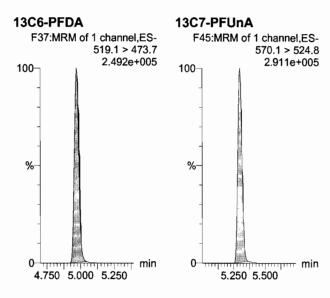
1(P) Name: 171026M1_2, Date: 26-Oct-2017, Time: 09:26:00, ID: ST171026M1-1 PFC CS-2 17 3006, Description: PFC CS-2 17J3006

Work Order 1701439 Revision 1 Page 214 of 402

Page 6 of 54

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

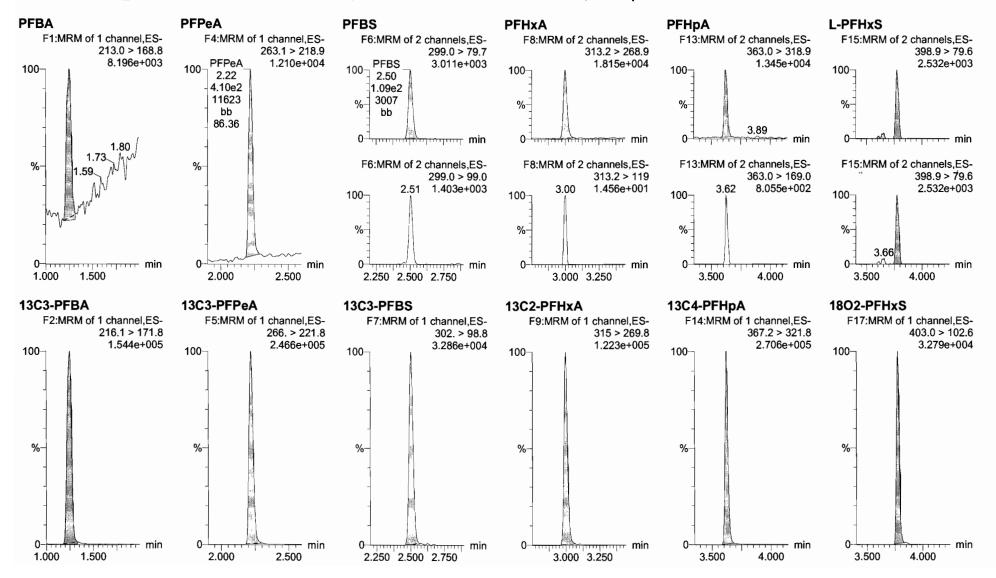

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed:

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

T(A)
Name: 171026M1_2, Date: 26-Oct-2017, Time: 09:26:00, ID: ST171026M1-1 PFC CS-2 17∮3006, Description: PFC CS-2 17J3006


Work Order 1701439 Revision 1 Page 215 of 402

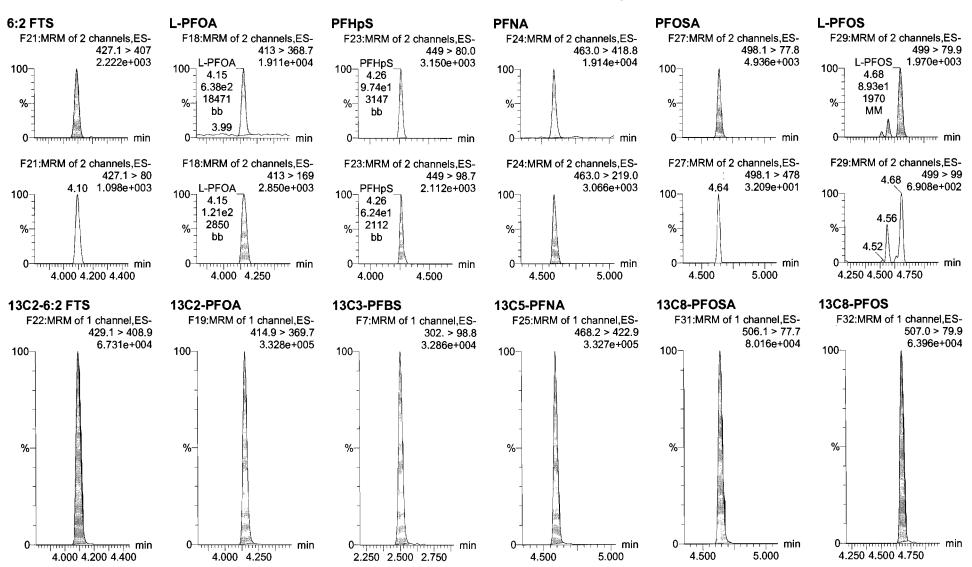
Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

70

Name: 171026M1_3, Date: 26-Oct-2017, Time: 09:37:20, ID: ST171026M1-2 PFC CS-1 17 3007, Description: PFC CS-1 17J3007

Work Order 1701439 Revision 1 Page 216 of 402


U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

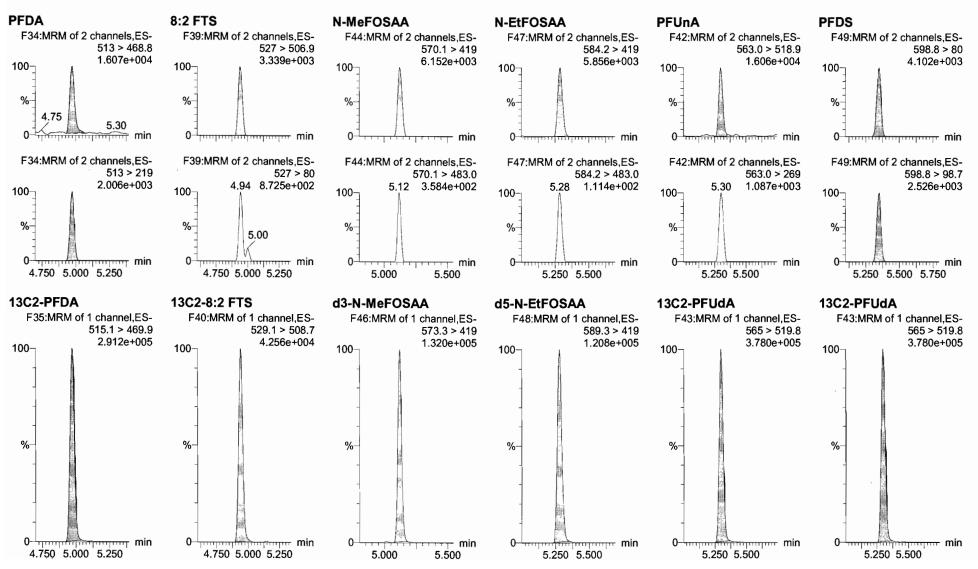
Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_3, Date: 26-Oct-2017, Time: 09:37:20, ID: ST171026M1-2 PFC CS-1 17/3007, Description: PFC CS-1 17/3007

Work Order 1701439 Revision 1 Page 217 of 402


U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

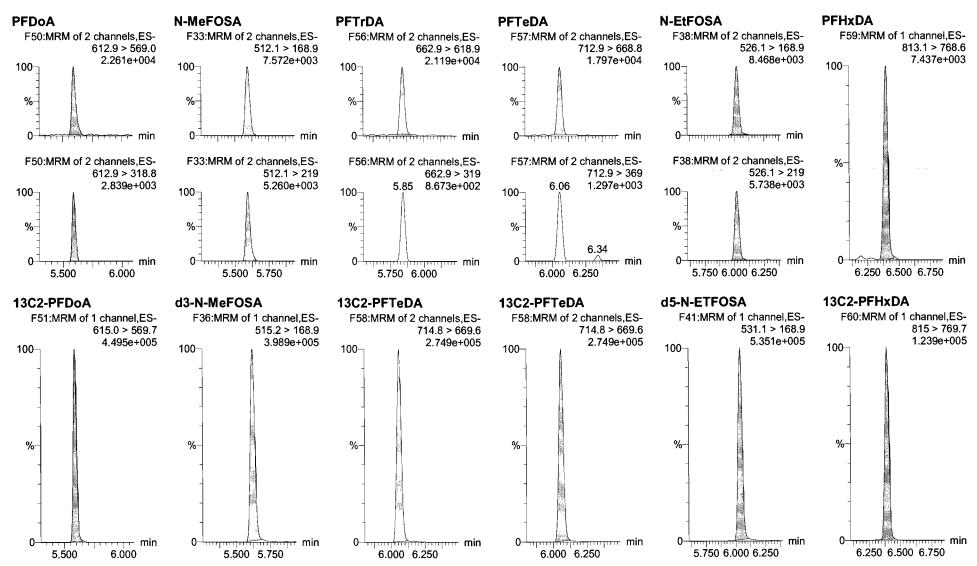
Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_3, Date: 26-Oct-2017, Time: 09:37:20, ID: ST171026M1-2 PFC CS-1 17 3007, Description: PFC CS-1 17J3007

Work Order 1701439 Revision 1 Page 218 of 402

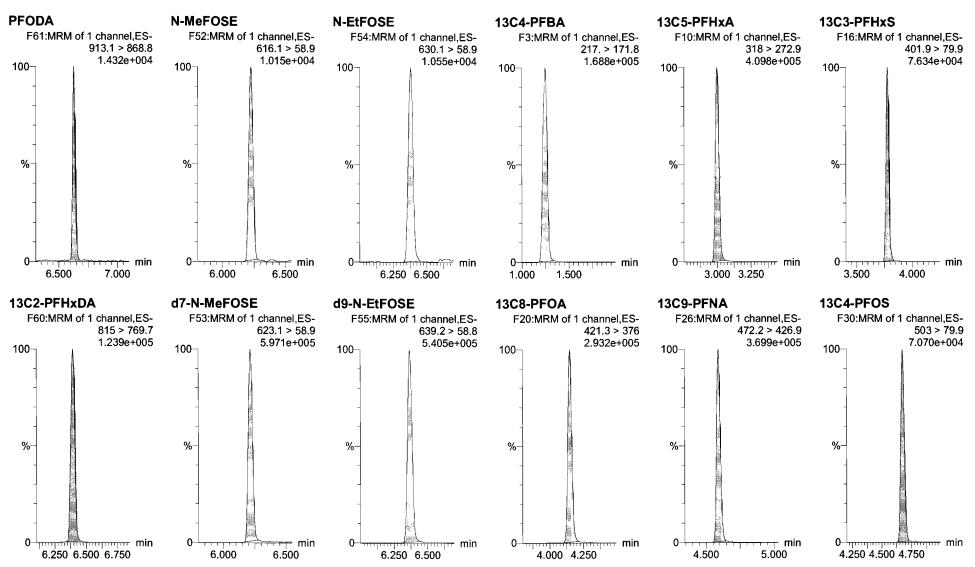

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_3, Date: 26-Oct-2017, Time: 09:37:20, ID: ST171026M1-2 PFC CS-1 17⋬3007, Description: PFC CS-1 17J3007



U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

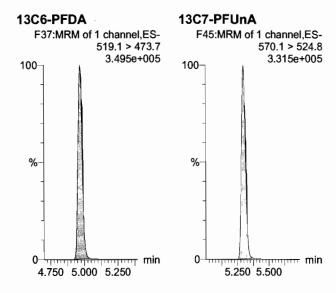
Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

The second state of the s

Work Order 1701439 Revision 1 Page 220 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

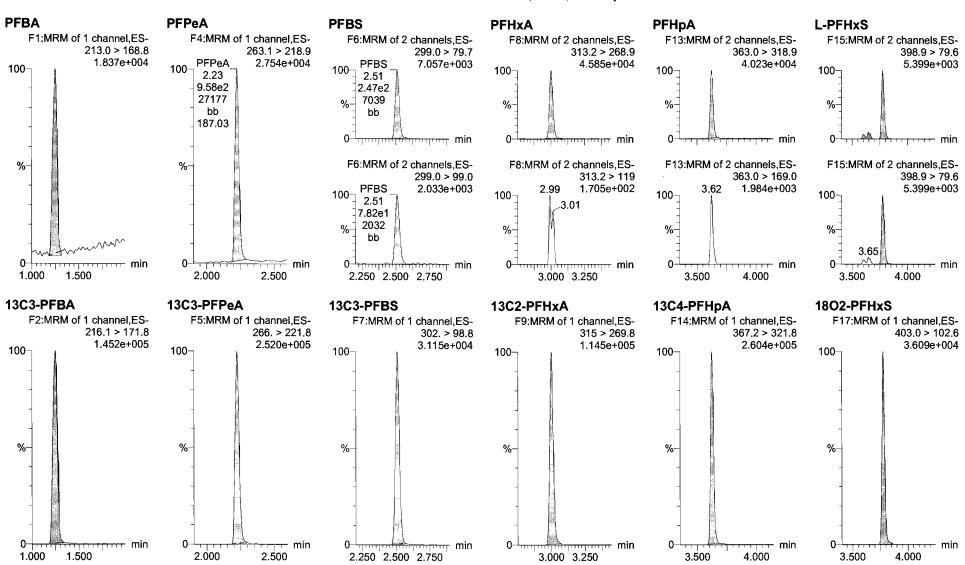
Last Altered:


Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed:

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_3, Date: 26-Oct-2017, Time: 09:37:20, ID: ST171026M1-2 PFC CS-1 17/3007, Description: PFC CS-1 17J3007


U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

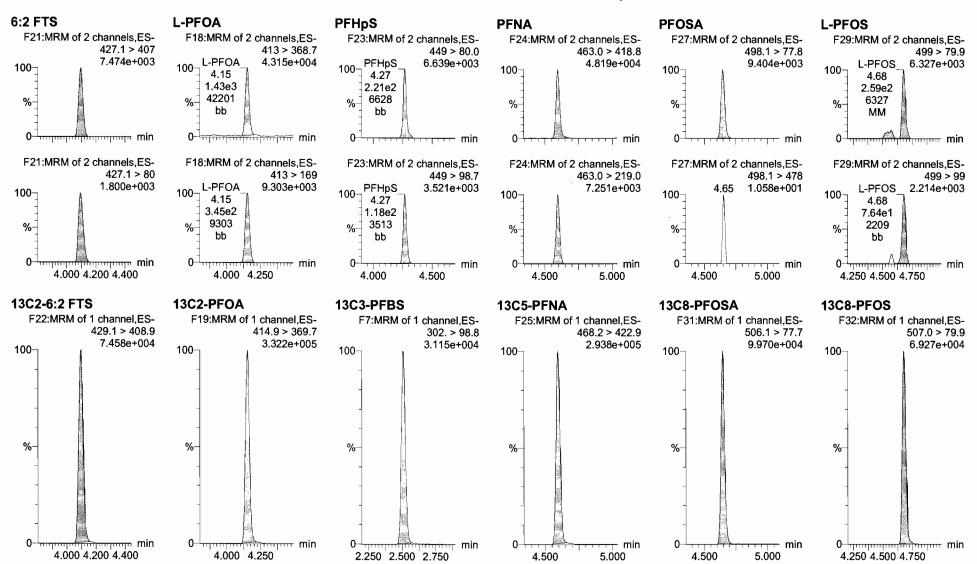
Name: 171026M1_4, Date: 26-Oct-2017, Time: 09:48:39, ID: ST171026M1-3 PFC CS0 17 1805, Description: PFC CS0 17J1805

 (\mathcal{A})

Work Order 1701439 Revision 1 Page 222 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

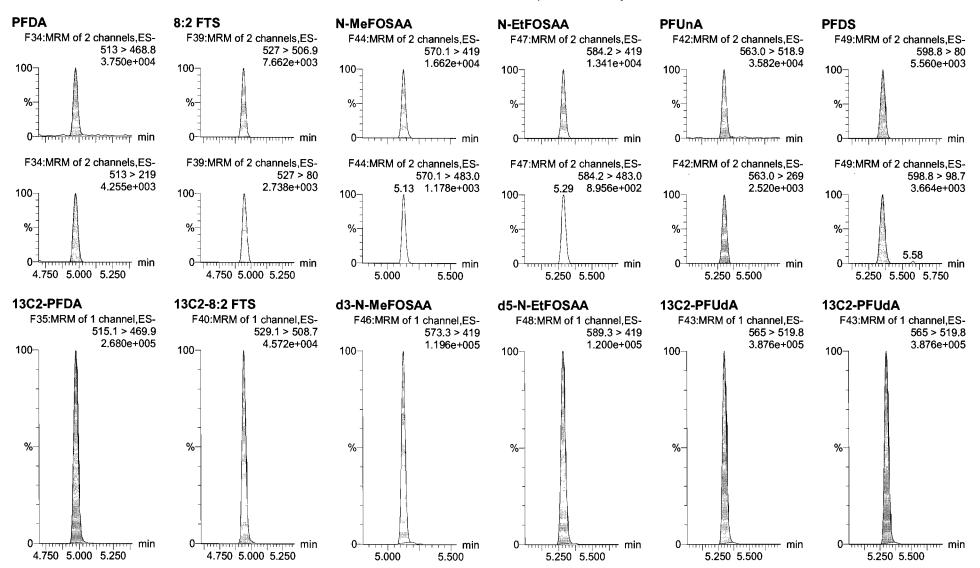

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed:

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_4, Date: 26-Oct-2017, Time: 09:48:39, ID: ST171026M1-3 PFC CS0 17/1805, Description: PFC CS0 17J1805

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

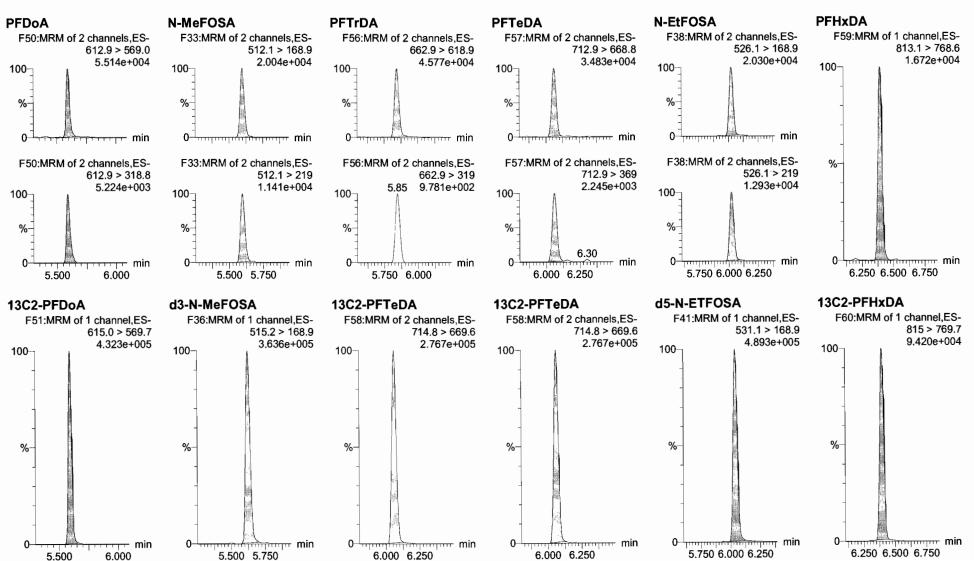

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

70

Name: 171026M1_4, Date: 26-Oct-2017, Time: 09:48:39, ID: ST171026M1-3 PFC CS0 17√1805, Description: PFC CS0 17J1805


Work Order 1701439 Revision 1 Page 224 of 402

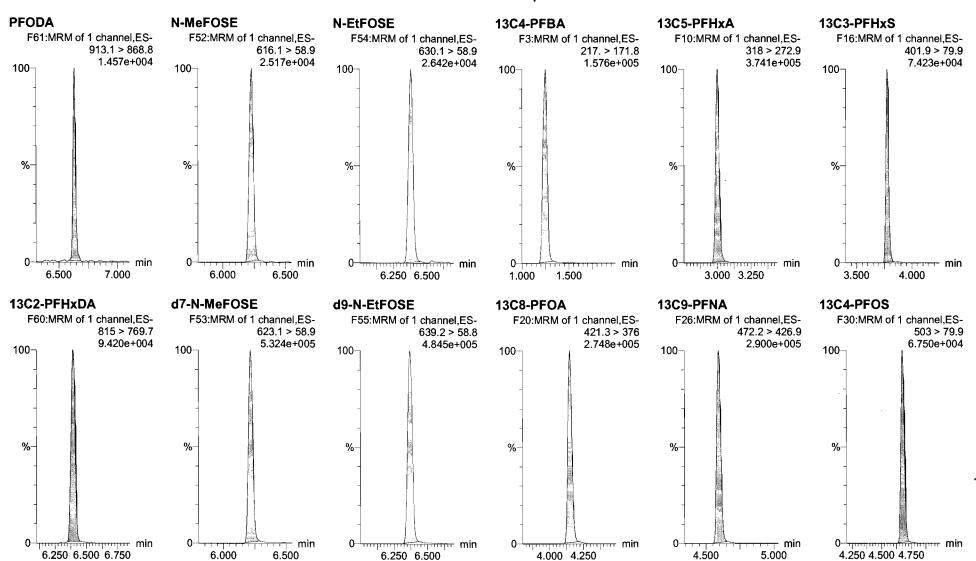
U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

76

Name: 171026M1_4, Date: 26-Oct-2017, Time: 09:48:39, ID: ST171026M1-3 PFC CS0 17 € 1805, Description: PFC CS0 17J1805

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld


Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

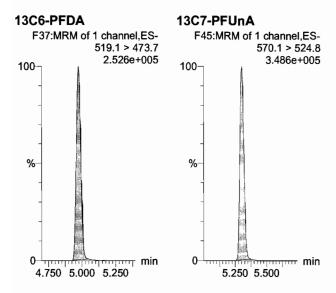
Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_4, Date: 26-Oct-2017, Time: 09:48:39, ID: ST171026M1-3 PFC CS0 17 1805, Description: PFC CS0 17J1805

Work Order 1701439 Revision 1 Page 226 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:


Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed:

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

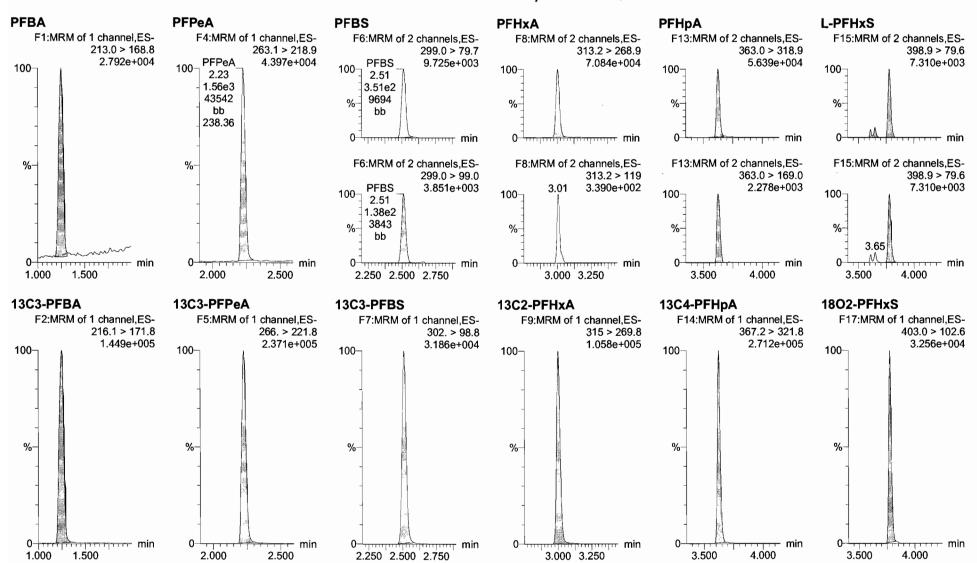
1 (A)

Name: 171026M1_4, Date: 26-Oct-2017, Time: 09:48:39, ID: ST171026M1-3 PFC CS0 17 €1805, Description: PFC CS0 17J1805

Work Order 1701439 Revision 1 Page 227 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

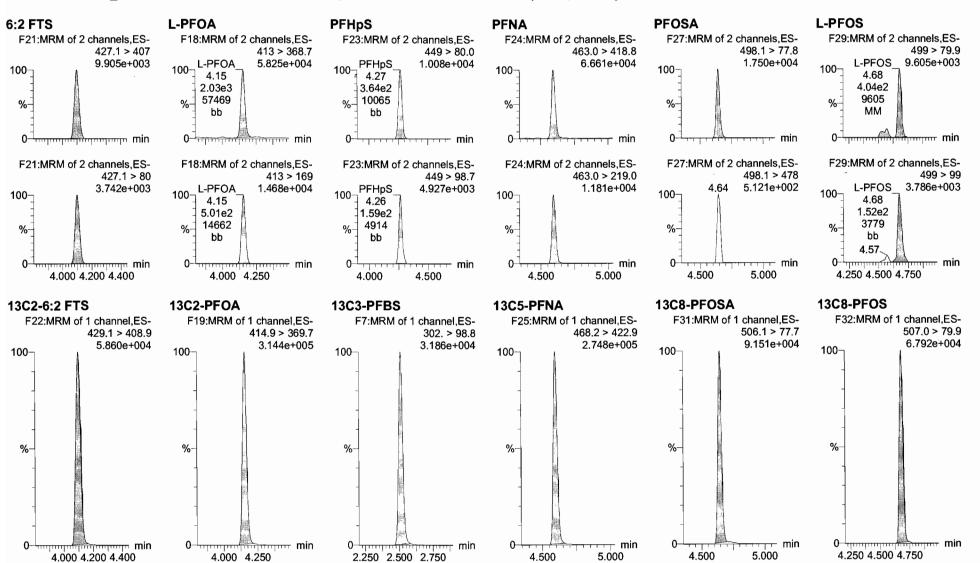
Last Altered:


Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed:

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_5, Date: 26-Oct-2017, Time: 09:59:50, ID: ST171026M1-4 PFC CS1 17/3009, Description: PFC CS1 17J3009


Work Order 1701439 Revision 1 Page 228 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

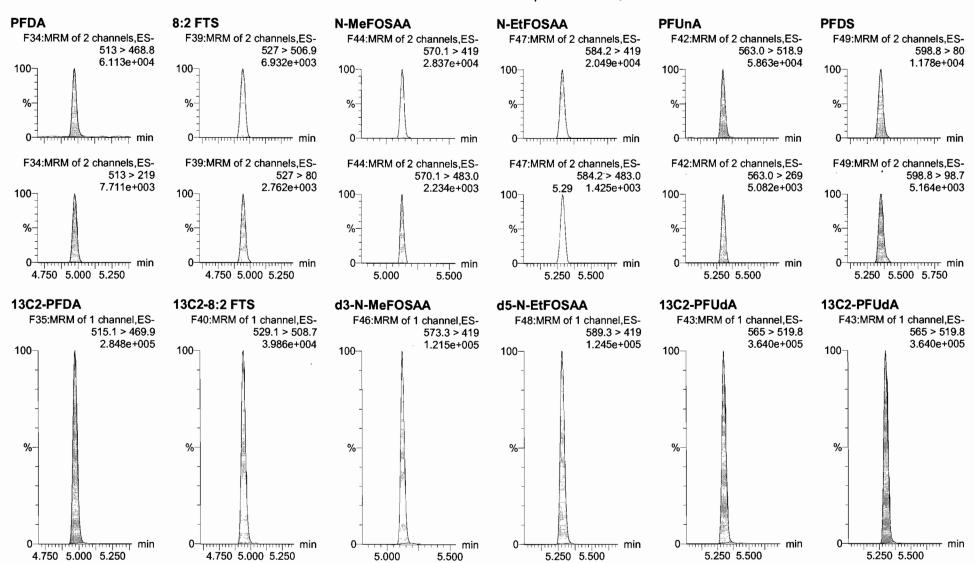
Name: 171026M1_5, Date: 26-Oct-2017, Time: 09:59:50, ID: ST171026M1-4 PFC CS1 17 €3009, Description: PFC CS1 17J3009

Work Order 1701439 Revision 1 Page 229 of 402

Page 230 of 402

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

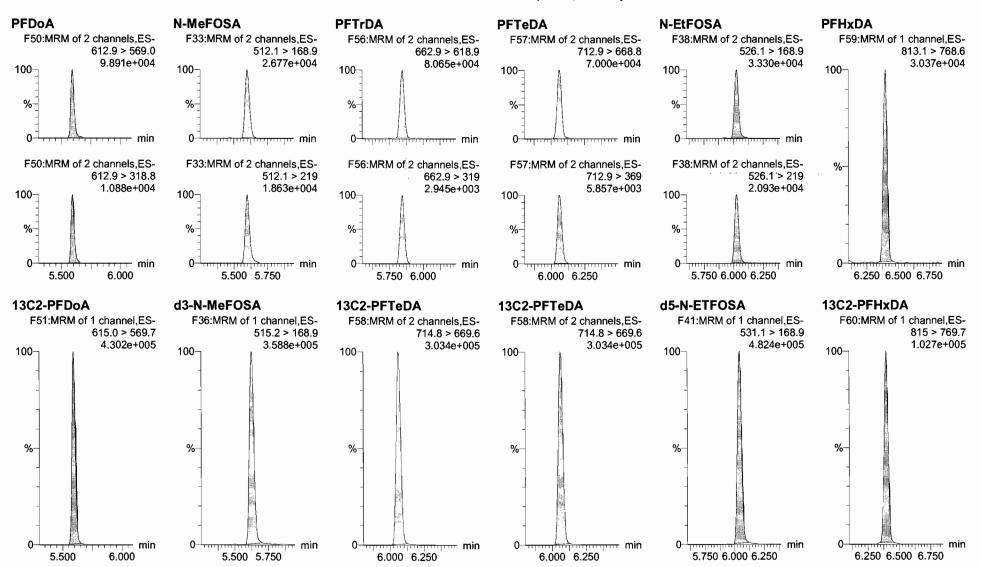

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_5, Date: 26-Oct-2017, Time: 09:59:50, ID: ST171026M1-4 PFC CS1 17 3009, Description: PFC CS1 17J3009

Work Order 1701439 Revision 1

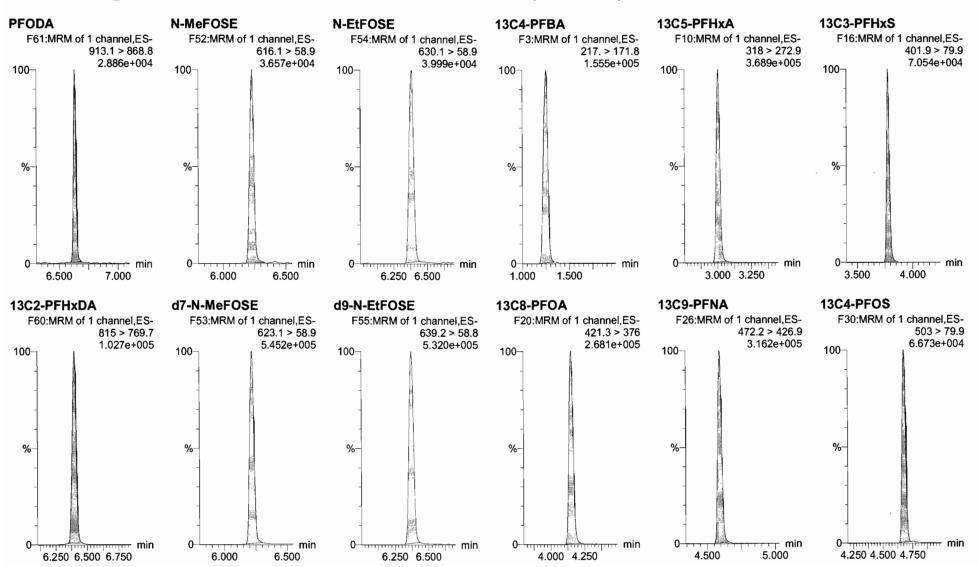

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_5, Date: 26-Oct-2017, Time: 09:59:50, ID: ST171026M1-4 PFC CS1 17 2009, Description: PFC CS1 17J3009

Work Order 1701439 Revision 1 Page 231 of 402


U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

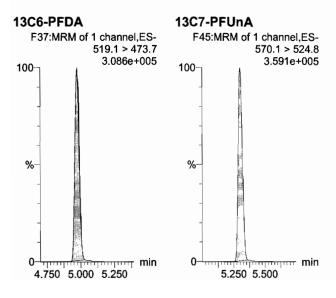
76

Name: 171026M1_5, Date: 26-Oct-2017, Time: 09:59:50, ID: ST171026M1-4 PFC CS1 17/3009, Description: PFC CS1 17J3009

Work Order 1701439 Revision 1 Page 232 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

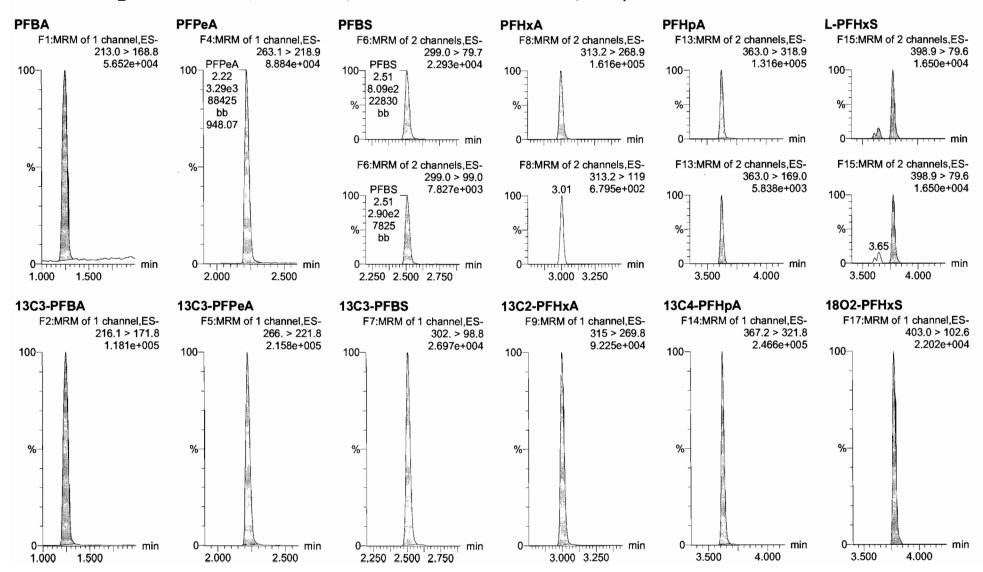
Last Altered:


Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed:

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

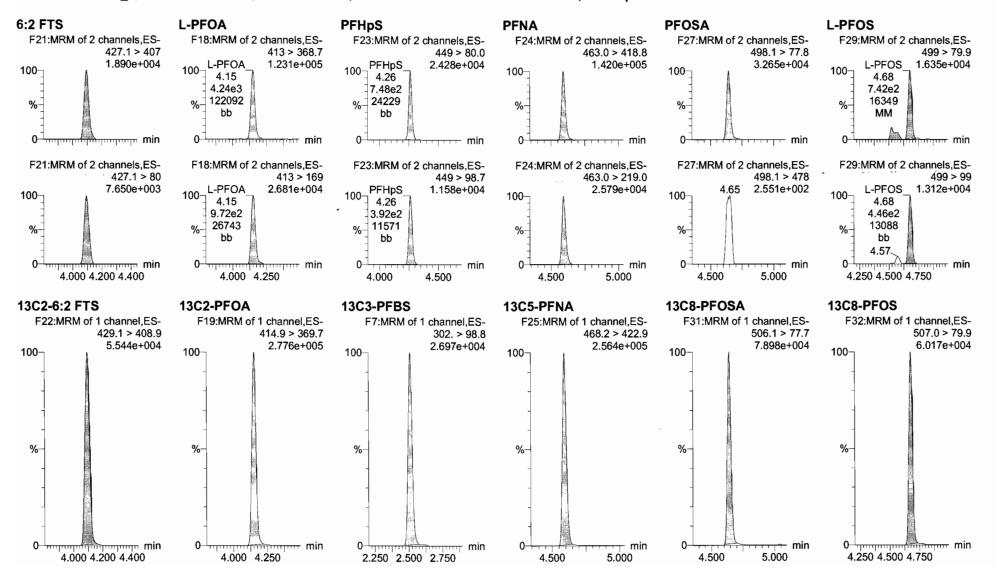
7


Name: 171026M1_5, Date: 26-Oct-2017, Time: 09:59:50, ID: ST171026M1-4 PFC CS1 17/3009, Description: PFC CS1 17J3009

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_6, Date: 26-Oct-2017, Time: 10:11:00, ID: ST171026M1-5 PFC CS2 17J2519, Description: PFC CS2 17J2519

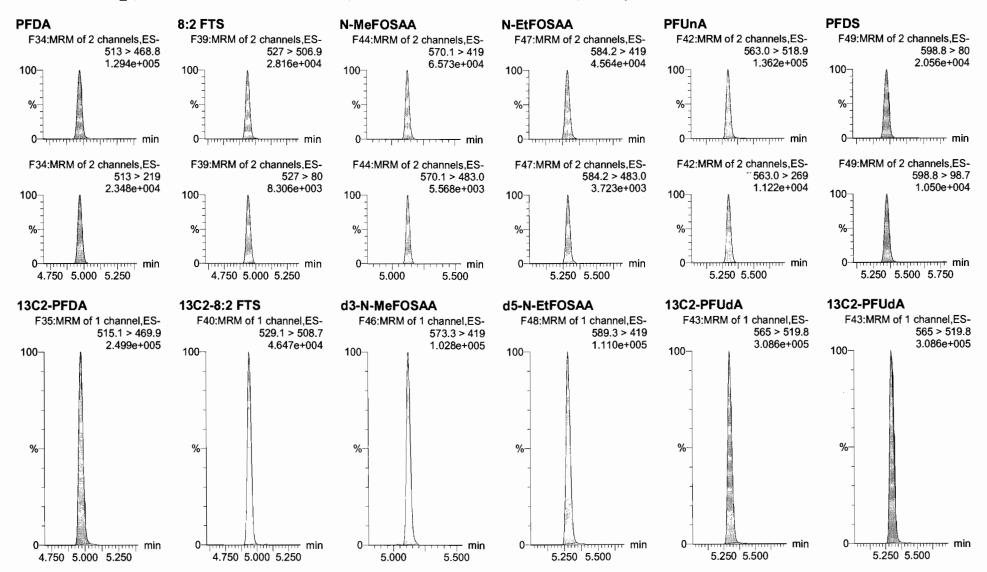

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_6, Date: 26-Oct-2017, Time: 10:11:00, ID: ST171026M1-5 PFC CS2 17J2519, Description: PFC CS2 17J2519

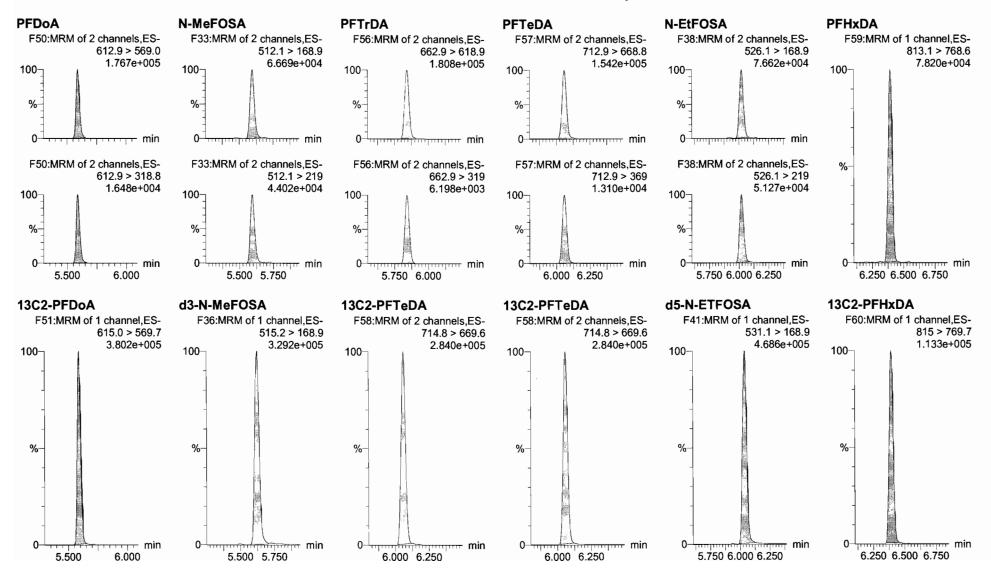


Work Order 1701439 Revision 1 Page 235 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_6, Date: 26-Oct-2017, Time: 10:11:00, ID: ST171026M1-5 PFC CS2 17J2519, Description: PFC CS2 17J2519

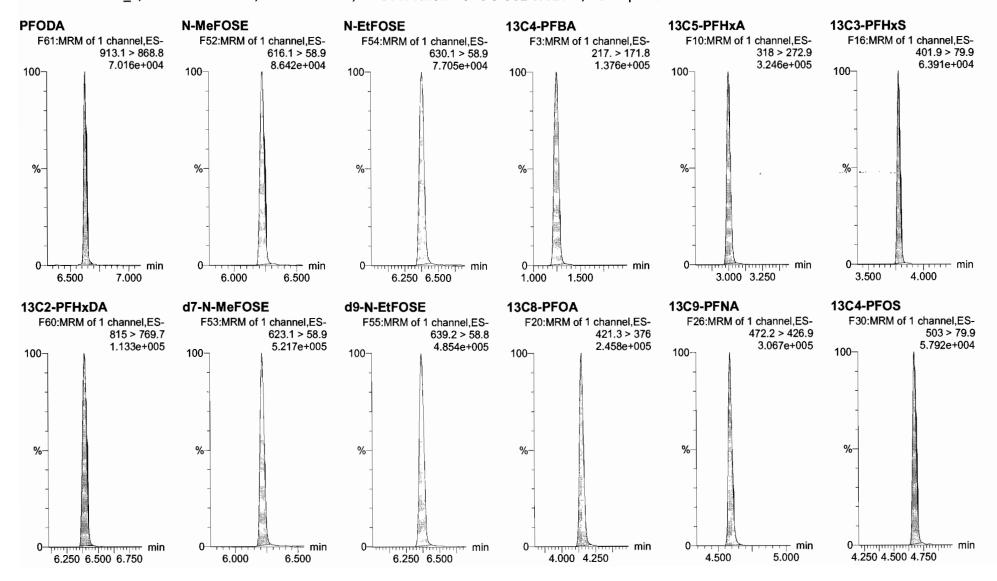

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_6, Date: 26-Oct-2017, Time: 10:11:00, ID: ST171026M1-5 PFC CS2 17J2519, Description: PFC CS2 17J2519



Work Order 1701439 Revision 1 Page 237 of 402

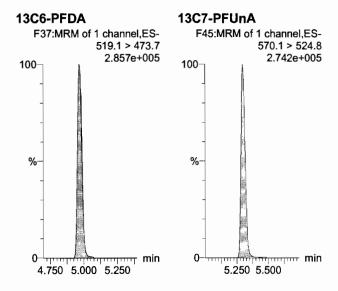
U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_6, Date: 26-Oct-2017, Time: 10:11:00, ID: ST171026M1-5 PFC CS2 17J2519, Description: PFC CS2 17J2519

Work Order 1701439 Revision 1 Page 238 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

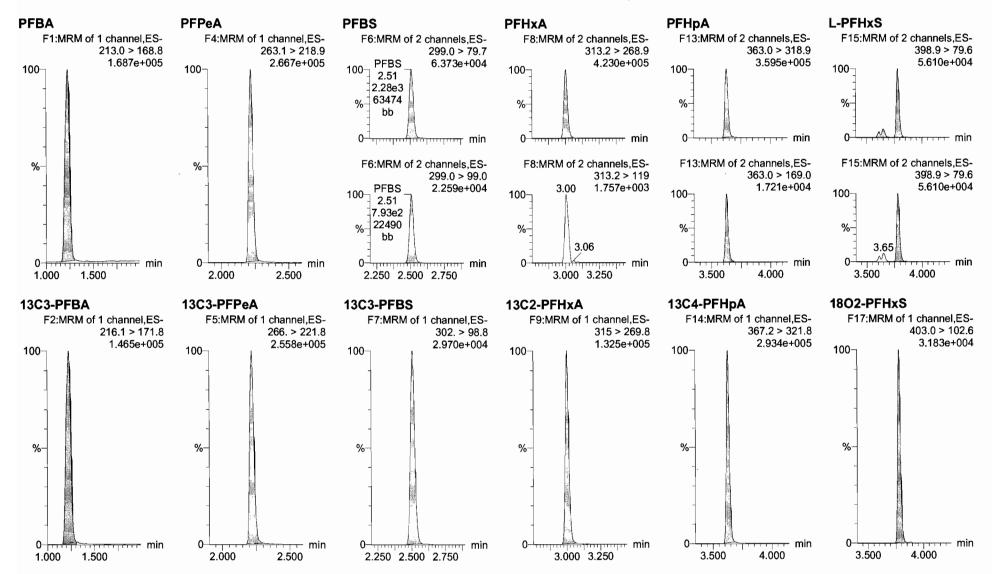

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed:

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_6, Date: 26-Oct-2017, Time: 10:11:00, ID: ST171026M1-5 PFC CS2 17J2519, Description: PFC CS2 17J2519

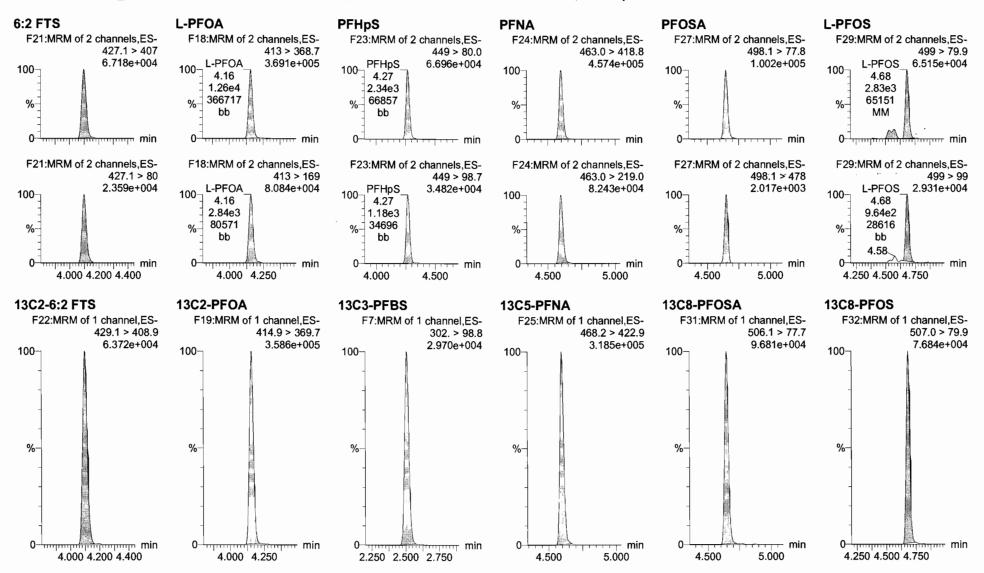

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_7, Date: 26-Oct-2017, Time: 10:22:11, ID: ST171026M1-6 PFC CS3 17J1806, Description: PFC CS3 17J1806


U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

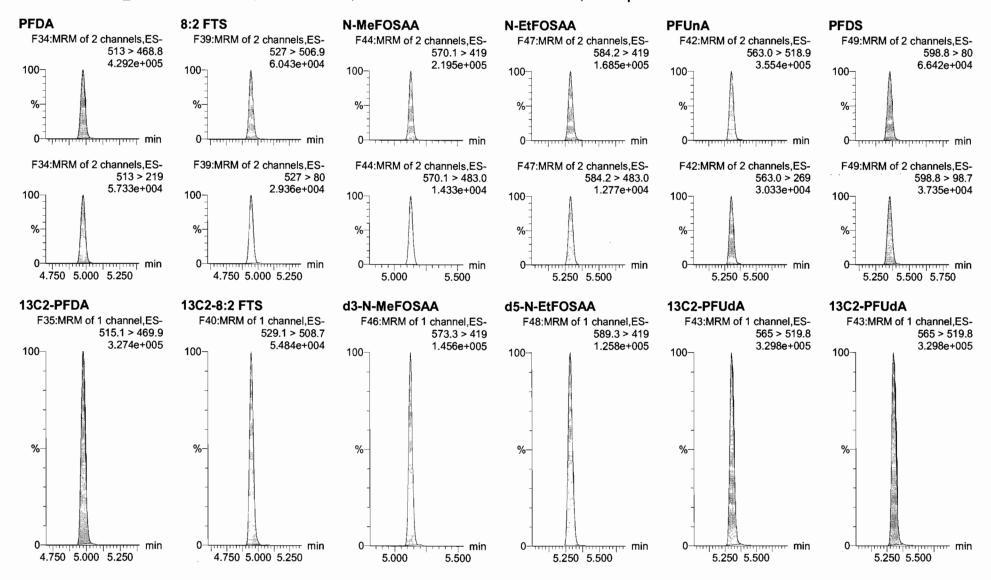
Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_7, Date: 26-Oct-2017, Time: 10:22:11, ID: ST171026M1-6 PFC CS3 17J1806, Description: PFC CS3 17J1806

Work Order 1701439 Revision 1 Page 241 of 402

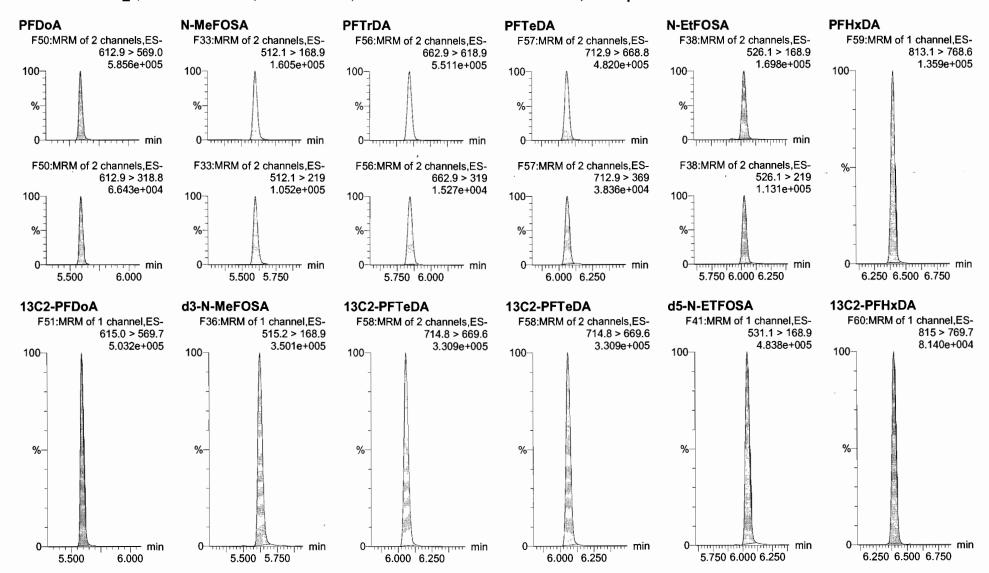

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_7, Date: 26-Oct-2017, Time: 10:22:11, ID: ST171026M1-6 PFC CS3 17J1806, Description: PFC CS3 17J1806

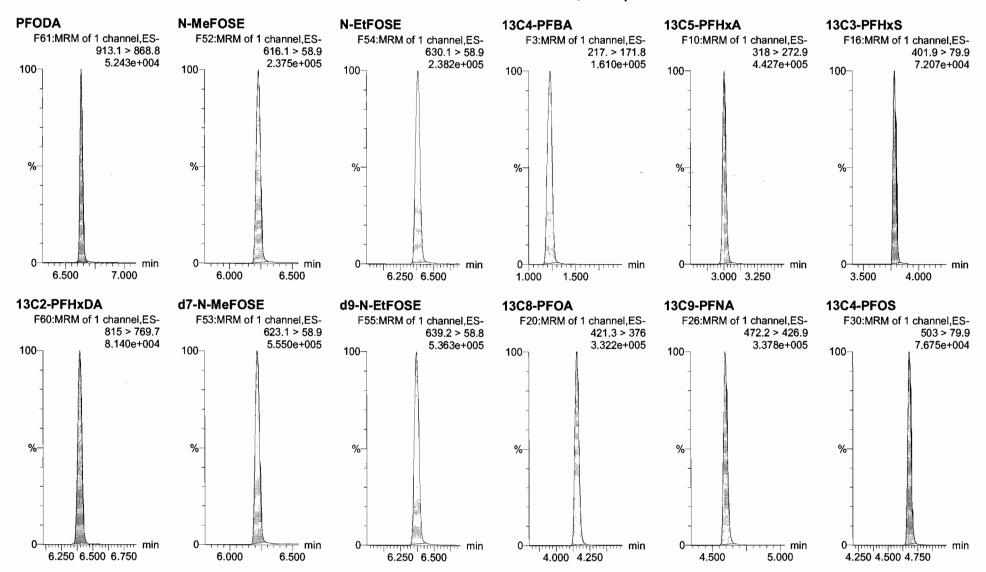

Work Order 1701439 Revision 1 Page 242 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_7, Date: 26-Oct-2017, Time: 10:22:11, ID: ST171026M1-6 PFC CS3 17J1806, Description: PFC CS3 17J1806


U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

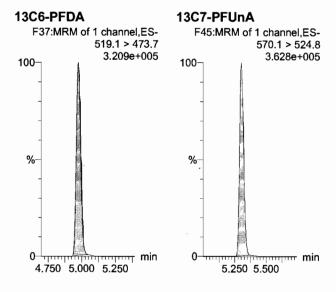
Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_7, Date: 26-Oct-2017, Time: 10:22:11, ID: ST171026M1-6 PFC CS3 17J1806, Description: PFC CS3 17J1806

Work Order 1701439 Revision 1 Page 244 of 402

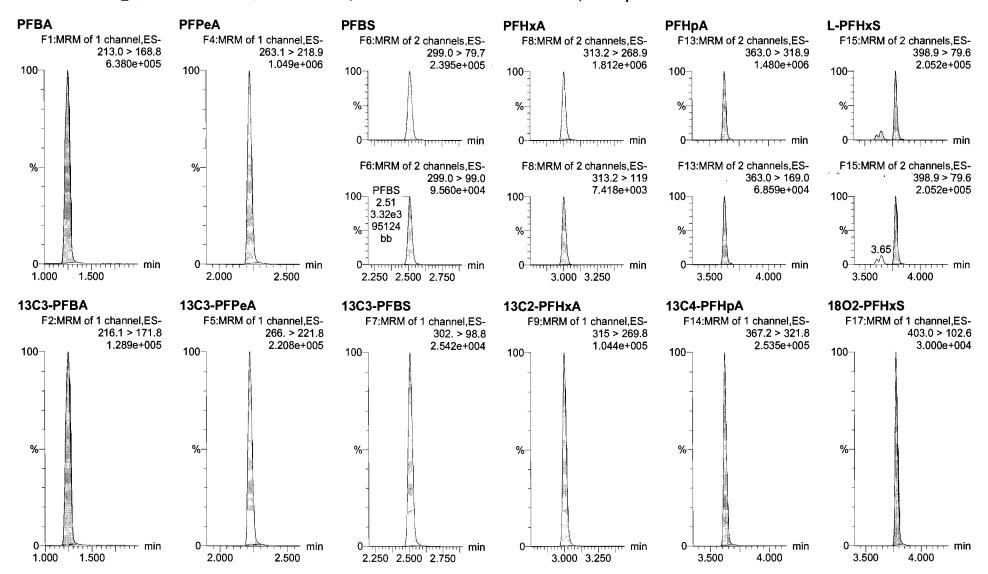

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_7, Date: 26-Oct-2017, Time: 10:22:11, ID: ST171026M1-6 PFC CS3 17J1806, Description: PFC CS3 17J1806

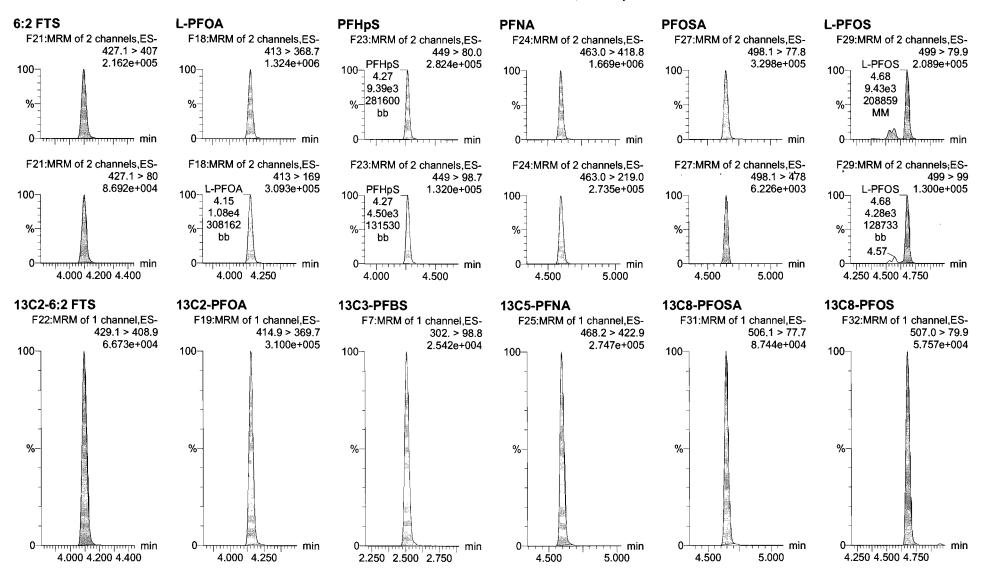

Work Order 1701439 Revision 1 Page 245 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_8, Date: 26-Oct-2017, Time: 10:33:24, ID: ST171026M1-7 PFC CS4 17J2102, Description: PFC CS4 17J2102

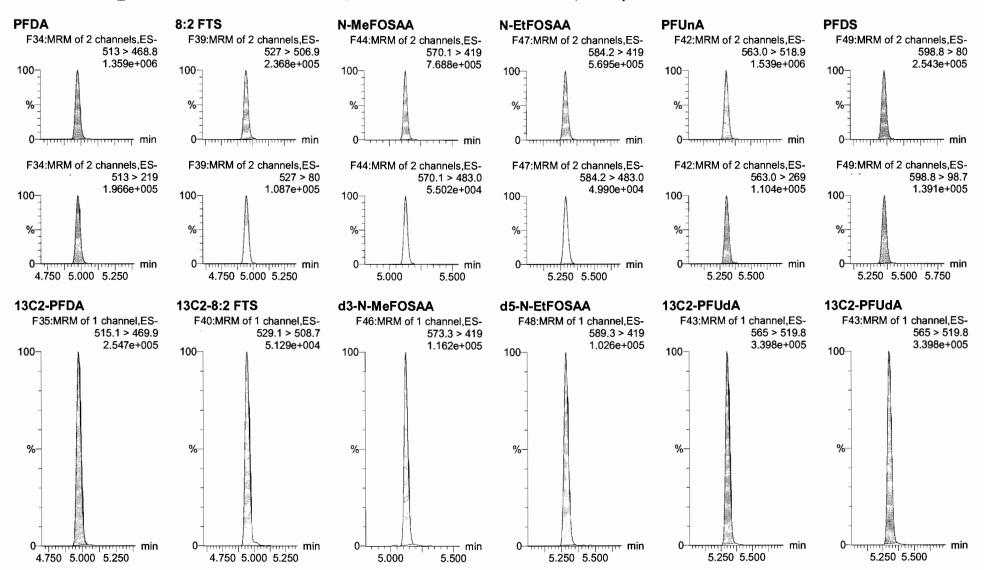

Work Order 1701439 Revision 1 Page 246 of 402

Detect: U/O4 PRO/requit

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_8, Date: 26-Oct-2017, Time: 10:33:24, ID: ST171026M1-7 PFC CS4 17J2102, Description: PFC CS4 17J2102

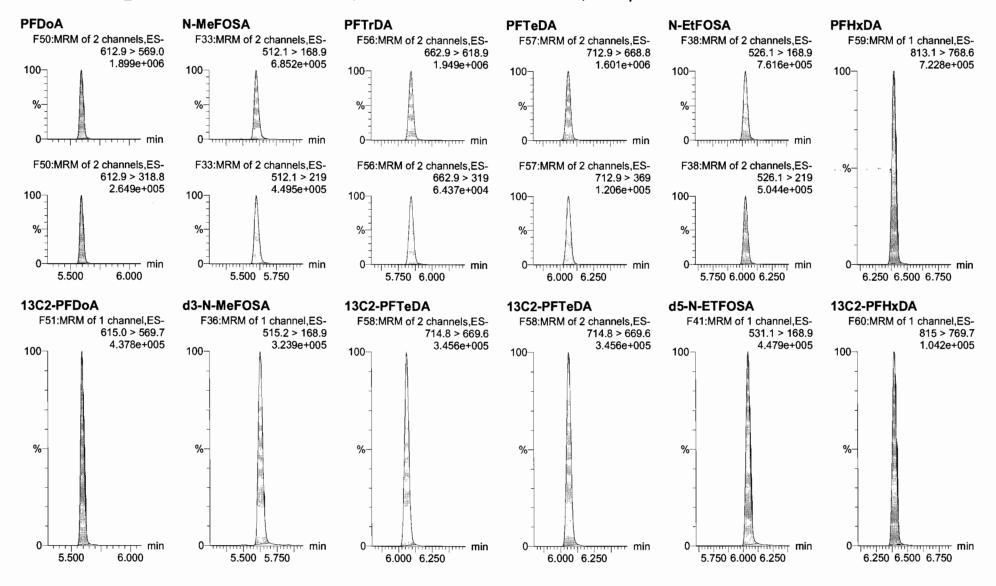


Work Order 1701439 Revision 1 Page 247 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

Last Altered: Printed: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_8, Date: 26-Oct-2017, Time: 10:33:24, ID: ST171026M1-7 PFC CS4 17J2102, Description: PFC CS4 17J2102

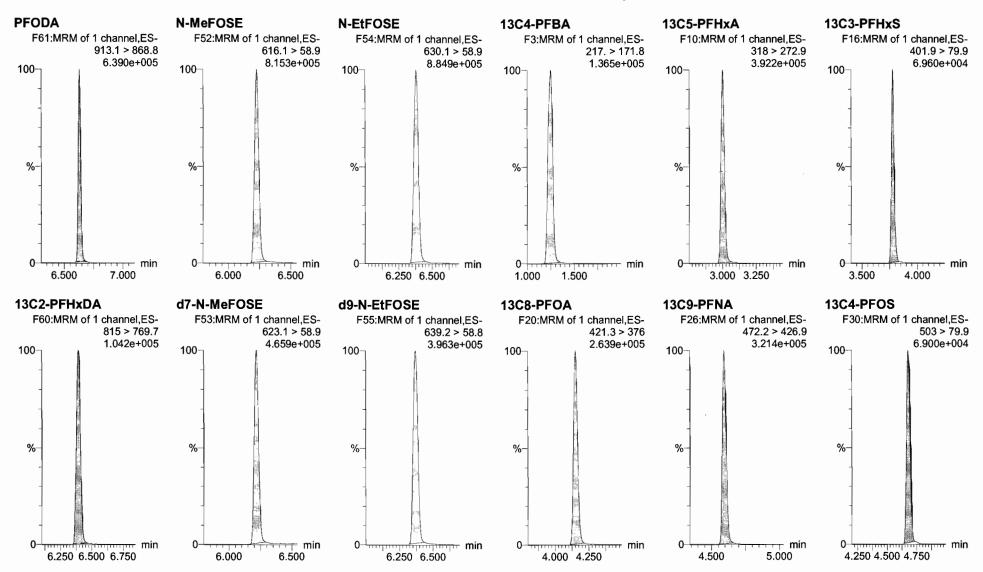

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_8, Date: 26-Oct-2017, Time: 10:33:24, ID: ST171026M1-7 PFC CS4 17J2102, Description: PFC CS4 17J2102



Work Order 1701439 Revision 1 Page 249 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

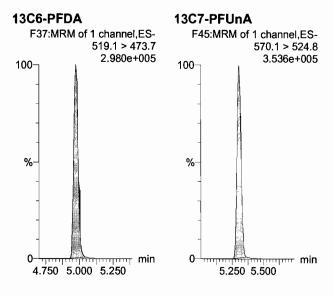
Last Altered: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_8, Date: 26-Oct-2017, Time: 10:33:24, ID: ST171026M1-7 PFC CS4 17J2102, Description: PFC CS4 17J2102

Work Order 1701439 Revision 1 Page 250 of 402

Page 42 of 54

Dataset:

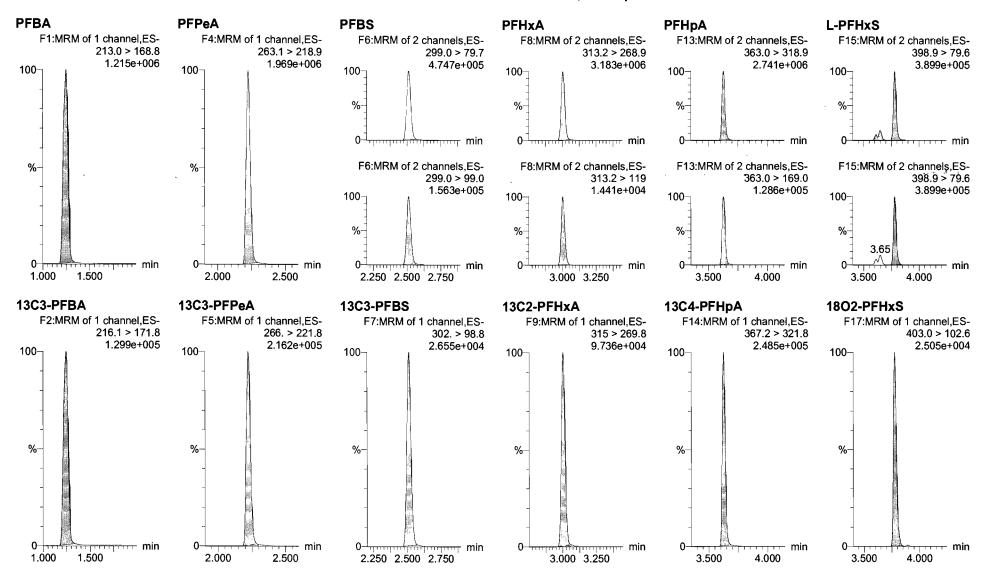

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_8, Date: 26-Oct-2017, Time: 10:33:24, ID: ST171026M1-7 PFC CS4 17J2102, Description: PFC CS4 17J2102



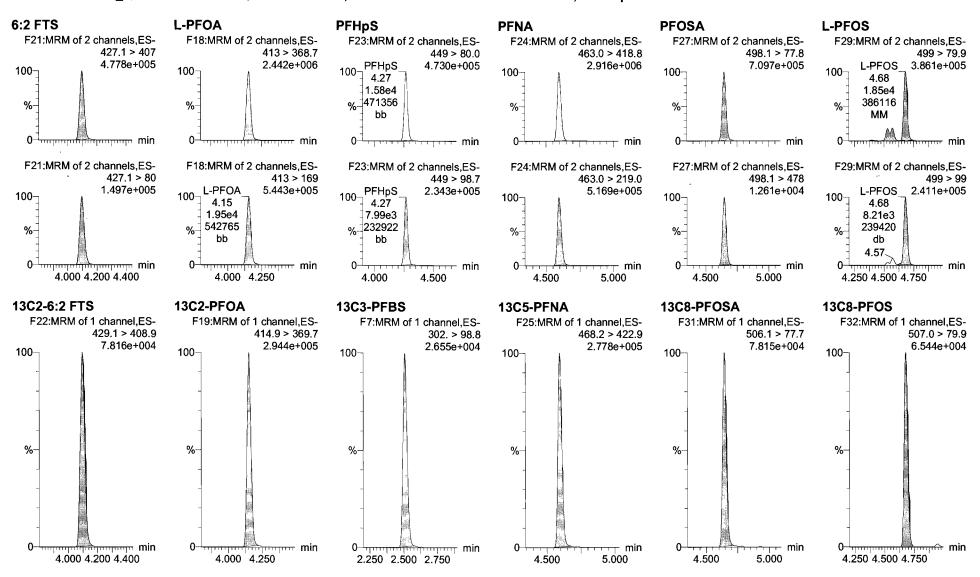
Work Order 1701439 Revision 1 Page 251 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_9, Date: 26-Oct-2017, Time: 10:44:36, ID: ST171026M1-8 PFC CS5 17J2101, Description: PFC CS5 17J2101

Work Order 1701439 Revision 1 Page 252 of 402

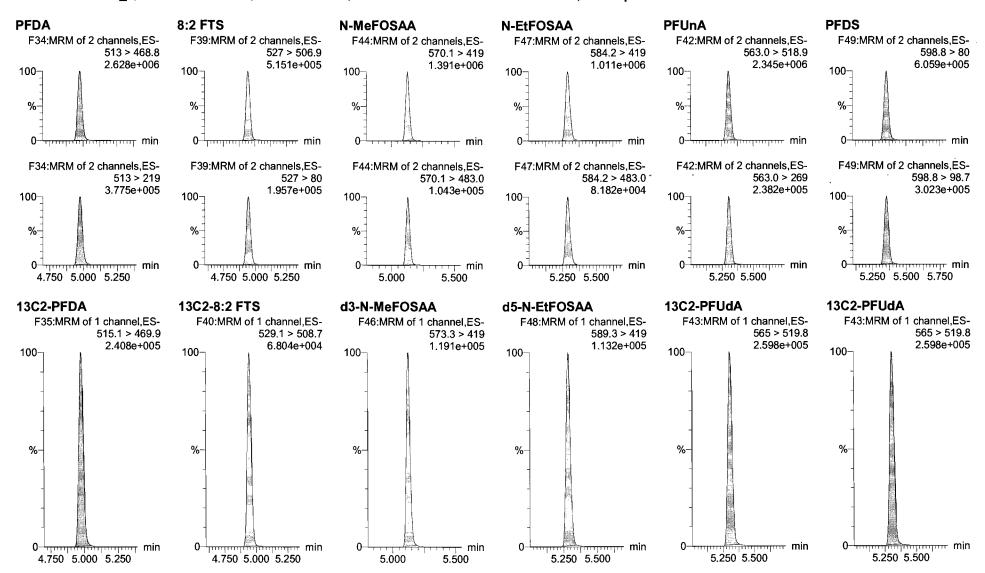

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Name: 171026M1_9, Date: 26-Oct-2017, Time: 10:44:36, ID: ST171026M1-8 PFC CS5 17J2101, Description: PFC CS5 17J2101


Work Order 1701439 Revision 1 Page 253 of 402

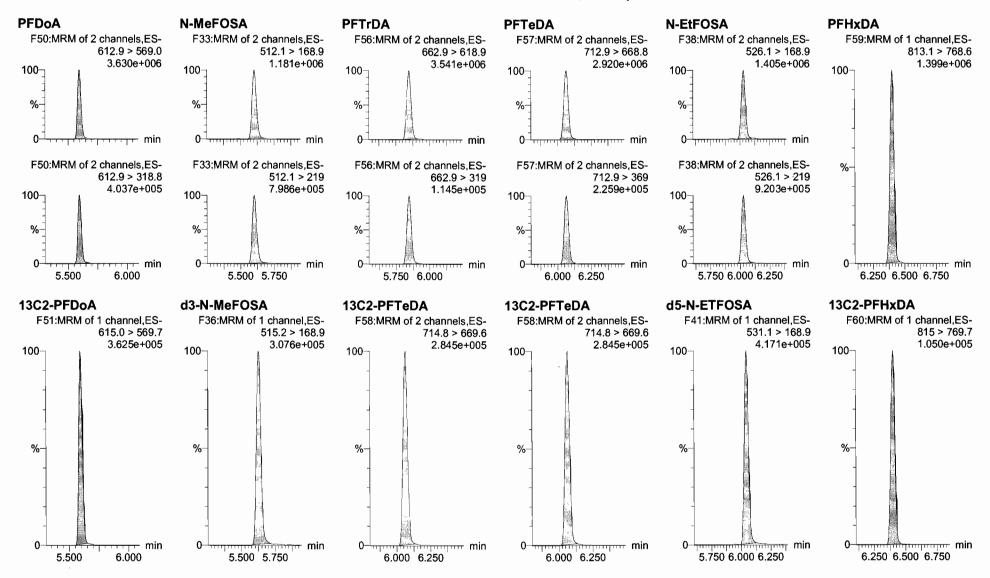
U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_9, Date: 26-Oct-2017, Time: 10:44:36, ID: ST171026M1-8 PFC CS5 17J2101, Description: PFC CS5 17J2101

Work Order 1701439 Revision 1 Page 254 of 402


U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

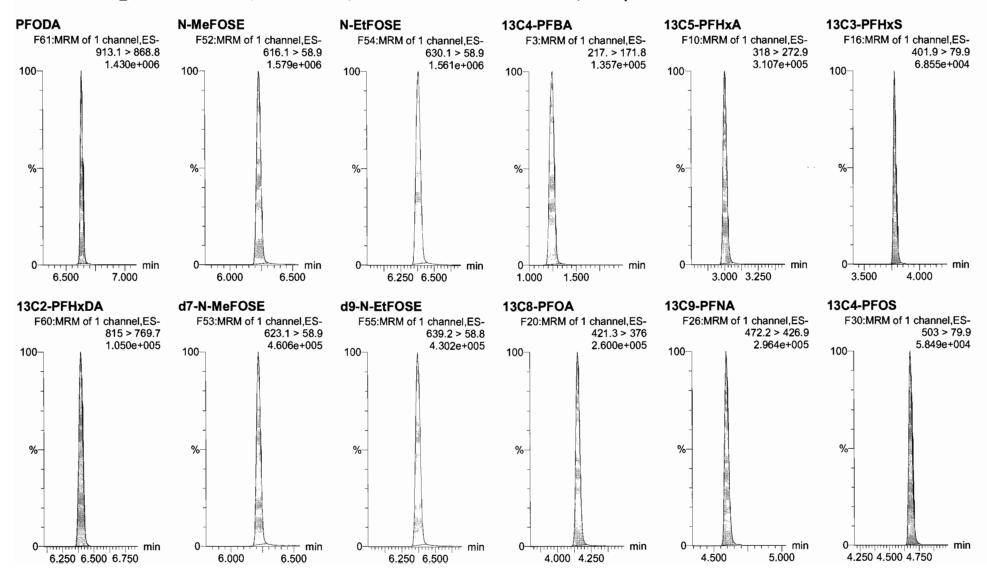
Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_9, Date: 26-Oct-2017, Time: 10:44:36, ID: ST171026M1-8 PFC CS5 17J2101, Description: PFC CS5 17J2101

Work Order 1701439 Revision 1 Page 255 of 402

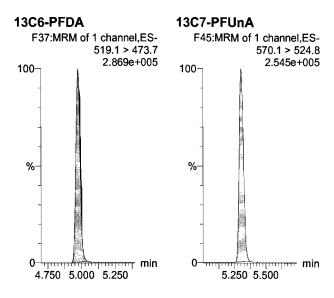

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time

Printed: Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_9, Date: 26-Oct-2017, Time: 10:44:36, ID: ST171026M1-8 PFC CS5 17J2101, Description: PFC CS5 17J2101

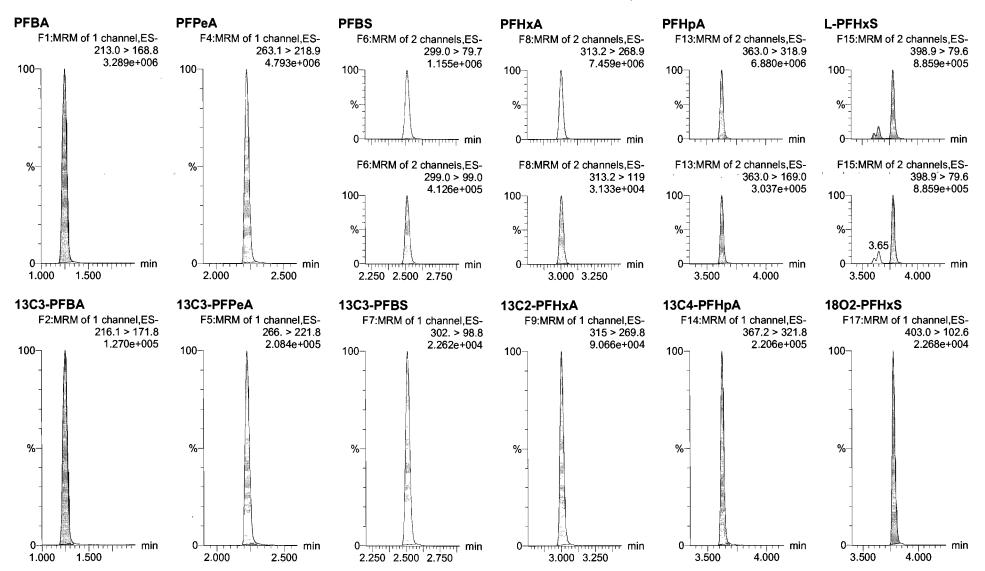

Work Order 1701439 Revision 1 Page 256 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

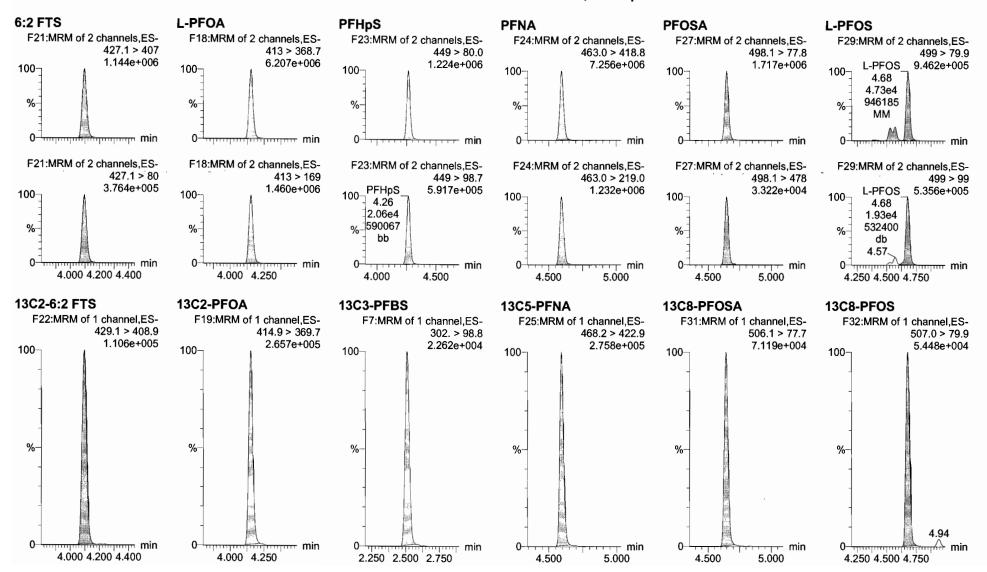
Name: 171026M1_9, Date: 26-Oct-2017, Time: 10:44:36, ID: ST171026M1-8 PFC CS5 17J2101, Description: PFC CS5 17J2101



Work Order 1701439 Revision 1 Page 257 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

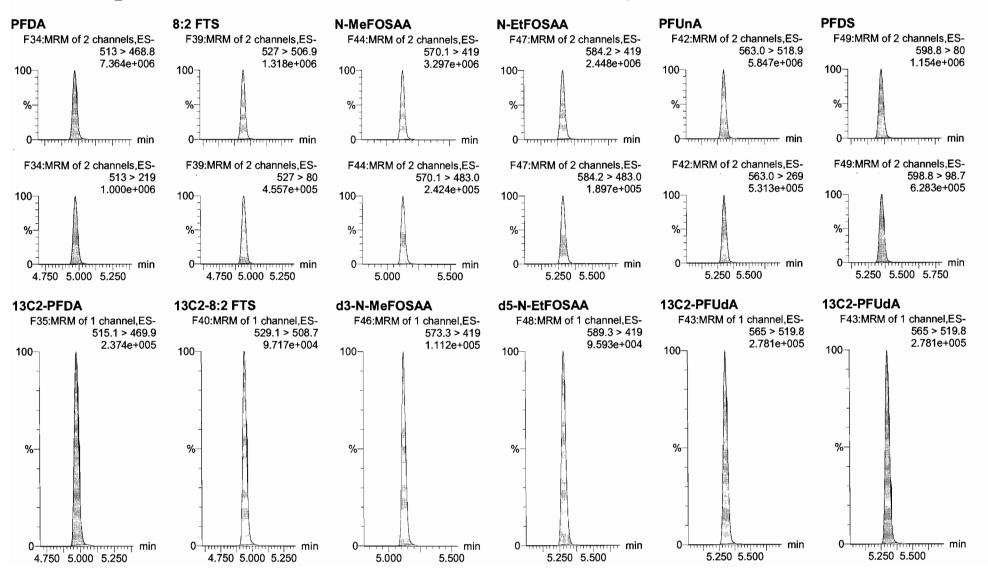
Last Altered: Printed: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time


Name: 171026M1_10, Date: 26-Oct-2017, Time: 10:55:46, ID: ST171026M1-9 PFC CS6 17J2517, Description: PFC CS6 17J2517

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_10, Date: 26-Oct-2017, Time: 10:55:46, ID: ST171026M1-9 PFC CS6 17J2517, Description: PFC CS6 17J2517

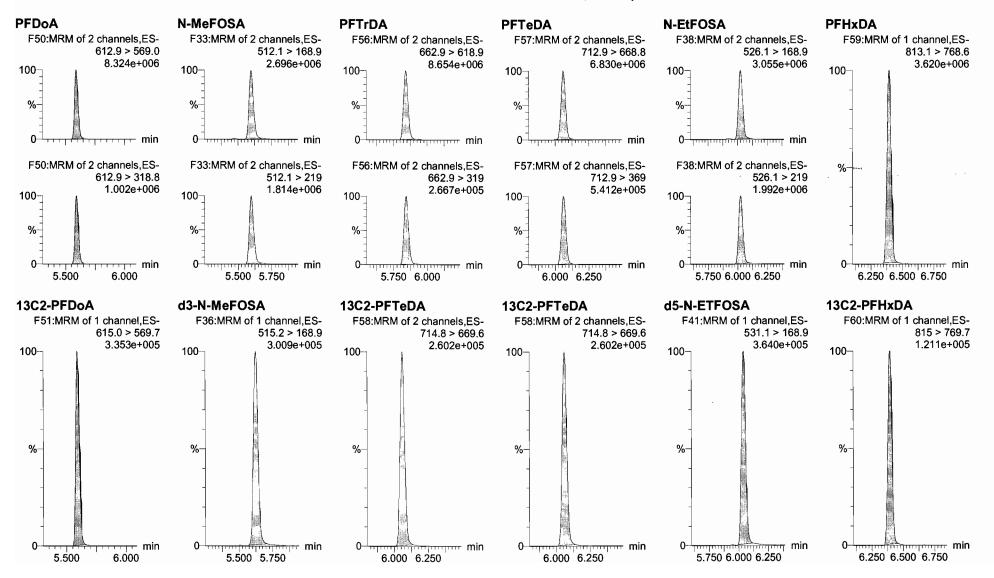

Work Order 1701439 Revision 1 Page 259 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_10, Date: 26-Oct-2017, Time: 10:55:46, ID: ST171026M1-9 PFC CS6 17J2517, Description: PFC CS6 17J2517


Work Order 1701439 Revision 1 Page 260 of 402

U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

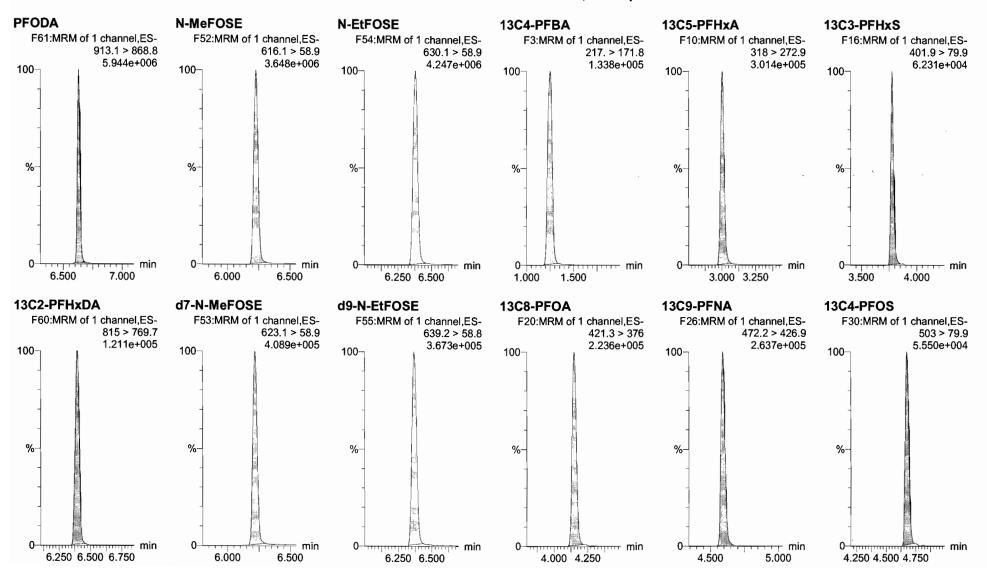
Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_10, Date: 26-Oct-2017, Time: 10:55:46, ID: ST171026M1-9 PFC CS6 17J2517, Description: PFC CS6 17J2517

Work Order 1701439 Revision 1 Page 261 of 402

Page 53 of 54

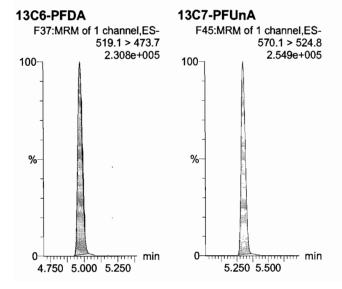

Dataset:

U:\Q4.PRO\results\171026M1\171026M1-CRV.gld

Last Altered: Printed:

Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_10, Date: 26-Oct-2017, Time: 10:55:46, ID: ST171026M1-9 PFC CS6 17J2517, Description: PFC CS6 17J2517



Work Order 1701439 Revision 1 Page 262 of 402

Dataset: U:\Q4.PRO\results\171026M1\171026M1-CRV.qld

Last Altered: Thursday, October 26, 2017 15:43:46 Pacific Daylight Time Thursday, October 26, 2017 15:44:32 Pacific Daylight Time

Name: 171026M1_10, Date: 26-Oct-2017, Time: 10:55:46, ID: ST171026M1-9 PFC CS6 17J2517, Description: PFC CS6 17J2517

Work Order 1701439 Revision 1 Page 263 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171026M1\171026M1-13.qld

Last Altered: Friday, October 27, 2017 10:46:12 Pacific Daylight Time Printed: Friday, October 27, 2017 10:46:53 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 10:03:44 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Name: 171026M1_13, Date: 26-Oct-2017, Time: 11:30:01, ID: ICV171026M1-1 PFC ICV 17I3003, Description: PFC ICV 17I3003

(A) pot wich.

# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec	
1 PFBA	213.0 > 168.8	8.56e3	8.12e3	ost statistics	1.32	1.23	13.2	10.5	105.2	<u>)-136</u>
2 PFPeA	263.1 > 218.9	8.13e3	8.46e3		2.31	2.21	12.0	10.4	104.0	
3 PFBS	299.0 > 79.7	1.90e3	1.04e3		2.59	2.51	22.9	9.42	94.2	
4 PFHxA	313.2 > 268.9	1.24e4	3.33e3		3.08	3.00	18.6	11.2	111.6	
5 PFHpA	363.0 > 318.9	1.11e4	8.36e3		3.70	3.62	16.5	10.9	109.3	
6 L-PFHxS	398.9 > 79.6	1.63e3	8.16e2		3.86	3.78	24.9	10.3	102.9	
8 6:2 FTS	427.1 > 407	2.25e3	2.66e3		4.18	4.10	10.6	10.3	102.9	
9 L-PFOA	413 > 368.7	1.12e4	1.20e4		4.23	4.15	11.7	10.1	101.0	
11 PFHpS	449 > 80.0	1.99e3	1.20e4		4.34	4.27	2.07	10.0	100.3	04.40
12 PFNA	463.0 > 418.8	1.34e4	1.12e4		4.67	4.60	15.0	10.4	103.7	(<i>)</i> (v)
13 PFOSA	498.1 > 77.8	3.65e3	3.44e3		4.72	4.65	13.3	11.4	113.6	1.20
14 L-PFOS	499 > 79.9	2.28e3	2.69e3		4.76	4.68	10.6	9.18	91.8	(0) 27 117
16 PFDA	513 > 468.8	1.48e4	1.13e4		5.05	4.98	16.4	12.1	121.1	0M 10127117 1240
17 8:2 FTS	527 > 506.9	2.85e3	2.36e3		5.03	4.95	15.1	11.3	112.8	/ WA
18 N-MeFOSAA	570.1 > 419	6.77e3	4.57e3		5.21	5.13	18.5	11.7	117.2	1 1 1 1 1 1 1
19 N-EtFOSAA	584.2 > 419	5.48e3	5.15e3		5.37	5.29	13.3	10.5	104.9	(10/27/
20 PFUnA	563.0 > 518.9	1.33e4	1.53e4		5.38	5.32	10.9	9.54	95.4	•
21 PFDS	598.8 > 80	2.58e3	1.53e4		5.43	5.36	2,11	10.8	107.7	
22 PFDoA	612.9 > 569.0	2.05e4	1.69e4		5.67	5.60	15.2	12.0	119.8	
23 N-MeFOSA	512.1 > 168.9		1.39e4		5.63			(-	A)	
24 PFTrDA	662.9 > 618.9	1.88e4	1.69e4		5.92	5.86	13.9	10.4	103.9	
25 PFTeDA	712.9 > 668.8	1.50e4	1.25e4		6.13	6.08	15.1	9.16	91.6	
26 N-EtFOSA	526.1 > 168.9		1.92e4		6.04			(∱ ,	
27 PFHxDA	813.1 > 768.6		3.19e3		6.46				Y	
29 N-MeFOSE	616.1 > 58.9		2.24e4		6.23				I_{i}	1
30 N-EtFOSE	630.1 > 58.9		1.95e4		6.39				V \	V
31 13C3-PFBA	216.1 > 171.8	8.12e3	8.85e3	0.928	1.33	1.23	11.5	12.4	99.0	0-150
32 13C3-PFPeA	266. > 221.8	8.46e3	1.20e4	0.757	2.31	2.21	8.80	11.6	93.0	i
33 13C3-PFBS	302. > 98.8	1.04e3	1.20e4	0.091	2.59	2.51	1.08	11.9	95.1	
34 13C2-PFHxA	315 > 269.8	3.33e3	1.20e4	0.739	3.08	3.00	3.46	4.68	93.7	
Work OxfoldsC4(PF439ARevision 1	367.2 > 321.8	8.36e3	1.20e4	0.684	3.70	3.62	8.69	12.7	101.7	Page 264 of 402

U:\Q4.PRO\results\171026M1\171026M1-13.qld

Last Altered:

Friday, October 27, 2017 10:46:12 Pacific Daylight Time

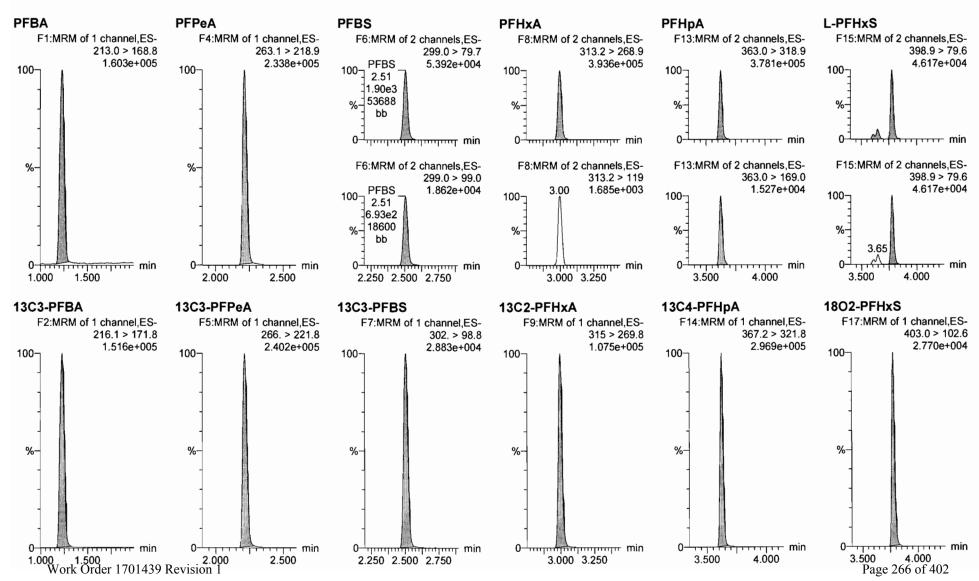
Printed: Friday, October 27, 2017 10:46:53 Pacific Daylight Time

Name: 171026M1_13, Date: 26-Oct-2017, Time: 11:30:01, ID: ICV171026M1-1 PFC ICV 17I3003, Description: PFC ICV 17I3003

	# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
32	36 1802-PFHxS	403.0 > 102.6	8.16e2	2.17e3	0.412	3.85	3.78	4.71	11.4	91.3 50 150
33	37 13C2-6:2 FTS	429.1 > 408.9	2.66e3	1.14e4	0.248	4.18	4.10	2.92	11.8	94.3
34	38 13C2-PFOA	414.9 > 369.7	1.20e4	1.14e4	1.120	4.23	4.15	13.2	11.8	94.5
35	39 13C5-PFNA	468.2 > 422.9	1.12e4	1.20e4	0.929	4.67	4.59	11.7	12.6	100.5
36	40 13C8-PFOSA	506.1 > 77.7	3.44e3	1.46e4	0.246	4.72	4.65	2.93	11.9	95.3
37	41 13C8-PFOS	507.0 > 79.9	2.69e3	2.51e3	1.027	4.76	4.68	13.4	13.1	104.4
38	42 13C2-PFDA	515.1 > 469.9	1.13e4	1.25e4	0.946	5.05	4.98	11.2	11.9	95.1
39	43 13C2-8:2 FTS	529.1 > 508.7	2.36e3	1.25e4	0.171	5.03	4.95	2.36	13.8	110.2
40	44 d3-N-MeFOSAA	573.3 > 419	4.57e3	1.46e4	0.358	5.20	5.13	3.90	10.9	87.2
41	45 d5-N-EtFOSAA	589.3 > 419	5.15e3	1.46e4	0.360	5.36	5.29	4.39	12.2	97.7
42 5000	46 13C2-PFUdA	565 > 519.8	1.53e4	1.46e4	1.045	5.38	5.32	13.0	12.5	99.9
43	47 13C2-PFDoA	615.0 > 569.7	1.69e4	1.46e4	1.141	5.67	5.60	14.4	12.6	100.8
44	48 d3-N-MeFOSA	515.2 > 168.9	1.39e4	1.46e4	0.093	5.65	5.62	11.8	127	84.5
45	49 13C2-PFTeDA	714.8 > 669.6	1.25e4	1.46e4	0.934	6.13	6.08	10.6	11.4	91.1
46	50 d5-N-ETFOSA	531.1 > 168.9	1.92e4	1.46e4	0.132	6.06	6.04	16.4	124	82.8
47	51 13C2-PFHxDA	815 > 769.7	3.19e3	1.46e4	0.809	6.45	6.41	2.73	3.37	67.4
48	52 d7-N-MeFOSE	623.1 > 58.9	2.24e4	1.46e4	0.142	6.22	6.23	19.1	135	89.8
49	53 d9-N-EtFOSE	639.2 > 58.8	1.95e4	1.46e4	0.131	6.37	6.38	16.6	127	84.8
50	54 13C4-PFBA	217. > 171.8	8.85e3	8.85e3	1.000	1.33	1.23	12.5	12.5	100.0
51	55 13C5-PFHxA	318 > 272.9	1.20e4	1.20e4	1.000	3.08	2.99	12.5	12.5	100.0
52	56 13C3-PFHxS	401.9 > 79.9	2.17e3	2.17e3	1.000	3.85	3.77	12.5	12.5	100.0
53	57 13C8-PFOA	421.3 > 376	1.14e4	1.14e4	1.000	4.23	4.15	12.5	12.5	100.0
54	58 13C9-PFNA	472.2 > 426.9	1.20e4	1.20e4	1.000	4.67	4.59	12.5	12.5	100.0
55	59 13C4-PFOS	503 > 79.9	2.51e3	2.51e3	1.000	4.76	4.68	12.5	12.5	100.0
56	60 13C6-PFDA	519.1 > 473.7	1.25e4	1.25e4	1.000	5.05	4.98	12.5	12.5	100.0
57	61 13C7-PFUnA	570.1 > 524.8	1.46e4	1.46e4	1.000	5.38	5.31	12.5	12.5	100.0

Work Order 1701439 Revision 1 Page 265 of 402

U:\Q4.PRO\results\171026M1\171026M1-13.qld

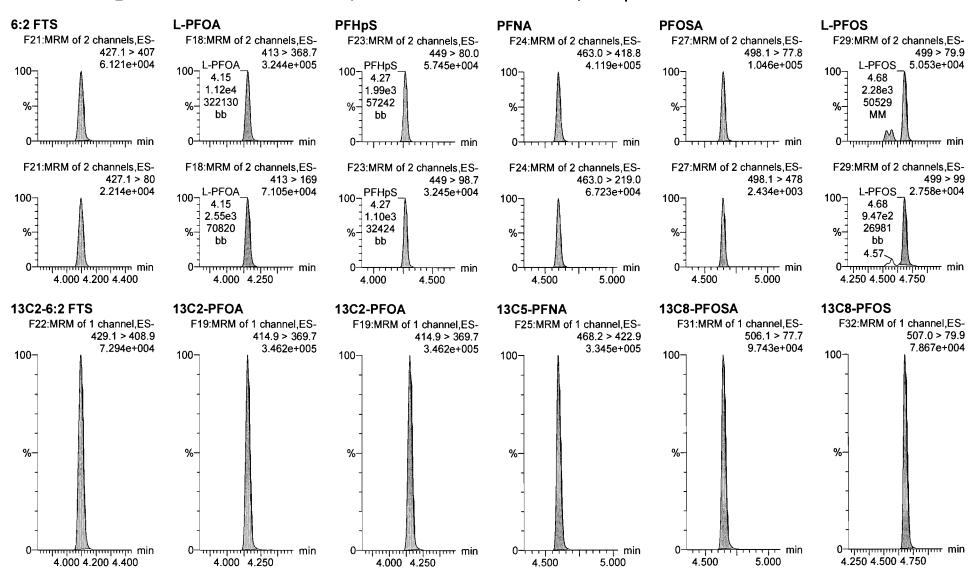

Last Altered: Printed:

Friday, October 27, 2017 10:46:12 Pacific Daylight Time Friday, October 27, 2017 10:46:53 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 27 Oct 2017 10:03:44

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 27 Oct 2017 10:26:14

Name: 171026M1_13, Date: 26-Oct-2017, Time: 11:30:01, ID: ICV171026M1-1 PFC ICV 17I3003, Description: PFC ICV 17I3003

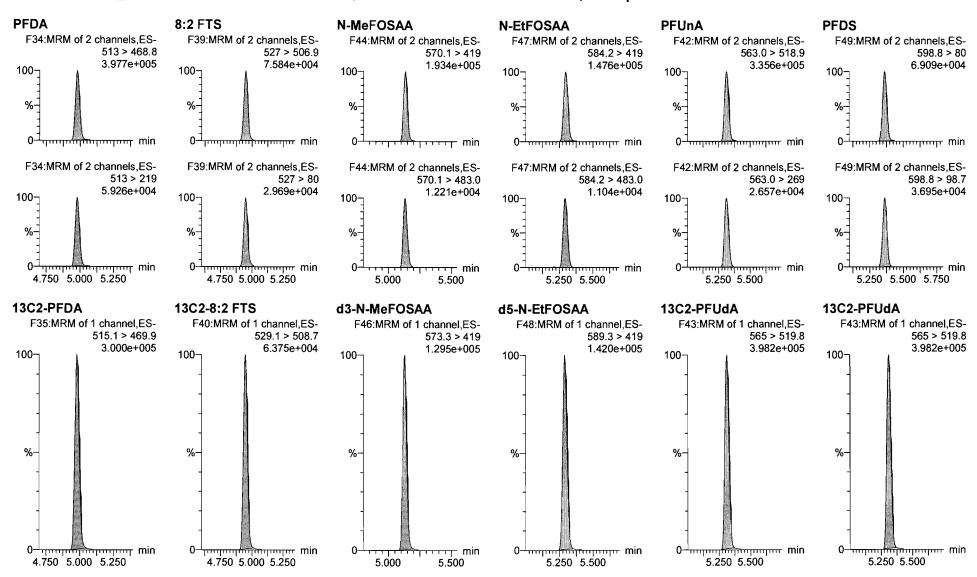


U:\Q4.PRO\results\171026M1\171026M1-13.qld

Last Altered: Printed:

Friday, October 27, 2017 10:46:12 Pacific Daylight Time Friday, October 27, 2017 10:46:53 Pacific Daylight Time

Name: 171026M1_13, Date: 26-Oct-2017, Time: 11:30:01, ID: ICV171026M1-1 PFC ICV 17I3003, Description: PFC ICV 17I3003


Work Order 1701439 Revision 1 Page 267 of 402

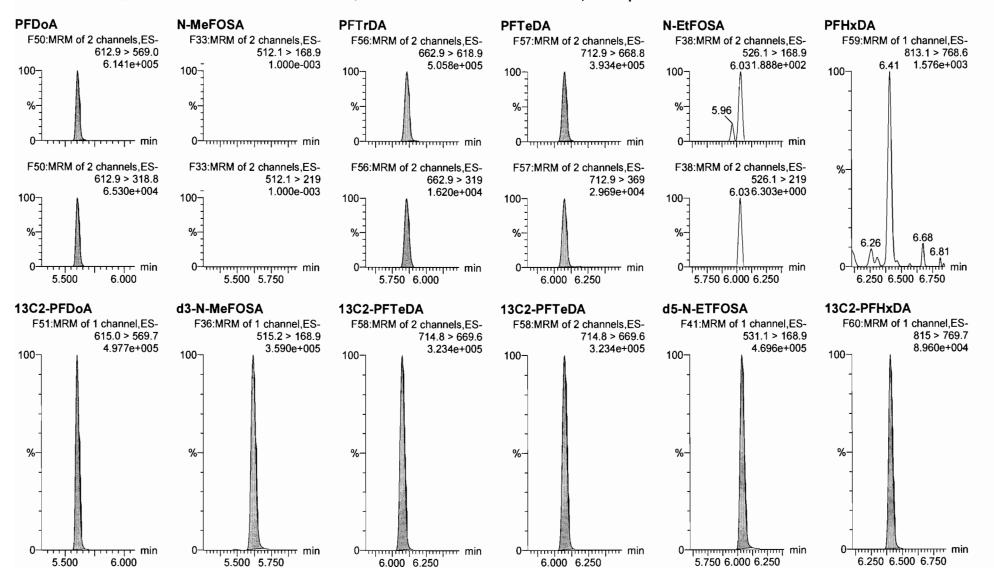
U:\Q4.PRO\results\171026M1\171026M1-13.qld

Last Altered: Printed:

Friday, October 27, 2017 10:46:12 Pacific Daylight Time Friday, October 27, 2017 10:46:53 Pacific Daylight Time

Name: 171026M1_13, Date: 26-Oct-2017, Time: 11:30:01, ID: ICV171026M1-1 PFC ICV 17I3003, Description: PFC ICV 17I3003

Work Order 1701439 Revision 1 Page 268 of 402

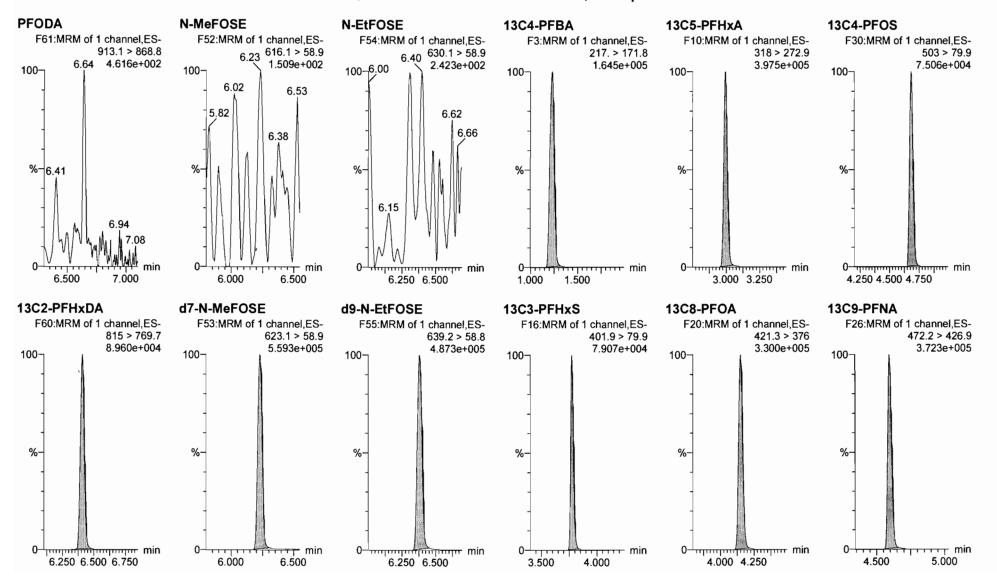

U:\Q4.PRO\results\171026M1\171026M1-13.qld

Last Altered:

Friday, October 27, 2017 10:46:12 Pacific Daylight Time

Printed: Friday, October 27, 2017 10:46:53 Pacific Daylight Time

Name: 171026M1_13, Date: 26-Oct-2017, Time: 11:30:01, ID: ICV171026M1-1 PFC ICV 17I3003, Description: PFC ICV 17I3003

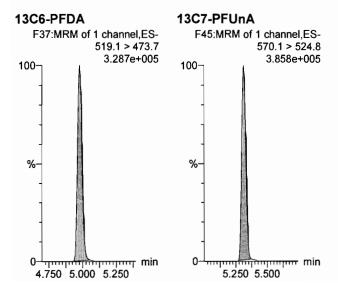

Work Order 1701439 Revision 1 Page 269 of 402

U:\Q4.PRO\results\171026M1\171026M1-13.qld

Last Altered: Printed:

Friday, October 27, 2017 10:46:12 Pacific Daylight Time Friday, October 27, 2017 10:46:53 Pacific Daylight Time

Name: 171026M1_13, Date: 26-Oct-2017, Time: 11:30:01, ID: ICV171026M1-1 PFC ICV 17I3003, Description: PFC ICV 17I3003

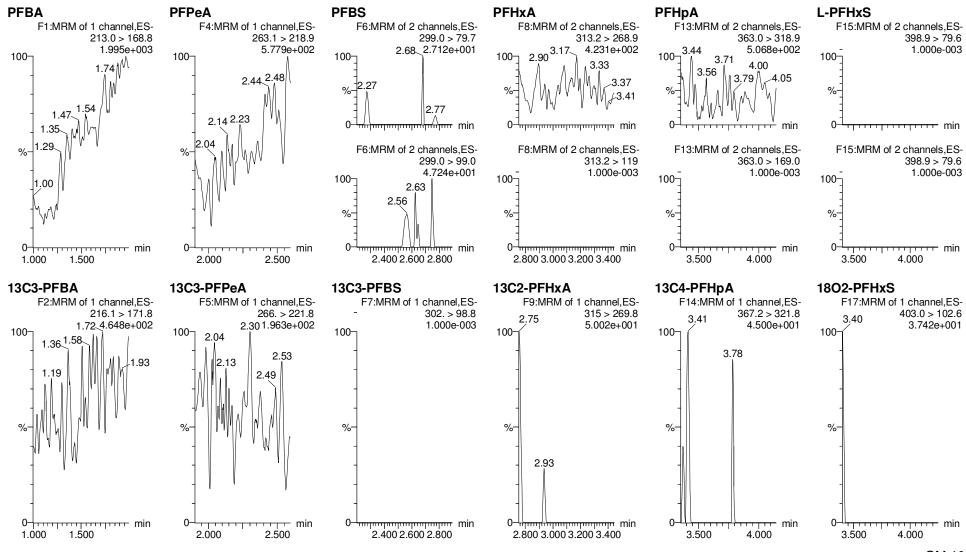

Work Order 1701439 Revision 1 Page 270 of 402

U:\Q4.PRO\results\171026M1\171026M1-13.qld

Last Altered: Printed:

Friday, October 27, 2017 10:46:12 Pacific Daylight Time Friday, October 27, 2017 10:46:53 Pacific Daylight Time

Name: 171026M1_13, Date: 26-Oct-2017, Time: 11:30:01, ID: ICV171026M1-1 PFC ICV 17I3003, Description: PFC ICV 17I3003

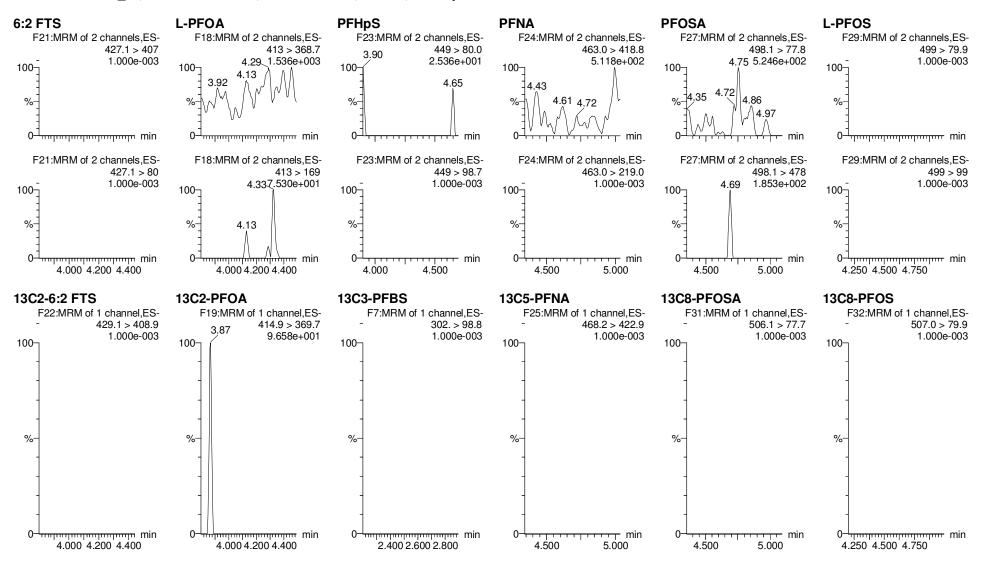

Work Order 1701439 Revision 1 Page 271 of 402

Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Printed: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102517.mdb 26 Oct 2017 08:20:12

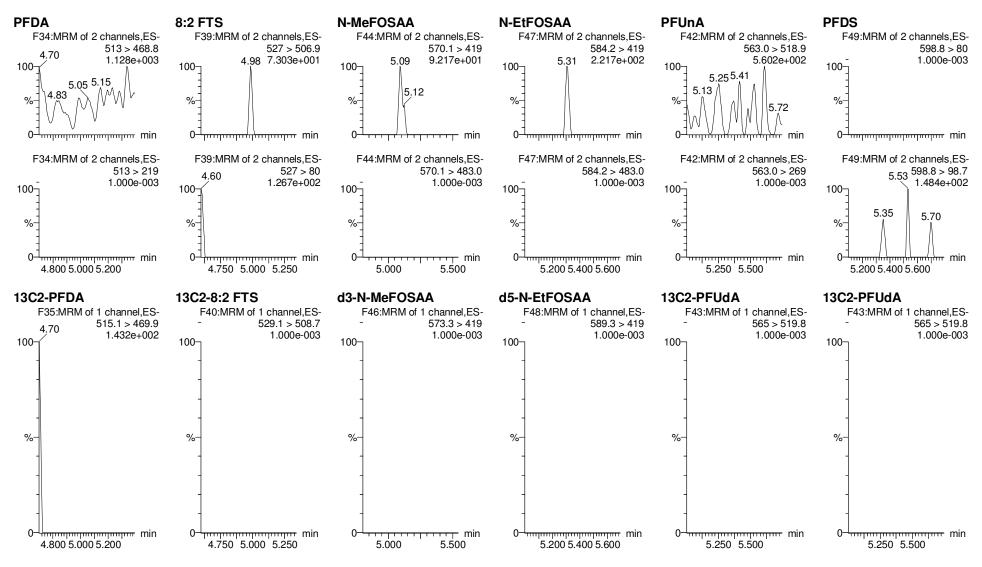
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-26-17-FULL_NOPFODA.cdb 26 Oct 2017 16:54:06

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA


GM 10/26/17

Work Order 1701439 Revision 1

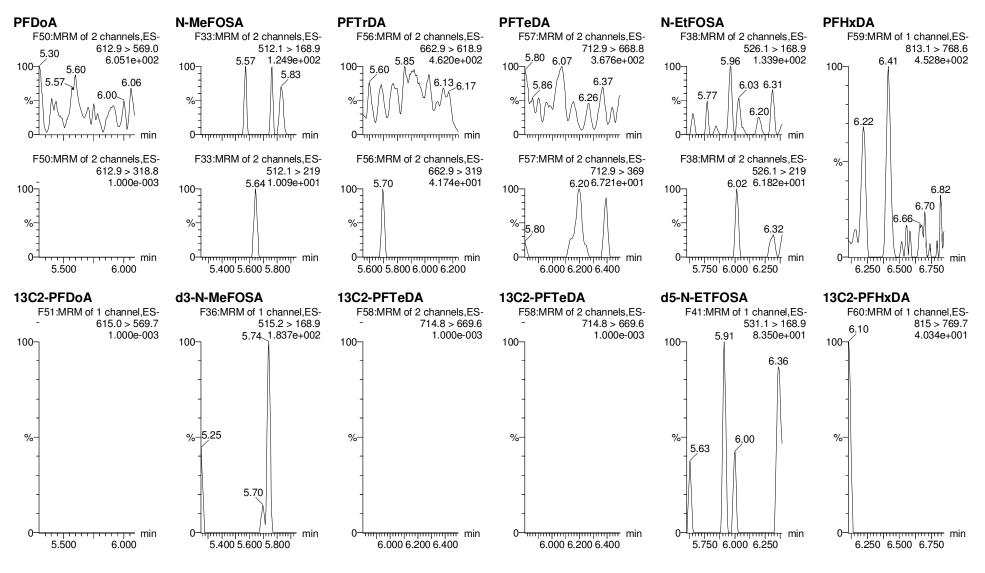
Page 272 of 402


Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Printed: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time

Name: 171026M1 12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA

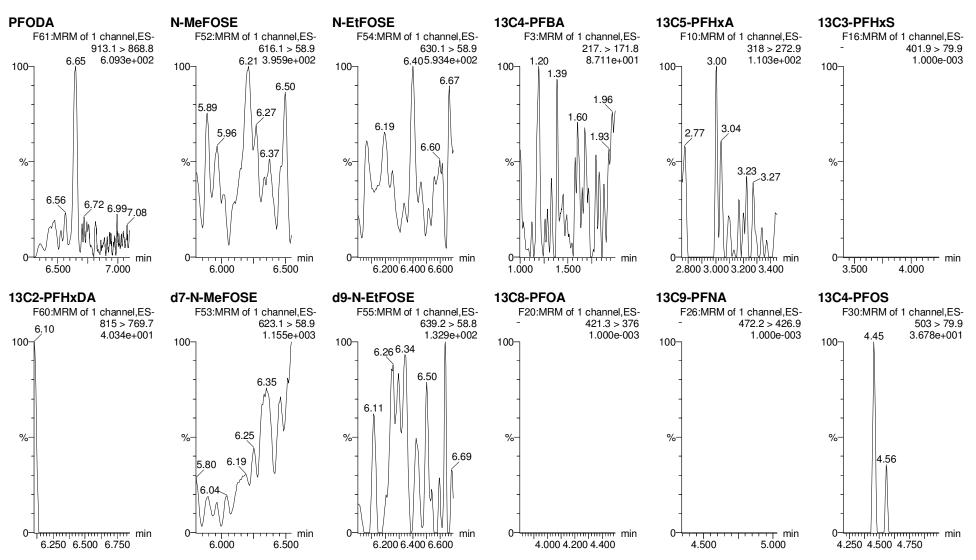
Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Printed: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA



GM 10/26/17

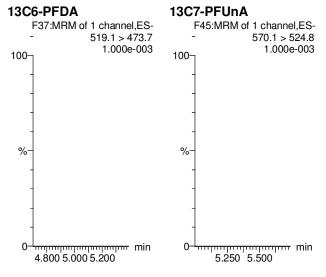
Untitled


Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Thursday, October 26, 2017 16:59:18 Pacific Daylight Time Printed:

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA

Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Printed: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA



Quantify Sample Report Vista Analytical Laboratory

Dataset: Untitled

Last Altered: Thursday, October 26, 2017 16:58:39 Pacific Daylight Time Printed: Thursday, October 26, 2017 16:59:18 Pacific Daylight Time

Name: 171026M1_12, Date: 26-Oct-2017, Time: 11:18:50, ID: IPA, Description: IPA

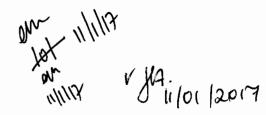
Page 1 of 29

Page 278 of 402

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time


Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 31 Oct 2017 10:25:33 Calibration: 01 Nov 2017 08:21:58 Cl ይ_ \\A_- የFAS_ ወዓ_ ነው-3\-17 - FU_OLD

Compound name: PFBA

Correlation coefficient: r = 0.999738, $r^2 = 0.999476$

Calibration curve: 1.06856 * x + 0.0388677

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	1.15	153.879	5681.744	0.339	0.3	12.2	NO	0.999	NO	MM
2	2 171031M1_3	Standard	0.500	1.10	261.266	6501.426	0.502	0.4	-13.3	NO	0.999	NO	MM
3	3 171031M1_4	Standard	1.000	1.07	573.102	6527.458	1.097	1.0	-0.9	NO	0.999	NO	bb
4	4 171031M1_5	Standard	2.000	1.10	1260.548	6582.637	2.394	2.2	10.2	NO	0.999	NO	bb
5	5 171031M1_6	Standard	5.000	1.08	2948.346	6530.870	5.643	5.2	4.9	NO	0.999	NO	bb
6	6 171031M1_7	Standard	10.000	1.09	5426.435	6416.130	10.572	9.9	-1.4	NO	0.999	NO	bb
7	7 171031M1_8	Standard	50.000	1.09	28161.836	6484.366	54.288	50.8	1.5	NO	0.999	NO	ММ
8	8 171031M1_9	Standard	100.000	1.09	53423.398	6067.397	110.062	103.0	3.0	NO	0.999	NO	bb
9	9 171031M1_1	0 Standard	250.000	1.09	132659.453	6307.260	262.910	246.0	-1.6	NO	0.999	NO	MM

Compound name: PFPeA

Correlation coefficient: r = 0.999844, r^2 = 0.999687

Calibration curve: 0.95039 * x + 0.0982843

Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

i i i i i i i i i i i i i i i i i i i	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	2.10	171.908	6278.785	0.342	0.3	2.7	NO	1.000	NO	MM
2	2 171031M1_3	Standard	0.500	2.06	298.917	7104.250	0.526	0.4	-10.0	NO	1.000	NO	bb
3	3 171031M1_4	Standard	1.000	2.04	559.784	6759.347	1.035	1.0	-1.4	NO	1.000	NO	bb
4	4 171031M1_5	Standard	2.000	2.05	1119.602	6829.161	2.049	2.1	2.6	NO	1.000	NO	bb
5	5 171031M1_6	Standard	5.000	2.04	2694.035	6870.994	4.901	5.1	1.1	NO	1.000	NO	bb
6	6 171031M1_7	Standard	10.000	2.05	5455.381	6958.893	9.799	10.2	2.1	NO	1.000	NO	bb
7	7 171031M1_8	Standard	50.000	2.05	26336.158	6759.594	48.701	51.1	2.3	NO	1.000	NO	bb
8	8 171031M1_9	Standard	100.000	2.05	48687.379	6268.124	97.093	102.1	2.1	NO	1.000	NO	bb
9	9 171031M1_10	Standard	250.000	2.04	118874.586	6338.958	234.413	246.5	-1.4	NO	1.000	NO	bb

Work Order 1701439 Revision 1

Page 2 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: r = 0.998677, $r^2 = 0.997355$

Calibration curve: 2.01352 * x + 0.191925

Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	2.39	32.129	688.358	0.583	0.2	-22.2	NO	0.997	NO	ММ
2	2 171031M1_3	Standard	0.500	2.35	68.250	780.678	1.093	0.4	-10.5	NO	0.997	NO	bb
3	3 171031M1_4	Standard	1.000	2.34	135.287	753.021	2.246	1.0	2.0	NO	0.997	NO	bb
4	4 171031M1_5	Standard	2.000	2.34	297.678	742.446	5.012	2.4	19.7	NO	0.997	NO	bb
5	5 171031M1_6	Standard	5.000	2.34	677.897	796.599	10.637	5.2	3.8	NO -	0.997	NO	bb
6	6 171031M1_7	Standard	10.000	2.34	1326.434	784.881	21.125	10.4	4.0	NO	0.997	NO	bb
7.	7 171031 M 1_8	Standard	50.000	2.34	6743.358	761.174	110.739	54.9	9.8	NO	0.997	NO	bb
8	8 171031M1_9	Standard	100.000	2.33	11668.234	777.412	187.613	93.1	-6.9	NO	0.997	NO	bb
9	9 171031M1_10	Standard	250.000	2.34	29680.076	733.437	505.839	251.1	0.5	NO	0.997	NO	bb

Compound name: PFHxA

Correlation coefficient: r = 0.998612, $r^2 = 0.997226$

Calibration curve: 1.40323 * x + 0.202144

Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Average street	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	2.88	232.930	2384.504	0.488	0.2	-18.4	NO	0.997	NO	ММ
2	2 171031M1_3	Standard	0.500	2.85	435.232	2709.806	0.803	0.4	-14.4	NO	0.997	NO	bb
3	3 171031M1_4	Standard	1.000	2.83	793.895	2400.978	1.653	1.0	3.4	NO	0.997	NO	bb
4	4 171031M1_5	Standard	2.000	2.83	1654.046	2626.430	3.149	2.1	5.0	NO	0.997	NO	bb
5	5 171031M1_6	Standard	5.000	2.83	4328.878	2766.778	7.823	5.4	8.6	NO	0.997	NO	bb
6	6 171031M1_7	Standard	10.000	2.83	8221.420	2605.448	15.777	11.1	11.0	NO	0.997	NO	bb
7	7 171031M1_8	Standard	50.000	2.83	38590.754	2715.844	71.047	50.5	1.0	NO	0.997	NO	bb
8	8 171031M1_9	Standard	100.000	2.83	74838.055	2475.010	151.187	107.6	7.6	NO	0.997	NO	bb
9	9 171031M1_10	Standard	250.000	2.83	175556.516	2600.894	337.493	240.4	-3.9	NO	0.997	NO	bb

Work Order 1701439 Revision 1 Page 279 of 402

Quantify Compound Summary Report MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: r = 0.999826, $r^2 = 0.999651$

Calibration curve: 1.29101 * x + 0.123326

Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	3.51	202.985	5735.094	0.442	0.2	-1.1	NO	1.000	NO	bb
2	2 171031M1_3	Standard	0.500	3.47	345.688	6010.148	0.719	0.5	-7.7	NO	1.000	NO	bb
3	3 171031M1_4	Standard	1.000	3.46	706.153	6161.061	1.433	1.0	1.4	NO	1.000	NO	bb
4	4 171031M1_5	Standard	2.000	3.46	1422.494	6429.838	2.765	2.0	2.3	NO	1.000	NO	bb
5	5 171031M1_6	Standard	5.000	3.46	3399.143	6283.539	6.762	5.1	2.8	· NO	1.000	NO	· MM
6	6 171031M1_7	Standard	10.000	3.46	6601.609	6278.420	13.143	10.1	0.9	NO	1.000	NO	bb
7	7 171031M1_8	Standard	50.000	3.46	31122.873	6039.965	64.410	49.8	-0.4	NO	1.000	NO	bb
8	8 171031M1_9	Standard	100.000	3.46	63387.383	5949.417	133.180	103.1	3.1	NO	1.000	NO	bb
9	9 171031M1_10	Standard	250.000	3.46	148658.375	5827.636	318.865	246.9	-1.2	NO	1.000	NO	bb

Page 3 of 29

Compound name: L-PFHxS

Correlation coefficient: r = 0.996867, $r^2 = 0.993744$

Calibration curve: 2.01952 * x + 0.0727077

Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	3.66	28.985	649.655	0.558	0.2	-3.9	NO	0.994	NO	MM
2	2 171031M1_3	Standard [*]	0.500	3.62	58.737	668.312	1.099	0.5	1.6	NO	0.994	NO	ММ
3	3 171031M1_4	Standard	1.000	3.62	78.075	618.725	1.577	0.7	-25.5	NO	0.994	NO	ММ
4	4 171031M1_5	Standard	2.000	3.61	253.000	650.419	4.862	2.4	18.6	NO	0.994	NO	ММ
5	5 171031M1_6	Standard	5.000	3.62	542.660	695.829	9.748	4.8	-4.2	NO	0.994	NO	ММ
6	6 171031M1_7	Standard	10.000	3.61	1113.139	646.401	21.526	10.6	6.2	NO	0.994	NO	MM
7	7 171031M1_8	Standard	50.000	3.62	5193.124	645.383	100.582	49.8	-0.5	NO	0.994	NO	MM
8	8 171031M1_9	Standard	100.000	3.61	10900.779	597.037	228.227	113.0	13.0	NO	0.994	NO	MM
9	9 171031M1_10	Standard	250.000	3.62	23532.486	615.199	478.148	236.7	-5.3	NO	0.994	NO	MM

Work Order 1701439 Revision 1 Page 280 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 6:2 FTS

Coefficient of Determination: R^2 = 0.997401

Calibration curve: $-0.00272723 * x^2 + 0.973281 * x + -0.00870889$ Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	C ₀ D	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	3.98	27.338	1391.426	0.246	0.3	4.6	NO	0.997	NO	ММ
2	2 171031M1_3	Standard	0.500	3.94	74.124	1783.023	0.520	0.5	8.7	NO	0.997	NO	MM
3	3 171031M1_4	Standard	1.000	3.93	140.061	1706.995	1.026	1.1	6.6	NO	0.997	NO	bb
4	4 171031M1_5	Standard	2.000	3.93	280.315	1871.369	1.872	1.9	-2.8	NO	0.997	NO	bb
5	5 171031M1_6	Standard	5.000	3.93	564.158	1780.975	3.960	4.1	-17.5	NO	0.997	NO	bb
6	6 171031M1_7	Standard	10.000	3.93	1386.046	1894.751	9.144	9.7	-3.3	NO	0.997	NO	bb
7	7 171031M1_8	Standard	50.000	3.93	7470.005	2129.841	43.841	52.9	5.8	NO	0.997	NO	bb
8	8 171031M1_9	Standard	100.000	3.93	13378.071	2419.446	69.117	97.9	-2.1	NO	0.997	NO	bb
9	9 171031M1_10	Standard	250.000	3.93	29064.654	3218.971	112.865			NO	0.997	NO _	bbXI

Page 4 of 29

Compound name: L-PFOA

Correlation coefficient: r = 0.997771, $r^2 = 0.995546$

Calibration curve: 0.943455 * x + 0.316537

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Classical and	# Name	Туре	Std, Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD see	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	4.04	349.354	7934.241	0.550	0.2	-0.9	NO	0.996	NO	bb
2	2 171031M1_3	Standard	0.500	4.00	501.178	8745.764	0.716	0.4	-15.3	NO	0.996	NO	bb
3	3 171031M1_4	Standard	1.000	3.99	854.147	9029.854	1.182	0.9	-8.2	NO	0.996	NO	bb
4	4 171031M1_5	Standard	2.000	3.99	1601.253	8565.783	2.337	2.1	7.1	NO	0.996	NO	bb
5	5 171031M1_6	Standard	5.000	3.99	3730.852	9169.785	5.086	5.1	1.1	NO	0.996	NO	bb
6	6 171031M1_7	Standard	10.000	3.99	6855.419	8262.648	10.371	10.7	6.6	NO	0.996	NO	bb
7	7 171031M1_8	Standard	50.000	3.99	30963.996	7764.311	49.850	52.5	5.0	NO	0.996	NO	bb
8	8 171031M1_9	Standard	100.000	3.99	69625.922	8377.454	103.889	109.8	9.8	NO	0.996	NO	bb
9	9 171031M1_10	Standard	250.000	3.99	162899.641	9092.846	223.939	237.0	-5.2	NO	0.996	NO	bb

Work Order 1701439 Revision 1 Page 281 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: PFHpS

Coefficient of Determination: R^2 = 0.997276

Calibration curve: $-3.99694e-005*x^2 + 0.183931*x + 0.00205894$ Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	4.15	39.027	7934.241	0.061	0.3	29.2	NO	0.997	NO	ММ
2	2 171031M1_3	Standard	0.500	4.12	57.728	8745.764	0.083	0.4	-12.5	NO	0.997	NO	ММ
3	3 171031M1_4	Standard	1.000	4.11	113.362	9029.854	0.157	0.8	-15.8	NO	0.997	NO	bb
4	4 171031M1_5	Standard	2.000	4.11	244.912	8565.783	0.357	1.9	-3.4	NO	0.997	NO	bb
5	5 171031M1_6	Standard	5.000	4.11	696.652	9169.785	0.950	5.2	3.2	NO	0.997	NO	bb
6	6 171031M1_7	Standard	10.000	4.11	1143.305	8262.648	1.730	9.4	-5.9	NO	0.997	NO	bb
7	7 171031M1_8	Standard	50.000	4.11	6257.199	7764.311	10.074	55.4	10.9	NO	0.997	NO	bb
8	8 171031M1_9	Standard	100.000	4.11	11316.866	8377.454	16.886	93.7	-6.3	NO	0.997	NO	bb
9	9 171031M1_10	Standard	250.000	4.11	31817.225	9092.846	43.739	251.5	0.6	NO	0.997	NO	bb

Compound name: PFNA

Correlation coefficient: r = 0.998949, r^2 = 0.997900

Calibration curve: 1.25666 * x + -0.0468814

Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

40000	# Name	Туре	Std. Concession	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 cellinara	1 171031M1_2	Standard	0.250	4.48	201.784	7267.375	0.347	0.3	25.4	NO	0.998	NO	ММ
2	2 171031M1_3	Standard	0.500	4.44	325.620	7363.853	0.553	0.5	-4.6	NO	0.998	NO	bb
3	3 171031M1_4	Standard	1.000	4.44	659.598	7012.465	1.176	1.0	-2.7	NO	0.998	NO	bb
4	4 171031M1_5	Standard	2.000	4.44	1519.270	8090.482	2.347	1.9	-4.7	NO	0.998	NO	bb
5	5 171031M1_6	Standard	5.000	4.44	3769.106	8176.660	5.762	4.6	-7.6	NO	0.998	NO	bb
6	6 171031M1_7	Standard	10.000	4.44	7686.453	7448.899	12.899	10.3	3.0	NO	0.998	NO	bb
7	7 171031M1_8	Standard	50.000	4.44	34518.668	7447.263	57.939	46.1	-7.7	NO	0.998	NO	bb
8	8 171031M1_9	Standard	100.000	4.44	64070.883	6680.167	119.890	95.4	-4.6	NO	0.998	NO	bb
9	9 171031M1_10	Standard	250.000	4.44	169894.625	6536.574	324.892	258.6	3.4	NO	0.998	NO	bb

Work Order 1701439 Revision 1 Page 282 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: r = 0.997159, $r^2 = 0.994326$

Calibration curve: 1.07115 * x + 0.04065

Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	4.54	36.714	1492.771	0.307	0.2	-0.4	NO	0.994	NO	MM
2	2 171031M1_3	Standard	0.500	4.50	116.346	2163.038	0.672	0.6	17.9	NO	0.994	NO	bb
3	3 171031M1_4	Standard	1.000	4.50	171.291	2040.950	1.049	0.9	-5.9	NO	0.994	NO	bb
4	4 171031M1_5	Standard	2.000	4.50	379.021	2051.817	2.309	2.1	5.9	NO	0.994	NO	bb
5	5 171031M1_6	Standard	5.000	4.50	860.242	2306.300	4.662	4.3	-13.7	NO .	0.994	NO	bb
6	6 171031M1_7	Standard	10.000	4.49	1496.136	1967.677	9.504	8.8	-11.6	NO	0.994	NO	bb
7	7 171031M1_8	Standard	50.000	4.50	7218.330	1695.327	53.222	49.6	-0.7	NO	0.994	NO	bb
8	8 171031M1_9	Standard	100.000	4.49	16278.339	1684.739	120.778	112.7	12.7	NO	0.994	NO	bb
9	9 171031M1_10	Standard	250.000	4.50	38711.664	1887.221	256.407	239.3	-4.3	NO	0.994	NO	bb

Compound name: L-PFOS

Correlation coefficient: r = 0.999334, $r^2 = 0.998668$

Calibration curve: 1.01722 * x + -0.0414285

Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	4.57	37.054	1859.624	0.249	0.3	14.2	NO	0.999	NO	MM
2	2 171031M1_3	Standard	0.500	4.53	81.539	1937.648	0.526	0.6	11.6	NO	0.999	NO	MM
3	3 171031M1_4	Standard	1.000	4.53	143.773	1851.665	0.971	1.0	-0.5	NO	0.999	NO	ММ
4	4 171031M1_5	Standard	2.000	4.53	298.537	2059.767	1.812	1.8	-8.9	NO	0.999	NO	ММ
5	5 171031M1_6	Standard	5.000	4.53	737.166	2120.759	4.345	4.3	-13.8	NO	0.999	NO	ММ
6	6 171031M1_7	Standard	10.000	4.53	1277.119	1912.542	8.347	8.2	-17.5	NO	0.999	NO	ММ
7	7 171031M1_8	Standard	50.000	4.53	7388.508	1864.678	49.529	48.7	-2.5	NO	0.999	NO	MM
8	8 171031M1_9	Standard	100.000	4.53	14162.373	1751.382	101.080	99.4	-0.6	NO	0.999	NO	MM
9	9 171031M1_10	Standard	250.000	4.53	33970.090	1641.193	258.730	254.4	1.8	NO	0.999	NO	ММ

Work Order 1701439 Revision 1 Page 283 of 402

Page 7 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: r = 0.999473, $r^2 = 0.998946$

Calibration curve: 1.28134 * x + 0.0315821

Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	4.85	239.407	7145.477	0.419	0.3	20.9	NO	0.999	NO	MM
2	2 171031M1_3	Standard	0.500	4.83	371.599	7574.697	0.613	0.5	-9.2	NO	0.999	NO	MM
3	3 171031M1_4	Standard	1.000	4.82	881.430	8647.730	1.274	1.0	-3.0	NO	0.999	NO	bb
4	4 171031M1_5	Standard	2.000	4.83	1914.807	8337.258	2.871	2.2	10.8	NO	0.999	NO	bb
5	-5 171031M1_6	 Standard 	5.000	4.82	3905.175	7915.097	6.167	4.8	-4.2	NO ·	0.999	NO	рр
6	6 171031M1_7	Standard	10.000	4.83	8371.640	9131.245	11.460	8.9	-10.8	NO	0.999	NO	bb
7	7 171031M1_8	Standard	50.000	4.82	40900.660	8341.659	61.290	47.8	-4.4	NO	0.999	NO	bb
8	8 171031M1_9	Standard	100.000	4.83	76433.445	7622.616	125.340	97.8	-2.2	NO	0.999	NO	bb
9	9 171031M1_10	Standard	250.000	4.83	180023.813	6872.966	327.413	255.5	2.2	NO	0.999	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: R^2 = 0.996235

Calibration curve: -0.00453751 * x^2 + 1.47718 * x + -0.0973776 Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	: 'RT '	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	4.83	65.123	1442.480	0.564	0.4	79.4	NO	0.996	NO	bbX
2	2 171031M1_3	Standard	0.500	4.79	102.447	1803.926	0.710	0.5	9.5	NO	0.996	NO	bb
3	3 171031M1_4	Standard	1.000	4.80	156.067	1393.365	1.400	1.0	1.7	NO	0.996	NO	bb
4	4 171031M1_5	Standard	2.000	4.79	348.723	1675.058	2.602	1.8	-8.1	NO	0.996	NO	bb
5	5 171031M1_6	Standard	5.000	4.79	839.326	1904.943	5.508	3.8	-23.2	NO	0.996	NO	bb
6	6 171031M1_7	Standard	10.000	4.79	1836.806	1553.782	14.777	10.4	4.0	NO	0.996	NO	bb
7	7 171031M1_8	Standard	50.000	4.79	8494.477	1637.058	64.861	52.4	4.8	NO	0.996	NO	bb
8	8 171031M1_9	Standard	100.000	4.79	17873.230	2210.796	101.057	97.9	-2.1	NO	0.996	NO	bb
9	9 171031M1_1	0 Standard	250.000	4.79	38514.566	2901.082	165.949			NO	0.996	NO	bbXI

Work Order 1701439 Revision 1 Page 284 of 402

Quantify Compound Summary Report MassLynx W4.1 SCN945 SCN960

Page 8 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.998527

Calibration curve: -0.00061126 * x^2 + 1.44366 * x + 0.138034 Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

7.59-18-2	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	5.01	118.513	3075.407	0.482	0.2	-4.8	NO	0.999	NO	bb
2	2 171031M1_3	Standard	0.500	4.99	215.609	3851.943	0.700	0.4	-22.2	NO	0.999	NO	bb
3	3 171031M1_4	Standard	1.000	4.98	470.854	3434.018	1.714	1.1	9.2	NO	0.999	NO	bb
4	4 171031M1_5	Standard	2.000	4.98	750.749	3484.427	2.693	1.8	-11.4	NO	0.999	NO	bb
5	5 171031M1_6	Standard	5.000	4.98	2346.063	3316.072	8.844	6.0	20.9	NO ,	0.999	NO	pp.
6	6 171031M1_7	Standard	10.000	4.98	4347.034	3387.262	16.042	11.1	10.7	NO	0.999	NO	bb
7	7 171031M1_8	Standard	50.000	4.98	20170.664	3537.138	71.282	50.4	0.7	NO	0.999	NO	bb
8	8 171031M1_9	Standard	100.000	4.98	35111.871	3288.611	133.460	96.3	-3.7	NO	0.999	NO	bb
9	9 171031M1_10	Standard	250.000	4.98	86532.555	3331.907	324.636	251.6	0.6	NO	0.999	NO	bb

Compound name: N-EtFOSAA

Correlation coefficient: r = 0.995319, $r^2 = 0.990659$

Calibration curve: 1.17468 * x + -0.0150013

Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Maria .	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	5.17	62.526	3420.794	0.228	0.2	-17.1	NO	0.991	NO	bb
2	2 171031M1_3	Standard	0.500	5.15	191.271	3359.667	0.712	0.6	23.7	NO	0.991	NO	bb
3	3 171031M1_4	Standard	1.000	5.14	324.952	3890.687	1.044	0.9	-9.8	NO	0.991	NO	bb
4	4 171031M1_5	Standard	2.000	5.14	770.836	3644.828	2.644	2.3	13.2	NO	0.991	NO	bb
5	5 171031M1_6	Standard	5.000	5.15	1545.738	4390.306	4.401	3.8	-24.8	NO	0.991	NO	bb
6	6 171031M1_7	Standard	10.000	5.14	3679.203	3847.179	11.954	10.2	1.9	NO	0.991	NO	bb
7	7 171031M1_8	Standard	50.000	5.14	16059.152	3517.122	57.075	48.6	-2.8	NO	0.991	NO	bb
8	8 171031M1_9	Standard	100.000	5.14	32652.803	2987.895	136.605	116.3	16.3	NO	0.991	NO	bb
9	9 171031M1_10	Standard	250.000	5.14	74233.180	3348.685	277.098	235.9	-5.6	NO	0.991	NO	bb

Work Order 1701439 Revision 1 Page 285 of 402

Quantify Compound Summary Report MassLynx W4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: PFUdA

Coefficient of Determination: R^2 = 0.998778

Calibration curve: $-5.23555e-005 * x^2 + 0.962109 * x + 0.0759805$ Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT.	Area	IS Area	Response	Conc	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	5.18	247.472	9738.930	0.318	0.3	0.5	NO	0.999	NO	MM
2	2 171031M1_3	Standard	0.500	5.17	398.495	9554.212	0.521	0.5	-7.4	NO	0.999	NO	bb
3	3 171031M1_4	Standard	1.000	5.16	768.983	8696.637	1.105	1.1	7.0	NO	0.999	NO	bb
4	4 171031M1_5	Standard	2.000	5.16	1646.355	10075.132	2.043	2.0	2.2	NO	0.999	NO	bb
5	5 171031M1_6	Standard	5.000	5.16	3929.417	8770.748	5.600	5.7	14.9	NO	0.999	NO	· · bb
6	6 171031M1_7	Standard	10.000	5.16	6427.294	10143.998	7.920	8.2	-18.4	NO	0.999	NO	bb
7	7 171031M1_8	Standard	50.000	5.16	33360.352	8695.222	47.958	49.9	-0.2	NO	0.999	NO	bb
8	8 171031M1_9	Standard	100.000	5.16	65607.578	8417.339	97.429	101.8	1.8	NO	0.999	NO	bb
9	9 171031M1_10	Standard	250.000	5.16	154653.641	8165.827	236.739	249.4	-0.3	NO	0.999	NO	bb

Page 9 of 29

Compound name: PFDS

Coefficient of Determination: R^2 = 0.999698

Calibration curve: $-2.28699e-006 * x^2 + 0.226098 * x + -0.0396467$ Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	ুলি Std. Conc	· RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	5.23	10.806	9738.930	0.014	0.2	-5.3	NO	1.000	NO	MM
2	2 171031M1_3	Standard	0.500	5.22	53.313	9554.212	0.070	0.5	-3.2	NO	1.000	NO	MM ·
3	3 171031M1_4	Standard	1.000	5.21	125.420	8696.637	0.180	1.0	-2.7	NO	1.000	NO	bb
4	4 171031M1_5	Standard	2.000	5.21	407.262	10075.132	0.505	2.4	20.5	NO	1.000	NO	bb
5	5 171031M1_6	Standard	5.000	5.21	711.767	8770.748	1.014	4.7	-6.8	NO	1.000	NO	bb
6	6 171031M1_7	Standard	10.000	5.21	1743.288	10143.998	2.148	9.7	-3.2	NO	1.000	NO	bb
7	7 171031M1_8	Standard	50.000	5.21	7899.934	8695.222	11.357	50.4	0.9	NO	1.000	NO	bb
8	8 171031M1_9	Standard	100.000	5.21	15169.508	8417.339	22.527	99.9	-0.1	NO	1.000	NO	bb
9	9 171031M1_10	Standard	250.000	5.21	36801.285	8165.827	56.334	250.0	-0.0	NO	1.000	NO	bb

Work Order 1701439 Revision 1 Page 286 of 402

Page 10 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.993286

Calibration curve: -6.13859e-005 * $x^2 + 1.22441 * x + 0.0900393$ Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	5.47	245.127	8973.643	0.341	0.2	-17.9	NO	0.993	NO	MM
2	2 171031M1_3	Standard	0.500	5.46	444.153	9276.800	0.598	0.4	-16.9	NO	0.993	NO	bd
3 (4.00)	3 171031M1_4	Standard	1.000	5.45	1112.388	9088.354	1.530	1.2	17.6	NO	0.993	NO	bb
4	4 171031M1_5	Standard	2.000	5.45	2080.546	10505.300	2.476	1.9	-2.6	NO	0.993	NO	bd
5	5 171031M1_6	Standard	5.000	5.45	5553.628	10097.720	6.875	5.5	10.9	. NO	0.993	NO	bd
6	6 171031M1_7	Standard	10.000	5.45	10044.343	8535.952	14.709	11.9	19.5	NO	0.993	NO	ММ
7	7 171031M1_8	Standard	50.000	5.45	42867.844	10663.989	50.248	41.0	-17.9	NO	0.993	NO	bb
8	8 171031M1_9	Standard	100.000	5.45	92022.883	8742.194	131.579	108.0	8.0	NO	0.993	NO	bb
9	9 171031M1_10	Standard	250.000	5.45	180739.563	7516.635	300.566	248.5	-0.6	NO	0.993	NO	bb

Compound name: N-MeFOSA

Correlation coefficient: r = 0.999056, $r^2 = 0.998113$

Calibration curve: 0.99285 * x + 0.328893

Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	1.250	5.58	103.179	9392.646	1.648	1.3	6.3	NO	0.998	NO	bb
2	2 171031M1_3	Standard	2.500	5.52	230.474	11698.229	2.955	2.6	5.8	NO	0.998	NO	ММ
3	3 171031M1_4	Standard	5.000	5.51	372.134	10823.978	5.157	4.9	-2.7	NO	0.998	NO	ММ
4	4 171031M1_5	Standard	10.000	5.51	819.625	11408.556	10.776	10.5	5.2	NO	0.998	NO	bb
5	5 171031M1_6	Standard	25.000	5.51	1844.567	10812.815	25.589	25.4	1.8	NO	0.998	NO	ММ
6	6 171031M1_7	Standard	50.000	5.51	3906.621	11180.341	52.413	52.5	4.9	NO	0.998	NO	bb
7	7 171031M1_8	Standard	250.000	5.51	17793.039	10530.616	253.447	254.9	2.0	NO	0.998	NO	bb
8 州道 ※	8 171031M1_9	Standard	500.000	5.51	35579.340	10080.462	529.430	532.9	6.6	NO	0.998	NO	ММ
9 1	9 171031M1_10	Standard	1250.000	5.51	80108.445	10010.843	1200.325	1208.6	-3.3	NO	0.998	NO	bb

Work Order 1701439 Revision 1 Page 287 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Page 1 of 1

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 09:42:13 Pacific Daylight Time Printed: Wednesday, November 01, 2017 09:43:17 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 31 Oct 2017 10:25:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

Compound name: PFTrDA

Coefficient of Determination: R^2 = 0.992550

Calibration curve: 1.27931 * x

Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None

ericher der sein der gestellt der eine St. Sein der sein der St. Sein der sein der St. Sein der	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	5.73	262.280	8973.643	0.365	0.3	14.2	NO	0.993	NO	ММ
2	2 171031M1_3	Standard	0.500	5.72	584.844	9276.800	0.788	0.6	23.2	NO	0.993	NO	bb
3	3 171031M1_4	Standard	1.000	5.71	1041.562	9088.354	1.433	1.1	12.0	NO	0.993	NO	bb
4	4 171031M1_5	Standard	2.000	5.71	2131.957	10505.300	2.537	2.0	-0.9	NO	0.993	NO	bb
5	5 171031M1_6	Standard	5.000	5.71	5844.869	10097.720	7.235	5.7	13.1	NO	0.993	NO	bd
6	6 171031M1_7	Standard	10.000	5.71	10984.958	8535.952	16.086	12.6	25.7	NO	0.993	NO	bb
7	7 171031M1_8	Standard	50.000	5.71	46815.766	10663.989	54.876	42.9	-14.2	NO	0.993	NO	bb
8 ministric and state of the second state of t	8 171031M1_9	Standard	100.000	5.71	92389.688	8742.194	132.103	103.3	3.3	NO	0.993	NO	bb
9	9 171031M1_10	Standard	250.000	5.71	240781.859	7516.635	400.415	313.0	25.2	NO	0.993	NO	bbX

Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.999673

Calibration curve: -0.000957767 * x^2 + 1.29262 * x + -0.00461528 Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

And the state of t	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	5.95	268.496	9070.291	0.370	0.3	16.0	NO	1.000	NO	MM
2	2 171031M1_3	Standard	0.500	5.94	464.455	11052.117	0.525	0.4	-18.0	NO	1.000	NO	MM
3	3 171031M1_4	Standard	1.000	5.93	1023.883	9782.038	1.308	1.0	1.7	NO	1.000	NO	bb
4	4 171031M1_5	Standard	2.000	5.94	2131.989	10359.471	2.573	2.0	-0.2	NO	1.000	NO	bb
5	5 171031M1_6	Standard	5.000	5.94	4832.223	9972.630	6.057	4.7	-5.9	NO	1.000	NO	bb
6	6 171031M1_7	Standard	10.000	5.94	10591.471	9608.716	13.778	10.7	7.5	NO	1.000	NO	bb
7	7 171031M1_8	Standard	50.000	5.94	45568.859	9259.316	61.518	49.4	-1.2	NO	1.000	NO	bb
8	8 171031M1_9	Standard	100.000	5.94	89156.484	9302.396	119.803	100.1	0.1	NO	1.000	NO	bb
9	9 171031M1_10	Standard	250.000	5.94	181040.938	8593.112	263.352	250.1	0.0	NO	1.000	NO	bb

Work Order 1701439 Revision 1 Page 288 of 402

Page 12 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: N-EtFOSA

Coefficient of Determination: R^2 = 0.999831

Calibration curve: $-4.41537e-005 * x^2 + 0.910589 * x + 0.484101$ Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	:	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	1.250	6.00	153.117	13901.869	1.652	1.3	2.6	NO	1.000	NO	bb
2	2 171031M1_3	Standard	2.500	5.97	272.378	17096.633	2.390	2.1	-16.3	NO	1.000	NO	bb
3	3 171031M1_4	Standard	5.000	5.96	545.049	16828.123	4.858	4.8	-3.9	NO	1.000	NO	bb
4	4 171031M1_5	Standard	10.000	5.96	1238.934	17169.912	10.824	11.4	13.6	NO	1.000	NO	bb
5	5 171031M1_6	Standard	25.000	5.96	2654.813	16600.344	23.989	25.8	3.4	NO .	1.000	NO	· · · bb
6	6 171031M1_7	Standard	50.000	5.96	5304.547	17081.096	46.583	50.7	1.5	NO	1.000	NO	bb
7	7 171031M1_8	Standard	250.000	5.96	24333.527	16298.452	223.949	248.4	-0.6	NO	1.000	NO	bb
8	8 171031M1_9	Standard	500.000	5.96	45078.742	15259.872	443.111	498.1	-0.4	NO	1.000	NO	bb
9	9 171031M1_10	Standard	1250.000	5.96	102308.297	14334.034	1070.616	1251.1	0.1	NO	1.000	NO	bb

Compound name: PFHxDA

Coefficient of Determination: R^2 = 0.999773

Calibration curve: -1.68772e-005 * x^2 + 0.569695 * x + 0.110552 Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 2	1 171031M1_2	Standard	0.250	6.30	134.220	2965.394	0.226	0.2	-18.7	NO	1.000	NO	bb
2	2 171031M1_3	Standard	0.500	6.30	306.653	3990.268	0.384	0.5	-3.9	NO	1.000	NO	bb
3	3 171031M1_4	Standard	1.000	6.29	501.658	3303.746	0.759	1.1	13.9	NO	1.000	NO	bb
4	4 171031M1_5	Standard	2.000	6.30	1129.883	4525.968	1.248	2.0	-0.1	NO	1.000	NO	bb
5	5 171031M1_6	Standard	5.000	6.29	2281.175	3660.271	3.116	5.3	5.5	NO	1.000	NO	bb
6	6 171031M1_7	Standard	10.000	6.29	5082.698	4204.542	6.044	10.4	4.2	NO	1.000	NO	bb
7	7 171031M1_8	Standard	50.000	6.29	25515.646	4441.032	28.727	50.3	0.6	NO	1.000	NO	bb
8	8 171031M1_9	Standard	100.000	6.29	44200.879	3948.273	55.975	98.3	-1.7	NO	1.000	NO	bb
9	9 171031M1_10	Standard	250.000	6.29	100865.922	3556.467	141.806	250.6	0.2	NO	1.000	NO	bb

Work Order 1701439 Revision 1 Page 289 of 402

Quantify Compound Summary Report MassLynx W4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: PFODA

Coefficient of Determination: R^2 = 0.999396

Calibration curve: 0.000959304 * x^2 + 0.407622 * x + -0.0239268 Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	0.250	6.55	89.007	2965.394	0.150	0.4	70.6	NO	0.999	NO	bbX
2	2 171031M1_3	Standard	0.500	6.55	152.392	3990.268	0.191	0.5	5.3	NO	0.999	NO	bb
3	3 171031M1_4	Standard	1.000	6.54	282.941	3303.746	0.428	1.1	10.6	NO	0.999	NO	bb
4	4 171031M1_5	Standard	2.000	6.55	677.328	4525.968	0.748	1.9	-5.7	NO	0.999	NO	bb
5	5 171031M1_6	Standard	5.000	6.54	1210.663	3660.271	1.654	4.1	-18.5	NO ·	0.999	NO	bb
6	6 171031M1_7	Standard	10.000	6.54	3375.460	4204.542	4.014	9.7	-3.1	NO	0.999	NO	bb
7	7 171031M1_8	Standard	50.000	6.54	19505.232	4441.032	21.960	48.4	-3.2	NO	0.999	NO	bb
8	8 171031M1_9	Standard	100.000	6.54	41236.699	3948.273	52.221	103.1	3.1	NO	0.999	NO	bb
9	9 171031M1_10	Standard	250.000	6.54	114699.141	3556.467	161.254	249.3	-0.3	NO	0.999	NO	bb

Page 13 of 29

Compound name: N-MeFOSE

Correlation coefficient: r = 0.996570, $r^2 = 0.993151$

Calibration curve: 0.910887 * x + 0.561201

Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

and the same	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	1.250	6.19	124.033	13124.170	1.418	0.9	-24.8	NO	0.993	NO	MM
2	2 171031M1_3	Standard	2.500	6.20	283.411	15410.882	2.759	2.4	-3.5	NO	0.993	NO	MM
3	3 171031M1_4	Standard	5.000	6.19	511.333	16129.054	4.755	4.6	-7.9	NO	0.993	NO	bb
4	4 171031M1_5	Standard	10.000	6.20	1104.509	16972.910	9.761	10.1	1.0	NO	0.993	NO	MM
5	5 171031M1_6	Standard	25.000	6.20	2682.080	14780.235	27.220	29.3	17.1	NO	0.993	NO	bb
6	6 171031M1_7	Standard	50.000	6.20	5001.466	16055.921	46.725	50.7	1.4	NO	0.993	NO	bd
7	7 171031M1_8	Standard	250.000	6.19	26665.461	14835.532	269.611	295.4	18.1	NO	0.993	NO	MM
8 ****	8 171031M1_9	Standard	500.000	6.20	37148.656	11713.693	475.708	521.6	4.3	NO	0.993	NO	MM
9	9 171031M1_10	Standard	1250.000	6.19	102735.523	14345.026	1074.263	1178.7	-5.7	NO	0.993	NO	bb

Work Order 1701439 Revision 1 Page 290 of 402

Page 14 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: r = 0.999631, $r^2 = 0.999262$

Calibration curve: 1.00592 * x + 0.816282

Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded.
1	1 171031M1_2	Standard	1.250	6.35	142.814	11021.274	1.944	1.1	-10.3	NO	0.999	NO	MM .
2	2 171031M1_3	Standard	2.500	6.35	268.158	13611.050	2.955	2.1	-14.9	NO	0.999	NO	ММ
3	3 171031M1_4	Standard	5.000	6.35	601.760	14567.635	6.196	5.3	7.0	NO	0.999	NO	ММ
4	4 171031M1_5	Standard	10.000	6.35	1225.812	15962.389	11.519	10.6	6.4	NO	0.999	NO	мм
5	5 171031M1_6	Standard	25.000	6.35	2691.773	15443.354	26.145	25.2	0.7	NO	0.999	NO	· bb *
6	6 171031M1_7	Standard	50.000	6.35	5608.070	14651.429	57.415	56.3	12.5	NO	0.999	NO	ММ
7	7 171031M1_8	Standard	250.000	6.35	25879.797	15170.423	255.891	253.6	1.4	NO	0.999	NO	ММ
8	8 171031M1_9	Standard	500.000	6.36	47818.434	14707.501	487.694	484.0	-3.2	NO	0.999	NO	ММ
9	9 171031M1_10	Standard	1250.000	6.35	108556.992	12885.272	1263.733	1255.5	0.4	NO _	0.999	NO	ММ

Compound name: 13C3-PFBA

Response Factor: 0.94874

RRF SD: 0.0147158, Relative SD: 1.55109

Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)

Curve type: RF

100	# Name	Type	Std. Conc	. RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	1.15	5681.744	5963.095	11.910	12.6	0.4	NO	- Anna	NO	bb
2	2 171031M1_3	Standard	12.500	1.10	6501.426	6803.867	11.944	12.6	0.7	NO		NO	bb
3	3 171031M1_4	Standard	12.500	1.07	6527.458	6654.722	12.261	12.9	3.4	NO		NO	bb
4	4 171031M1_5	Standard	12.500	1.09	6582.637	7041.553	11.685	12.3	-1.5	NO		NO	bb
5	5 171031M1_6	Standard	12.500	1.08	6530.870	6915.432	11.805	12.4	-0.5	NO		NO	bb
6	6 171031M1_7	Standard	12.500	1.09	6416.130	6832.840	11.738	12.4	-1.0	NO		NO	bb
7	7 171031M1_8	Standard	12.500	1.09	6484.366	6879.583	11.782	12.4	-0.7	NO		NO	MM
8	8 171031M1_9	Standard	12.500	1.09	6067.397	6502.498	11.664	12.3	-1.6	NO		NO	bb
9	9 171031M1_10	Standard	12.500	1.08	6307.260	6600.681	11.944	12.6	0.7	NO		NO	MM

Work Order 1701439 Revision 1 Page 291 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Page 15 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.781167

RRF SD: 0.0326889, Relative SD: 4.18463

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	R	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	2.10	6278.785	7771.502	10.099	12.9	3.4	NO		NO	ММ
2	2 171031M1_3	Standard	12.500	2.06	7104.250	9033.493	9.830	12.6	0.7	NO		NO	bb
3	3 171031M1_4	Standard	12.500	2.04	6759.347	8124.338	10.400	13.3	6.5	NO		NO	bb
4	4 171031M1_5	Standard	12.500	2.05	6829.161	8602.264	9.923	12.7	1.6	NO		NO	bb
5	5 171031M1_6	Standard	12.500	2.04	6870.994	9624.428	8.924	11.4	-8.6	NO		NO	bb
6	6 171031M1_7	Standard	12.500	2.05	6958.893	8956.964	9.712	12.4	-0.5	NO		NO	bb
7	7 171031M1_8	Standard	12.500	2.05	6759.594	8823.722	9.576	12.3	-1.9	NO		NO	bb
8	8 171031M1_9	Standard	12.500	2.05	6268.124	7955.587	9.849	12.6	0.9	NO		NO	bb
9	9 171031M1_10	Standard	12.500	2.05	6338.958	8281.060	9.568	12.2	-2.0	NO		NO	bb

Compound name: 13C3-PFBS

Response Factor: 0.0885487

RRF SD: 0.0043337, Relative SD: 4.89414

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	2.39	688.358	7771.502	1.107	12.5	0.0	NO		NO	bb
2	2 171031M1_3	Standard	12.500	2.35	780.678	9033.493	1.080	12.2	-2.4	NO		NO	bb
3	3 171031M1_4	Standard	12.500	2.33	753.021	8124.338	1.159	13.1	4.7	NO		NO	bb
4	4 171031M1_5	Standard	12.500	2.34	742.446	8602.264	1.079	12.2	-2.5	NO		NO	bb
5	5 171031M1_6	Standard	12.500	2.34	796.599	9624.428	1.035	11.7	-6.5	NO		NO	bb
6	6 171031M1_7	Standard	12.500	2.34	784.881	8956.964	1.095	12.4	-1.0	NO		NO	bb
7	7 171031M1_8	Standard	12.500	2.34	761.174	8823.722	1.078	12.2	-2.6	NO		NO	bb
8	8 171031M1_9	Standard	12.500	2.33	777.412	7955.587	1.221	13.8	10.4	NO		NO	bb
9	9 171031M1_10	Standard	12.500	2.34	733.437	8281.060	1.107	12.5	0.0	NO		NO	bb

Work Order 1701439 Revision 1 Page 292 of 402

Quantify Compound Summary Report MassLynx W4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C2-PFHxA

Response Factor: 0.755271

RRF SD: 0.0229973, Relative SD: 3.0449

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

8 6 A 7	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD GoD Flag	x=excluded
1	1 171031M1_2	Standard	5.000	2.89	2384.504	7771.502	3.835	5.1	1.6	NO	NO	bb
2	2 171031M1_3	Standard	5.000	2.85	2709.806	9033.493	3.750	5.0	-0.7	NO	NO	bb
3	3 171031M1_4	Standard	5.000	2.83	2400.978	8124.338	3.694	4.9	-2.2	NO	NO	bb
4	4 171031M1_5	Standard	5.000	2.83	2626.430	8602.264	3.816	5.1	1.1	NO	NO	bb
5	5 171031M1_6	Standard	5.000	2.83	2766.778	9624.428	3.593	4.8	-4.8	, NO	. , . NO	bb
6	6 171031M1_7	Standard	5.000	2.83	2605.448	8956.964	3.636	4.8	-3.7	NO	NO	bb
7	7 171031M1_8	Standard	5.000	2.83	2715.844	8823.722	3.847	5.1	1.9	NO	NO	bb
8	8 171031M1_9	Standard	5.000	2.83	2475.010	7955.587	3.889	5.1	3.0	NO	NO	bb
9	9 171031M1_10	Standard	5.000	2.83	2600.894	8281.060	3.926	5.2	4.0	NO	NO	bb

Page 16 of 29

Compound name: 13C4-PFHpA

Response Factor: 0.710999

RRF SD: 0.0386896, Relative SD: 5.44158

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	· Area	IS Area	Response	Conc.	%Dev	Conc. Flag CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	3.51	5735.094	7771.502	9.225	13.0	3.8	NO	NO	bb
2	2 171031M1_3	Standard	12.500	3.47	6010.148	9033.493	8.316	11.7	-6.4	NO	NO	bb
3	3 171031M1_4	Standard	12.500	3.46	6161.061	8124.338	9.479	13.3	6.7	NO	NO	bb
4	4 171031M1_5	Standard	12.500	3.46	6429.838	8602.264	9.343	13.1	5.1	NO	NO	bb
5	5 171031M1_6	Standard	12.500	3.46	6283.539	9624.428	8.161	11.5	-8.2	NO	NO	bb
6	6 171031M1_7	Standard	12.500	3.46	6278.420	8956.964	8.762	12.3	-1.4	NO	NO	bb
7	7 171031M1_8	Standard	12.500	3.46	6039.965	8823.722	8.556	12.0	-3.7	NO	NO	bb
8	8 171031M1_9	Standard	12.500	3.46	5949.417	7955.587	9.348	13.1	5.2	NO	NO	bb
9	9 171031M1_10	Standard	12.500	3.46	5827.636	8281.060	8.797	12.4	-1.0	NO	NO	bb

Work Order 1701439 Revision 1 Page 293 of 402

Page 17 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 18O2-PFHxS

Response Factor: 0.423321

RRF SD: 0.028378, Relative SD: 6.70367

Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)

Curve type: RF

**************************************	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	3.66	649.655	1453.004	5.589	13.2	5.6	NO	NO	bb
2	2 171031M1_3	Standard	12.500	3.62	668.312	1448.036	5.769	13.6	9.0	NO	NO	bb
3	3 171031M1_4	Standard	12.500	3.61	618.725	1450.402	5.332	12.6	8.0	NO	NO	bb
4	4 171031M1_5	Standard	12.500	3.61	650.419	1759.264	4.621	10.9	-12.7	NO	NO	bb
5	5 171031M1_6	Standard	12.500	3.61	695.829	1542.587	5.638	13.3	6.6	. NO	NO	bb
6	6 171031M1_7	Standard	12.500	3.61	646.401	1564.074	5.166	12.2	-2.4	NO	NO	bb
7	7 171031M1_8	Standard	12.500	3.62	645.383	1586.405	5.085	12.0	-3.9	NO	NO	рр
8	8 171031M1_9	Standard	12.500	3.62	597.037	1475.894	5.057	11.9	-4.4	NO	NO	bb
9	9 171031M1_10	Standard	12.500	3.62	615.199	1433.237	5.365	12.7	1.4	NO	NO	bb

Compound name: 13C2-6:2 FTS

Response Factor: 0.285726

RRF SD: 0.0424804, Relative SD: 14.8676

Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)

Curve type: RF

The state of the s	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	3.98	1391.426	5755.554	3.022	10.6	-15.4	NO	NO	bb
2	2 171031M1_3	Standard	12.500	3.94	1783.023	6357.599	3.506	12.3	-1.8	NO	NO	bb
3	3 171031M1_4	Standard	12.500	3.93	1706.995	6407.551	3.330	11.7	-6.8	NO	NO	bb
4	4 171031M1_5	Standard	12.500	3.93	1871.369	6896.374	3.392	11.9	-5.0	NO	NO	bb
5	5 171031M1_6	Standard	12.500	3.93	1780.975	7038.075	3.163	11.1	-11.4	NO	NO	bb
6	6 171031M1_7	Standard	12.500	3.93	1894.751	6844.025	3.461	12.1	-3.1	NO	NO	bb
7	7 171031M1_8	Standard	12.500	3.93	2129.841	6583.264	4.044	14.2	13.2	NO	NO	bb
8	8 171031M1_9	Standard	12.500	3.93	2419.446	6496.577	4.655	16.3	30.3	NO	NO	bb
9 *2.	9 171031M1_10	Standard	12.500	3.93	3218.971	6480.723	6.209	21.7	73.8	NO	NO	bbX

Work Order 1701439 Revision 1 Page 294 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Page 18 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 1.30974

RRF SD: 0.0867529, Relative SD: 6.62368

Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)

Curve type: RF

the same and	# Name	Туре	Std. Conc	RT	Area ·	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	4.03	7934.241	5755.554	17.232	13.2	5.3	NO	NO	bb
2	2 171031M1_3	Standard	12.500	4.00	8745.764	6357.599	17.195	13.1	5.0	NO	NO	bb
3	3 171031M1_4	Standard	12.500	3.99	9029.854	6407.551	17.616	13.4	7.6	NO	NO	bb
4	4 171031M1_5	Standard	12.500	3.99	8565.783	6896.374	15.526	11.9	-5.2	NO	NO	bb
5	5 171031M1_6	Standard	12.500	3.99	9169.785	7038.075	16.286	12.4	-0.5	NO	NO · · ·	pp
6	6 171031M1_7	Standard	12.500	3.99	8262.648	6844.025	15.091	11.5	-7.8	NO	NO	bb
7	7 171031M1_8	Standard	12.500	3.99	7764.311	6583.264	14.743	11.3	-10.0	NO	NO	bb
8	8 171031M1_9	Standard	12.500	3.99	8377.454	6496.577	16.119	12.3	-1.5	NO	NO	bb
9	9 171031M1_10	Standard	12.500	3.99	9092.846	6480.723	17.538	13.4	7.1	NO	NO	bb

Compound name: 13C5-PFNA

Response Factor: 0.979208

RRF SD: 0.0766554, Relative SD: 7.82831

Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Cone. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	4.47	7267.375	7443.399	12.204	12.5	-0.3	NO	NO	bb
2	2 171031M1_3	Standard	12.500	4.44	7363.853	7759.596	11.862	12.1	-3.1	NO	NO	bb
3	3 171031M1_4	Standard	12.500	4.44	7012.465	7636.577	11.478	11.7	-6.2	NO	NO	bb
4	4 171031M1_5	Standard	12.500	4.44	8090.482	8507.058	11.888	12.1	-2.9	NO	NO	bb
5	5 171031M1_6	Standard	12.500	4.44	8176.660	8252.775	12.385	12.6	1.2	NO	NO	bb
6	6 171031M1_7	Standard	12.500	4.44	7448.899	7913.440	11.766	12.0	-3.9	NO	NO	bb
7	7 171031M1_8	Standard	12.500	4.44	7447.263	7424.903	12.538	12.8	2.4	NO	NO	bb
8	8 171031M1_9	Standard	12.500	4.44	6680.167	5722.288	14.592	14.9	19.2	NO	NO	bb
9	9 171031M1_10	Standard	12.500	4.44	6536.574	7138.070	11.447	11.7	-6.5	NO	NO	bb

Work Order 1701439 Revision 1 Page 295 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C8-PFOSA

Response Factor: 0.206685

RRF SD: 0.0287647, Relative SD: 13.9171

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	4.53	1492.771	8791.230	2.123	10.3	-17.8	NO		NO	bb
2	2 171031M1_3	Standard	12.500	4.50	2163.038	10903.049	2.480	12.0	-4.0	NO		NO	bb
3	3 171031M1_4	Standard	12.500	4.50	2040.950	8589.958	2.970	14.4	15.0	NO		NO	bb
4	4 171031M1_5	Standard	12.500	4.49	2051.817	10303.497	2.489	12.0	-3.7	NO		NO	bb
5	-5 171031M1_6	Standard	12.500	4.49	2306.300	9557.864	3.016	14.6	16.7	, NO		, NO	bb "
6	6 171031M1_7	Standard	12.500	4.49	1967.677	10502.081	2.342	11.3	-9.3	NO		NO	bb
7	7 171031M1_8	Standard	12.500	4.49	1695.327	9076.938	2.335	11.3	-9.6	NO		NO	bb
8	8 171031M1_9	Standard	12.500	4.49	1684.739	8894.727	2.368	11.5	-8.4	NO		NO	bb
9	9 171031M1_10	Standard	12.500	4.49	1887.221	7536.803	3.130	15.1	21.2	NO		NO	bb

Page 19 of 29

Compound name: 13C8-PFOS

Response Factor: 1.07154

RRF SD: 0.0815576, Relative SD: 7.61125

Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)

Curve type: RF

· · · · · · · · · · · · · · · · · · ·	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	4.56	1859.624	1684.138	13.802	12.9	3.0	NO	NO	bb
2	2 171031M1_3	Standard	12.500	4.53	1937.648	1709.990	14.164	13.2	5.7	NO	NO	bb
3	3 171031M1_4	Standard	12.500	4.53	1851.665	1670.649	13.854	12.9	3.4	NO	NO	bb
4	4 171031M1_5	Standard	12.500	4.53	2059.767	1730.373	14.880	13.9	11.1	NO	NO	bb
5	5 171031M1_6	Standard	12.500	4.53	2120.759	2046.018	12.957	12.1	-3.3	NO	NO	bb
6	6 171031M1_7	Standard	12.500	4.53	1912.542	1723.226	13.873	12.9	3.6	NO	NO	bb
7	7 171031M1_8	Standard	12.500	4.53	1864.678	1862.948	12.512	11.7	-6.6	NO	NO	bb
8	8 171031M1_9	Standard	12.500	4.53	1751.382	1675.064	13.070	12.2	-2.4	NO	NO	bb
9	9 171 <u>0</u> 31M1_10	Standard	12.500	4.53	1641.193	1793.776	11.437	10.7	-14.6	NO	NO	bb

Work Order 1701439 Revision 1 Page 296 of 402

Page 20 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 1.01408

RRF SD: 0.100933, Relative SD: 9.95321

Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)

Curve type: RF

CANAL STREET	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	4.85	7145.477	7192.681	12.418	12.2	-2.0	NO	NO	bb
2	2 171031M1_3	Standard	12.500	4.83	7574.697	8328.828	11.368	11.2	-10.3	NO	NO	bb
3	3 171031M1_4	Standard	12.500	4.82	8647.730	7719.951	14.002	13.8	10.5	NO	NO	bb
4	4 171031M1_5	Standard	12.500	4.82	8337.258	7639.211	13.642	13.5	7.6	NO	NO	bb
5	5 171031M1_6	Standard	12.500	4.82	7915.097	9023.982	10,964	10.8	-13.5	NO	NO NO	bb
6	6 171031M1_7	Standard	12.500	4.82	9131.245	7885.146	14.475	14.3	14.2	NO	NO	bb
7	7 171031M1_8	Standard	12.500	4.82	8341.659	8546.058	12.201	12.0	-3.7	NO	NO	bd
8	8 171031M1_9	Standard	12.500	4.83	7622.616	7079.840	13.458	13.3	6.2	NO	NO	bb
9	9 171 <u>0</u> 31M1_10	Standard	12.500	4.83	6872.966	7435.586	11.554	11.4	-8.8	NO	NO	bb

Compound name: 13C2-8:2 FTS

Response Factor: 0.216109

RRF SD: 0.0409852, Relative SD: 18.9651

Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	·RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	4.82	1442.480	7192.681	2.507	11.6	-7.2	NO	NO	bb
2	2 171031M1_3	Standard	12.500	4.80	1803.926	8328.828	2.707	12.5	0.2	NO	NO	bb
3	3 171031M1_4	Standard	12.500	4.80	1393.365	7719.951	2.256	10.4	-16.5	NO	NO	bb
4	4 171031M1_5	Standard	12.500	4.79	1675.058	7639.211	2.741	12.7	1.5	NO	NO	bb
5	5 171031M1_6	Standard	12.500	4.79	1904.943	9023.982	2.639	12.2	-2.3	NO	NO	bb
6	6 171031M1_7	Standard	12.500	4.79	1553.782	7885.146	2.463	11.4	-8.8	NO	NO	bb
7	7 171031M1_8	Standard	12.500	4.79	1637.058	8546.058	2.394	11.1	-11.4	NO	NO	bb
8	8 171031M1_9	Standard	12.500	4.79	2210.796	7079.840	3.903	18.1	44.5	NO	NO	bb
9	9 171031M1_10	Standard	12.500	4.79	2901.082	7435.586	4.877	22.6	80.5	NO	NO	bbX

Work Order 1701439 Revision 1 Page 297 of 402

Quantify Compound Summary Report MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: d3-N-MeFOSAA

Response Factor: 0.368005

RRF SD: 0.0369419, Relative SD: 10.0384

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	.RJ.	or,,,,,,,,, - Area ∞	IS Area	Response	Conc.	%Dev	Gonc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	5.00	3075.407	8791.230	4.373	11.9	-4.9	NO		NO	bb
2	2 171031M1_3	Standard	12.500	4.99	3851.943	10903.049	4.416	12.0	-4.0	NO		NO	bb
3	3 171031M1_4	Standard	12.500	4.98	3434.018	8589.958	4.997	13.6	8.6	NO		NO	bb
4	4 171031M1_5	Standard	12.500	4.97	3484.427	10303.497	4.227	11.5	-8.1	NO		NO	bb
5	5 171031M1_6	Standard	12.500	4.98	3316.072	9557.864	4.337	11.8	-5.7	NO '		NO	bb · · ·
6	6 171031M1_7	Standard	12.500	4.98	3387.262	10502.081	4.032	11.0	-12.4	NO		NO	bb
7	7 171031M1_8	Standard	12.500	4.98	3537.138	9076.938	4.871	13.2	5.9	NO		NO	bb
8	8 171031M1_9	Standard	12.500	4.98	3288.611	8894.727	4.622	12.6	0.5	NO		NO	bb
9	9 171031M1_10	Standard	12.500	4.98	3331.907	7536.803	5.526	15.0	20.1	NO		NO	bb_

Page 21 of 29

Compound name: d5-N-EtFOSAA

Response Factor: 0.38859

RRF SD: 0.0538614, Relative SD: 13.8607

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	5.17	3420.794	8791.230	4.864	12.5	0.1	NO		NO	bb
2	2 171031M1_3	Standard	12.500	5.15	3359.667	10903.049	3.852	9.9	-20.7	NO		NO	bb
3	3 171031M1_4	Standard	12.500	5.14	3890.687	8589.958	5.662	14.6	16.6	NO		NO	bb
4	4 171031M1_5	Standard	12.500	5.14	3644.828	10303.497	4.422	11.4	-9.0	NO		NO	bb
5	5 171031M1_6	Standard	12.500	5.14	4390.306	9557.864	5.742	14.8	18.2	NO		NO	bb
6	6 171031M1_7	Standard	12.500	5.14	3847.179	10502.081	4.579	11.8	-5.7	NO		NO	bb
7	7 171031M1_8	Standard	12.500	5.14	3517.122	9076.938	4.843	12.5	-0.3	NO		NO	bb
8	8 171031M1_9	Standard	12.500	5.14	2987.895	8894.727	4.199	10.8	-13.6	NO		NO	bb
9	9 171031M1_10	Standard	12.500	5.14	3348.685	7536.803	5.554	14.3	14.3	NO		NO	bb

Work Order 1701439 Revision 1 Page 298 of 402

Quantify Compound Summary Report MassLynx W4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C2-PFUdA

Response Factor: 0.982848

RRF SD: 0.0745675, Relative SD: 7.58688

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

The state of	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	5.18	9738.930	8791.230	13.848	14.1	12.7	NO		NO	bb
2	2 171031M1_3	Standard	12.500	5.17	9554.212	10903.049	10.954	11.1	-10.8	NO		NO	bb
3 , , , , , , , , , , , , , , , , , , ,	3 171031M1_4	Standard	12.500	5.16	8696.637	8589.958	12.655	12.9	3.0	NO		NO	bb
4	4 171031M1_5	Standard	12.500	5.16	10075.132	10303.497	12.223	12.4	-0.5	NO		NO	bb
5	5 171031M1_6	Standard	12.500	5.16	8770.748	9557.864	11.471	11.7	-6.6	NO		NO	· · · bb
6	6 171031M1_7	Standard	12.500	5.16	10143.998	10502.081	12.074	12.3	-1.7	NO		NO	bb
7	7 171031M1_8	Standard	12.500	5.16	8695.222	9076.938	11.974	12.2	-2.5	NO		NO	bb
8	8 171031M1_9	Standard	12.500	5.16	8417.339	8894.727	11.829	12.0	-3.7	NO		NO	bb
9	9 171031M1_10	Standard	12.500	5.16	8165.827	7536.803	13.543	13.8	10.2	NO		NO _	bb

Page 22 of 29

Compound name: 13C2-PFDoA

Response Factor: 0.997054

RRF SD: 0.109236, Relative SD: 10.9559

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag Co	D CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	5.47	8973.643	8791.230	12.759	12.8	2.4	NO	NO	bb
2	2 171031M1_3	Standard	12.500	5.46	9276.800	10903.049	10.636	10.7	-14.7	NO	NO	bb
3	3 171031M1_4	Standard	12.500	5.45	9088.354	8589.958	13.225	13.3	6.1	NO	NO	bb
4	4 171031M1_5	Standard	12.500	5.45	10505.300	10303.497	12.745	12.8	2.3	NO	NO	bb
5	5 171031M1_6	Standard	12.500	5.45	10097.720	9557.864	13.206	13.2	6.0	NO	NO	bb
6	6 171031M1_7	Standard	12.500	5.45	8535.952	10502.081	10.160	10.2	-18.5	NO	NO	bb
7	7 171031M1_8	Standard	12.500	5.45	10663.989	9076.938	14.686	14.7	17.8	NO	NO	bb
8	8 171031M1_9	Standard	12.500	5.45	8742.194	8894.727	12.286	12.3	-1.4	NO	NO	bb
9	9 171031M1_10	Standard	12.500	5.45	7516.635	7536.803	12.467	12.5	0.0	NO	NO_	bb

Work Order 1701439 Revision 1 Page 299 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: d3-N-MeFOSA

Response Factor: 0.0956136

RRF SD: 0.00758527, Relative SD: 7.93325

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	-RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	150.000	5.61	9392.646	8791.230	13.355	139.7	-6.9	NO		NO	bb
2	2 171031M1_3	Standard	150.000	5.55	11698.229	10903.049	13.412	140.3	-6.5	NO		NO	bb
3	3 171031M1_4	Standard	150.000	5.54	10823.978	8589.958	15.751	164.7	9.8	NO		NO	bb
4	4 171031M1_5	Standard	150.000	5.54	11408.556	10303.497	13.841	144.8	-3.5	NO		NO	bb
5	5 171031M1_6	Standard	150.000	5.54	10812.815	9557.864	14.141	147.9	-1.4	· NO ·	. н	NO ·	bb∵
6	6 171031M1_7	Standard	150.000	5.54	11180.341	10502.081	13.307	139.2	-7.2	NO		NO	bb
7	7 171031M1_8	Standard	150.000	5.54	10530.616	9076.938	14.502	151.7	1.1	NO		NO	bb
8	8 17103 1M1_ 9	Standard	150.000	5.54	10080.462	8894.727	14.166	148.2	-1.2	NO		NO	bb
9	9 171031M1_10	Standard	150.000	5.54	10010.843	7536.803	16.603	173.6	15.8	NO		NO	bb

Page 23 of 29

Compound name: 13C2-PFTeDA

Response Factor: 1.03934

RRF SD: 0.0687595, Relative SD: 6.61571

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	5.95	9070.291	8791.230	12.897	12.4	-0.7	NO	NO	bb
2	2 171031M1_3	Standard	12.500	5.94	11052.117	10903.049	12.671	12.2	-2.5	NO	NO	bb
3	3 171031M1_4	Standard	12.500	5.94	9782.038	8589.958	14.235	13.7	9.6	NO	NO	bb
4	4 171031M1_5	Standard	12.500	5.94	10359.471	10303.497	12.568	12.1	-3.3	NO	NO	bb
5	5 171031M1_6	Standard	12.500	5.94	9972.630	9557.864	13.042	12.5	0.4	NO	NO	bb
6	6 171031M1_7	Standard	12.500	5.94	9608.716	10502.081	11.437	11.0	-12.0	NO	NO	bb
7	7 171031M1_8	Standard	12.500	5.94	9259.316	9076.938	12.751	12.3	-1.9	NO	NO	bb
8	8 171031M1_9	Standard	12.500	5.94	9302.396	8894.727	13.073	12.6	0.6	NO	NO	bb
9	9 171031M1_10	Standard	12.500	5.94	8593.112	7536.803	14.252	13.7	9.7	NO	NO	bb

Work Order 1701439 Revision 1 Page 300 of 402

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: d5-N-ETFOSA

Response Factor: 0.143993

RRF SD: 0.0113961, Relative SD: 7.91434

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	150.000	6.02	13901.869	8791.230	19.767	137.3	-8.5	NO	NO	bb
2	2 171031M1_3	Standard	150.000	5.99	17096.633	10903.049	19.601	136.1	-9.3	NO	NO	bb
3	3 171031M1_4	Standard	150.000	5.98	16828.123	8589.958	24.488	170.1	13.4	NO	NO	bb
4	4 171031M1_5	Standard	150.000	5.98	17169.912	10303.497	20.830	144.7	-3.6	NO	NO	bb
5	5 171031M1_6	Standard	150.000	5.98	16600.344	9557.864	21.710	150.8	0.5	NO ·	NO ·	bb
6	6 171031M1_7	Standard	150.000	5.98	17081.096	10502.081	20.331	141.2	-5.9	NO	NO	bb
7	7 171031M1_8	Standard	150.000	5.98	16298.452	9076.938	22.445	155.9	3.9	NO	NO	bb
8	8 171031M1_9	Standard	150.000	5.98	15259.872	8894.727	21.445	148.9	-0.7	NO	NO	bb
9	9 171031M1_10	Standard	150.000	5.98	14334.034	7536.803	23.773	165.1	10.1	NO	NO	bb

Page 24 of 29

Compound name: 13C2-PFHxDA

Response Factor: 1.03209

RRF SD: 0.127277, Relative SD: 12.332

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

E E	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	5.000	6.30	2965.394	8791.230	4.216	4.1	-18.3	NO	NO	bb
2	2 171031M1_3	Standard	5.000	6.30	3990.268	10903.049	4.575	4.4	-11.4	NO	NO	bb
3	3 171031M1_4	Standard	5.000	6.29	3303.746	8589.958	4.808	4.7	-6 .8	NO	NO	bb
4	4 171031M1_5	Standard	5.000	6.29	4525.968	10303.497	5.491	5.3	6.4	NO	NO	bb
5	5 171031M1_6	Standard	5.000	6.29	3660.271	9557.864	4.787	4.6	-7.2	NO	ŅO	bb
6	6 171031M1_7	Standard	5.000	6.29	4204.542	10502.081	5.004	4.8	-3.0	NO	NO	bb
7	7 171031M1_8	Standard	5.000	6.29	4441.032	9076.938	6.116	5.9	18.5	NO	NO	bb
8	8 171031M1_9	Standard	5.000	6.29	3948.273	8894.727	5.549	5.4	7.5	NO	NO	bb
9	9 171031M1_10	Standard	5.000	6.29	3556.467	7536.803	5.899	5.7	14.3	NO	NO	bb

Work Order 1701439 Revision 1 Page 301 of 402

Quantify Compound Summary Report MassLynx W4.1 SCN945 SCN960

Page 25 of 29

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: d7-N-MeFOSE

Response Factor: 0.132974

RRF SD: 0.0163169, Relative SD: 12.2707

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	150.000	6.18	13124.170	8791.230	18.661	140.3	-6.4	NO	NO	bb
2	2 171031M1_3	Standard	150.000	6.19	15410.882	10903.049	17.668	132.9	-11.4	NO	NO	MM
3	3 171031M1_4	Standard	150.000	6.18	16129.054	8589.958	23.471	176.5	17.7	NO	NO	MM
4	4 171031M1_5	Standard	150.000	6.19	16972.910	10303.497	20.591	154.9	3.2	NO	NO	MM
5	5 171031M1_6 · ·	Standard	150.000	6.19	14780.235	9557.864	19.330	145.4	-3.1	NO	NO	MM
6	6 171031M1_7	Standard	150.000	6.19	16055.921	10502.081	19.110	143.7	-4.2	NO	NO	MM
7	7 171031M1_8	Standard	150.000	6.19	14835.532	9076.938	20.430	153.6	2.4	NO	NO	MM
8	8 171031M1_9	Standard	150.000	6.19	11713.693	8894.727	16.462	123.8	-17.5	NO	NO	bb
9	9 171031M1_10	Standard	150.000	6.19	14345.026	7536.803	23.792	178.9	19.3	NO	NO	bb

Compound name: d9-N-EtFOSE

Response Factor: 0.127708

RRF SD: 0.0154942, Relative SD: 12.1325

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

1000	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	150.000	6.34	11021.274	8791.230	15.671	122.7	-18.2	NO		NO	MM
2	2 171031M1_3	Standard	150.000	6.35	13611.050	10903.049	15.605	122.2	-18.5	NO		NO	MM
3	3 171031M1_4	Standard	150.000	6.34	14567.635	8589.958	21.199	166.0	10.7	NO		NO	bb
4	4 171031M1_5	Standard	150.000	6.34	15962.389	10303.497	19.365	151.6	1.1	NO		NO	bb
5	5 171031M1_6	Standard	150.000	6.34	15443.354	9557.864	20.197	158.2	5.4	NO		NO	MM
6	6 171031M1_7	Standard	150.000	6.35	14651.429	10502.081	17.439	136.6	-9.0	NO		NO	MM
7	7 171031M1_8	Standard	150.000	6.34	15170.423	9076.938	20.891	163.6	9.1	NO		NO	MM
8	8 171031M1_9	Standard	150.000	6.35	14707.501	8894.727	20.669	161.8	7.9	NO		NO	ММ
9	9 171031M1_1	0 Standard	150.000	6.34	12885.272	7536.803	21.371	167.3	11.6	NO		NO	ММ

Work Order 1701439 Revision 1 Page 302 of 402

Quantify Compound Summary Report MassLynx WassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1

RRF SD: 9.61481e-017, Relative SD: 9.61481e-015

Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)

Curve type: RF

aging and the sta	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded .
1	1 171031M1_2	Standard	12.500	1.15	5963.095	5963.095	12.500	12.5	0.0	NO	NO	bb
2	2 171031M1_3	Standard	12.500	1.10	6803.867	6803.867	12.500	12.5	0.0	NO	NO	bb
3	3 171031M1_4	Standard	12.500	1.06	6654.722	6654.722	12.500	12.5	0.0	NO	NO	bb
4	4 171031M1_5	Standard	12.500	1.09	7041.553	7041.553	12.500	12.5	0.0	NO	NO	bb
5	5 171031M1_6	Standard	12.500	1.08	6915.432	6915.432	12.500	12.5	0.0	NO	NO	bb
6	6 171031M1_7	Standard	12.500	1.08	6832.840	6832.840	12.500	12.5	0.0	NO	NO	bb
7	7 171031M1_8	Standard	12.500	1.09	6879.583	6879.583	12.500	12.5	0.0	NO	NO	bb
8	8 171031M1_9	Standard	12.500	1.09	6502.498	6502.498	12.500	12.5	0.0	NO	NO	bb
9	9 171031M1_10	Standard	12.500	1.09	6600.681	6600.681	12.500	12.5	0.0	NO	NO	bb

Page 26 of 29

Compound name: 13C5-PFHxA

Response Factor: 1

RRF SD: 1.17757e-016, Relative SD: 1.17757e-014

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)

Curve type: RF

, and a second	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	oD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	2.89	7771.502	7771.502	12.500	12.5	0.0	NO	NO	MM
2	2 171031M1_3	Standard	12.500	2.85	9033.493	9033.493	12.500	12.5	0.0	NO	NO	bb
3	3 171031M1_4	Standard	12.500	2.83	8124.338	8124.338	12.500	12.5	0.0	NO	NO	ММ
4	4 171031M1_5	Standard	12.500	2.83	8602.264	8602.264	12.500	12.5	0.0	NO	NO	ММ
5	5 171031M1_6	Standard	12.500	2.83	9624.428	9624.428	12.500	12.5	0.0	NO	NO	MM
6	6 171031M1_7	Standard	12.500	2.83	8956.964	8956.964	12.500	12.5	0.0	NO	NO	bb
7 Strain and Strain Con-	7 171031M1_8	Standard	12.500	2.83	8823.722	8823.722	12.500	12.5	0.0	NO	NO	bb
8	8 171031M1_9	Standard	12.500	2.83	7955.587	7955.587	12.500	12.5	0.0	NO	NO	bb
9	9 171031M1_10	Standard	12.500	2.83	8281.060	8281.060	12.500	12.5	0.0	NO	NO	ММ

Work Order 1701439 Revision 1 Page 303 of 402

Quantify Compound Summary Report MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	3.66	1453.004	1453.004	12.500	12.5	0.0	NO		NO	bb
2	2 171031M1_3	Standard	12.500	3.62	1448.036	1448.036	12.500	12.5	0.0	NO		NO	bb
3	3 171031M1_4	Standard	12.500	3.61	1450.402	1450.402	12.500	12.5	0.0	NO		NO	bb
4	4 171031M1_5	Standard	12.500	3.61	1759.264	1759.264	12.500	12.5	0.0	NO		NO	bb
5	5 171031M1_6	Standard	12.500	3.62	1542.587	1542.587	12.500	12.5	0.0	· NO		· NO ·	bb
6	6 171031 M 1_7	Standard	12.500	3.61	1564.074	1564.074	12.500	12.5	0.0	NO		NO	bb
7	7 171031M1_8	Standard	12.500	3.62	1586.405	1586.405	12.500	12.5	0.0	NO		NO	bb
8	8 171031M1_9	Standard	12.500	3.61	1475.894	1475.894	12.500	12.5	0.0	NO		NO	bb
9	9 171031M1_10	Standard	12.500	3.61	1433.237	1433.237	12.500	12.5	0.0	NO		NO	bb

Page 27 of 29

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 7.85046e-017, Relative SD: 7.85046e-015

Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag CoD	CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	4.03	5755.554	5755.554	12.500	12.5	0.0	NO	NO	bb
2	2 171031M1_3	Standard	12.500	4.00	6357.599	6357.599	12.500	12.5	0.0	NO	NO	bb
3	3 171031M1_4	Standard	12.500	3.99	6407.551	6407.551	12.500	12.5	0.0	NO	NO	bb
4	4 171031M1_5	Standard	12.500	3.99	6896.374	6896.374	12.500	12.5	0.0	NO	NO	bb
5	5 171031M1_6	Standard	12.500	3.99	7038.075	7038.075	12.500	12.5	0.0	NO	NO	bb
6	6 171031M1_7	Standard	12.500	3.99	6844.025	6844.025	12.500	12.5	0.0	NO	NO	bb
7	7 171031M1_8	Standard	12.500	3.99	6583.264	6583.264	12.500	12.5	0.0	NO	NO	bb
8	8 171031M1_9	Standard	12.500	3.99	6496.577	6496.577	12.500	12.5	0.0	NO	NO	bb
9	9 171031M1_10	Standard	12.500	3.99	6480.723	6480.723	12.500	12.5	0.0	NO	NO	bb

Work Order 1701439 Revision 1 Page 304 of 402

Quantify Compound Summary Report MassLynx W4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1

RRF SD: 7.85046e-017, Relative SD: 7.85046e-015

Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	4.47	7443.399	7443.399	12.500	12.5	0.0	NO	NO	bb
2	2 171031M1_3	Standard	12.500	4.44	7759.596	7759.596	12.500	12.5	0.0	NO	NO	bb
3	3 171031M1_4	Standard	12.500	4.44	7636.577	7636.577	12.500	12.5	0.0	NO	NO	bb
4	4 171031M1_5	Standard	12.500	4.44	8507.058	8507.058	12.500	12.5	0.0	NO	NO	bb
5	5 171031M1_6	Standard	12.500	4.44	8252.775	8252.775	12.500	12.5	0.0	NO	, NO ,	pp
6	6 171031M1_7	Standard	12.500	4.44	7913.440	7913.440	12.500	12.5	0.0	NO	NO	bb
7	7 171031M1_8	Standard	12.500	4.44	7424.903	7424.903	12.500	12.5	0.0	NO	NO	bb
8	8 171031M1_9	Standard	12.500	4.44	5722.288	5722.288	12.500	12.5	0.0	NO	NO	bb
9	9 171031M1_10	Standard	12.500	4.44	7138.070	7138.070	12.500	12.5	0.0	NO	NO	bb

Page 28 of 29

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 5.55112e-017, Relative SD: 5.55112e-015

Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	=excluded
Transaction of	1 171031M1_2	Standard	12.500	4.56	1684.138	1684.138	12.500	12.5	0.0	NO	NO	bb
2	2 171031M1_3	Standard	12.500	4.53	1709.990	1709.990	12.500	12.5	0.0	NO	NO	bb
3	3 171031M1_4	Standard	12.500	4.53	1670.649	1670.649	12.500	12.5	0.0	NO	NO	bb
4	4 171031M1_5	Standard	12.500	4.53	1730.373	1730.373	12.500	12.5	0.0	NO	NO	bb
5	5 171031M1_6	Standard	12.500	4.53	2046.018	2046.018	12.500	12.5	0.0	NO	NO	bb
6	6 171031M1_7	Standard	12.500	4.53	1723.226	1723.226	12.500	12.5	0.0	NO	NO	bb
7	7 171031M1_8	Standard	12.500	4.53	1862.948	1862.948	12.500	12.5	0.0	NO	NO	bb
8	8 171031M1_9	Standard	12.500	4.53	1675.064	1675.064	12.500	12.5	0.0	NO	NO	bb
9	9 171031M1_10) Standard	12.500	4.53	1793.776	1793.776	12.500	12.5	0.0	NO	NO	bb

Work Order 1701439 Revision 1 Page 305 of 402

Quantify Compound Summary Report MassLynx W4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:45:15 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1

RRF SD: 8.77708e-017, Relative SD: 8.77708e-015

Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)

Curve type: RF

100	# Name	Туре	Std. Conc	RT.	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	Standard	12.500	4.85	7192.681	7192.681	12.500	12.5	0.0	NO	NO	bb
2	2 171031M1_3	Standard	12.500	4.83	8328.828	8328.828	12.500	12.5	0.0	NO	NO	bb
3	3 171031M1_4	Standard	12.500	4.82	7719.951	7719.951	12.500	12.5	0.0	NO	NO	bb
4	4 171031M1_5	Standard	12.500	4.82	7639.211	7639.211	12.500	12.5	0.0	NO	NO	bb
5	5 171031M1_6	Standard	12.500	4.82	9023.982	9023.982	12.500	12.5	0.0	NO	. NO	bb
6	6 171031M1_7	Standard	12.500	4.82	7885.146	7885.146	12.500	12.5	0.0	NO	NO	bb
7	7 171031M1_8	Standard	12.500	4.82	8546.058	8546.058	12.500	12.5	0.0	NO	NO	bb
8	8 171031M1_9	Standard	12.500	4.82	7079.840	7079.840	12.500	12.5	0.0	NO	NO	bb
9	9 171031M1_10	Standard	12.500	4.82	7435.586	7435.586	12.500	12.5	0.0	NO	NO	bb

Page 29 of 29

Compound name: 13C7-PFUdA

Response Factor: 1

RRF SD: 5.55112e-017, Relative SD: 5.55112e-015

Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 171031M1_2	2 Standard	12.500	5.18	8791.230	8791.230	12.500	12.5	0.0	NO	NO	bb
2	2 171031M1_3	3 Standard	12.500	5.17	10903.049	10903.049	12.500	12.5	0.0	NO	NO	bb
3	3 171031M1_4	4 Standard	12.500	5.16	8589.958	8589.958	12.500	12.5	0.0	NO	NO	bb
4	4 171031M1_	5 Standard	12.500	5.16	10303.497	10303.497	12.500	12.5	0.0	NO	NO	bb
5	5 171031M1_0	6 Standard	12.500	5.16	9557.864	9557.864	12.500	12.5	0.0	NO	NO	bb
6	6 171031M1_	7 Standard	12.500	5.16	10502.081	10502.081	12.500	12.5	0.0	NO	NO	bb
7	7 171031M1_8	8 Standard	12.500	5.16	9076.938	9076.938	12.500	12.5	0.0	NO	NO	bb
8	8 171031M1_9	9 Standard	12.500	5.16	8894.727	8894.727	12.500	12.5	0.0	NO	NO	bb
9	9 171031M1_	10 Standard	12.500	5.16	7536.803	7536.803	12.500	12.5	0.0	NO	NO	bb

Work Order 1701439 Revision 1 Page 306 of 402

Page 1 of 1

Vista Analytical Laboratory

Dataset: Untitled

Last Altered: Wednesday, November 01, 2017 08:53:36 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:54:15 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 31 Oct 2017 10:25:33 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 08:21:58

Compound name: PFBA

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Name	D	Acq.Date	Acq.Time
1	171031M1_1	IPA	31-Oct-17	15:56:43
2	171031M1_2	ST171031M1-1 PFC CS-2 17J2805	31-Oct-17	16:08:10
3	171031M1_3	ST171031M1-2 PFC CS-1 17J2806	31-Oct-17	16:19:21
4	171031M1_4	ST171031M1-3 PFC CS0 17J2807	31-Oct-17	16:30:31
5	171031M1_5	ST171031M1-4 PFC CS1 17J2808	31-Oct-17	16:41:42
6	171031M1_6	ST171031M1-5 PFC CS2 17J2809	31-Oct-17	16:52:53
7	171031M1_7	ST171031M1-6 PFC CS3 17J2810	31-Oct-17	17:04:03
8	171031M1_8	ST171031M1-7 PFC CS4 17J2813	31-Oct-17	17:15:14
9	171031M1_9	ST171031M1-8 PFC CS5 17J2814	31-Oct-17	17:26:43
10	171031M1_10	ST171031M1-9 PFC CS6 17J2815	31-Oct-17	17:38:27
11	171031M1_11	ST171031M1-10 PFC CS7 17J2816	31-Oct-17	17:49:36
12	171031M1_12	IPA	31-Oct-17	18:00:47
13	171031M1_13	ICV171031M1-1 PFC ICV 17J2804	31-Oct-17	18:11:58
14	171031M1_14	IPA	31-Oct-17	18:23:08

Work Order 1701439 Revision 1 Page 307 of 402

Dataset:

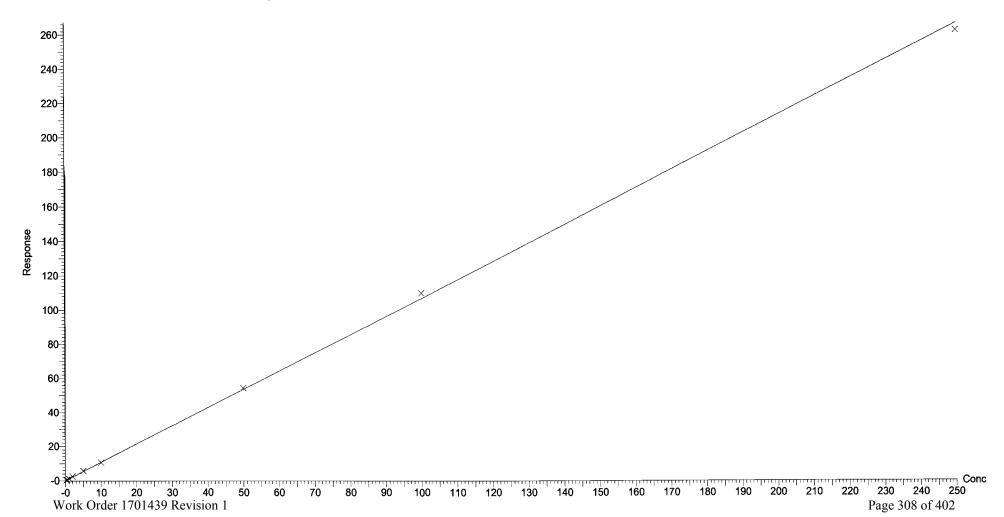
U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time

Printed:

Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time


Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 31 Oct 2017 10:25:33 Calibration: 01 Nov 2017 08:21:58 U8_VALT PFAS_Q4_10-3\-\F-FU_0LD

Compound name: PFBA

Correlation coefficient: r = 0.999738, $r^2 = 0.999476$

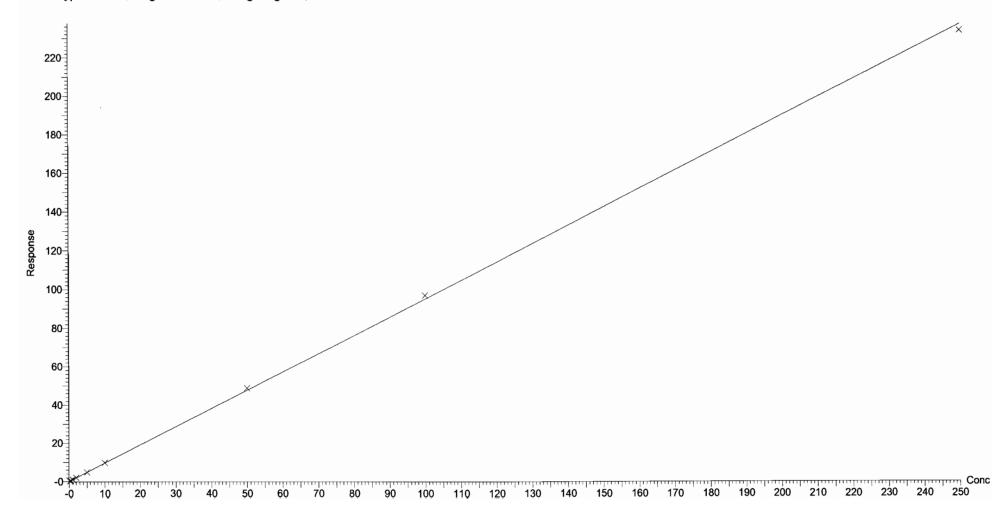
Calibration curve: 1.06856 * x + 0.0388677

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:


Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFPeA

Correlation coefficient: r = 0.999844, $r^2 = 0.999687$

Calibration curve: 0.95039 * x + 0.0982843

Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

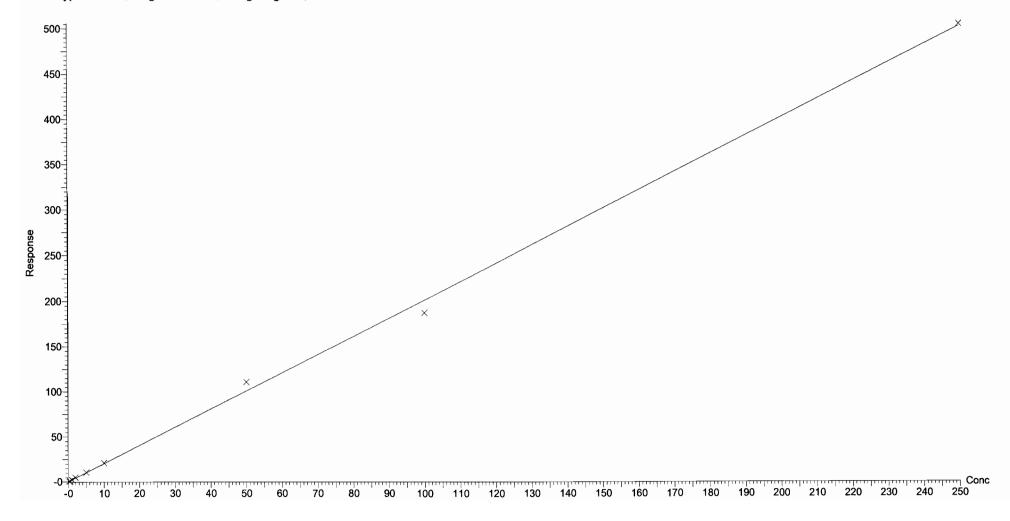
Work Order 1701439 Revision 1 Page 309 of 402

Page 3 of 27

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:


Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: r = 0.998677, $r^2 = 0.997355$

Calibration curve: 2.01352 * x + 0.191925

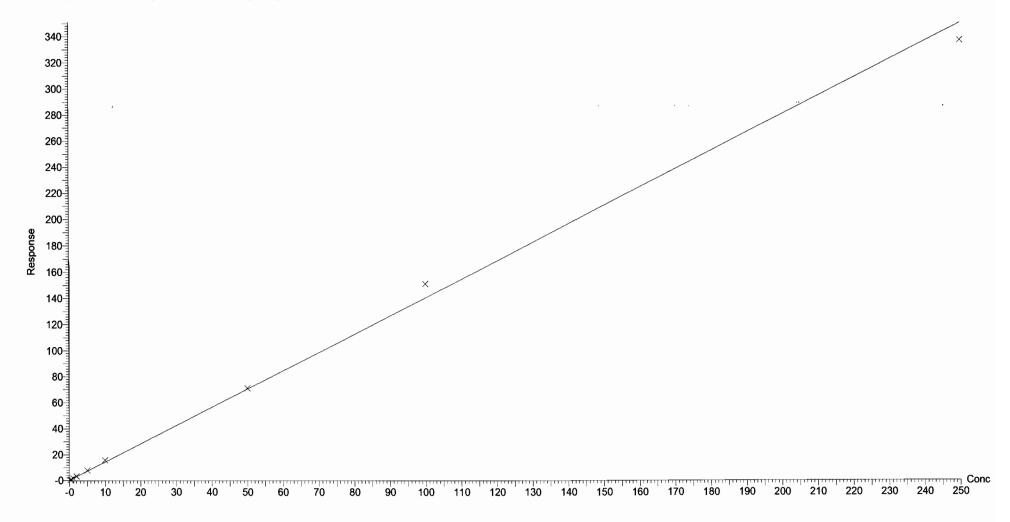
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 310 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Dataset:


Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: r = 0.998612, $r^2 = 0.997226$

Calibration curve: 1.40323 * x + 0.202144

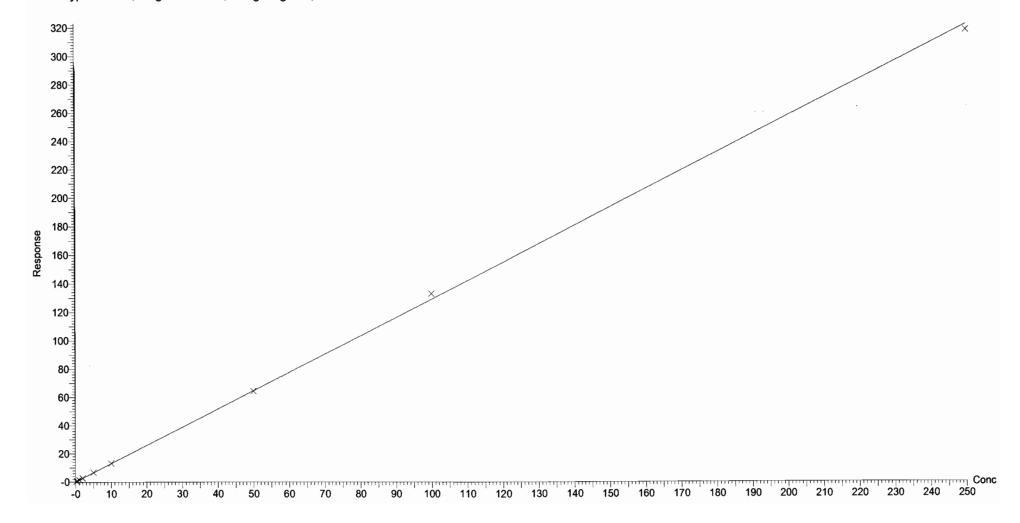
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 311 of 402

Page 5 of 27

Vista Analytical Laboratory Q1

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFHpA

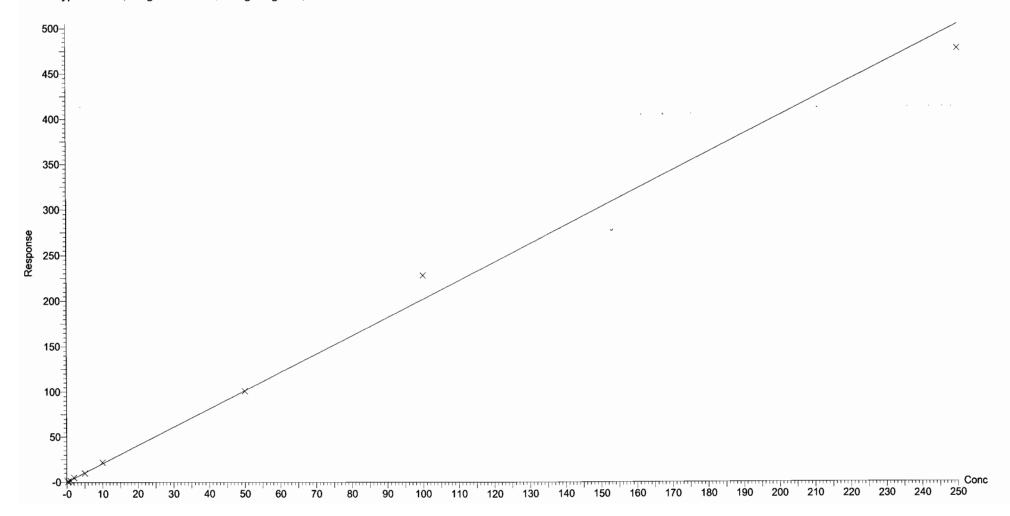
Correlation coefficient: r = 0.999826, $r^2 = 0.999651$

Calibration curve: 1.29101 * x + 0.123326

Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 312 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: L-PFHxS

Correlation coefficient: r = 0.996867, $r^2 = 0.993744$

Calibration curve: 2.01952 * x + 0.0727077

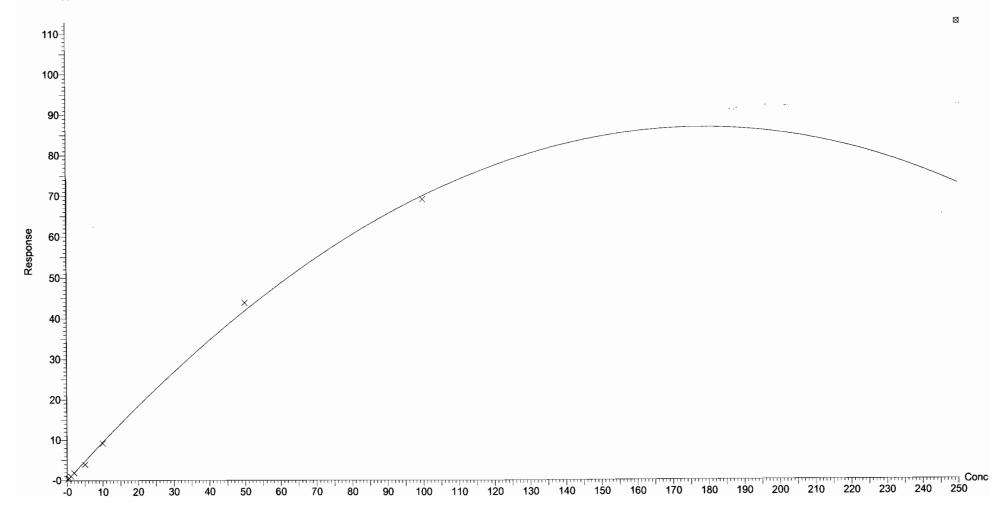
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 313 of 402

7,0ta / ...a., ...a. =a.z.

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:


Dataset:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

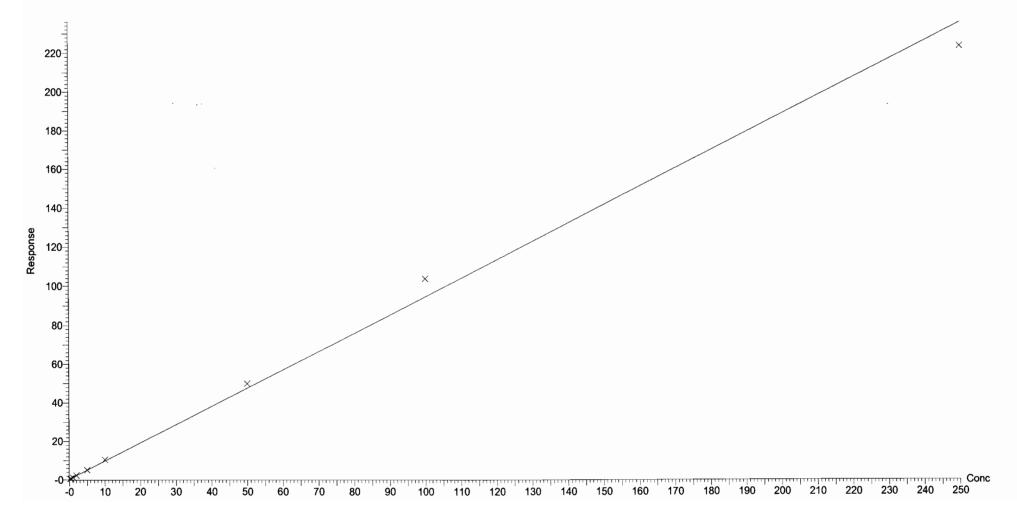
Compound name: 6:2 FTS

Coefficient of Determination: R^2 = 0.997401

Calibration curve: $-0.00272723 * x^2 + 0.973281 * x + -0.00870889$ Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 314 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: L-PFOA

Correlation coefficient: r = 0.997771, $r^2 = 0.995546$

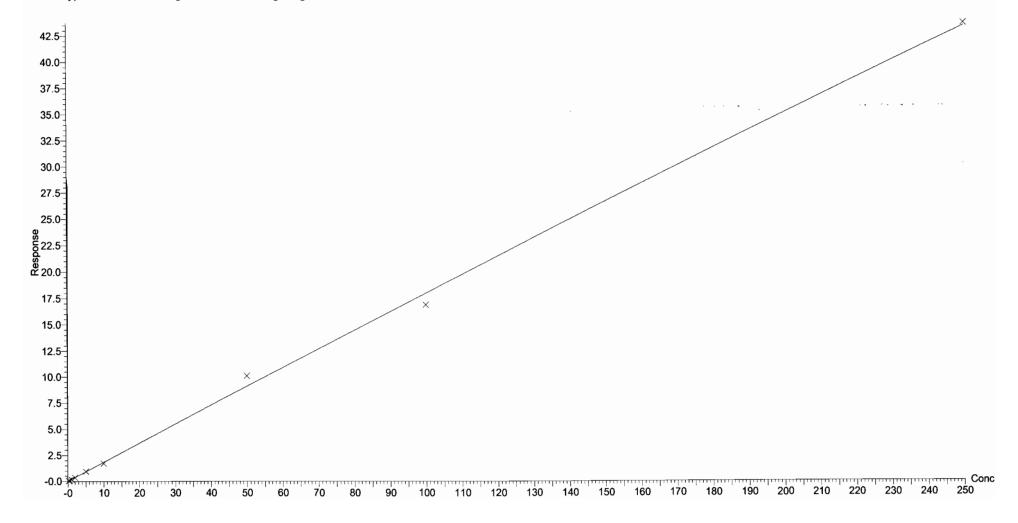
Calibration curve: 0.943455 * x + 0.316537

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 315 of 402

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFHpS

Coefficient of Determination: R^2 = 0.997276

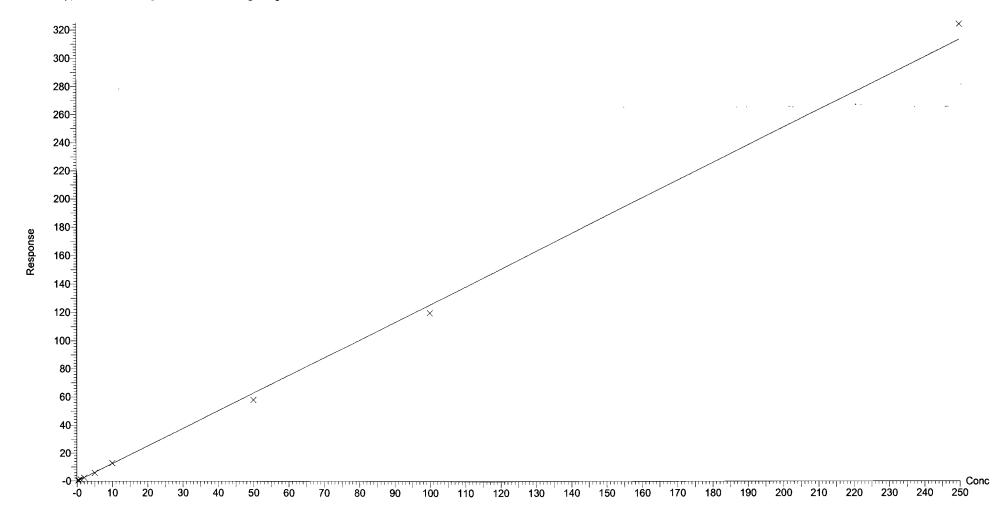
Calibration curve: $-3.99694e-005 * x^2 + 0.183931 * x + 0.00205894$ Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 316 of 402

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:


Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: r = 0.998949, $r^2 = 0.997900$

Calibration curve: 1.25666 * x + -0.0468814

Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 317 of 402

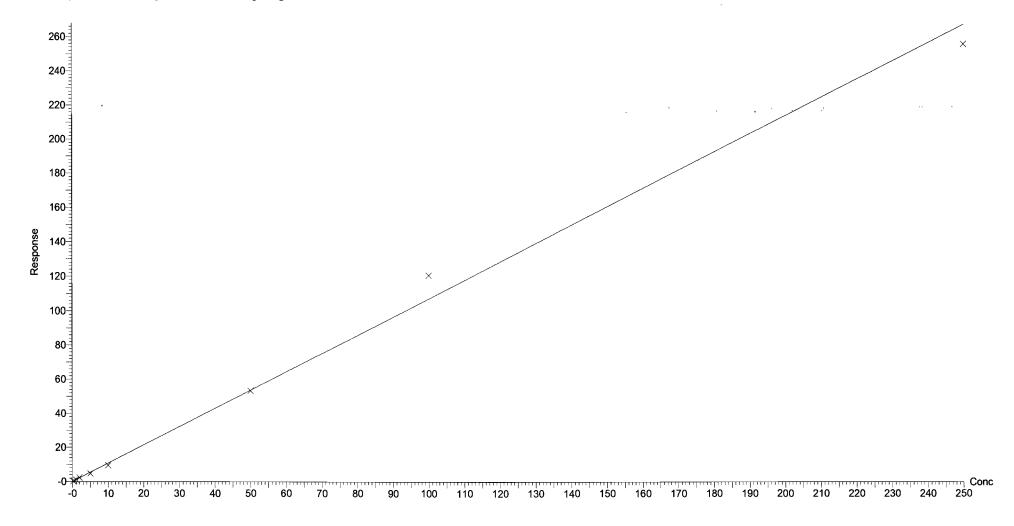
Page 11 of 27

Dataset:

Printed:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered:


Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFOSA

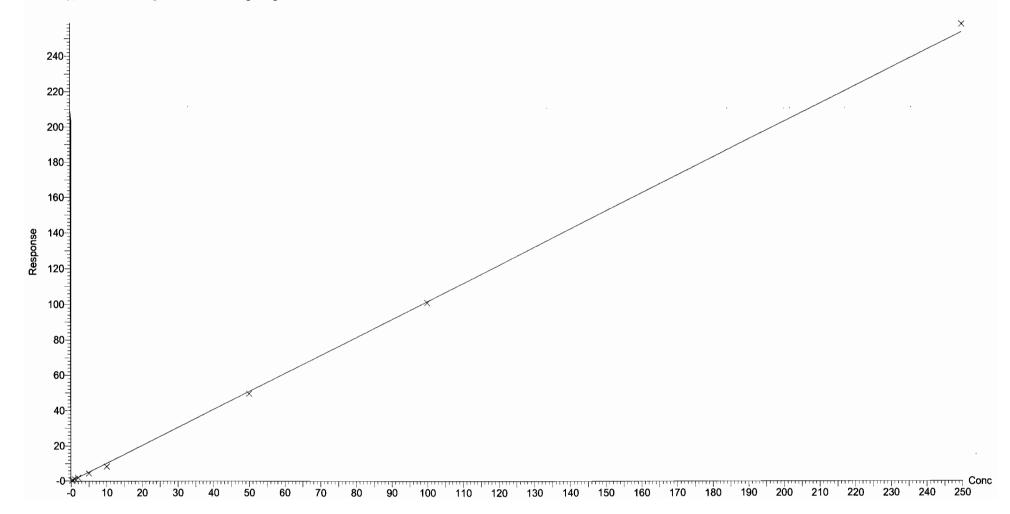
Correlation coefficient: r = 0.997159, $r^2 = 0.994326$

Calibration curve: 1.07115 * x + 0.04065

Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 318 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: L-PFOS

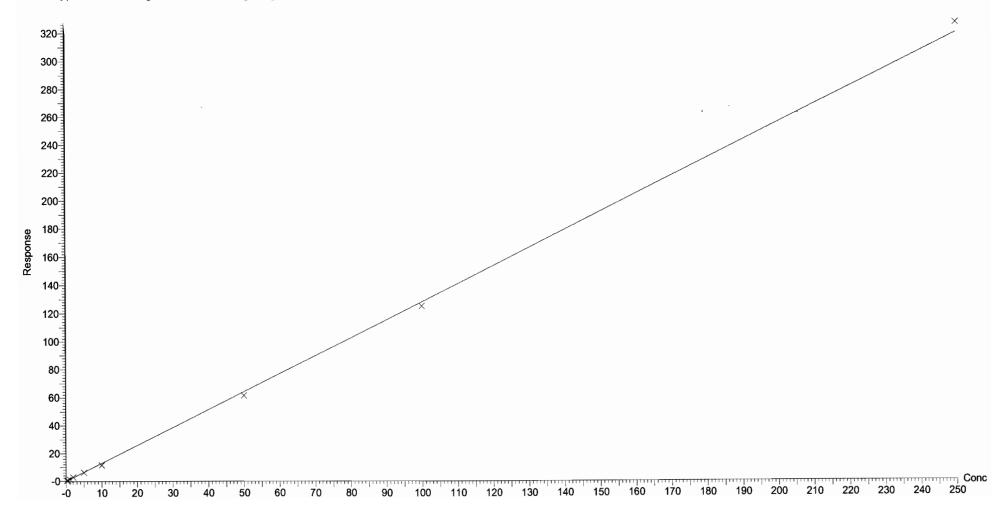
Correlation coefficient: r = 0.999334, $r^2 = 0.998668$

Calibration curve: 1.01722 * x + -0.0414285

Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 319 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

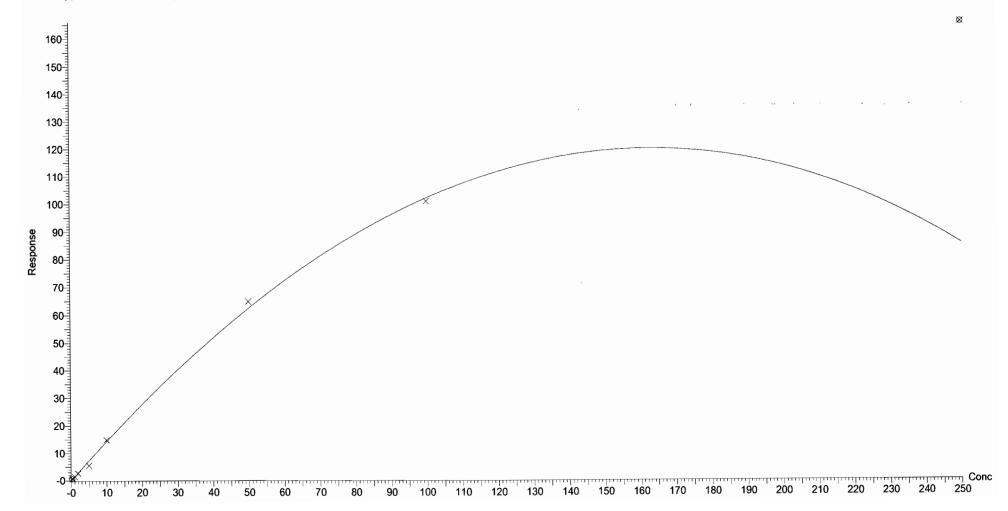
Compound name: PFDA

Correlation coefficient: r = 0.999473, r^2 = 0.998946

Calibration curve: 1.28134 * x + 0.0315821

Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 320 of 402


Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

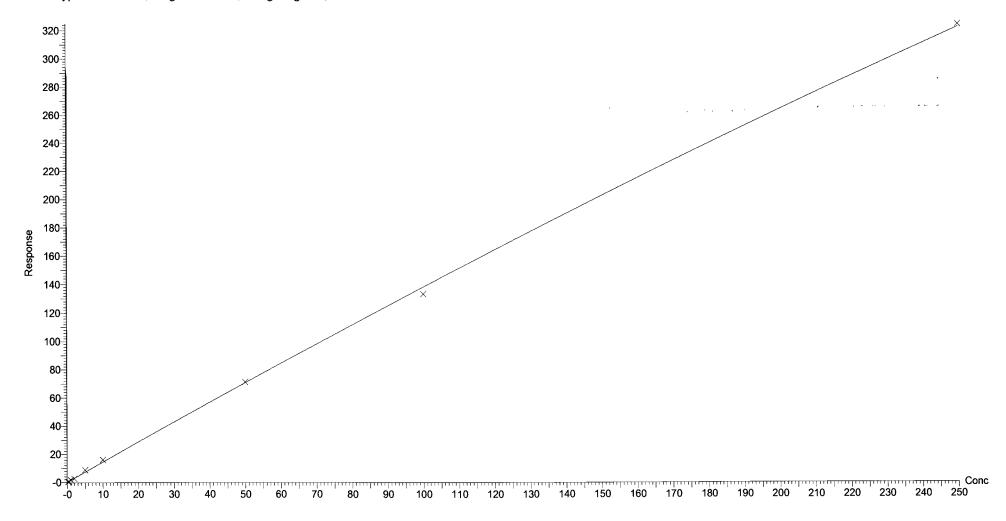
Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: 8:2 FTS

Coefficient of Determination: R^2 = 0.996235

Calibration curve: -0.00453751 * x^2 + 1.47718 * x + -0.0973776 Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 321 of 402


Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

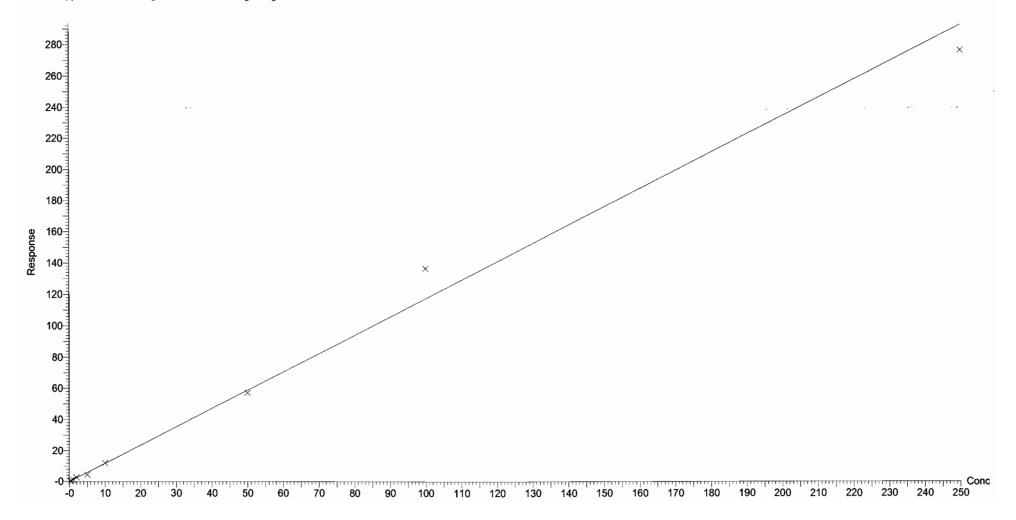
Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.998527

Calibration curve: -0.00061126 * x^2 + 1.44366 * x + 0.138034 Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 322 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: N-EtFOSAA

Correlation coefficient: r = 0.995319, $r^2 = 0.990659$

Calibration curve: 1.17468 * x + -0.0150013

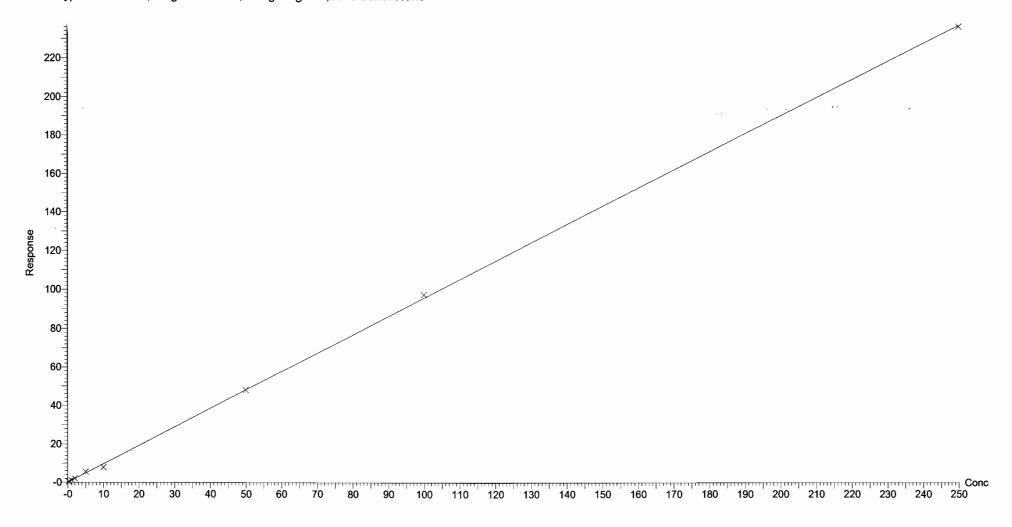
Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 323 of 402

Vista Analytical Laboratory Q1

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Printed:

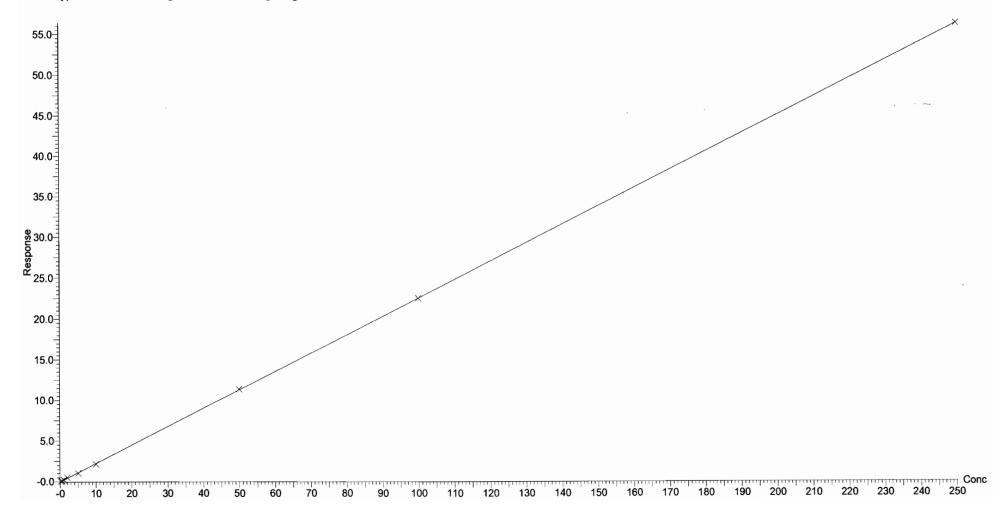
Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFUdA

Coefficient of Determination: R^2 = 0.998778

Calibration curve: $-5.23555e-005 * x^2 + 0.962109 * x + 0.0759805$ Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 324 of 402


U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

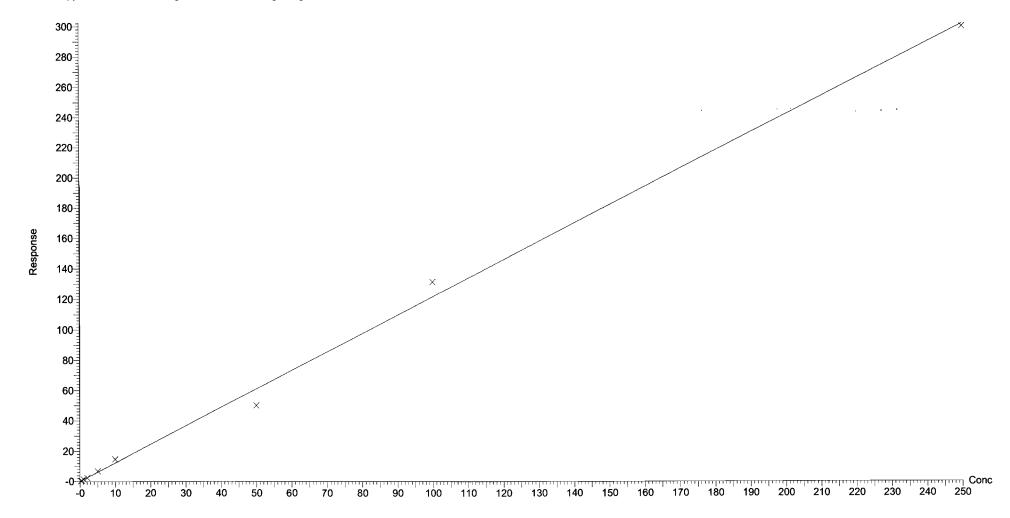
Compound name: PFDS

Coefficient of Determination: R^2 = 0.999698

Calibration curve: $-2.28699e-006 * x^2 + 0.226098 * x + -0.0396467$ Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 325 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFDoA

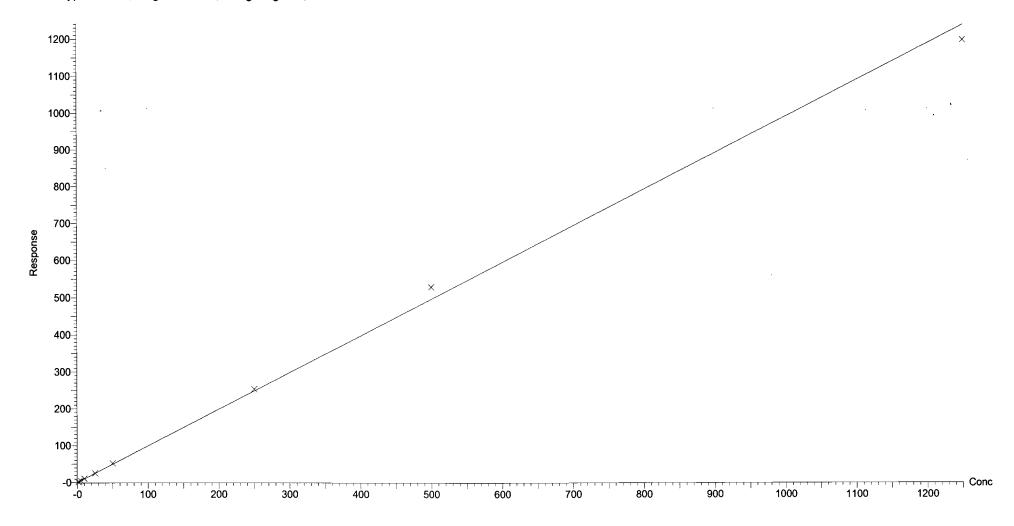
Coefficient of Determination: R^2 = 0.993286

Calibration curve: $-6.13859e-005 * x^2 + 1.22441 * x + 0.0900393$ Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 326 of 402

Vista Analytical Laboratory Q1

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: N-MeFOSA

Correlation coefficient: r = 0.999056, $r^2 = 0.998113$

Calibration curve: 0.99285 * x + 0.328893

Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 327 of 402

Quantify Calibration Report Vista Analytical Laboratory Q1 MassLynx MassLynx V4.1 SCN945 SCN960

Page 1 of 1

Dataset:

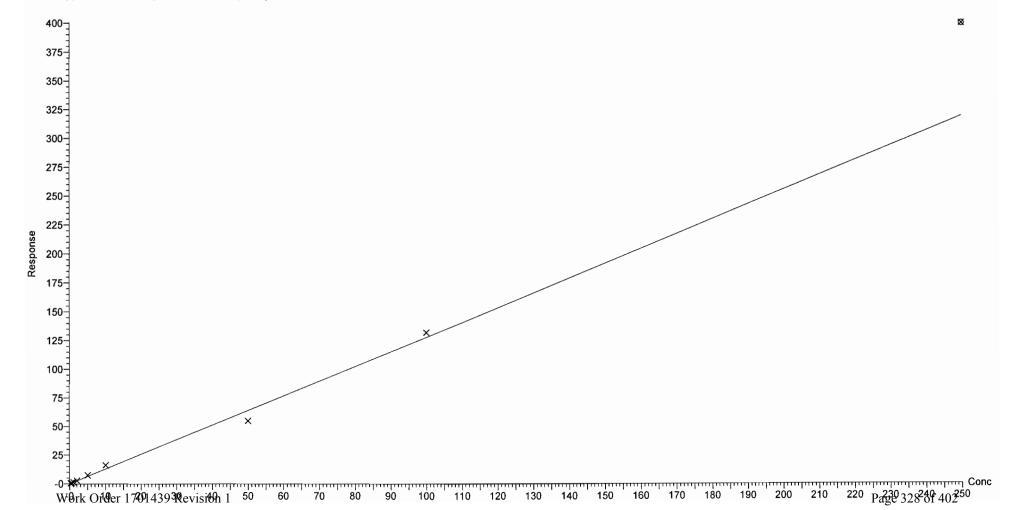
Printed:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered:

Wednesday, November 01, 2017 09:42:13 Pacific Daylight Time Wednesday, November 01, 2017 09:42:55 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 31 Oct 2017 10:25:33


Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

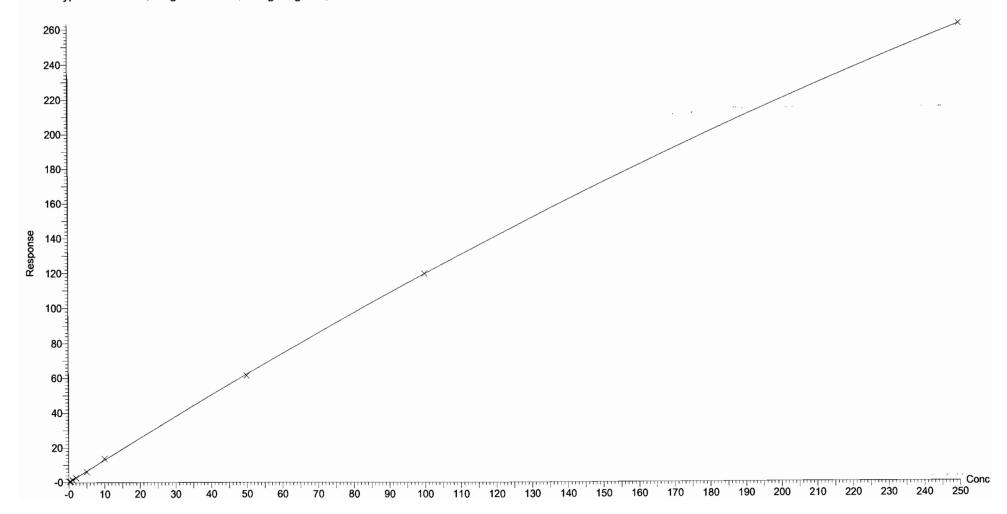
Compound name: PFTrDA

Coefficient of Determination: R^2 = 0.992550

Calibration curve: 1.27931 * x

Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None

Vista Analytical Laboratory Q1


Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFTeDA

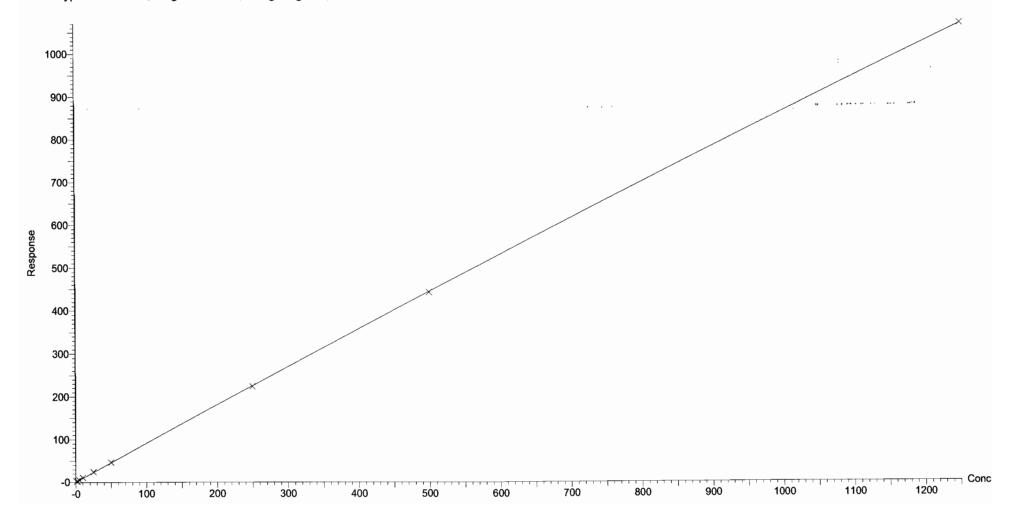
Coefficient of Determination: R^2 = 0.999673

Calibration curve: -0.000957767 * x^2 + 1.29262 * x + -0.00461528 Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 329 of 402

Page 23 of 27

Vista Analytical Laboratory Q1


Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

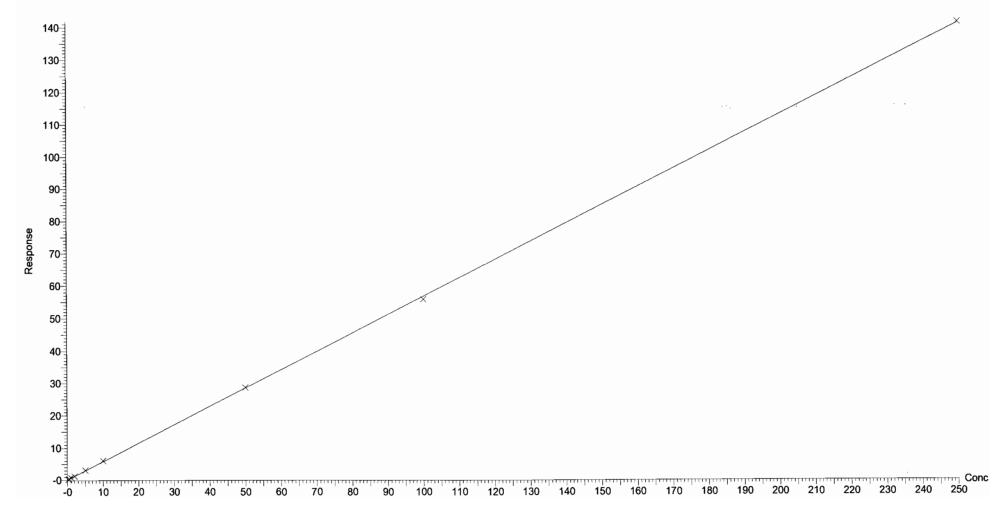
Compound name: N-EtFOSA

Coefficient of Determination: R^2 = 0.999831

Calibration curve: -4.41537e-005 * x^2 + 0.910589 * x + 0.484101 Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 330 of 402

Vista Analytical Laboratory Q1


Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFHxDA

Coefficient of Determination: R^2 = 0.999773

Calibration curve: $-1.68772e-005 * x^2 + 0.569695 * x + 0.110552$ Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 331 of 402

MassLynx MassLynx V4.1 SCN945 SCN960

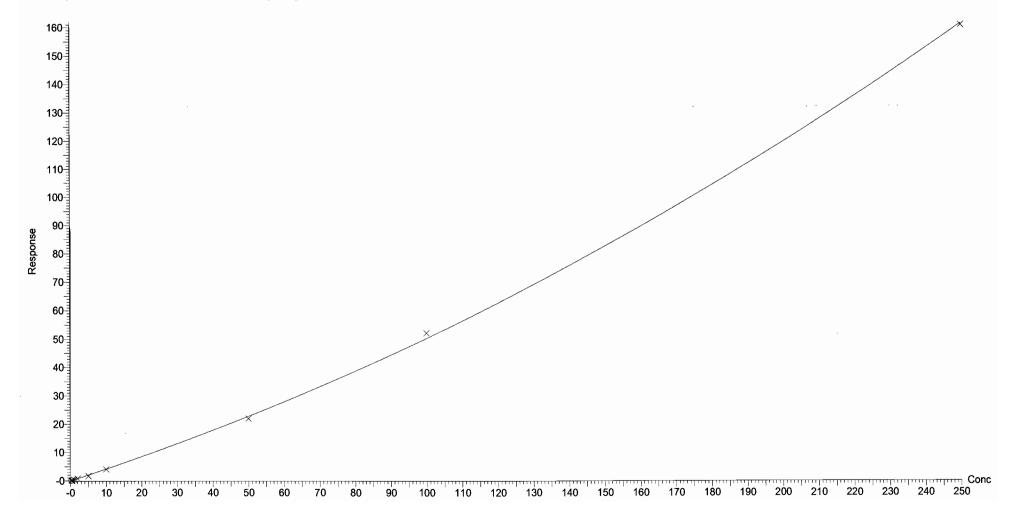
Page 25 of 27

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time


Printed:

Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: PFODA

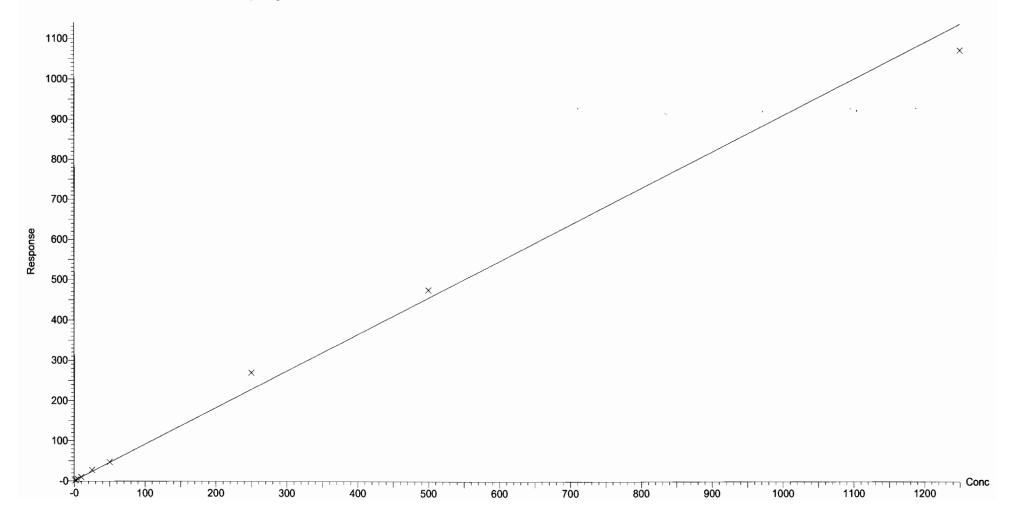
Coefficient of Determination: R^2 = 0.999396

Calibration curve: 0.000959304 * x^2 + 0.407622 * x + -0.0239268 Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 332 of 402

Vista Analytical Laboratory Q1

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: N-MeFOSE

Correlation coefficient: r = 0.996570, $r^2 = 0.993151$

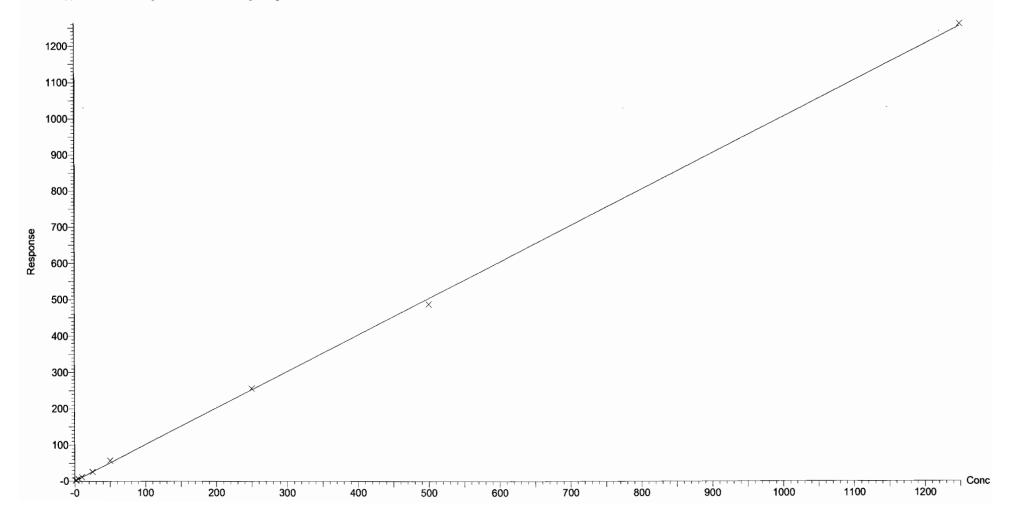
Calibration curve: 0.910887 * x + 0.561201

Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 333 of 402

Vista Analytical Laboratory Q1

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:44:23 Pacific Daylight Time

Compound name: N-EtFOSE

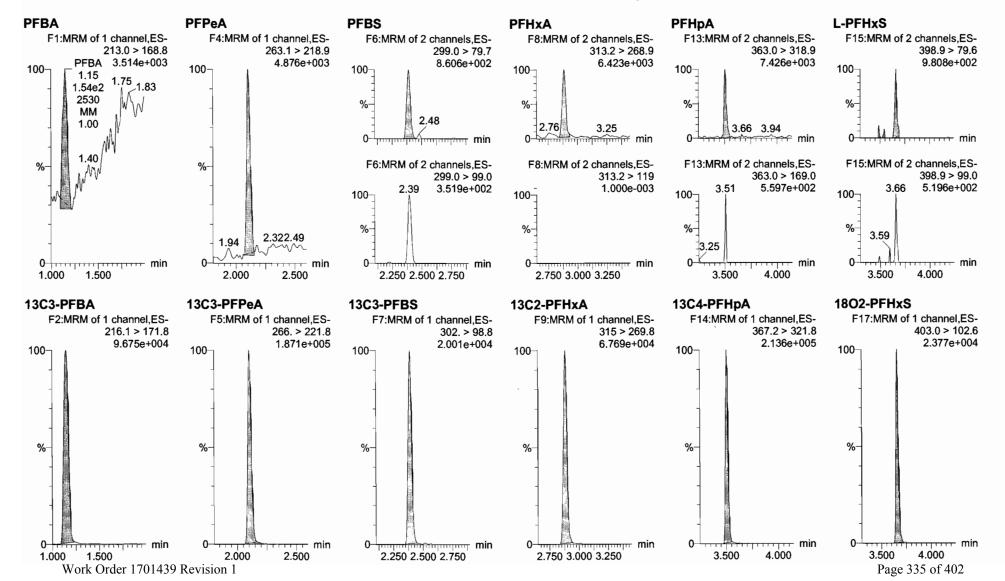
Correlation coefficient: r = 0.999631, $r^2 = 0.999262$

Calibration curve: 1.00592 * x + 0.816282

Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1701439 Revision 1 Page 334 of 402

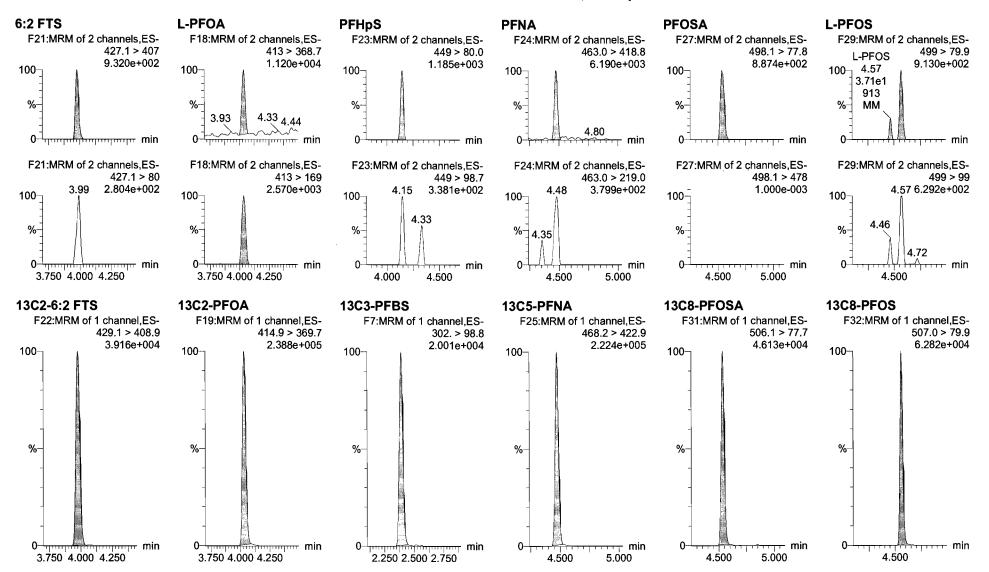
U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 31 Oct 2017 10:25:33

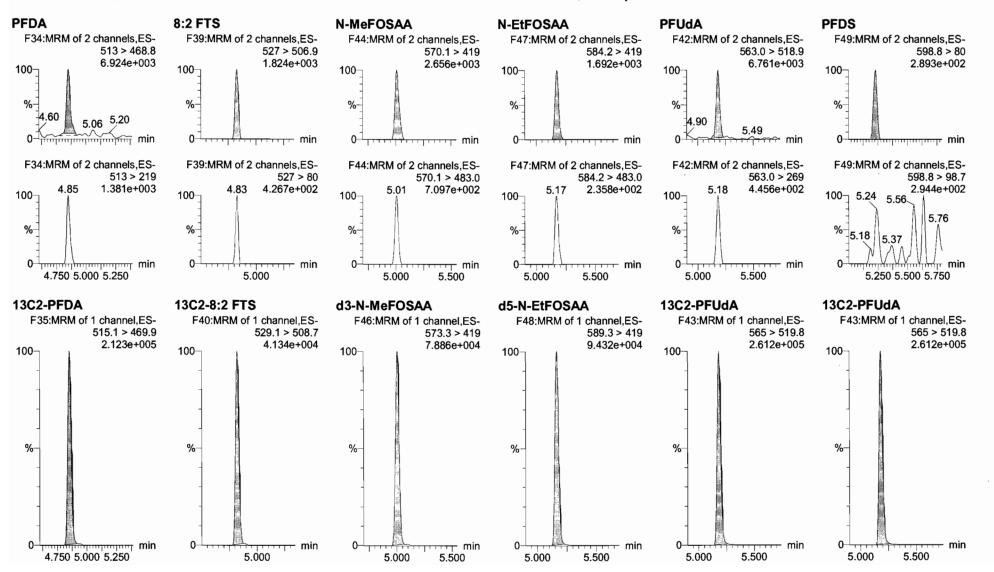
Calibration: 01 Nov 2017 08:21:58


Name: 171031M1_2, Date: 31-Oct-2017, Time: 16:08:10, ID: ST171031M1-1 PFC CS-2 17J2805, Description: PFC CS-2 17J2805

U:\Q4.PRO\results\171031M1\171031M1-CRV.gld

Last Altered: Printed: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_2, Date: 31-Oct-2017, Time: 16:08:10, ID: ST171031M1-1 PFC CS-2 17J2805, Description: PFC CS-2 17J2805

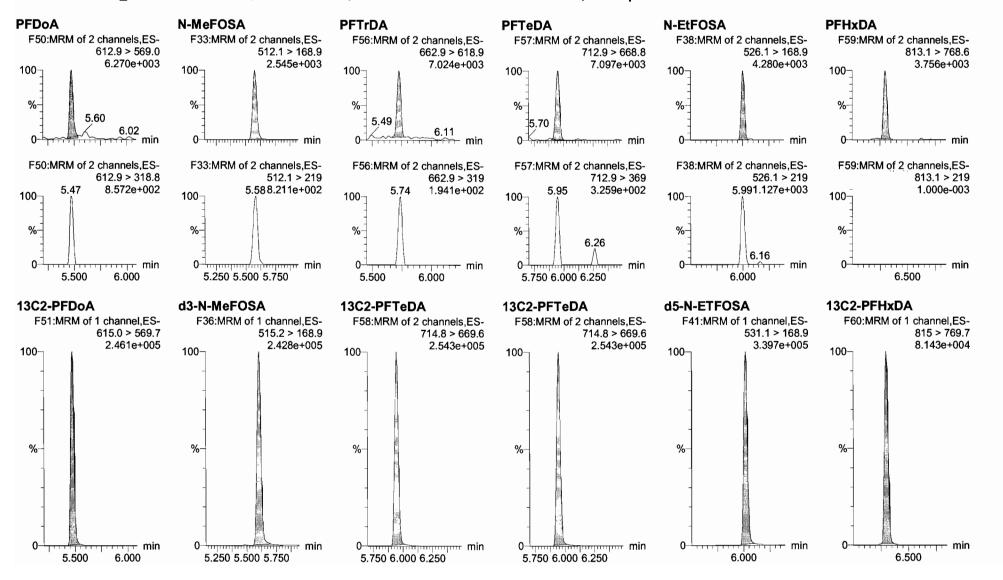

Work Order 1701439 Revision 1 Page 336 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_2, Date: 31-Oct-2017, Time: 16:08:10, ID: ST171031M1-1 PFC CS-2 17J2805, Description: PFC CS-2 17J2805

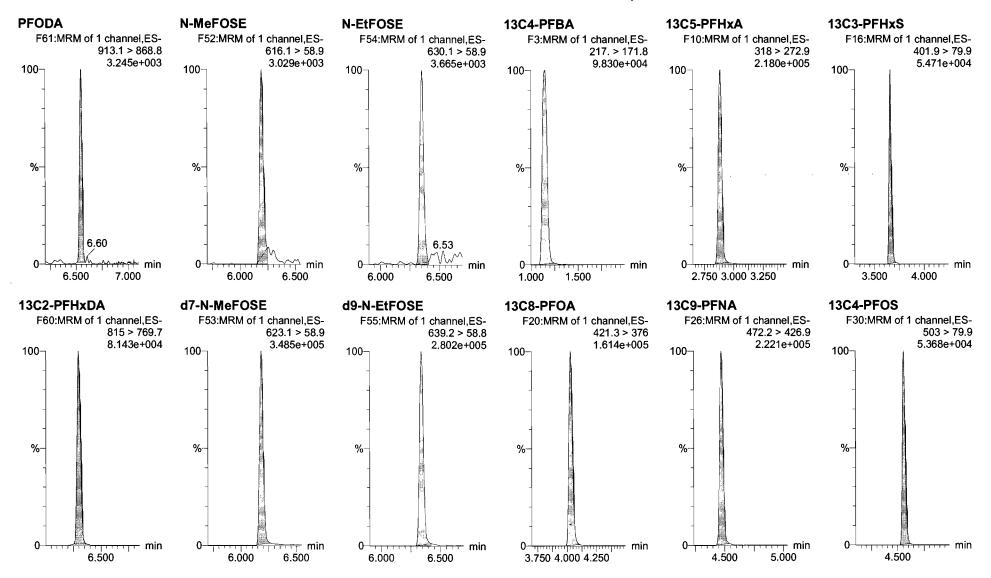

Work Order 1701439 Revision 1 Page 337 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_2, Date: 31-Oct-2017, Time: 16:08:10, ID: ST171031M1-1 PFC CS-2 17J2805, Description: PFC CS-2 17J2805


Work Order 1701439 Revision 1 Page 338 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

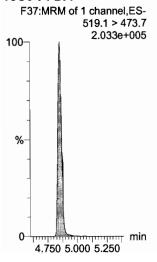
Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_2, Date: 31-Oct-2017, Time: 16:08:10, ID: ST171031M1-1 PFC CS-2 17J2805, Description: PFC CS-2 17J2805

Work Order 1701439 Revision 1 Page 339 of 402

Page 6 of 54

Vista Analytical Laboratory

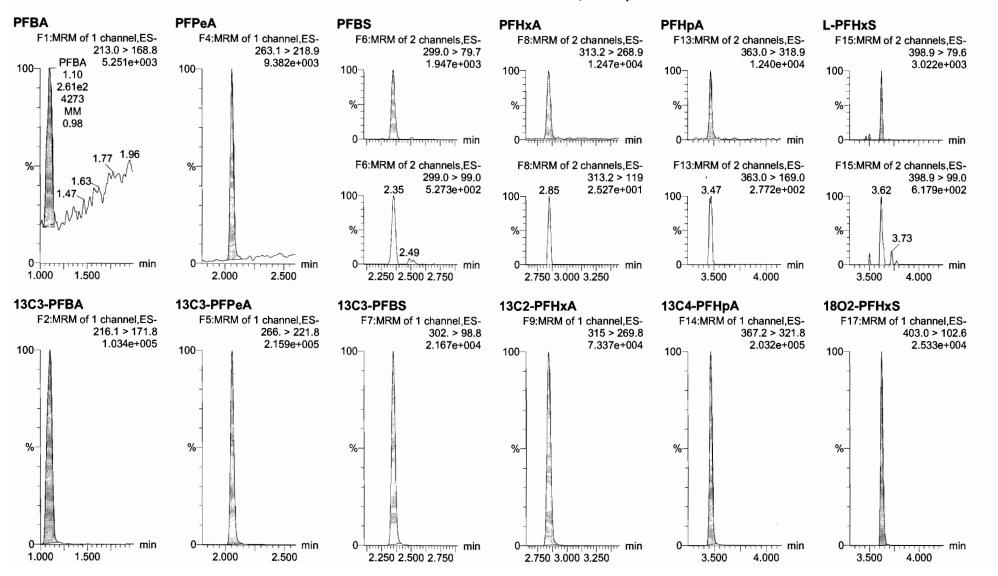

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_2, Date: 31-Oct-2017, Time: 16:08:10, ID: ST171031M1-1 PFC CS-2 17J2805, Description: PFC CS-2 17J2805

13C6-PFDA

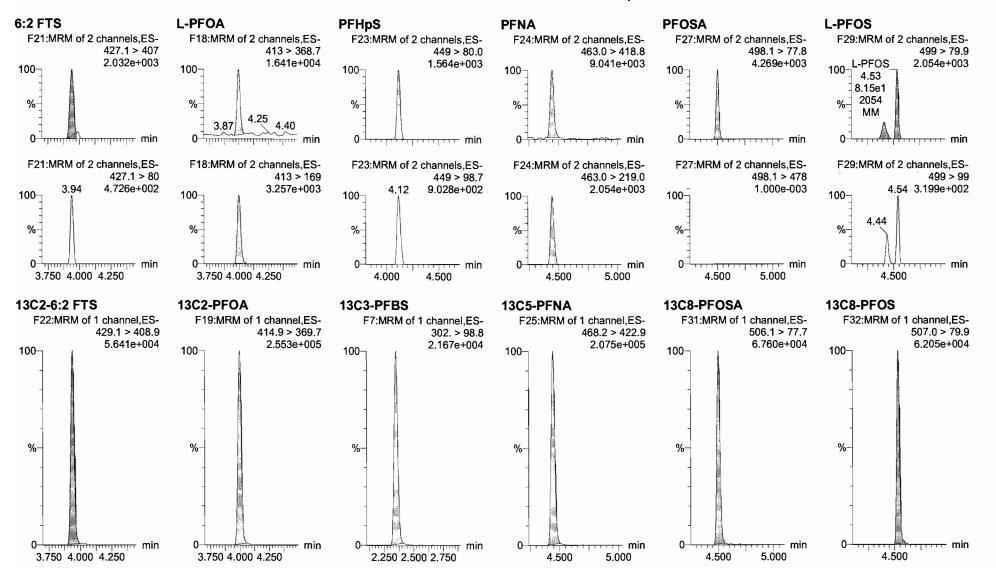


Work Order 1701439 Revision 1 Page 340 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_3, Date: 31-Oct-2017, Time: 16:19:21, ID: ST171031M1-2 PFC CS-1 17J2806, Description: PFC CS-1 17J2806

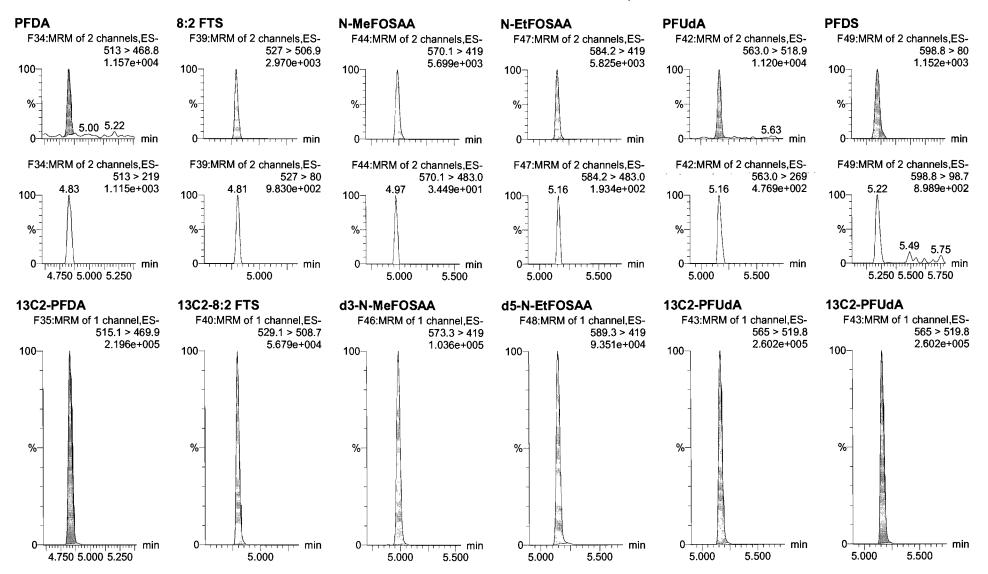

Work Order 1701439 Revision 1 Page 341 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.gld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_3, Date: 31-Oct-2017, Time: 16:19:21, ID: ST171031M1-2 PFC CS-1 17J2806, Description: PFC CS-1 17J2806

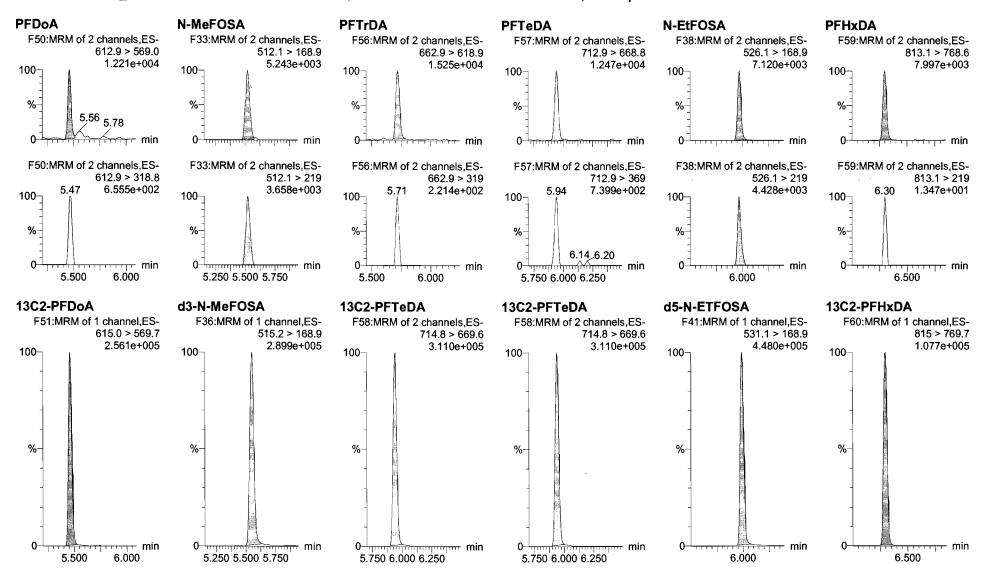


Work Order 1701439 Revision 1 Page 342 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.gld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_3, Date: 31-Oct-2017, Time: 16:19:21, ID: ST171031M1-2 PFC CS-1 17J2806, Description: PFC CS-1 17J2806

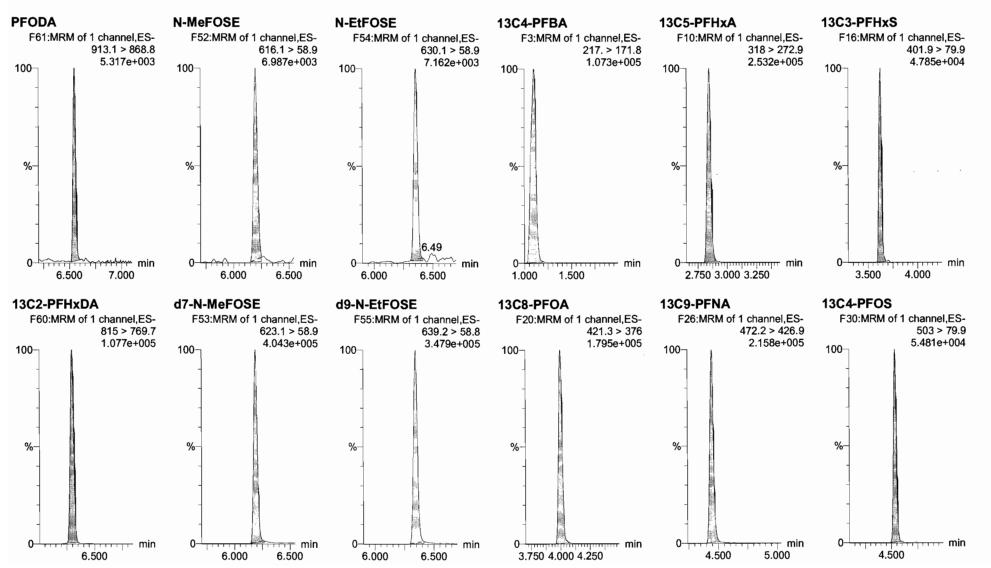

Work Order 1701439 Revision 1 Page 343 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_3, Date: 31-Oct-2017, Time: 16:19:21, ID: ST171031M1-2 PFC CS-1 17J2806, Description: PFC CS-1 17J2806



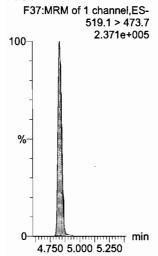
Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_3, Date: 31-Oct-2017, Time: 16:19:21, ID: ST171031M1-2 PFC CS-1 17J2806, Description: PFC CS-1 17J2806

Work Order 1701439 Revision 1 Page 345 of 402

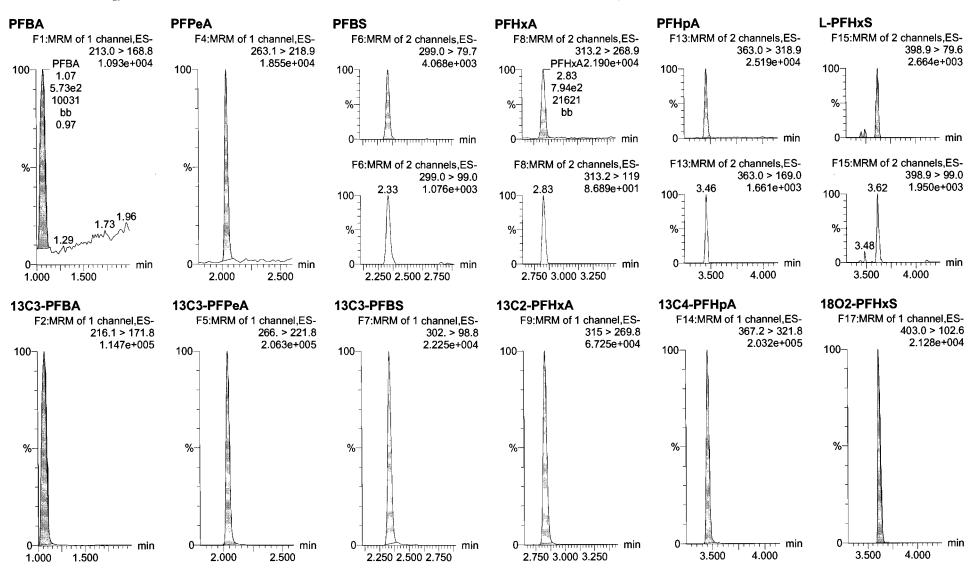

•

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_3, Date: 31-Oct-2017, Time: 16:19:21, ID: ST171031M1-2 PFC CS-1 17J2806, Description: PFC CS-1 17J2806

13C6-PFDA

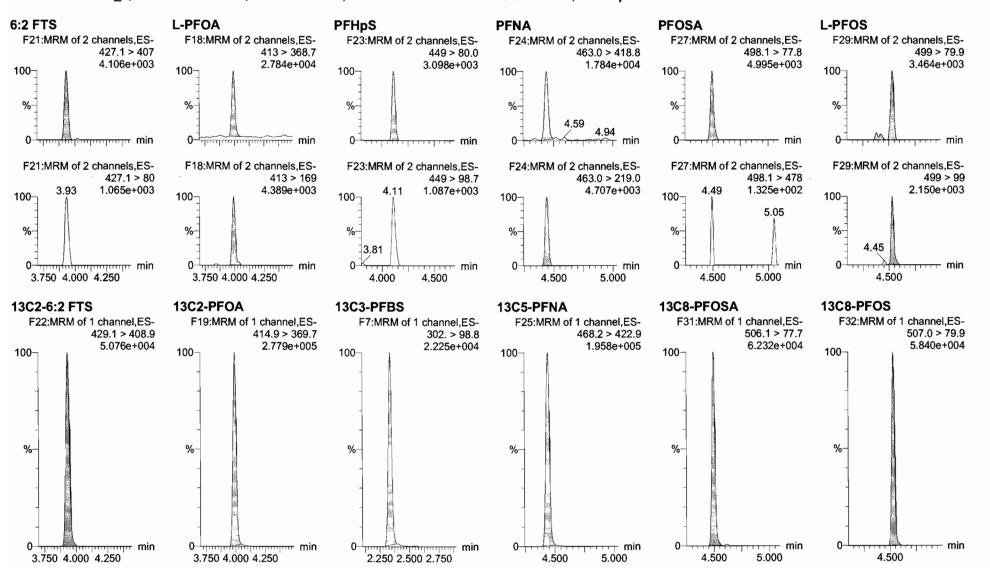


Work Order 1701439 Revision 1 Page 346 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.gld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_4, Date: 31-Oct-2017, Time: 16:30:31, ID: ST171031M1-3 PFC CS0 17J2807, Description: PFC CS0 17J2807

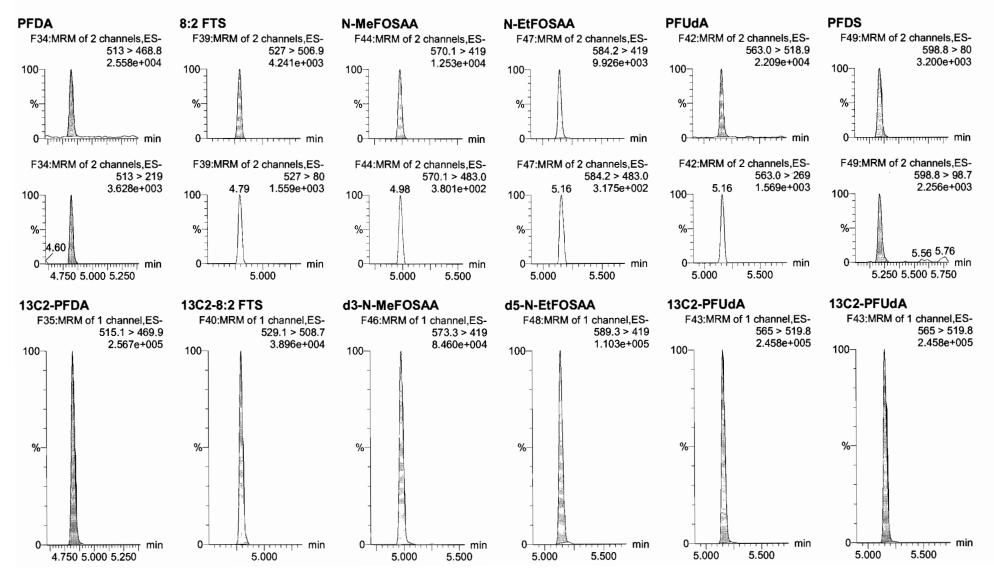

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Dataset:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

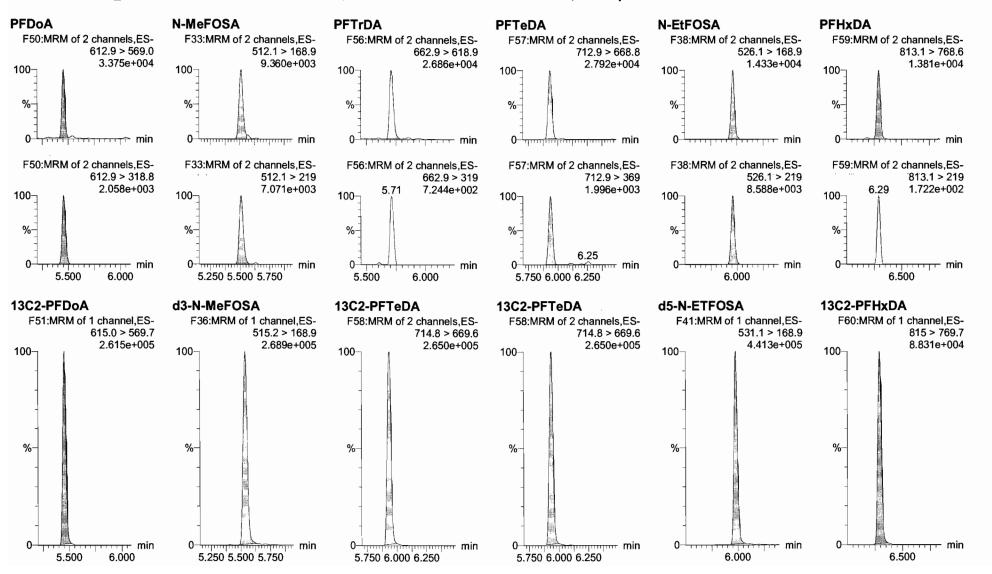
Name: 171031M1_4, Date: 31-Oct-2017, Time: 16:30:31, ID: ST171031M1-3 PFC CS0 17J2807, Description: PFC CS0 17J2807



Work Order 1701439 Revision 1 Page 348 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

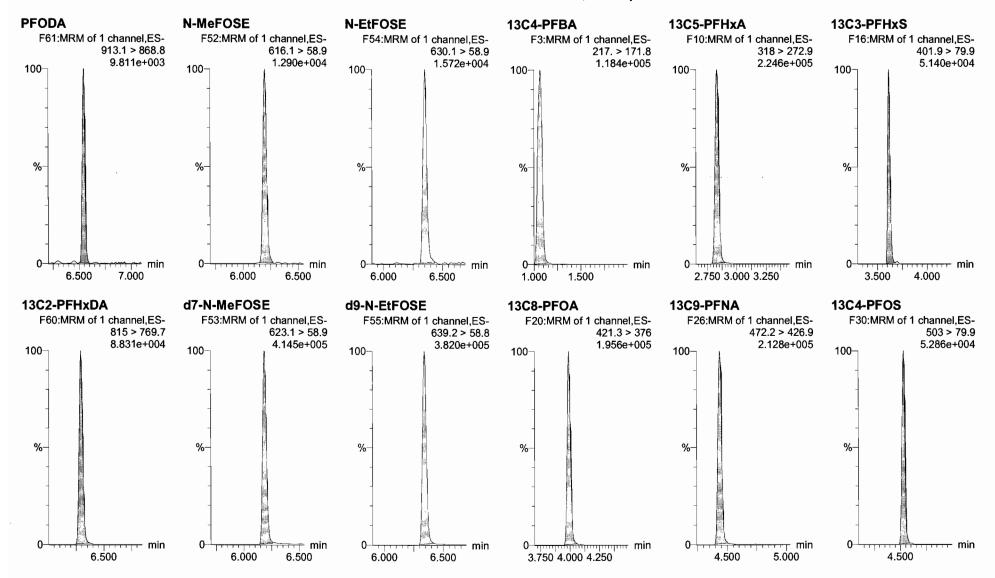
Last Altered: Printed: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time


Name: 171031M1_4, Date: 31-Oct-2017, Time: 16:30:31, ID: ST171031M1-3 PFC CS0 17J2807, Description: PFC CS0 17J2807

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_4, Date: 31-Oct-2017, Time: 16:30:31, ID: ST171031M1-3 PFC CS0 17J2807, Description: PFC CS0 17J2807


Work Order 1701439 Revision 1 Page 350 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

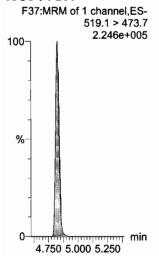
Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_4, Date: 31-Oct-2017, Time: 16:30:31, ID: ST171031M1-3 PFC CS0 17J2807, Description: PFC CS0 17J2807

Page 18 of 54

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

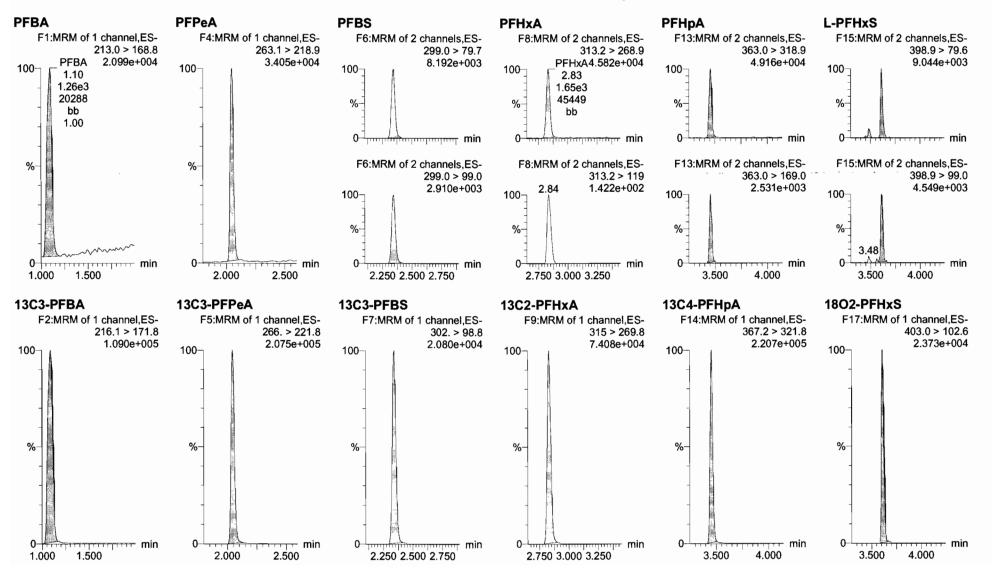

Last Altered:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time

Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_4, Date: 31-Oct-2017, Time: 16:30:31, ID: ST171031M1-3 PFC CS0 17J2807, Description: PFC CS0 17J2807

13C6-PFDA

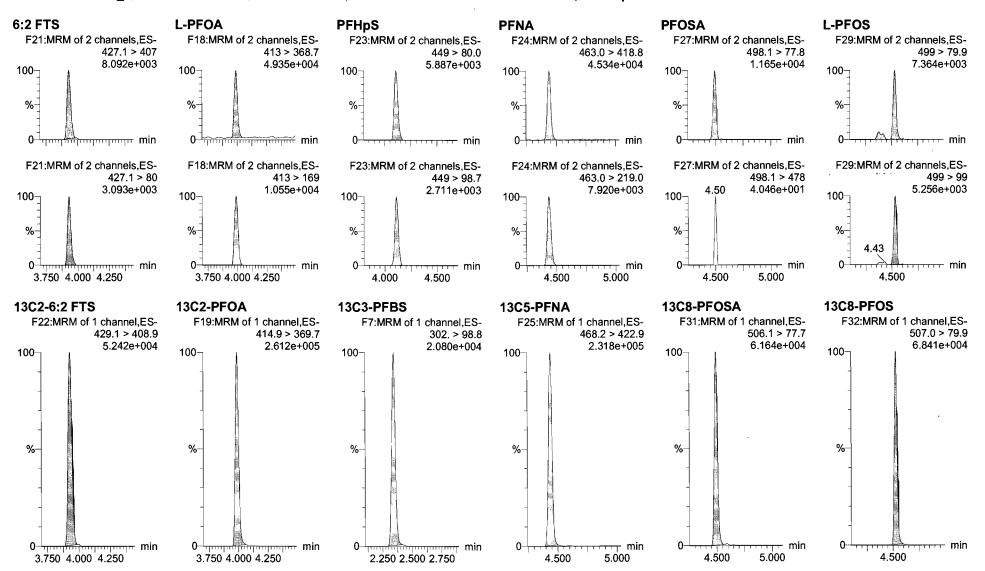


Work Order 1701439 Revision 1 Page 352 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_5, Date: 31-Oct-2017, Time: 16:41:42, ID: ST171031M1-4 PFC CS1 17J2808, Description: PFC CS1 17J2808

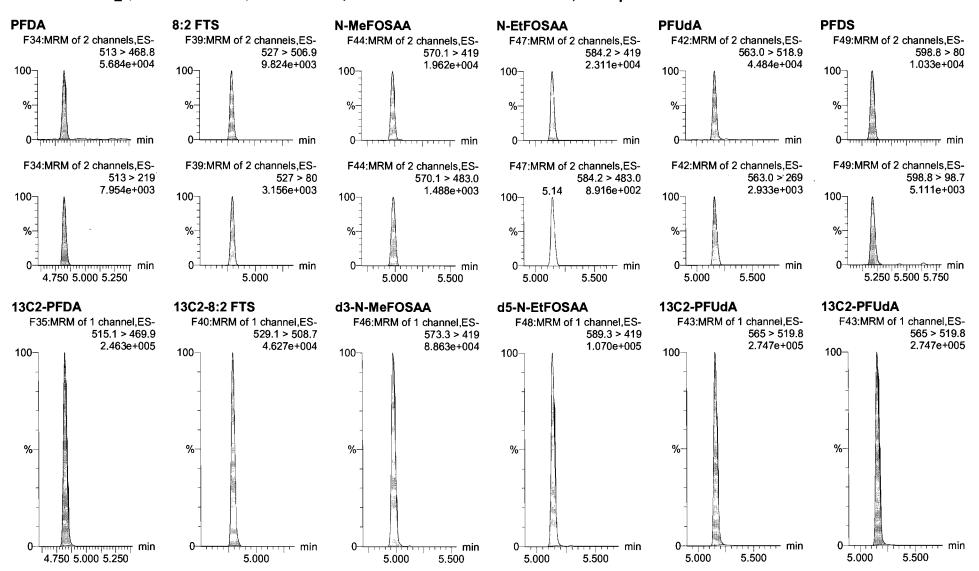

Work Order 1701439 Revision 1 Page 353 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_5, Date: 31-Oct-2017, Time: 16:41:42, ID: ST171031M1-4 PFC CS1 17J2808, Description: PFC CS1 17J2808

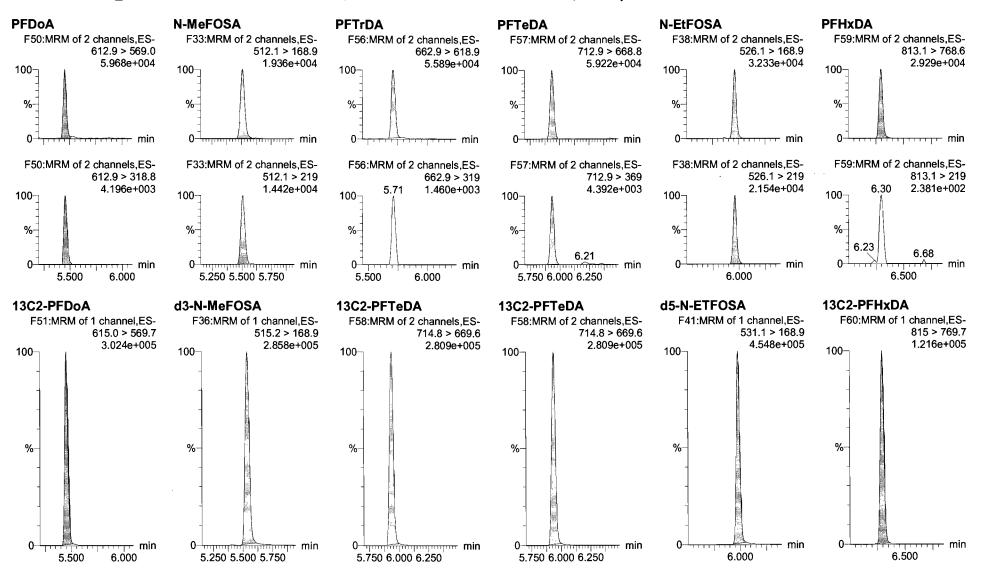


Work Order 1701439 Revision 1 Page 354 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_5, Date: 31-Oct-2017, Time: 16:41:42, ID: ST171031M1-4 PFC CS1 17J2808, Description: PFC CS1 17J2808

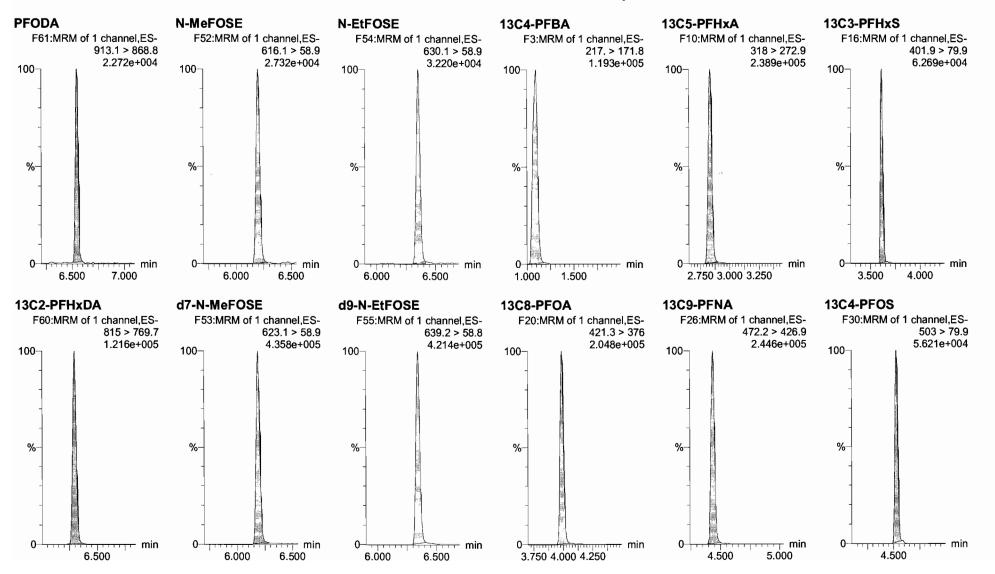

Work Order 1701439 Revision 1 Page 355 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_5, Date: 31-Oct-2017, Time: 16:41:42, ID: ST171031M1-4 PFC CS1 17J2808, Description: PFC CS1 17J2808



U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

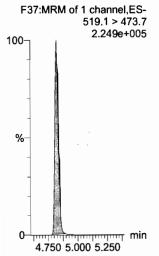
Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_5, Date: 31-Oct-2017, Time: 16:41:42, ID: ST171031M1-4 PFC CS1 17J2808, Description: PFC CS1 17J2808

Work Order 1701439 Revision 1 Page 357 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

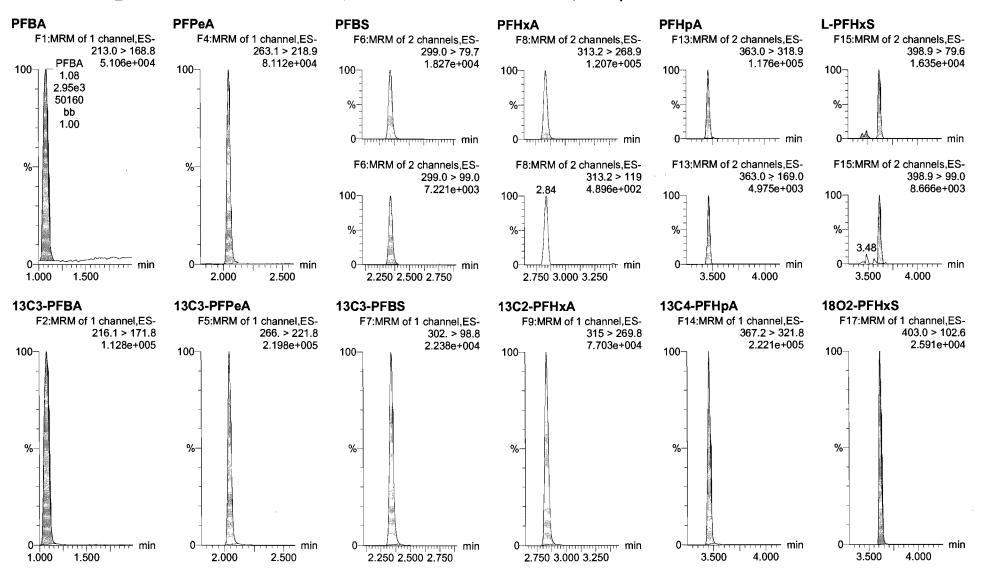

Last Altered:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time

Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_5, Date: 31-Oct-2017, Time: 16:41:42, ID: ST171031M1-4 PFC CS1 17J2808, Description: PFC CS1 17J2808

13C6-PFDA

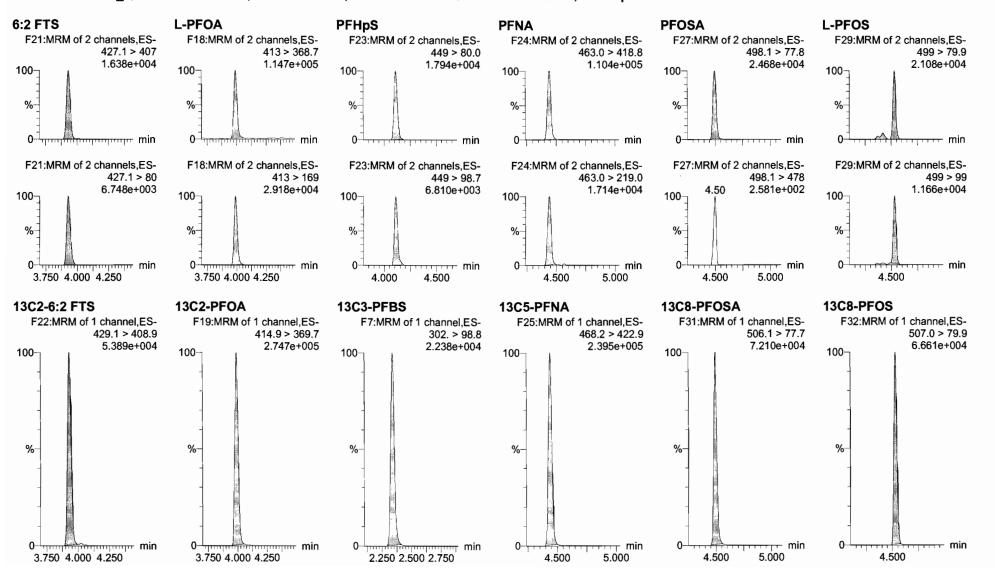


Work Order 1701439 Revision 1 Page 358 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_6, Date: 31-Oct-2017, Time: 16:52:53, ID: ST171031M1-5 PFC CS2 17J2809, Description: PFC CS2 17J2809

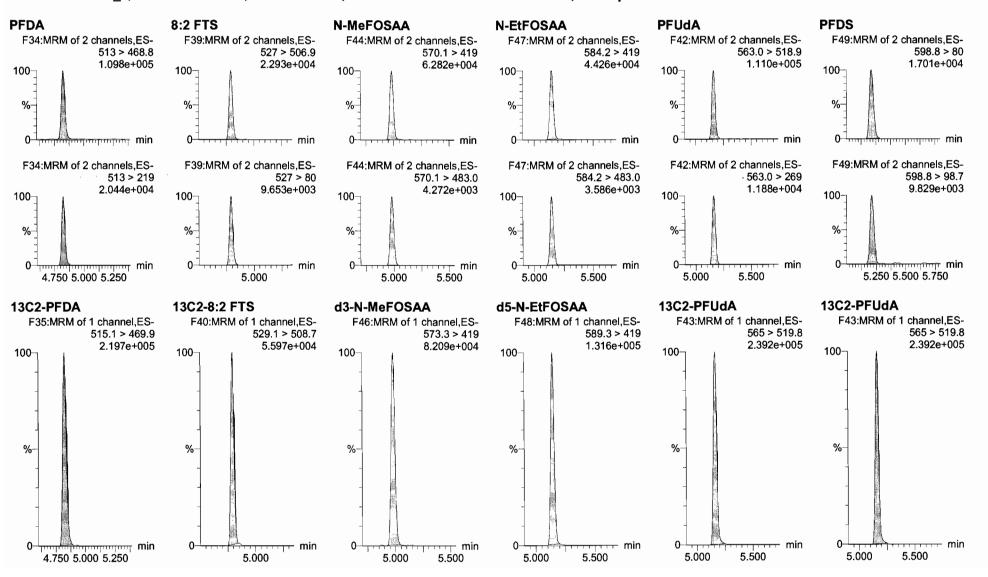


Work Order 1701439 Revision 1 Page 359 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_6, Date: 31-Oct-2017, Time: 16:52:53, ID: ST171031M1-5 PFC CS2 17J2809, Description: PFC CS2 17J2809

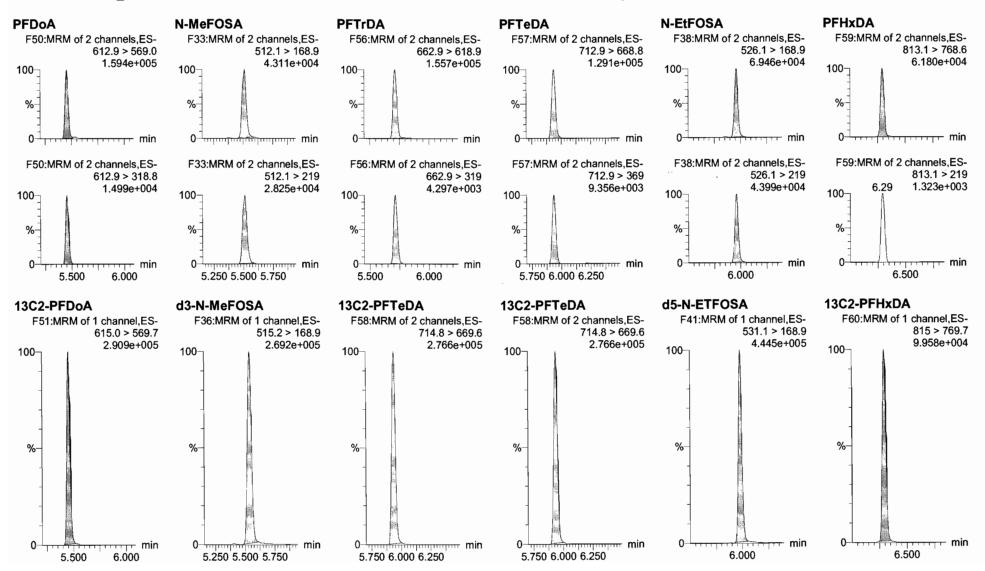

Work Order 1701439 Revision 1 Page 360 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_6, Date: 31-Oct-2017, Time: 16:52:53, ID: ST171031M1-5 PFC CS2 17J2809, Description: PFC CS2 17J2809

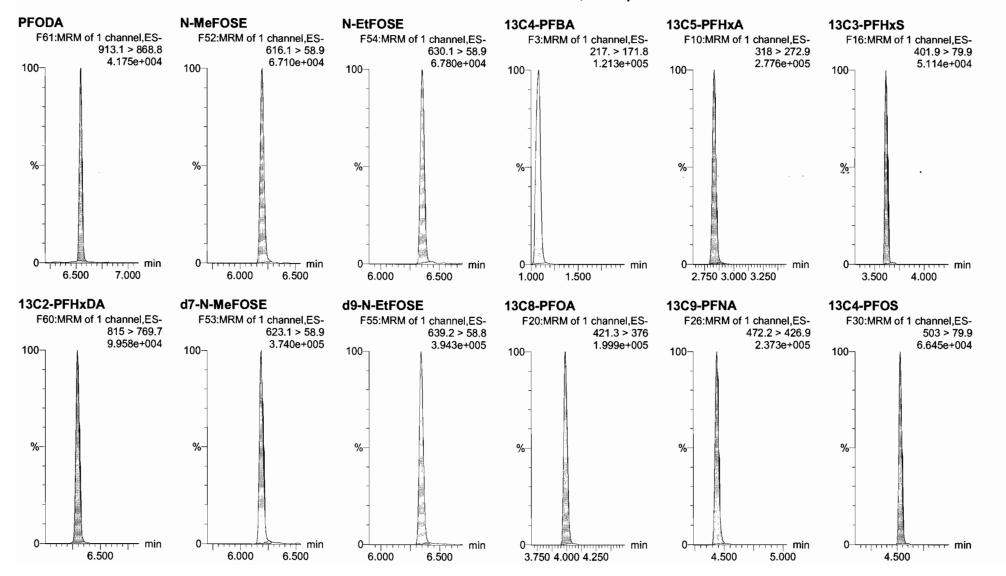


Work Order 1701439 Revision 1 Page 361 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_6, Date: 31-Oct-2017, Time: 16:52:53, ID: ST171031M1-5 PFC CS2 17J2809, Description: PFC CS2 17J2809


Work Order 1701439 Revision 1 Page 362 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

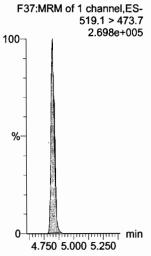
Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_6, Date: 31-Oct-2017, Time: 16:52:53, ID: ST171031M1-5 PFC CS2 17J2809, Description: PFC CS2 17J2809

Work Order 1701439 Revision 1 Page 363 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

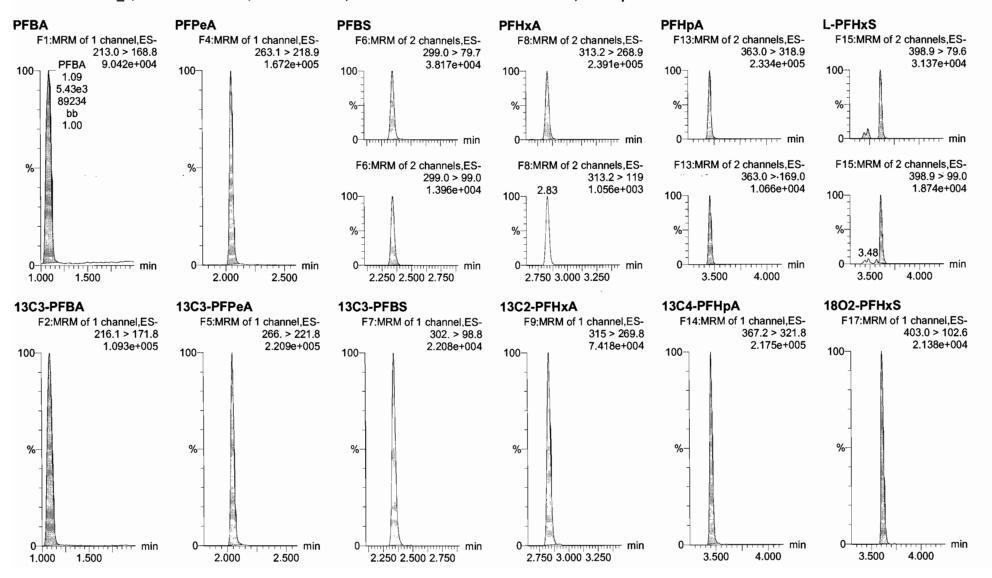

Last Altered:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time

Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_6, Date: 31-Oct-2017, Time: 16:52:53, ID: ST171031M1-5 PFC CS2 17J2809, Description: PFC CS2 17J2809

13C6-PFDA

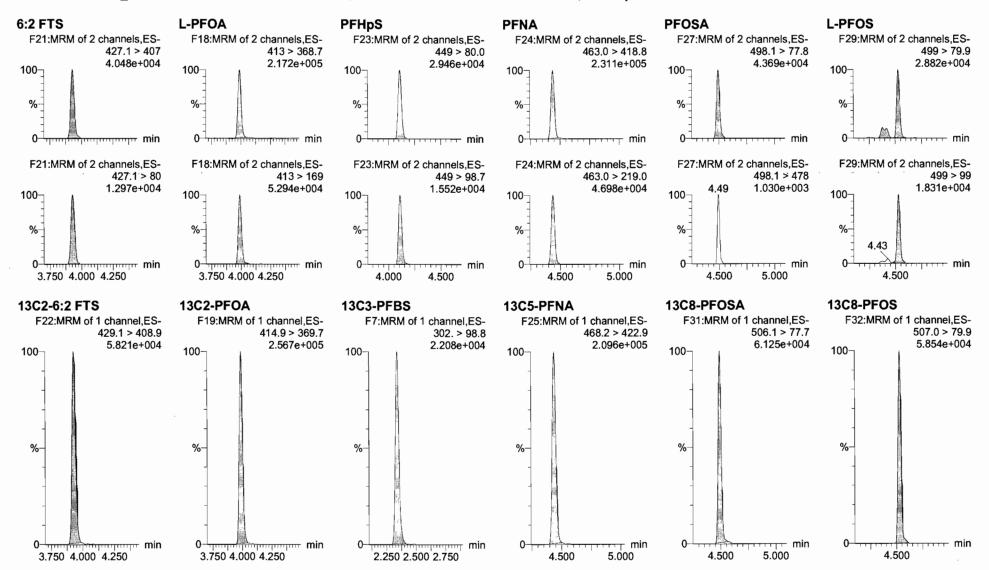


Work Order 1701439 Revision 1 Page 364 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

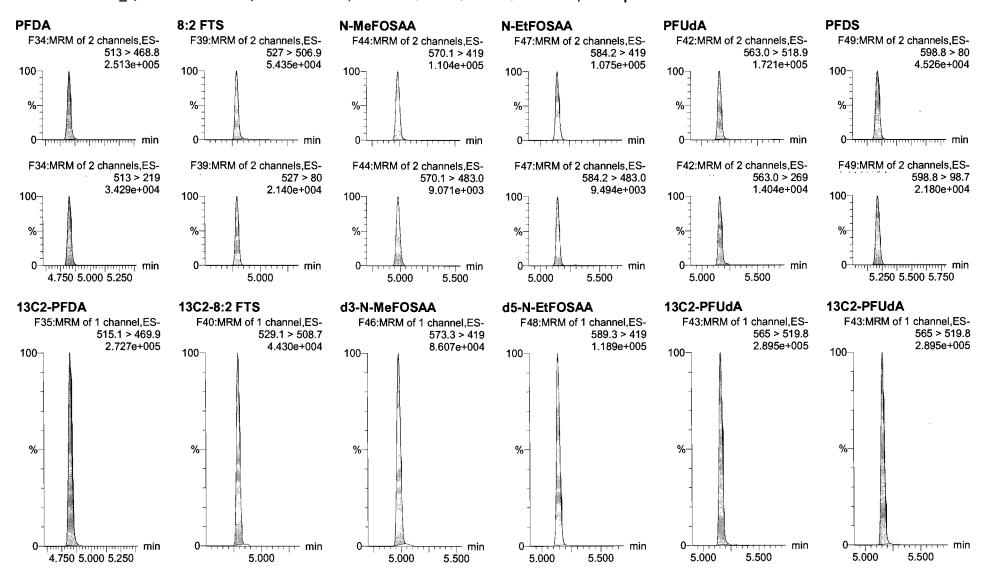
Name: 171031M1_7, Date: 31-Oct-2017, Time: 17:04:03, ID: ST171031M1-6 PFC CS3 17J2810, Description: PFC CS3 17J2810


Work Order 1701439 Revision 1 Page 365 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

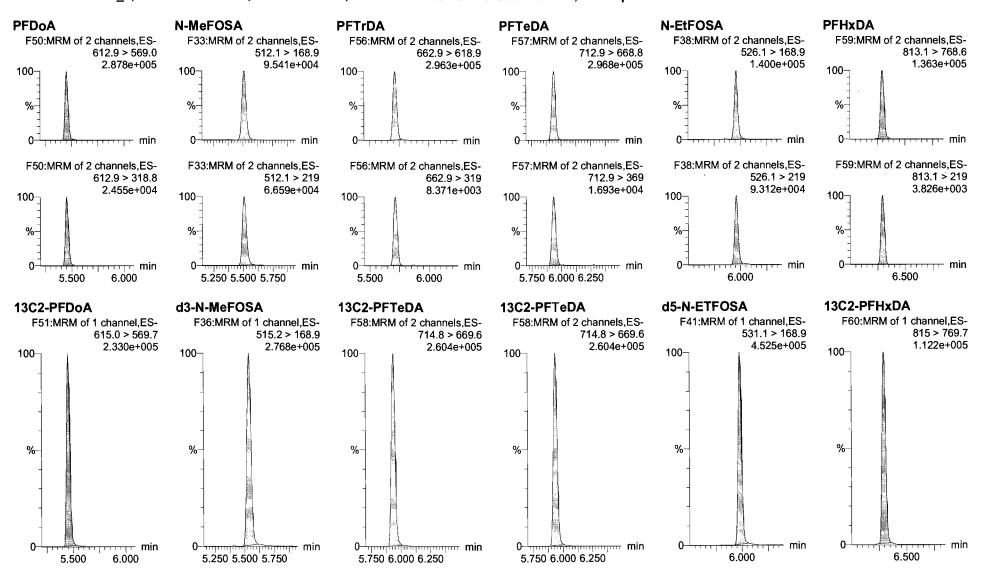
Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time


Name: 171031M1_7, Date: 31-Oct-2017, Time: 17:04:03, ID: ST171031M1-6 PFC CS3 17J2810, Description: PFC CS3 17J2810

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_7, Date: 31-Oct-2017, Time: 17:04:03, ID: ST171031M1-6 PFC CS3 17J2810, Description: PFC CS3 17J2810

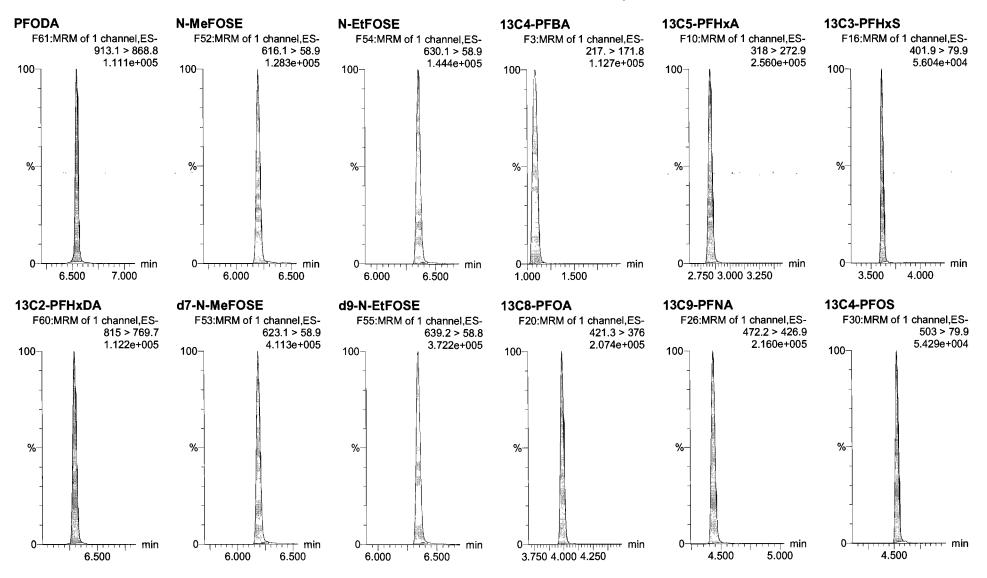

Work Order 1701439 Revision 1 Page 367 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_7, Date: 31-Oct-2017, Time: 17:04:03, ID: ST171031M1-6 PFC CS3 17J2810, Description: PFC CS3 17J2810



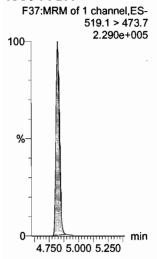
•

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.gld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_7, Date: 31-Oct-2017, Time: 17:04:03, ID: ST171031M1-6 PFC CS3 17J2810, Description: PFC CS3 17J2810

Work Order 1701439 Revision 1 Page 369 of 402

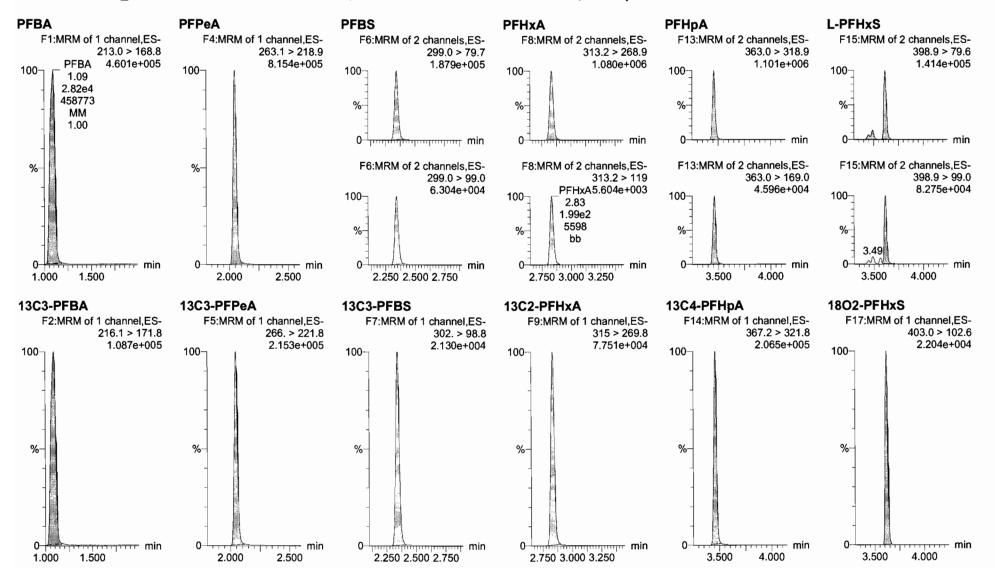

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_7, Date: 31-Oct-2017, Time: 17:04:03, ID: ST171031M1-6 PFC CS3 17J2810, Description: PFC CS3 17J2810

13C6-PFDA

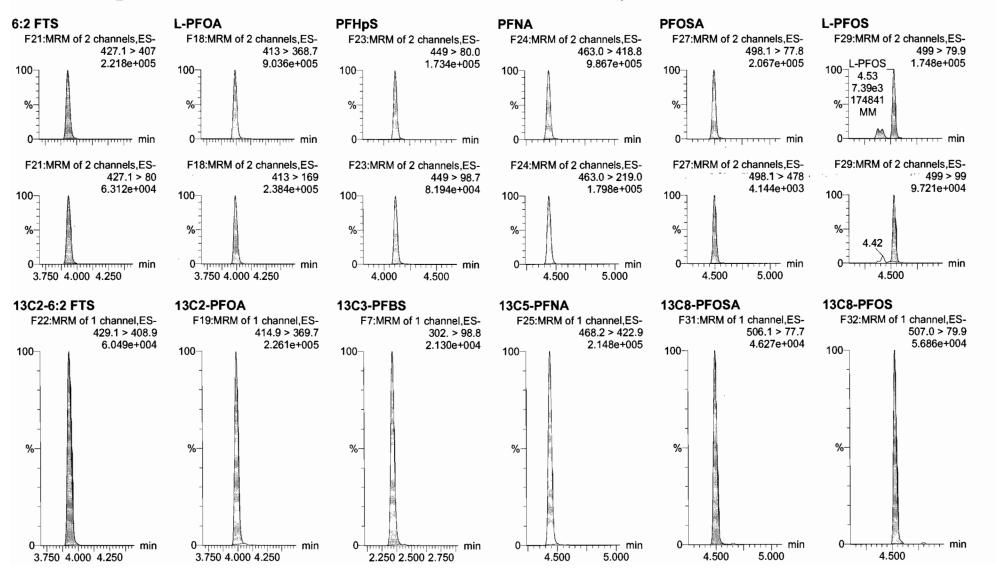

Work Order 1701439 Revision 1 Page 370 of 402

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_8, Date: 31-Oct-2017, Time: 17:15:14, ID: ST171031M1-7 PFC CS4 17J2813, Description: PFC CS4 17J2813

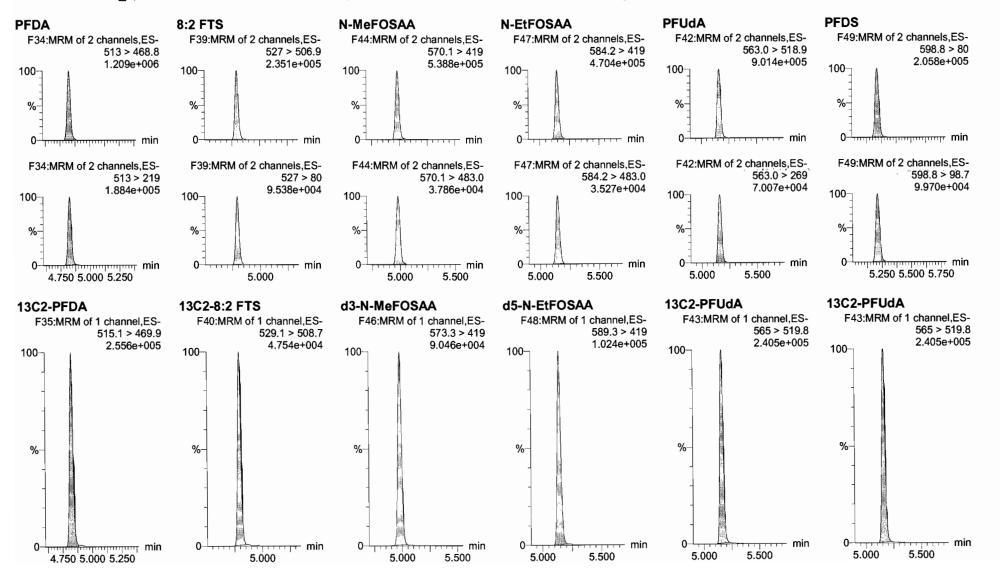

Work Order 1701439 Revision 1 Page 371 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_8, Date: 31-Oct-2017, Time: 17:15:14, ID: ST171031M1-7 PFC CS4 17J2813, Description: PFC CS4 17J2813

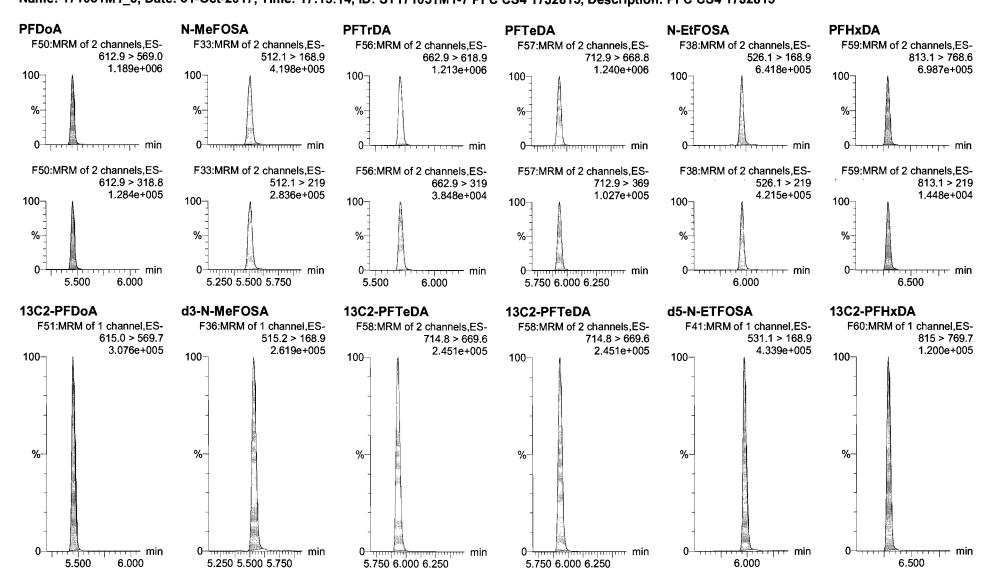

Work Order 1701439 Revision 1 Page 372 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_8, Date: 31-Oct-2017, Time: 17:15:14, ID: ST171031M1-7 PFC CS4 17J2813, Description: PFC CS4 17J2813


Work Order 1701439 Revision 1 Page 373 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_8, Date: 31-Oct-2017, Time: 17:15:14, ID: ST171031M1-7 PFC CS4 17J2813, Description: PFC CS4 17J2813


Work Order 1701439 Revision 1 Page 374 of 402

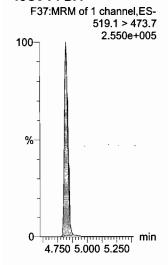
U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_8, Date: 31-Oct-2017, Time: 17:15:14, ID: ST171031M1-7 PFC CS4 17J2813, Description: PFC CS4 17J2813

Work Order 1701439 Revision 1 Page 375 of 402

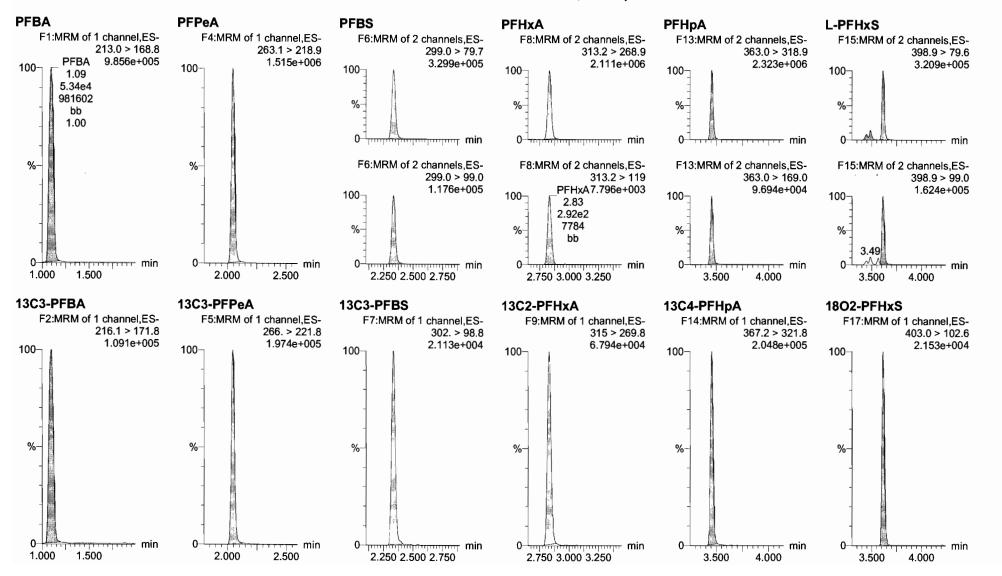

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_8, Date: 31-Oct-2017, Time: 17:15:14, ID: ST171031M1-7 PFC CS4 17J2813, Description: PFC CS4 17J2813

13C6-PFDA

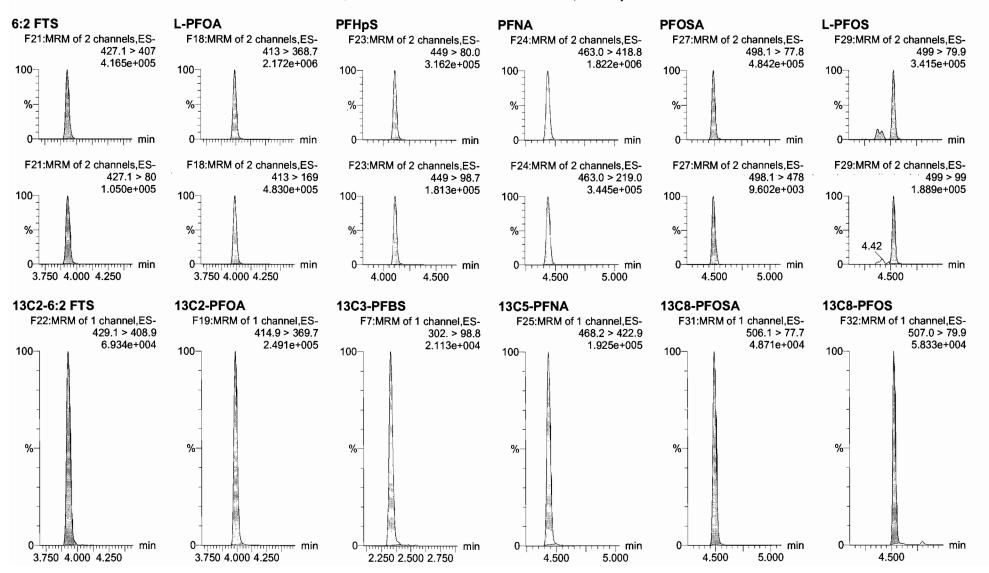


Work Order 1701439 Revision 1 Page 376 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_9, Date: 31-Oct-2017, Time: 17:26:43, ID: ST171031M1-8 PFC CS5 17J2814, Description: PFC CS5 17J2814

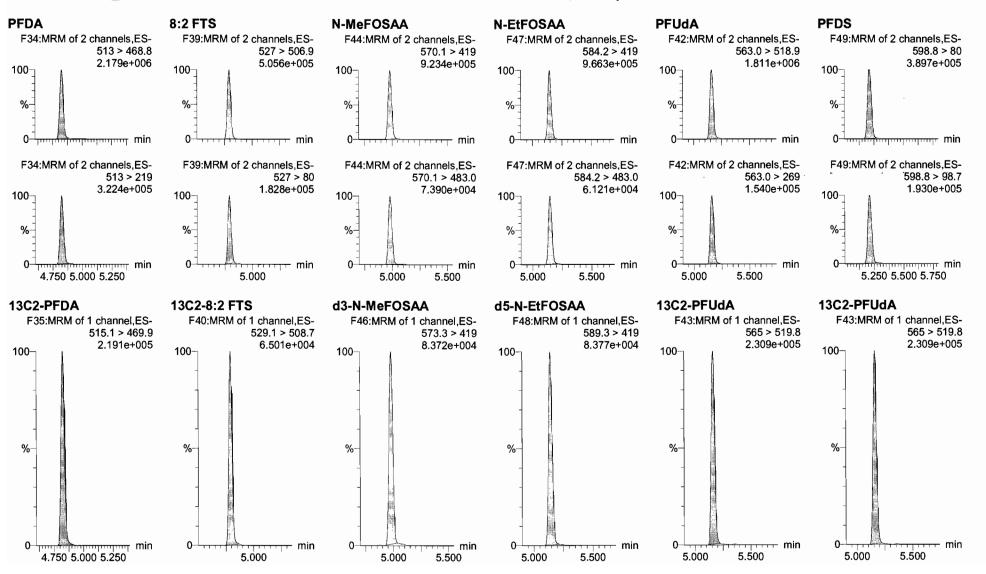

Work Order 1701439 Revision 1 Page 377 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_9, Date: 31-Oct-2017, Time: 17:26:43, ID: ST171031M1-8 PFC CS5 17J2814, Description: PFC CS5 17J2814

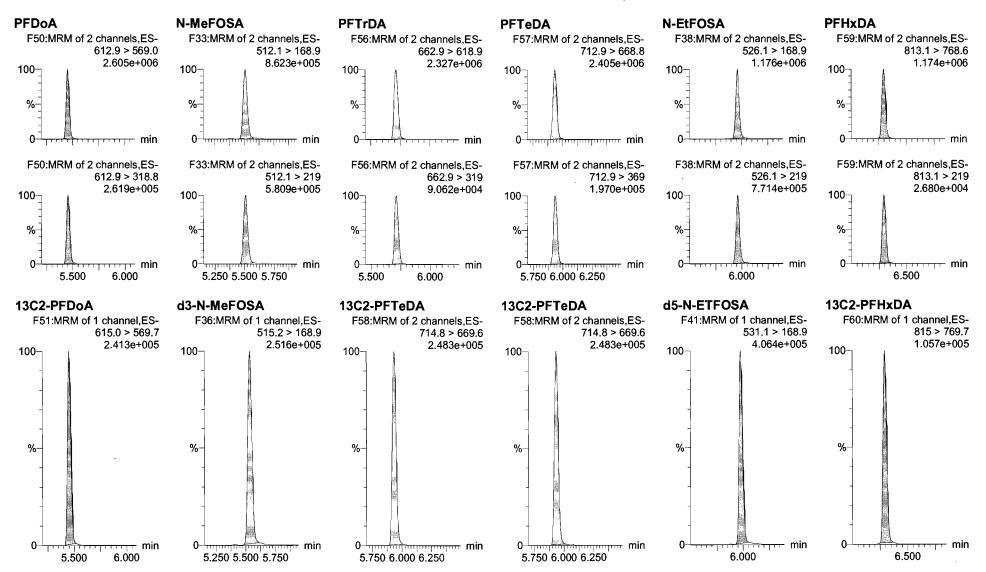


Work Order 1701439 Revision 1 Page 378 of 402

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_9, Date: 31-Oct-2017, Time: 17:26:43, ID: ST171031M1-8 PFC CS5 17J2814, Description: PFC CS5 17J2814


Work Order 1701439 Revision 1 Page 379 of 402

Vista Analytical Laboratory

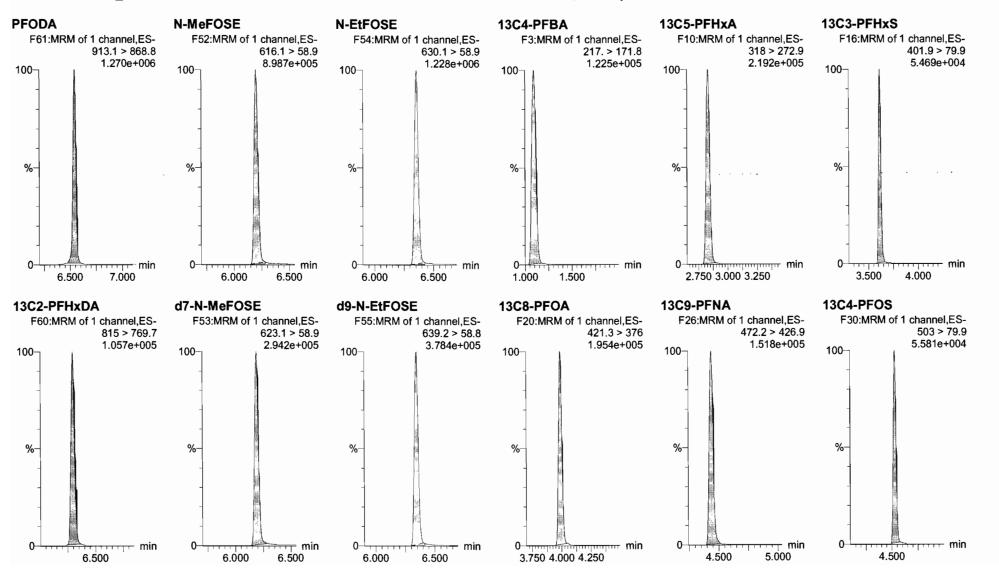
U:\Q4.PRO\results\171031M1\171031M1-CRV.qld Dataset:

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_9, Date: 31-Oct-2017, Time: 17:26:43, ID: ST171031M1-8 PFC CS5 17J2814, Description: PFC CS5 17J2814

Work Order 1701439 Revision 1 Page 380 of 402

Page 47 of 54


Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_9, Date: 31-Oct-2017, Time: 17:26:43, ID: ST171031M1-8 PFC CS5 17J2814, Description: PFC CS5 17J2814

Work Order 1701439 Revision 1 Page 381 of 402

Quantify Sample Report

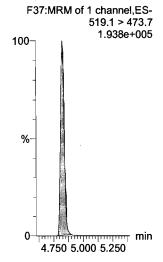
MassLynx MassLynx V4.1 SCN945 SCN960

Page 48 of 54

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

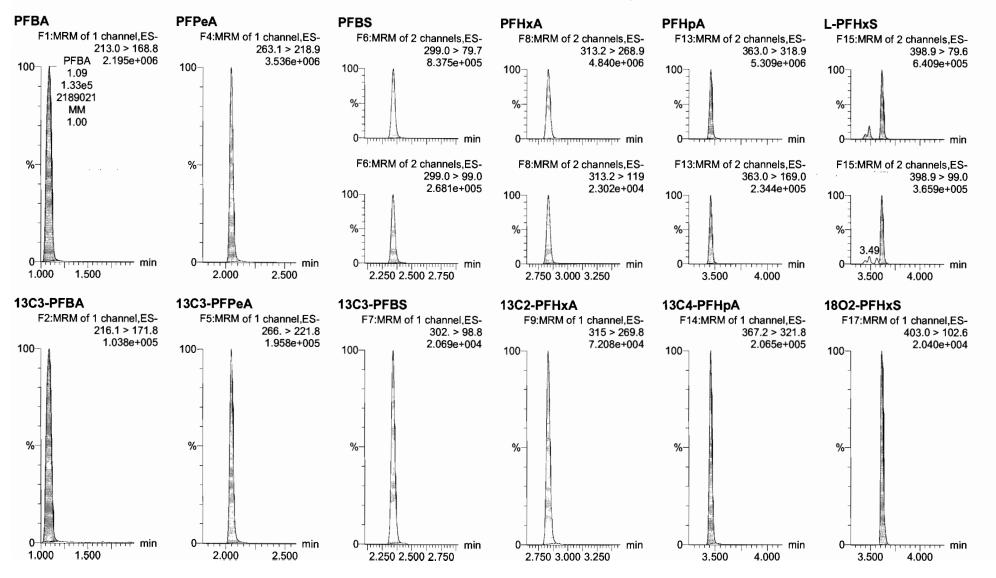

Last Altered:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time

Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_9, Date: 31-Oct-2017, Time: 17:26:43, ID: ST171031M1-8 PFC CS5 17J2814, Description: PFC CS5 17J2814

13C6-PFDA

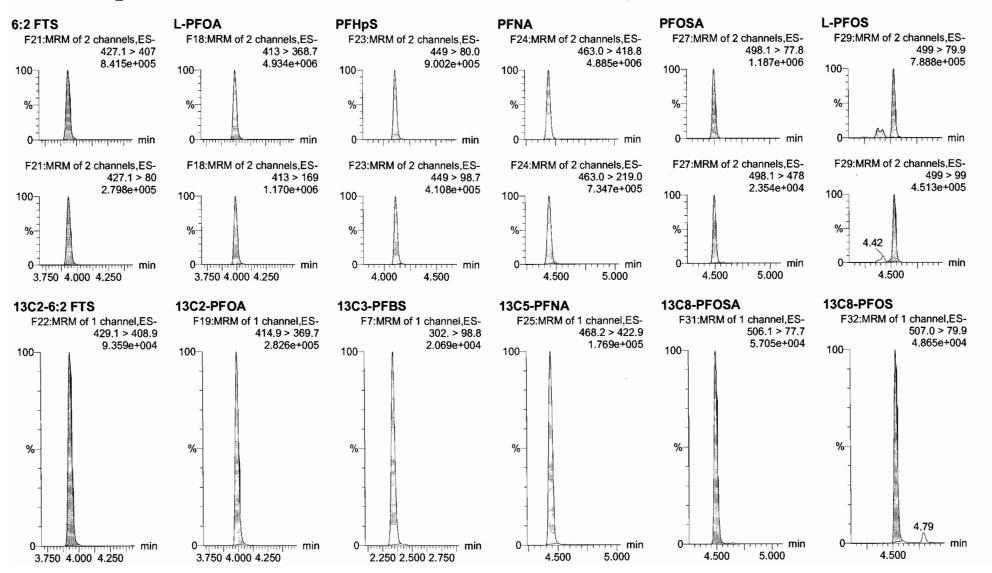


U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_10, Date: 31-Oct-2017, Time: 17:38:27, ID: ST171031M1-9 PFC CS6 17J2815, Description: PFC CS6 17J2815

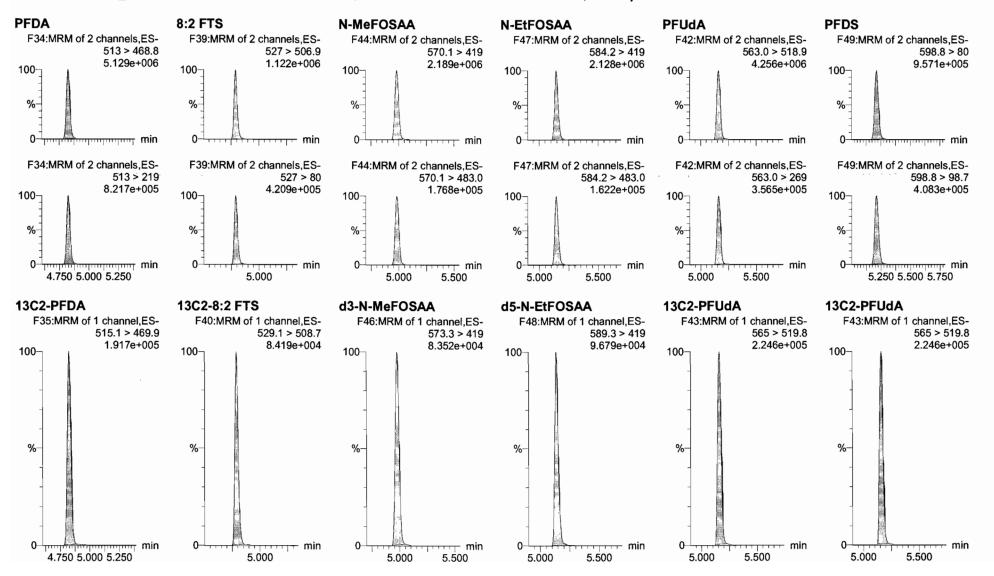


Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_10, Date: 31-Oct-2017, Time: 17:38:27, ID: ST171031M1-9 PFC CS6 17J2815, Description: PFC CS6 17J2815

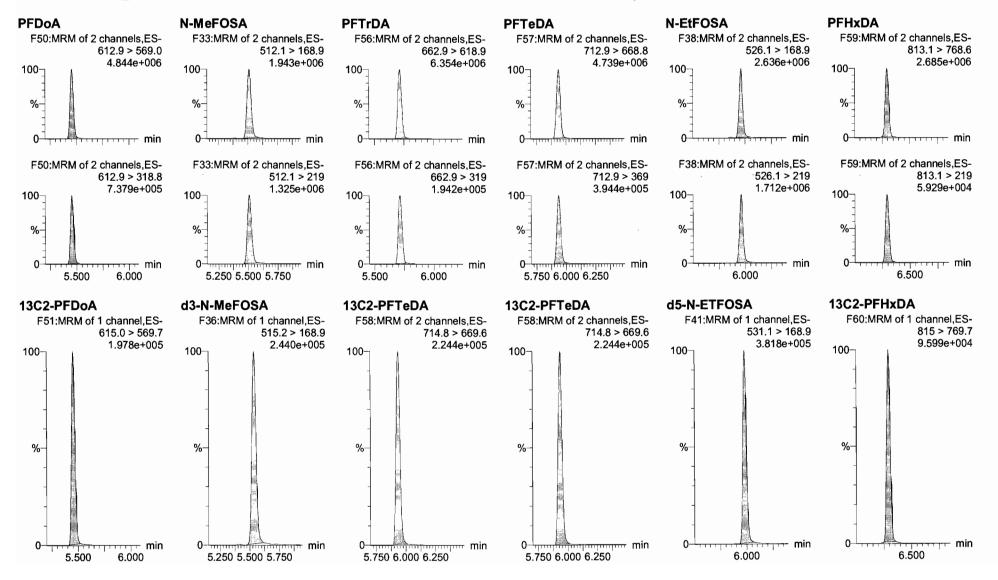

Work Order 1701439 Revision 1 Page 384 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_10, Date: 31-Oct-2017, Time: 17:38:27, ID: ST171031M1-9 PFC CS6 17J2815, Description: PFC CS6 17J2815

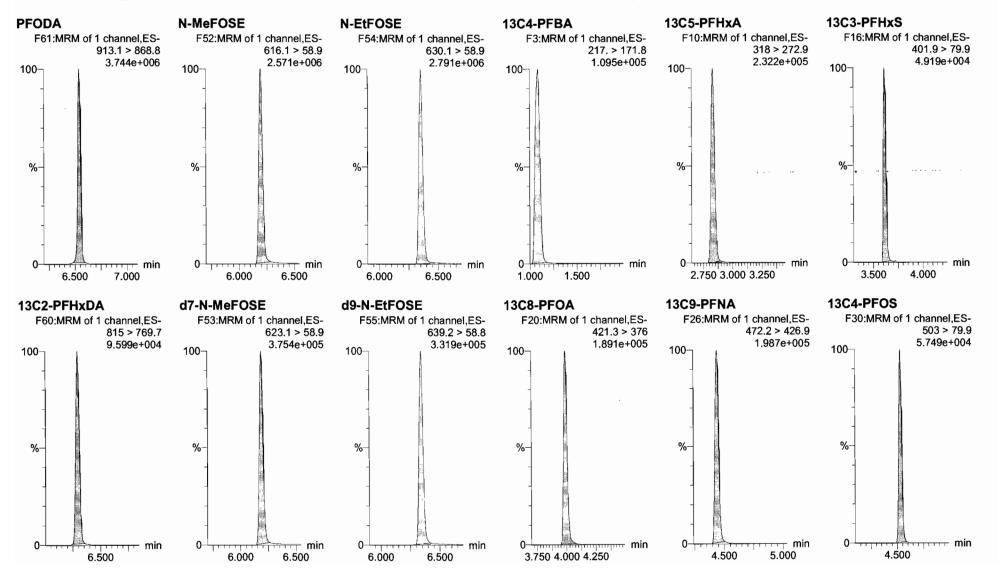

Work Order 1701439 Revision 1 Page 385 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_10, Date: 31-Oct-2017, Time: 17:38:27, ID: ST171031M1-9 PFC CS6 17J2815, Description: PFC CS6 17J2815


Work Order 1701439 Revision 1 Page 386 of 402

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld

Last Altered: Printed:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

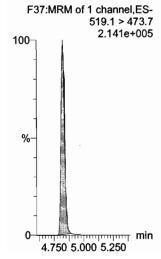
Name: 171031M1_10, Date: 31-Oct-2017, Time: 17:38:27, ID: ST171031M1-9 PFC CS6 17J2815, Description: PFC CS6 17J2815

Work Order 1701439 Revision 1 Page 387 of 402

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-CRV.qld


Last Altered:

Wednesday, November 01, 2017 08:21:58 Pacific Daylight Time

Printed: Wednesday, November 01, 2017 08:24:12 Pacific Daylight Time

Name: 171031M1_10, Date: 31-Oct-2017, Time: 17:38:27, ID: ST171031M1-9 PFC CS6 17J2815, Description: PFC CS6 17J2815

13C6-PFDA

Work Order 1701439 Revision 1 Page 388 of 402

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\171031M1\171031M1-13.qld

Last Altered: Printed:

Wednesday, November 01, 2017 09:45:32 Pacific Daylight Time Wednesday, November 01, 2017 09:46:28 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 31 Oct 2017 10:25:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13

(A) pot m 1W.

Name: 171031M1_13, Date: 31-Oct-2017, Time: 18:11:58, ID: ICV171031M1-1 PFC ICV 17J2804, Description: PFC ICV 17J2804

prosentation 25	# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec	
	1 PFBA	213.0 > 168.8	5.86e3	6.42e3	7411 M.PS	1.17	1.07	11.4	10.6	106.4 30	<u>-130</u>
	2 PFPeA	263.1 > 218.9	5.61e3	6.88e3		2.15	2.04	10.2	10.6	106.3	
proprieta de la composición dela composición de la composición de la composición de la composición de la composición dela composición de la composición de la composición dela composición dela composición de la	3 PFBS	299.0 > 79.7	1.18e3	8.03e2		2.44	2.34	18.3	9.00	90.0	
	4 PFHxA	313.2 > 268.9	8.16e3	2.61e3		2.93	2.83	15.6	11.0	110.0	
	5 PFHpA	363.0 > 318.9	6.90e3	6.33e3		3.56	3.46	13.6	10.5	104.6	
grande et et et. Grande et e	6 L-PFHxS	398.9 > 79.6	1.08e3	6.24e2		3.71	3.62	21.7	10.7	106.9	
Depres de la constante de la c	8 6:2 FTS	427.1 > 407	1.45e3	1.69e3		4.03	3.93	10.8	11.5	114.5	
	9 L-PFOA	413 > 368.7	7.12e3	8.26e3		4.05	3.99	10.8	11.1	110.8	
ac-	11 PFHpS	449 > 80.0	1.11e3	8.26e3		4.20	4.11	1.67	9.11	91.1	-1
	12 PFNA	463.0 > 418.8	7.68e3	7.22e3		4.55	4.44	13.3	10.6	106.3	ΟYV
ayehid into	13 PFOSA	498.1 > 77.8	1.57e3	1.96e3		4.59	4.50	10.0	9.30	93.0	() ~/
	14 L-PFOS	499 > 79.9	1.45e3	1.91e3		4.63	4.53	9.47	9.35	93.5	om ulilit Mailoila
	16 PFDA	513 > 468.8	8.14e3	8.46e3		4.92	4.82	12.0	9.37	93.7	((/,
	17 8:2 FTS	527 > 506.9	1.55e3	1.73e3		4.89	4.79	11.2	7.82	78.2	
	18 N-MeFOSAA	570.1 > 419	5.21e3	3.88e3		5.08	4.98	16.8	11.6	115.8	ΔIA
	19 N-EtFOSAA	584.2 > 419	3.42e3	4.22e3		5.24	5.14	10.1	8.63	86.3	YWY' L
	20 PFUdA	563.0 > 518.9	7.42e3	9.78e3		5.25	5.16	9.48	9.78	97.8	0 1110112
	21 PFDS	598.8 > 80	1.54e3	9.78e3		5.31	5.21	1.97	8.88	88.8	,
	22 PFDoA	612.9 > 569.0	1.00e4	9.72e3		5.55	5.45	12.9	10.5	. 104.6	
and the little	23 N-MeFOSA	512.1 > 168.9		1.09e4		5.56			(-	k)	
	24 PFTrDA	662.9 > 618.9	9.70e3	9.72e3		5.80	5.71	12.5	9.75	97.5	
	25 PFTeDA	712.9 > 668.8	1.04e4	8.57e3		6.02	5.94	15.2	11.8	118.4	
KIN N	26 N-EtFOSA	526.1 > 168.9		1.71e4		6.01			(h l	
indications in a	27 PFHxDA	813.1 > 768.6		3.83e3		6.32			(۱ ۱	
ri galbarg i hina wainta	28 PFODA	913.1 > 868.8		3.83e3		6.61				\	
jidografisadi Roj jildhoggi milidojaliki	29 N-MeFOSE	616.1 > 58.9		1.63e4		6.23				l. \	
, 1 1 1 1 1 1 1 1 1 1	30 N-EtFOSE	630.1 > 58.9		1.50e4		6.39				N 1	
	31 13C3-PFBA	216.1 > 171.8	6.42e3	6.90e3	0.949	1.17	1.07	11.6	12.3	98.1 50-	150
in i la	32 13C3-PFPeA	266. > 221.8	6.88e3	8.91e3	0.781	2.15	2.04	9.65	12.3	98.8	
i galandaniah jebi ergano tebas Ajr jiyo hasasah jeb	33 13C3-PFBS	302. > 98.8	8.03e2	8.91e3	0.089	2.44	2.34	1.13	12.7	101.8	
W	ork 04de3C270ff4349 Revision 1	315 > 269.8	2.61e3	8.91e3	0.755	2.93	2.83	3.66	4.85	97.0	Page 389 of 402

U:\Q4.PRO\results\171031M1\171031M1-13.qld

Last Altered: Printed:

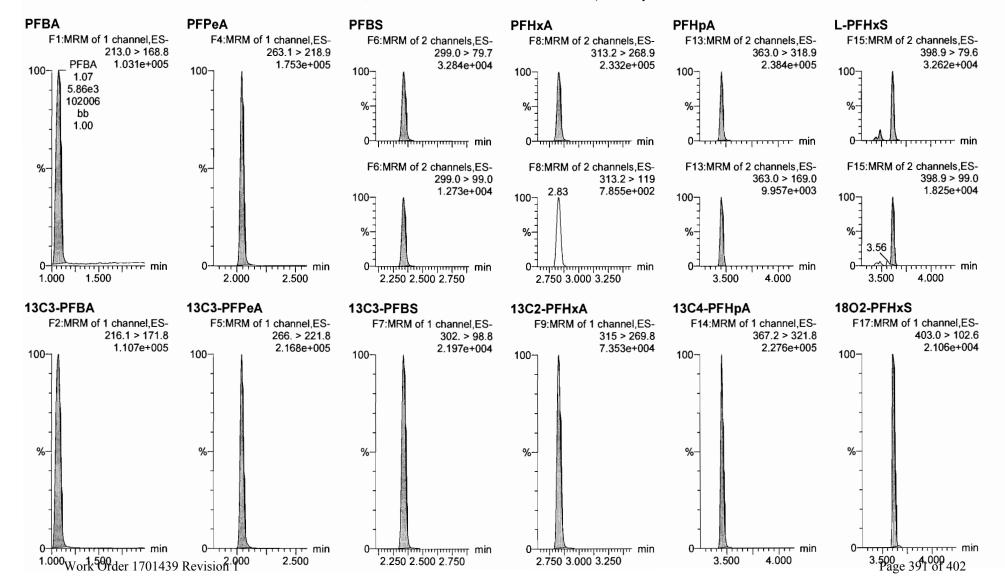
Wednesday, November 01, 2017 09:45:32 Pacific Daylight Time Wednesday, November 01, 2017 09:46:28 Pacific Daylight Time

Name: 171031M1_13, Date: 31-Oct-2017, Time: 18:11:58, ID: ICV171031M1-1 PFC ICV 17J2804, Description: PFC ICV 17J2804

	# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
32	35 13C4-PFHpA	367.2 > 321.8	6.33e3	8.91e3	0.711	3.56	3.46	8.88	12.5	99.9
33	36 18O2-PFHxS	403.0 > 102.6	6.24e2	1.65e3	0.423	3.71	3.61	4.73	11.2	89.3
34	37 13C2-6:2 FTS	429.1 > 408.9	1.69e3	6.53e3	0.286	4.03	3.93	3.23	11.3	90.5
35	38 13C2-PFOA	414.9 > 369.7	8.26e3	6.53e3	1.310	4.05	3.99	15.8	12.1	96.6
36	39 13C5-PFNA	468.2 > 422.9	7.22e3	7.70e3	0.979	4.55	4.44	11.7	12.0	95.8
37	40 13C8-PFOSA	506.1 > 77.7	1.96e3	9.19e3	0.207	4.59	4.49	2.67	12.9	103.3
38	41 13C8-PFOS	507.0 > 79.9	1.91e3	2.02e3	1.072	4.63	4.53	11.8	11.1	88.4
39	42 13C2-PFDA	515.1 > 469.9	8.46e3	8.09e3	1.014	4.92	4.82	13.1	12.9	103.1
40	43 13C2-8:2 FTS	529.1 > 508.7	1.73e3	8.09e3	0.216	4.89	4.79	2.67	12.4	98.9
41	44 d3-N-MeFOSAA	573.3 > 419	3.88e3	9.19e3	0.368	5.08	4.98	5.28	14.3	114.8
42	45 d5-N-EtFOSAA	589.3 > 419	4.22e3	9.19e3	0.389	5.24	5.14	5.74	14.8	118.3
43	46 13C2-PFUdA	565 > 519.8	9.78e3	9.19e3	0.983	5.25	5.16	13.3	13.5	108.2
44	47 13C2-PFDoA	615.0 > 569.7	9.72e3	9.19e3	0.997	5.55	5.45	13.2	13.3	106.0
45	48 d3-N-MeFOSA	515.2 > 168.9	1.09e4	9.19e3	0.096	5.56	5.54	14.8	155	103.2
46	49 13C2-PFTeDA	714.8 > 669.6	8.57e3	9.19e3	1.039	6.02	5.94	11.7	11.2	89.7
47	50 d5-N-ETFOSA	531.1 > 168.9	1.71e4	9.19e3	0.144	6.01	5.98	23.2	161	107.5
48	51 13C2-PFHxDA	815 > 769.7	3.83e3	9.19e3	1.032	6.32	6.29	5.21	5.05	101.0
49	52 d7-N-MeFOSE	623.1 > 58.9	1.63e4	9.19e3	0.133	6.23	6.19	22.2	167	111.4
50	53 d9-N-EtFOSE	639.2 > 58.8	1.50e4	9.19e3	0.128	6.39	6.34	20.4	160	106.6
51	54 13C4-PFBA	217. > 171.8	6.90e3	6.90e3	1.000	1.17	1.07	12.5	12.5	100.0
52	55 13C5-PFHxA	318 > 272.9	8.91e3	8.91e3	1.000	2.93	2.83	12.5	12.5	100.0
53	56 13C3-PFHxS	401.9 > 79.9	1.65e3	1.65e3	1.000	3.71	3.62	12.5	12.5	100.0
54	57 13C8-PFOA	421.3 > 376	6.53e3	6.53e3	1.000	4.05	3.99	12.5	12.5	100.0
55	58 13C9-PFNA	472.2 > 426.9	7.70e3	7.70e3	1.000	4.55	4.44	12.5	12.5	100.0
56	59 13C4-PFOS	503 > 79.9	2.02e3	2.02e3	1.000	4.63	4.53	12.5	12.5	100.0
57	60 13C6-PFDA	519.1 > 473.7	8.09e3	8.09e3	1.000	4.92	4.82	12.5	12.5	100.0
58	61 13C7-PFUdA	570.1 > 524.8	9.19e3	9.19e3	1.000	5.25	5.16	12.5	12.5	100.0

Work Order 1701439 Revision 1 Page 390 of 402

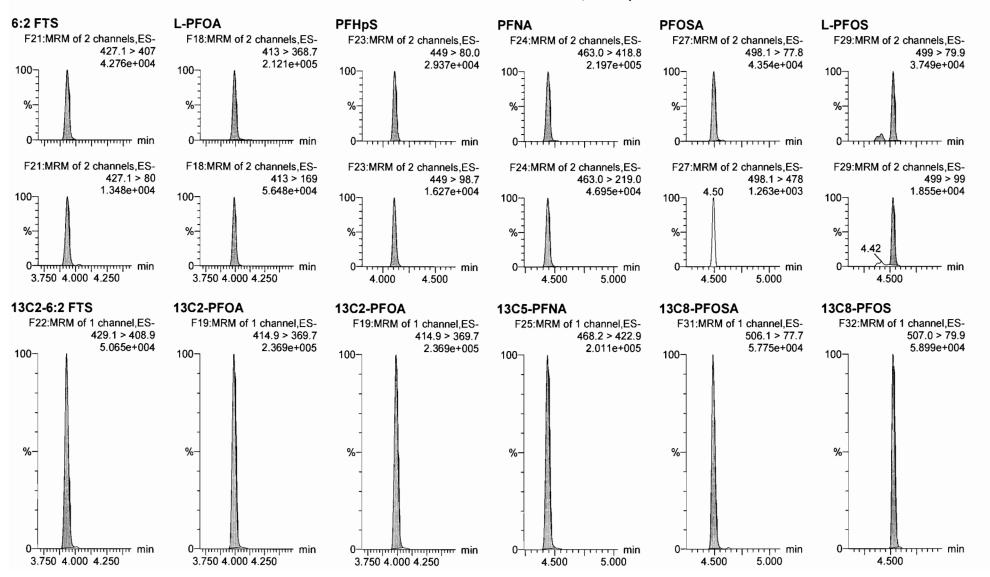
U:\Q4.PRO\results\171031M1\171031M1-13.qld


Last Altered: Printed:

Wednesday, November 01, 2017 09:45:32 Pacific Daylight Time Wednesday, November 01, 2017 09:46:28 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 31 Oct 2017 10:25:33

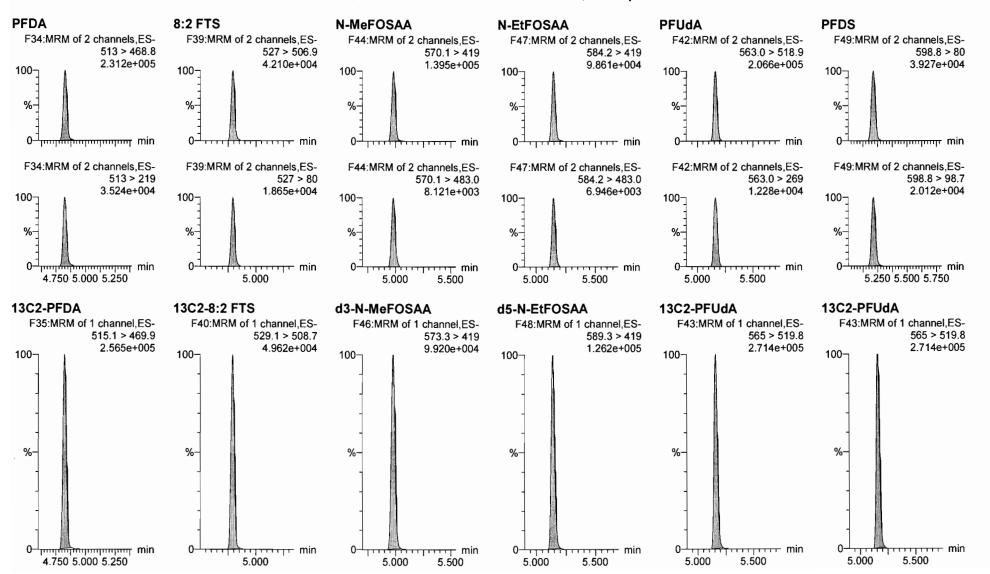
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 09:42:13


Name: 171031M1_13, Date: 31-Oct-2017, Time: 18:11:58, ID: ICV171031M1-1 PFC ICV 17J2804, Description: PFC ICV 17J2804

Dataset: U:\Q4.PRO\results\171031M1\171031M1-13.gld

Last Altered: Wednesday, November 01, 2017 09:45:32 Pacific Daylight Time Wednesday, November 01, 2017 09:46:28 Pacific Daylight Time

Name: 171031M1_13, Date: 31-Oct-2017, Time: 18:11:58, ID: ICV171031M1-1 PFC ICV 17J2804, Description: PFC ICV 17J2804

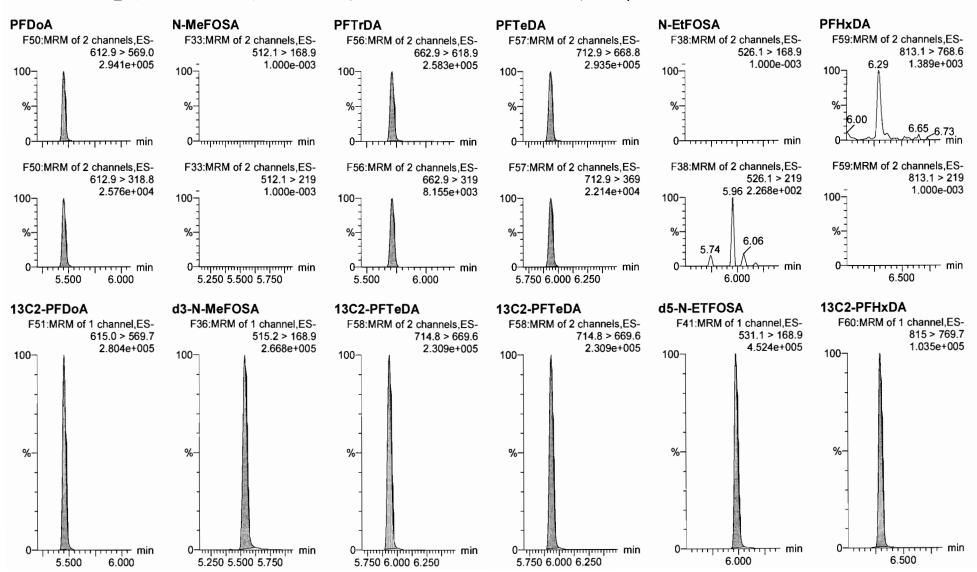


Work Order 1701439 Revision 1 Page 392 of 402

U:\Q4.PRO\results\171031M1\171031M1-13.qld

Last Altered: Printed: Wednesday, November 01, 2017 09:45:32 Pacific Daylight Time Wednesday, November 01, 2017 09:46:28 Pacific Daylight Time

Name: 171031M1_13, Date: 31-Oct-2017, Time: 18:11:58, ID: ICV171031M1-1 PFC ICV 17J2804, Description: PFC ICV 17J2804

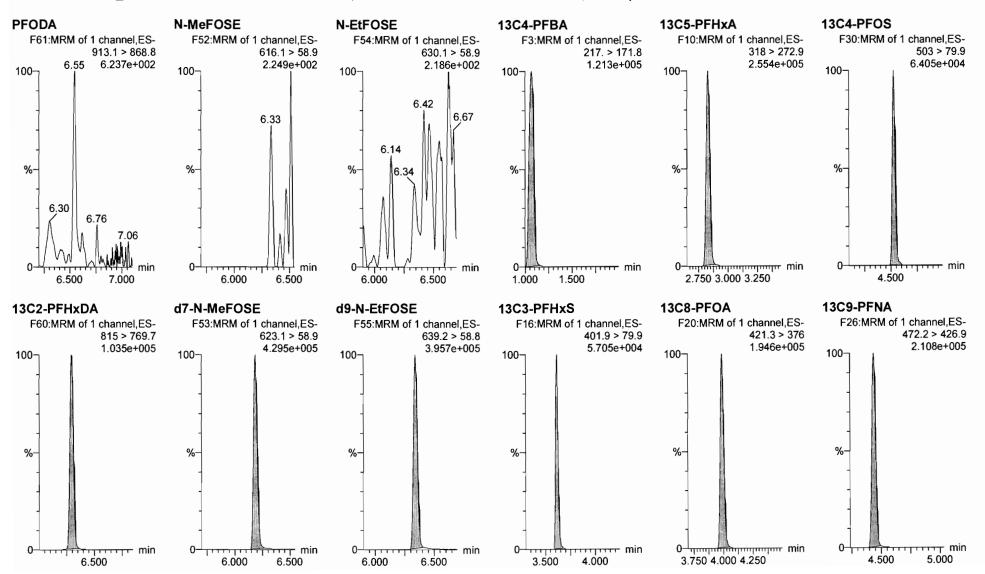


Work Order 1701439 Revision 1 Page 393 of 402

U:\Q4.PRO\results\171031M1\171031M1-13.qid

Last Altered: Printed: Wednesday, November 01, 2017 09:45:32 Pacific Daylight Time Wednesday, November 01, 2017 09:46:28 Pacific Daylight Time

Name: 171031M1_13, Date: 31-Oct-2017, Time: 18:11:58, ID: ICV171031M1-1 PFC ICV 17J2804, Description: PFC ICV 17J2804



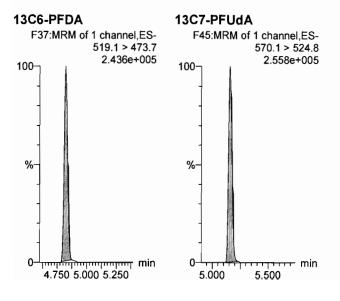
Work Order 1701439 Revision 1 Page 394 of 402

U:\Q4.PRO\results\171031M1\171031M1-13.qld

Last Altered: Printed: Wednesday, November 01, 2017 09:45:32 Pacific Daylight Time Wednesday, November 01, 2017 09:46:28 Pacific Daylight Time

Name: 171031M1_13, Date: 31-Oct-2017, Time: 18:11:58, ID: ICV171031M1-1 PFC ICV 17J2804, Description: PFC ICV 17J2804

Dataset:

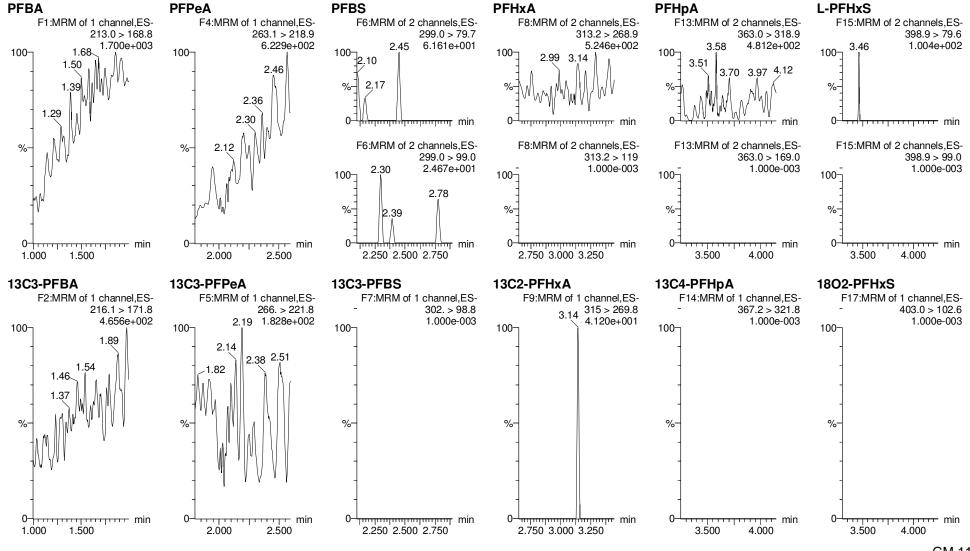

U:\Q4.PRO\results\171031M1\171031M1-13.qld

Last Altered:

Wednesday, November 01, 2017 09:45:32 Pacific Daylight Time

Printed: Wednesday, November 01, 2017 09:46:28 Pacific Daylight Time

Name: 171031M1_13, Date: 31-Oct-2017, Time: 18:11:58, ID: ICV171031M1-1 PFC ICV 17J2804, Description: PFC ICV 17J2804


Work Order 1701439 Revision 1 Page 396 of 402

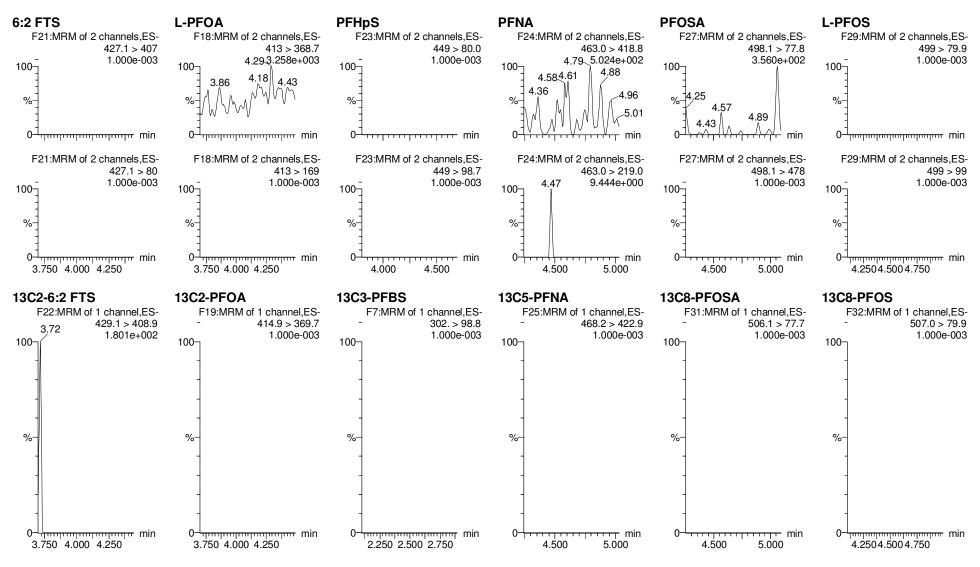
Dataset: Untitled

Last Altered: Wednesday, November 01, 2017 08:54:23 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:56:10 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_80C_102717.mdb 31 Oct 2017 10:25:33 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_10-31-17-FULL_OLD.cdb 01 Nov 2017 08:21:58

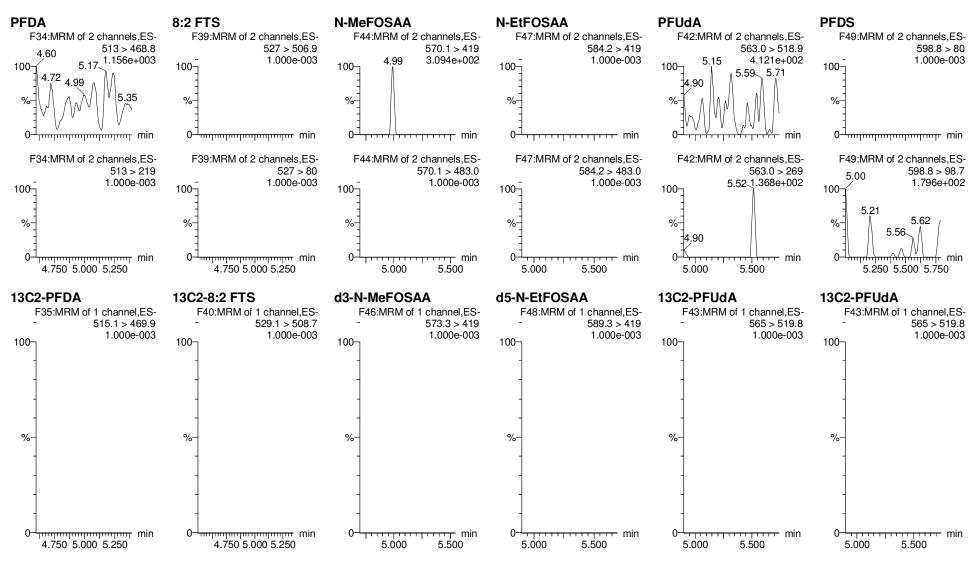
Name: 171031M1_12, Date: 31-Oct-2017, Time: 18:00:47, ID: IPA, Description: IPA

GM 11/1/17

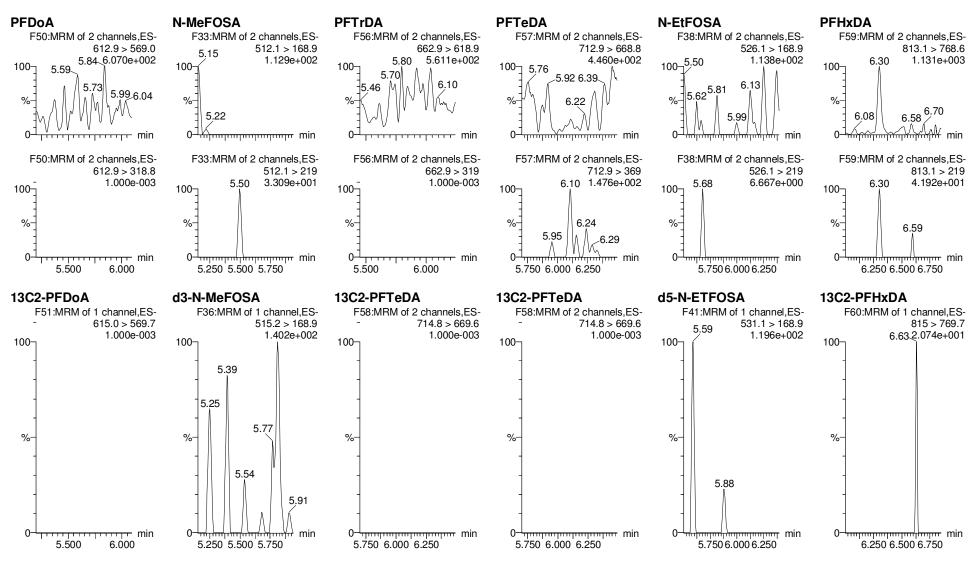

Work Order 1701439 Revision 1

Page 397 of 402

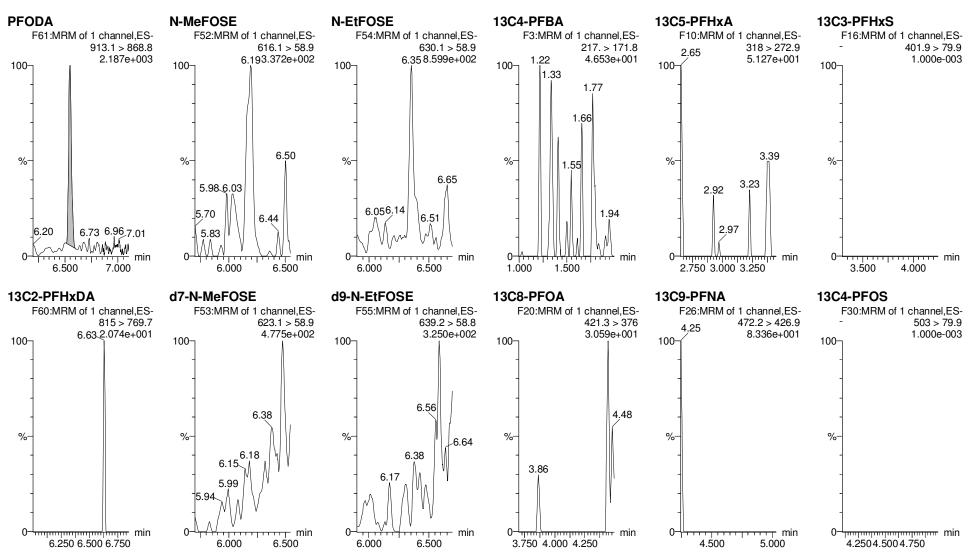
Vista Analytical Laboratory


Dataset: Untitled

Last Altered: Wednesday, November 01, 2017 08:54:23 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:56:10 Pacific Daylight Time


Dataset: Untitled

Wednesday, November 01, 2017 08:54:23 Pacific Daylight Time Last Altered: Wednesday, November 01, 2017 08:56:10 Pacific Daylight Time Printed:

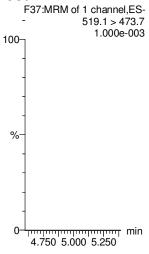

Untitled Dataset:

Wednesday, November 01, 2017 08:54:23 Pacific Daylight Time Last Altered: Wednesday, November 01, 2017 08:56:10 Pacific Daylight Time Printed:

Dataset: Untitled

Last Altered: Wednesday, November 01, 2017 08:54:23 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:56:10 Pacific Daylight Time

MassLynx WassLynx V4.1 SCN945 SCN960 Page 6 of 6


Quantify Sample Report Vista Analytical Laboratory

Dataset: Untitled

Last Altered: Wednesday, November 01, 2017 08:54:23 Pacific Daylight Time Printed: Wednesday, November 01, 2017 08:56:10 Pacific Daylight Time

Name: 171031M1_12, Date: 31-Oct-2017, Time: 18:00:47, ID: IPA, Description: IPA

13C6-PFDA


```
"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t
est_type","cas_rn","chemical_name","result_value","result_error_delta","result_type_code","reportable_result","detect_
flag", "lab_qualifiers", "organic_yn", "method_detection_limit", "reporting_detection_limit", "quantatation_limit", "result_u
nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me
asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik
e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta
tus"
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","375-22-
... ... ... ... ... ... ...
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","2706-90-
3","PFPeA","","","TRG","Yes","N","U","Y","0.00133","0.00521","0.00833","UG_L","UG_L","","","","","","","","","","",""
"FRB05 20171005","537 MOD","11/07/17","22:17","N","NA","000","375-73-
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","355-46-
4", "PERFLUOROHEXANESULFONIC ACID
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
, iin, iin, iin, iin
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
... ... ... ... ... ...
"FRB05 20171005","537 MOD","11/07/17","22:17","N","NA","000","754-91-
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00172","0.00521","0.00833","UG_L","UG_L","","","","","","","","","
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","335-77-
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","2991-50-
```

```
, , , , , , , , ,
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","307-55-1","PERFLUORODODECANOIC
ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.000825","0.00521","0.00833","UG_L","UG_L","","","","","","","","",""
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.000514","0.00521","0.00833","UG_L","UG_L","","","","","","","","","",""
... ... ... ... ... ... ... ... ...
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","376-06-
... ... ... ... ... ... ... ...
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C3-PFBA","13C3-
PFBA","84.5","","IS","Yes","Y","","","","","","","PCT_REC","","","","100","84.5","84.5","84.5","","","","","","50","150",""
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C3-PFPeA","13C3-
PFPeA","83.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","83.5","83.5","","","","","","","50","150","
.. ... ... ...
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C3-PFBS","13C3-
PFBS","88.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","88.1","88.1","","","","","","","50","150","",
"" "" ""
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C2-PFHxA","13C2-
PFHxA","82.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.8","82.8","","","","","","","50","150","
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C4-PFHpA","13C4-
PFHpA","82.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.1","82.1","82.1","","","","","","50","150","
", ", ", "
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","18O2-PFHxS","18O2-
PFHxS","80.2","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","80.2","80.2","80.2","","","","","50","150","
" "" "" ""
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C2-PFOA","13C2-
PFOA", "78.2", "", "IS", "Yes", "Y", "", "Y", "", "", "PCT_REC", "", "", "", "100", "78.2", "78.2", "78.2", "", "", "", "", "", "150", ""
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C8-PFOS","13C8-
PFOS","98.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","98.7","98.7","","","","","","","50","150","",
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C5-PFNA","13C5-
PFNA", "78.6", "", "IS", "Yes", "Y", "", "", "", "PCT_REC", "", "", "", "100", "78.6", "78.6", "78.6", "", "", "", "", "", "150", ""
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C2-PFDA","13C2-
PFDA", "57.3", "", "IS", "Yes", "Y", "", "Y", "", "", "PCT_REC", "", "", "", "100", "57.3", "57.3", "57.3", "", "", "", "", "", "150", ""
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C8-PFOSA","13C8-
PFOSA","82.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.8","82.8","","","","","","","50","150","
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","d3-MeFOSAA","d3-
MeFOSĀA","68.8","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","68.8","68.8","","","","","","50","15
"FRB05 20171005","537_MOD","11/07/17","22:17","N","NA","000","13C2-PFUnA","13C2-
PFUnA","69.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","69.9","69.9","69.9","","","","","","50","150","
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","d5-EtFOSAA","d5-
n nn nn nn nn
```

```
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C2-PFDoA","13C2-
PFDoA","95.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","95.4","95.4","95.4","","","","","","50","150","
"FRB05_20171005","537_MOD","11/07/17","22:17","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","105","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","105","105","105","","","","","","50","150","
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","375-22-
... ... ... ... ... ... ... ... ...
"Site 3-GW-03GW02-20171005","537 MOD","10/27/17","19:24","N","NA","000","2706-90-
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","375-73-
5","PFBS","0.0447","","TRG","Yes","\u00a7","","","","0.00193","0.00539","0.00864","UG_L","UG_L","","","","","","","","","",""
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","307-24-
4","PERFLUOROHEXANOIC ACID
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","335-67-
1","PERFLUOROOCTANOIC ACID
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","335-76-
2"."PERFLUORODECANOIC ACID
... ... ... ... ... ...
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","754-91-
6","PFOSA","","","TRG","Yes","N","Ū","Y","0.00191","0.00539","0.00864","UG_L","UG_L","","","","","","","","","","",""
.... ... ... ... ... ... ... ... ...
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00178","0.00539","0.00864","UG_L","UG_L","","","","","","","","",
"Site 3-GW-03GW02-20171005","537 MOD","10/27/17","19:24","N","NA","000","335-77-
.. ... ... ... ... ... ... ...
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
```

```
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00148","0.00539","0.00864","UG_L","UG_L","","","","","","","",""
"Site 3-GW-03GW02-20171005","537 MOD","10/27/17","19:24","N","NA","000","307-55-
1", "PERFLUORODODECANOIC ACID
iin uu uu uu uu uu uu uu uu
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.000533","0.00539","0.00864","UG_L","UG_L","","","","","","","",""
... ... ... ... ... ... ... ...
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.000815","0.00539","0.00864","UG_L","UG_L","","","","","","","","","",""
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C3-PFBA","13C3-
PFBA","89.4","","IS","Yes","Y","","","","","","","PCT_REC","","","","100","89.4","89.4","89.4","","","","","","150","150",""
.... .... ....
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C3-PFPeA","13C3-
PFPeA","92.1","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","92.1","92.1","","","","","","","50","150","
.. ... ... ...
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C3-PFBS","13C3-
PFBS","101","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","101","101","","","","","","","50","150","",""
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C2-PFHxA","13C2-
PFHxA","95.8","","IS","Yes","Y","","","","","","","PCT_REC","","","","100","95.8","95.8","95.8","","","","","","150","
11 1111 1111 1111
"Site 3-GW-03GW02-20171005","537 MOD","10/27/17","19:24","N","NA","000","13C4-PFHpA","13C4-
PFHpA","95.1","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","95.1","95.1","95.1","","","","","","","50","150","
" "" "" ""
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","18O2-PFHxS","18O2-
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C2-PFOA","13C2-
PFOA","82.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.1","82.1","82.1","","","","","","","150",""
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C8-PFOS","13C8-
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C5-PFNA","13C5-
PFNA","87.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","87.6","87.6","87.6","","","","","","150",""
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C2-PFDA","13C2-
PFDA","71.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","71.7","71.7","","","","","","","50","150",""
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C8-PFOSA","13C8-
PFOSA","68.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","68.6","68.6","68.6","","","","","","50","150","
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","79.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","79.6","79.6","79.6","","","","","","50","15
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C2-PFUnA","13C2-
..... ... ....
```

```
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","81.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","81.4","81.4","81.4","","","","","150","150
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA
PFDoA","83.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","83.9","83.9","","","","","","","50","150","
"Site 3-GW-03GW02-20171005","537_MOD","10/27/17","19:24","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","104","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","104","104","104","","","","","","","50","150","
"Site 4-GW-04GW01-20171006","537 MOD","10/27/17","19:35","N","NA","000","375-22-
"Site 4-GW-04GW01-20171006", "537_MOD", "10/27/17", "19:35", "N", "NA", "000", "2706-90-
"" "" "" "" "" "" "" "" "" "" ""
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","375-73-
... ... ... ... ... ... ... ...
"Site 4-GW-04GW01-20171006","537 MOD","10/27/17","19:35","N","NA","000","307-24-
4","PERFLUOROHEXANOIC ACID
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","375-85-
9"."PERFLUOROHEPTANOIC ACID
"Site 4-GW-04GW01-20171006","537_MOD","10/31/17","18:34","N","NA","DL1","355-46-
4", "PERFLUOROHEXANESULFONIC ACID
"Site 4-GW-04GW01-20171006","537_MOD","10/31/17","18:34","N","NA","DL1","335-67-
1","PERFLUOROOCTANOIC ACID
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","375-95-
1","PERFLUORONONANOIC ACID
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","335-76-
2"."PERFLUORODECANOIC ACID
nn nn nn nn nn nn nn nn
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","754-91-
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00172","0.00521","0.00836","UG_L","UG_L","","","","","","","","",
.. ... ... ... ... ... ... ... ... ...
"Site 4-GW-04GW01-20171006","537 MOD","10/27/17","19:35","N","NA","000","335-77-
```

```
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
"Site 4-GW-04GW01-20171006","537 MOD","10/27/17","19:35","N","NA","000","2991-50-
"Site 4-GW-04GW01-20171006","537 MOD","10/27/17","19:35","N","NA","000","307-55-
1", "PERFLUORODODECANOIC ACID
... ... ... ... ... ... ...
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","72629-94-
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.000789","0.00521","0.00836","UG_L","UG_L","","","","","","","","",""
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","13C3-PFBA","13C3-
"" "" ""
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","13C3-PFPeA","13C3-
PFPeA","95.5","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","95.5","95.5","","","","","","","50","150","
"Site 4-GW-04GW01-20171006","537 MOD","10/27/17","19:35","N","NA","000","13C3-PFBS","13C3-
PFBS","98.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","98.9","98.9","","","","","","","","150","",
"", ""
"Site 4-GW-04GW01-20171006","537 MOD","10/27/17","19:35","N","NA","000","13C2-PFHxA","13C2-
PFHxA","95.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","95.8","95.8","95.8","","","","","","50","150","
" "" "" ""
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","13C4-PFHpA","13C4-
PFHpA","95.2","","IS","Yes","Y","","","","","","","PCT_REC","","","","","100","95.2","95.2","95.2","","","","","","","50","150","
"Site 4-GW-04GW01-20171006","537_MOD","10/31/17","18:34","N","NA","DL1","18O2-PFHxS","18O2-
PFHxS","86.1","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","86.1","86.1","","","","","","","150"
"Site 4-GW-04GW01-20171006","537_MOD","10/31/17","18:34","N","NA","DL1","13C2-PFOA","13C2-
PFOA","74.1","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","100","74.1","74.1","","","","","","","50","150",
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","13C8-PFOS","13C8-
PFOS","107","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","107","107","","","","","","","","50","150","",""
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","13C5-PFNA","13C5-
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","13C2-PFDA","13C2-
PFDA","85.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","85.0","85.0","85.0","","","","","","50","150",""
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","13C8-PFOSA","13C8-
PFOSA","71.0","","IS","Yes","Y","","\\","","","","PCT_REC","","","","","100","71.0","71.0","71.0","","","","","","","50","150","
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","90.0","","IS","Yes","Y","","Y","","","PCT_REC","","","","","100","90.0","90.0","90.0","","","","","","50","15
0","","","",
```

```
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","13C2-PFUnA","13C2-
PFUnA","77.8","","IS","Yes","Y","","","","","","","PCT_RÉC","","","","","100","77.8","77.8","","","","","","","","","150","
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","85.8","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","85.8","85.8","","","","","","","150","150
"Site 4-GW-04GW01-20171006","537_MOD","10/27/17","19:35","N","NA","000","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA
PFDoA","89.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","89.1","89.1","89.1","","","","","","50","150","
"Site 4-GW-04GW01-20171006","537 MOD","10/27/17","19:35","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","103","","IS","Yes","Y","","","","","","PCT_REC","","","","100","103","103","","","","","","","50","150","
" "" "" ""
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","375-22-
4","PFBA","","","TRG","Yes","N","U","Y","0.000763","0.00525","0.00837","UG_L","UG_L","","","","","","","","",""
nn nn nn nn nn in in nn
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","2706-90-
"FRB06 20171006","537 MOD","11/03/17","14:08","N","NA","000","375-73-
. , , , , , , , , , ,
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
, , , , ,
"FRB06 20171006","537 MOD","11/03/17","14:08","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","754-91-
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","2355-31-
. ... ... ... ... ... ... ... ...
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","335-77-
3","PFDS","","","TRG","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","\overline{Tes}","
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
```

```
ACID
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","2991-50-
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","307-55-1","PERFLUORODODECANOIC
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.000517","0.00525","0.00837","UG_L","UG_L","","","","","","","","","",""
... ... ... ... ... ... ... ...
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.000790","0.00525","0.00837","UG_L","UG_L","","","","","","","",""
"FRB06 20171006","537_MOD","11/03/17","14:08","N","NA","000","13C3-PFBA","13C3-
, ,
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C3-PFPeA","13C3-
PFPeA","86.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","86.3","86.3","86.3","","","","","","50","150","
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C3-PFBS","13C3-
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C2-PFHxA","13C2-
PFHxA","85.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","85.6","85.6","85.6","","","","","","50","150","
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C4-PFHpA","13C4-
PFHpA","88.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","88.3","88.3","88.3","","","","","","50","150","
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","18O2-PFHxS","18O2-
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C2-PFOA","13C2-
PFOA","73.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","73.2","73.2","","","","","","","50","150",""
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C8-PFOS","13C8-
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C5-PFNA","13C5-
PFNA","74.9","","IS","Yes","Y","","","","","","","PCT_REC","","","","100","74.9","74.9","74.9","","","","","","","50","150",""
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C2-PFDA","13C2-
PFDA", "56.2", "", "IS", "Yes", "Y", "", "", "", "", "PCT_REC", "", "", "", "100", "56.2", "56.2", "56.2", "", "", "", "", "", "50", "150", ""
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C8-PFOSA","13C8-
PFOSA","56.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","56.1","56.1","56.1","","","","","","50","150","
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","d3-MeFOSAA","d3-
MeFOSĀA","64.8","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","64.8","64.8","","","","","","","50","15
0","","","",""
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C2-PFUnA","13C2-
PFUnA","72.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","72.2","72.2","","","","","","","50","150","
```

```
", ", ", ",
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","64.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","64.8","64.8","","","","","","","150
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C2-PFDoA","13C2-
PFDoA","79.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","79.3","79.3","","","","","","","50","150","
"FRB06_20171006","537_MOD","11/03/17","14:08","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","54.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","54.1","54.1","","","","","","","50","150"
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","375-22-
"" "" "" "" "" "" "" ""
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","2706-90-
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","375-73-
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC
ACID
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","754-91-
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00165","0.00500","0.00800","UG_L","UG_L","","","","","","","","",
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","335-77-
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
```

```
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","2991-50-
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
nn nn nn nn nn nn nn nn nn
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","72629-94-
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","376-06-
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C3-PFBA","13C3-
PFBA","89.9","","IS","Yes","Y","","","","","","","PCT_REC","","","","100","89.9","89.9","","","","","","","","150","",
, ,
"B7J0092-BLK1","537 MOD","10/26/17","13:10","N","NA","000","13C3-PFPeA","13C3-
PFPeA","82.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.8","82.8","","","","","","","50","150","
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C3-PFBS","13C3-
PFBS","95.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","95.4","95.4","","","","","","","50","150","",
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C2-PFHxA","13C2-
PFHxA","87.5","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","87.5","87.5","87.5","","","","","","50","150","
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C4-PFHpA","13C4-
PFHpA","86.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","86.9","86.9","86.9","","","","","","50","150","
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","18O2-PFHxS","18O2-
PFHxS","89.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","89.9","89.9","89.9","","","","","50","150","
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C2-PFOA","13C2-
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C8-PFOS","13C8-
, ,
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C5-PFNA","13C5-
PFNA","83.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","83.4","83.4","","","","","","","50","150",""
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C2-PFDA","13C2-
PFDA","72.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","72.7","72.7","72.7","","","","","","50","150",""
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C8-PFOSA","13C8-
PFOSA","53.6","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","53.6","53.6","53.6","","","","","50","150","
","",""
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","64.4","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","64.4","64.4","","","","","","50","15
0","","","",
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C2-PFUnA","13C2-
PFUnA","70.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","70.7","70.7","","","","","","","50","150","
","",""
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","73.0","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","73.0","73.0","","","","","","","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150"
```

```
, , , ,
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C2-PFDoA","13C2-
PFDoA","62.0","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","62.0","62.0","62.0","","","","","","50","150","
" "" "" ""
"B7J0092-BLK1","537_MOD","10/26/17","13:10","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","63.1","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","63.1","63.1","","","","","","","50","150"
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","375-22-
3","PFPeA","0.0707","","TRG","Yes","Y","","Y","0.00128","0.00500","0.00800","UG_L","UG_L","","","","","0.0800","
0.0707","88.3","","","","","","70","130","","","",""
 "B7J0092-BS1","537 MOD","10/26/17","12:03","N","NA","000","375-73-
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"B7J0092-BS1","537\_MOD","10/26/17","12:03","N","NA","000","375-85-9","PERFLUOROHEPTANOIC\ ACID\ ACID
(PFHPA)","0.0708","","TRG","Yes","Y","","Y","0.000591","0.00500","0.00800","UG_L","UG_L","","","","","0.0800","0
.0708","88.5","","","","","","70","130","","","","",""
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC
 ACID
(PFHXS)", "0.0743", "", "TRG", "Yes", "Y", "", "Y", "0.000947", "0.00500", "0.00800", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.00800", "UG\_L", "UG_L", "UG_L
.0743","92.9","","","","","","70","130","","","","",""
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.0667","","TRG","Yes","Y","","Y","0.000651","0.00500","0.00800","UG_L","UG_L","","","","","0.0800","0.
0667","83.4","","","","","","70","130","","","","",""
"B7J0092-BS1","537 MOD","10/26/17","12:03","N","NA","000","1763-23-
 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
", "0.0606", "", "TRG", "Yes", "Y", "", "Y", "0.000807", "0.00500", "0.00800", "UG\_L", "UG\_L", "", "", "0.0800", "0.0800", "0.0606", "70.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.0080
5.7","","","","","70","130","","","",""
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0696","","TRG","Yes","Y","","Y","0.000810","0.00500","0.00800","UG_L","UG_L","","","","0.0800","0.
0696","87.1","","","","","","70","130","","","","",""
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","754-91-
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","2355-31-
9", "MeFOSAA", "0.0715", "", "TRG", "Yes", "Y", "", "Y", "0.00165", "0.00500", "0.00800", "UG\_L", "UG\_L", "", "", "", "0.0800", "UG\_L", "UG\_
0","0.0715","89.4","","","","","","70","130","","","","",""
"B7J0092-BS1","537 MOD","10/26/17","12:03","N","NA","000","335-77-
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","0.0707","","TRG","Yes","Y","","Y","0.00105","0.00500","0.00800","UG_L","UG_L","","","","","0.0800","0.
0707","88.3","","","","","","70","130","","","","",""
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","2991-50-
6","EtFOSAA","0.0622","","TRG","Yes","Y","","Y","0.00137","0.00500","0.00800","UG_L","UG_L","","","","","0.0800
","0.0622","77.8","","","","","","70","130","","","","",""
```

```
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
8","PFTrDA","0.0917","","TRG","Yes","Y","","Y","0.000494","0.00500","0.00800","UG_L","UG_L","","","","","0.0800
","0.0917","115","","","","","","60","130","","","",""
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","376-06-
7","PFTeDA","0.0582","","TRG","Yes","Y","","Y","0.000755","0.00500","0.00800","UG_L","UG_L","","","","0.0800
","0.0582","72.8","","","","","","70","130","","","",""
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C3-PFBA","13C3-
PFBA","89.9","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","89.9","89.9","89.9","","","","","","","150",""
, ,
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C3-PFPeA","13C3-
PFPeA","79.3","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","79.3","79.3","","","","","","","50","150","
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C3-PFBS","13C3-
PFBS","81.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","81.8","81.8","","","","","","","50","150","",
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C2-PFHxA","13C2-
PFHxA","83.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","83.1","83.1","","","","","","","50","150","
.. ... ... ...
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C4-PFHpA","13C4-
PFHpA","84.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","84.8","84.8","","","","","","","50","150","
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","18O2-PFHxS","18O2-
PFHxS","82.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.4","82.4","82.4","","","","","","50","150","
", ", ",
"B7J0092-BS1","537 MOD","10/26/17","12:03","N","NA","000","13C2-PFOA","13C2-
PFOA","82.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.5","82.5","82.5","","","","","","50","150",""
, , , ,
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C8-PFOS","13C8-
PFOS","97.7","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","97.7","97.7","","","","","","","50","150","",
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C5-PFNA","13C5-
PFNA","81.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","81.7","81.7","","","","","","","50","150",""
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C2-PFDA","13C2-
PFDA","68.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","68.7","68.7","68.7","","","","","","","150",""
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C8-PFOSA","13C8-
PFOSA","57.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","57.8","57.8","","","","","","","50","150","
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","57.6","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","57.6","57.6","57.6","","","","","50","15
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C2-PFUnA","13C2-
PFUnA","66.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","66.4","66.4","66.4","","","","","","50","150","
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","61.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","61.9","61.9","61.9","","","","","","150
"B7J0092-BS1","537_MOD","10/26/17","12:03","N","NA","000","13C2-PFDoA","13C2-
","","",
```

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AMEC Foster Wheeler, Inc. 7376 SW Durham Road Portland, OR 97224 Attn: Ms. Marina Mitchell November 17, 2017

SUBJECT: Former Chase Field, Data Validation

Dear Ms. Mitchell,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on November 14, 2017. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project #39837:

SDG # Fraction

1701432, 1701439 Perfluorinated Alkyl Acids

The data validation was performed under Stage 2B & 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds or Per- and Polyfluoroalkyl Substances Sites at Various Base Realignment and Closure Installations, June 2017
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1, 2017
- USEPA, National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

Project Manager/Senior Chemist

1,603 pages-ADV 1 WEEK TAT Attachment 1 LDC #39837 (AMEC Foster Wheeler-Portland, OR / Former Chase Field) 90/10 (client select) (1) PFAs DATE DATE (537) LDC SDG# REC'D DUE Matrix: Water/Soil 4 0 11/14/17 11/21/17 1701432 11/14/17 | 11/21/17 | 3 | 0 Α 1701432 11/14/17 | 11/21/17 | 4 В 1701439 0 0 Total T/PG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Former Chase Field

LDC Report Date:

November 15, 2017

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 2B & 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1701432

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
Site 3-GW-03GW01-20171004	1701432-06	Water	10/04/17
Site 4-GW-04GW03-20171004	1701432-08	Water	10/04/17
Site 4-GW-04GW02-20171004	1701432-10	Water	10/04/17
Site 3-GW-MW1-20171005	1701432-13	Water	10/05/17
Site 3-DW-421648-20171005**	1701432-15**	Water	10/05/17
DUP01_20171005**	1701432-16**	Water	10/05/17
Site 3-GW-03GW03-20171005**	1701432-18**	Water	10/05/17
Site 4-GW-04GW02-20171004MS	1701432-10MS	Water	10/04/17
Site 4-GW-04GW02-20171004MSD	1701432-10MSD	Water	10/04/17

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

For each calibration point, the percent differences (%D) for their true value were less than or equal to 30.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
B7J0077-BLK1	10/13/17	PFHxA	0.00119 ug/L	Site 3-DW-421648-20171005** DUP01_20171005**

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
Site 3-DW-421648-20171005**	PFHxA	0.00125 ug/L	0.00494U ug/L
DUP01_20171005**	PFHxA	0.00189 ug/L	0.00485U ug/L

VI. Field Blanks

Samples EB01_20171002, EB02_20171002, EB03_20171003, EB04_2017003, EB05_2017004, and EB06_20171005 were identified as equipment blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
EB01_20171002	10/02/17	PFHxA	0.00112 ug/L	Site 3-DW-421648-20171005** DUP01_20171005**
EB04_20171003	10/03/17	PFHxS	0.00213 ug/L	Site 4-GW-04GW02-20171004
EB05_20171004	10/04/17	PFHxS	0.00203 ug/L	Site 3-GW-03GW01-20171004 Site 4-GW-04GW03-20171004 Site 4-GW-04GW02-20171004

Sample FB05_2017004 (from SDG 1701439) was identified as a field blank. No contaminants were found.

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
Site 3-DW-421648-20171005**	PFHxA	0.00125 ug/L	0.00494U ug/L
DUP01_20171005**	PFHxA	0.00189 ug/L	0.00485U ug/L

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
Site 4-GW-04GW02-20171004MS/MSD (Site 4-GW-04GW02-20171004)	PFHxS	51.3 (70-130)	142 (70-130)	J (all detects)	Α

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
Site 4-GW-04GW02-20171004MS/MSD (Site 4-GW-04GW02-20171004)	PFHxS	93.8 (≤30)	J (all detects)	А

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples Site 3-DW-421648-20171005** and DUP01_20171005** were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)					
Compound	Site 3-DW-421648-20171005**	DUP01_20171005**	RPD (Limits)	Differences (Limits)	Flag	A or P
PFHxA	0.00125	0.00189	-	0.00064 (≤0.00988)	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The laboratory limit of quantitation (LOQ), limit of detection (LOD), and detection limit (DL) are higher than the QAPP LOQ, LOD, and DL.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD %R and RPD, data were qualified as estimated in one sample.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

Due to equipment blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1701432

Sample	Compound	Flag	A or P	Reason
Site 4-GW-04GW02-20171004	PFHxS	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)(RPD)

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1701432

Sample	Compound	Modified Final Concentration	A or P
Site 3-DW-421648-20171005**	PFHxA	0.00494U ug/L	Α
DUP01_20171005**	PFHxA	0.00485U ug/L	Α

Former Chase Field Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1701432

Sample	Compound	Modified Final Concentration	A or P
Site 3-DW-421648-20171005**	PFHxA	0.00494U ug/L	Α
DUP01_20171005**	PFHxA	0.00485U ug/L	Α

SDG#	: 39837A96 VALID t: 1701432 atory: Vista Analytical Laboratory		PLETENESS WORKSHEET age 2B/4	Date: ////////////////////////////////////
METH	OD: LC/MS Perfluorinated Alkyl A	cids (EPA Metho	d 537)	Zilu Neviewei
	amples listed below were reviewed ion findings worksheets.	for each of the fo	ollowing validation areas. Validation	findings are noted in attached
	Validation Area		Comme	nts
I.	Sample receipt/Technical holding times	A		
11.	GC/MS Instrument performance check	A		
Ш.	Initial calibration/ICV	AA	YORSO ₹ 240.8, -	True 60 330/0 10/53
IV.	Continuing calibration	★	CCV 538/0	,
V.	Laboratory Blanks	W		
VI.	Field blanks	W	see WS for ZB.	FRB05_2017,005(170)
VII.	Surrogate spikes	_ A		
VIII.	Matrix spike/Matrix spike duplicates	W		
IX.	Laboratory control samples	Á	4C8/0	
X.	Field duplicates	w	D=5+6	
XI.	Internal standards	Ŵ,		
XII.	Compound quantitation RL/LOQ/LODs	w/	Not reviewed for Stage 2B validation	
XIII.	Target compound identification	4	Not reviewed for Stage 2B validation	
XIV.	System performance	4	Not reviewed for Stage 2B validation	
XV.	Overall assessment of data	Ž.		
lote:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No compound R = Rinsate FB = Field blank	s detected D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source blank OTHER:

N = Not provided/applicable
SW = See worksheet
** Indicates sample underwent Stage 4 validation

Client ID	Lab ID	Matrix	Date
1 > Site 3-GW-03GW01 <u>-</u> 20171004	1701432-06	Water	10/04/17
2 7 Site 4-GW-04-GW03 <u>-</u> 20171004	1701432-08	Water	10/04/17
Site 4-GW-04-GW02 <u>-</u> 20171004	1701432-10	Water	10/04/17
Site 3-GW-MW 1_20171005	1701432-13	Water	10/05/17
5 Site 3-DW-421648 <u>=</u> 20171005**	1701432-15**	Water	10/05/17
6 DUP01_20171005**	1701432-16**	Water	10/05/17
7 Site 3-GW-03GW03 <u>-2</u> 0171005**	1701432-18**	Water	10/05/17
Site 4-GW-04-GW02 <u>-</u> 20171004MS	1701432-10MS	Water	10/04/17
9 Site 4-GW-04-GW02 <u>-</u> 20171004MSD	1701432-10MSD	Water	10/04/17
10			
11 BT JOOTT-BOL			
12 BZ10071- BAL			
133 BTJ 0092-BA-			
14			

VALIDATION FINDINGS CHECKLIST

Page: / of AReviewer: 2nd Reviewer: No

Method: LCMS (EPA Method 537)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
Illa, Initial calibration				The second secon
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		•		
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?			L	
Were all percent differences (%D) of the continuing calibration < 30%?				AND THE WAY IN SOME
V. Laboratory Blanks	T _			
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks			12	
Were field blanks identified in this SDG?	/			
Were target compounds detected in the field blanks?	/		<u> </u>	
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			·
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples		/	r	
Was an LCS analyzed for this SDG?	/		1	

VALIDATION FINDINGS CHECKLIST

Page: of a Reviewer: 0

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates			1.0	
Were field duplicate pairs identified in this SDG?	/			
Were target compounds detected in the field duplicates?.				
XI. Internal standards				
Were internal standard area counts within \pm 50% of the associated calibration standard?	0			
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				,
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XIV. System performance	T			part of the second of the seco
System performance was found to be acceptable.	/			
XIII- Overall assessment of data	_/			
Overall assessment of data was found to be acceptable.	Ľ			

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

METHOD: PFOS/PFOAs			
A. Perfluorohexanoic acid (PFHxA)			
B. Perfluoroheptanoic acid (PFHpA)	1		
C. Perfluorooctanoic acid (PFOA)			
D. Perfluorononanoic acid (PFNA)		·	
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriA)			
I. Perfluorotetradecanoic acid (PFTeA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N.Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)			
R. 6:2FTS			
S. 8:2FTS			

LDC	#:3	්ප ි	H	16
-----	-----	-------------	---	----

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	<u>/</u> of
Reviewer:	4
nd Reviewer:	NY

METHOD: GC	HPLC MS					2nd Re	viewer:
N N/A Were all s N N/A Was a me N N/A Was a me V N N/A Were any Level V/D Only Y N/A (Gasoline	amples associated thod blank perforn thod blank perforn contaminants four and aromatics only thod blank analyze	I with a given method ned for each matrix and the with each extraction in the method bland () Was a method blanded for each analytical	nd whenever a sample extract ion batch? ks? If yes, please see findings k analyzed with each 24 hour / extraction batch of ≤20 sam	ion procedure was below.			•
Compound	Blank ID			Sample Identification	n		
B T:	100TT-BH	5	6				
FHXA	0.00119	0.001256.0049cl	0.00/89/0.00	185			
							,
Blank extraction date: Conc. units:	Blank a	nalysis date:	Assoc	ciated samples:			
Compound	Blank ID		S	Sample Identification	1		

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 39837A96

M N/A

VALIDATION FINDINGS WORKSHEET Field Blanks

EB02_20171002, EB03_20171003 and EB06_20171005 = ND

Page:	
Reviewer:	9
2nd Reviewer:	SV

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Were field blanks identified in this SDG?

Were target compounds detected in the field blanks?

Blank units: ug/L Associated sample units: ug/L

Sampling date: 10/2/17

Field blank type: (circle one) Trip Blank/Field Blank / Rinsate / Other: EB Associated Samples: 5-6

Compound	Blank ID		Sample Identification							
	EB01_20171002	Action Level	5	6						
PFHxA	0.00112	0.0056	0.00125/0.00494	0.00189/0.00485						

Blank units: ug/L Associated sample units: ug/L

Sampling date: 10/3/17

Field blank type: (circle one) Field Blank / Rinsate / Other: EB Associated Samples: 3

Compound	Blank ID		Sample Identification							
	FB04_2017003	Action Level		-						
PFHxS	0.00213	0.01065								
						·				

Blank units: ug/L Associated sample units: ug/L

Sampling date: 10/4/17

Field blank type: (circle one) Field Blank / Rinsate / Other: EB ____ Associated Samples: 1 - 3

Compound	Blank ID		Sample Identification							
	FB05 2017004	Action Level	1							
PFHxS	0.00203	0.01015								

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	
Reviewer:	9
2nd Reviewer:	500

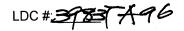
METHOD: __GC _V HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

N N/A Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits) 14 ≥ (70-130)	RPD (Limits)	Associated Samples	Qualifications
	8/9	PFHXS	51.3 (70-130)	14= TO-130	()	3 (dets)	J/W/A
	//	V	()	()	93.8 (570)		John A
		·	()	()	()		/ /
		<u></u>	()	()	()		
			()	()	()		·
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	. ()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	(,)	()		
			()	()	()		


LDC#: 39837496

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: <u>/</u> of_	/
Reviewer:9	<u> </u>
2nd Reviewer:	W

METHOD: PFCs (Method 537 mod)

	Concentra	tion (ug/L)	(≤30)	Difference	Limits	Qual
Compound	5	6	RPD	Difference	Lillits	Quai
PFHxA	0.00125	0.00189		0.00064	≤0.00988	

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:	of
Reviewer:	Ď.
nd Reviewer	JV4

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YAN/A

Were all internal standard area counts within 50-150% limits?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? Y N N/A

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		3710071-BH	13C8-PF0SA	49.3 (50-150)		los/
			,			
\dashv						
7			· · · · · · · · · · · · · · · · · · ·			
\dashv	····					
_						
						
\dashv						
$\neg +$						
_						
\dashv						
\dashv						

VALIDATION FINDINGS WORKSHEET Compound Quantitation and RLs

Page: _	<u></u>
Reviewer:	9
nd Reviewer	. N/2

METHOD: LC/MS

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Kevel IV/D Only
N N/A Were RLs adjusted for sample dilutions, dry weights, etc.?

#	Date	Sample ID	Finding	Associated Samples	Qualifications
			The laboratory limit of quantitation (LOQ), limit of detection (LOD), and detection limit (DL) are higher than the QAPP LOQ, LOD, and DL.		Text
			· · · · · · · · · · · · · · · · · · ·		

LDC: 39837A 96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: LC/MS PFCs

Calibration			(X)	(Y)
Date	Analyte	Standard	Concentration	Area
10/15/2017	PFHxA	1	0.050	0.0163138
	Q2	2	0.100	0.0282592
		3	0.200	0.0542646
		4	0.500	0.1030327
		5	1.000	0.2047553
		6	2.500	0.4836747
		7	5.000	1.0121985
		8	7.500	1.5125812
		9	10.000	2.0256968

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	2.020221E-01	2.02105E-01
Correlation Coefficient	0.999948	
Coefficient of Determination (r^2)	0.999895	0.9986

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:____of___ Reviewer:_____ 2nd Reviewer:___\nabla_c

Method: LC/MS/MS PFCs

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
10/16/2017	Q4	PFOA	0	0.6885150	0.25
			s1	0.8251737	0.50
			s2	1.4842825	1.00
			s3	2.6060887	2.00
			s4	5.3262037	5.00
			s5	10.2938050	10.00
			s6	50.4021010	50.00
			s 7	99.906131	100.00
			s9	229.659260	250.00

Regression Output

Reported

1.603415	0.469792
0.998821	0.998193
0.923608	0.947972
0.999411	
0.998821	0.998193
	0.923608 0.999411

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of/_
Reviewer:	4
2nd Reviewer:	200

METHOD: GC / HPLC/14->

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF ·CF = A/C

Where: ave. CF = initial calibration average CF CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

#	Standard ID	Calibration Date	Compound	Average CF(Ical)/ CCV Conc.	Reported CF/Conc. CCV	Recalculated CF/Conc. CCV	Reported %D	Recalculated %D
1	TIDISTE	10/15/1	PFIXA	50.0	48.965	48.918		3.2
	אבילו ג'אור	10/1/	#FAL	10.0	11.6	11.57	157	15.7
2	11101014.36	10/4/17		10.5	11.	(1 1	194	13.1
3						·		
4			:					

Comments:	Refer to Continuing	Calibration fi	indings wo	rksheet for	list o	of qualifications	s and	associated	<u>l samples wi</u>	<u>nen reported</u>	<u>l results</u>	do not	agree within	<u> 10.0%</u>	of the
recalculated	results.						•						,		
														•	

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	/of_/
Reviewer:	0, -
2nd reviewer:	DR

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Sűrrögate Spiked

Sample ID:_

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
13CZ-PFHXA		39.5257	39.846	101	101	0
13C2-4FBA		U	38.953	98.5	98.5	1
15-2+FOSAA		158.10270	161.430	102	102	

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
			· ·			

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
	:					
			-			

LDC	#: 2983 1 96
-----	------------------------------------

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	of
Reviewer:_	9
2nd Rev	iewer:

METHOD:	GC	V	HPLC N	5

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration

SC = Sample concentration

RPD =(((SSCMS - SSCMSD) * 2) / (SSCMS + SSCMSD))*100

SA = Spike added MS = Matrix spike

MSD = Matrix spike duplicate

MS/MSD samples: 8/9

		Sp	Spike Sample Spike Sample Matrix spike		x spike	Matrix Spike Duplicate		MS/MSD				
Comp	ound	(72	ded Se)	Cone.	Conce	Stration (Percent	Recovery	Percent Recovery		RPD	
		MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)											·
Diesel	(8015)			·								
Benzene	(8021B)					·			·			
Methane	(RSK-175)											
2,4-D	(8151)						·					
Dinoseb	(8151)											
Naphthalene	(8310)											
Anthracene	(8310)			·					•			
НМХ	(8330)										·	
2,4,6-Trinitroto	oluene (8330)									·		
TY-HX-X		0.0854	0.0906	0.300	0.386	0.390	100.0	100.7	99.0	99.3	101	1.03
	•							·				

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 398374 96

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page:_	<u> </u>
Reviewer:	8
2nd Reviewer:	SV

_ GC /HPLC/MS

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration

SC = Concentration

RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD)

SA = Spike added LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: BTV0077

	Spike Added (/ 14)		Spiked Sample Concentration		LCS		LCSD		LCS/LCSD	
Compound					Percent	Recovery	Percent Recovery		RPD	
8 (1986)	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recaic.
Gasoline (8015)								,		
Diesel (8015)										
Benzene (8021B)										
Methane (RSK-175)										
2,4-D (8151)										
Dinoseb (8151)				·						
Naphthalene (8310)										
Anthracene (8310)										
HMX (8330)										
2,4,6-Trinitrotoluene (8330)										
PFHXA	0.000	0.0400	0.0390	0.0366	97.6	97.5	91.5	91.5	6.41	6.35
			•			-				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 39837496

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: _	
Reviewer:	9
2nd Reviewer:	W

METHOD:GC/HPLC/MS	
Were all reported results recalculated	d and verified for all level IV samples? cted target compounds within 10% of the reported results?
Concentration= (A)(Fv)(Df) (RF)(Vs or Ws)(%S/100) A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor	Example: Sample ID. 5 Compound Name ######
RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid	Concentration = $(3.6021)(10.0)(1)$ (5.6423)(0.202105)(0.253)(1000) = 0.0125 PS/L

#	Sample ID	Compound	Reported Concentrations	Recalculated Results Concentrations ()	Qualifications
	5	DFHXA	0.0125		
		-			

Comments:		•	4.	
·				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Former Chase Field

LDC Report Date:

November 15, 2017

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 2B

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1701439

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
FRB05_20171005	1701439-01	Water	10/05/17
Site 3-GW-03GW02-20171005	1701439-02	Water	10/05/17
Site 4-GW-04GW01-20171006	1701439-04	Water	10/06/17
FRB06_20171006	1701439-05	Water	10/06/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

For each calibration point, the percent differences (%D) for their true value were less than or equal to 30.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample EB06_20171005 (from SDG 1701432) was identified as an equipment blank. No contaminants were found.

Samples FRB05_20171005 and FRB06_20171006 were identified as field rinsate blanks. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Compound Quantitation

The laboratory limit of quantitation (LOQ), limit of detection (LOD), and detection limit (DL) are higher than the QAPP LOQ, LOD, and DL.

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1701439

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1701439

No Sample Data Qualified in this SDG

Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1701439

No Sample Data Qualified in this SDG

			LETENESS tage 2B	WORKSHEE	т	Date: <u>///4/</u> /
	t: <u>1701439</u> atory: <u>Vista Analytical Laboratory</u>	ŀ	Page:_/of_/ Reviewer:			
						Reviewer:
METH	OD: LC/MS Perfluorinated Alkyl Acids (EPA Metho	d 537)			
	amples listed below were reviewed for e ion findings worksheets.	ach of the fo	ollowing valida	tion areas. Valida	tion findings are	noted in attached
	Validation Area			Com	ments	
I.	Sample receipt/Technical holding times	A				
11.	GC/MS Instrument performance check	A			7,	
111.	Initial calibration/ICV	AA	RSON	2 Y True	6553%.	1015302
IV.	Continuing calibration	A	00 V =	350		- /0
V.	Laboratory Blanks	A				
VI.	Field blanks	NO	FB=/	1 2806 20	0171005 (17	(a.d.22)
VII.	Surrogate spikes	1 N	Not REG	1	111005 (11	0175-1
VIII.	Matrix spike/Matrix spike duplicates	1	05			
IX.	Laboratory control samples	TÄ	1051-			
X.	Field duplicates	T TV	700			
XI.	Internal standards	TÀ.			· · · · · · · · · · · · · · · · · · ·	
		<u>N</u>				
XII.	Compound quantitation RL/LOQ/LODs	N N				
XIII.	Target compound identification	N			······································	
XIV.	System performance	<u> </u>				
XV.	Overall assessment of data	1 B				
Note:	N = Not provided/applicable R = R	No compound insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	OTHER:	rce blank
(Client ID			Lab ID	Matrix	Date
1	FRB05_20171005			1701439-01	Water	10/05/17
	Site 3-GW-03GW02-20171005		·.	1701439-02	Water	10/05/17
	Site 4-GW-04GW01-20171006			1701439-04	Water	10/06/17
$\neg \tau \neg$	FRB06_20171006			1701439-05	Water	10/06/17
5						
6				·		
7						
8						
9						
Notes:						

VALIDATION FINDINGS WORKSHEET Compound Quantitation and RLs

Page: _	
Reviewer:	7
2nd Reviewer:	154

METHOD: LC/MS

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Level-IV/D Only
Y N NA Were RLs adjusted for sample dilutions, dry weights, etc.?

#	Date	Sample ID	Finding	Associated Samples	Qualifications
			The laboratory limit of quantitation (LOQ), limit of detection (LOD), and detection limit (DL) are higher than the QAPP LOQ, LOD, and DL.		Coxt
				-	
				:	
		•			

LDC#: 39837

EDD POPULATION COMPLETENESS WORKSHEET

The LDC job number listed above was entered by $_$ $\underbrace{\hspace{.1cm}}$ $\underbrace{\hspace{.1cm}}$.

	EDD Process		Comments/Action
I.	EDD Completeness	-	
Ia.	- All methods present?	4	
Ib.	- All samples present/match report?	4	
Ic.	- All reported analytes present?	4	
Id.	10% or 100% verification of EDD?	4	
II.	EDD Preparation/Entry	_	
IIa.	- Carryover U/J?	_	
IIb.	- Reason Codes used? If so, note which codes.	4	
IIc.	- Additional Information (QC Level, Validator, Validated Y/N, etc.)	7	
·III.	Reasonableness Checks	-	
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	Ч	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	4	
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	Ч	
IIId.	-Does the detect flag require changing for blank qualifier? If so, are all U results marked ND?	4/4	
IIIe.	- Do blank concentrations in report match EDD where data was qualified due to blank contamination?	Ч	
IIIf.	- Were multiple results reported due to dilutions/reanalysis? If so, were results qualified appropriately?	+	
IIIg.	-Are there any discrepancies between the data packet and the EDD?	\sim	

Notes:	*see discrepancy sheet	 		

INSTALLATION_ID	SITE_NAME	LOCATION_NAME	LOCATION_TYPE	LOCATION_TYPE_DESC	COORD_X*	COORD_Y*	SAMPLE_NAME	SAMPLE_MATRIX	SAMPLE_MATRIX_DESC	COLLECT_DATE	ANALYTICAL_METHOD_GRP_DESC	SDG
CHASE_FIELD_NAS	TBC	03GW02	WLM	Monitoring Well	-97.657826	28.367192	SITE 3-GW-03GW02-20171005	WG	Ground water	5-Oct-17	Perfluoroalkyl Compounds	1701439
CHASE_FIELD_NAS	TBC	04GW01	WLM	Monitoring Well	-97.645635	28.353282	SITE 4-GW-04GW01-20171006	WG	Ground water	6-Oct-17	Perfluoroalkyl Compounds	1701439