

Drinking Water Sample Results, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, Sample Location Report, SDG 1900154

NAS Chase Field TX

December 2020

January 28, 2019

Vista Work Order No. 1900154

Ms. Nia Nikmanesh KMEA 2423 Hoover Avenue National City, CA 91950

Dear Ms. Nikmanesh,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on January 19, 2019 under your Project Name 'Chase Field NAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1900154 Page 1 of 137

Vista Work Order No. 1900154 Case Narrative

Sample Condition on Receipt:

Two drinking water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. Per the COC, sample "PW4-011719-FB" was extract and hold.

Analytical Notes:

EPA Method 537, Rev. 1.1

Sample "PW4-011719-DW" was extracted and analyzed for a selected list of 14 PFAS using EPA Method 537, Rev. 1.1.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Laboratory Fortified Blank (LFB) and a Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the Laboratory Reagent Blank above 1/2 the LOQ. The LFB recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

Work Order 1900154 Page 2 of 137

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13
Extraction Information	15
Sample Data - EPA Method 537	20
IIS Areas and CCVs	36
ICAL with ICV	60

Work Order 1900154 Page 3 of 137

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1900154-01	PW4-011719-DW	17-Jan-19 15:16	19-Jan-19 10:13	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1900154-02	PW4-011719-FB	17-Jan-19 15:18	19-Jan-19 10:13	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL

Vista Project: 1900154 Client Project: Chase Field NAS

Work Order 1900154 Page 4 of 137

ANALYTICAL RESULTS

Work Order 1900154 Page 5 of 137

Sample ID: 1	LRB										EPA Metl	hod 537
Client Data						L	aboratory Data					
Name:	KMEA		Matrix:	Aque	ous	La	ab Sample:	B9A0154-	BLK1	Column:	BEH C18	
Project:	Chase Field NAS			-			-				DEIT 010	
Analyte		CAS Number	Conc. (ug/L)	DL	LOD	LOC	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFHxA		307-24-4	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFHpA		375-85-9	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFHxS		355-46-4	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFOA		335-67-1	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFNA		375-95-1	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFOS		1763-23-1	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFDA		335-76-2	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
MeFOSAA		2355-31-9	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
EtFOSAA		2991-50-6	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFUnA		2058-94-8	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFDoA		307-55-1	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFTrDA		72629-94-8	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
PFTeDA		376-06-7	ND	0.00304	0.00500	0.010	0	B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
Labeled Standa	ards	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	94.7		70 - 130			B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1
13C2-PFDA		SURR	98.1		70 - 130			B9A0154	22-Jan-19	0.250 L	25-Jan-19 22:29	1

70 - 130

DL - Detection Limit

d5-EtFOSAA

LOD - Limit of Detection LOQ - Limit of quantitation

SURR

Results reported to the DL.

93.3

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

0.250 L

25-Jan-19 22:29

22-Jan-19

B9A0154

Work Order 1900154 Page 6 of 137

Sample ID: LFB

Client Data Laboratory Data

Name: KMEA Matrix: Aqueous Lab Sample: B9A0154-BS1 Column: BEH C18

Project: Chase Field NAS

Analyte	CAS Number	Amt Found (ug/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0658	0.0708	92.9	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFHxA	307-24-4	0.0741	0.0800	92.6	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFHpA	375-85-9	0.0774	0.0800	96.8	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFHxS	355-46-4	0.0677	0.0728	93.0	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFOA	335-67-1	0.0767	0.0800	95.8	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFNA	375-95-1	0.0735	0.0800	91.9	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFOS	1763-23-1	0.0666	0.0740	90.0	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFDA	335-76-2	0.0721	0.0800	90.2	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
MeFOSAA	2355-31-9	0.0742	0.0800	92.7	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
EtFOSAA	2991-50-6	0.0706	0.0800	88.2	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFUnA	2058-94-8	0.0729	0.0800	91.1	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFDoA	307-55-1	0.0697	0.0800	87.1	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFTrDA	72629-94-8	0.0606	0.0800	75.8	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
PFTeDA	376-06-7	0.0582	0.0800	72.7	70 - 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
Labeled Standards		Туре		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR		93.7	70- 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
13C2-PFDA		SURR		99.9	70- 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1
d5-EtFOSAA		SURR		90.4	70- 130		B9A0154	22-Jan-19	0.250 L	25-Jan-19 21:54	1

Work Order 1900154 Page 7 of 137

Sample ID: PW	/4-011719-DW										EPA Metl	hod 537
	KMEA Chase Field NAS		Matrix: Date Coll		xing Water nn-19 15:16	Lab	ooratory Data Sample: e Received:	1900154-0 19-Jan-19		Column:	BEH C18	
Analyte		CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFHxA		307-24-4	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFHpA		375-85-9	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFHxS		355-46-4	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFOA		335-67-1	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFNA		375-95-1	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFOS		1763-23-1	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFDA		335-76-2	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
MeFOSAA		2355-31-9	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
EtFOSAA		2991-50-6	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFUnA		2058-94-8	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFDoA		307-55-1	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFTrDA		72629-94-8	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
PFTeDA		376-06-7	ND	0.00296	0.00486	0.00972		B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
Labeled Standards	s	Туре	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	99.3		70 - 130			B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1
13C2-PFDA		SURR	95.0		70 - 130			B9A0154	22-Jan-19	0.257 L	26-Jan-19 01:14	1

70 - 130

DL - Detection Limit

d5-EtFOSAA

LOD - Limit of Detection LOQ - Limit of quantitation

SURR

Results reported to the DL.

89.3

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

0.257 L

26-Jan-19 01:14

22-Jan-19

B9A0154

Work Order 1900154 Page 8 of 137

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

D Dilution

DL Detection limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

J The amount detected is below the Reporting Limit/LOQ

LOD Limits of Detection

LOQ Limits of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

NA Not applicable

ND Not Detected

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q Ion ratio outside of 70-130% of Standard Ratio.

TEQ Toxic Equivalency

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1900154 Page 9 of 137

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-009
Pennsylvania Department of Environmental Protection	015
Texas Commission on Environmental Quality	T104704189-18-9
Virginia Department of General Services	9618
Washington Department of Ecology	C584-18
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ are\ located\ in\ the\ Quality\ Assurance\ office\ and\ are\ available\ upon\ request.$

Work Order 1900154 Page 10 of 137

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA
	1613/1613B
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009

Work Order 1900154 Page 11 of 137

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1900154 Page 12 of 137

Rev. No.: 0 Rev. Date: 06/27/2017

CHAIN OF CUSTODY

								-
	For La Work C	aboratoi Order#: e ID:	y Use Or	0015 12-2	54	Temp: Storage Secur	0.5	c I
		TA [*]		Standard Rush (su	ırcharge	21 days		
	City			State	Pr	7 days	Fax#	=
C 1					20.20		37. E00.20	
Sanl	J			H	838-	633-28		_
and signat		Me	deit	_	011	Pate 19/19	Time 1013-	_
and signat	ure)				/	Date	Time	
	et gestore	40.90	7	7	(0.51) p(0.0) p			
Mohod 53/2			537 Method					
8		\$2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\				Commer	ute.	
	1	X				COMMISSION		-
	+	Y	Eichn	action	A. I.			_
		\rightarrow	PXTI	2C1)0H	UNIY			-
						Y .		_
11	++						1)	_
E-	+							_
	+	+						_
	++							_
	++							-
	++							-
ION	Nam Compar) ness	/Kelli	Miller		_
TO:		ss:						_
	Ci	ty:					Zip:	_
	Phor	ne:			Fax	С		_

Project ID:	Chase Fie	IL NA	S	РО#: <u>РО934</u>				Sample	er:	3. G	ieselman		TA (che	ck one): Rush (s	urcharge may apply)	Ŕ
											(name)				days 7 days	
Invoice to:			Company			Addr						City		State	Ph#	Fax#
Kevin C	Iness/Kelli	Miller		9210 Sky Park Cou	urt, S	Suite	200				San	Diego		CA	858-633-28	804
Relinquishe	d by (printed name	and signatu	ıre)	Date		Time)	Re	eceive	1) yd t	brinted name and /sign	ature) 40			Pate 1	Time
Brian Cai	eselman Buia	Migael	0	01/18/19		5:43		ð	3.B	en	edit Be	41/2	Me	deit	01/19/19	1 1013-
	d by (printed name		ıre)	Date		Time					printed name and sign		/ West	2001	Date	Time
1	, (7 (1		, , ,				
					PROME THE	33,464,963	Queriens.	Page Name	and to Care	2000			3			
SHIP TO:	Vista Analytical La										Φ Λ			SS Mono OW ON OW ONLY		
	1104 Windfield Wa El Dorado Hills, CA			Method of Shipment:	Add	Analys	is(es) R	equeste	ed		4,8		/			
	(916) 673-1520 * F		73-0106	moured or empirion.	dead				-/		100 KPA 1000 KPA 1000 53/2			Z Q		
ATTN:				Tracking No.:		Conta	ainer(s)		1	6/	4		/_	4 65 /		
ALIN.	2-2			Tracking No			/ /		/3	ž/	[[8]		13			
					1/	\ /	/	1	3/2	12/	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	\\ \varphi\)	12/	15		
Sar	mple ID	Date	Time	Location/Sample Description	1		, tinen	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 St.	3/3	27 089 409 27 089 409 27 087 409		Pras Pras Lie		Comme	nto
W4-011	719-71.1	1/17/19	15.11	Preservative: TZ	2	P	DW	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3/8	1	70 %	1873	V		Comme	iits
PW4-011		11	15:18	//	2	P	DW	+	+	\vdash			1	Edu L	Λ I	
W 1-011	III-FB	-//	13.10		d	1	DW	+	+	\vdash			\wedge	Extraction	Only	
					+	-		\dashv	+-	-						
-					+		\vdash	+	+-	\vdash						* *
					+	-	-	-	+-	-			-			
					+-	-	\vdash	_	-	_			\vdash			
					-		\vdash	\perp		—			-	* * * * * * * * * * * * * * * * * * * *		
					┼	_	\square	\perp		_		\dashv				
					-		\sqcup	_								
										<u></u>	v					
Special Instru	ctions/Comments:											Name	:	Kevin Olness	Kelli Miller	
										DC	SEND DCUMENTATION	Company	:			******
											ID RESULTS TO:			- Walter A.		
							100					City	:		_ State:	Zip:
	-												: :		Fax:	
Container To	pes: P= HDPE, PJ= I	UDDE In-		Pattle Dags	tion T		- Th!	.lf.nf.c			H.A. Tarana In					
O = Other:	pes. r- nurc, PJ= 1	HUPE Jar		Bottle Preserva TZ = Trizma:	- 2						Matrix Types: AQ = Ac SL = Sludge, SO = Soil,					SD = Sediment,
		x x 3 x 4 x 4 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5		, = allizing.							52 Sidage, 55 - 3011,	**** - **45/6	watel,	b - blood/serum, O	1.0000000000000000000000000000000000000	Page: 1 of 1

Sample Log-In Checklist

Page 14 of 137

Vista Work Orde	r#:	190	015	54			ge#_ T	1	of	_		
									_	_		
Samples	Date/Time		2	Initials:	n	Locati	on:	WR-2				
Arrival:	01/19/19	1101	•5	CITO		Shelf/	Rack	N/	7			
	Date/Time			Initials:		Locati	on:	WR-	2			
Logged In:	01/19/1	9 1	315	131	13	Shalf/	Dook	k: A3/E5				
Dolivered Du	Hanc											
Delivered By:	eliver		Oth	ner								
Preservation:	ce		No	ne								
Temp °C: (). (uncorrected) Temp °C: (orrected) Temp °C: (norrected) Temp °C: (norrected) Temp °C: (norrected)										-4		
Temp °C: 0.5 (corrected)												
			a top of the	The state of the s	To marke			\/F0	NO			
Adequate Sample Volume Received?												
Holding Time Acceptable?												
Shipping Container(s) Intact?												
Shipping Custody								V				
Shipping Docume								1				
Airbill	Trk#	CONTRACTOR OF THE PARTY OF THE	742	4933	> 26	20		V				
Sample Containe	r Intact?			1,00				V		/		
Sample Custody	Seals Intact	?				-				V		
Chain of Custody	/ Sample Do	ocumen	tation Pr	esent?				1				
COC Anomaly/Sa									V	1		
If Chlorinated or [Drinking Wat	er Samı	oles. Acc	eptable Pre	eservat	ion?		/				
Preservation Doc			S ₂ O ₃	Trizma	Non			Yes) No	NA		
Shipping Contain	er		ista	Client	Re	tain	Re	turn)	Disp	ose		
Comments:												
* COC	10#		SA	MPKV	1861	- 10#						
PW4-	011719-FJ	3		MOVE VI	-0117	-19-1	LB.	102				
DOES NOT	FFFEU	T SA	MPLE	INTEG	BRIT	4 1	10 4	KE I	21 19			
ID.: LR - SLC		Rev No.: 3	}	Rev Date: 0	5 October	2018	Pag	ge: 1 of 1				

EXTRACTION INFORMATION

Work Order 1900154 Page 15 of 137

Process Sheet

Workorder: 1900154

Prep Expiration: 2019-Jan-31

1900154-02

Client: KMEA

Workorder Due: 28-Jan-19 00:00

TAT: 9

Method: 537 PFAS DW DoD Unmodified

Matrix: Aqueous

Prep Batch:

B9A0154

Prep Data Entered: 61/23/19

Version: 14 Analyte DW (Full List)

DoD: DoD QSM 5.1

Initial Sequence:

S9A0069

Prep Spike Rec Reg ClientSampleID LabSampID Comments Location PW4-011719-DW 1900154-01

WR-2 A-3 HDPE Bottle, 250 mL

Container

"PW-011719-FB"

PW4-011719-FB "-PW4-011719-FB" 7R 01/21/14 WR-2 A-3 HDPE Bottle, 250 mL

Pre-Prep Check Out: _ 7 01/21/19 Pre-Prep Check In: ER 01/21/19

Prep Check In:

Prep Reconciled Initals/Date: TR 0//2///9 Spike Reconciled Initals/Date: M₩c VialBoxID: Blastoise

PREPARATION BENCH SHEET

Mania. Aqueous	Matrix:	Aqueous
----------------	---------	---------

Method: 537 PFAS DW DoD Unmodified

B9A0154	
 m	

Chemist:

Prepared using: LCMS - SPE Extraction-LCMS

rep Date:	01/22/19
rep Time:	0855

		,	BalanceID: HRMS-9	Date/Initials: 0/121/19 7	2						
Cen	VISTA Sample ID	When checked Trizma Added in Lab	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	SS/ CHEM DA	1/WIT	SI	PΕ	CHE	IS M/WIT ATE
Ø	B9A0154-BLK1	×	№	NIA	(0.250)	Mac my	०/भ्योद	LAC	01/22/19	at W	01/25/M
	B9A0154-BS1	Z	1	Į į	(0.250)	\ \ \ \ \ \		۲		- 4	
	B9A0154-MS1 1900153-06		299.88	37.68	026220	-			`		
	B9A0154-MSD1 1900153-06		296.05	37.29	0.25876				·	g*	
	1900143-01 ®		272.94	26.62	0.24632			•			
	1900143-02		289.73	26.68	0.26305					1	
Q	1900153-01 ®		286.12	37.25	0.24887		💥		i.		
	1900153-02		294.85	37.26	0.25759			·			ş.*
	1900153-03		297.58	37.33	0.26025						
	1900153-04		298.93	37.32	0.26161				ĺ		
	1900153-05		297.34	37.24	0.26010						
	1900153-06		299.11	37.67	026144						
	1900153-07		299.72	37.24	0.26248				-		
	1900153-08		297.06	37.24	0.25982				,		
	1900153-09		298. 24	37.37	0.26087		·				
	1900154-01	,	283.81	2664	0.25717 1	1 1		7	,	•	,

SS/IS:	18L1712, 19LL (2)
NS:	1812623, 20 pil (V2)
IS/RS:	1811713, lour @

SPE Chem: Strata X 33um 500mg/6mL Lot#: SPB-004379

Ele SOLV: MeOH Lot#: TBO72509

Final Volume(s)

Notes: (B) Trizma added 72 01/21/19

(B) Sample was discolored at final volume 72 01/23/19

Comments: Assume 1 g = 1 mL

1 = Sample colored after centrifuge

Cen = Centrifuged

2 = Cartridge sorbent discolored after SPE

3 = Went dry during SPE Cartridge

Page 1 of 2

details .

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537 PFAS DW DoD Unmodified

B9A0154	

Prep Time:

Prepared using: LCMS - SPE Extraction-LCMS

			BalanceID: HRMS-9	Date/Initials: 01/21/19 7	~			
Cen	VISTA Sample ID	When checked Trizma Added in Lab	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	SS/NS CHEM/WIT DATE	SPE	IS CHEM/WIT DATE
	1900154-02		288.33	26.63	0.26170	MAC Y objects	MAC 01/22/19	ae W 01/23/19

ı	SS/IS: 18L17(2,10,1 V2) NS: 18L2623, 2011 V2	SPE Chem: Strata X 33um 500mg/6mL Lot#: \$18-004374	Notes:
	IS/RS: 181713, 10 ML 12	Ele SOLY: MeOH Lot#: 78077589	•
		Final Volume(s)	
L	<u> ~ </u>		

Comments: Assume 1 g = 1 mL

Cen = Centrifuged

1 = Sample colored after centrifuge 2 = Cartridge sorbent discolored after SPE

3 = Went dry during SPE Cartridge

Page 2 of 2

Batch: B9A0154

Matrix: Aqueous

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1900143-01	0.24632 🗸	NA	NA	1000	22-Jan-19 08:55	MAC			Aqueous	537 PFAS DW DoD Unmod
1900143-02	0.26305 🗸	T		1000	22-Jan-19 08:55	MAC			Aqueous	537 PFAS DW DoD Unmoo
1900153-01	0.24887			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmoo
1900153-02	0.25759 🗸			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmod
1900153-03	0.26025 🗸			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmod
1900153-04	0.26161			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmod
1900153-05	0.2601	,		1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmoo
1900153-06	0.26144			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmod
1900153-07	0.26248			1000	22-Jan-19 08:55	MAC		,	Drinking Water	537 PFAS DW DoD Unmod
1900153-08	0.25982 .			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmod
1900153-09	0.26087 🗸			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmod
1900154-01	0.25717	,		1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmod
1900154-02	0.2617			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmoo
B9A0154-BLK1	0.25			1000	22-Jan-19 08:55	MAC				QC
B9A0154-BS1	0.25			1000	22-Jan-19 08:55	MAC	18L2623	20/		QC
B9A0154-MS1	0.2622	/		1000	22-Jan-19 08:55	MAC	18L2623	20/		QC
B9A0154-MSD1	0.25876	<u> </u>	V	1000	22-Jan-19 08:55	MAC	18L2623	20		QC

MAC 01/23/19

Printed: 1/23/2019 9:49:25AM

SAMPLE DATA –EPA METHOD 537

Work Order 1900154 Page 20 of 137

Vista Analytical Laboratory

MM 1/28/2019

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld

Last Altered: Sunday, January 27, 2019 16:47:23 Pacific Standard Time Printed: Sunday, January 27, 2019 16:47:35 Pacific Standard Time

Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7		6052.171	0.250		3.73				
2	2 PFHxA	313.2 > 268.9		12440.223	0.250		4.05				
3	3 PFHpA	363 > 318.9		12440.223	0.250		4.42				
4	4 PFHxS	398.9 > 79.6		6052.171	0.250		4.53				
5	5 PFOA	413 > 368.7		12440.223	0.250		4.77				
6	19 13C4-PFOS	503.0 > 79.9	6052.171	6052.171	0.250	1.000	5.10	5.10	28.7	115	100.0
7	18 13C2-PFOA	414.9 > 369.7	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
8	18 13C2-PFOA	414.9 > 369.7	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
9	19 13C4-PFOS	503.0 > 79.9	6052.171	6052.171	0.250	1.000	5.10	5.10	28.7	115	100.0
10	18 13C2-PFOA	414.9 > 369.7	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
11	-1										
12	6 PFNA	463 > 418.8		12440.223	0.250		5.05				
13	7 PFOS	499 > 79.9	1.942	6052.171	0.250		5.10	5.12	0.00921	0.0348	
14	8 PFDA	513 > 468.8		12440.223	0.250		5.29				
15	9 N-MeFOSAA	570.1 > 419.0	10.331	10105.665	0.250		5.39	5.38	0.0409	0.0855	
16	10 N-EtFOSAA	584.2 >419.0		10105.665	0.250		5.50				
17	18 13C2-PFOA	414.9 > 369.7	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
18	19 13C4-PFOS	503.0 > 79.9	6052.171	6052.171	0.250	1.000	5.10	5.10	28.7	115	100.0
19	18 13C2-PFOA	414.9 > 369.7	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
20	20 d3-N-MeFOSAA	573.3 > 419.0	10105.665	10105.665	0.250	1.000	5.39	5.39	40.0	160	100.0
21	20 d3-N-MeFOSAA	573.3 > 419.0	10105.665	10105.665	0.250	1.000	5.39	5.39	40.0	160	100.0
22	-1										
23	11 PFUnA	563 > 518.9		12440.223	0.250		5.50				
24	12 PFDoA	612.9 > 318.8		12440.223	0.250		5.68				
25	13 PFTrDA	662.9 > 618.9		12440.223	0.250		5.84				
26	14 PFTeDA	712.9 > 668.8		12440.223	0.250		5.98				
27	15 13C2-PFHxA	315 > 269.8	7553.965	12440.223	0.250	0.641	4.24	4.06	6.07	37.9	94.7
28	18 13C2-PFOA	414.9 > 369.7	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
29	18 13C2-PFOA	414.9 > 369.7	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
30	18 13C2-PFOA	414.9 > 369.7	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
31	18 13C2-PFOA	414.9 > 369.7	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
32	16 13C2-PFDA	515.1 > 469.9	10939.060	12440.223	0.250	0.896	5.29	5.29	8.79	39.2	98.1
33	-1										
34	17_d5-N-EtFOSAA	589.3 > 419.0	14260.101	10105.665	0.250	1.512	5.39	5.49	56.4	149_	93.3

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld

Last Altered: Sunday, January 27, 2019 16:47:23 Pacific Standard Time Printed: Sunday, January 27, 2019 16:47:35 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB

Work Order 1900154
Page 22 GM 3/27/2019

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld Dataset:

Last Altered: Sunday, January 27, 2019 16:47:23 Pacific Standard Time Sunday, January 27, 2019 16:47:35 Pacific Standard Time Printed:

Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB

Page 23 GM 3/27/2019 Work Order 1900154

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld

Last Altered: Sunday, January 27, 2019 16:47:23 Pacific Standard Time Printed: Sunday, January 27, 2019 16:47:35 Pacific Standard Time

Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB

Work Order 1900154
Page 24 GM 3/27/2019

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld

Last Altered: Sunday, January 27, 2019 16:47:23 Pacific Standard Time Printed: Sunday, January 27, 2019 16:47:35 Pacific Standard Time

Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB

d5-N-EtFOSAA

Vista Analytical Laboratory

MM 1/28/2019

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-24.qld

Last Altered: Sunday, January 27, 2019 16:39:33 Pacific Standard Time Printed: Sunday, January 27, 2019 16:40:24 Pacific Standard Time

Name: 190125M2_24, Date: 25-Jan-2019, Time: 21:54:07, ID: B9A0154-BS1 LFB 0.25, Description: LFB

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	3462.347	6507.852	0.250		3.73	3.73	15.3	65.8	92.9
2	2 PFHxA	313.2 > 268.9	19802.994	12810.407	0.250		4.05	4.06	15.5	74.1	92.6
3	3 PFHpA	363 > 318.9	17851.678	12810.407	0.250		4.42	4.43	13.9	77.4	96.8
4	4 PFHxS	398.9 > 79.6	2778.925	6507.852	0.250		4.53	4.53	12.3	67.7	93.0
5	5 PFOA	413 > 368.7	23489.256	12810.407	0.250		4.77	4.77	18.3	76.7	95.8
6	19 13C4-PFOS	503.0 > 79.9	6507.852	6507.852	0.250	1.000	5.10	5.10	28.7	115	100.0
7	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
8	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
9	19 13C4-PFOS	503.0 > 79.9	6507.852	6507.852	0.250	1.000	5.10	5.10	28.7	115	100.0
10	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
11	-1										
12	6 PFNA	463 > 418.8	24445.664	12810.407	0.250		5.05	5.05	19.1	73.5	91.9
13	7 PFOS	499 > 79.9	4001.067	6507.852	0.250		5.10	5.10	17.6	66.6	90.0
14	8 PFDA	513 > 468.8	25067.080	12810.407	0.250		5.29	5.29	19.6	72.1	90.2
15	9 N-MeFOSAA	570.1 > 419.0	9087.916	10207.644	0.250		5.39	5.39	35.6	74.2	92.7
16	10 N-EtFOSAA	584.2 >419.0	6869.830	10207.644	0.250		5.50	5.49	26.9	70.6	88.2
17	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
18	19 13C4-PFOS	503.0 > 79.9	6507.852	6507.852	0.250	1.000	5.10	5.10	28.7	115	100.0
19	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
20	20 d3-N-MeFOSAA	573.3 > 419.0	10207.644	10207.644	0.250	1.000	5.39	5.39	40.0	160	100.0
21	20 d3-N-MeFOSAA	573.3 > 419.0	10207.644	10207.644	0.250	1.000	5.39	5.39	40.0	160	100.0
22	-1										
23	11 PFUnA	563 > 518.9	23481.762	12810.407	0.250		5.50	5.50	18.3	72.9	91.1
24	12 PFDoA	612.9 > 318.8	3190.188	12810.407	0.250		5.68	5.68	2.49	69.7	87.1
25	13 PFTrDA	662.9 > 618.9	27276.006	12810.407	0.250		5.84	5.84	21.3	60.6	75.8
26	14 PFTeDA	712.9 > 668.8	23517.473	12810.407	0.250		5.98	5.98	18.4	58.2	72.7
27	15 13C2-PFHxA	315 > 269.8	7694.769	12810.407	0.250	0.641	4.24	4.06	6.01	37.5	93.7
28	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
29	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
30	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
31	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
32	16 13C2-PFDA	515.1 > 469.9	11471.349	12810.407	0.250	0.896	5.29	5.29	8.95	40.0	99.9
33	-1										
34	17_d5-N-EtFOSAA	589.3 > 419.0	13953.099	10207.644	0.250	1.512	5.39	5.49	54.7	145_	90.4

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-24.qld Dataset:

Last Altered: Sunday, January 27, 2019 16:39:33 Pacific Standard Time Printed: Sunday, January 27, 2019 16:40:24 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS DW L14 012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_24, Date: 25-Jan-2019, Time: 21:54:07, ID: B9A0154-BS1 LFB 0.25, Description: LFB

Page 27 GM 3/27/2019 Work Order 1900154

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-24.qld Dataset:

Last Altered: Sunday, January 27, 2019 16:39:33 Pacific Standard Time Sunday, January 27, 2019 16:40:24 Pacific Standard Time Printed:

Name: 190125M2_24, Date: 25-Jan-2019, Time: 21:54:07, ID: B9A0154-BS1 LFB 0.25, Description: LFB

Page 28 GM 3/27/2019 Work Order 1900154

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-24.qld

Last Altered: Sunday, January 27, 2019 16:39:33 Pacific Standard Time Printed: Sunday, January 27, 2019 16:40:24 Pacific Standard Time

Name: 190125M2_24, Date: 25-Jan-2019, Time: 21:54:07, ID: B9A0154-BS1 LFB 0.25, Description: LFB

Page 29 GM 3/27/2019

Quantify Sample Report
Vista Analytical LaboratoryMassLynx MassLynx V4.1 SCN945 SCN960Page 4 of 5MM 1/28/2019

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-24.qld

Last Altered: Sunday, January 27, 2019 16:39:33 Pacific Standard Time Printed: Sunday, January 27, 2019 16:40:24 Pacific Standard Time

Name: 190125M2_24, Date: 25-Jan-2019, Time: 21:54:07, ID: B9A0154-BS1 LFB 0.25, Description: LFB

d5-N-EtFOSAA

Vista Analytical Laboratory

MM 1/28/2019

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-41.qld

Last Altered: Sunday, January 27, 2019 17:05:36 Pacific Standard Time Printed: Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7		7213.286	0.257		3.73				
2	2 PFHxA	313.2 > 268.9		14351.518	0.257		4.05				
3	3 PFHpA	363 > 318.9		14351.518	0.257		4.42				
4	4 PFHxS	398.9 > 79.6		7213.286	0.257		4.53				
5	5 PFOA	413 > 368.7		14351.518	0.257		4.77				
6	19 13C4-PFOS	503.0 > 79.9	7213.286	7213.286	0.257	1.000	5.10	5.10	28.7	112	100.0
7	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
8	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
9	19 13C4-PFOS	503.0 > 79.9	7213.286	7213.286	0.257	1.000	5.10	5.10	28.7	112	100.0
10	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
11	-1										
12	6 PFNA	463 > 418.8		14351.518	0.257		5.05				
13	7 PFOS	499 > 79.9	1.017	7213.286	0.257		5.10	5.09	0.00405	0.0148	
14	8 PFDA	513 > 468.8		14351.518	0.257		5.29				
15	9 N-MeFOSAA	570.1 > 419.0	0.634	12335.590	0.257		5.39	5.37	0.00206	0.00418	
16	10 N-EtFOSAA	584.2 >419.0		12335.590	0.257		5.50				
17	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
18	19 13C4-PFOS	503.0 > 79.9	7213.286	7213.286	0.257	1.000	5.10	5.10	28.7	112	100.0
19	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
20	20 d3-N-MeFOSAA	573.3 > 419.0	12335.590	12335.590	0.257	1.000	5.39	5.39	40.0	156	100.0
21	20 d3-N-MeFOSAA	573.3 > 419.0	12335.590	12335.590	0.257	1.000	5.39	5.39	40.0	156	100.0
22	-1										
23	11 PFUnA	563 > 518.9		14351.518	0.257		5.50				
24	12 PFDoA	612.9 > 318.8		14351.518	0.257		5.68				
25	13 PFTrDA	662.9 > 618.9		14351.518	0.257		5.84				
26	14 PFTeDA	712.9 > 668.8		14351.518	0.257		5.98				
27	15 13C2-PFHxA	315 > 269.8	9139.260	14351.518	0.257	0.641	4.24	4.05	6.37	38.6	99.3
28	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
29	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
30	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
31	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
32	16 13C2-PFDA	515.1 > 469.9	12216.670	14351.518	0.257	0.896	5.29	5.29	8.51	36.9	95.0
33	-1										
34	17_d5-N-EtFOSAA	589.3 > 419.0	16651.631	12335.590	0.257	1.512	5.39	5.49_	54.0	139_	89.3

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-41.qld

Last Altered: Sunday, January 27, 2019 17:05:36 Pacific Standard Time Printed: Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18 537 Q4 01-25-19 L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-41.qld

Last Altered: Sunday, January 27, 2019 17:05:36 Pacific Standard Time Printed: Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW

Work Order 1900154

Page 33 GM 3/27/2019

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-41.qld

Last Altered: Sunday, January 27, 2019 17:05:36 Pacific Standard Time Printed: Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW

Work Order 1900154
Page 34 GM 3/27/2019

Quantify Sample Report
Vista Analytical LaboratoryMassLynx MassLynx V4.1 SCN945 SCN960Page 4 of 5MM 1/28/2019

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-41.qld

Last Altered: Sunday, January 27, 2019 17:05:36 Pacific Standard Time Printed: Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW

d5-N-EtFOSAA

INJECTION INTERNAL STANDARD (IIS) AREAS, AND

CONTINUTING CALIBRATION VERIFICATIONS CCV)

Work Order 1900154 Page 36 of 137

ICAL

Compound 18: 13C2-PFOA

ID	Name	Туре	Std. Conc	RT	Area	ICAL Area	Area %
1 IPA	190125M2_1	Analyte	10			13400.96	0.00
2 ST190125M2-1 537 CS-4 19A1701	190125M2_2	Analyte	10	4.77	13292.36	13400.96	99.19
3 ST190125M2-2 537 CS-3 19A1702	190125M2_3	Analyte	10	4.76	13422.57	13400.96	100.16
4 ST190125M2-3 537 CS-2 19A1703	190125M2_4	Analyte	10	4.76	13197.23	13400.96	98.48
5 ST190125M2-4 537 CS-1 19A1704	190125M2_5	Analyte	10	4.76	13232.86	13400.96	98.75
6 ST190125M2-5 537 CS0 19A1705	190125M2_6	Analyte	10	4.77	14111.92	13400.96	105.31
7 ST190125M2-6 537 CS1 19A1706	190125M2_7	Analyte	10	4.77	14405.22	13400.96	107.49
8 ST190125M2-7 537 CS2 19A1707	190125M2_8	Analyte	10	4.77	13324.02	13400.96	99.43
9 ST190125M2-8 537 CS3 19A1708	190125M2_9	Analyte	10	4.76	13136.78	13400.96	98.03
10 ST190125M2-9 537 CS4 19A1709	190125M2_10	Analyte	10	4.76	13058.35	13400.96	97.44
11 ST190125M2-10 537 CS5 19A1710	190125M2_11	Analyte	10	4.76	12929.79	13400.96	96.48
12 IPA	190125M2_12	Analyte	10			13400.96	0.00
13 ICV190125M2-1 537 ICV 19A1711	190125M2_13	Analyte	10	4.76	13791.20	13400.96	102.91
14 IPA	190125M2_14	Analyte	10			13400.96	0.00
15 B9A0191-BS1 LFB 0.25	190125M2_15	Analyte	10	4.76	12721.65	13400.96	94.93
16 B9A0191-BSD1 LFBD 0.25	190125M2_16	Analyte	10	4.77	12865.38	13400.96	96.00
17 B9A0191-BLK1 LRB 0.25	190125M2_17	Analyte	10	4.76	12506.92	13400.96	93.33
18 1900103-03RE1 WI-AF-1RW67-0119 0.2408	190125M2_18	Analyte	10	4.76	12305.25	13400.96	91.82
19 1900103-05RE1 WI-AF-1RW68-0119 0.24813	190125M2_19	Analyte	10	4.76	13385.57	13400.96	99.89
20 1900103-06RE1 WI-AF-1RW68P-0119 0.2517	190125M2_20	Analyte	10	4.76	13503.83	13400.96	100.77
21 1900103-08RE1 WI-AF-1RW69-0119 0.24947	190125M2_21	Analyte	10	4.77	12942.26	13400.96	96.58
22 1900103-12RE1 WI-AF-1RW71-0119 0.2497	190125M2_22	Analyte	10	4.76	13925.21	13400.96	103.91
23 1900157-01 WR1901181300KER 0.25378	190125M2_23	Analyte	10	4.76	12548.71	13400.96	93.64
24 B9A0154-BS1 LFB 0.25	190125M2_24	Analyte	10	4.77	12810.41	13400.96	95.59
25 B9A0154-MS1 LFSM 0.2622	190125M2_25	Analyte	10	4.76	13701.67	13400.96	102.24
26 B9A0154-MSD1 LFSMD 0.25876	190125M2_26	Analyte	10	4.77	12109.25	13400.96	90.36
27 B9A0154-BLK1 LRB 0.25	190125M2_27	Analyte	10	4.77	12440.22	13400.96	92.83
28 1900143-01 F8F9-PFOS 0.24632	190125M2_28	Analyte	10	4.77	13048.66	13400.96	97.37
29 1900143-02 F8F9-Blank 0.26305	190125M2_29	Analyte	10	4.77	13494.36	13400.96	100.70

30 1900153-01 WI-AF-1RW77-0119 0.24887	190125M2_30	Analyte	10	4.77	11687.37	13400.96	87.21
31 1900153-02 WI-AF-1FB77-0119 0.25759	190125M2_31	Analyte	10	4.77	13163.90	13400.96	98.23
32 IPA	190125M2_32	Analyte	10			13400.96	0.00
33 ST190125M2-11 537 CS1 19A1706	190125M2_33	Analyte	10	4.77	13718.64	13400.96	102.37
34 1900153-03 WI-AF-1RW78-0119 0.26025	190125M2_34	Analyte	10	4.76	13743.12	13400.96	102.55
35 1900153-04 WI-AF-1RW78P-0119 0.26161	190125M2_35	Analyte	10	4.76	13413.73	13400.96	100.10
36 1900153-05 WI-AF-1FB78-0119 0.2601	190125M2_36	Analyte	10	4.76	14040.47	13400.96	104.77
37 1900153-06 WI-AF-1RW79-0119 0.26144	190125M2_37	Analyte	10	4.77	14076.20	13400.96	105.04
38 1900153-07 WI-AF-1FB79-0119 0.26248	190125M2_38	Analyte	10	4.76	12106.64	13400.96	90.34
39 1900153-08 WI-AF-1RW80-0119 0.25982	190125M2_39	Analyte	10	4.77	14877.23	13400.96	111.02
40 1900153-09 WI-AF-1FB80-0119 0.26087	190125M2_40	Analyte	10	4.77	13241.72	13400.96	98.81
41 1900154-01 PW4-011719-DW 0.25717	190125M2_41	Analyte	10	4.77	14351.52	13400.96	107.09
42 1900154-02 PW4-011719-FB 0.2617	190125M2_42	Analyte	10	4.77	14731.99	13400.96	109.93
43 IPA	190125M2_43	Analyte	10			13400.96	0.00
44 ST190125M2-12 537 CS3 19A1708	190125M2_44	Analyte	10	4.77	13334.69	13400.96	99.51
45 B9A0141-BS1 LFB 0.25	190125M2_45	Analyte	10	4.77	13847.64	13400.96	103.33
46 B9A0141-BSD1 LFBD 0.25	190125M2_46	Analyte	10	4.77	13691.86	13400.96	102.17
47 B9A0141-BLK1 LRB 0.25	190125M2_47	Analyte	10	4.76	11878.12	13400.96	88.64
48 1900136-01 GWNT1901160950KME 0.24097	190125M2_48	Analyte	10	4.77	12212.24	13400.96	91.13
49 1900137-01 WR1901161110KER 0.24094	190125M2_49	Analyte	10	4.77	14468.36	13400.96	107.97
50 IPA	190125M2_50	Analyte	10			13400.96	0.00
51 ST190125M2-13 537 CS-1 19A1704	190125M2_51	Analyte	10	4.76	14723.16	13400.96	109.87

Compound 19: 13C4-PFOS

ID	Name	Type	Std. Conc	RT	Area	ICAL Area	Area %
1 IPA	190125M2 1	Analyte	28.7	•••	7 Cu	6522.30	0.00
I IPA	1901221012_1	Analyte	20.7			0522.50	0.00
2 ST190125M2-1 537 CS-4 19A1701	190125M2_2	Analyte	28.7	5.10	6318.25	6522.30	96.87
3 ST190125M2-2 537 CS-3 19A1702	190125M2_3	Analyte	28.7	5.10	6177.97	6522.30	94.72
4 ST190125M2-3 537 CS-2 19A1703	190125M2_4	Analyte	28.7	5.10	6156.59	6522.30	94.39
5 ST190125M2-4 537 CS-1 19A1704	190125M2_5	Analyte	28.7	5.10	6344.74	6522.30	97.28
6 ST190125M2-5 537 CS0 19A1705	190125M2_6	Analyte	28.7	5.10	6716.11	6522.30	102.97
7 ST190125M2-6 537 CS1 19A1706	190125M2_7	Analyte	28.7	5.10	7051.90	6522.30	108.12

8 ST190125M2-7 537 CS2 19A1707	190125M2_8 Analyte	28.7	5.10	6881.49	6522.30	105.51
9 ST190125M2-8 537 CS3 19A1708	190125M2_9 Analyte	28.7	5.10	6653.97	6522.30	102.02
10 ST190125M2-9 537 CS4 19A1709	190125M2_10 Analyte	28.7	5.10	6486.16	6522.30	99.45
11 ST190125M2-10 537 CS5 19A1710	190125M2_11 Analyte	28.7	5.10	6435.83	6522.30	98.67
12 IPA	190125M2_12 Analyte	28.7			6522.30	0.00
13 ICV190125M2-1 537 ICV 19A1711	190125M2_13 Analyte	28.7	5.10	6857.27	6522.30	105.14
14 IPA	190125M2_14 Analyte	28.7			6522.30	0.00
15 B9A0191-BS1 LFB 0.25	190125M2_15 Analyte	28.7	5.10	6143.01	6522.30	94.18
16 B9A0191-BSD1 LFBD 0.25	190125M2_16 Analyte	28.7	5.10	6378.95	6522.30	97.80
17 B9A0191-BLK1 LRB 0.25	190125M2_17 Analyte	28.7	5.10	6286.17	6522.30	96.38
18 1900103-03RE1 WI-AF-1RW67-0119 0.2408	190125M2_18 Analyte	28.7	5.10	6409.75	6522.30	98.27
19 1900103-05RE1 WI-AF-1RW68-0119 0.24813	190125M2_19 Analyte	28.7	5.10	6646.72	6522.30	101.91
20 1900103-06RE1 WI-AF-1RW68P-0119 0.2517	190125M2_20 Analyte	28.7	5.10	6459.45	6522.30	99.04
21 1900103-08RE1 WI-AF-1RW69-0119 0.24947	190125M2_21 Analyte	28.7	5.10	6269.86	6522.30	96.13
22 1900103-12RE1 WI-AF-1RW71-0119 0.2497	190125M2_22 Analyte	28.7	5.10	7048.35	6522.30	108.07
23 1900157-01 WR1901181300KER 0.25378	190125M2_23 Analyte	28.7	5.10	6441.93	6522.30	98.77
24 B9A0154-BS1 LFB 0.25	190125M2_24 Analyte	28.7	5.10	6507.85	6522.30	99.78
25 B9A0154-MS1 LFSM 0.2622	190125M2_25 Analyte	28.7	5.10	6672.41	6522.30	102.30
26 B9A0154-MSD1 LFSMD 0.25876	190125M2_26 Analyte	28.7	5.10	5705.42	6522.30	87.48
27 B9A0154-BLK1 LRB 0.25	190125M2_27 Analyte	28.7	5.10	6052.17	6522.30	92.79
28 1900143-01 F8F9-PFOS 0.24632	190125M2_28 Analyte	28.7	5.10	6151.74	6522.30	94.32
29 1900143-02 F8F9-Blank 0.26305	190125M2_29 Analyte	28.7	5.10	6490.25	6522.30	99.51
30 1900153-01 WI-AF-1RW77-0119 0.24887	190125M2_30 Analyte	28.7	5.10	5957.04	6522.30	91.33
31 1900153-02 WI-AF-1FB77-0119 0.25759	190125M2_31 Analyte	28.7	5.10	6893.07	6522.30	105.68
32 IPA	190125M2_32 Analyte	28.7			6522.30	0.00
33 ST190125M2-11 537 CS1 19A1706	190125M2_33 Analyte	28.7	5.10	6638.92	6522.30	101.79
34 1900153-03 WI-AF-1RW78-0119 0.26025	190125M2_34 Analyte	28.7	5.10	6557.18	6522.30	100.53
35 1900153-04 WI-AF-1RW78P-0119 0.26161	190125M2_35 Analyte	28.7	5.10	6952.72	6522.30	106.60
36 1900153-05 WI-AF-1FB78-0119 0.2601	190125M2_36 Analyte	28.7	5.10	7039.28	6522.30	107.93
37 1900153-06 WI-AF-1RW79-0119 0.26144	190125M2_37 Analyte	28.7	5.10	6868.30	6522.30	105.30
38 1900153-07 WI-AF-1FB79-0119 0.26248	190125M2_38 Analyte	28.7	5.10	6190.28	6522.30	94.91
39 1900153-08 WI-AF-1RW80-0119 0.25982	190125M2_39 Analyte	28.7	5.10	7286.29	6522.30	111.71
40 1900153-09 WI-AF-1FB80-0119 0.26087	190125M2_40 Analyte	28.7	5.10	6621.71	6522.30	101.52
41 1900154-01 PW4-011719-DW 0.25717	190125M2_41 Analyte	28.7	5.10	7213.29	6522.30	110.59

42 1900154-02 PW4-011719-FB 0.2617	190125M2_42 Analyte	28.7	5.10	7444.60	6522.30	114.14
43 IPA	190125M2_43 Analyte	28.7			6522.30	0.00
44 ST190125M2-12 537 CS3 19A1708	190125M2_44 Analyte	28.7	5.10	6635.06	6522.30	101.73
45 B9A0141-BS1 LFB 0.25	190125M2_45 Analyte	28.7	5.10	6535.11	6522.30	100.20
46 B9A0141-BSD1 LFBD 0.25	190125M2_46 Analyte	28.7	5.10	7059.48	6522.30	108.24
47 B9A0141-BLK1 LRB 0.25	190125M2_47 Analyte	28.7	5.10	5718.07	6522.30	87.67
48 1900136-01 GWNT1901160950KME 0.24097	190125M2_48 Analyte	28.7	5.10	6240.24	6522.30	95.68
49 1900137-01 WR1901161110KER 0.24094	190125M2_49 Analyte	28.7	5.10	7087.78	6522.30	108.67
50 IPA	190125M2_50 Analyte	28.7			6522.30	0.00
51 ST190125M2-13 537 CS-1 19A1704	190125M2_51 Analyte	28.7	5.10	7300.99	6522.30	111.94

Compound 20: d3-N-MeFOSAA

ID	Name	Туре	Std. Conc	RT	Area	ICAL Area	Area %
1 IPA	190125M2_1	Analyte	40			10753.65	0.00
2 ST190125M2-1 537 CS-4 19A1701	190125M2_2	Analyte	40	5.39	10088.12	10753.65	93.81
3 ST190125M2-2 537 CS-3 19A1702	190125M2_3	Analyte	40	5.39	10084.90	10753.65	93.78
4 ST190125M2-3 537 CS-2 19A1703	190125M2_4	Analyte	40	5.39	10739.07	10753.65	99.86
5 ST190125M2-4 537 CS-1 19A1704	190125M2_5	Analyte	40	5.39	10593.76	10753.65	98.51
6 ST190125M2-5 537 CS0 19A1705	190125M2_6	Analyte	40	5.39	10954.44	10753.65	101.87
7 ST190125M2-6 537 CS1 19A1706	190125M2_7	Analyte	40	5.39	11478.53	10753.65	106.74
8 ST190125M2-7 537 CS2 19A1707	190125M2_8	Analyte	40	5.39	11323.08	10753.65	105.30
9 ST190125M2-8 537 CS3 19A1708	190125M2_9	Analyte	40	5.39	10746.07	10753.65	99.93
10 ST190125M2-9 537 CS4 19A1709	190125M2_10	Analyte	40	5.39	10429.39	10753.65	96.98
11 ST190125M2-10 537 CS5 19A1710	190125M2_11	Analyte	40	5.39	11099.10	10753.65	103.21
12 IPA	190125M2_12	Analyte	40			10753.65	0.00
13 ICV190125M2-1 537 ICV 19A1711	190125M2_13	Analyte	40	5.39	11937.70	10753.65	111.01
14 IPA	190125M2_14	Analyte	40			10753.65	0.00
15 B9A0191-BS1 LFB 0.25	190125M2_15	Analyte	40	5.39	10486.17	10753.65	97.51
16 B9A0191-BSD1 LFBD 0.25	190125M2_16	Analyte	40	5.40	10122.23	10753.65	94.13
17 B9A0191-BLK1 LRB 0.25	190125M2_17	Analyte	40	5.39	10414.11	10753.65	96.84
18 1900103-03RE1 WI-AF-1RW67-0119 0.2408	190125M2_18	Analyte	40	5.39	10652.49	10753.65	99.06
19 1900103-05RE1 WI-AF-1RW68-0119 0.24813	190125M2_19	Analyte	40	5.39	10929.26	10753.65	101.63

20 1900103-06RE1 WI-AF-1RW68P-0119 0.2517	190125M2_20 Analyte	40	5.39	11258.46	10753.65	104.69
21 1900103-08RE1 WI-AF-1RW69-0119 0.24947	190125M2_21 Analyte	40	5.39	10456.21	10753.65	97.23
22 1900103-12RE1 WI-AF-1RW71-0119 0.2497	190125M2_22 Analyte	40	5.39	11119.07	10753.65	103.40
23 1900157-01 WR1901181300KER 0.25378	190125M2_23 Analyte	40	5.39	10932.40	10753.65	101.66
24 B9A0154-BS1 LFB 0.25	190125M2_24 Analyte	40	5.39	10207.64	10753.65	94.92
25 B9A0154-MS1 LFSM 0.2622	190125M2_25 Analyte	40	5.39	11506.62	10753.65	107.00
26 B9A0154-MSD1 LFSMD 0.25876	190125M2_26 Analyte	40	5.39	9952.61	10753.65	92.55
27 B9A0154-BLK1 LRB 0.25	190125M2_27 Analyte	40	5.39	10105.67	10753.65	93.97
28 1900143-01 F8F9-PFOS 0.24632	190125M2_28 Analyte	40	5.39	10685.91	10753.65	99.37
29 1900143-02 F8F9-Blank 0.26305	190125M2_29 Analyte	40	5.39	11327.13	10753.65	105.33
30 1900153-01 WI-AF-1RW77-0119 0.24887	190125M2_30 Analyte	40	5.39	10248.05	10753.65	95.30
31 1900153-02 WI-AF-1FB77-0119 0.25759	190125M2_31 Analyte	40	5.40	11496.63	10753.65	106.91
32 IPA	190125M2_32 Analyte	40			10753.65	0.00
33 ST190125M2-11 537 CS1 19A1706	190125M2_33 Analyte	40	5.39	11589.88	10753.65	107.78
34 1900153-03 WI-AF-1RW78-0119 0.26025	190125M2_34 Analyte	40	5.39	11602.90	10753.65	107.90
35 1900153-04 WI-AF-1RW78P-0119 0.26161	190125M2_35 Analyte	40	5.39	11647.97	10753.65	108.32
36 1900153-05 WI-AF-1FB78-0119 0.2601	190125M2_36 Analyte	40	5.39	12301.80	10753.65	114.40
37 1900153-06 WI-AF-1RW79-0119 0.26144	190125M2_37 Analyte	40	5.39	11544.30	10753.65	107.35
38 1900153-07 WI-AF-1FB79-0119 0.26248	190125M2_38 Analyte	40	5.39	10446.77	10753.65	97.15
39 1900153-08 WI-AF-1RW80-0119 0.25982	190125M2_39 Analyte	40	5.39	12744.75	10753.65	118.52
40 1900153-09 WI-AF-1FB80-0119 0.26087	190125M2_40 Analyte	40	5.39	11154.42	10753.65	103.73
41 1900154-01 PW4-011719-DW 0.25717	190125M2_41 Analyte	40	5.39	12335.59	10753.65	114.71
42 1900154-02 PW4-011719-FB 0.2617	190125M2_42 Analyte	40	5.39	12760.36	10753.65	118.66
43 IPA	190125M2_43 Analyte	40			10753.65	0.00
44 ST190125M2-12 537 CS3 19A1708	190125M2_44 Analyte	40	5.39	11109.69	10753.65	103.31
45 B9A0141-BS1 LFB 0.25	190125M2_45 Analyte	40	5.39	11631.68	10753.65	108.16
46 B9A0141-BSD1 LFBD 0.25	190125M2_46 Analyte	40	5.39	11811.07	10753.65	109.83
47 B9A0141-BLK1 LRB 0.25	190125M2_47 Analyte	40	5.39	10646.56	10753.65	99.00
48 1900136-01 GWNT1901160950KME 0.24097	190125M2_48 Analyte	40	5.39	10639.09	10753.65	98.93
49 1900137-01 WR1901161110KER 0.24094	190125M2_49 Analyte	40	5.39	11806.01	10753.65	109.79
50 IPA	190125M2_50 Analyte	40			10753.65	0.00
51 ST190125M2-13 537 CS-1 19A1704	190125M2_51 Analyte	40	5.39	12934.24	10753.65	120.28

CCAL

ID	Name	Type	Std. Conc	RT	Area	CCAL Area	Area %
32 IPA	190125M2_32	Analyte	10			13718.64	0.00
33 ST190125M2-11 537 CS1 19A1706	190125M2_33	Analyte	10	4.77	13718.64	13718.64	100.00
34 1900153-03 WI-AF-1RW78-0119 0.26025	190125M2_34	Analyte	10	4.76	13743.12	13718.64	100.18
35 1900153-04 WI-AF-1RW78P-0119 0.26161	190125M2_35	Analyte	10	4.76	13413.73	13718.64	97.78
36 1900153-05 WI-AF-1FB78-0119 0.2601	190125M2_36	Analyte	10	4.76	14040.47	13718.64	102.35
37 1900153-06 WI-AF-1RW79-0119 0.26144	190125M2_37	Analyte	10	4.77	14076.20	13718.64	102.61
38 1900153-07 WI-AF-1FB79-0119 0.26248	190125M2_38	Analyte	10	4.76	12106.64	13718.64	88.25
39 1900153-08 WI-AF-1RW80-0119 0.25982	190125M2_39	Analyte	10	4.77	14877.23	13718.64	108.45
40 1900153-09 WI-AF-1FB80-0119 0.26087	190125M2_40	Analyte	10	4.77	13241.72	13718.64	96.52
41 1900154-01 PW4-011719-DW 0.25717	190125M2_41	Analyte	10	4.77	14351.52	13718.64	104.61
42 1900154-02 PW4-011719-FB 0.2617	190125M2_42	Analyte	10	4.77	14731.99	13718.64	107.39
43 IPA	190125M2_43	Analyte	10			13718.64	0.00
44 ST190125M2-12 537 CS3 19A1708	190125M2_44	Analyte	10	4.77	13334.69	13718.64	97.20
44 ST190125M2-12 537 CS3 19A1708	190125M2_44	Analyte	10	4.77	13334.69	13334.69	100.00
45 B9A0141-BS1 LFB 0.25	190125M2_45	Analyte	10	4.77	13847.64	13334.69	103.85
46 B9A0141-BSD1 LFBD 0.25	190125M2_46	Analyte	10	4.77	13691.86	13334.69	102.68
47 B9A0141-BLK1 LRB 0.25	190125M2_47	Analyte	10	4.76	11878.12	13334.69	89.08
48 1900136-01 GWNT1901160950KME 0.24097	190125M2_48	Analyte	10	4.77	12212.24	13334.69	91.58
49 1900137-01 WR1901161110KER 0.24094	190125M2_49	Analyte	10	4.77	14468.36	13334.69	108.50
50 IPA	190125M2_50	Analyte	10			13334.69	0.00
51 ST190125M2-13 537 CS-1 19A1704	190125M2_51	Analyte	10	4.76	14723.16	13334.69	110.41

Compound 19: 13C4-PFOS

ID	Name Type	Std. Conc	RT	Area	CCAL Area	Area %
32 IPA	190125M2_32 Analyte	28.7			6638.92	0.00
33 ST190125M2-11 537 CS1 19A1706	190125M2_33 Analyte	28.7	5.10	6638.92	6638.92	100.00
34 1900153-03 WI-AF-1RW78-0119 0.26025	190125M2_34 Analyte	28.7	5.10	6557.18	6638.92	98.77
35 1900153-04 WI-AF-1RW78P-0119 0.26161	190125M2_35 Analyte	28.7	5.10	6952.72	6638.92	104.73

36 1900153-05 WI-AF-1FB78-0119 0.2601	190125M2_36	Analyte	28.7	5.10	7039.28	6638.92	106.03
37 1900153-06 WI-AF-1RW79-0119 0.26144	190125M2_37	Analyte	28.7	5.10	6868.30	6638.92	103.45
38 1900153-07 WI-AF-1FB79-0119 0.26248	190125M2_38	Analyte	28.7	5.10	6190.28	6638.92	93.24
39 1900153-08 WI-AF-1RW80-0119 0.25982	190125M2_39	Analyte	28.7	5.10	7286.29	6638.92	109.75
40 1900153-09 WI-AF-1FB80-0119 0.26087	190125M2_40	Analyte	28.7	5.10	6621.71	6638.92	99.74
41 1900154-01 PW4-011719-DW 0.25717	190125M2_41	Analyte	28.7	5.10	7213.29	6638.92	108.65
42 1900154-02 PW4-011719-FB 0.2617	190125M2_42	Analyte	28.7	5.10	7444.60	6638.92	112.14
43 IPA	190125M2_43	Analyte	28.7			6638.92	0.00
44 ST190125M2-12 537 CS3 19A1708	190125M2_44	Analyte	28.7	5.10	6635.06	6638.92	99.94
44 ST190125M2-12 537 CS3 19A1708	190125M2_44	Analyte	28.7	5.10	6635.06	6635.06	100.00
45 B9A0141-BS1 LFB 0.25	190125M2_45	Analyte	28.7	5.10	6535.11	6635.06	98.49
46 B9A0141-BSD1 LFBD 0.25	190125M2_46	Analyte	28.7	5.10	7059.48	6635.06	106.40
47 B9A0141-BLK1 LRB 0.25	190125M2_47	Analyte	28.7	5.10	5718.07	6635.06	86.18
48 1900136-01 GWNT1901160950KME 0.24097	190125M2_48	Analyte	28.7	5.10	6240.24	6635.06	94.05
49 1900137-01 WR1901161110KER 0.24094	190125M2_49	Analyte	28.7	5.10	7087.78	6635.06	106.82
50 IPA	190125M2_50	Analyte	28.7			6635.06	0.00
51 ST190125M2-13 537 CS-1 19A1704	190125M2_51	Analyte	28.7	5.10	7300.99	6635.06	110.04

Compound 20: d3-N-MeFOSAA

ID	Name	Туре	Std. Conc	RT	Area	CCAL Area	Area %
32 IPA	190125M2_32	Analyte	40			11589.88	0.00
33 ST190125M2-11 537 CS1 19A1706	190125M2_33	Analyte	40	5.39	11589.88	11589.88	100.00
34 1900153-03 WI-AF-1RW78-0119 0.26025	190125M2_34	Analyte	40	5.39	11602.90	11589.88	100.11
35 1900153-04 WI-AF-1RW78P-0119 0.26161	190125M2_35	Analyte	40	5.39	11647.97	11589.88	100.50
36 1900153-05 WI-AF-1FB78-0119 0.2601	190125M2_36	Analyte	40	5.39	12301.80	11589.88	106.14
37 1900153-06 WI-AF-1RW79-0119 0.26144	190125M2_37	Analyte	40	5.39	11544.30	11589.88	99.61
38 1900153-07 WI-AF-1FB79-0119 0.26248	190125M2_38	Analyte	40	5.39	10446.77	11589.88	90.14
39 1900153-08 WI-AF-1RW80-0119 0.25982	190125M2_39	Analyte	40	5.39	12744.75	11589.88	109.96
40 1900153-09 WI-AF-1FB80-0119 0.26087	190125M2_40	Analyte	40	5.39	11154.42	11589.88	96.24
41 1900154-01 PW4-011719-DW 0.25717	190125M2_41	Analyte	40	5.39	12335.59	11589.88	106.43
42 1900154-02 PW4-011719-FB 0.2617	190125M2_42	Analyte	40	5.39	12760.36	11589.88	110.10

43 IPA	190125M2_43 A	nalyte	40			11589.88	0.00
44 ST190125M2-12 537 CS3 19A1708	190125M2_44 A	inalyte	40	5.39	11109.69	11589.88	95.86
44 ST190125M2-12 537 CS3 19A1708	190125M2_44_A	nalvte	40	5.39	11109.69	11109.69	100.00
45 B9A0141-BS1 LFB 0.25	190125M2_45 A	•	40		11631.68	11109.69	104.70
46 B9A0141-BSD1 LFBD 0.25	190125M2_46 A	nalyte	40	5.39	11811.07	11109.69	106.31
47 B9A0141-BLK1 LRB 0.25	190125M2_47 A	nalyte	40	5.39	10646.56	11109.69	95.83
48 1900136-01 GWNT1901160950KME 0.24097	190125M2_48 A	nalyte	40	5.39	10639.09	11109.69	95.76
49 1900137-01 WR1901161110KER 0.24094	190125M2_49 A	nalyte	40	5.39	11806.01	11109.69	106.27
50 IPA	190125M2_50 A	nalyte	40			11109.69	0.00
51 ST190125M2-13 537 CS-1 19A1704	190125M2 51 A	nalyte	40	5.39	12934.24	11109.69	116.42

	LC Ca	libratio	n Standard	is Review C	hecklist	<u>Q</u>	4_	÷	1
	•	WBF 1/26	1910N Ratio	Concentration	C-Cais Name	Sign Date	Correct I-Cal	Manual Integrations	NA
Calibration ID:	ST190125MZ-11	_/_	#		口	\Box	\square	· 🗹	4
Calibration ID:	-12	LMH	· ф	Q,	. 🗅				ф
Calibration ID:	<u> </u>	EM H	b					. 🗹	<u>'</u>
Calibration ID:		LMH			`				
Calibration ID:		LMH							
Calibration ID:		FWH							
Calibration ID:		LMH	D WE	H - 1/26/19		À		· 🗆	<u> </u>
Calibration ID:		LMH		146/19 \ 					
Calibration ID:		LMH							
Calibration ID:	·	LMH							
Run Log Present	ts	D ′	• .	Con	nments:	Full Ma	ass Cai. E	Jates 1/07/19	
# of Samples pe Instrument Blan	r Sequence Checked: k Saved				DW.	- LI	14		
IIS Area Saved Reviewed By:	Initials/Date								
ID:-LR - LCSRC	*		Rev. No.: 1	Rev. Date: 02	2/06/2018			· ·	Page: 1 of:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-33.qld

Last Altered:

Saturday, January 26, 2019 18:32:42 Pacific Standard Time

Printed:

Saturday, January 26, 2019 18:32:59 Pacific Standard Time

70h 1/32/10

Name: 190125M2_33, Date: 25-Jan-2019, Time: 23:40:16, ID: ST190125M2-11 537 CS1 19A1706, Description: 537 CS1 19A1706

# Name Trace Area S. Area Wt.Vol. RRF Mean PtechTl RT y. Axis Resp. Conc. %-Rec 1 FPES 299 79.7 1965.663 6638.924 1.00 3.73 3.73 3.73 8.50 9.16 103.6 103.6 3.75 3.		# Name	Trace	Area	IC Ama	Mt Mal DD	5 W 5		D.T.		- 02196921400	a P
2 PFHWA 313.2 > 268.9 11300.706 13718.638 1.00 4.05 4.06 8.24 9.87 98.7 3 PFHMA 363 > 318.9 9838.320 13718.638 1.00 4.52 4.03 7.17 9.96 99.6 4 4 PFHWS 399.9 > 79.6 1566.168 6638.924 1.00 4.53 4.53 6.77 9.79 9.5 102.5 5 FPGA 413 > 368.7 13357.084 13718.638 1.00 4.77 4.77 9.74 10.2 101.8 130.2 PFGA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 18 13C2.PFGA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 19 13C4.PFGS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 19 13C4.PFGS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 19 13C4.PFGS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 19 13C4.PFGS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 19 13C4.PFGS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 11 1 1 1 1 1 1 1 1		THE RESERVE OF THE PROPERTY OF THE PERSON OF	· 人。		PORTURN AND AND AND ADDRESS OF THE PARTY OF	THE SHAPE AND IN	r Mean P		SERIE ELOREGICO SERIES CO		Conc.	%Rec
\$\begin{array}{cccccccccccccccccccccccccccccccccccc												I
4 PFHIXS 398.9 > 79.6 1566.168 6638.924 1.00 4.53 4.53 6.77 9.36 102.5 5 PFOA 413 > 368.7 1357.084 13718.638 1.00 4.77 4.77 9.74 10.0 10.0 101.8 19 13C4-PFOS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 10.0 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	· 大师、北上 西林·北京市開展的企業											
5 FFOA 413 > 368.7 13357.084 13718.638 1.00 4.77 4.77 9.74 10.2 101.8 6 19 13C4-PFOS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 5.10 28.7 28.7 100.0 8 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.00 9 19 13C4-PFOS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10 18 13C2-PFOA 414.9 > 369.7 13718.638 1.3718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 10 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 5.00 5.10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	* No. 2020 (1911)											
19 13C4-PFOS 503,0 > 79,9 6638,924 6638,924 1.00 1.000 5.10 5.10 28.7 28.7 100,0 18 13C2-PFOA 414.9 > 369.7 13718,638 13718,638 1.00 1.000 4.77 4.77 10.0 10.0 100,0 19 13C4-PFOS 503,0 > 79,9 6638,924 6638,924 1.00 1.000 4.77 4.77 10.0 10.0 100,0												
8 18 13C2-PFOA 414.9 > 369.7 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 100.0 100.0 100.0 100.0 19 13C4-PFOS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 5.10 5.10 28.7 28.7 100.0 10.0 100.0 11												I
8 18 13C2-PFOA 414.9 > 369.7 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 100.0 100.0 100.0 100.0 19 13C4-PFOS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 5.10 5.10 28.7 28.7 100.0 10.0 100.0 11	6											
10	の 1 年間 中国 大田 1 日間 1 日											
10	1											I
11										28.7		I
12 6 PFNA 463 > 418.8 14337.630 13718.638 1.00 5.05 5.05 10.5 10.1 100.6 13 7 PFCS 499 > 79.9 2240.805 6638.924 1.00 5.10 5.10 9.69 9.14 98.9 14 8.9 14 8 PFDA 513 > 468.8 13721.275 13718.638 1.00 5.29 5.29 10.0 9.17 91.7 91.7 9 N-MeFOSAA 570.1 > 419.0 5112.962 11589.878 1.00 5.39 5.39 17.6 9.20 92.0 10 N-EIFOSAA 584.2 > 419.0 4295.566 11589.878 1.00 5.50 5.49 14.8 9.72 97.2 18 13C2-PFCA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 18 13C2-PFCA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100	· 一定。前面目的发展等。10世纪		414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
13 7 PFOS 499 > 79.9 2240.805 6638.924 1.00 5.10 5.10 9.69 9.14 98.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.	Service of the Laboratory of the Control of the Con											
14 8 PFDA 513 > 468.8 13721.275 13718.638 1.00 5.29 5.29 10.0 9.17 91.7 91.7 9 N-MeFOSAA 570.1 > 419.0 5112.962 11589.878 1.00 5.39 5.39 17.6 9.20 92.0 16 10 N-EIFOSAA 584.2 > 419.0 4295.566 11589.878 1.00 5.50 5.49 14.8 9.72 97.2 17 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 19 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 19 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100	2542995654863480MMUDARAGES8F0 0 5 5 5 5 5 5 5 4 4					1.00		5.05		10.5	10.1	100.6
15 9 N-MeFOSAA 570.1 > 419.0 5112.962 11589.878 1.00 5.39 5.39 17.6 9.20 92.0 10 N-EIFOSAA 584.2 > 419.0 4295.566 11589.878 1.00 5.50 5.49 14.8 9.72 97.2 17 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0	THE REPORT OF THE PARTY OF THE					1.00			5.10	9.69	9.14	98.9
16 10 N-EIFOSAA 584.2 > 419.0 4295.566 11589.878 1.00 5.50 5.49 14.8 9.72 97.2 17 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 100.0 18 19 13C4-PFOS 503.0 > 79.9 6638.924 6638.924 1.00 1.000 5.10 5.10 28.7 28.7 100.0 19 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 20 d3-N-MeFOSAA 573.3 > 419.0 11589.878 11589.878 1.00 1.000 5.39 5.39 40.0 40.0 100.0 20 d3-N-MeFOSAA 573.3 > 419.0 11589.878 11589.878 1.00 1.000 5.39 5.39 40.0 40.0 100.0 22 -1 20 d3-N-MeFOSAA 573.3 > 419.0 11589.878 11589.878 1.00 1.000 5.39 5.39 40.0 40.0 100.0 22 -1 2 PFDoA 612.9 > 318.8 1950.431 13718.638 1.00 5.68 5.68 1.42 9.95 99.5 24 12 PFDoA 612.9 > 318.8 1950.431 13718.638 1.00 5.84 5.84 13.2 9.42 94.2 26 14 PFTeDA 712.9 > 668.8 16477.041 13718.638 1.00 5.98 5.98 12.0 9.51 95.1 15 13C2-PFDA 315 > 269.8 9043.211 13718.638 1.00 5.98 5.98 12.0 9.51 95.1 15 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 0.641 4.24 4.05 6.59 10.3 102.8 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 100.0 32 16 13C2-PFOA 515.1 > 469.9 12331.659 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 100.0 32 16 13C2-PFOA 515.1 > 469.9 12331.659 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10	 6.1 (4.13) (4.27) (4.14) (4.15) (4.28) (4.28) (4.28) 					1.00				10.0	9.17	91.7
17	的图像的特殊的特別的		570.1 > 419.0	5112.962		1.00		5.39	5.39	17.6	9.20	92.0
18	(15)(明阳阳中)、内部列取引力(在42)		584.2 >419.0	4295.566	11589.878	1.00		5.50	5.49	14.8	9.72	97.2
19 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 20 d3-N-MeFOSAA 573.3 > 419.0 11589.878 11589.878 1.00 1.000 5.39 5.39 40.0 40.0 100.0 21 20 d3-N-MeFOSAA 573.3 > 419.0 11589.878 11589.878 1.00 1.000 5.39 5.39 40.0 40.0 100.0 22 -1 23 11 PFUnA 563 > 518.9 13510.265 13718.638 1.00 5.68 5.68 1.42 9.95 99.5 24 12 PFDoA 612.9 > 318.8 1950.431 13718.638 1.00 5.84 5.84 13.2 9.42 94.2 26 14 PFTeDA 712.9 > 668.8 16477.041 13718.638 1.00 5.98 5.98 12.0 9.51 95.1 27 15 13C2-PFHxA 315 > 269.8 9043.211 13718.638 1.00 5.641 4.24 4.05 6.59 10.3 102.8 28 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 100.0 100.0 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 100.0 100.0 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 100.0 100.0 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 100.0 100.0 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100			414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
20	18	9 13C4-PFOS	503.0 > 79.9	6638.924	6638.924	1.00	1.000	5.10	5.10	28.7	28.7	100.0
21 20 d3-N-MeFOSAA 573.3 > 419.0 11589.878 1.00 1.000 5.39 5.39 40.0 40.0 100.0 22 -1	19 1	8 13C2-PFOA	414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
22 -1 23 11 PFUnA 563 > 518.9 13510.265 13718.638 1.00 5.50 5.50 9.85 9.79 97.9 24 12 PFDoA 612.9 > 318.8 1950.431 13718.638 1.00 5.68 5.68 1.42 9.95 99.5 25 13 PFTrDA 662.9 > 618.9 18160.631 13718.638 1.00 5.84 5.84 13.2 9.42 94.2 26 14 PFTeDA 712.9 > 668.8 16477.041 13718.638 1.00 5.98 5.98 12.0 9.51 95.1 27 15 13C2-PFHxA 315 > 269.8 9043.211 13718.638 1.00 0.641 4.24 4.05 6.59 10.3 102.8 28 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 29 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 32 16 13C2-PFOA 515.1 > 469.9 12331.659 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0		0 d3-N-MeFOSAA	573.3 > 419.0	11589.878	11589.878	1.00	1.000	5.39	5.39	40.0	40.0	100.0
23 11 PFUnA 563 > 518.9 13510.265 13718.638 1.00 5.50 5.50 9.85 9.79 97.9 24 12 PFDoA 612.9 > 318.8 1950.431 13718.638 1.00 5.68 5.68 1.42 9.95 99.5 25 13 PFTrDA 662.9 > 618.9 18160.631 13718.638 1.00 5.84 5.84 13.2 9.42 94.2 26 14 PFTeDA 712.9 > 668.8 16477.041 13718.638 1.00 5.98 5.98 12.0 9.51 95.1 27 15 13C2-PFHxA 315 > 269.8 9043.211 13718.638 1.00 0.641 4.24 4.05 6.59 10.3 102.8 28 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 29 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 32 16 13C2-PFOA 515.1 > 469.9 12331.659 13718.638 1.00 0.896 5.29 5.29 8.99 10.0 100.3	21 2	0 d3-N-MeFOSAA	573.3 > 419.0	11589.878	11589.878	1.00	1.000	5.39	5.39	40.0	40.0	100.0
24 12 PFDoA 612.9 > 318.8 1950.431 13718.638 1.00 5.68 5.68 1.42 9.95 99.5 25 13 PFTrDA 662.9 > 618.9 18160.631 13718.638 1.00 5.84 5.84 13.2 9.42 94.2 26 14 PFTeDA 712.9 > 668.8 16477.041 13718.638 1.00 5.98 5.98 12.0 9.51 95.1 27 15 13C2-PFHxA 315 > 269.8 9043.211 13718.638 1.00 0.641 4.24 4.05 6.59 10.3 102.8 28 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 29 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638		1										
25 13 PFTrDA 662.9 > 618.9 18160.631 13718.638 1.00 5.84 5.84 13.2 9.42 94.2 26 14 PFTeDA 712.9 > 668.8 16477.041 13718.638 1.00 5.98 5.98 12.0 9.51 95.1 27 15 13C2-PFHxA 315 > 269.8 9043.211 13718.638 1.00 0.641 4.24 4.05 6.59 10.3 102.8 28 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 29 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 100.0 32 16 13C2-PFOA 515.1 > 469.9 12331.659 13718.638 1.00 0.896 5.29 5.29 8.99 10.0 100.3	23 1	1 PFUnA	563 > 518.9	13510.265	13718.638	1.00		5.50	5.50	9.85	9.79	97.9
26 14 PFTeDA 712.9 > 668.8 16477.041 13718.638 1.00 5.98 5.98 12.0 9.51 95.1 27 15 13C2-PFHxA 315 > 269.8 9043.211 13718.638 1.00 0.641 4.24 4.05 6.59 10.3 102.8 28 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 29 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 32 16 13C2-PFDA 515.1 > 469.9 12331.659 13718.638 1.00 0.896 5.29 5.29 8.99 10.0 100.3	24	2 PFDoA	612.9 > 318.8	1950.431	13718.638	1.00		5.68	5.68	1.42	9.95	99.5
27 15 13C2-PFHxA 315 > 269.8 9043.211 13718.638 1.00 0.641 4.24 4.05 6.59 10.3 102.8 28 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 29 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 32 16 13C2-PFOA 515.1 > 469.9 12331.659 13718.638 1.00 0.896 5.29 5.29 8.99 10.0 100.3	25 / 1	3 PFTrDA	662.9 > 618.9	18160.631	13718.638	1.00		5.84	5.84	13.2	9.42	94.2
28	26	4 PFTeDA	712.9 > 668.8	16477.041	13718.638	1.00		5.98	5.98	12.0	9.51	95.1
29 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 32 16 13C2-PFDA 515.1 > 469.9 12331.659 13718.638 1.00 0.896 5.29 5.29 8.99 10.0 100.3	27	5 13C2-PFHxA	315 > 269.8	9043.211	13718.638	1.00	0.641	4.24	4.05	6.59	10.3	102.8
30 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 32 16 13C2-PFOA 515.1 > 469.9 12331.659 13718.638 1.00 0.896 5.29 5.29 8.99 10.0 100.3	28 1	8 13C2-PFOA	414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
31 18 13C2-PFOA 414.9 > 369.7 13718.638 13718.638 1.00 1.000 4.77 4.77 10.0 10.0 100.0 32 16 13C2-PFDA 515.1 > 469.9 12331.659 13718.638 1.00 0.896 5.29 5.29 8.99 10.0 100.3	29 1	8 13C2-PFOA	414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
32 16 13C2-PFDA 515.1 > 469.9 12331.659 13718.638 1.00 0.896 5.29 5.29 8.99 10.0 100.3	30 1	8 13C2-PFOA	414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
	31 1	8 13C2-PFOA	414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
	32 1	6 13C2-PFDA	515.1 > 469.9	12331.659	13718.638	1.00	0.896	5.29	5.29	8.99	10.0	100.3
	是自然的影响。 (A) 15	1										
34 17 d5-N-EtFOSAA 589.3 > 419.0 18001.186 11589.878 1.00 1.512 5.39 5.49 62.1 41.1 102.7	34 1	7 d5-N-EtFOSAA	589.3 > 419.0	18001.186	11589.878	1.00	1.512	5.39	5.49	62.1	41.1	102.7

1/26/19

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-IIS AREAS.qld

Last Altered: Saturday, January 26, 2019 15:47:03 Pacific Standard Time Printed: Saturday, January 26, 2019 18:30:44 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS

	# Name	ID Lenning	Acq.Date	Acq.Time
	1 190125M2_1	IPA	25-Jan-19	17:22:45
2	2 190125M2_2	ST190125M2-1 537 CS-4 19A1701	25-Jan-19	17:34:29
3	3 190125M2_3	ST190125M2-2 537 CS-3 19A1702	25-Jan-19	17:46:20
41	4 190125M2_4	ST190125M2-3 537 CS-2 19A1703	25-Jan-19	17:58:06
5	5 190125M2_5	ST190125M2-4 537 CS-1 19A1704	25-Jan-19	18:09:57
.6	6 190125M2_6	ST190125M2-5 537 CS0 19A1705	25-Jan-19	18:21:43
714	7 190125M2_7	ST190125M2-6 537 CS1 19A1706	25-Jan-19	18:33:26
8 11	8 190125M2_8	ST190125M2-7 537 CS2 19A1707	25-Jan-19	18:45:17
9	9 190125M2_9	ST190125M2-8 537 CS3 19A1708	25-Jan-19	18:57:03
10	10 190125M2_10	ST190125M2-9 537 CS4 19A1709	25-Jan-19	19:08:54
11	11 190125M2_11	ST190125M2-10 537 CS5 19A1710	25-Jan-19	19:20:39
12	12 190125M2_12	IPA	25-Jan-19	19:32:30
13	13 190125M2_13	ICV190125M2-1 537 ICV 19A1711	25-Jan-19	19:44:16
14	14 190125M2_14	IPA .	25-Jan-19	19:56:07
15 🐪	15 190125M2_15	B9A0191-BS1 LFB 0.25	25-Jan-19	20:07:52
16	16 190125M2_16	B9A0191-BSD1 LFBD 0.25	25-Jan-19	20:19:43
17	17 190125M2_17	B9A0191-BLK1 LRB 0.25	25-Jan-19	20:31:29
18.	18 190125M2_18	1900103-03RE1 WI-AF-1RW67-0119 0.2408	25-Jan-19	20:43:20
19	19 190125M2_19	1900103-05RE1 WI-AF-1RW68-0119 0.24813	25-Jan-19	20:55:03
20	20 190125M2_20	1900103-06RE1 WI-AF-1RW68P-0119 0.2517	25-Jan-19	21:06:54
21	21 190125M2_21	1900103-08RE1 WI-AF-1RW69-0119 0.24947	25-Jan-19	21:18:40
22	22 190125M2_22	1900103-12RE1 WI-AF-1RW71-0119 0.2497	25-Jan-19	21:30:31
23	23 190125M2_23	1900157-01 WR1901181300KER 0.25378	25-Jan-19	21:42:15
24	24 190125M2_24	B9A0154-BS1 LFB 0.25	25-Jan-19	21:54:07
25	25 190125M2_25	B9A0154-MS1 LFSM 0.2622	25-Jan-19	22:05:52
26	26 190125M2_26	B9A0154-MSD1 LFSMD 0.25876	25-Jan-19	22:17:44
27	27 190125M2_27	B9A0154-BLK1 LRB 0.25	25-Jan-19	22:29:29
28	28 190125M2_28	1900143-01 F8F9-PFOS 0.24632	25-Jan-19	22:41:12
29	29 190125M2_29	1900143-02 F8F9-Blank 0.26305	25-Jan-19	22:53:03
30	30 190125M2_30	1900153-01 WI-AF-1RW77-0119 0.24887	25-Jan-19	23:04:49
31	31 190125M2_31	1900153-02 WI-AF-1FB77-0119 0.25759	25-Jan-19	23:16:40
32	32 190125M2_32	IPA	25-Jan-19	23:28:25

Work Order 1900154 Page 47 of 137

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-IIS AREAS.qld

Last Altered: Saturday, January 26, 2019 15:47:03 Pacific Standard Time Saturday, January 26, 2019 18:30:44 Pacific Standard Time

Compound name: PFBS

	# Name	(ID	Acq.Date	Acq.Time
33	33 190125M2_33	ST190125M2-11 537 CS1 19A1706	25-Jan-19	23:40:16
34	34 190125M2_34	1900153-03 WI-AF-1RW78-0119 0.26025	25-Jan-19	23:52:01
35	35 190125M2_35	1900153-04 WI-AF-1RW78P-0119 0.26161	26-Jan-19	00:03:52
36	36 190125M2_36	1900153-05 WI-AF-1FB78-0119 0.2601	26-Jan-19	00:15:37
37	37 190125M2_37	1900153-06 WI-AF-1RW79-0119 0.26144	26-Jan-19	00:27:29
38	38 190125M2_38	1900153-07 WI-AF-1FB79-0119 0.26248	26-Jan-19	00:39:14
39	39 190125M2_39	1900153-08 WI-AF-1RW80-0119 0.25982	26-Jan-19	00:51:05
40	40 190125M2_40	1900153-09 WI-AF-1FB80-0119 0.26087	26-Jan-19	01:02:52
,41	41 190125M2_41	1900154-01 PW4-011719-DW 0.25717	26-Jan-19	01:14:43
42	42 190125M2_42	1900154-02 PW4-011719-FB 0.2617	26-Jan-19	01:26:27
43	43 190125M2_43	IPA	26-Jan-19	01:38:19
44	44 190125M2_44	ST190125M2-12 537 CS3 19A1708	26-Jan-19	01:50:04
45	45 190125M2_45	B9A0141-BS1 LFB 0.25	26-Jan-19	02:01:56
46	46 190125M2_46	B9A0141-BSD1 LFBD 0.25	26-Jan-19	02:13:41
47	47 190125M2_47	B9A0141-BLK1 LRB 0.25	26-Jan-19	02:25:24
48	48 190125M2_48	1900136-01 GWNT1901160950KME 0.24097	26-Jan-19	02:37:15
49 50	49 190125M2_49	1900137-01 WR1901161110KER 0.24094	26-Jan-19	02:49:00
50	50 190125M2_50	IPA	26-Jan-19	03:00:52
51	51 190125M2_51	ST190125M2-13 537 CS-1 19A1704	26-Jan-19	03:12:37

Work Order 1900154 Page 48 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-33.qld

Last Altered:

Saturday, January 26, 2019 18:32:42 Pacific Standard Time

Printed:

Saturday, January 26, 2019 18:32:59 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_33, Date: 25-Jan-2019, Time: 23:40:16, ID: ST190125M2-11 537 CS1 19A1706, Description: 537 CS1 19A1706

Work Order 1900154

Page 49 of 137

Printed:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-33.qld

Last Altered:

Saturday, January 26, 2019 18:32:42 Pacific Standard Time Saturday, January 26, 2019 18:32:59 Pacific Standard Time

Name: 190125M2_33, Date: 25-Jan-2019, Time: 23:40:16, ID: ST190125M2-11 537 CS1 19A1706, Description: 537 CS1 19A1706

Work Order 1900154 Page 50 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-33.qld

Last Altered:

Printed:

Saturday, January 26, 2019 18:32:42 Pacific Standard Time Saturday, January 26, 2019 18:32:59 Pacific Standard Time

Name: 190125M2_33, Date: 25-Jan-2019, Time: 23:40:16, ID: ST190125M2-11 537 CS1 19A1706, Description: 537 CS1 19A1706

Work Order 1900154 Page 51 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-33.qld

Last Altered:

Saturday, January 26, 2019 18:32:42 Pacific Standard Time

Printed:

Saturday, January 26, 2019 18:32:59 Pacific Standard Time

Name: 190125M2_33, Date: 25-Jan-2019, Time: 23:40:16, ID: ST190125M2-11 537 CS1 19A1706, Description: 537 CS1 19A1706

d5-N-EtFOSAA

Work Order 1900154 Page 52 of 137

Quantify Sample Report Vista Analytical Laboratory

MassLynx MassLynx V4.1 SCN945 SCN960

Page 5 of 5

Dataset:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-44.qld

Last Altered: Printed:

Saturday, January 26, 2019 18:35:09 Pacific Standard Time Saturday, January 26, 2019 18:35:41 Pacific Standard Time

7 Mr 1 12/10

Name: 190125M2_44, Date: 26-Jan-2019, Time: 01:50:04, ID: ST190125M2-12 537 CS3 19A1708, Description: 537 CS3 19A1708

i iza kiri i	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	9570.362	6635.058	1.00	n mord 6 0 (2000). Antidose - 0.000 (2000). (21)	3.73	3.73	41.4	44.6	100.9
2	2 PFHxA	313.2 > 268.9	54515.504	13334.688	1.00		4.05	4.05	40.9	49.0	98.0
3	3 PFHpA	363 > 318.9	47324.012	13334.688	1.00		4.42	4.43	35.5	49.3	98.6
4	4 PFHxS	398.9 > 79.6	8098.305	6635.058	1.00		4.53	4.53	35.0	48.4	106.3
5	5 PFOA	413 > 368.7	64979.844	13334.688	1.00		4.77	4.77	48.7	50.9	101.9
6	19 13C4-PFOS	503.0 > 79.9	6635.058	6635.058	1.00	1.000	5.10	5.10	28.7	28.7	100.0
7	18 13C2-PFOA	414.9 > 369.7	13334.688	13334.688	1.00	1.000	4.77	4.77	10.0	10.0	100.0
8	18 13C2-PFOA	414.9 > 369.7	13334.688	13334.688	1.00	1.000	4.77	4.77	10.0	10.0	100.0
9	19 13C4-PFOS	503.0 > 79.9	6635.058	6635.058	1.00	1.000	5.10	5.10	28.7	28.7	100.0
10	18 13C2-PFOA	414.9 > 369.7	13334.688	13334.688	1.00	1.000	4.77	4.77	10.0	10.0	100.0
11	-1										
12	6 PFNA	463 > 418.8	69619.906	13334.688	1.00		5.05	5.05	52.2	50.3	100.5
13	7 PFOS	499 >79.9	11752.551	6635.058	1.00		5.10	5.10	50.8	48.0	103.8
14	8 PFDA	513 > 468.8	70396.117	13334.688	1.00		5.29	5.29	52.8	49.6	99.2
15	9 N-MeFOSAA	570.1 > 419.0	26637.004	11109.694	1.00		5.39	5.39	95.9	49.6	99.3
16	10 N-EtFOSAA	584.2 >419.0	21631.857	11109.694	1.00		5.50	5.49	77.9	51.1	102.1
17	18 13C2-PFOA	414.9 > 369.7	13334.688	13334.688	1.00	1.000	4.77	4.77	10.0	10.0	100.0
18	19 13C4-PFOS	503.0 > 79.9	6635.058	6635.058	1.00	1.000	5.10	5.10	28.7	28.7	100.0
19	18 13C2-PFOA	414.9 > 369.7	13334.688	13334.688	1.00	1.000	4.77	4.77	10.0	10.0	100.0
20	20 d3-N-MeFOSAA	573.3 > 419.0	11109.694	11109.694	1.00	1.000	5.39	5.39	40.0	40.0	100.0
21	20 d3-N-MeFOSAA	573.3 > 419.0	11109.694	11109.694	1.00	1.000	5.39	5.39	40.0	40.0	100.0
22	1 -1										
23	11 PFUnA	563 > 518.9	65987.211	13334.688	1.00		5.50	5.50	49.5	49.2	98.4
24	12 PFDoA	612.9 > 318.8	9315.945	13334.688	1.00		5.68	5.68	6.99	48.9	97.8
25	13 PFTrDA	662.9 > 618.9	89531.938	13334.688	1.00		5.84	5.84	67.1	47.8	95.6
26	14 PFTeDA	712.9 > 668.8	81415.414	13334.688	1.00		5.98	5.98	61.1	48.4	96.7
27	15 13C2-PFHxA	315 > 269.8	8584.813	13334.688	1.00	0.641	4.24	4.05	6.44	10.0	100.4
28	18 13C2-PFOA	414.9 > 369.7	13334.688	13334.688	1.00	1.000	4.77	4.77	10.0	10.0	100.0
29	18 13C2-PFOA	414.9 > 369.7	13334.688	13334.688	1.00	1.000	4.77	4.77	10.0	10.0	100.0
30	18 13C2-PFOA	414.9 > 369.7	13334.688	13334.688	1.00	1.000	4.77	4.77	10.0	10.0	100.0
31	18 13C2-PFOA	414.9 > 369.7	13334.688	13334.688	1.00	1.000	4.77	4.77	10.0	10.0	100.0
32	16 13C2-PFDA	515.1 > 469.9	11958.436	13334.688	1.00	0.896	5.29	5.29	8.97	10.0	100.1
33	-1										
34	17 d5-N-EtFOSAA	589.3 > 419.0	16920.309	11109.694	1.00	1.512	5.39	5.49	60.9	40.3	100.7

1/26/19

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-IIS AREAS.qld

Last Altered: Saturday, January 26, 2019 15:47:03 Pacific Standard Time Printed: Saturday, January 26, 2019 18:30:44 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS

	# Name	中D (87111)	Acq.Date Acq.Time
1	1 190125M2_1	IPA	25-Jan-19 17:22:45
.2	2 190125M2_2	ST190125M2-1 537 CS-4 19A1701	25-Jan-19 17:34:29
3 1	3 190125M2_3	ST190125M2-2 537 CS-3 19A1702	25-Jan-19 17:46:20
4	4 190125M2_4	ST190125M2-3 537 CS-2 19A1703	25-Jan-19 17:58:06
5	5 190125M2_5	ST190125M2-4 537 CS-1 19A1704	25-Jan-19 18:09:57
6	6 190125M2_6	ST190125M2-5 537 CS0 19A1705	25-Jan-19 18:21:43
7	7 190125M2_7	ST190125M2-6 537 CS1 19A1706	25-Jan-19 18:33:26
8	8 190125M2_8	ST190125M2-7 537 CS2 19A1707	25-Jan-19 18:45:17
9 - 1-9	9 190125M2_9	ST190125M2-8 537 CS3 19A1708	25-Jan-19 18:57:03
10	10 190125M2_10	ST190125M2-9 537 CS4 19A1709	25-Jan-19 19:08:54
11	11 190125M2_11	ST190125M2-10 537 CS5 19A1710	25-Jan-19 19:20:39
12	12 190125M2_12	IPA	25-Jan-19 19:32:30
13	13 190125M2_13	ICV190125M2-1 537 ICV 19A1711	25-Jan-19 19:44:16
14	14 190125M2_14	₽A.	25-Jan-19 19:56:07
15	15 190125M2_15	B9A0191-BS1 LFB 0.25	25-Jan-19 20:07:52
16	16 190125M2_16	89A0191-BSD1 LFBD 0.25	25-Jan-19 20:19:43
17 🙀 🤚	17 190125M2_17	B9A0191-BLK1 LRB 0.25	25-Jan-19 20:31:29
18	18 190125M2_18	1900103-03RE1 WI-AF-1RW67-0119 0.2408	25-Jan-19 20:43:20
19	19 190125M2_19	1900103-05RE1 WI-AF-1RW68-0119 0.24813	25-Jan-19 20:55:03
20	20 190125M2_20	1900103-06RE1 WI-AF-1RW68P-0119 0.2517	25-Jan-19 21:06:54
21	21 190125M2_21	1900103-08RE1 WI-AF-1RW69-0119 0.24947	25-Jan-19 21:18:40
22	22 190125M2_22	1900103-12RE1 WI-AF-1RW71-0119 0.2497	25-Jan-19 21:30:31
23	23 190125M2_23	1900157-01 WR1901181300KER 0.25378	25-Jan-19 21:42:15
24	24 190125M2_24	B9A0154-BS1 LFB 0.25	25-Jan-19 21:54:07
25	25 190125M2_25	B9A0154-MS1 LFSM 0.2622	25-Jan-19 22:05:52
26	26 190125M2_26	B9A0154-MSD1 LFSMD 0.25876	25-Jan-19 22:17:44
27	27 190125M2_27	B9A0154-BLK1 LRB 0.25	25-Jan-19 22:29:29
28	28 190125M2_28	1900143-01 F8F9-PFOS 0.24632	25-Jan-19 22:41:12
29	29 190125M2_29	1900143-02 F8F9-Blank 0.26305	25-Jan-19 22:53:03
30	30 190125M2_30	1900153-01 WI-AF-1RW77-0119 0.24887	25-Jan-19 23:04:49
31	31 190125M2_31	1900153-02 WI-AF-1FB77-0119 0.25759	25-Jan-19 23:16:40
32	32 190125M2_32	IPA	25-Jan-19 23:28:25

Work Order 1900154 Page 54 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-IIS AREAS.qld

Last Altered: Printed: Saturday, January 26, 2019 15:47:03 Pacific Standard Time Saturday, January 26, 2019 18:30:44 Pacific Standard Time

Compound name: PFBS

	# Name		Acq.Date	Acq.Time
33	33 190125M2_33	ST190125M2-11 537 CS1 19A1706	25-Jan-19	23:40:16
34	34 190125M2_34	1900153-03 WI-AF-1RW78-0119 0.26025	25-Jan-19	23:52:01
35	35 190125M2_35	1900153-04 WI-AF-1RW78P-0119 0.26161	26-Jan-19	00:03:52
36	36 190125M2_36	1900153-05 WI-AF-1FB78-0119 0.2601	26-Jan-19	00:15:37
37	37 190125M2_37	1900153-06 WI-AF-1RW79-0119 0.26144	26-Jan-19	00:27:29
38	38 190125M2_38	1900153-07 WI-AF-1FB79-0119 0.26248	26-Jan-19	00:39:14
39	39 190125M2_39	1900153-08 WI-AF-1RW80-0119 0.25982	26-Jan-19	00:51:05
40	40 190125M2_40	1900153-09 WI-AF-1FB80-0119-0.26087	26-Jan-19	01:02:52
41	41 190125M2_41	1900154-01 PW4-011719-DW 0.25717	26-Jan-19	01:14:43
42	42 190125M2_42	1900154-02 PW4-011719-FB 0.2617	26-Jan-19	01:26:27
43	43 190125M2_43	IPA .	26-Jan-19	01:38:19
44	44 190125M2_44	ST190125M2-12 537 CS3 19A1708	26-Jan-19	01:50:04
45	45 190125M2_45	B9A0141-BS1 LFB 0.25	26-Jan-19	02:01:56
46	46 190125M2_46	B9A0141-BSD1 LFBD 0.25	26-Jan-19	02:13:41
47	47 190125M2_47	B9A0141-BLK1 LRB 0.25	26-Jan-19	02:25:24
48	48 190125M2_48	1900136-01 GWNT1901160950KME 0.24097	26-Jan-19	02:37:15
49	49 190125M2_49	1900137-01 WR1901161110KER 0.24094	26-Jan-19	02:49:00
50	50 190125M2_50	IPA	26-Jan-19	03:00:52
51	51 190125M2_51	ST190125M2-13 537 CS-1 19A1704	26-Jan-19	03:12:37

Work Order 1900154 Page 55 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-44.qld

Last Altered: Printed:

Saturday, January 26, 2019 18:35:09 Pacific Standard Time Saturday, January 26, 2019 18:35:41 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_44, Date: 26-Jan-2019, Time: 01:50:04, ID: ST190125M2-12 537 CS3 19A1708, Description: 537 CS3 19A1708

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-44.qld

Last Altered: Printed:

Saturday, January 26, 2019 18:35:09 Pacific Standard Time Saturday, January 26, 2019 18:35:41 Pacific Standard Time

Name: 190125M2_44, Date: 26-Jan-2019, Time: 01:50:04, ID: ST190125M2-12 537 CS3 19A1708, Description: 537 CS3 19A1708

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-44.qld

Last Altered: Printed: Saturday, January 26, 2019 18:35:09 Pacific Standard Time Saturday, January 26, 2019 18:35:41 Pacific Standard Time

Name: 190125M2_44, Date: 26-Jan-2019, Time: 01:50:04, ID: ST190125M2-12 537 CS3 19A1708, Description: 537 CS3 19A1708

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-44.qld

Last Altered:

Saturday, January 26, 2019 18:35:09 Pacific Standard Time

Printed:

Saturday, January 26, 2019 18:35:41 Pacific Standard Time

Name: 190125M2_44, Date: 26-Jan-2019, Time: 01:50:04, ID: ST190125M2-12 537 CS3 19A1708, Description: 537 CS3 19A1708

d5-N-EtFOSAA

INITIAL CALIBRATION (ICAL) INCLUDING ASSOCIATED INITIAL CALIBRATION VERIFICATION (ICV)

Work Order 1900154 Page 60 of 137

LCMS ICAL Checklist

	Correct run log	537_6	24_01-25	-19-LI
	Name with the date it was run			
	CoD Summary - Natives r2 \geq 0.99 - IS Relative SD < 20 - RS RSD=	0		
	Chromatograms - check integration - PFHxS and PFOS - linear ar	nd branched		
	Verify Standard IDs			
	Natives St. Concentration checked against Element or current S	pike Sheet		
	IS St. Concentration checked against Element or current Spike S	heet		
	RS Concentration correct			
	Natives $r^2 \ge 0.99$			
	Natives ±30% 10000 POINT 150%			
	Graphs - $r^2 \ge 0.99$			
	6 points for quadratic/5 points for linear/correct curve fitting			
	IS Relative SD < 20			
	IS ±50%			
	RS Relative SD = 0			
	ICV Ical correct			
	ICV name correct			
	ICV attached to ICAL			
	ICV 70-130%			
	Checkmark, date, sign			
AN	Instrument blank saved			
		l-141-1/D-4	MM.	122/10

Rev.: 0 Rev. Date: 03/09/2018 Page: 1 of 1

Work Order 1900154 Page 61 of 137

ID: LR - LIC

Quantify Compound Summary Report

MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Dataset:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:22:19 Pacific Standard Time

ELFOSAA = 0.5

Page 1 of 10

Page 1 of 10

Method: F:\Projects\PFAS.PRO\MethDB\PFAS DW L14 012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS

Coefficient of Determination: R^2 = 0.999485

Calibration curve: 0.928174 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Ju 1/27/19

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 190125M2_2	Standard	0.222	3.72	37.142	6318.250	0.169	0.2	-18.1	NO	0.999	NO	MM
2	2 190125M2_3	Standard	0.444	3.72	86.122	6177.965	0.400	0.4	-2.9	NO	0.999	NO	мм
3	3 190125M2_4	Standard	0.888	3.73	169.538	6156.587	0.790	0.9	-4.1	NO	0.999	NO	bb
4	4 190125M2_5	Standard	1.780	3.72	323.601	6344.740	1.464	1.6	-11.4	NO	0.999	NO	bb
5	5 190125M2_6	Standard	4.440	3.72	872.646	6716.111	3.729	4.0	-9.5	NO	0.999	NO	bb
6	6 190125M2_7	Standard	8.840	3.72	1926.760	7051.897	7.842	8.4	-4.4	NO	0.999	NO	ММ
7	7 190125M2_8	Standard	22.100	3.73	4827.993	6881.489	20.136	21.7	-1.8	NO	0.999	NO	MM
8	8 190125M2_9	Standard	44.200	3.72	9495.939	6653.967	40.958	44.1	-0.2	NO	0.999	NO	мм
9	9 190125M2_10	Standard	66.400	3.72	13991.980	6486.159	61.912	66.7	0.5	NO	0.999	NO	MM
10	10 190125M2_11	Standard	88.500	3.72	18687.174	6435.829	83.334	89.8	1.4	NO	0.999	NO	ММ

Compound name: PFHxA

Coefficient of Determination: R^2 = 0.999436

Calibration curve: 0.834519 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 190125M2_2	Standard	0.250	4.05	250.110	13238.635	0.189	0.2	-9.4	NO	0.999	NO	bb
2	2 190125M2_3	Standard	0.500	4.05	504.260	13422.568	0.376	0.5	-10.0	NO	0.999	NO	bb
3	3 190125M2_4	Standard	1.000	4.05	1030.131	13197.230	0.781	0.9	-6.5	NO	0.999	NO	bb
4	4 190125M2_5	Standard	2.000	4.05	1994.523	13232.861	1.507	1.8	-9.7	NO	0.999	NO	bb
5	5 190125M2_6	Standard	5.000	4.05	5163.569	14111.915	3.659	4.4	-12.3	NO	0.999	NO	bb
6	6 190125M2_7	Standard	10.000	4.05	11549.869	14405.215	8.018	9.6	-3.9	NO	0.999	NO	bb
7年 [標本]	7 190125M2_8	Standard	25.000	4.05	28385.268	13324.019	21.304	25.5	2.1	NO	0.999	NO	bb
8	8 190125M2_9	Standard	50.000	4.05	54667.926	13089.006	41.766	50.0	0.1	NO	0.999	NO	bb
9	9 190125M2_10	Standard	75.000	4.05	81400.586	13058.350	62.336	74.7	-0.4	NO	0.999	NO	bb
10	10 190125M2_11	Standard	100.000	4.05	109051.883	12929.790	84.342	101.1	1.1	NO	0.999	NO	bb

Page 62 of 137 Work Order 1900154

Page 2 of 10

Vista Analytical Laboratory

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFHpA

Coefficient of Determination: R^2 = 0.999680

Calibration curve: 0.720119 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 190125M2_2	Standard	0.250	4.42	220.704	13238.635	0.167	0.2	-7.4	NO	1.000	NO	bb
2	2 190125M2_3	Standard	0.500	4.42	454.692	13422.568	0.339	0.5	-5.9	NO	1.000	NO	bb
3	3 190125M2_4	Standard	1.000	4.42	869.100	13197.230	0.659	0.9	-8.6	NO	1.000	NO	bb
4	4 190125M2_5	Standard	2.000	4.42	1860.497	13232.861	1.406	2.0	-2.4	NO	1.000	NO	bb
5	5 190125M2_6	Standard	5.000	4.43	4592.191	14111.915	3.254	4.5	-9.6	NO	1.000	NO	bb
6	6 190125M2_7	Standard	10.000	4.42	10106.488	14405.215	7.016	9.7	-2.6	NO	1.000	NO	bb
7	7 190125M2_8	Standard	25.000	4.42	24010.725	13324.019	18.021	25.0	0.1	NO	1.000	NO	bb
8	8 190125M2_9	Standard	50.000	4.42	47813.813	13089.006	36.530	50.7	1.5	NO	1.000	NO	bb
9	9 190125M2_10	Standard	75.000	4.42	71108.672	13058.350	54.455	75.6	8.0	NO	1.000	NO	bb
10	10 190125M2_11	Standard	100.000	4.42	92690.008	12929.790	71.687	99.5	-0.5	NO	1.000	NO	bb

Compound name: PFHxS

Coefficient of Determination: R^2 = 0.998938

Calibration curve: 0.724235 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

11	# Name	Type	Std. Conc	RT.	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD/	CoD Flag	x=excluded
1	1 190125M2_2	Standard	0.228	4.53	28.842	6318.250	0.131	0.2	-20.7	NO	0.999	NO	MM
2	2 190125M2_3	Standard	0.456	4.53	60.555	6177.965	0.281	0.4	-14.8	NO	0.999	NO	ММ
3 10 10 10 10 10 10 10 10 10 10 10 10 10	3 190125M2_4	Standard	0.912	4.53	120.716	6156.587	0.563	8.0	-14.8	NO	0.999	NO	ММ
4	4 190125M2_5	Standard	1.820	4.53	280.718	6344.740	1.270	1.8	-3.7	NO	0.999	NO	мм
5	5 190125M2_6	Standard	4.560	4.53	683.872	6716.111	2.922	4.0	-11.5	NO	0.999	NO	ММ
6	6 190125M2_7	Standard	9.120	4.53	1535.540	7051.897	6.249	8.6	-5.4	NO	0.999	NO	ММ
7	7 190125M2_8	Standard	22.800	4.53	3795.457	6881.489	15.829	21.9	-4.1	NO	0.999	NO	ММ
8	8 190125M2_9	Standard	45.500	4.53	7523.678	6653.967	32.451	44.8	-1.5	NO	0.999	NO	ММ
9	9 190125M2_10	Standard	68.200	4.53	11243.596	6486.159	49.751	68.7	0.7	NO	0.999	NO	мм
10	10 190125M2_11	Standard	91.000	4.53	15180.713	6435.829	67.697	93.5	2.7	NO	0.999	NO	ММ

Work Order 1900154 Page 63 of 137

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFOA

Coefficient of Determination: R^2 = 0.999691

Calibration curve: 0.956545 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 190125M2_2	Standard	0.250	4.77	278.162	13238.635	0.210	0.2	-12.1	NO	1.000	NO	bb
2	2 190125M2_3	Standard	0.500	4.77	632.741	13422.568	0.471	0.5	-1.4	NO	1.000	NO	bb
3	3 190125M2_4	Standard	1.000	4.77	1185.657	13197.230	0.898	0.9	-6.1	NO	1.000	NO	ММ
4	4 190125M2_5	Standard	2.000	4.77	2463.822	13232.861	1.862	1.9	-2.7	NO	1.000	NO	bb
5	5 190125M2_6	Standard	5.000	4.77	6339.692	14111.915	4.492	4.7	-6.1	NO	1.000	NO	мм
6	6 190125M2_7	Standard	10.000	4.76	13534.362	14405.215	9.395	9.8	-1.8	NO	1.000	NO	ММ
7	7 190125M2_8	Standard	25.000	4.77	32468.365	13324.019	24.368	25.5	1.9	NO	1.000	NO	bb
8	8 190125M2_9	Standard	50.000	4.76	62510.633	13089.006	47.758	49.9	-0.1	NO	1.000	NO	bb
9-11	9 190125M2_10	Standard	75.000	4.76	95427.750	13058.350	73.078	76.4	1.9	NO	1.000	NO	bb
10	10 190125M2_11	Standard	100.000	4.76	122234.961	12929.790	94.537	98.8	-1.2	NO	1.000	NO	bb

Compound name: PFNA

Coefficient of Determination: R^2 = 0.999510

Calibration curve: 1.03879 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

10 mm	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 190125M2_2	Standard	0.250	5.05	310.586	13238.635	0.235	0.2	-9.7	NO	1.000	NO	bb
2	2 190125M2_3	Standard	0.500	5.05	676.892	13422.568	0.504	0.5	-2.9	NO	1.000	NO	bb
3	3 190125M2_4	Standard	1.000	5.05	1232.312	13197.230	0.934	0.9	-10.1	NO	1.000	NO	MM
4	4 190125M2_5	Standard	2.000	5.05	2549.725	13232.861	1.927	1.9	-7.3	NO	1.000	NO	bb
5	5 190125M2_6	Standard	5.000	5.05	6632.506	14111.915	4.700	4.5	-9.5	NO	1.000	NO	bb
6	6 190125M2_7	Standard	10.000	5.05	14183.233	14405.215	9.846	9.5	-5.2	NO	1.000	NO	bb
7	7 190125M2_8	Standard	25.000	5.05	35495.316	13324.019	26.640	25.6	2.6	NO	1.000	NO	bb
8	8 190125M2_9	Standard	50.000	5.05	68814.852	13089.006	52.575	50.6	1.2	NO -	1.000	NO	bb
9	9 190125M2_10	Standard	75.000	5.05	102438.109	13058.350	78.446	75.5	0.7	NO	1.000	NO	bb
10	10 190125M2_11	Standard	100.000	5.05	133652.688	12929.790	103.368	99.5	-0.5	NO	1.000	NO	bb

Work Order 1900154 Page 64 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFOS

Coefficient of Determination: R^2 = 0.999087

Calibration curve: 1.05987 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 190125M2_2	Standard	0.232	5.11	40.336	6318.250	0.183	0.2	-25.5	NO	0.999	NO	MM
2	2 190125M2_3	Standard	0.464	5.10	100.258	6177.965	0.466	0.4	-5.3	NO	0.999	NO	MM
3	3 190125M2_4	Standard	0.928	5.10	183.556	6156.587	0.856	8.0	-13.0	NO	0.999	NO	MM
4	4 190125M2_5	Standard	1.860	5.10	364.900	6344.740	1.651	1.6	-16.3	NO	0.999	NO	MM
5	5 190125M2_6	Standard	4.640	5.10	1091.568	6716.111	4.665	4.4	-5.1	NO	0.999	NO	MM
6	6 190125M2_7	Standard	9.240	5.10	2331.671	7051.897	9.489	9.0	-3.1	NO	0.999	NO	MM
7	7 190125M2_8	Standard	23.100	5.10	5700.035	6881.489	23.773	22.4	-2.9	NO	0.999	NO	MM
8	8 190125M2_9	Standard	46.200	5.10	11295.927	6653.967	48.722	46.0	-0.5	NO	0.999	NO	MM
9	9 190125M2_10	Standard	69.400	5.10	16418.201	6486.159	72.647	68.5	-1.2	NO	0.999	NO	MM
10	10 190125M2_11	Standard	92.500	5.10	22647.469	6435.829	100.994	95.3	3.0	NO	0.999	NO	MM

Compound name: PFDA

Coefficient of Determination: $R^2 = 0.999110$ Calibration curve: -0.000668869 * $x^2 + 1.09721 * x$

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 Marie Special Control	1 190125M2_2	Standard	0.250	5.29	363.418	13238.635	0.275	0.3	0.1	NO	0.999	NO	bb
2	2 190125M2_3	Standard	0.500	5.29	722.222	13422.568	0.538	0.5	-1.9	NO	0.999	NO	bb
3	3 190125M2_4	Standard	1.000	5.28	1396.377	13197.230	1.058	1.0	-3.5	NO	0.999	NO	bb
4	4 190125M2_5	Standard	2.000	5.29	2729.562	13232.861	2.063	1.9	-5.9	NO	0.999	NO	bb
5 /	5 190125M2_6	Standard	5.000	5.29	6726.882	14111.915	4.767	4.4	-12.9	NO	0.999	NO	bb
6	6 190125M2_7	Standard	10.000	5.29	14669.250	14405.215	10.183	9.3	-6.7	NO	0.999	NO	bb
7	7 190125M2_8	Standard	25.000	5.29	37072.961	13324.019	27.824	25.8	3.1	NO	0.999	NO	bb
8 11 7	8 190125M2_9	Standard	50.000	5.29	71425.406	13089.006	54.569	51.3	2.7	NO	0.999	NO	bb
9 constitution	9 190125M2_10	Standard	75.000	5.29	103551.703	13058.350	79.299	75.8	1.0	NO	0.999	NO	bb
10	10 190125M2_11	Standard	100.000	5.28	131459.625	12929.790	101.672	98.6	-1.4	NO	0.999	NO	bb

Work Order 1900154 Page 65 of 137

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: N-MeFOSAA

Coefficient of Determination: $R^2 = 0.998535$ Calibration curve: $0.000374442 \times x^2 + 1.91365 \times x$

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
7 79 44.	1 190125M2_2	Standard	0.250	5.39	82.741	10088.120	0.328	0.2	-31.4	NO	0.999	NO	MM
2	2 190125M2_3	Standard	0.500	5.39	199.056	10084.904	0.790	0.4	-17.5	NO	0.999	NO	MM
3	3 190125M2_4	Standard	1.000	5.39	488.625	10739.072	1.820	1.0	-4.9	NO	0.999	NO	MM
4	4 190125M2_5	Standard	2.000	5.39	902.930	10593.758	3.409	1.8	-11.0	NO	0.999	NO	ММ
5	5 190125M2_6	Standard	5.000	5.39	2609.205	10954.437	9.527	5.0	-0.5	NO	0.999	NO	MM
6	6 190125M2_7	Standard	10.000	5.39	5074.707	11478.527	17.684	9.2	-7.8	NO	0.999	NO	MM
7	7 190125M2_8	Standard	25.000	5.39	13389.051	11323.078	47.298	24.6	-1.6	NO	0.999	NO	MM
8	8 190125M2_9	Standard	50.000	5.39	26630.715	10746.071	99.127	51.3	2.6	NO	0.999	NO	мм
9	9 190125M2_10	Standard	75.000	5.39	39574.680	10429.392	151.781	78.1	4.2	NO	0.999	NO	MM
10	10 190125M2_11	Standard	100.000	5.39	52609.309	11099.103	189.598	97.2	-2.8	NO	0.999	NO	MM

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.998372

Calibration curve: 1.52534 * x

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1530	1 190125M2_2	Standard	0.250	5.50	45.770	10088.120	0.181	0.1	-52.4	NO	0.998	NO	MMX
2	2 190125M2_3	Standard	0.500	5.49	194.907	10084.904	0.773	0.5	1.4	NO	0.998	NO	ММ
3	3 190125M2_4	Standard	1.000	5.49	405.399	10739.072	1.510	1.0	-1.0	NO	0.998	NO	ММ
4	4 190125M2_5	Standard	2.000	5.49	748.909	10593.758	2.828	1.9	-7.3	NO	0.998	NO	MM
5	5 190125M2_6	Standard	5.000	5.49	1974.844	10954.437	7.211	4.7	-5.4	NO	0.998	NO	MM
6	6 190125M2_7	Standard	10.000	5.49	4324.360	11478.527	15.069	9.9	-1.2	NO	0.998	NO	ММ
7	7 190125M2_8	Standard	25.000	5.50	10045.784	11323.078	35.488	23.3	-6.9	NO	0.998	NO	MM
8	8 190125M2_9	Standard	50.000	5.49	21213.309	10746.071	78.962	51.8	3.5	NO	0.998	NO	MM
9	9 190125M2_10	Standard	75.000	5.49	31060.146	10429.392	119.125	78.1	4.1	NO	0.998	NO	MM
10	10 190125M2_11	Standard	100.000	5.49	41229.375	11099.103	148.586	97.4	-2.6	NO	0.998	NO	MM

Work Order 1900154 Page 66 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFUnA

Coefficient of Determination: R^2 = 0.999265

Calibration curve: 1.00604 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Type -	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 190125M2_2	Standard	0.250	5.50	348.493	13238.635	0.263	0.3	4.7	NO	0.999	NO	bb
2	2 190125M2_3	Standard	0.500	5.50	716.673	13422.568	0.534	0.5	6.1	NO	0.999	NO	bb
3	3 190125M2_4	Standard	1.000	5.49	1188.670	13197.230	0.901	0.9	-10.5	NO	0.999	NO	bb
4	4 190125M2_5	Standard	2.000	5.50	2708.960	13232.861	2.047	2.0	1.7	NO	0.999	NO	bb .
5	5 190125M2_6	Standard	5.000	5.50	6248.540	14111.915	4.428	4.4	-12.0	NO	0.999	NO	ММ
6	6 190125M2_7	Standard	10.000	5.50	14135.051	14405.215	9.812	9.8	-2.5	NO	0.999	NO	bb
7	7 190125M2_8	Standard	25.000	5.50	32950.063	13324.019	24.730	24.6	-1.7	NO	0.999	NO	bb
8	8 190125M2_9	Standard	50.000	5.50	68081.484	13089.006	52.014	51.7	3.4	NO	0.999	NO	bb
9	9 190125M2_10	Standard	75.000	5.50	99808.242	13058.350	76.433	76.0	1.3	NO	0.999	NO	bb
10	10 190125M2_11	Standard	100.000	5.50	128277.594	12929.790	99.211	98.6	-1.4	NO	0.999	NO	bb

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.999125

Calibration curve: 0.142897 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 190125M2_2	Standard	0.250	5.68	51.881	13238.635	0.039	0.3	9.7	NO	0.999	NO	bb
2	2 190125M2_3	Standard	0.500	5.69	84.475	13422.568	0.063	0.4	-11.9	NO	0.999	NO	bb
3	3 190125M2_4	Standard	1.000	5.68	160.247	13197.230	0.121	8.0	-15.0	NO	0.999	NO	ММ
4 7	4 190125M2_5	Standard	2.000	5.68	379.448	13232.861	0.287	2.0	0.3	NO	0.999	NO	bb
5	5 190125M2_6	Standard	5.000	5.68	931.800	14111.915	0.660	4.6	-7.6	NO	0.999	NO	bb
6 Hamilton	6 190125M2_7	Standard	10.000	5.68	1844.601	14405.215	1.281	9.0	-10.4	NO	0.999	NO	bb
7	7 190125M2_8	Standard	25.000	5.68	4954.741	13324.019	3.719	26.0	4.1	NO	0.999	NO	bb
8	8 190125M2_9	Standard	50.000	5.68	9500.939	13089.006	7.259	50.8	1.6	NO	0.999	NO	bd
9	9 190125M2_10	Standard	75.000	5.68	13932.652	13058.350	10.670	74.7	-0.4	NO	0.999	NO	ММ
10	10 190125M2_11	Standard	100.000	5.68	18496.830	12929.790	14.306	100.1	0.1	NO	0.999	NO	bb

Work Order 1900154 Page 67 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFTrDA

Coefficient of Determination: R^2 = 0.999385

Calibration curve: 1.40511 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT.	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 190125M2_2	Standard	0.250	5.84	517.185	13238.635	0.391	0.3	11.2	NO	0.999	NO	bb
2	2 190125M2_3	Standard	0.500	5.84	960.131	13422.568	0.715	0.5	1.8	NO	0.999	NO	bb
3	3 190125M2_4	Standard	1.000	5.84	1803.740	13197.230	1.367	1.0	-2.7	NO	0.999	NO	bb
4	4 190125M2_5	Standard	2.000	5.84	3697.014	13232.861	2.794	2.0	-0.6	NO	0.999	NO	bb
5	5 190125M2_6	Standard	5.000	5.84	9384.550	14111.915	6.650	4.7	-5.3	NO	0.999	NO	bb
6	6 190125M2_7	Standard	10.000	5.84	20118.523	14405.215	13.966	9.9	-0.6	NO	0.999	NO	bb
7	7 190125M2_8	Standard	25.000	5.84	49768.676	13324.019	37.353	26.6	6.3	NO	0.999	NO	bb
8200000	8 190125M2_9	Standard	50.000	5.84	93476.539	13089.006	71.416	50.8	1.7	NO	0.999	NO	bb
9	9 190125M2_10	Standard	75.000	5.84	135829.625	13058.350	104.017	74.0	-1.3	NO	0.999	NO	bb
10	10 190125M2_11	Standard	100.000	5.84	179666.344	12929.790	138.955	98.9	-1.1	NO	0.999	NO	bb

Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.999344

Calibration curve: 1.2626 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

and a supplied to	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
15 50	1 190125M2_2	Standard	0.250	5.98	434.062	13238.635	0.328	0.3	3.9	NO	0.999	NO	MM
2	2 190125M2_3	Standard	0.500	5.98	842.208	13422.568	0.627	0.5	-0.6	NO	0.999	NO	bb
3	3 190125M2_4	Standard	1.000	5.98	1653.217	13197.230	1.253	1.0	-0.8	NO	0.999	NO	bb
4	4 190125M2_5	Standard	2.000	5.98	3361.671	13232.861	2.540	2.0	0.6	NO	0.999	NO	bb
5	5 190125M2_6	Standard	5.000	5.98	8498.948	14111.915	6.023	4.8	-4.6	NO	0.999	NO	bb
6	6 190125M2_7	Standard	10.000	5.98	18097.814	14405.215	12.563	10.0	-0.5	NO	0.999	NO	bb
7	7 190125M2_8	Standard	25.000	5.98	44419.969	13324.019	33.338	26.4	5.6	NO	0.999	NO	bb
8	8 190125M2_9	Standard	50.000	5.98	84103.367	13089.006	64.255	50.9	1.8	NO	0.999	NO	bb
9	9 190125M2_10	Standard	75.000	5.98	124337.516	13058.350	95.217	75.4	0.6	NO	0.999	NO	bb
10	10 190125M2_11	Standard	100.000	5.98	159268.281	12929.790	123.179	97.6	-2.4	NO	0.999	NO	bb

Work Order 1900154 Page 68 of 137

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: 13C2-PFHxA Response Factor: 0.641184

RRF SD: 0.0202142, Relative SD: 3.15263

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD C	oD Flag	x=excluded
1 5 611	1 190125M2_2	Standard	10.000	4.05	8170.001	13238.635	6.171	9.6	-3.8	NO	200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO	bb
2	2 190125M2_3	Standard	10.000	4.05	8478.630	13422.568	6.317	9.9	-1.5	NO		NO	bb
3	3 190125M2_4	Standard	10.000	4.05	8309.997	13197.230	6.297	9.8	-1.8	NO		NO	bb
4	4 190125M2_5	Standard	10.000	4.05	8658.929	13232.861	6.544	10.2	2.1	NO		NO	bb
5	5 190125M2_6	Standard	10.000	4.05	8697.279	14111.915	6.163	9.6	-3.9	NO		NO	bb
6	6 190125M2_7	Standard	10.000	4.05	9001.449	14405.215	6.249	9.7	-2.5	NO		NO	bb
7	7 190125M2_8	Standard	10.000	4.05	8873.097	13324.019	6.659	10.4	3.9	NO		NO	bb
8	8 190125M2_9	Standard	10.000	4.05	8423.649	13089.006	6.436	10.0	0.4	NO		NO	bb
9	9 190125M2_10	Standard	10.000	4.05	8783.473	13058.350	6.726	10.5	4.9	NO		NO	bb
10	10 190125M2_11	Standard	10.000	4.05	8477.752	12929.790	6.557	10.2	2.3	NO		NO	bb

Compound name: 13C2-PFDA Response Factor: 0.896264

RRF SD: 0.0463036, Relative SD: 5.16629

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	- x=excluded
1	1 190125M2_2	Standard	10.000	5.29	11360.929	13238.635	8.582	9.6	-4.3	NO		NO	bb
2	2 190125M2_3	Standard	10.000	5.29	11049.973	13422.568	8.232	9.2	-8.1	NO		NO	bb
3 . 旧	3 190125M2_4	Standard	10.000	5.28	11915.188	13197.230	9.029	10.1	0.7	NO		NO	bb
4	4 190125M2_5	Standard	10.000	5.29	12742.672	13232.861	9.630	10.7	7.4	NO		NO	bd
5	5 190125M2_6	Standard	10.000	5.29	11653.777	14111.915	8.258	9.2	-7.9	NO		NO	bb
6	6 190125M2_7	Standard	10.000	5.29	12973.651	14405.215	9.006	10.0	0.5	NO		NO	bb
7	7 190125M2_8	Standard	10.000	5.29	12177.899	13324.019	9.140	10.2	2.0	NO		NO	bb
8	8 190125M2_9	Standard	10.000	5.29	12267.064	13089.006	9.372	10.5	4.6	NO		NO	bb
8 9	9 190125M2_10	Standard	10.000	5.29	12043.475	13058.350	9.223	10.3	2.9	NO		NO	bb
10	10 190125M2_11	Standard	10.000	5.29	11837.586	12929.790	9.155	10.2	2.1	NO		NO	bb

Work Order 1900154 Page 69 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: d5-N-EtFOSAA

Response Factor: 1.51187

RRF SD: 0.0499222, Relative SD: 3.30201

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	ma RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 190125M2_2	Standard	40.000	5.49	14940.671	10088.120	59.241	39.2	-2.0	NO		NO	bb
2	2 190125M2_3	Standard	40.000	5.49	15981.315	10084.904	63.387	41.9	4.8	NO		NO	bb
3	3 190125M2_4	Standard	40.000	5.49	16059.066	10739.072	59.815	39.6	-1.1	NO		NO	bb
4	4 190125M2_5	Standard	40.000	5.49	15986.667	10593.758	60.363	39.9	-0.2	NO		NO	bb
5	5 190125M2_6	Standard	40.000	5.49	17095.248	10954.437	62.423	41.3	3.2	NO		NO	tob l
6	6 190125M2_7	Standard	40.000	5.49	17064.428	11478.527	59.466	39.3	-1.7	NO		NO	bb
7	7 190125M2_8	Standard	40.000	5.49	17114.920	11323.078	60.460	40.0	-0.0	NO		NO	bb
8	8 190125M2_9	Standard	40.000	5.49	15535.926	10746.071	57.829	38.3	-4.4	NO		NO	bb
9	9 190125M2_10	Standard	40.000	5.49	16546.311	10429.392	63.460	42.0	4.9	NO		NO	bb
10	10 190125M2_11	Standard	40.000	5.49	16178.246	11099.103	58.305	38.6	-3.6	NO		NO	bb

Compound name: 13C2-PFOA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	BT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 190125M2_2	Standard	10.000	4.77	13238.635	13238.635	10.000	10.0	0.0	NO	ADEAS A LA COMPANIA POR MARCONO	NO	MM
2	2 190125M2_3	Standard	10.000	4.76	13422.568	13422.568	10.000	10.0	0.0	NO		NO	bb
3	3 190125M2_4	Standard	10.000	4.76	13197.230	13197.230	10.000	10.0	0.0	NO		NO	bb
4	4 190125M2_5	Standard	10.000	4.76	13232.861	13232.861	10.000	10.0	0.0	NO		NO	bb
5	5 190125M2_6	Standard	10.000	4.77	14111.915	14111.915	10.000	10.0	0.0	NO		NO	bb
6	6 190125M2_7	Standard	10.000	4.77	14405.215	14405.215	10.000	10.0	0.0	NO		NO	bb
7	7 190125M2_8	Standard	10.000	4.77	13324.019	13324.019	10.000	10.0	0.0	NO		NO	bb
8	8 190125M2_9	Standard	10.000	4.76	13089.006	13089.006	10.000	10.0	0.0	NO		NO	MM
9	9 190125M2_10	Standard	10.000	4.76	13058.350	13058.350	10.000	10.0	0.0	NO		NO	bb
10	10 190125M2_11	Standard	10.000	4.76	12929.790	12929.790	10.000	10.0	0.0	NO		NO	bb

Work Order 1900154 Page 70 of 137

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)

Curve type: RF

idilet -	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1,4	1 190125M2_2	Standard	28.700	5.10	6318.250	6318.250	28.700	28.7	0.0	NO	2	NO	bb
2	2 190125M2_3	Standard	28.700	5.10	6177.965	6177.965	28.700	28.7	0.0	NO		NO	bb
3	3 190125M2_4	Standard	28.700	5.10	6156.587	6156.587	28.700	28.7	0.0	NO		NO	bb
4	4 190125M2_5	Standard	28.700	5.10	6344.740	6344.740	28.700	28.7	0.0	NO		NO	bb
5	5 190125M2_6	Standard	28.700	5.10	6716.111	6716.111	28.700	28.7	0.0	NO		NO	bb
6	6 190125M2_7	Standard	28.700	5.10	7051.897	7051.897	28.700	28.7	0.0	NO		NO	bb
7	7 190125M2_8	Standard	28.700	5.10	6881.489	6881.489	28.700	28.7	0.0	NO		NO	bb
8	8 190125M2_9	Standard	28.700	5.10	6653.967	6653.967	28.700	28.7	0.0	NO		NO	bb
9	9 190125M2_10	Standard	28.700	5.10	6486.159	6486.159	28.700	28.7	0.0	NO		NO	bb
10	10 190125M2_11	Standard	28.700	5.10	6435.829	6435.829	28.700	28.7	0.0	NO		NO	bb

Compound name: d3-N-MeFOSAA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 3	1 190125M2_2	Standard	40.000	5.39	10088.120	10088.120	40.000	40.0	0.0	NO		NO	bb
2	2 190125M2_3	Standard	40.000	5.39	10084.904	10084.904	40.000	40.0	0.0	NO		NO	bb
3	3 190125M2_4	Standard	40.000	5.39	10739.072	10739.072	40.000	40.0	0.0	NO		NO	bb
4	4 190125M2_5	Standard	40.000	5.39	10593.758	10593.758	40.000	40.0	0.0	NO		NO	bb
5	5 190125M2_6	Standard	40.000	5.39	10954.437	10954.437	40.000	40.0	0.0	NO		NO	bb
6	6 190125M2_7	Standard	40.000	5.39	11478.527	11478.527	40.000	40.0	0.0	NO		NO	bb
7	7 190125M2_8	Standard	40.000	5.39	11323.078	11323.078	40.000	40.0	0.0	NO		NO	bb
8	8 190125M2_9	Standard	40.000	5.39	10746.071	10746.071	40.000	40.0	0.0	NO		NO	bb
9	9 190125M2_10	Standard	40.000	5.39	10429.392	10429.392	40.000	40.0	0.0	NO		NO	bb
10	10 190125M2_11	Standard	40.000	5.39	11099.103	11099.103	40.000	40.0	0.0	NO		NO	bb

Work Order 1900154 Page 71 of 137

MassLynx MassLynx V4.1 SCN945 SCN960

Page 1 of 1

Dataset:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:22:34 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701

	# Name	IS#	CoD	CoD Flag	%RSD
1	1 PFBS	19	0.9995	NO	
2	2 PFHxA	18	0.9994	NO	
13	з РҒНрА	18	0.9997	NO	
4	4 PFHxS	19	0.9989	NO	,
5	5 PFOA	18	0.9997	NO	
6	6 PFNA	18	0.9995	NO	1
7	7 PFOS	19	0.9991	NO	
8	8 PFDA	18	0.9991	NO	
9	9 N-MeFOSAA	20	0.9985	NO	
110	10 N-EtFOSAA	20	0.9984	NO	
11	11 PFUnA	18	0.9993	NO	1
12	12 PFDoA	18	0.9991	NO	
13	13 PFTrDA	18	0.9994	NO	
14	14 PFTeDA	18	0.9993	NO	
15	15 13C2-PFHxA	18		NO	3.153
116	16 13C2-PFDA	18		NO	5.166
17	17 d5-N-EtFOSAA	20		NO	3.302
18	18 13C2-PFOA	18		NO	0.000
19	19 13C4-PFOS	19		NO	0.000
20	20 d3-N-MeFOSAA	20		NO	0.000

Work Order 1900154 Page 72 of 137

Untitled

Last Altered:

Saturday, January 26, 2019 15:29:42 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:29:51 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_011919.mdb 19 Jan 2019 16:03:11 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS

	# Name		Acq.Date	Acq.Time
	1 190125M2_1	IPA	25-Jan-19	17:22:45
.2	2 190125M2_2	ST190125M2-1 537 CS-4 19A1701	25-Jan-19	17:34:29
3	3 190125M2_3	ST190125M2-2 537 CS-3 19A1702	25-Jan-19	17:46:20
4	4 190125M2_4	ST190125M2-3 537 CS-2 19A1703	25-Jan-19	17:58:06
5	5 190125M2_5	ST190125M2-4 537 CS-1 19A1704	25-Jan-19	18:09:57
6	6 190125M2_6	ST190125M2-5 537 CS0 19A1705	25-Jan-19	18:21:43
7	7 190125M2_7	ST190125M2-6 537 CS1 19A1706	25-Jan-19	18:33:26
8	8 190125M2_8	ST190125M2-7 537 CS2 19A1707	25-Jan-19	18:45:17
9	9 190125M2_9	ST190125M2-8 537 CS3 19A1708	25-Jan-19	18:57:03
10	10 190125M2_10	ST190125M2-9 537 CS4 19A1709	25-Jan-19	19:08:54
11	11 190125M2_11	ST190125M2-10 537 CS5 19A1710	25-Jan-19	19:20:39
12	12 190125M2_12	IPA	25-Jan-19	19:32:30
.13 Julia	13 190125M2_13	ICV190125M2-1 537 ICV 19A1711	25-Jan-19	19:44:16
14	14 190125M2_14	IPA	25-Jan-19	19:56:07

Work Order 1900154 Page 73 of 137

ICAL	- Jack						
	-	High	14405.22	RPD			
Compound 18: 13C2-PFOA	_	Low	12929.79	10.80			
ID	Name	Туре	Std. Conc RT		Area	IS Area	Response Primary Flags
1 ST190125M2-1 537 CS-4 19A1701	190125M2_2	Standard	10	4.77	13238.64	13238.64	10 MM
2 ST190125M2-2 537 CS-3 19A1702	190125M2_3	Standard	10	4.76	13422.57	13422.57	10 bb
3 ST190125M2-3 537 CS-2 19A1703	190125M2_4	Standard	10	4.76	13197.23	13197.23	10 bb
4 ST190125M2-4 537 CS-1 19A1704	190125M2_5	Standard	10	4.76	13232.86	13232.86	10 bb
5 ST190125M2-5 537 CS0 19A1705	190125M2_6	Standard	10	4.77	14111.92	14111.92	10 bb
6 ST190125M2-6 537 CS1 19A1706	190125M2_7	Standard	10	4.77	14405.22	14405.22	10 bb
7 ST190125M2-7 537 CS2 19A1707	190125M2_8	Standard	10	4.77	1332 4 .02	13324.02	10 bb
8 ST190125M2-8 537 CS3 19A1708	190125M2_9	Standard	10	4.76	13089.01	13089.01	10 MM
9 ST190125M2-9 537 CS4 19A1709	190125M2_10	Standard	10	4.76	13058.35	13058.35	10 bb
10 ST190125M2-10 537 CS5 19A1710	190125M2_11	Standard	10	4.76	12929.79	12929.79	10 bb
					Average:	13400.96	
		High	7051.897	RPD			
Compound 19: 13C4-PFOS	_	Low	6156.587	13.56			
ID	Name	Туре	Std. Conc RT		Area	IS Area	Response Primary Flags
1 ST190125M2-1 537 CS-4 19A1701	190125M2_2	Standard	28.7	5.10	6318.25	6318.25	28.7 bb
2 ST190125M2-2 537 CS-3 19A1702	190125M2_3	Standard	28.7	5.10	6177.97	6177.97	28.7 bb
3 ST190125M2-3 537 CS-2 19A1703	190125M2_4	Standard	28.7	5.10	6156.59	6156.59	28.7 bb
4 ST190125M2-4 537 CS-1 19A1704	190125M2_5	Standard	28.7	5.10	6344.74	6344.74	28.7 bb
5 ST190125M2-5 537 CS0 19A1705	190125M2_6	Standard	28.7	5.10	6716.11	6716.11	28.7 bb
6 ST190125M2-6 537 CS1 19A1706	190125M2_7	Standard	28.7	5.10	7051.90	7051.90	28.7 bb
7 ST190125M2-7 537 CS2 19A1707	190125M2_8	Standard	28.7	5.10	6881.49	6881.49	28.7 bb
8 ST190125M2-8 537 CS3 19A1708	190125M2_9	Standard	28.7	5.10	6653.97	6653.97	28.7 bb
9 ST190125M2-9 537 CS4 19A1709	190125M2_10	Standard	28.7	5.10	6486.16	6486.16	28.7 bb
10 ST190125M2-10 537 CS5 19A1710	190125M2_11	Standard	28.7	5.10	6435.83	6435.83	28.7 bb
					Average:	6522.30	

KBF 1/26/2019

Work Order 1900154 Page 76 of 137

Compound 20: d3-N-MeFOSAA	-	High Low	11478.53 10084.90	RPD 12.93			
ID	Name	Туре	Std. Conc RT		Area	IS Area	Response Primary Flags
1 ST190125M2-1 537 CS-4 19A1701	190125M2_2	Standard	40	5.39	10088.12	10088.12	40 bb
2 ST190125M2-2 537 CS-3 19A1702	190125M2_3	Standard	40	5.39	10084.90	10084.90	40 bb
3 ST190125M2-3 537 CS-2 19A1703	190125M2_4	Standard	40	5.39	10739.07	10739.07	40 bb
4 ST190125M2-4 537 CS-1 19A1704	190125M2_5	Standard	40	5.39	10593.76	10593.76	40 bb
5 ST190125M2-5 537 CS0 19A1705	190125M2_6	Standard	40	5.39	10954.44	10954.44	40 bb
6 ST190125M2-6 537 CS1 19A1706	190125M2_7	Standard	40	5.39	11478.53	11478.53	40 bb
7 ST190125M2-7 537 CS2 19A1707	190125M2_8	Standard	40	5.39	11323.08	11323.08	40 bb
8 ST190125M2-8 537 CS3 19A1708	190125M2_9	Standard	40	5.39	10746.07	10746.07	40 bb
9 ST190125M2-9 537 CS4 19A1709	190125M2_10	Standard	40	5.39	10429.39	10429.39	40 bb
10 ST190125M2-10 537 CS5 19A1710	190125M2_11	Standard	40	5.39	11099.10	11099.10	40 bb
					Average:	10753.65	

Quantify Calibration Report MassLynx MassLynx V4.1 SCN945 SCN960

Page 1 of 14

Vista Analytical Laboratory Q1

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS

Coefficient of Determination: R^2 = 0.999485

Calibration curve: 0.928174 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFHxA

Coefficient of Determination: R^2 = 0.999436

Calibration curve: 0.834519 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 79 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFHpA

Coefficient of Determination: R^2 = 0.999680

Calibration curve: 0.720119 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 80 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFHxS

Coefficient of Determination: R^2 = 0.998938

Calibration curve: 0.724235 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 81 of 137

,

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Dataset:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFOA

Coefficient of Determination: R^2 = 0.999691

Calibration curve: 0.956545 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 82 of 137

Vista Analytical Laboratory Q1

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFNA

Coefficient of Determination: R^2 = 0.999510

Calibration curve: 1.03879 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 83 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFOS

Coefficient of Determination: R^2 = 0.999087

Calibration curve: 1.05987 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154

Vista Analytical Laboratory Q1

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFDA

Coefficient of Determination: $R^2 = 0.999110$ Calibration curve: -0.000668869 * $x^2 + 1.09721$ * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 85 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.998535 Calibration curve: 0.000374442 * x^2 + 1.91365 * x

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 86 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.998372

Calibration curve: 1.52534 * x

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 87 of 137

Vista Analytical Laboratory Q1

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFUnA

Coefficient of Determination: R^2 = 0.999265

Calibration curve: 1.00604 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 88 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.999125

Calibration curve: 0.142897 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 89 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFTrDA

Coefficient of Determination: R^2 = 0.999385

Calibration curve: 1.40511 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 90 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.999344

Calibration curve: 1.2626 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900154 Page 91 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18 537 Q4 01-25-19 L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2 2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701

Work Order 1900154 Page 93 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701

Work Order 1900154 Page 94 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701

d5-N-EtFOSAA

Work Order 1900154 Page 95 of 137

Printed:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_3, Date: 25-Jan-2019, Time: 17:46:20, ID: ST190125M2-2 537 CS-3 19A1702, Description: 537 CS-3 19A1702

Work Order 1900154 Page 96 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_3, Date: 25-Jan-2019, Time: 17:46:20, ID: ST190125M2-2 537 CS-3 19A1702, Description: 537 CS-3 19A1702

Work Order 1900154 Page 97 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_3, Date: 25-Jan-2019, Time: 17:46:20, ID: ST190125M2-2 537 CS-3 19A1702, Description: 537 CS-3 19A1702

Work Order 1900154 Page 98 of 137

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Saturday, January 26, 2019 15:19:43 Pacific Standard Time Printed:

Name: 190125M2_3, Date: 25-Jan-2019, Time: 17:46:20, ID: ST190125M2-2 537 CS-3 19A1702, Description: 537 CS-3 19A1702

d5-N-EtFOSAA

Page 99 of 137 Work Order 1900154

Vista Analytical Laboratory

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_4, Date: 25-Jan-2019, Time: 17:58:06, ID: ST190125M2-3 537 CS-2 19A1703, Description: 537 CS-2 19A1703

Work Order 1900154 Page 100 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_4, Date: 25-Jan-2019, Time: 17:58:06, ID: ST190125M2-3 537 CS-2 19A1703, Description: 537 CS-2 19A1703

Work Order 1900154 Page 101 of 137

Vista Analytical Laboratory

Dataset:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_4, Date: 25-Jan-2019, Time: 17:58:06, ID: ST190125M2-3 537 CS-2 19A1703, Description: 537 CS-2 19A1703

Work Order 1900154 Page 102 of 137

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_4, Date: 25-Jan-2019, Time: 17:58:06, ID: ST190125M2-3 537 CS-2 19A1703, Description: 537 CS-2 19A1703

d5-N-EtFOSAA

Work Order 1900154 Page 103 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 19A1704

Work Order 1900154 Page 104 of 137

MassLynx MassLynx V4.1 SCN945 SCN960

Page 14 of 40

Vista Analytical Laboratory

Dataset:

Printed:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 19A1704

Work Order 1900154 Page 105 of 137

Printed:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 19A1704

Work Order 1900154 Page 106 of 137

 Quantify Sample Report
 MassLynx MassLynx V4.1 SCN945 SCN960

 Vista Analytical Laboratory
 Page 16 of 40

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 19A1704

d5-N-EtFOSAA

Work Order 1900154 Page 107 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 19A1704

d5-N-EtFOSAA

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_6, Date: 25-Jan-2019, Time: 18:21:43, ID: ST190125M2-5 537 CS0 19A1705, Description: 537 CS0 19A1705

Work Order 1900154

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.gld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_6, Date: 25-Jan-2019, Time: 18:21:43, ID: ST190125M2-5 537 CS0 19A1705, Description: 537 CS0 19A1705

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_6, Date: 25-Jan-2019, Time: 18:21:43, ID: ST190125M2-5 537 CS0 19A1705, Description: 537 CS0 19A1705

Work Order 1900154 Page 111 of 137

 Quantify Sample Report
 MassLynx MassLynx V4.1 SCN945 SCN960
 Page 20 of 40

 Vista Analytical Laboratory

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_6, Date: 25-Jan-2019, Time: 18:21:43, ID: ST190125M2-5 537 CS0 19A1705, Description: 537 CS0 19A1705

d5-N-EtFOSAA

Work Order 1900154 Page 112 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.gld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed: S

Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_7, Date: 25-Jan-2019, Time: 18:33:26, ID: ST190125M2-6 537 CS1 19A1706, Description: 537 CS1 19A1706

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_7, Date: 25-Jan-2019, Time: 18:33:26, ID: ST190125M2-6 537 CS1 19A1706, Description: 537 CS1 19A1706

Work Order 1900154 Page 114 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_7, Date: 25-Jan-2019, Time: 18:33:26, ID: ST190125M2-6 537 CS1 19A1706, Description: 537 CS1 19A1706

Work Order 1900154 Page 115 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_7, Date: 25-Jan-2019, Time: 18:33:26, ID: ST190125M2-6 537 CS1 19A1706, Description: 537 CS1 19A1706

d5-N-EtFOSAA

Vista Analytical Laboratory

Dataset:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_8, Date: 25-Jan-2019, Time: 18:45:17, ID: ST190125M2-7 537 CS2 19A1707, Description: 537 CS2 19A1707

Work Order 1900154

Page 117 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_8, Date: 25-Jan-2019, Time: 18:45:17, ID: ST190125M2-7 537 CS2 19A1707, Description: 537 CS2 19A1707

•

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Dataset:

Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_8, Date: 25-Jan-2019, Time: 18:45:17, ID: ST190125M2-7 537 CS2 19A1707, Description: 537 CS2 19A1707

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_8, Date: 25-Jan-2019, Time: 18:45:17, ID: ST190125M2-7 537 CS2 19A1707, Description: 537 CS2 19A1707

d5-N-EtFOSAA

Work Order 1900154 Page 120 of 137

Quantify Sample Report Vista Analytical Laboratory

Dataset:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_9, Date: 25-Jan-2019, Time: 18:57:03, ID: ST190125M2-8 537 CS3 19A1708, Description: 537 CS3 19A1708

Work Order 1900154 Page 121 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_9, Date: 25-Jan-2019, Time: 18:57:03, ID: ST190125M2-8 537 CS3 19A1708, Description: 537 CS3 19A1708

Work Order 1900154 Page 122 of 137

Printed:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_9, Date: 25-Jan-2019, Time: 18:57:03, ID: ST190125M2-8 537 CS3 19A1708, Description: 537 CS3 19A1708

Work Order 1900154 Page 123 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_9, Date: 25-Jan-2019, Time: 18:57:03, ID: ST190125M2-8 537 CS3 19A1708, Description: 537 CS3 19A1708

d5-N-EtFOSAA

Work Order 1900154 Page 124 of 137

Quantify Sample Report

MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory

Dataset:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_10, Date: 25-Jan-2019, Time: 19:08:54, ID: ST190125M2-9 537 CS4 19A1709, Description: 537 CS4 19A1709

Work Order 1900154 Page 125 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_10, Date: 25-Jan-2019, Time: 19:08:54, ID: ST190125M2-9 537 CS4 19A1709, Description: 537 CS4 19A1709

Work Order 1900154

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_10, Date: 25-Jan-2019, Time: 19:08:54, ID: ST190125M2-9 537 CS4 19A1709, Description: 537 CS4 19A1709

Work Order 1900154 Page 127 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_10, Date: 25-Jan-2019, Time: 19:08:54, ID: ST190125M2-9 537 CS4 19A1709, Description: 537 CS4 19A1709

d5-N-EtFOSAA

Page 128 of 137 Work Order 1900154

Vista Analytical Laboratory

Dataset:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_11, Date: 25-Jan-2019, Time: 19:20:39, ID: ST190125M2-10 537 CS5 19A1710, Description: 537 CS5 19A1710

Work Order 1900154 Page 129 of 137

Vista Analytical Laboratory

Dataset:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_11, Date: 25-Jan-2019, Time: 19:20:39, ID: ST190125M2-10 537 CS5 19A1710, Description: 537 CS5 19A1710

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered:

Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_11, Date: 25-Jan-2019, Time: 19:20:39, ID: ST190125M2-10 537 CS5 19A1710, Description: 537 CS5 19A1710

Work Order 1900154 Page 131 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Printed:

Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_11, Date: 25-Jan-2019, Time: 19:20:39, ID: ST190125M2-10 537 CS5 19A1710, Description: 537 CS5 19A1710

d5-N-EtFOSAA

Work Order 1900154 Page 132 of 137

Page 5 of 5

Dataset:

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-ICV.qld

Last Altered:

Saturday, January 26, 2019 15:43:17 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:43:34 Pacific Standard Time

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV 19A1711

s ili n	# Name	Trace	Area	IS Area	A SHOW SHOW IN	RRF Mean		RT	y Axis Resp.	Conc.	%Rec
ladie 1	1 PFBS	299 > 79.7	2130.199	6857.268	1.00		3.73	3.73	8.92	9.61	96.1
2	2 PFHxA	313.2 > 268.9	11460.937	13791.203	1.00		4.05	4.05	8.31	9.96	99.6
3	3 PFHpA	363 > 318.9	9615.201	13791.203	1.00		4.42	4.42	6.97	9.68	96.8
4	4 PFHxS	398.9 > 79.6	1604.354	6857.268	1.00		4.53	4.53	6.71	9.27	92.7
5	5 PFOA	413 > 368.7	13324.345	13791.203	1.00		4.76	4.76	9.66	10.1	101.0
6	19 13C4-PFOS	503.0 > 79.9	6857.268	6857.268	1.00	1.000	5.10	5.10	28.7	28.7	100.0
7	18 13C2-PFOA	414.9 > 369.7	13791.203	13791.203	1.00	1.000	4.77	4.76	10.0	10.0	100.0
8	18 13C2-PFOA	414.9 > 369.7	13791.203	13791.203	1.00	1.000	4.77	4.76	10.0	10.0	100.0
19	19 13C4-PFOS	503.0 > 79.9	6857.268	6857.268	1.00	1.000	5.10	5.10	28.7	28.7	100.0
10	18 13C2-PFOA	414.9 > 369.7	13791.203	13791.203	1.00	1.000	4.77	4.76	10.0	10.0	100.0
11	-1										
12	6 PFNA	463 > 418.8	13493.583	13791.203	1.00		5.04	5.05	9.78	9.42	94.2
13	7 PFOS	499 > 79.9	2305.231	6857.268	1.00		5.10	5.10	9.65	9.10	91.0
14	8 PFDA	513 > 468.8	13754.157	13791.203	1.00		5.29	5.29	9.97	9.14	91.4
15	9 N-MeFOSAA	570.1 > 419.0	4632.094	11937.695	1.00		5.39	5.39	15.5	8.10	81.0
16	10 N-EtFOSAA	584.2 >419.0	4285.079	11937.695	1.00		5.50	5.49	14.4	9.41	94.1
17	18 13C2-PFOA	414.9 > 369.7	13791.203	13791.203	1.00	1.000	4.77	4.76	10.0	10.0	100.0
18	19 13C4-PFOS	503.0 > 79.9	6857.268	6857.268	1.00	1.000	5.10	5.10	28.7	28.7	100.0
19	18 13C2-PFOA	414.9 > 369.7	13791.203	13791.203	1.00	1.000	4.77	4.76	10.0	10.0	100.0
20	20 d3-N-MeFOSAA	573.3 > 419.0	11937.695	11937.695	1.00	1.000	5.39	5.39	40.0	40.0	100.0
21	20 d3-N-MeFOSAA	573.3 > 419.0	11937.695	11937.695	1.00	1.000	5.39	5.39	40.0	40.0	100.0
22 23	44 1 -1										
23	11 PFUnA	563 > 518.9	13571.317	13791.203	1.00		5.49	5.50	9.84	9.78	97.8
24	12 PFDoA	612.9 > 318.8	1790.217	13791.203	1.00		5.68	5.68	1.30	9.08	90.8
25	13 PFTrDA	662.9 > 618.9	18902.754	13791.203	1.00		5.83	5.84	13.7	9.75	97.5
26 27	14 PFTeDA	712.9 > 668.8	16296.802	13791.203	1.00		5.97	5.98	11.8	9.36	93.6
27	15 13C2-PFHxA	315 > 269.8	9080.553	13791.203	1.00	0.641	4.24	4.05	6.58	10.3	102.7
28 29	18 13C2-PFOA	414.9 > 369.7	13791.203	13791.203	1.00	1.000	4.77	4.76	10.0	10.0	100.0
29	18 13C2-PFOA	414.9 > 369.7	13791.203	13791.203	1.00	1.000	4.77	4.76	10.0	10.0	100.0
30	18 13C2-PFOA	414.9 > 369.7	13791.203	13791.203	1.00	1.000	4.77	4.76	10.0	10.0	100.0
31	18 13C2-PFOA	414.9 > 369.7	13791.203	13791.203	1.00	1.000	4.77	4.76	10.0	10.0	100.0
32	16 13C2-PFDA	515.1 > 469.9	12651.487	13791.203	1.00	0.896	5.29	5.29	9.17	10.2	102.4
33	-1										
34	17 d5-N-EtFOSAA	589.3 > 419.0	18434.670	11937.695	1.00	1.512	5.39	5.49	61.8	40.9	102.1
		-									

Page 133 of 137 Work Order 1900154

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-ICV.gld

Last Altered:

Saturday, January 26, 2019 15:43:17 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:43:34 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV 19A1711

Work Order 1900154 Page 134 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-ICV.gld

Last Altered:

Saturday, January 26, 2019 15:43:17 Pacific Standard Time

Printed:

Saturday, January 26, 2019 15:43:34 Pacific Standard Time

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV 19A1711

Work Order 1900154 Page 135 of 137

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-ICV.qld

Last Altered:

Saturday, January 26, 2019 15:43:17 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:43:34 Pacific Standard Time

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV 19A1711

F:\Projects\PFAS.PRO\Results\190125M2\190125M2-ICV.qld

Last Altered:

Saturday, January 26, 2019 15:43:17 Pacific Standard Time

Printed: Saturday, January 26, 2019 15:43:34 Pacific Standard Time

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV 19A1711

d5-N-EtFOSAA

Work Order 1900154 Page 137 of 137

```
"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t
est_type","cas_rn","chemical_name","result_value","result_error_delta","result_type_code","reportable_result","detect_
flag", "lab_qualifiers", "organic_yn", "method_detection_limit", "reporting_detection_limit", "quantatation_limit", "result_u
nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me
asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik
e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta
tus"
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","375-73-
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","2355-31-
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","2991-50-
nn nn
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","72629-94-
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","376-06-
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","13C2-PFHxA","13C2-
PFHxA","99.3","","IS","Yes","Y","","Y","","",""PCT_REC","","","","","100","99.3","99.3","99.3","","","","","","130","
```

```
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","13C2-PFDA","13C2-
PFDA","95.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","95.0","95.0","95.0","","","","","","130",""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","89.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","89.3","89.3","","","","","","130
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","375-73-
11 1111 1111 1111 1111 1111 1111 1111
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","","","",""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
" "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
nn nn nn nn nn nn nn
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","2355-31-
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","2991-50-
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","72629-94-
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","376-06-
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","13C2-PFHxA","13C2-
PFHxA","99.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","99.5","99.5","","","","","","","130","
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","13C2-PFDA","13C2-
```

```
PFDA","97.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","97.0","97.0","97.0","","","","","","130",""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","95.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","95.2","95.2","","","","","","130
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","375-73-
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","2355-31-
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","2991-50-
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","",""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","376-06-
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","13C2-PFHxA","13C2-
PFHxA","94.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","94.7","94.7","94.7","","","","","","","130","
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","13C2-PFDA","13C2-
PFDA","98.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","98.1","98.1","98.1","","","","","","130",""
, , , ,
```

```
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","93.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","93.3","93.3","","","","","","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130"
 "B9A0154-BS1","537","01/25/19","21:54","N","NA","000","375-73-
 5","PFBS","0.0658","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0708","0.0
 658","92.9","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.0741","","TRG","Yes","Y","","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","0.0
 741","92.6","","","","","","70","130","","","",""
 "B9A0154-BS1","537","01/25/19","21:54","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)", "0.0774", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0100", "0.0100", "UG\_L", "UG\_L"
 774","96.8","","","","","","70","130","","","",""
 "B9A0154-BS1","537","01/25/19","21:54","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","335-67-1","PERFLUOROOCTANOIC\ ACID\ ACI
(PFOA)","0.0767","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","0.07
67","95.8","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0735","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","0.07
 35","91.9","","","","","","70","130","","","",""
 "B9A0154-BS1","537","01/25/19","21:54","N","NA","000","1763-23-
 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0666","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0740","0.0666","90.
 "B9A0154-BS1","537","01/25/19","21:54","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","2355-31-
 9","MeFOSAA","0.0742","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0800
","0.0742","92.7","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","2991-50-
 6","EtFOSAA","0.0706","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0800"
 ,"0.0706","88.2","","","","","","70","130","","","",""
 "B9A0154-BS1","537","01/25/19","21:54","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)", "0.0697", "", "TRG", "Yes", "Y", "", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0100", "0.0100", "UG\_L", "UG
 697","87.1","","","","","70","130","","","",""
"B9A0154-BS1", "537", "01/25/19", "21:54", "N", "NA", "000", "72629-94-
 8", "PFTrDA", "0.0606", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.00800", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.
0.0606","75.8","","","","","","70","130","","","",""
 "B9A0154-BS1", "537", "01/25/19", "21:54", "N", "NA", "000", "376-06-
7","PFTeDA","0.0582","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","
0.0582","72.7","","","","","70","130","","","",""
 "B9A0154-BS1","537","01/25/19","21:54","N","NA","000","13C2-PFHxA","13C2-
PFHxA","93.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","93.7","93.7","","","","","","","130","
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","13C2-PFDA","13C2-
PFDA","99.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","99.9","99.9","99.9","","","","","","130",""
 , , ,
 "B9A0154-BS1","537","01/25/19","21:54","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","90.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","90.4","90.4","90.4","","","","130","130","130","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","100
```


LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AMEC Foster Wheeler, Inc. 7376 SW Durham Road Portland, OR 97224 Attn: Ms. Kimberly Shiroodi May 23, 2019

Attn: Ms. Kimberly Shiroodi Kimberly.Shiroodi@woodplc.com

SUBJECT: Former Chase Field, Data Validation

Dear Ms. Shiroodi,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on May 23, 2019. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project #45129:

SDG # Fraction 1803982, 1804167 Perfluorinated Alkyl Acids 1900154, 1900478

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds or Per- and Polyfluoroalkyl Substances, Sites at Various Base Realignment and Closure Installations; June 2017
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1, 2017
- USEPA, National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

Pgeng@lab-data.com.

Project Manager/Senior Chemist

	746 pages-ADV	/	ASAP											/	Attac	chm	ent	1																					
	90/10 EDD		LDC #4	51:	29	(W	000	l Er	ıvi	ron	me	nt	& I	nfr	ast	ruc	ctu	re S	Sol	uti	on	s, C	DR	/ C	has	se l	Fie	ld,	TO	00	18)				K	MEA	PO	009	36
LDC	SDG#	DATE REC'D	(1) DATE DUE		As 7M)										·																								
Matri	x: Water/Soil			W	s	w	s	W	s	w	s	٧	s	W	s	w	s	W	s	w	S	W	s	W	s	W	s	w	s	w	s	W	s	w	s	w	s	w	s
Α	1803982	05/23/19	ASAP	3	0	L																																$ \bot $	
В	1804167	05/23/19	ASAP	1	0	<u> </u>																						_						\Box		\Box		\dashv	_
С	1900154	05/23/19	ASAP	1	0	<u> </u>																														\square		_	_
D	1900478	05/23/19	ASAP	1	0	<u> </u>										\Box										\Box		_		\Box						\dashv	_	\dashv	4
				1	 	├	-		_																	\perp	\blacksquare			_					\Box			\dashv	4
-		-		-		ļ										\vdash						_														\dashv		\dashv	4
\vdash		 		+		-	-		_				<u> </u>			\vdash	\dashv	-														Н	_	-		\rightarrow	\dashv	\dashv	\dashv
\vdash				+-	-	╁─	-									\vdash	\dashv		_																	\vdash	\dashv	\dashv	-
\blacksquare				+	┢	├			┢	-						\vdash	-	-				_						\dashv				\vdash				\vdash	\dashv	\dashv	\dashv
 	,			╁╴	╁	\vdash										\vdash	_					_										-				\Box	\dashv	\dashv	-
				╁		t^-				\vdash						\vdash		\Box								_				_						\Box	-	一	ᅦ
				†						\vdash																										\Box	一	一	\dashv
				t		T																														\sqcap	\dashv		ᆌ
						T																														П			
						Ī																														П			
																Ш																				Ш			
				<u> </u>	<u> </u>	<u> </u>							<u> </u>			Ш																				Ш	_		
				<u> </u>	L	<u> </u>								L		Ш						_														Ш	_	\square	_
				1_		<u> </u>	<u> </u>									Щ		_					<u> </u>								_					\square		\dashv	_
				ļ	_	<u> </u>		ļ					<u></u>	ļ									<u> </u>			_					<u> </u>	<u> </u>		_					\dashv
		ļ		<u> </u>	-	↓ —	ļ	-	_			_		 				Ш				├—	_	_							<u> </u>		<u> </u>	<u> </u>		\vdash			$-\parallel$
		-		+-	\vdash	┼—	 	\vdash	├—	_	<u> </u>	\vdash	-	 		Н						├—	_	<u> </u>						 		-		-	_	\vdash		\vdash	\dashv
 		ļ ——		-	 	 	\vdash	\vdash	\vdash	 	<u> </u>	<u> </u>		 	<u> </u>	$\vdash\vdash$		\vdash			<u> </u>	<u> </u>		_					<u> </u>	\vdash	-	├		-				$\overline{}$	$-\parallel$
		 		+	+	+	├	 	\vdash	_	\vdash	<u> </u>		<u> </u>	\vdash	Н		\vdash		\vdash		ļ	 	<u> </u>	<u> </u>					\vdash	\vdash	-	 	 		\vdash	-	-	$-\parallel$
		 		+	\vdash	+	\vdash	├	\vdash	\vdash	\vdash	\vdash	\vdash	 	\vdash	\vdash		\vdash		\vdash	 	\vdash	\vdash		H-	-		\vdash	\vdash	 	-	\vdash	\vdash	\vdash	\vdash			\vdash	\dashv
		 		+-	╁	+	\vdash	\vdash	\vdash	\vdash				-		\vdash					<u> </u>			H	\vdash				<u> </u>	┢	 	\vdash		 		H	-	\vdash	\square
-				\top	t	t^-		T	\vdash	 	-			_		H					ļ	 	\vdash		\vdash				 	 		T			<u> </u>	H	-	Н	\square
Fotal	T /PG			6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Former Chase Field

LDC Report Date: May 23, 2019

Parameters: Perfluorinated Alkyl Acids

Validation Level: Stage 4

Laboratory: Vista Analytical Laboratory

Sample Delivery Group (SDG): 1803982

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
Big Field-DW-120618	1803982-01	Water	12/06/18
Behind the Base-DW-120618	1803982-03	Water	12/06/18
Shooting Range 1-DW-120618	1803982-05	Water	12/06/18
Shooting Range 1-DW-120618MS	1803982-05MS	Water	12/06/18
Shooting Range 1-DW-120618MSD	1803982-05MSD	Water	12/06/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537. Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

For each calibration standard, except the lowest point, all compounds were within 70-130% of their true value. For the lowest calibration point, all compounds were within 50-150% of their true value.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Source Blank was identified as a source blank. No contaminants were found.

Sample Shooting Range 1-FB-120618 was identified as a field blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were not within the QC limits for Shooting Range 1-DW-120618MS/MSD. No data were qualified since the parent sample results were greater than the spiked concentration

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
Shooting Range 1-DW-120618MS/MSD (Shooting Range 1-DW-120618)	PFOA	43 (≤30)	J (all detects)	А

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples Shooting Range 1-DW-120618 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ng]/L)				
Compound	Shooting Range 1-DW-120618	DUP-1	RPD (Limits)	Difference (Limits)	Flag	A or P
PFBS	34.2	32.0	-	2.2 (≤10.6)	-	-
PFHxA	213	194	9 (≤30)	-	_	-
РННрА	87.2	76.0	14 (≤30)	-	-	-
PFHxS	362	299	19 (≤30)	-	-	-

	Concentration (ng	j/L)				-
Compound	Shooting Range 1-DW-120618	DUP-1	RPD (Limits)	Difference (Limits)	Flag	A or P
PFOA	246	185	28 (≤30)	-	-	ı
PFNA	21.7	15.7	-	6 (≤10.6)	-	-
PFOS	375	268	33 (≤30)	-	J (all detects)	А

XI. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD RPD and field duplicate RPD, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1803982

Sample	Compound	Flag	A or P	Reason
Shooting Range 1-DW-120618	PFOA	J (all detects)	А	Matrix spike/Matrix spike duplicate (RPD)
Shooting Range 1-DW-120618 DUP-1	PFOS	J (all detects)	А	Field duplicates (RPD)

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1803982

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1803982

No Sample Data Qualified in this SDG

						, /
LDC	#:45129A96VALIDATIC	N COMP	LETENESS	WORKSHEET		Date:
	#: _1803982		Stage 4		Ī	Page://of_/
Labo	ratory: <u>Vista Analytical Laboratory</u>					Reviewer: Reviewer:
MET	HOD: LC/MS Perfluorinated Alkyl Acids (EPA Metho	d 537M), Re	v.1.1)	2.10	10000000000000000000000000000000000000
	samples listed below were reviewed for ea ation findings worksheets.	ach of the fo	ollowing valida	ition areas. Validatior	n findings are	noted in attached
	Validation Area			Comme	nts	
l.	Sample receipt/Technical holding times	<u>_</u>				
11.	GC/MS Instrument performance check	14				
III.	Initial calibration/ICV	HA	₹ 3 00	20%. Yo Tru	0=30/50	To (10W) KN
IV.	Continuing calibration / 13C	\bigoplus	œV//	se = 30/0	, / '	
V.	Laboratory Blanks	A	/			
VI.	Field blanks	ND	5B=5	+B=4		
VII.	Surrogate spikes	A				
VIII	. Matrix spike/Matrix spike duplicates	=W				
IX.	Laboratory control samples	A	105			
X.	Field duplicates	w	0=3	+6		
XI.	Labeled Compounds	A				
XII.	Compound quantitation RL/LOQ/LODs	A				
XIII.	Target compound identification	A				
XIV.	System performance	ϕ				
XV.	Overall assessment of data	1				
Note:	N = Not provided/applicable R = Ri	No compounds nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sour OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1	Big Field-DW-120618			1803982-01	Water	12/06/18
2	Behind the Base-DW-120618			1803982-03	Water	12/06/18
3	Shooting Range 1-DW-120618			1803982-05	Water	12/06/18
4	Shooting Range 1-FB-120618			1803982-06	Water	12/06/18
5	Source Blank			1803982-07	Water	12/06/18
	DUP.1			1003902-00	Water	12/08/18

	Client ID		Lab ID	Matrix	Date
1_	Big Field-DW-120618		1803982-01	Water	12/06/18
2	Behind the Base-DW-120618		1803982-03	Water	12/06/18
3	Shooting Range 1-DW-120618		1803982-05	Water	12/06/18
4	Shooting Range 1-FB-120618	1803982-06	Water	12/06/18	
5	Source Blank	1803982-07	Water	12/06/18	
6	DUP 1	1803982-08	Water	12/06/18	
7	Shooting Range 1-DW-120618MS		1803982-05MS	Water	12/06/18
8	Shooting Range 1-DW-120618MSD		1803982-05MSD	Water	12/06/18
9					
10_					
Votes	S:				
	B810076-BK				
	,				

VALIDATION FINDINGS CHECKLIST

Page: / of Age in the Age in the

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?	/			
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of <u>></u> 0.990?	/			
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				low ≈ 50% for drinking worder
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				waster
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration < 30%?				
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?		•		
Were all percent differences (%D) of the Instrument Sensitivity Check < 30%?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?		•		
Was there contamination in the laboratory blanks?			-	
VI. Field blanks				
Were field blanks identified in this SDG?		-		
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates	8 m 3 lo ().			
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			-	
IX. Laboratory control samples		7	ugar. Hete	
Was an LCS analyzed per extraction batch for this SDG?	//			

VALIDATION FINDINGS CHECKLIST

Page: of Pag

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Labeled compounds	y Tugy Light	Andrew Street		
Were labeled compound percent recoveries (%R) within the QC limits?				
XII. Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?				
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?				
XIV. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

ALTHOD. 1 TOOM TOAS			
A. Perfluorohexanoic acid (PFHxA)			· .
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)			
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriDA)			
I. Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N.Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)			
R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS)			
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS)	·		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)			
V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)			
		<u> </u>	

LDC #45/24/96

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: _____of ___ Reviewer: _____2nd Reviewer: ______

METHOD: LC/MS PFAS (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

N(N/A) Were all duplicate sample relative percent differences (RPD) or differences within QC limits?

╧	V(N/A)	vvere all duplicate s	ampie relative	percent unierences ((RPD) or differences v	Within QO III III S :		
#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Assoçiated Samples	Qualifications
		7/8	PEHDA	240 (50-150)	()	(.)	3 (det3)	No Qual (>1x)
		1	PTHYS	T03(1)	187 (50-150)	()	/	
Ш			DADA	1350() 190(V)	420()	()		
Ш			PENA	190 (V)	()	()		,
H			2505	()	378 (V)	()		V A
\Vdash	_		774		()	50. (2 30)		200 SNo land is
\Vdash			POOK	()	()	116 (
\parallel			PROA	()	()	105		10-1-60
H			TTNA 2405	()	()	353() 102(V)		103/A-
$\ \cdot \ $			1410)	()	()	(V)	-	No cenal (7-15)
			TADA	()	()	43 (530)	3 (dots)	Job/A
П				()		1 /	ing conc)	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
П				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

LDC# 45/29A96

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: Reviewer:	(of	
2nd Reviewer:_	24	_

METHOD: PFCs (EPA Method 537, Rev.1.1))

L	Concentration (ng/L)		(≤30)	D:#******		
Compound	3	6	RPD	Difference	Limits	Qual
PFBS	34.2	32.0		2.2	≤10.6	
PFHxA	213	194	9			
РННрА	87.2	76.0	14			
PFHxS	362	299	19			
PFOA	246	185	28			
PFNA	21.7	15.7		6	≤10.6	
PFOS	375	268	33			blote/

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2019\45129A96_WOOD.wpd

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/14/2018	PFOS	1	0.232	0.1988737
		2	0.464	0.3287097
ll l		3	0.928	0.7292670
i l		4	1.860	1.2784472
		5	4.640	3.7459125
1		6	9.240	7.2972533
<u> </u>		7	23.100	21.6975380
		8	46.200	43.6619180
		9	69.400	63.9538080
		10	92.500	80.7597070

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.89864913	0.899774
Correlation Coefficient	0.999427	0.99745
Coefficient of Determination (r^2)	0.998854	

Page: 2 of 3
Reviewee: 2nd Reviewer: 2

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/14/2018	PFOA	1	0.250	0.2171360
		2	0.500	0.0506222
		3	1.000	0.9565940
		4	2.000	1.7298860
Ų.		5	5.000	4.5899330
		6	10.000	9.5954070
		7	25.000	21.7876640
		8	50.000	48.7801400
		9	75.000	69.3161600
		10	100.000	89.8638830

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.91588519	0.920346
Correlation Coefficient	0.999562	0.99867
Coefficient of Determination (r^2)	0.999124	

Page: 3 of 3 Reviewwe: 2 of 3 Page: 3 of 3 Reviewer: 3 of 3

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/16/2018	PFOA	1	0.250	0.2255790
		2	0.500	0.5356500
		3	1.000	1.0843630
		4	2.000	1.9421290
:		5	5.000	5.2501000
		6	10.000	10.1869490
		7	25.000	26.3859800
		8	50.000	53.8977810
		9	75.000	74.5942910
		10	100.000	103.2234300

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.02778311	1.031910
Correlation Coefficient	0.999669	0.99911
Coefficient of Determination (r^2)	0.999338	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of
Reviewer:_	9
nd Reviewer:	Me

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	%D	%D
1	1812/AP2.66	12/5/18	PFOA (¹³C₂-PFOA)	10.0	9.63	9.63	3.7	3.7
			PFOS (13C ₈ -PFOS)	9.24	T.75	T. T5	16.	16.1
2	18/19/2	12/17/18	PFOA (¹³ C ₂ -PFOA)	2.00	2.18	2.18	9.1	9.1
			PFOS (13C ₈ -PFOS)					
3			PFOA (¹³C₂-PFOA)					
			PFOS (¹³ C ₈ -PFOS)					
4			PFOA (¹³C₂-PFOA)					
			PFOS (¹³ C ₈ -PFOS)					

Comments: Refer to Continuing Calibration fin	<u>dings worksheet for list of q</u>	ualifications and associated	samples when reported result	<u>s do not agree within 10.0% of the</u>
recalculated results				

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	of
Reviewer:_	9
2nd Reviewer:	N6

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below
using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: ______

Compound		ike ded	Sample Concentration (<i>NS</i>)		Sample ntration	Matrix Percent F	-	Matrix Spik Percent I		MS/M	sn o (use BR)
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PFOA	20.0	%. . v	246	515	331	1350	1332	120	421	105	106
PFOS	18.4	18.T	375	39T	445	123	120	378	374	102	103
								<u> </u>			
								<u></u>			

Comments: Refer to Matrix Spike/Matrix	Spike Duplicates findings we	<u>orksheet for list of qualific</u>	cations and associated sar	nples when reported resul	<u>ts do not agree within 10.0%</u>
of the recalculated results.					
	- 				

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	
Reviewer:	9
2nd Reviewer	DIC

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: B8LosT6-B3

Compound	Sp Ad (<i>US</i>	oike ded	Conce	ike ntration	Percent I		LC:	SD Recovery		I CSD PD
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PFOA	20.0	NA	2.2	NA	106	106				
PFOS	18.5	V	26	4	117	117				
			 			<i>'</i>				
						<u> </u>				
				-						
										
									, ,	

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample	Duplicates findings worksh	eet for list of qualification	ns and associated samples	when reported
results do not agree within 10.0% of the recalculated results.		·	•	•	

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of
Reviewer:_	9
2nd reviewer:_	N

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Percent solids, applicable to soil and solid matrices

(Y)	N	N/A
(Y/	N	N/A

%S

only.

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	on = $(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)$ $(A_{\bullet})(RRF)(V_{\circ})(V_{\bullet})(\%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. 3
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	1272
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = $(2630(279)(0.))$
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	4862!08T (0920346) (0.239)
V_{l}	=	Volume of extract injected in microliters (ul)	= 246.0 NS/1
V_{t}	=	Volume of the concentrated extract in microliters (ul)	/
Df	=	Dilution Factor.	

2.0	= Factor of 2 to accou	int for GPC cleanup			
#	Sample ID	Compound	Reported Concentration (US/4	Calculated Concentration ()	Qualification
	3	-ben i	216		
 		TIDA			
 	The fifth and the section of			<u> </u>	
<u> </u>					
 					
					<u>, , , , , , , , , , , , , , , , , , , </u>
-					
					·

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Former Chase Field

LDC Report Date: May 23, 2019

Perfluorinated Alkyl Acids Parameters:

Validation Level: Stage 4

Vista Analytical Laboratory Laboratory:

Sample Delivery Group (SDG): 1804167

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
PW2-122018-DW	1804167-01	Water	12/20/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

For each calibration standard, except the lowest point, all compounds were within 70-130% of their true value. For the lowest calibration point, all compounds were within 50-150% of their true value.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Be upon the data validation all results are considered valid and usable for all purposes.	

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG

LDC#	:45129B96	ET	Date: <u>5/23/</u>						
SDG#	:45129B96								
Labora	atory: Vista Analytical Lat	<u>ooratory</u>							
METH	OD: LC/MS Perfluorinate	ed Alkyl Acids (E	EPA Metho	od 537 M/. Re	v.1-1)	2nd	Reviewer:		
	amples listed below were ion findings worksheets.	reviewed for ea	ach of the f	ollowing valida	ation areas. Valida	ation findings are	e noted in attached		
	Validation A	rea			Con	nments			
1.	Sample receipt/Technical ho	lding times		_			·-		
11.	GC/MS Instrument performat	nce check							
III.	Initial calibration/ICV		A A	ASDX2	To. Y. The	<3950 (10W). 10×39		
IV.	Continuing calibration //	3C	A	acV=	30/30/0	7			
V.	Laboratory Blanks		T X						
VI.	Field blanks		A)						
VII.	Surrogate spikes		X						
VIII.	Matrix spike/Matrix spike dup	licates	N	05					
IX.	Laboratory control samples		A	105/m					
X.	Field duplicates		N	/ -					
XI.	Labeled Compounds	,	A						
XII.	Compound quantitation RL/L	OQ/LODs	4						
XIII.	Target compound identification		1						
XIV.	System performance	•	4						
XV.	Overall assessment of data		A						
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	R = Rir	lo compounds nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER	ırce blank :		
0	Client ID				Lab ID	Matrix	Date		
1 F	PW2-122018-DW				1804167-01	Water	12/20/18		
2									
3									
4									
5									
6									
7									
8									
9									
Notes:	. 771					- 			
_ <i>‡</i>	3840193-P4						_		
					<u> </u>				

VALIDATION COMPLETENESS WORKSHEET

LDC #45P9B96

VALIDATION FINDINGS CHECKLIST

Page: /of > Reviewer: 9 2nd Reviewer: Me

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?		<u> </u>]	
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?		<u> </u>		
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	1	<u> </u>	ļ	
Were all percent relative standard deviations (%RSD) ≤ 20%?	1	<u> </u>	<u> </u>	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of ≥ 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				< 50% few lookst stal
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?			1 (44)	-50% few lookst stal for during W
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				The state of the s
IV. Continuing calibration	A Fire M			
Was a continuing calibration analyzed daily?			<u> </u>	
Were all percent differences (%D) of the continuing calibration ≤ 30%?		<u> </u>		
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				
Were all percent differences (%D) of the Instrument Sensitivity Check ≤ 30%?			<u> </u>	
V. Laboratory Blanks		in of plateon	Ariana Language Language	
Was a laboratory blank associated with every sample in this SDG?			<u> </u>	
Was a laboratory blank analyzed for each matrix and concentration?		L	<u> </u>	
Was there contamination in the laboratory blanks?	'			
VI. Field blanks				
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch for this SDG?	//	i '		

VALIDATION FINDINGS CHECKLIST

Page: of Reviewer: 100 April 2014

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates	\$ 1			
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Labeled compounds		intratori Labration	THE NELT	
Were labeled compound percent recoveries (%R) within the QC limits?				
XII. Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?				
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?				
XIV. System performance		Part de la companya d		
System performance was found to be acceptable.				
XIII. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.	7			

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

VIETHOD: PFUS/PFUAS		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS)		
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS)		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	·	
V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)		

Page: ____ of ___ Reviewwe: ______ 2nd Reviewer: ______

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/30/2018	PFOA	1	0.250	0.2325030
		2	0.500	0.4798370
1		3	1.000	0.9733980
		4	2.000	1.9247560
<u>}</u>		5	5.000	5.2004250
		6	10.000	9.1517780
[7	25.000	24.118581
		8	50.000	53.590312
 		9	75.000	81.475686
		10	100.000	109.05315

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.08160882	1.064930
Correlation Coefficient	0.999715	0.99788
Coefficient of Determination (r^2)	0.999431	

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/30/2018	PFOS	1	0.232	0.0784112
1		2	0.464	0.2796298
		3	0.928	0.9002042
1		4	1.860	1.3489832
		5	4.640	3.3358268
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6	9.240	6.8112131
ii i		7	23.10	18.209455
1		8	46.20	40.303338
		9	69.40	56.077719
		10	92.50	78.913789

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.83926116	0.830260
Correlation Coefficient	0.999501	0.99746
Coefficient of Determination (r^2)	0.999003	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of/_
Reviewer:	9
nd Reviewer:	W

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF A_x = Area of compound,

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

 C_x = Concentration of compound,

				1	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	%D	%D
1	181=301-33	1=30/18	PFOA (¹³ C ₂ -PFOA)	10.0	864	8.64	139136	13.6
		/ /	PFOS (¹³C₀-PFOS)	9=4	7.88	7.88	H.7	4.7
2			PFOA (¹³C₂-PFOA)					
			PFOS (¹³ C ₈ -PFOS)					
3			PFOA (¹³C₂-PFOA)					
			PFOS (13C ₈ -PFOS)					
4			PFOA (¹³C₂-PFOA)					
			PFOS (¹³ C ₈ -PFOS)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within	10.0% of the
recalculated results	

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

2nd Reviewer:

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: B810 93

Compound	Sr Ad	Spike Added (/ 4 /)		Spike Concentration		L CS Percent Recovery		LCSD Percent Recovery		L CS/L CSD. RPD	
Service Service											
and the second of the second o	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated	
PFOA	0.0400	0.0400	0.0403	0.0412	101	101	103	103	2.15	2.22	
PFOS	0.0370	0.0310	0.0335	0.0403	20.6	905	109	109	18.	184	
		']			
		ļ									
				,							
		, .									

Comments: Refer to L	aboratory Control Sample/Laboratory	Control Sample Duplicates	s findings worksheet	t for list of qualification	s and associated	samples when reported
results do not agree wi	thin 10.0% of the recalculated results	S	•		,	

only.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	Lof
Reviewer:	<u>a</u>
2nd reviewer:	5/6

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

	N/A N/A	Were all reported results recalculated and Were all recalculated results for detected t	verified for all level IV samples? arget compounds agree within 10.0% of the reported results?
Conce	entratio	(A.)(RRF)(V.)(V.)(%S)	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. NO PTON B840193-BS/
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	10-07/2 (0-0)
İs	=	Amount of internal standard added in nanograms (ng)	Conc. = 6/3.31)(10.)()()()()
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	01101100110510.00
V,	=	Volume of extract injected in microliters (ul)	=00403 M4C
V_t	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices	

2.0	= Factor of 2 to accoun	nt for GPC cleanup	···			
#	Sample ID	Compound		Reported Concentration	Calculated Concentration ()	Qualification
	B820193-BS	PFOA		0.0403		
	9020 PAZ			0.000		
	72					
-						
					: 	
ļ						
						
		, , , , , , , , , , , , , , , , , , , 				
-						
-						

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Former Chase Field

LDC Report Date:

May 23, 2019

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1900154

	Laboratory Sample	- 10	Collection
Sample Identification	Identification	Matrix	Date
PW4-011719-DW	1900154-01	Water	01/17/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

For each calibration standard, except the lowest point, all compounds were within 70-130% of their true value. For the lowest calibration point, all compounds were within 50-150% of their true value.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

upon the data validation all results are considered valid	d and usable for all purposes.	

The quality control criteria reviewed were met and are considered acceptable. Based

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG

SDG #	#:45129C96 VALIDATIO #:1900154 atory:_Vista Analytical Laboratory		PLETENES Stage 4	SS WORKSHEE		Date:
The sa	AOD: LC/MS Perfluorinated Alkyl Acids (E			•		
valida	tion findings worksheets.					
	Validation Area			Cor	nments	
I.	Sample receipt/Technical holding times	A				
11.	GC/MS Instrument performance check	A				
181.	Initial calibration/ICV	AA	B50<=	Sp. Tre	0=30/50/6	. /eV=300
IV.	Continuing calibration	A	COVI	1sc = 3	70	
V.	Laboratory Blanks	\triangle				
VI.	Field blanks	N				
VII.	Surrogate spikes	A			- Type - C	
VIII.	Matrix spike/Matrix spike duplicates	M	00			
IX.	Laboratory control samples	A	103			
X.	Field duplicates	1				
XI.	Labeled Compounds	A				
XII.	Compound quantitation RL/LOQ/LODs	A		······································		
XIII.	Target compound identification	A	-	· · · · · · · · · · · · · · · · · · ·		
XIV.	System performance	8			·	
	Overall assessment of data	<u> </u>				
XV.	A = Acceptable ND = N N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER:	irce blank
-	Client ID			Lab ID	Matrix	Date
1 1	PW4-011719-DW			1900154-01	Water	01/17/19
2						
3		. <u></u> "				
4		·				
5		··········				
6						
7						
8		· · · ·				
9						
lotes:	01 1 1					
_ 1	39A0154-B4					
					+	
 				···		

LDC #:45/9096

VALIDATION FINDINGS CHECKLIST

Page: /of Z Reviewer: 9 2nd Reviewer: \(\sum_{\lambda} \lambda_{\lambda}

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
L Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?	/			
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				<50% of lowest stal (drinking W)
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				(drinking W)
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration		ro. Couldry		
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?				
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				
Were all percent differences (%D) of the Instrument Sensitivity Check ≤ 30%?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?	<u> </u>			
VI. Field blanks				
Were field blanks identified in this SDG?			^	
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates			12 yau	The state of the s
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch for this SDG?				

VALIDATION FINDINGS CHECKLIST

Page: → of → Reviewer: 9
2nd Reviewer: №0

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?			1	
Were target compounds detected in the field duplicates?			/	
XI. Labeled compounds) 19,0 (1)	ho A Tag	4). 1970 T. A	
Were labeled compound percent recoveries (%R) within the QC limits?				
XII. Compound quantitation			plane :	
Did the laboratory reporting limits (RL) meet the QAPP RLs?	/			
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?				
XIV. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data	_/			
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WETHOD: Prosiproas		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS)		
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS)		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		
V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)		
	<u> </u>	L

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
1/25/2019	PFOA	1	0.250	0.2101130
		2	0.500	0.4714000
		3	1.000	0.8984130
		4	2.000	1.8618960
		5	5.000	4.4924390
		6	10.000	9.3954590
		7	25.000	24.368296
ŀ		8	50.000	47.758120
		9	75.000	73.077953
		10	100.000	94.537468

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.95618300	0.956545
Correlation Coefficient	0.999903	0.99969
Coefficient of Determination (r^2)	0.999805	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
1/25/2019	PFOS	1	0.232	0.1832208
		2	0.464	0.4657522
		3	0.928	0.8556761
]		4	1.860	1.6506001
		5	4.640	4.6646023
		6	9.240	9.4894971
		7	23.10	23.772614
		8	46.20	48.721777
		9	69.40	72.647365
		10	92.50	100.994340

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.07089390	1.059870
Correlation Coefficient	0.999772	0.99909
Coefficient of Determination (r^2)	0.999544	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	<u></u>
Reviewer:	9
2nd Reviewer:	10/6

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	%D	%D
1	1901-342-33	1/5/19	PFOA (¹³C₂-PFOA)	10.0	10.2	10.2	1.8	1.8
		/ / /	PFOS (¹³ C ₈ -PFOS)	924	9.14	a.H	(.)	1./
2			PFOA (¹³ C ₂ -PFOA)					
			PFOS (13C ₈ -PFOS)					
<u></u>								
3			PFOA (13C ₂ -PFOA)					
			PFOS (¹³ C ₈ -PFOS)					
<u> </u>								
4			PFOA (¹³ C ₂ -PFOA)					
			PFOS (13C ₈ -PFOS)					

Comments:	Refer to Continuin	g Calibration	findings worksheet f	or list of	qualifications	and associated	d samples wher	reported resul	ts do not agree	e within	10.0% of the
recalculated	results										

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:	<u></u>	
Reviewer:_	9	
2nd Reviewer	NG	

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: P740154-

Compound	Ad	nike ded (1)	Spike Concentration		I CS Percent Recovery		LCSD Percent Recovery		I CS/I CSD	
And the second s	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PFOA	0.0800	NX	0.0761	NA	a5.8	as.9				
PFOS	0.0740	V	0.0666		20.0	90,0				
		i								

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Dupl	icates findings worksh	eet for list of qualification	s and associated samp	les when reported
results do not agree within 10.0% of the recalculated results.				•	

%S

2.0

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of	<i>r</i>
Reviewer:	9	
2nd reviewer:	N6	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Percent solids, applicable to soil and solid matrices

Factor of 2 to account for GPC cleanup

YN YN	N/A N/A	Were all reported results recalculated and Were all recalculated results for detected t	verified for all level IV samples? arget compounds agree within 10.0% of the reported results?
Conc	entratio	$n = (A_{\circ})(I_{\circ})(V_{\circ})(DF)(2.0)$ $(A_{\circ})(RRF)(V_{\circ})(V_{\circ})(%S)$	Example:
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. <u>ND</u> , <u>PF05</u> B9A0154-BS1
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l ^s	=	Amount of internal standard added in nanograms (ng)	Conc. = (4001.65, -8.7)()()()()
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	,
V_{l}	=	Volume of extract injected in microliters (ul)	=0.0666 ME/L
V_{t}	=	Volume of the concentrated extract in microliters (ul)	-
Df	=	Dilution Factor.	

2.0		nt for Gr C cleanup			
#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
	BAX015A-BS	OF0.S	0.0616		
-					-
					
 					
		· · · · · · · · · · · · · · · · · · ·			
		W 2004			
		······································			

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Former Chase Field

LDC Report Date:

May 23, 2019

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1900478

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
Charlie's Pasture-EW 031319	1900478-01	Water	03/13/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

For each calibration standard, except the lowest point, all compounds were within 70-130% of their true value. For the lowest calibration point, all compounds were within 50-150% of their true value.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Field Blank was identified as a field blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples Charlie's Pasture-EW 031319 and Dup-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (n	g/L)				
Compound	Charlie's Pasture-EW 031319	Dup-1	RPD (Limits)	Difference (Limits)	Flag	A or P
PFBS	0.0424	0.0444	-	0.002 (≤0.0101)	_	-
PFHxA	0.368	0.401	9 (≤30)	-	<u>.</u>	-
PHHpA	0.183	0.192	5 (≤30)	-	-	-
PFHxS	1.04	0.886	16 (≤30)	-	-	-
PFOA	0.807	0.827	2 (≤30)	-	-	-
PFNA	0.0280	0.0316	-	0.0036 (≤0.0101)	-	-
PFOS	1.52	1.38	10 (≤30)	-	-	-

XI. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG

SDG#	#:_ 45129D96 VALIDATION COMPLETENESS WORKSHEET S#:_ 1900478 Stage 4 Page:_ of // Poratory: Vista Analytical Laboratory Date: 5/4/2 Page:_ of // Reviewer:						7/19 1		
	2nd Reviewer: <u>Mar</u> IETHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537M)								
	amples listed below were ion findings worksheets.	reviewed for ea	ch of the fo	ollowing	validation a	reas. Validati	ion findings are	noted in attache	∍d
	Validation A	rea				Comr	ments		
I.	Sample receipt/Technical hol	ding times	A						╝
II.	GC/MS Instrument performar	nce check	1						
111.	Initial calibration/ICV		AA	R50=	≤20/0.	Y The	2=3990/0	.1e/=3	\mathbb{Z}_2
IV.	Continuing calibration	30	A	ac	V/15	253	90	/]
V.	Laboratory Blanks		1						
VI.	Field blanks		NO	FE	. =.3				i
VII.	Surrogate spikes		A						7
VIII.	Matrix spike/Matrix spike dup	licates	W	09	3				7
IX.	Laboratory control samples		4	10	<i>= D</i>				1
Χ.	Field duplicates		w	10=	1+2				1
XI.	Labeled Compounds		A	400	10				1
XII.	Compound quantitation RL/L0	OO/LODs	A	/	,				1
XIII.	Target compound identification		A				<u> </u>		1
XIV.	System performance		A						1
	 	·	A	_					╢
XV.	Overall assessment of data		<u> </u>		-				الــ
ote:	A = Acceptable N = Not provided/applicable SW = See worksheet	R = Rin	o compounds sate eid blank	detected	TB :	Duplicate = Trip blank = Equipment bla	OTHER:	rce blank	
C	Client ID				Lab I	D	Matrix	Date]
1 ,	Charlie's Pasture-EW 031319				1900	478-01	Water	03/13/19	
τ	Oup-1				1900	178-02	Water	03/13/19	1
	ield Blank				1900	178-03	Water	03/13/19	7
1		- 							1
5			 						1
3				-					1
,		- <u>-</u> ,	···•						1
3									1
									1
otes:									=1 =1
1	9-0124-34-1								
	·								

LDC#: 45/-9098

VALIDATION FINDINGS CHECKLIST

Page:_	_/of≥
Reviewer:	'9
2nd Reviewer:_	Ne

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?		<u> </u>	ļ	
Was cooler temperature criteria met?			<u> </u>	
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Were all analytes within 70-130% or percent differences (%D) $\le 30\%$ of their true value for each calibration standard?				for drinbing W
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				for drinking W
IIIb. Initial Calibration Verification	<u> </u>			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) < 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?				<u> </u>
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				
Were all percent differences (%D) of the Instrument Sensitivity Check ≤ 30%?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
Ⅵ. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?			1 1 2 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?		_		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	- 28 23			
IX. Laboratory control samples			Ä.	
Was an LCS analyzed per extraction batch for this SDG?		1		

VALIDATION FINDINGS CHECKLIST

Page: of 2
Reviewer: 1
2nd Reviewer: 1

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates		15.		
Were field duplicate pairs identified in this SDG?		·		
Were target compounds detected in the field duplicates?				
XI. Labeled compounds		Aires Sub	y znasili Ligipija	
Were labeled compound percent recoveries (%R) within the QC limits?				
XII. Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?				
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification			S. A. Pro	
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?				
XIV. System performance			inger Legitin	
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WETHOD: PFOS/PFOAS		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)	,	
H. Perfluorotridecanoic acid (PFTriDA)		
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS)		
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS)		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		
V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)		

LDC#451-9696

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:	_of_	
Reviewer:	9	
2nd Reviewer:_	Ne	<u>, </u>

METHOD: PFCs (EPA Method 537, Rev.1.1))

	Concentra	(≤30)				
Compound	1	2	RPD	Difference	Limits	Qual
PFBS	0.0424	0.0444	,	0.002	≤0.0101	
PFHxA	0.368	0.401	9			
РННрА	0.183	0.192	5			
PFHxS	1.04	0.886	16			
PFOA	0.807	0.827	2			
PFNA	0.0280	0.0316		0.0036	≤0.0101	
PFOS	1.52	1.38	10			

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2019\45129D96_WOOD.wpd

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
3/28/2019	PFOA	1	0.250	0.3114790
ļ		2	0.500	0.4559950
		3	1.000	0.9430580
		4	2.000	1.8980310
		5	5.000	4.8326870
		6	10.000	9.8324550
		7	25.000	23.5652720
		8	50.000	48.8485250
		9	75.000	72.3284030
		10	100.000	97.7633500

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.97244451	0.970341
Correlation Coefficient	0.999965	0.99978
Coefficient of Determination (r^2)	0.999929	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: of Page: of Page: Page: Of Page: Page: Of
Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
3/28/2019	PFOS	1	0.232	0.2365741
		2	0.464	0.3770290
		3	0.928	0.6450009
		4	1.860	1.3866577
		5	4.640	3.7668348
		6	9.240	7.9072546
		7	23.10	18.761660
		8	46.20	40.878403
		9	69.40	62.960426
<u> </u>		10	92.50	80.724788

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.88238504	0.875608
Correlation Coefficient	0.999735	0.99859
Coefficient of Determination (r^2)	0.999469	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of
Reviewer:	9
2nd Reviewer:	W

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	%D	%D
1	1903-871-38	3/28/19	PFOA (¹³ C ₂ -PFOA)	10.0	10.1.	10.1	06	0.8
		/ / /	PFOS (13C ₈ -PFOS)	9.24	8T/	8.69	5.8	5.9
								/
2	1903001=	3/30/19	PFOA (¹³C₂-PFOA)	2.00	2.16	2.16	80	7.8
		/ /	PFOS (13C ₈ -PFOS)	186	1.40	1.40	24.6	24.6
3			PFOA (¹³C₂-PFOA)					
			PFOS (13C ₈ -PFOS)					
4			PFOA (¹³C₂-PFOA)					
			PFOS (13C ₈ -PFOS)				·	

Comments: _f	Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when re-	reported results do not ag	ree within 10.0% of the
recalculated re	esults		

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	_of
Reviewer:_	<u>`</u>
2nd Reviewer:	Dille

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: Bigoon

LCS Spike Spike LCSD LCS/LCSD Added/ Concentration (MS/L) **Percent Recovery** Compound **Percent Recovery RPD** LCS LCSD **LCS LCSD** Reported Recalc. Reported Recalc. Reported Recalculated <u>ප</u>/ජ 0.0832 0.0766 00800 0.0800 **PFOA** 96.6 94.8 89 0.0TK0 0.000 Q4.7 0.0740 **PFOS**

Comments: Refer to Laboratory Control Sample/Laboratory C	Control Sample Duplicates	findings worksheet for	r list of qualifications an	d associated sample	es when reported
results do not agree within 10.0% of the recalculated results.	·				
					· · · · · · · · · · · · · · · · · · ·

Y N N/A

%S

2.0

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	(of]
Reviewer:	a-
2nd reviewer:_	NG

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Percent solids, applicable to soil and solid matrices

Factor of 2 to account for GPC cleanup

<u>y</u> N	N/A	Were all recalculated results for detected t	arget compounds agree within 10.0% of the reported results'
Con	centratio	$n = \frac{(A_{\bullet})(I_{\circ})(V_{t})(DF)(2.0)}{(A_{i_{\circ}})(RRF)(V_{\circ})(V_{t})(\%S)}$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D.
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	78. T
Is	=	Amount of internal standard added in nanograms (ng)	Conc. = $(5.^{\circ}63)(-8.^{\circ})(-67)(-67)(-67)(-67)(-67)(-67)(-67)(-67$
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
V_{i}	=	Volume of extract injected in microliters (ul)	= 1.5-1.5/2
V_t	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	

Were all reported results recalculated and verified for all level IV samples?

	1 40.07 01 2 10 40000		T		
#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
			152		
ļ		ÞF0.S	1.32		
		\\			
<u> </u>			 		
ļ	<u> </u>				
			 		
<u> </u>					
 			 		
<u> </u>					
		-			
					
 			<u> </u>		
-					
					ļ
-					

INSTALLA	TION_ID	SITE_NAME	LOCATION_NAME	LOCATION_TYPE	LOCATION_TYPE_DESC	COORD_X*	COORD_Y*	SAMPLE_NAME	SAMPLE_MATRIX	SAMPLE_MATRIX_DESC	COLLECT_DATE	ANALYTICAL_METHOD_GRP_DESC	SDG
CHASE FIEL	LD NAS	TBC	PW4	DW	Domestic Well	-97.653078	28.361589	PW4-011719-DW	WP	Drinking Water	17-Jan-19	Perfluoroalkyl Compounds	1900154