

Groundwater/Drinking Water Sample Results, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, Sample Location Report, SDG 1900478

NAS Chase Field TX

December 2020

April 01, 2019

Vista Work Order No. 1900478

Ms. Nia Nikmanesh KMEA 2423 Hoover Avenue National City, CA 91950

Dear Ms. Nikmanesh,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on March 18, 2019 under your Project Name 'Chase Field'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1900478 Page 1 of 168

Vista Work Order No. 1900478 Case Narrative

Sample Condition on Receipt:

Three drinking water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 537, Rev. 1.1

The samples were extracted and analyzed for a selected list of 14 PFAS using EPA Method 537, Rev. 1.1.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

Two Laboratory Fortified Blanks (LFB/LFBD) and a Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the Laboratory Reagent Blank. The LFB/LFBD recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

Work Order 1900478 Page 2 of 168

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	11
Certifications	12
Sample Receipt	15
Extraction Information	17
Sample Data - EPA Method 537	22
IIS Areas and CCVs	57
ICAL with ICV	86

Work Order 1900478 Page 3 of 168

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1900478-01	Charlie's Pasture-DW 031319	13-Mar-19 18:20	18-Mar-19 09:10	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1900478-02	Dup-1	13-Mar-19 00:00	18-Mar-19 09:10	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1900478-03	Field Blank	13-Mar-19 18:25	18-Mar-19 09:10	HDPE Bottle, 250 mL

Vista Project: 1900478 Client Project: Chase Field

Work Order 1900478 Page 4 of 168

ANALYTICAL RESULTS

Work Order 1900478 Page 5 of 168

Sample ID: LR	RB										EPA Meth	10d 537
Client Data						La	aboratory Data					
Name:	KMEA		Matrix:	Aque	ous	La	ab Sample:	B9C0124-	BLK1	Column:	BEH C18	
Project:	Chase Field											
Analyte		CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFHxA		307-24-4	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFHpA		375-85-9	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFHxS		355-46-4	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFOA		335-67-1	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFNA		375-95-1	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFOS		1763-23-1	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFDA		335-76-2	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
MeFOSAA		2355-31-9	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
EtFOSAA		2991-50-6	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFUnA		2058-94-8	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFDoA		307-55-1	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFTrDA		72629-94-8	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
PFTeDA		376-06-7	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
Labeled Standard	ls	Type	% Recovery	•	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	105		70 - 130			B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
13C2-PFDA		SURR	105		70 - 130			B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1
d5-EtFOSAA		SURR	94.1		70 - 130			B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:30	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1900478 Page 6 of 168

Sample ID: LFBD EPA Method 537

Name: KMEA Lab Sample: B9C0124-BS1/B9C0124-BSD1

Project: Chase Field QC Batch: B9C0124 Date Extracted: 21-Mar-19
Matrix: Aqueous Samp Size: 0.250/0.250 L Column: BEH C18

		LFB	LFB	LFB	LFB	LFBD	LFBD	LFBD		LFBD	%Rec	RPD	LFB	LFB	LFBD	LFBD
Analyte	CAS Number	(ug/L)	Spike Amt	% Rec	Quals	(ug/L)	Spike Amt	% Rec	RPD	Quals	Limits	Limits	Analyzed	Dil	Analyzed	Dil
PFBS	375-73-5	0.0713	0.0708	101		0.0657	0.0708	92.9	8.08		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
PFHxA	307-24-4	0.0850	0.0800	106		0.0751	0.0800	93.9	12.3		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19	€ 1
PFHpA	375-85-9	0.0819	0.0800	102		0.0763	0.0800	95.4	7.12		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19	1
PFHxS	355-46-4	0.0736	0.0728	101		0.0660	0.0728	90.7	10.9		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19	€ 1
PFOA	335-67-1	0.0832	0.0800	104		0.0766	0.0800	95.8	8.18		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
PFNA	375-95-1	0.0836	0.0800	105		0.0718	0.0800	89.7	15.2		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19	€ 1
PFOS	1763-23-1	0.0701	0.0740	94.8		0.0715	0.0740	96.6	1.89		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
PFDA	335-76-2	0.0766	0.0800	95.7		0.0755	0.0800	94.4	1.42		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
MeFOSAA	2355-31-9	0.0770	0.0800	96.3		0.0752	0.0800	94.0	2.34		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
EtFOSAA	2991-50-6	0.0769	0.0800	96.2		0.0728	0.0800	91.0	5.49		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
PFUnA	2058-94-8	0.0710	0.0800	88.8		0.0733	0.0800	91.6	3.18		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
PFDoA	307-55-1	0.0696	0.0800	87.0		0.0695	0.0800	86.8	0.153		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
PFTrDA	72629-94-8	0.0699	0.0800	87.3		0.0691	0.0800	86.4	1.10		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
PFTeDA	376-06-7	0.0700	0.0800	87.5		0.0665	0.0800	83.1	5.21		70-130	30	30-Mar-19 16:37	1	28-Mar-19 18:19) 1
				LFB	LFB			LFBD		LFBD			LFB	LFB	LFBD	LFBD
Labeled Sta	andards	Туре		% Rec	Quals			% Rec		Quals	Limits		Analyzed	Dil	Analyzed	Dil
13C2-PFHx	A	SURR		109				94.4			70-130		30-Mar-19 16:37	1	28-Mar-19 18:19) 1
13C2-PFDA		SURR		95.5				95.6			70-130		30-Mar-19 16:37	1	28-Mar-19 18:19) 1
d5-EtFOSA	Α	SURR		97.2				94.3			70-130		30-Mar-19 16:37	1	28-Mar-19 18:19) 1

Work Order 1900478 Page 7 of 168

Sample ID: (Charlie's Pasture-D	OW 031319									EPA Meth	hod 537
Client Data Name:	KMEA		Matrix:	5 · · · · · · · · · · · · · · · · · · ·			Column	BEH C18				
Project: Location:	Chase Field Preservative-TZ		Date Coll	ected: 13-	Mar-19 18:20		ate Received:	18-Mar-19	9 09:10			
Analyte		CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	0.0424	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	1
PFHxA		307-24-4	0.368	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	1
PFHpA		375-85-9	0.183	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	1
PFHxS		355-46-4	1.04	0.0304	0.0500	0.100	D	B9C0124	21-Mar-19	0.250 L	30-Mar-19 16:48	3 10
PFOA		335-67-1	0.807	0.0304	0.0500	0.100	D	B9C0124	21-Mar-19	0.250 L	30-Mar-19 16:48	3 10
PFNA		375-95-1	0.0280	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	. 1
PFOS		1763-23-1	1.52	0.0304	0.0500	0.100	D	B9C0124	21-Mar-19	0.250 L	30-Mar-19 16:48	3 10
PFDA		335-76-2	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	. 1
MeFOSAA		2355-31-9	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	. 1
EtFOSAA		2991-50-6	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	1
PFUnA		2058-94-8	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	. 1
PFDoA		307-55-1	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	. 1
PFTrDA		72629-94-8	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	. 1
PFTeDA		376-06-7	ND	0.00304	0.00500	0.0100	0	B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	1
Labeled Standa	rds	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	98.8		70 - 130			B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	1
13C2-PFDA		SURR	90.0		70 - 130			B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	
d5-EtFOSAA		SURR	86.6		70 - 130			B9C0124	21-Mar-19	0.250 L	28-Mar-19 18:51	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1900478 Page 8 of 168

Sample ID:	Dup-1										EPA Meth	10d 537
Client Data						La	aboratory Data					
Name:	KMEA		Matrix:	Drin	king Water	La	b Sample:	1900478-0)2	Column:	BEH C18	
Project:	Chase Field		Date Coll		Mar-19 00:00	Da	ate Received:	18-Mar-19	09:10		BEIT CTC	
Location:	Preservative-TZ											
Analyte		CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	0.0444	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
PFHxA		307-24-4	0.401	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
PFHpA		375-85-9	0.192	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
PFHxS		355-46-4	0.886	0.0306	0.0502	0.101	D	B9C0124	21-Mar-19	0.249 L	30-Mar-19 16:59	10
PFOA		335-67-1	0.827	0.0306	0.0502	0.101	D	B9C0124	21-Mar-19	0.249 L	30-Mar-19 16:59	10
PFNA		375-95-1	0.0316	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
PFOS		1763-23-1	1.38	0.0306	0.0502	0.101	D	B9C0124	21-Mar-19	0.249 L	30-Mar-19 16:59	10
PFDA		335-76-2	ND	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
MeFOSAA		2355-31-9	ND	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
EtFOSAA		2991-50-6	ND	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
PFUnA		2058-94-8	ND	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
PFDoA		307-55-1	ND	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
PFTrDA		72629-94-8	ND	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
PFTeDA		376-06-7	ND	0.00306	0.00502	0.0101	1	B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
Labeled Standa	ards	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	107		70 - 130			B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
13C2-PFDA		SURR	100		70 - 130			B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1
d5-EtFOSAA		SURR	95.2		70 - 130			B9C0124	21-Mar-19	0.249 L	28-Mar-19 19:01	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1900478 Page 9 of 168

Sample ID: 1	Field Blank											EPA Meth	10d 537
Client Data						L	Labor	atory Data					
Name:	KMEA		Matrix:	Dri	nking Water	L	Lab Sa	ample:	1900478-0	13	Column:	BEH C18	
Project:	Chase Field		Date Coll	ected: 13-	Mar-19 18:25	Г	Date R	Received:	18-Mar-19	09:10			
Location:	Preservative-TZ												
Analyte		CAS Number	Conc. (ug/L)	DL	LOD	LO	Q	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFHxA		307-24-4	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFHpA		375-85-9	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFHxS		355-46-4	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFOA		335-67-1	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFNA		375-95-1	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFOS		1763-23-1	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFDA		335-76-2	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
MeFOSAA		2355-31-9	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
EtFOSAA		2991-50-6	ND	0.00304	0.00500	0.009			B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFUnA		2058-94-8	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFDoA		307-55-1	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFTrDA		72629-94-8	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
PFTeDA		376-06-7	ND	0.00304	0.00500	0.009	99		B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
Labeled Standa	ards	Type	% Recovery		Limits			Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	105		70 - 130				B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
13C2-PFDA		SURR	99.0		70 - 130				B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1
d5-EtFOSAA		SURR	97.6		70 - 130				B9C0124	21-Mar-19	0.250 L	28-Mar-19 19:12	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1900478 Page 10 of 168

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

D Dilution

DL Detection limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

J The amount detected is below the Reporting Limit/LOQ

LOD Limits of Detection

LOQ Limits of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

NA Not applicable

ND Not Detected

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

TEQ Toxic Equivalency

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1900478 Page 11 of 168

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	015
Texas Commission on Environmental Quality	T104704189-19-10
Virginia Department of General Services	9618
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1900478 Page 12 of 168

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue							
Description of Test	Method						
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B						
Dilution GC/HRMS							
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A						
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C						
by GC/HRMS							
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699						
HRGC/HRMS							
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537						
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B						
GC/HRMS							
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA						
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A						

MATRIX: Drinking Water							
Description of Test	Method						
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA						
	1613/1613B						
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009						

MATRIX: Non-Potable Water							
Description of Test	Method						
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B						
Dilution GC/HRMS							
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A						
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C						
by GC/HRMS							
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537						
Dioxin by GC/HRMS	EPA 613						
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B						
Dibenzofurans by GC/HRMS							
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA						
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A						

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1900478 Page 14 of 168

	Vista Analytical Labor	-		CHAIN		Cl	JST	OD'	Y		à	For L Work Storag	ge ID:					7.8 cured: Yes ▼	<u>°C</u> ₫ No 🗆
Project ID:	Chase Fi		200d	PO# <u>PO 93</u> 5026167008	4	**		ampler:	1)0	in	Han g		- 1	TAT check one):		urcharge ma			
Invoice to:	Name		Compan	1	12.30	Addr	ess				(111111)	City			State	Ph#	· dayo	Fax#	
KevinDli	ness Kelli N	1:11er	Wo		Parl			Suite	-		Sa	Dre	97)	(CA	858-63	3-2		
Relinquished	d by (printed name	and signate	ure)) // Date	,	Time	•	Rece	eived	by (p	rinted name and signa	ature)	J			[Date	Time	
Daniel	B. Hang)	Han	ul	3 Hours 3/19	1/19	160	0	AN	die	AY	nason a	ma			^	2/10/1	9	0910	
Relinquished	d by (printed name	and signati	ure)	Date	/ /	Time		Rece	eived 1	by (p	rinted name and sign	iture)				7.0/	Date	Time)
										-3 (1-	The state of the original	aturo)					Jale	Time	
SHIP TO:	Vista Analytical La								179100041	7	- Λ			/ 8	/				
	1104 Windfield Wa El Dorado Hills, CA (916) 673-1520 * F	A 95762	73-0106	Method of Shipment		Analys	sis(es) Re	quested	_/		Mon E24			53.70 Wellog	Ser /				
ATTN.						Conta	ainer(s)				470			45	_/				
ATTN:	15-m			Tracking No.:			/ /		189.	/	/ /3		/						
					1/	'. /	/ /	2/	SKA /	4/	& / §		8/8	2 2					
San	nple ID	Date	Time	Location/Sample Description			, tinen	\$ 2 mg/	537 Line 545 Line	F. 10 12 12 12 12 12 12 12 12 12 12 12 12 12	800, 788 860, 788 860, 708 860, 788 860, 788 860	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	J. Salar	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$					
hantes Pa	stuce-DW	3/13/19		Preservative - TZ		P	DW	\$\langle 3\	(3)	~	0 %	12/	3/	× /			Comme	ents	
	31319	7/1-1/11	7020	11E39706 17X - 1 E	-	<u>'</u>	DW	+	\dashv	\dashv		++	/	1					
Dup-	1	3/13/19	Onno	Preservation - t	2 2	P	DW	11	\dashv	\dashv		++	-	V					
FieldB	lan K	3/13/19	1825	Preservative - T			An	+	\dashv	\dashv		+	-+	\sim					
		7.3/11	1003	TIESE MUTINE	1			+	\dashv	\dashv			+	~					
						1		+	\dashv	\dashv		+	+	+		2 2			
					+	1		+	\dashv	\dashv		+	+	1-	-				
					+	1	+	+	\dashv	\dashv		++	+	_					
					_	1	\vdash	++	\dashv	\dashv		++	+	_					
	4 90				+			\dashv	\dashv	\dashv		++	+	+					
		L						لبل						01		1.	1 14	11 - 0	
Special Instruc	ctions/Comments:					-		_			SEND	Nar	me: 🗼	revon VI	ness	1 Kel	1: 7/	niller	
							1000				CUMENTATION D RESULTS TO:								
	32.70							_		ANL	ALGOLIG TO.	C	City:			State:		Zip:	
									We assessed				nail: _						
1870	pes: P= HDPE, PJ=	HDPE Jar		Bottle Prese	5	/pe: T :	= Thiosulf	ate,			Matrix Types: AQ = Aq						/Paper,	SD = Sedime	ent,
O = Other:				TZ = Trizr	na:					,	SL = Sludge, SO = Soil,	WW = Wa	astewa	ter, B = Bloo	d/Serum, O	= Other:			

Sample Log-In Checklist

Vista Work Orde	Date/Time 03/18/19 Date/Time 04/19 Date/Time 03/18/19 Date/Time 04/19 Date/Time 03/18/19 Date/Time 04/19 Date/Tim									
Samples	10201			Initials:		Y				
Arrival:	03/18/19		09110	ag	~	Sholf/Paci	. 11/1	4		
Samples Arrival: Date/Time 03/18/19 OPID Date/Time Logged In: Date/Time 03/18/19 OPID Date/Time Logged In: Date/Time 03/18/19 OPID Date/Time Location: WR-2 Shelf/Rack: U/A Location: WR-2 Shelf/Rack: U/A Location: WR-2 Shelf/Rack: 0-3 F-7 Preservation: Delivered By: FedEx UPS On Trac GSO DHL Hand Delivered Other Preservation: Temp °C: 7-9 (uncorrected) Temp °C: 7-8 (corrected) Probe used: Y/N Thermometer ID: YES NO NA Adequate Sample Volume Received? ★ 10 bc/lup for FB sample; 1-250ml ★ / Holding Time Acceptable? Shipping Container(s) Intact? Shipping Custody Seals Intact? Shipping Coustody Seals Intact? Shipping Documentation Present? Airbill Trk # 774 7 09/64 2033 Ample Container Intact? Sample Container Intact? COC Anomaly/Sample Acceptance Form completed? Preservation Documented: Na₂S₂O₃ Trizma None Ves No NA Shipping Container Vista Client Retain Return Dispose										
Samples Arrival: Date/Time Date/Time Logged In: Date/Time Date/Time Logged In: Date/Time Date/Time Logged In: Date/Time Date/Time Location: WR-2 Shelf/Rack: U/A Shelf/Rack: U/A Delivered By: FedEx UPS On Trac GSO DHL Hand Delivered Other Preservation: Temp °C: 7,9 (uncorrected) Temp °C: 7,8 (corrected) Probe used: Y / N Thermometer ID: IR- 4 Adequate Sample Volume Received? ★ No because for FB sample: 1-250ml ★ / Holding Time Acceptable? Shipping Container(s) Intact? Shipping Coustody Seals Intact? Shipping Documentation Present? Airbill Trk # 774 7 0964 2033 Air										
Vista Work Order #: Samples Arrival: Date/Time O3/18/19 O910 Comments: Date/Time O910 Comments: Initials: Location: WR-2 Shelf/Rack: 0-3 F-7 Holdings: Location: WR-2 Shelf/Rack: 0-3 F-7 Probe used: Y N Thermometer ID: IR-0 Temp °C: 7-9 (uncorrected) Probe used: Y N Thermometer ID: IR-0 YES NO NA Adequate Sample Volume Received? * No bodius for FB sample; 1-250ml * /			<u>F-'-</u>							
Delivered By:	FedEx	UPS	On Tra	c GSO	DHI	I		Oth	ıer	
Preservation:	Preservation: Ice Blue Ice Dry Ice None									
Temp °C: 7,9	(uncorrect	ted)	robo uo	di V (N		Th	4 ID-	TV	- 4	
Temp °C: 7.8	Date/Time 03/18/19 O910 Date/Time 03/18/19 O910 Date/Time O3/18/19 Date/Time Date/Time O3/18/19 Date/Time Date/Time O3/18/19 Date/Time Date/									
Samples Arrival: Date/Time O3/18/19 O910 Date/Time Location: WR-2 Shelf/Rack: U/A Delivered By: FedEx UPS On Trac GSO DHL Hand Delivered Other Preservation: Ice Blue Ice Dry Ice None Temp °C: 7,9 (uncorrected) Temp °C: 7,8 (corrected) Probe used: Y/N Thermometer ID: IR- 4 Holding Time Acceptable? Shipping Container(s) Intact? Shipping Custody Seals Intact? Shipping Documentation Present? Airbill Trk # 774 7 0964 2033 Sample Container Intact? Sample Custody / Sample Documentation Present? COC Anomaly/Sample Acceptance Form completed? Other Preservation Documented: Na₂S₂O₃ Trizma None Yes No NA Shipping Container Vista Client Retain Return Dispose										
	Date/Time O3/18/19 O910 O910 O910 O910 O910 O910 O910 O9									
	Adequate Sample Volume Received? * 10 boolup for FB sample; 1-250mL * / Holding Time Acceptable?									
Logged In: 03 18 19 1315 Delivered By: FedEx UPS On Trac GSO DHL Hand Delivered Other Preservation: Ice Blue Ice Dry Ice None Temp °C: 79 (uncorrected) Temp °C: 7.8 (corrected) Temp °C: 7.8 (corrected) Probe used: Y N Thermometer ID: I/2 - 4 Holding Time Acceptable? Shipping Container(s) Intact? Shipping Custody Seals Intact? Shipping Documentation Present? Airbill Trk # 7747 0964 2033 Sample Custody Seals Intact? Sample Custody Seals Intact? Chain of Custody / Sample Documentation Present? COC Anomaly/Sample Acceptance Form completed?										
Samples Arrival: Date/Time										
Samples Arrival: Date/Time										
Samples Arrival: Date/Time O3/18/19 Date/Time Logged In: Date/Time O3 18 13 5 5 5 5 5 Delivered By: FedEx UPS On Trac GSO DHL Delivered Dry Ice None Temp °C: 79 (uncorrected) Temp °C: 78 (corrected) Frobe used: Y N Adequate Sample Volume Received? * 10 becurp for FB sample: 1-250ml * / Holding Time Acceptable? Shipping Container(s) Intact? Shipping Custody Seals Intact? Shipping Custody Seals Intact? Shipping Custody Seals Intact? Sample Container Intact? Sample Container Intact? Sample Container Intact? Sample Container Intact? Chain of Custody / Sample Documentation Present? COC Anomaly/Sample Acceptance Form completed? If Chlorinated or Drinking Water Samples, Acceptable Preservation? Preservation Documented: Na:Stop Other Na:Stop Other Vista Client Retain Return Dispose										
Arrival: Date/Time Date/T										
	2000 2001 48 124	1							1	
			tation Pre	esent?			_			
Date/Time 13 S MuS Shelf/Rack: 3-3 F-1										
If Chlorinated or I	Orinking Wate	er Sami	nles Acc	entable Pre	senva.	tion?	1			
Preservation Documented: Na ₂ S ₂ O ₃ Trizma None Na ₂ N ₂ Na Na										
Shipping Contain	er		ista	Client	Re	etain Re	eturn	Disp	ose	
									Ayanahara (1)	
Samples Arrival: Date/Time 03/18/19 0910 agr Shelf/Rack: U/A Logged In: 03/18/19 0910 agr Shelf/Rack: U/A Logged In: 03/18/19 0910 agr Shelf/Rack: U/A Date/Time Initials: Location: WK-2 Shelf/Rack: U/A Delivered By: FedEx UPS On Trac GSO DHL Hand Delivered Other Preservation: Ice Blue Ice Dry Ice None Temp °C: 79 (uncorrected) Temp °C: 78 (corrected) Probe used: Y/N Thermometer ID: I/2 - 4 Adequate Sample Volume Received? **No bodula for FB sample: 1-250ml **/ Holding Time Acceptable? Shipping Container(s) Intact? Shipping Custody Seals Intact? Shipping Custody Seals Intact? Airbill Trk # 774 7 0964 2033 / Sample Container Intact? Sample Container Intact? COC Anomaly/Sample Acceptance Form completed? Preservation Documented: Na;So3 Trizma None Yes No NA Shipping Container Vista Client Retain Return Dispose Comments: Sample label										
	Does not at	fed se	ample int	egritu.						

Rev No.: 3

ID.: LR - SLC

Work Order 1900478

Page 16 of 168

Rev Date: 05 October 2018

EXTRACTION INFORMATION

Work Order 1900478 Page 17 of 168

Process Sheet

Workorder: 1900478

Prep Expiration: 2019-Mar-27

Client: KMEA

Workorder Due: 01-Apr-19 00:00

TAT: 14

Method: 537 PFAS DW DoD Unmodified

Matrix: Aqueous

Prep Data Entered:

HR 03/22/19

Date and Initials

Version: 14 Analyte DW (Full List)

DoD: DoD QSM 5.1

Initial Sequence:

5900065

		-	0 "		_		
LabSampID	A/B	Prep Rec	Spike Rec	ClientSampleID	Comments	Location	Container
1900478-01	"A"	Ø,	Q	Charlie's Pasture-DW 031319		WR-2 A-3	HDPE Bottle, 250 mL
1900478-02		▽	Ø	Dup-1		WR-2 A-3	HDPE Bottle, 250 mL
1900478-03	V			Field Blank Charlie's Pash	ure-Field Blank"	WR-2 A-3	HDPE Bottle, 250 mL

Pre-Prep Check In: NA

Prep Check Out: NA
Prep Check In: NA

Prep Reconciled Initals/Date: #P 03/21/19

Spike Reconciled Initals/Date: # 03/21/19

VialBoxID: Kings

Page 1 of 3

PREPARATION BENCH SHEET

Matrix: Aqueous	
Method: 537 PFAS DW DoD Unmodified	
Method: 537 PFAS DW Unmodified	

Method: 537 PFAS DW Unmodified MI Sp Sig Digs

B9C0124

 Prep Date:
 U3/11/9

 Prep Time:
 08.25

Prepared using: LCMS - SPE Extraction-LCMS

			BalanceID: 1 MS -9	Date/Initials: W 03/21/	19								
Cen	VISTA Sample ID	When checked Trizma Added in Lab	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	(SS/N CHEM/ DAT	WIT		SPE	(IS CHEM/ DAT	
	B9C0124-BLK1		NA	N4	(0-250)	ly	HR	03/21/19	ly	03/21/19	y	He	18/22/19
	B9C0124-BS1	V	1	T	(6-266)	10	T		U	T		T	
	B9C0124-BSD1	ত		\	(0.250)								
	1900460-01		271.81	37.08	0.23473								
	1900478-01(2)		279.39	29.28	0.25041								
	1900478-02		278.15	29.47	0.24868								
	1900478-03		278.32	28.16	0.25016								
	1900483-01 (2)		268.78	26.98	0.04180								
	1900483-02		266.28	27.00	0.28928								
	1900483-03		273.01	31.53	0.23548								
	1900483-04		274-31	26.79	0.24762								
	1900483-05		272.95	24.46	0.24649			·					
	1900483-06		277.82	26.49	0.25133		1			→		1	

Comments: Assume 1 g = 1 mL

Work Order 1900478

1 = Sample colored after centrifuge 2 = Cartridge sorbent discolored after SPE

Cen = Centrifuged

3 = Went dry during SPE Cartridge

Matrix: Aqueous

Vista Internal Chain-of-Custody

Method: 537 PFAS DW DoD Unmodified

B9C0124

	Location		12	4	WR-Z (Fridge)	L2	WR-2 (frace)	LYP		
1.5	Reason		124	P-4	R9 0	R6	R9	83		
ent :	Initials		HP	<i>y</i>	ng	7R	1 /4	lm		
	Date/Time		03/21/19 07:33	03/21/1908:51	13/19 13:04	03/22/14 07:47	03/22/19 13:50	2/20/19 174		
Initial Storage	LabNumber	Cont				100	Calley 1	Trans	17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
WR-2 A-3	1900478-01	A	o .	0	٤	٤	E	E		
WR-2 A-3	1900478-02	A		Ī	1	T	T	1		
WR-2 A-3	1900478-03	A	4	<u> </u>		J	V	V		

Location Key:

L1 = Prep Lab 1

L2 = Prep Lab 2

L3 = HRMS Diox

L4 = Instrument

Other = _

Reason Key:

R1 = Percent Solids

R2 = Eluate Preservation

R3 = Sub-Sample

R4 = Extraction

R6 = Concentration

R7 = Filtering

R8 = Analysis

R9 = Storage

Other = ____

Type Key:

O = Original Sample

E = Extract of Sample

Batch: B9C0124 Matrix: Aqueous

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1900460-01 🗸	0.23473	NIA	NIA	1000 ✓	21-Mar-19 08:2	5 VNY V			Aqueous	537 PFAS DW Unmodifie
1900478-01 🗸	0.25011	Ť	\overline{T}	1000	21-Mar-19 08:2	5/ NY /			Drinking Water	537 PFAS DW DoD Unmo
1900478-02 🗸	0.24868 🗸			1000 🗸	21-Mar-19 08:2	5 / NY /			Drinking Water	537 PFAS DW DoD Unmo
1900478-03 ✓	0.25016✓			1000 🗸	/ 21-Mar-19 08:2	5√NY√			Drinking Water	537 PFAS DW DoD Unmo
1900483-01√	0.2418 ✓			1000 🗸	['] 21-Mar-19 08:2	5 V NY V			Drinking Water	537 PFAS DW Unmodifie
1900483-02✓	0.23928 🗸			1000 🗸	7 21-Mar-19 08:2	5 √ NY √			Drinking Water	537 PFAS DW Unmodifie
1900483-03√	0.23548 🗸			1000 √	21-Mar-19 08:2	5√ NY /			Drinking Water	537 PFAS DW Unmodifie
1900483-04√	0.24752√			1000 √	21-Mar-19 08:2	5 √ NY √			Drinking Water	537 PFAS DW Unmodifie
1900483-05√	0.24649 ✓			1000 🗸	/ 21-Mar-19 08:2	5 √ NY √			Drinking Water	537 PFAS DW Unmodifie
1900483-06√	0.25133 ✓			1000 🗸	/ 21-Mar-19 08:2	5 √ NY.√			Drinking Water	537 PFAS DW Unmodifie
B9C0124-BLK1 √	0.25 ✓			1000 🗸	21-Mar-19 08:2	5 √ NY √				QC
B9C0124-BS1 ✓	0.25 ✓			1000 🗸	21-Mar-19 08:2	5√ NY √	19B2512	✓ 20 ✓		QC
B9C0124-BSD1✓	0.25 ✓	1	V	1000	/ 21-Mar-19 08:2	5√NY√	19B2512	20 /		QC

Printed: 3/22/2019 9:48:31AM Page 1 of 1

Page 21 of 168

SAMPLE DATA –EPA METHOD 537

Work Order 1900478 Page 22 of 168

MassLynx MassLynx V4.1 SCN 945

Page 5 of 5

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-30.qld

Last Altered: Saturday, March 30, 2019 14:36:33 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:37:06 Pacific Daylight Time

Name: 190328P1_30, Date: 28-Mar-2019, Time: 18:30:11, ID: B9C0124-BLK1 LRB 0.25, Description: LRB

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 80.0		4916.287	0.250		3.44				
2	2 PFHxA	313.1 > 269.1		9353.021	0.250		3.73				
3	4 PFHpA	363 > 319		9353.021	0.250		4.19				
4	6 PFHxS	399 > 80.0		4916.287	0.250		4.32				
5	7 PFOA	413 > 369		9353.021	0.250		4.58				
6	24 13C4-PFOS	502.9 > 79.9	4916.287	4916.287	0.250	1.000	4.95	4.94	28.7	115	100.0
7	23 13C2-PFOA	415 > 370	9353.021	9353.021	0.250	1.000	4.59	4.58	10.0	40.0	100.0
8	23 13C2-PFOA	415 > 370	9353.021	9353.021	0.250	1.000	4.59	4.58	10.0	40.0	100.0
9	24 13C4-PFOS	502.9 > 79.9	4916.287	4916.287	0.250	1.000	4.95	4.94	28.7	115	100.0
10	23 13C2-PFOA	415 > 370	9353.021	9353.021	0.250	1.000	4.59	4.58	10.0	40.0	100.0
11	-1										
12	8 PFNA	463 > 419		9353.021	0.250		4.89				
13	9 PFOS	499 >80.0		4916.287	0.250		4.94				
14	11 PFDA	513 > 469		9353.021	0.250		5.14				
15	12 N-MeFOSAA	570 > 419.1		14982.004	0.250		5.25				
16	13 N-EtFOSAA	584.0 >419.1		14982.004	0.250		5.36				
17	23 13C2-PFOA	415 > 370	9353.021	9353.021	0.250	1.000	4.59	4.58	10.0	40.0	100.0
18	24 13C4-PFOS	502.9 > 79.9	4916.287	4916.287	0.250	1.000	4.95	4.94	28.7	115	100.0
19	23 13C2-PFOA	415 > 370	9353.021	9353.021	0.250	1.000	4.59	4.58	10.0	40.0	100.0
20	25 d3-N-MeFOSAA	573.0 > 419.0	14982.004	14982.004	0.250	1.000	5.27	5.25	40.0	160	100.0
21	25 d3-N-MeFOSAA	573.0 > 419.0	14982.004	14982.004	0.250	1.000	5.27	5.25	40.0	160	100.0
22	-1										
23	14 PFUnA	563 > 519		9353.021	0.250		5.37				
24	16 PFDoA	613 > 569		9353.021	0.250		5.58				
25	17 PFTrDA	662.9 > 619		9353.021	0.250		5.75				
26	18 PFTeDA	712.9 > 669		9353.021	0.250		5.90				
27	19 13C2-PFHxA	315.1 > 270	9795.163	9353.021	0.250	1.000	3.73	3.73	10.5	41.9	104.7
28	23 13C2-PFOA	415 > 370	9353.021	9353.021	0.250	1.000	4.59	4.58	10.0	40.0	100.0
29	23 13C2-PFOA	415 > 370	9353.021	9353.021	0.250	1.000	4.59	4.58	10.0	40.0	100.0
30	23 13C2-PFOA	415 > 370	9353.021	9353.021	0.250	1.000	4.59	4.58	10.0	40.0	100.0
31	23 13C2-PFOA	415 > 370	9353.021	9353.021	0.250	1.000	4.59	4.58	10.0	40.0	100.0
32	21 13C2-PFDA	515.0 > 470.0	11908.495	9353.021	0.250	1.208	5.15	5.14	12.7	42.1	105.4
33	-1										
34	22 d5-N-EtFOSAA	589.1 > 419.0	14367.065	14982.004	0.250	1.020	5.36	5.36	38.4	150	94.1

Work Order 1900478

Page 23 of 168 KBF 3/30/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-30.qld

Last Altered: Saturday, March 30, 2019 14:36:33 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:37:06 Pacific Daylight Time

Method: Y:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: Y:\PFAS3.PRO\CurveDB\537 Q5 03-28-19 L18.cdb 28 Mar 2019 15:24:24

Name: 190328P1_30, Date: 28-Mar-2019, Time: 18:30:11, ID: B9C0124-BLK1 LRB 0.25, Description: LRB

Work Order 1900478 Page 24 of 168^{KBF 3/30/2019}

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-30.qld

Last Altered: Saturday, March 30, 2019 14:36:33 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:37:06 Pacific Daylight Time

Name: 190328P1_30, Date: 28-Mar-2019, Time: 18:30:11, ID: B9C0124-BLK1 LRB 0.25, Description: LRB

Work Order 1900478

Page 25 of 168 KBF 3/30/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-30.qld

Last Altered: Saturday, March 30, 2019 14:36:33 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:37:06 Pacific Daylight Time

Name: 190328P1_30, Date: 28-Mar-2019, Time: 18:30:11, ID: B9C0124-BLK1 LRB 0.25, Description: LRB

Work Order 1900478

Page 26 of 168 KBF 3/30/2019

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-30.qld

Last Altered: Saturday, March 30, 2019 14:36:33 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:37:06 Pacific Daylight Time

Name: 190328P1_30, Date: 28-Mar-2019, Time: 18:30:11, ID: B9C0124-BLK1 LRB 0.25, Description: LRB

d5-N-EtFOSAA

MassLynx V4.2 SCN977

Page 5 of 5

Review: AMR 4/1/2019

Dataset: D:\PFAS3.PRO\RESULTS\190330P1\190330P1-4.qld

Last Altered: Saturday, March 30, 2019 17:57:17 Pacific Daylight Time Printed: Saturday, March 30, 2019 17:59:43 Pacific Daylight Time

Name: 190330P1_4, Date: 30-Mar-2019, Time: 16:37:59, ID: B9C0124-BS1 LFB 0.25, Description: LFB

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 80.0	2657.862	5013.282	0.250		3.38	3.38	15.2	71.3	100.7
2	2 PFHxA	313.1 > 269.1	15199.370	9376.132	0.250		3.69	3.69	16.2	85.0	106.3
3	4 PFHpA	363 > 319	19583.338	9376.132	0.250		4.16	4.16	20.9	81.9	102.4
4	6 PFHxS	399 > 80.0	2475.960	5013.282	0.250		4.27	4.27	14.2	73.6	101.1
5	7 PFOA	413 > 369	18913.904	9376.132	0.250		4.53	4.53	20.2	83.2	103.9
6	24 13C4-PFOS	502.9 > 79.9	5013.282	5013.282	0.250	1.000	4.90	4.89	28.7	115	100.0
7	23 13C2-PFOA	415 > 370	9376.132	9376.132	0.250	1.000	4.53	4.53	10.0	40.0	100.0
8	23 13C2-PFOA	415 > 370	9376.132	9376.132	0.250	1.000	4.53	4.53	10.0	40.0	100.0
9	24 13C4-PFOS	502.9 > 79.9	5013.282	5013.282	0.250	1.000	4.90	4.89	28.7	115	100.0
10	23 13C2-PFOA	415 > 370	9376.132	9376.132	0.250	1.000	4.53	4.53	10.0	40.0	100.0
11	-1										
12	8 PFNA	463 > 419	16971.871	9376.132	0.250		4.85	4.84	18.1	83.6	104.5
13	9 PFOS	499 >80.0	2681.034	5013.282	0.250		4.89	4.89	15.3	70.1	94.8
14	11 PFDA	513 > 469	18373.504	9376.132	0.250		5.11	5.11	19.6	76.6	95.7
15	12 N-MeFOSAA	570 > 419.1	5497.742	15303.156	0.250		5.21	5.22	14.4	77.0	96.3
16	13 N-EtFOSAA	584.0 >419.1	5066.139	15303.156	0.250		5.32	5.33	13.2	76.9	96.2
17	23 13C2-PFOA	415 > 370	9376.132	9376.132	0.250	1.000	4.53	4.53	10.0	40.0	100.0
18	24 13C4-PFOS	502.9 > 79.9	5013.282	5013.282	0.250	1.000	4.90	4.89	28.7	115	100.0
19	23 13C2-PFOA	415 > 370	9376.132	9376.132	0.250	1.000	4.53	4.53	10.0	40.0	100.0
20	25 d3-N-MeFOSAA	573.0 > 419.0	15303.156	15303.156	0.250	1.000	5.22	5.21	40.0	160	100.0
21	25 d3-N-MeFOSAA	573.0 > 419.0	15303.156	15303.156	0.250	1.000	5.22	5.21	40.0	160	100.0
22	-1										
23	14 PFUnA	563 > 519	22217.992	9376.132	0.250		5.34	5.34	23.7	71.0	88.8
24	16 PFDoA	613 > 569	27326.000	9376.132	0.250		5.53	5.53	29.1	69.6	87.0
25	17 PFTrDA	662.9 > 619	27697.832	9376.132	0.250		5.70	5.70	29.5	69.9	87.3
26	18 PFTeDA	712.9 > 669	26176.010	9376.132	0.250		5.85	5.85	27.9	70.0	87.5
27	19 13C2-PFHxA	315.1 > 270	10261.357	9376.132	0.250	1.000	3.69	3.69	10.9	43.8	109.4
28	23 13C2-PFOA	415 > 370	9376.132	9376.132	0.250	1.000	4.53	4.53	10.0	40.0	100.0
29	23 13C2-PFOA	415 > 370	9376.132	9376.132	0.250	1.000	4.53	4.53	10.0	40.0	100.0
30	23 13C2-PFOA	415 > 370	9376.132	9376.132	0.250	1.000	4.53	4.53	10.0	40.0	100.0
31	23 13C2-PFOA	415 > 370	9376.132	9376.132	0.250	1.000	4.53	4.53	10.0	40.0	100.0
32	21 13C2-PFDA	515.0 > 470.0	10824.657	9376.132	0.250	1.208	5.11	5.11	11.5	38.2	95.5
33	-1										
34	22 d5-N-EtFOSAA	589.1 > 419.0	15166.719	15303.156	0.250	1.020	5.32	5.32	39.6	156	97.2

KBF 3/30/2019

MassLynx V4.2 SCN977

Page 1 of 5

Review: AMR 4/1/2019

Dataset: D:\PFAS3.PRO\RESULTS\190330P1\190330P1-4.qld

Last Altered: Saturday, March 30, 2019 17:57:17 Pacific Daylight Time Printed: Saturday, March 30, 2019 17:59:43 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190330P1_4, Date: 30-Mar-2019, Time: 16:37:59, ID: B9C0124-BS1 LFB 0.25, Description: LFB

KBF 3/30/2019

Dataset: D:\PFAS3.PRO\RESULTS\190330P1\190330P1-4.qld

Last Altered: Saturday, March 30, 2019 17:57:17 Pacific Daylight Time Printed: Saturday, March 30, 2019 17:59:43 Pacific Daylight Time

Name: 190330P1_4, Date: 30-Mar-2019, Time: 16:37:59, ID: B9C0124-BS1 LFB 0.25, Description: LFB

Dataset: D:\PFAS3.PRO\RESULTS\190330P1\190330P1-4.qld

Last Altered: Saturday, March 30, 2019 17:57:17 Pacific Daylight Time Printed: Saturday, March 30, 2019 17:59:43 Pacific Daylight Time

Name: 190330P1_4, Date: 30-Mar-2019, Time: 16:37:59, ID: B9C0124-BS1 LFB 0.25, Description: LFB

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: D:\PFAS3.PRO\RESULTS\190330P1\190330P1-4.qld

Last Altered: Saturday, March 30, 2019 17:57:17 Pacific Daylight Time Printed: Saturday, March 30, 2019 17:59:43 Pacific Daylight Time

Name: 190330P1_4, Date: 30-Mar-2019, Time: 16:37:59, ID: B9C0124-BS1 LFB 0.25, Description: LFB

d5-N-EtFOSAA

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-29.qld

Last Altered: Saturday, March 30, 2019 14:27:58 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:34:59 Pacific Daylight Time

Name: 190328P1_29, Date: 28-Mar-2019, Time: 18:19:37, ID: B9C0124-BSD1 LFBD 0.25, Description: LFBD

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 80.0	2449.586	5009.278	0.250		3.44	3.42	14.0	65.7	92.9
2	2 PFHxA	313.1 > 269.1	14408.327	10057.598	0.250		3.73	3.72	14.3	75.1	93.9
3	4 PFHpA	363 > 319	19561.627	10057.598	0.250		4.19	4.20	19.4	76.3	95.4
4	6 PFHxS	399 > 80.0	2219.040	5009.278	0.250		4.31	4.31	12.7	66.0	90.7
5	7 PFOA	413 > 369	18694.447	10057.598	0.250		4.58	4.57	18.6	76.6	95.8
6	24 13C4-PFOS	502.9 > 79.9	5009.278	5009.278	0.250	1.000	4.95	4.93	28.7	115	100.0
7	23 13C2-PFOA	415 > 370	10057.598	10057.598	0.250	1.000	4.59	4.58	10.0	40.0	100.0
8	23 13C2-PFOA	415 > 370	10057.598	10057.598	0.250	1.000	4.59	4.58	10.0	40.0	100.0
9	24 13C4-PFOS	502.9 > 79.9	5009.278	5009.278	0.250	1.000	4.95	4.93	28.7	115	100.0
10	23 13C2-PFOA	415 > 370	10057.598	10057.598	0.250	1.000	4.59	4.58	10.0	40.0	100.0
11	-1										
12	8 PFNA	463 > 419	15626.806	10057.598	0.250		4.89	4.88	15.5	71.8	89.7
13	9 PFOS	499 >80.0	2729.894	5009.278	0.250		4.93	4.94	15.6	71.5	96.6
14	11 PFDA	513 > 469	19429.660	10057.598	0.250		5.15	5.14	19.3	75.5	94.4
15	12 N-MeFOSAA	570 > 419.1	5037.025	14362.670	0.250		5.26	5.25	14.0	75.2	94.0
16	13 N-EtFOSAA	584.0 >419.1	4500.675	14362.670	0.250		5.36	5.37	12.5	72.8	91.0
17	23 13C2-PFOA	415 > 370	10057.598	10057.598	0.250	1.000	4.59	4.58	10.0	40.0	100.0
18	24 13C4-PFOS	502.9 > 79.9	5009.278	5009.278	0.250	1.000	4.95	4.93	28.7	115	100.0
19	23 13C2-PFOA	415 > 370	10057.598	10057.598	0.250	1.000	4.59	4.58	10.0	40.0	100.0
20	25 d3-N-MeFOSAA	573.0 > 419.0	14362.670	14362.670	0.250	1.000	5.27	5.26	40.0	160	100.0
21	25 d3-N-MeFOSAA	573.0 > 419.0	14362.670	14362.670	0.250	1.000	5.27	5.26	40.0	160	100.0
22	-1										
23	14 PFUnA	563 > 519	24602.787	10057.598	0.250		5.37	5.38	24.5	73.3	91.6
24	16 PFDoA	613 > 569	29267.318	10057.598	0.250		5.58	5.57	29.1	69.5	86.8
25	17 PFTrDA	662.9 > 619	29385.131	10057.598	0.250		5.75	5.74	29.2	69.1	86.4
26	18 PFTeDA	712.9 > 669	26653.963	10057.598	0.250		5.90	5.89	26.5	66.5	83.1
27	19 13C2-PFHxA	315.1 > 270	9503.048	10057.598	0.250	1.000	3.73	3.73	9.45	37.8	94.4
28	23 13C2-PFOA	415 > 370	10057.598	10057.598	0.250	1.000	4.59	4.58	10.0	40.0	100.0
29	23 13C2-PFOA	415 > 370	10057.598	10057.598	0.250	1.000	4.59	4.58	10.0	40.0	100.0
30	23 13C2-PFOA	415 > 370	10057.598	10057.598	0.250	1.000	4.59	4.58	10.0	40.0	100.0
31	23 13C2-PFOA	415 > 370	10057.598	10057.598	0.250	1.000	4.59	4.58	10.0	40.0	100.0
32	21 13C2-PFDA	515.0 > 470.0	11622.216	10057.598	0.250	1.208	5.15	5.15	11.6	38.3	95.6
33	-1										
34	22 d5-N-EtFOSAA	589.1 > 419.0	13804.895	14362.670	0.250	1.020	5.37	5.36	38.4	151	94.3

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-29.qld

Last Altered: Saturday, March 30, 2019 14:27:58 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:34:59 Pacific Daylight Time

Method: Y:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: Y:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190328P1_29, Date: 28-Mar-2019, Time: 18:19:37, ID: B9C0124-BSD1 LFBD 0.25, Description: LFBD

Work Order 1900478

Page 34 of 168 KBF 3/30/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-29.qld

Last Altered: Saturday, March 30, 2019 14:27:58 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:34:59 Pacific Daylight Time

Name: 190328P1_29, Date: 28-Mar-2019, Time: 18:19:37, ID: B9C0124-BSD1 LFBD 0.25, Description: LFBD

Work Order 1900478

Page 35 of 168^{KBF 3/30/2019}

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-29.qld

Last Altered: Saturday, March 30, 2019 14:27:58 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:34:59 Pacific Daylight Time

Name: 190328P1_29, Date: 28-Mar-2019, Time: 18:19:37, ID: B9C0124-BSD1 LFBD 0.25, Description: LFBD

Work Order 1900478

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-29.qld

Last Altered: Saturday, March 30, 2019 14:27:58 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:34:59 Pacific Daylight Time

Name: 190328P1_29, Date: 28-Mar-2019, Time: 18:19:37, ID: B9C0124-BSD1 LFBD 0.25, Description: LFBD

d5-N-EtFOSAA

MassLynx MassLynx V4.1 SCN 945

Page 5 of 5

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-32.qld

Last Altered: Saturday, March 30, 2019 14:50:14 Pacific Daylight Time

*See dilution

Printed: Saturday, March 30, 2019 14:57:37 Pacific Daylight Time

Name: 190328P1_32, Date: 28-Mar-2019, Time: 18:51:22, ID: 1900478-01 Charlie's Pasture-DW 031319 0.25011, Description: Charlie's Pasture-DW 031319

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean F	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 80.0	1505.151	4768.890	0.250		3.44	3.43	9.06	42.4	
2	2 PFHxA	313.1 > 269.1	71885.180	10250.569	0.250		3.73	3.73	70.1	368	
3	4 PFHpA	363 > 319	47763.766	10250.569	0.250		4.19	4.21	46.6	183	
4	6 PFHxS	399 > 80.0	28313.150	4768.890	0.250		4.32	4.31	170	884	*
5	7 PFOA	413 > 369	186995.313	10250.569	0.250		4.58	4.58	182	752	*
6	24 13C4-PFOS	502.9 > 79.9	4768.890	4768.890	0.250	1.000	4.95	4.94	28.7	115	100.0
7	23 13C2-PFOA	415 > 370	10250.569	10250.569	0.250	1.000	4.59	4.58	10.0	40.0	100.0
8	23 13C2-PFOA	415 > 370	10250.569	10250.569	0.250	1.000	4.59	4.58	10.0	40.0	100.0
9	24 13C4-PFOS	502.9 > 79.9	4768.890	4768.890	0.250	1.000	4.95	4.94	28.7	115	100.0
10	23 13C2-PFOA	415 > 370	10250.569	10250.569	0.250	1.000	4.59	4.58	10.0	40.0	100.0
11	-1										
12	8 PFNA	463 > 419	6219.401	10250.569	0.250		4.89	4.88	6.07	28.0	
13	9 PFOS	499 >80.0	52565.633	4768.890	0.250		4.94	4.94	316	1440	*
14	11 PFDA	513 > 469	405.272	10250.569	0.250		5.15	5.14	0.395	1.55	
15	12 N-MeFOSAA	570 > 419.1		15160.884	0.250		5.26				
16	13 N-EtFOSAA	584.0 >419.1		15160.884	0.250		5.37				
17	23 13C2-PFOA	415 > 370	10250.569	10250.569	0.250	1.000	4.59	4.58	10.0	40.0	100.0
18	24 13C4-PFOS	502.9 > 79.9	4768.890	4768.890	0.250	1.000	4.95	4.94	28.7	115	100.0
19	23 13C2-PFOA	415 > 370	10250.569	10250.569	0.250	1.000	4.59	4.58	10.0	40.0	100.0
20	25 d3-N-MeFOSAA	573.0 > 419.0	15160.884	15160.884	0.250	1.000	5.27	5.26	40.0	160	100.0
21	25 d3-N-MeFOSAA	573.0 > 419.0	15160.884	15160.884	0.250	1.000	5.27	5.26	40.0	160	100.0
22	-1										
23	14 PFUnA	563 > 519		10250.569	0.250		5.37				
24	16 PFDoA	613 > 569		10250.569	0.250		5.58				
25	17 PFTrDA	662.9 > 619		10250.569	0.250		5.75				
26	18 PFTeDA	712.9 > 669		10250.569	0.250		5.90				
27	19 13C2-PFHxA	315.1 > 270	10127.586	10250.569	0.250	1.000	3.73	3.73	9.88	39.5	98.8
28	23 13C2-PFOA	415 > 370	10250.569	10250.569	0.250	1.000	4.59	4.58	10.0	40.0	100.0
29	23 13C2-PFOA	415 > 370	10250.569	10250.569	0.250	1.000	4.59	4.58	10.0	40.0	100.0
30	23 13C2-PFOA	415 > 370	10250.569	10250.569	0.250	1.000	4.59	4.58	10.0	40.0	100.0
31	23 13C2-PFOA	415 > 370	10250.569	10250.569	0.250	1.000	4.59	4.58	10.0	40.0	100.0
32	21 13C2-PFDA	515.0 > 470.0	11142.256	10250.569	0.250	1.208	5.15	5.15	10.9	36.0	90.0
33	-1										
34	22 d5-N-EtFOSAA	589.1 > 419.0	13380.514	15160.884	0.250	1.020	5.37	5.37	35.3	138	86.6

Work Order 1900478

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-32.qld

Last Altered: Saturday, March 30, 2019 14:50:14 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:57:37 Pacific Daylight Time

Method: Y:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: Y:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190328P1_32, Date: 28-Mar-2019, Time: 18:51:22, ID: 1900478-01 Charlie's Pasture-DW 031319 0.25011, Description: Charlie's Pasture-DW 031319

Work Order 1900478

Page 39 of 168 KBF 3/30/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-32.qld

Last Altered: Saturday, March 30, 2019 14:50:14 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:57:37 Pacific Daylight Time

Name: 190328P1_32, Date: 28-Mar-2019, Time: 18:51:22, ID: 1900478-01 Charlie's Pasture-DW 031319 0.25011, Description: Charlie's Pasture-DW 031319

Work Order 1900478

Page 40 of 168 KBF 3/30/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-32.qld

Last Altered: Saturday, March 30, 2019 14:50:14 Pacific Daylight Time Printed: Saturday, March 30, 2019 14:57:37 Pacific Daylight Time

Name: 190328P1_32, Date: 28-Mar-2019, Time: 18:51:22, ID: 1900478-01 Charlie's Pasture-DW 031319 0.25011, Description: Charlie's Pasture-DW 031319

Work Order 1900478 Page 41 of 168^{KBF 3/30/2019}

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-32.qld

Last Altered: Saturday, March 30, 2019 14:50:14 Pacific Daylight Time Saturday, March 30, 2019 14:57:37 Pacific Daylight Time

Name: 190328P1_32, Date: 28-Mar-2019, Time: 18:51:22, ID: 1900478-01 Charlie's Pasture-DW 031319 0.25011, Description: Charlie's Pasture-DW 031319

d5-N-EtFOSAA

Work Order 1900478

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: D:\PFAS3.PRO\RESULTS\190330P1\190330P1-5.qld

Last Altered: Saturday, March 30, 2019 18:03:39 Pacific Daylight Time Printed: Saturday, March 30, 2019 18:05:48 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190330P1_5, Date: 30-Mar-2019, Time: 16:48:36, ID: 1900478-01@10X Charlie's Pasture-DW 031319 0.25011, Description: Charlie's Pasture-DW 031319

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	6 PFHxS	399 > 80.0	3.47e3	4.97e2	0.2501		4.27	4.27	200	1040	
2	7 PFOA	413 > 369	1.99e4	1.02e3	0.2501		4.53	4.53	196	807	
3	9 PFOS	499 >80.0	5.78e3	4.97e2	0.2501		4.89	4.90	334	1520	
4	19 13C2-PFHxA	315.1 > 270	1.14e3	1.02e3	0.2501	1.000	3.68	3.69	11.2	44.9	112.3
5	21 13C2-PFDA	515.0 > 470.0	1.06e3	1.02e3	0.2501	1.208	5.10	5.11	10.4	34.5	86.2
6	22 d5-N-EtFOSAA	589.1 > 419.0	1.66e3	1.57e3	0.2501	1.020	5.32	5.32	42.3	166	103.8
7	23 13C2-PFOA	415 > 370	1.02e3	1.02e3	0.2501	1.000	4.53	4.53	10.0	40.0	100.0
8	24 13C4-PFOS	502.9 > 79.9	4.97e2	4.97e2	0.2501	1.000	4.90	4.89	28.7	115	100.0
9	25 d3-N-MeFOSAA	573.0 > 419.0	1.57e3	1.57e3	0.2501	1.000	5.22	5.22	40.0	160	100.0

MassLynx V4.2 SCN977 Page 1 of 1

Review: AMR 4/1/2019

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-5.gld Dataset:

Saturday, March 30, 2019 18:03:39 Pacific Daylight Time Last Altered: Saturday, March 30, 2019 18:05:48 Pacific Daylight Time Printed:

Method: D:\PFAS3.PRO\MethDB\PFAS DW L18 033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537 Q5 03-28-19 L18.cdb 28 Mar 2019 15:24:24

Name: 190330P1 5, Date: 30-Mar-2019, Time: 16:48:36, ID: 1900478-01@10X Charlie's Pasture-DW 031319 0.25011, Description: Charlie's Pasture-DW 031319

KBF 3/30/2019

MassLynx MassLynx V4.1 SCN 945

Page 5 of 5

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-33.qld

Last Altered: Saturday, March 30, 2019 15:00:25 Pacific Daylight Time

Printed: Saturday, March 30, 2019 15:00:48 Pacific Daylight Time *See dilution

Name: 190328P1_33, Date: 28-Mar-2019, Time: 19:01:56, ID: 1900478-02 Dup-1 0.24868, Description: Dup-1

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean F	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 80.0	1375.144	4184.996	0.249		3.45	3.43	9.43	44.4	
2	2 PFHxA	313.1 > 269.1	66746.492	8778.467	0.249		3.74	3.73	76.0	401	
3	4 PFHpA	363 > 319	42753.145	8778.467	0.249		4.19	4.21	48.7	192	
4	6 PFHxS	399 > 80.0	26419.168	4184.996	0.249		4.32	4.31	181	946	*
5	7 PFOA	413 > 369	165211.031	8778.467	0.249		4.58	4.58	188	780	,
6	24 13C4-PFOS	502.9 > 79.9	4184.996	4184.996	0.249	1.000	4.95	4.94	28.7	115	100.0
7	23 13C2-PFOA	415 > 370	8778.467	8778.467	0.249	1.000	4.59	4.58	10.0	40.2	100.0
8	23 13C2-PFOA	415 > 370	8778.467	8778.467	0.249	1.000	4.59	4.58	10.0	40.2	100.0
9	24 13C4-PFOS	502.9 > 79.9	4184.996	4184.996	0.249	1.000	4.95	4.94	28.7	115	100.0
10	23 13C2-PFOA	415 > 370	8778.467	8778.467	0.249	1.000	4.59	4.58	10.0	40.2	100.0
11	-1										
12	8 PFNA	463 > 419	5983.179	8778.467	0.249		4.89	4.88	6.82	31.6	
13	9 PFOS	499 >80.0	49235.539	4184.996	0.249		4.94	4.94	338	1550	*
14	11 PFDA	513 > 469	427.227	8778.467	0.249		5.15	5.16	0.487	1.92	
15	12 N-MeFOSAA	570 > 419.1		13962.995	0.249		5.26				
16	13 N-EtFOSAA	584.0 >419.1		13962.995	0.249		5.37				
17	23 13C2-PFOA	415 > 370	8778.467	8778.467	0.249	1.000	4.59	4.58	10.0	40.2	100.0
18	24 13C4-PFOS	502.9 > 79.9	4184.996	4184.996	0.249	1.000	4.95	4.94	28.7	115	100.0
19	23 13C2-PFOA	415 > 370	8778.467	8778.467	0.249	1.000	4.59	4.58	10.0	40.2	100.0
20	25 d3-N-MeFOSAA	573.0 > 419.0	13962.995	13962.995	0.249	1.000	5.27	5.26	40.0	161	100.0
21	25 d3-N-MeFOSAA	573.0 > 419.0	13962.995	13962.995	0.249	1.000	5.27	5.26	40.0	161	100.0
22	-1										
23	14 PFUnA	563 > 519		8778.467	0.249		5.37				
24	16 PFDoA	613 > 569		8778.467	0.249		5.58				
25	17 PFTrDA	662.9 > 619		8778.467	0.249		5.75				
26	18 PFTeDA	712.9 > 669		8778.467	0.249		5.90				
27	19 13C2-PFHxA	315.1 > 270	9370.386	8778.467	0.249	1.000	3.73	3.74	10.7	42.9	106.7
28	23 13C2-PFOA	415 > 370	8778.467	8778.467	0.249	1.000	4.59	4.58	10.0	40.2	100.0
29	23 13C2-PFOA	415 > 370	8778.467	8778.467	0.249	1.000	4.59	4.58	10.0	40.2	100.0
30	23 13C2-PFOA	415 > 370	8778.467	8778.467	0.249	1.000	4.59	4.58	10.0	40.2	100.0
31	23 13C2-PFOA	415 > 370	8778.467	8778.467	0.249	1.000	4.59	4.58	10.0	40.2	100.0
32	21 13C2-PFDA	515.0 > 470.0	10651.093	8778.467	0.249	1.208	5.15	5.15	12.1	40.4	100.4
33	-1										
34	22 d5-N-EtFOSAA	589.1 > 419.0	13555.967	13962.995	0.249	1.020	5.37	5.37	38.8	153	95.2

Work Order 1900478

Page 45 of 168 KBF 3/30/2019

Vista Analytical Laboratory

MassLynx MassLynx V4.1 SCN 945

Page 1 of 5

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-33.qld

Last Altered: Saturday, March 30, 2019 15:00:25 Pacific Daylight Time Printed: Saturday, March 30, 2019 15:00:48 Pacific Daylight Time

Method: Y:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: Y:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190328P1_33, Date: 28-Mar-2019, Time: 19:01:56, ID: 1900478-02 Dup-1 0.24868, Description: Dup-1

Work Order 1900478

Page 46 of 168 KBF 3/30/2019

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-33.qld

Last Altered: Saturday, March 30, 2019 15:00:25 Pacific Daylight Time Printed: Saturday, March 30, 2019 15:00:48 Pacific Daylight Time

Name: 190328P1_33, Date: 28-Mar-2019, Time: 19:01:56, ID: 1900478-02 Dup-1 0.24868, Description: Dup-1

Work Order 1900478

Page 47 of 168 KBF 3/30/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-33.qld

Last Altered: Saturday, March 30, 2019 15:00:25 Pacific Daylight Time Printed: Saturday, March 30, 2019 15:00:48 Pacific Daylight Time

Name: 190328P1_33, Date: 28-Mar-2019, Time: 19:01:56, ID: 1900478-02 Dup-1 0.24868, Description: Dup-1

Work Order 1900478

Page 48 of 168^{KBF 3/30/2019}

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-33.qld

Last Altered: Saturday, March 30, 2019 15:00:25 Pacific Daylight Time Printed: Saturday, March 30, 2019 15:00:48 Pacific Daylight Time

Name: 190328P1_33, Date: 28-Mar-2019, Time: 19:01:56, ID: 1900478-02 Dup-1 0.24868, Description: Dup-1

d5-N-EtFOSAA

Work Order 1900478

Page 49 of 168 KBF 3/30/2019

Vista Analytical Laboratory

Dataset: D:\PFAS3.PRO\RESULTS\190330P1\190330P1-6.qld

Last Altered: Saturday, March 30, 2019 18:07:15 Pacific Daylight Time Printed: Saturday, March 30, 2019 18:08:03 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190330P1_6, Date: 30-Mar-2019, Time: 16:59:11, ID: 1900478-02@10X Dup-1 0.24868, Description: Dup-1

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	6 PFHxS	399 > 80.0	3.07e3	5.18e2	0.2487		4.28	4.27	170	886	
2	7 PFOA	413 > 369	1.83e4	9.19e2	0.2487		4.53	4.54	199	827	
3	9 PFOS	499 >80.0	5.41e3	5.18e2	0.2487		4.91	4.90	300	1380	
4	19 13C2-PFHxA	315.1 > 270	1.02e3	9.19e2	0.2487	1.000	3.68	3.69	11.1	44.8	111.4
5	21 13C2-PFDA	515.0 > 470.0	1.03e3	9.19e2	0.2487	1.208	5.10	5.11	11.2	37.3	92.7
6	22 d5-N-EtFOSAA	589.1 > 419.0	1.81e3	1.65e3	0.2487	1.020	5.32	5.33	44.0	174	108.0
7	23 13C2-PFOA	415 > 370	9.19e2	9.19e2	0.2487	1.000	4.53	4.53	10.0	40.2	100.0
8	24 13C4-PFOS	502.9 > 79.9	5.18e2	5.18e2	0.2487	1.000	4.90	4.91	28.7	115	100.0
9	25 d3-N-MeFOSAA	573.0 > 419.0	1.65e3	1.65e3	0.2487	1.000	5.22	5.21	40.0	161	100.0

Page 1 of 1

Review: AMR 4/1/2019

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-6.qld Dataset:

Last Altered: Saturday, March 30, 2019 18:07:15 Pacific Daylight Time Printed: Saturday, March 30, 2019 18:08:03 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS DW L18 033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537 Q5 03-28-19 L18.cdb 28 Mar 2019 15:24:24

Name: 190330P1 6, Date: 30-Mar-2019, Time: 16:59:11, ID: 1900478-02@10X Dup-1 0.24868, Description: Dup-1

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-34.qld

Last Altered: Saturday, March 30, 2019 15:02:26 Pacific Daylight Time Printed: Saturday, March 30, 2019 15:02:50 Pacific Daylight Time

Name: 190328P1_34, Date: 28-Mar-2019, Time: 19:12:31, ID: 1900478-03 Field Blank 0.25016, Description: Field Blank

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 80.0		4713.865	0.250		3.44				
2	2 PFHxA	313.1 > 269.1		9315.668	0.250		3.73				
3	4 PFHpA	363 > 319		9315.668	0.250		4.19				
4	6 PFHxS	399 > 80.0		4713.865	0.250		4.32				
5	7 PFOA	413 > 369		9315.668	0.250		4.58				
6	24 13C4-PFOS	502.9 > 79.9	4713.865	4713.865	0.250	1.000	4.95	4.94	28.7	115	100.0
7	23 13C2-PFOA	415 > 370	9315.668	9315.668	0.250	1.000	4.59	4.58	10.0	40.0	100.0
8	23 13C2-PFOA	415 > 370	9315.668	9315.668	0.250	1.000	4.59	4.58	10.0	40.0	100.0
9	24 13C4-PFOS	502.9 > 79.9	4713.865	4713.865	0.250	1.000	4.95	4.94	28.7	115	100.0
10	23 13C2-PFOA	415 > 370	9315.668	9315.668	0.250	1.000	4.59	4.58	10.0	40.0	100.0
11	-1										
12	8 PFNA	463 > 419		9315.668	0.250		4.89				
13	9 PFOS	499 >80.0		4713.865	0.250		4.94				
14	11 PFDA	513 > 469		9315.668	0.250		5.14				
15	12 N-MeFOSAA	570 > 419.1		14369.272	0.250		5.26				
16	13 N-EtFOSAA	584.0 >419.1		14369.272	0.250		5.36				
17	23 13C2-PFOA	415 > 370	9315.668	9315.668	0.250	1.000	4.59	4.58	10.0	40.0	100.0
18	24 13C4-PFOS	502.9 > 79.9	4713.865	4713.865	0.250	1.000	4.95	4.94	28.7	115	100.0
19	23 13C2-PFOA	415 > 370	9315.668	9315.668	0.250	1.000	4.59	4.58	10.0	40.0	100.0
20	25 d3-N-MeFOSAA	573.0 > 419.0	14369.272	14369.272	0.250	1.000	5.27	5.26	40.0	160	100.0
21	25 d3-N-MeFOSAA	573.0 > 419.0	14369.272	14369.272	0.250	1.000	5.27	5.26	40.0	160	100.0
22	-1										
23	14 PFUnA	563 > 519		9315.668	0.250		5.37				
24	16 PFDoA	613 > 569		9315.668	0.250		5.58				
25	17 PFTrDA	662.9 > 619		9315.668	0.250		5.75				
26	18 PFTeDA	712.9 > 669		9315.668	0.250		5.90				
27	19 13C2-PFHxA	315.1 > 270	9740.219	9315.668	0.250	1.000	3.73	3.73	10.5	41.8	104.5
28	23 13C2-PFOA	415 > 370	9315.668	9315.668	0.250	1.000	4.59	4.58	10.0	40.0	100.0
29	23 13C2-PFOA	415 > 370	9315.668	9315.668	0.250	1.000	4.59	4.58	10.0	40.0	100.0
30	23 13C2-PFOA	415 > 370	9315.668	9315.668	0.250	1.000	4.59	4.58	10.0	40.0	100.0
31	23 13C2-PFOA	415 > 370	9315.668	9315.668	0.250	1.000	4.59	4.58	10.0	40.0	100.0
32	21 13C2-PFDA	515.0 > 470.0	11147.195	9315.668	0.250	1.208	5.15	5.14	12.0	39.6	99.0
33	-1										
34	22 d5-N-EtFOSAA	589.1 > 419.0	14300.919	14369.272	0.250	1.020	5.37	5.36	39.8	156	97.6

Work Order 1900478

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-34.qld

Last Altered: Saturday, March 30, 2019 15:02:26 Pacific Daylight Time Printed: Saturday, March 30, 2019 15:02:50 Pacific Daylight Time

Method: Y:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: Y:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190328P1_34, Date: 28-Mar-2019, Time: 19:12:31, ID: 1900478-03 Field Blank 0.25016, Description: Field Blank

Work Order 1900478 Page 53 of 168^{KBF 3/30/2019}

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-34.qld

Last Altered: Saturday, March 30, 2019 15:02:26 Pacific Daylight Time Printed: Saturday, March 30, 2019 15:02:50 Pacific Daylight Time

Name: 190328P1_34, Date: 28-Mar-2019, Time: 19:12:31, ID: 1900478-03 Field Blank 0.25016, Description: Field Blank

Work Order 1900478

Page 54 of 168^{KBF 3/30/2019}

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-34.qld

Last Altered: Saturday, March 30, 2019 15:02:26 Pacific Daylight Time Printed: Saturday, March 30, 2019 15:02:50 Pacific Daylight Time

Name: 190328P1_34, Date: 28-Mar-2019, Time: 19:12:31, ID: 1900478-03 Field Blank 0.25016, Description: Field Blank

Work Order 1900478

Page 55 of 168^{KBF 3/30/2019}

Vista Analytical Laboratory

Review: AMR 4/1/2019

Dataset: Y:\PFAS3.PRO\RESULTS\190328P1\190328P1-34.qld

Last Altered: Saturday, March 30, 2019 15:02:26 Pacific Daylight Time Printed: Saturday, March 30, 2019 15:02:50 Pacific Daylight Time

Name: 190328P1_34, Date: 28-Mar-2019, Time: 19:12:31, ID: 1900478-03 Field Blank 0.25016, Description: Field Blank

d5-N-EtFOSAA

INJECTION INTERNAL STANDARD (IIS) AREAS, AND

CONTINUTING CALIBRATION VERIFICATIONS CCV)

Work Order 1900478 Page 57 of 168

50-150%

Compound 23: 13C2-PFOA

ID	Name	Туре	Std. Conc RT		Area	ICAL AREA	% AREA
1 IPA	190328P1_12	Analyte	10			11389.28	0.00
2 ICV190328P1-1 537 ICV 19C2512	190328P1_13	Analyte	10	4.58	11813.52	11389.28	103.72
3 IPA	190328P1_14	Analyte	10			11389.28	0.00
4 B9C0007-BLK1 LRB 0.25	190328P1_15	Analyte	10	4.59	9875.22	11389.28	86.71
5 B9C0007-BS2 LFB 0.25	190328P1_16	Analyte	10	4.59	9624.12	11389.28	84.50
6 B9C0007-BS3 LFB 0.25	190328P1_17	Analyte	10	4.58	9958.75	11389.28	87.44
7 B9C0007-BS4 LFB 0.25	190328P1_18	Analyte	10	4.58	9889.11	11389.28	86.83
8 B9C0007-BS5 LFB 0.25	190328P1_19	Analyte	10	4.58	9328.19	11389.28	81.90
9 B9C0121-BSD1 LFBD 0.25	190328P1_20	Analyte	10	4.58	8382.66	11389.28	73.60
10 B9C0121-BS1 LFB 0.25	190328P1_21	Analyte	10	4.58	9209.84	11389.28	80.86
11 B9C0121-BLK1 LRB 0.25	190328P1_22	Analyte	10	4.58	9681.35	11389.28	85.00
12 1900431-06RE1 WT1903061045RF 0.24998	190328P1_23	Analyte	10	4.58	9820.70	11389.28	86.23
13 1900431-08RE1 WR1903061115RF 0.24549	190328P1_24	Analyte	10	4.58	9866.49	11389.28	86.63
14 1900431-12RE1 WT1903051345RF 0.25175	190328P1_25	Analyte	10	4.59	8802.39	11389.28	77.29
15 1900433-02RE1 WT1903060910RF 0.25506	190328P1_26	Analyte	10	4.58	8360.76	11389.28	73.41
16 1900449-02RE1 WT1903121050MK 0.24869	190328P1_27	Analyte	10	4.58	8963.24	11389.28	78.70
17 B9C0124-BS1 LFB 0.25	190328P1_28	Analyte	10	4.59	16163.85	11389.28	141.92
18 B9C0124-BSD1 LFBD 0.25	190328P1_29	Analyte	10	4.58	10057.60	11389.28	88.31
19 B9C0124-BLK1 LRB 0.25	190328P1_30	Analyte	10	4.58	9353.02	11389.28	82.12
20 1900460-01 Iron Removal Plant 0.23473	190328P1_31	Analyte	10	4.58	9765.16	11389.28	85.74
21 1900478-01 Charlie's Pasture-DW 031319 0.25011	190328P1_32	Analyte	10	4.58	10250.57	11389.28	90.00
22 1900478-02 Dup-1 0.24868	190328P1_33	Analyte	10	4.58	8778.47	11389.28	77.08
23 1900478-03 Field Blank 0.25016	190328P1_34	Analyte	10	4.58	9315.67	11389.28	81.79
24 1900483-01 WT1903150740MK 0.2418	190328P1_35	Analyte	10	4.58	9175.00	11389.28	80.56
25 1900483-02 WT1903150810MK 0.23928	190328P1_36	Analyte	10	4.58	8716.16	11389.28	76.53
26 IPA	190328P1_37	Analyte	10			11389.28	0.00
27 ST190328P1-11 537 CS1 19C2507	190328P1_38	Analyte	10	4.58	10121.78	11389.28	88.87
28 1900483-03 WT1903150815MK 0.23548	190328P1_39	Analyte	10	4.58	9465.68	11389.28	83.11
29 1900483-04 WT1903150820MK 0.24752	190328P1_40	Analyte	10	4.58	9156.37	11389.28	80.39
30 1900483-05 WT1903150835MK 0.24649	190328P1_41	Analyte	10	4.58	9133.22	11389.28	80.19
31 1900483-06 WT1903150840MK 0.25133	190328P1_42	Analyte	10	4.58	9412.20	11389.28	82.64
32 IPA	190328P1_43	Analyte	10			11389.28	0.00
33 ST190328P1-12 537 CS3 19C2509	190328P1_44	Standard	10	4.58	10470.53	11389.28	91.93

AD 3/29/2019

Compound 24: 13C4-PFOS

ID	Name	Туре	Std. Conc RT	А	rea	ICAL AREA	% AREA
1 IPA	190328P1_12	Analyte	28.7			5777.83	0.00
2 ICV190328P1-1 537 ICV 19C2512	190328P1_13	Analyte	28.7	4.95	5670.69	5777.83	98.15
3 IPA	190328P1_14	Analyte	28.7			5777.83	0.00
4 B9C0007-BLK1 LRB 0.25	190328P1_15	Analyte	28.7	4.95	5066.21	5777.83	87.68
5 B9C0007-BS2 LFB 0.25	190328P1_16	Analyte	28.7	4.95	4938.27	5777.83	85.47
6 B9C0007-BS3 LFB 0.25	190328P1_17	Analyte	28.7	4.95	4839.37	5777.83	83.76
7 B9C0007-BS4 LFB 0.25	190328P1_18	Analyte	28.7	4.95	4996.71	5777.83	86.48
8 B9C0007-BS5 LFB 0.25	190328P1_19	Analyte	28.7	4.95	4600.43	5777.83	79.62
9 B9C0121-BSD1 LFBD 0.25	190328P1_20	Analyte	28.7	4.95	4159.29	5777.83	71.99
10 B9C0121-BS1 LFB 0.25	190328P1_21	Analyte	28.7	4.95	4599.72	5777.83	79.61
11 B9C0121-BLK1 LRB 0.25	190328P1_22	Analyte	28.7	4.95	4993.93	5777.83	86.43
12 1900431-06RE1 WT1903061045RF 0.24998	190328P1_23	Analyte	28.7	4.95	4840.19	5777.83	83.77
13 1900431-08RE1 WR1903061115RF 0.24549	190328P1_24	Analyte	28.7	4.95	5056.58	5777.83	87.52
14 1900431-12RE1 WT1903051345RF 0.25175	190328P1_25	Analyte	28.7	4.95	4457.63	5777.83	77.15
15 1900433-02RE1 WT1903060910RF 0.25506	190328P1_26	Analyte	28.7	4.95	4218.51	5777.83	73.01
16 1900449-02RE1 WT1903121050MK 0.24869	190328P1_27	Analyte	28.7	4.95	5010.20	5777.83	86.71
17 B9C0124-BS1 LFB 0.25	190328P1_28	Analyte	28.7	4.95	5394.76	5777.83	93.37
18 B9C0124-BSD1 LFBD 0.25	190328P1_29	Analyte	28.7	4.93	5009.28	5777.83	86.70
19 B9C0124-BLK1 LRB 0.25	190328P1_30	Analyte	28.7	4.94	4916.29	5777.83	85.09
20 1900460-01 Iron Removal Plant 0.23473	190328P1_31	Analyte	28.7	4.94	5228.75	5777.83	90.50
21 1900478-01 Charlie's Pasture-DW 031319 0.25011	190328P1_32	Analyte	28.7	4.94	4768.89	5777.83	82.54
22 1900478-02 Dup-1 0.24868	190328P1_33	Analyte	28.7	4.94	4185.00	5777.83	72.43
23 1900478-03 Field Blank 0.25016	190328P1_34	Analyte	28.7	4.94	4713.87	5777.83	81.59
24 1900483-01 WT1903150740MK 0.2418	190328P1_35	Analyte	28.7	4.94	4762.02	5777.83	82.42
25 1900483-02 WT1903150810MK 0.23928	190328P1_36	Analyte	28.7	4.94	4847.73	5777.83	83.90
26 IPA	190328P1_37	Analyte	28.7			5777.83	0.00
27 ST190328P1-11 537 CS1 19C2507	190328P1_38	Analyte	28.7	4.94	5236.37	5777.83	90.63
28 1900483-03 WT1903150815MK 0.23548	190328P1_39	Analyte	28.7	4.94	4973.74	5777.83	86.08
29 1900483-04 WT1903150820MK 0.24752	190328P1_40	Analyte	28.7	4.94	4534.18	5777.83	78.48
30 1900483-05 WT1903150835MK 0.24649	190328P1_41	Analyte	28.7	4.94	4802.35	5777.83	83.12
31 1900483-06 WT1903150840MK 0.25133	190328P1_42	Analyte	28.7	4.94	4845.17	5777.83	83.86
32 IPA	190328P1_43	Analyte	28.7	4.81	5.04	5777.83	0.09
33 ST190328P1-12 537 CS3 19C2509	190328P1_44	Standard	28.7	4.94	5475.79	5777.83	94.77

Work Order 1900478 Page 59 of 168

ID	Name	Туре	Std. Conc RT		Area	ICAL AREA	% AREA
1 IPA	190328P1_12	Analyte	40			17692.81	0.00
2 ICV190328P1-1 537 ICV 19C2512	190328P1_13	Analyte	40	5.27	17254.291	17692.81	97.52
3 IPA	190328P1_14	Analyte	40			17692.81	0.00
4 B9C0007-BLK1 LRB 0.25	190328P1_15	Analyte	40	5.27	14896.71	17692.81	84.20
5 B9C0007-BS2 LFB 0.25	190328P1_16	Analyte	40	5.27	15234.831	17692.81	86.11
6 B9C0007-BS3 LFB 0.25	190328P1_17	Analyte	40	5.27	14670.686	17692.81	82.92
7 B9C0007-BS4 LFB 0.25	190328P1_18	Analyte	40	5.27	15068.326	17692.81	85.17
8 B9C0007-BS5 LFB 0.25	190328P1_19	Analyte	40	5.27	14141.654	17692.81	79.93
9 B9C0121-BSD1 LFBD 0.25	190328P1_20	Analyte	40	5.26	12454.197	17692.81	70.39
10 B9C0121-BS1 LFB 0.25	190328P1_21	Analyte	40	5.26	14750.374	17692.81	83.37
11 B9C0121-BLK1 LRB 0.25	190328P1_22	Analyte	40	5.27	14910.396	17692.81	84.27
12 1900431-06RE1 WT1903061045RF 0.24998	190328P1_23	Analyte	40	5.26	15208.088	17692.81	85.96
13 1900431-08RE1 WR1903061115RF 0.24549	190328P1_24	Analyte	40	5.27	14969.46	17692.81	84.61
14 1900431-12RE1 WT1903051345RF 0.25175	190328P1_25	Analyte	40	5.26	13528.816	17692.81	76.47
15 1900433-02RE1 WT1903060910RF 0.25506	190328P1_26	Analyte	40	5.26	12773.567	17692.81	72.20
16 1900449-02RE1 WT1903121050MK 0.24869	190328P1_27	Analyte	40	5.26	14967.364	17692.81	84.60
17 B9C0124-BS1 LFB 0.25	190328P1_28	Analyte	40	5.29	10954.913	17692.81	61.92
18 B9C0124-BSD1 LFBD 0.25	190328P1_29	Analyte	40	5.26	14362.67	17692.81	81.18
19 B9C0124-BLK1 LRB 0.25	190328P1_30	Analyte	40	5.25	14982.004	17692.81	84.68
20 1900460-01 Iron Removal Plant 0.23473	190328P1_31	Analyte	40	5.25	14888.205	17692.81	84.15
21 1900478-01 Charlie's Pasture-DW 031319 0.25011	190328P1_32	Analyte	40	5.26	15160.884	17692.81	85.69
22 1900478-02 Dup-1 0.24868	190328P1_33	Analyte	40	5.26	13962.995	17692.81	78.92
23 1900478-03 Field Blank 0.25016	190328P1_34	Analyte	40	5.26	14369.272	17692.81	81.22
24 1900483-01 WT1903150740MK 0.2418	190328P1_35	Analyte	40	5.26	14381.888	17692.81	81.29
25 1900483-02 WT1903150810MK 0.23928	190328P1_36	Analyte	40	5.26	13697.924	17692.81	77.42
26 IPA	190328P1_37	Analyte	40			17692.81	0.00
27 ST190328P1-11 537 CS1 19C2507	190328P1_38	Analyte	40	5.26	15856.783	17692.81	89.62
28 1900483-03 WT1903150815MK 0.23548	190328P1_39	Analyte	40	5.26	15032.628	17692.81	84.96
29 1900483-04 WT1903150820MK 0.24752	190328P1_40	Analyte	40	5.26	13335.257	17692.81	75.37
30 1900483-05 WT1903150835MK 0.24649	190328P1_41	Analyte	40	5.26	13990.509	17692.81	79.07
31 1900483-06 WT1903150840MK 0.25133	190328P1_42	Analyte	40	5.26	13638.958	17692.81	77.09
32 IPA	190328P1_43	Analyte	40			17692.81	0.00
33 ST190328P1-12 537 CS3 19C2509	190328P1_44	Standard	40	5.26	17267.059	17692.81	97.59

Work Order 1900478 Page 60 of 168

CCAL

70-140%

Compound 23: 13C2-PFOA

ID	Name	Туре	Std. Conc RT	,	Area	CCAL AREA	% AREA
27 ST190328P1-11 537 CS1 19C2507	190328P1_38	Analyte	10	4.58	10121.78	10121.78	100.00
28 1900483-03 WT1903150815MK 0.23548	190328P1_39	Analyte	10	4.58	9465.68	10121.78	93.52
29 1900483-04 WT1903150820MK 0.24752	190328P1_40	Analyte	10	4.58	9156.37	10121.78	90.46
30 1900483-05 WT1903150835MK 0.24649	190328P1_41	Analyte	10	4.58	9133.22	10121.78	90.23
31 1900483-06 WT1903150840MK 0.25133	190328P1_42	Analyte	10	4.58	9412.20	10121.78	92.99
32 IPA	190328P1_43	Analyte	10			10121.78	0.00
33 ST190328P1-12 537 CS3 19C2509	190328P1_44	Standard	10	4.58	10470.53	10121.78	103.45

Compound 24: 13C4-PFOS

ID	Name	Туре	Std. Conc RT		Area	CCAL AREA	% AREA
27 ST190328P1-11 537 CS1 19C2507	190328P1_38	Analyte	28.7	4.94	5236.37	5236.37	100.00
28 1900483-03 WT1903150815MK 0.23548	190328P1_39	Analyte	28.7	4.94	4973.74	5236.37	94.98
29 1900483-04 WT1903150820MK 0.24752	190328P1_40	Analyte	28.7	4.94	4534.18	5236.37	86.59
30 1900483-05 WT1903150835MK 0.24649	190328P1_41	Analyte	28.7	4.94	4802.35	5236.37	91.71
31 1900483-06 WT1903150840MK 0.25133	190328P1_42	Analyte	28.7	4.94	4845.17	5236.37	92.53
32 IPA	190328P1_43	Analyte	28.7	4.81	5.04	5236.37	0.10
33 ST190328P1-12 537 CS3 19C2509	190328P1_44	Standard	28.7	4.94	5475.79	5236.37	104.57

Compound 25: d3-N-MeFOSAA

ID	Name	Type	Std. Conc RT	A	Area	ICAL AREA	% AREA
27 ST190328P1-11 537 CS1 19C2507	190328P1_38	Analyte	40	5.26	15856.78	15856.78	100.00
28 1900483-03 WT1903150815MK 0.23548	190328P1_39	Analyte	40	5.26	15032.63	15856.78	94.80
29 1900483-04 WT1903150820MK 0.24752	190328P1_40	Analyte	40	5.26	13335.26	15856.78	84.10
30 1900483-05 WT1903150835MK 0.24649	190328P1_41	Analyte	40	5.26	13990.51	15856.78	88.23
31 1900483-06 WT1903150840MK 0.25133	190328P1_42	Analyte	40	5.26	13638.96	15856.78	86.01
32 IPA	190328P1_43	Analyte	40			15856.78	0.00
33 ST190328P1-12 537 CS3 19C2509	190328P1_44	Standard	40	5.26	17267.06	15856.78	108.89

Work Order 1900478 Page 61 of 168

LC Calibration Standards Review Checklist <u>Q5</u>										
		ION Ratio	Concentration	C-Cals Name	Sign Date	Correct I-Cal	Manual Integrations	NA		
Calibration ID: 57/90328P1-/1	LMH-	NIA			1			ф		
Calibration ID:	L M 🕭	\oint	Ø	Ø	Ø		I	ф		
Salibration ID:	LMH -							ф		
Calibration ID:	LMH -							ф		
Calibration ID:	LMH							ф		
Calibration ID:	LMH -	N/A						ф		
Calibration ID:	LMH -	\Box 40	3/29/19					ф		
Calibration ID:	LMH -				\B.			ф		
Calibration ID:	LMH							ф		
Calibration ID:	LMH -									
					Full Ma	ass Cal. I	Date: 03-27	-19		
Run Log Present:	1		Con	nments:						
# of Samples per Sequence Checked:			1	W H	B					
Instrument Blank Saved	□ N/A									
IIS Area Saved										
Reviewed By:										

ID: LR - LCSRC

Rev. No.: 1

Rev. Date: 02/06/2018

Page: 1 of 1

Page 1 of 1

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-38.qld

Last Altered: Printed:

Friday, March 29, 2019 10:34:29 Pacific Daylight Time Friday, March 29, 2019 10:43:00 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190328P1_38, Date: 28-Mar-2019, Time: 19:54:50, ID: ST190328P1-11 537 CS1 19C2507, Description: 537 CS1 19C2507

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
List Tolling	1 PFBS	299 > 80.0	1.30e3	5.24e3	1.00	vargymynni	3.44	3.42	7.10	8.32	94.1
2	2 PFHxA	313.1 > 269.1	7.99e3	1.01e4	1.00		3.73	3.73	7.89	10.3	103.5
3	3 HFPO-DA	285 > 168.9	3.26e3	1.01e4	1.00		3.90	3.89	3.22	11.6	115.8
4	4 PFHpA	363 > 319	1.08e4	1.01e4	1.00		4.19	4.21	10.7	10.5	104.6
5	5 ADONA	377.1>251	1.67e4	1.01e4	1.00		4.29	4.28	16.5	11.5	114.9
6	6 PFHxS	399 > 80.0	1.20e3	5.24e3	1.00		4.32	4.31	6.58	8.54	93.6
7	7 PFOA	413 > 369	9.88e3	1.01e4	1.00		4.58	4.58	9.76	10.1	100.6
8	8 PFNA	463 > 419	8.41e3	1.01e4	1.00		4.89	4.88	8.31	9.60	96.0
9	9 PFOS	499 >80.0	1.39e3	5.24e3	1.00		4.94	4.94	7.62	8.71	94.2
10	10 9CI-PF3ONS	531.1>351.1	4.86e3	5.24e3	1.00		5.10	5.09	26.6	11.0	110.1
11	11 PFDA	513 > 469	1.04e4	1.01e4	1.00		5.15	5.15	10.3	10.0	100.4
12	12 N-MeFOSAA	570 > 419.1	3.06e3	1.59e4	1.00		5.26	5.26	7.73	10.5	104.9
13	13 N-EtFOSAA	584.0 >419.1	2.65e3	1.59e4	1.00		5.37	5.37	6.69	9.72	97.2
14	14 PFUnA	563 > 519	1.32e4	1.01e4	1.00		5.37	5.38	13.1	9.78	97.8
15	15 11CI-PF3OUdS	630.9>451.0	5.33e3	5.24e3	1.00		5.52	5.51	29.2	10.9	109.1
16	16 PFDoA	613 > 569	1.66e4	1.01e4	1.00		5.58	5.57	16.4	9.80	98.0
17	17 PFTrDA	662.9 > 619	1.70e4	1.01e4	1.00		5.75	5.75	16.8	9.92	99.2
18	18 PFTeDA	712.9 > 669	1.58e4	1.01e4	1.00		5.90	5.89	15.6	9.80	98.0
19	19 13C2-PFHxA	315.1 > 270	1.06e4	1.01e4	1.00	1.000	3.73	3.73	10.5	10.5	104.7
20	20 13C3-HFPO-DA	287 >185	9.11e2	1.01e4	1.00	0.085	3.90	3.89	0.900	10.6	105.9
21	21 13C2-PFDA	515.0 > 470.0	1.20e4	1.01e4	1.00	1.208	5.15	5.15	11.8	9.77	97.7
22	22 d5-N-EtFOSAA	589.1 > 419.0	1.58e4	1.59e4	1.00	1.020	5.37	5.37	39.9	39.1	97.8
23	23 13C2-PFOA	415 > 370	1.01e4	1.01e4	1.00	1.000	4.59	4.58	10.0	10.0	100.0
24	24 13C4-PFOS	502.9 > 79.9	5.24e3	5.24e3	1.00	1.000	4.95	4.94	28.7	28.7	100.0
25	25 d3-N-MeFOSAA	573.0 > 419.0	1.59e4	1.59e4	1.00	1.000	5.27	5.26	40.0	40.0	100.0

1/10/20/20/20 3/20/20

AD 3/29/19

Quantify Compound Summary Report Vista Analytical Laboratory

Dataset:

Untitled

Last Altered: Printed: Friday, March 29, 2019 11:02:41 Pacific Daylight Time Friday, March 29, 2019 11:03:15 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Compound name: PFBS

	# Name	ID	Acq.Date	Acq.Time
de la company	1 190328P1_1	IPA	28-Mar-19	10:44:30
2	2 190328P1_2	ST190328P1-1 537 CS-4 19C2502	28-Mar-19	10:55:07
3	3 190328P1_3	ST190328P1-2 537 CS-3 19C2503	28-Mar-19	11:05:41
4	4 190328P1_4	ST190328P1-3 537 CS-2 19C2504	28-Mar-19	11:16:17
5	5 190328P1_5	ST190328P1-4 537 CS-1 19C2505	28-Mar-19	11:26:51
6	6 190328P1_6	ST190328P1-5 537 CS0 19C2506	28-Mar-19	11:37:26
7	7 190328P1_7	ST190328P1-6 537 CS1 19C2507	28-Mar-19	11:48:01
8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	8 190328P1_8	ST190328P1-7 537 CS2 19C2508	28-Mar-19	11:58:36
9	9 190328P1_9	ST190328P1-8 537 CS3 19C2509	28-Mar-19	12:09:11
10	10 190328P1_10	ST190328P1-9 537 CS4 19C2510	28-Mar-19	12:19:45
14 20 金黄	11 190328P1_11	ST190328P1-10 537 CS5 19C2511	28-Mar-19	12:30:19
12	12 190328P1_12	IPA	28-Mar-19	12:40:55
13	13 190328P1_13	ICV190328P1-1 537 ICV 19C2512	28-Mar-19	12:51:29
14	14 190328P1_14	IPA	28-Mar-19	13:02:04
15	15 190328P1_15	B9C0007-BLK1 LRB 0.25	28-Mar-19	13:12:38
16	16 190328P1_16	B9C0007-BS2 LFB 0.25	28-Mar-19	13:23:14
17	17 190328P1_17	B9C0007-BS3 LFB 0.25	28-Mar-19	13:33:48
18	18 190328P1_18	B9C0007-BS4 LFB 0.25	28-Mar-19	13:44:23
19	19 190328P1_19	B9C0007-BS5 LFB 0.25	28-Mar-19	13:54:58
20	20 190328P1_20	B9C0121-BSD1 LFBD 0.25	28-Mar-19	14:05:33
21	21 190328P1_21	B9C0121-BS1 LFB 0.25	28-Mar-19	14:16:07
22	22 190328P1_22	B9C0121-BLK1 LRB 0.25	28-Mar-19	14:26:42
23	23 190328P1_23	1900431-06RE1 WT1903061045RF 0.24998	28-Mar-19	14:37:16
24	24 190328P1_24	1900431-08RE1 WR1903061115RF 0.24549	28-Mar-19	14:47:51
25	25 190328P1_25	1900431-12RE1 WT1903051345RF 0.25175	28-Mar-19	14:58:26
26	26 190328P1_26	1900433-02RE1 WT1903060910RF 0.25506	28-Mar-19	15:09:01
27	27 190328P1_27	1900449-02RE1 WT1903121050MK 0.24869	28-Mar-19	15:19:37
28	28 190328P1_28	B9C0124-BS1 LFB 0.25	28-Mar-19	18:08:53
29	29 190328P1_29	B9C0124-BSD1 LFBD 0.25	28-Mar-19	18:19:37
30	30 190328P1_30	B9C0124-BLK1 LRB 0.25	28-Mar-19	18:30:11
31	31 190328P1_31	1900460-01 Iron Removal Plant 0.23473	28-Mar-19	18:40:47
32	32 190328P1_32	1900478-01 Charlie's Pasture-DW 031319 0.25011	28-Mar-19	18:51:22

Work Order 1900478 Page 64 of 168

Quantify Compound Summary Report

MassLynx V4.2 SCN977

Vista Analytical Laboratory

Dataset:

Untitled

Last Altered:

Printed:

Friday, March 29, 2019 11:02:41 Pacific Daylight Time Friday, March 29, 2019 11:03:15 Pacific Daylight Time

Compound name: PFBS

	# Name	ID.	Acq.Date	Acq.Time
33	33 190328P1_33	1900478-02 Dup-1 0.24868	28-Mar-19	19:01:56
34	34 190328P1_34	1900478-03 Field Blank 0.25016	28-Mar-19	19:12:31
35	35 190328P1_35	1900483-01 WT1903150740MK 0.2418	28-Mar-19	19:23:06
36	36 190328P1_36	1900483-02 WT1903150810MK 0.23928	28-Mar-19	19:33:41
37	37 190328P1_37	IPA	28-Mar-19	19:44:16
38	38 190328P1_38	ST190328P1-11 537 CS1 19C2507	28-Mar-19	19:54:50
39	39 190328P1_39	1900483-03 WT1903150815MK 0.23548	28-Mar-19	20:05:26
40	40 190328P1_40	1900483-04 WT1903150820MK 0.24752	28-Mar-19	20:16:00
41	41 190328P1_41	1900483-05 WT1903150835MK 0.24649	28-Mar-19	20:26:35
42	42 190328P1_42	1900483-06 WT1903150840MK 0.25133	28-Mar-19	20:37:10
43	43 190328P1_43	IPA	28-Mar-19	20:47:45
44	44 190328P1_44	ST190328P1-12 537 CS3 19C2509	28-Mar-19	20:58:20

Quantify Sample Report

Vista Analytical Laboratory

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-38.qld

Last Altered:

Printed:

Friday, March 29, 2019 10:34:29 Pacific Daylight Time Friday, March 29, 2019 10:43:00 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

MassLynx V4.2 SCN977

Name: 190328P1_38, Date: 28-Mar-2019, Time: 19:54:50, ID: ST190328P1-11 537 CS1 19C2507, Description: 537 CS1 19C2507

Work Order 1900478

Vista Analytical Laboratory

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-38.qld

Last Altered:

Printed:

Friday, March 29, 2019 10:34:29 Pacific Daylight Time Friday, March 29, 2019 10:43:00 Pacific Daylight Time

Name: 190328P1_38, Date: 28-Mar-2019, Time: 19:54:50, ID: ST190328P1-11 537 CS1 19C2507, Description: 537 CS1 19C2507

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-38.qld

Last Altered:

Friday, March 29, 2019 10:34:29 Pacific Daylight Time Friday, March 29, 2019 10:43:00 Pacific Daylight Time

Printed:

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-38.qld

Last Altered:

Printed:

Friday, March 29, 2019 10:34:29 Pacific Daylight Time Friday, March 29, 2019 10:43:00 Pacific Daylight Time

Name: 190328P1_38, Date: 28-Mar-2019, Time: 19:54:50, ID: ST190328P1-11 537 CS1 19C2507, Description: 537 CS1 19C2507

Work Order 1900478

ICAL

Compound 23:	13C2-PFOA	

ID	Name	Type	Std. Conc RT		Area	ICAL AREA	% AREA
1 ST190330P1-1 537 CS-1 19C2505	190330P1_2	Analyte	10	4.53	9510.08	11389.28	83.50
2 IPA	190330P1_3	Analyte	10			11389.28	0.00
3 B9C0124-BS1 LFB 0.25	190330P1_4	Analyte	10	4.53	9376.13	11389.28	82.32
4 1900478-01@10X Charlie's Pasture-DW 031319 0.25011	190330P1_5	Analyte	10	4.53	1018.05	11389.28	8.94
5 1900478-02@10X Dup-1 0.24868	190330P1_6	Analyte	10	4.53	624.35	11389.28	5.48
6 IPA	190330P1_7	Analyte	10			11389.28	0.00
7 ST190330P1-2 537 CS1 19C2507	190330P1_8	Analyte	10	4.53	10773.70	11389.28	94.60

Compound 24: 13C4-PFOS

ID	Name Ty	pe Std. Conc I	RT	Area	ICAL AREA	% AREA
1 ST190330P1-1 537 CS-1 19C2505	190330P1_2 An	alyte 28.7	4.90	5522.22	5777.83	95.58
2 IPA	190330P1_3 An	alyte 28.7			5777.83	0.00
3 B9C0124-BS1 LFB 0.25	190330P1_4 An	alyte 28.7	4.89	5013.28	5777.83	86.77
4 1900478-01@10X Charlie's Pasture-DW 031319 0.25011	190330P1_5 An	alyte 28.7	4.89	497.13	5777.83	8.60
5 1900478-02@10X Dup-1 0.24868	190330P1_6 An	alyte 28.7	4.91	518.31	5777.83	8.97
6 IPA	190330P1_7 An	alyte 28.7			5777.83	0.00
7 ST190330P1-2 537 CS1 19C2507	190330P1 8 An	alyte 28.7	4.90	5424.70	5777.83	93.89

Compound 25: d3-N-MeFOSAA

ID	Name T	Гуре	Std. Conc RT		Area	ICAL AREA	% AREA
1 ST190330P1-1 537 CS-1 19C2505	190330P1_2 A	Analyte	40	5.22	17058.91	17692.81	96.42
2 IPA	190330P1_3 A	Analyte	40			17692.81	0.00
3 B9C0124-BS1 LFB 0.25	190330P1_4 A	Analyte	40	5.21	15303.16	17692.81	86.49
4 1900478-01@10X Charlie's Pasture-DW 031319 0.2502	11 190330P1_5 A	Analyte	40	5.22	1566.01	17692.81	8.85
5 1900478-02@10X Dup-1 0.24868	190330P1_6 A	Analyte	40	5.21	1647.01	17692.81	9.31

KBF 3/30/2019

50-150%

Page 70 of 168 Work Order 1900478

6 IPA 7 ST190330P1-2 537 CS1 19C2507	190330P1_7 Analyte 190330P1_8 Analyte	40 40	5.22	18045.17	17692.81 17692.81	0.00 101.99

CCAL

70-140%

Compound 23: 13C2-PFOA

ID	Name	Type	Std. Conc RT		Area	CCAL AREA	% AREA
1 ST190330P1-1 537 CS-1 19C2505	190330P1_2	Analyte	10	4.53	9510.08	9510.08	100.00
2 IPA	190330P1_3	Analyte	10			9510.08	0.00
3 B9C0124-BS1 LFB 0.25	190330P1_4	Analyte	10	4.53	9376.13	9510.08	98.59
4 1900478-01@10X Charlie's Pasture-DW 031319 0.25011	190330P1_5	Analyte	10	4.53	1018.05	9510.08	10.70
5 1900478-02@10X Dup-1 0.24868	190330P1_6	Analyte	10	4.53	624.35	9510.08	6.57
6 IPA	190330P1_7	Analyte	10			9510.08	0.00
7 ST190330P1-2 537 CS1 19C2507	190330P1_8	Analyte	10	4.53	10773.70	9510.08	113.29

Compound 24: 13C4-PFOS

ID	Name	Type	Std. Conc RT		Area	CCAL AREA	% AREA
1 ST190330P1-1 537 CS-1 19C2505	190330P1_2	Analyte	28.7	4.90	5522.22	5522.22	100.00
2 IPA	190330P1_3	Analyte	28.7			5522.22	0.00
3 B9C0124-BS1 LFB 0.25	190330P1_4	Analyte	28.7	4.89	5013.28	5522.22	90.78
4 1900478-01@10X Charlie's Pasture-DW 031319 0.25011	190330P1_5	Analyte	28.7	4.89	497.13	5522.22	9.00
5 1900478-02@10X Dup-1 0.24868	190330P1_6	Analyte	28.7	4.91	518.31	5522.22	9.39
6 IPA	190330P1_7	Analyte	28.7			5522.22	0.00
7 ST190330P1-2 537 CS1 19C2507	190330P1_8	Analyte	28.7	4.90	5424.70	5522.22	98.23

Compound 25: d3-N-MeFOSAA

ID	Name	Type	Std. Conc RT	Area	CCAL AREA	% AREA
1 ST190330P1-1 537 CS-1 19C2505	190330P1 2	Analyte	40	5.22 17058.91	17058.91	100.00

KBF 3/30/2019

Work Order 1900478 Page 71 of 168

2 IPA	190330P1_3 Analyte	40			17058.91	0.00
3 B9C0124-BS1 LFB 0.25	190330P1_4 Analyte	40	5.21	15303.16	17058.91	89.71
4 1900478-01@10X Charlie's Pasture-DW 031319 0.25011	190330P1_5 Analyte	40	5.22	1566.01	17058.91	9.18
5 1900478-02@10X Dup-1 0.24868	190330P1_6 Analyte	40	5.21	1647.01	17058.91	9.65
6 IPA	190330P1_7 Analyte	40			17058.91	0.00
7 ST190330P1-2 537 CS1 19C2507	190330P1_8 Analyte	40	5.22	18045.17	17058.91	105.78

KBF 3/30/2019

Work Order 1900478 Page 72 of 168

LC Calibration Standards Review Checklist <u>5</u>

		ION Ratio	Concentration	C-Cals n Name	Sign Date	Correct I-Cal	Manual Integrations	NA
Calibration ID:	С М Н	W/F		\square		Ø		1
Calibration ID:	L (M) H						Ø	4
Calibration ID:	LMH							
Calibration ID:	LMH							
Calibration ID:	LMH							
Calibration ID:	LMH	B	VA 🗆					
Calibration ID:	LMH		F 3/30/					
Calibration ID:	LMH		777		\D_			
Calibration ID:	LMH							
Calibration ID:	LMH							
					Fuli Ma	ss Cal. D	ate: 3/27	/19
Run Log Present:			Cor	mments:		_	<u>' '</u>	
# of Samples per Sequence Checked:	Image: Control of the			L18	Dh	/		
Instrument Blank Saved	MA		-					
IIS Area Saved	□ /							
Reviewed By: M 3 31 M Initials/Date								

ID: LR - LCSRC

Rev. No.: 1

Rev. Date: 02/06/2018

Page: 1 of 1

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-2.qld

Last Altered: Printed: Saturday, March 30, 2019 17:39:50 Pacific Daylight Time Saturday, March 30, 2019 17:40:16 Pacific Daylight Time

1m331/10

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190330P1_2, Date: 30-Mar-2019, Time: 16:09:06, ID: ST190330P1-1 537 CS-1 19C2505, Description: 537 CS-1 19C2505

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Pred RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 80.0	2.87e2	5.52e3	1.00	3.39	3.38	1.49	1.75	98.2
2	2 PFHxA	313.1 > 269.1	1.55e3	9.51e3	1.00	3.69	3.69	1.63	2.14	106.9
3	3 HFPO-DA	285 > 168.9	6.88e2	9.51e3	1.00	3.85	3.84	0.723	2.60	129.9
4.00	4 PFHpA	363 > 319	2.08e3	9.51e3	1.00	4.16	4.17	2.19	2.14	107.2
5	5 ADONA	377.1>251	3.15e3	9.51e3	1.00	4.24	4.24	3.32	2.31	115.3
6	6 PFHxS	399 > 80.0	2.50e2	5.52e3	1.00	4.27	4.27	1.30	1.69	92.6
7	7 PFOA	413 > 369	1.99e3	9.51e3	1.00	4.53	4.53	2.10	2.16	108.0
8	8 PFNA	463 > 419	1.82e3	9.51e3	1.00	4.85	4.84	1.92	2.21	110.6
9	9 PFOS	499 >80.0	2.36e2	5.52e3	1.00	4.90	4.91	1.23	1.40	75.4
10	10 9CI-PF3ONS	531.1>351.1	8.35e2	5.52e3	1.00	5.04	5.05	4.34	1.79	89.6
11	11 PFDA	513 > 469	2.10e3	9.51e3	1.00	5.11	5.11	2.21	2.17	108.6
12	12 N-MeFOSAA	570 > 419.1	5.48e2	1.71e4	1.00	5.22	5.22	1.28	1.77	88.3
13	13 N-EtFOSAA	584.0 >419.1	6.00e2	1.71e4	1.00	5.33	5.33	1.41	2.04	102.2
14	14 PFUnA	563 > 519	2.71e3	9.51e3	1.00	5.34	5.34	2.85	2.13	106.6
15	15 11CI-PF3OUdS	630.9>451.0	9.76e2	5.52e3	1.00	5.47	5.47	5.07	1.89	94.7
16	16 PFDoA	613 > 569	3.40e3	9.51e3	1.00	5.53	5.53	3.57	2.13	106.6
17	17 PFTrDA	662.9 > 619	3.15e3	9.51e3	1.00	5.70	5.70	3.31	1.96	98.0
18	18 PFTeDA	712.9 > 669	3.12e3	9.51e3	1.00	5.85	5.86	3.28	2.05	102.7
19	19 13C2-PFHxA	315.1 > 270	1.13e4	9.51e3	1.00	1.000 3.69	3.69	11.9	11.9	118.6
20	20 13C3-HFPO-DA	287 >185	9.61e2	9.51e3	1.00	0.085 3.86	3.85	1.01	11.9	118.8
21	21 13C2-PFDA	515.0 > 470.0	1.21e4	9.51e3	1.00	1.208 5.11	5.11	12.7	10.5	105.3
22	22 d5-N-EtFOSAA	589.1 > 419.0	1.77e4	1.71e4	1.00	1.020 5.32	5.33	41.5	40.7	101.7
23	23 13C2-PFOA	415 > 370	9.51e3	9.51e3	1.00	1.000 4.53	4.53	10.0	10.0	100.0
24	24 13C4-PFOS	502.9 > 79.9	5.52e3	5.52e3	1.00	1.000 4.90	4.90	28.7	28.7	100.0
25	25 d3-N-MeFOSAA	573.0 > 419.0	1.71e4	1.71e4	1.00	1.000 5.22	5.22	40.0	40.0	100.0

3/30/19

Page 1 of 1 **Quantify Compound Summary Report** MassLynx V4.2 SCN977

Vista Analytical Laboratory

Dataset:

Untitled

Last Altered:

Saturday, March 30, 2019 17:42:32 Pacific Daylight Time

Printed:

Saturday, March 30, 2019 17:42:46 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Compound name: PFBS

	# Name	ID	Acq.Date	Acq.Time
1 - 1445-236	1 190330P1_1	IPA	30-Mar-19	15:58:28
2	2 190330P1_2	ST190330P1-1 537 CS-1 19C2505	30-Mar-19	16:09:06
3	3 190330P1_3	IPA	30-Mar-19	16:27:24
4	4 190330P1_4	B9C0124-BS1 LFB 0.25	30-Mar-19	16:37:59
5	5 190330P1_5	1900478-01@10X Charlie's Pasture-DW 031319 0.25011	30-Mar-19	16:48:36
6	6 190330P1_6	1900478-02@10X Dup-1 0.24868	30-Mar-19	16:59:11
7	7 190330P1_7	IPA	30-Mar-19	17:09:46
8	8 190330P1_8	ST190330P1-2 537 CS1 19C2507	30-Mar-19	17:20:20

Page 75 of 168 Work Order 1900478

Vista Analytical Laboratory

Dataset:

Printed:

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-2.qld

Last Altered:

Saturday, March 30, 2019 17:39:50 Pacific Daylight Time Saturday, March 30, 2019 17:40:16 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-2.qld

Last Altered: Printed: Saturday, March 30, 2019 17:39:50 Pacific Daylight Time Saturday, March 30, 2019 17:40:16 Pacific Daylight Time

Page 3 of 4

Dataset:

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-2.qld

Last Altered: Printed: Saturday, March 30, 2019 17:39:50 Pacific Daylight Time Saturday, March 30, 2019 17:40:16 Pacific Daylight Time

Vista Analytical Laboratory

Dataset:

Printed:

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-2.qld

Last Altered:

Saturday, March 30, 2019 17:39:50 Pacific Daylight Time Saturday, March 30, 2019 17:40:16 Pacific Daylight Time

Page 1 of 1

Dataset:

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-8.qld

Last Altered:

Printed:

Saturday, March 30, 2019 17:37:09 Pacific Daylight Time

Saturday, March 30, 2019 17:37:36 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 80.0	1.47e3	5.42e3	1.00	3.39	3.39	7.79	9.13	103.3
2	2 PFHxA	313.1 > 269.1	8.41e3	1.08e4	1.00	3.69	3.69	7.81	10.2	102.4
3	3 HFPO-DA	285 > 168.9	3.50e3	1.08e4	1.00	3.85	3.85	3.25	11.7	116.7
4	4 PFHpA	363 > 319	1.13e4	1.08e4	1.00	4.16	4.16	10.5	10.3	102.7
5	5 ADONA	377.1>251	1.87e4	1.08e4	1.00	4.24	4.24	17.4	12.1	121.0
6	6 PFHxS	399 > 80.0	1.52e3	5.42e3	1.00	4.27	4.27	8.05	10.4	114.5
7	7 PFOA	413 > 369	1.06e4	1.08e4	1.00	4.53	4.53	9.83	10.1	101.3
8	8 PFNA	463 > 419	9.56e3	1.08e4	1.00	4.85	4.85	8.87	10.2	102.5
9	9 PFOS	499 >80.0	1.41e3	5.42e3	1.00	4.90	4.90	7.48	8.54	92.4
10	10 9CI-PF3ONS	531.1>351.1	4.94e3	5.42e3	1.00	5.04	5.04	26.2	10.8	108.1
11	11 PFDA	513 > 469	1.05e4	1.08e4	1.00	5.11	5.11	9.74	9.55	95.5
12	12 N-MeFOSAA	570 > 419.1	3.45e3	1.80e4	1.00	5.22	5.22	7.65	10.4	103.8
13	13 N-EtFOSAA	584.0 >419.1	3.31e3	1.80e4	1.00	5.32	5.33	7.33	10.7	106.5
14	14 PFUnA	563 > 519	1.28e4	1.08e4	1.00	5.34	5.34	11.9	8.93	89.3
15	15 11CI-PF3OUdS	630.9>451.0	5.85e3	5.42e3	1.00	5.47	5.47	30.9	11.5	115.5
16	16 PFDoA	613 > 569	1.65e4	1.08e4	1.00	5.53	5.53	15.3	9.14	91.4
17	17 PFTrDA	662.9 > 619	1.66e4	1.08e4	1.00	5.70	5.70	15.4	9.09	90.9
18	18 PFTeDA	712.9 > 669	1.68e4	1.08e4	1.00	5.85	5.85	15.6	9.77	97.7
19	19 13C2-PFHxA	315.1 > 270	1.21e4	1.08e4	1.00	1.000 3.69	3.69	11.3	11.3	112.6
20	20 13C3-HFPO-DA	287 >185	1.00e3	1.08e4	1.00	0.085 3.86	3.86	0.930	10.9	109.4
21	21 13C2-PFDA	515.0 > 470.0	1.27e4	1.08e4	1.00	1.208 5.11	5.11	11.8	9.77	97.7
22	22 d5-N-EtFOSAA	589.1 > 419.0	2.05e4	1.80e4	1.00	1.020 5.32	5.32	45.4	44.6	111.4
23	23 13C2-PFOA	415 > 370	1.08e4	1.08e4	1.00	1.000 4.53	4.53	10.0	10.0	100.0
24	24 13C4-PFOS	502.9 > 79.9	5.42e3	5.42e3	1.00	1.000 4.90	4.90	28.7	28.7	100.0
25	25 d3-N-MeFOSAA	573.0 > 419.0	1.80e4	1.80e4	1.00	1.000 5.22	5.22	40.0	40.0	100.0

MassLynx V4.2 SCN977

Page 1 of 1

Dataset:

Untitled

Last Altered:

Printed:

Saturday, March 30, 2019 17:42:32 Pacific Daylight Time Saturday, March 30, 2019 17:42:46 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Compound name: PFBS

	# Name	ID	Acq.Date	Acq:Time
	1 190330P1_1	IPA	30-Mar-19	15:58:28
2	2 190330P1_2	ST190330P1-1 537 CS-1 19C2505	30-Mar-19	16:09:06
3	3 190330P1_3	IPA	30-Mar-19	16:27:24
4	4 190330P1_4	B9C0124-BS1 LFB 0.25	30-Mar-19	16:37:59
5	5 190330P1_5	1900478-01@10X Charlie's Pasture-DW 031319 0.25011	30-Mar-19	16:48:36
6	6 190330P1_6	1900478-02@10X Dup-1 0.24868	30-Mar-19	16:59:11
7	7 190330P1_7	IPA	30-Mar-19	17:09:46
8	8 190330P1_8	ST190330P1-2 537 CS1 19C2507	30-Mar-19	17:20:20

Vista Analytical Laboratory

Dataset:

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-8.qld

Last Altered: Printed:

Saturday, March 30, 2019 17:37:09 Pacific Daylight Time Saturday, March 30, 2019 17:37:36 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS DW L18 033019.mdb 30 Mar 2019 17:37:07 Calibration: D:\PFAS3.PRO\CurveDB\537 Q5 03-28-19 L18.cdb 28 Mar 2019 15:24:24

Name: 190330P1 8, Date: 30-Mar-2019, Time: 17:20:20, ID: ST190330P1-2 537 CS1 19C2507, Description: 537 CS1 19C2507

Page 82 of 168

Page 2 of 4

Vista Analytical Laboratory

Dataset: D:\PFAS3.PRO\RESULTS\190330P1\190330P1-8.qld

Last Altered: Printed:

Saturday, March 30, 2019 17:37:09 Pacific Daylight Time Saturday, March 30, 2019 17:37:36 Pacific Daylight Time

Name: 190330P1_8, Date: 30-Mar-2019, Time: 17:20:20, ID: ST190330P1-2 537 CS1 19C2507, Description: 537 CS1 19C2507

Work Order 1900478 Page 83 of 168

Page 3 of 4

Vista Analytical Laboratory

Dataset:

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-8.qld

Last Altered: Printed: Saturday, March 30, 2019 17:37:09 Pacific Daylight Time Saturday, March 30, 2019 17:37:36 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190330P1\190330P1-8.qld

Last Altered: Printed: Saturday, March 30, 2019 17:37:09 Pacific Daylight Time Saturday, March 30, 2019 17:37:36 Pacific Daylight Time

Name: 190330P1_8, Date: 30-Mar-2019, Time: 17:20:20, ID: ST190330P1-2 537 CS1 19C2507, Description: 537 CS1 19C2507

Work Order 1900478

INITIAL CALIBRATION (ICAL) INCLUDING ASSOCIATED INITIAL CALIBRATION VERIFICATION (ICV)

Work Order 1900478 Page 86 of 168

Vista Analytical Laboratory

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Dataset:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time

Printed:

Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS DW L18 032819.mdb 28 Mar 2019 15:24:22

HTPO-DA = 0.5 PFHYS = 0.456 NETROLAT = 0.5 to high pts

JAD 3/29/19

Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19 L18.cdb 28 Mar 2019 15:24:24

Compound name: PFBS

Coefficient of Determination: R² = 0.998723

Calibration curve: 0.853818 * x

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Or3/2019

Page 1 of 13

VALUE OF ALL	# Name	Туре	Std. Conc	BT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 190328P1_2	Standard	0.222	3.46	27.246	5818.330	0.134	0.2	-29.1	NO	0.999	NO	ММ
2	2 190328P1_3	Standard	0.444	3.43	61.622	5789.858	0.305	0.4	-19.4	NO	0.999	NO	ММ
3	3 190328P1_4	Standard	0.888	3.43	154.397	5861.137	0.756	0.9	-0.3	NO	0.999	NO	ММ
4	4 190328P1_5	Standard	1.780	3.44	275.510	6040.236	1.309	1.5	-13.9	NO	0.999	NO	ММ
5	5 190328P1_6	Standard	4.440	3.43	747.778	5930.806	3.619	4.2	-4.5	NO	0.999	NO	ММ
6	6 190328P1_7	Standard	8.840	3.44	1398.974	5470.568	7.339	8.6	-2.8	NO	0.999	NO	ММ
7	7 190328P1_8	Standard	22.100	3.44	3709.807	6052.243	17.592	20.6	-6.8	NO	0.999	NO	bd
8	8 190328P1_9	Standard	44.200	3.43	7243.832	5564.294	37.363	43.8	-1.0	NO	0.999	NO	bd
9	9 190328P1_10	Standard	66.400	3.44	11223.434	5469.428	58.893	69.0	3.9	NO	0.999	NO	ММ
10	10 190328P1_11	Standard	88.500	3.44	15256.875	5781.354	75.739	88.7	0.2	NO	0.999	NO	bd

Compound name: PFHxA

Coefficient of Determination: R^2 = 0.999418

Calibration curve: 0.762567 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

大学職性です	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 1200 5.43	1 190328P1_2	Standard	0.250	3.75	193.462	11052.179	0.175	0.2	-8.2	NO	0.999	NO	MM
2	2 190328P1_3	Standard	0.500	3.74	440.419	11250.450	0.391	0.5	2.7	NO	0.999	NO	MM
3	3 190328P1_4	Standard	1.000	3.74	872.724	11798.468	0.740	1.0	-3.0	NO	0.999	NO	bd
4	4 190328P1_5	Standard	2.000	3.74	1840.231	11275.746	1.632	2.1	7.0	NO	0.999	NO	bd
5	5 190328P1_6	Standard	5.000	3.74	4277.783	11708.892	3.653	4.8	-4.2	NO	0.999	NO	bb
6	6 190328P1_7	Standard	10.000	3.74	8328.442	10851.720	7.675	10.1	0.6	NO	0.999	NO	bb
7	7 190328P1_8	Standard	25.000	3.74	21000.350	11732.616	17.899	23.5	-6.1	NO	0.999	NO	MM
8	8 190328P1_9	Standard	50.000	3.74	42932.926	11241.349	38.192	50.1	0.2	NO	0.999	NO	bd
9	9 190328P1_10	Standard	75.000	3.74	67080.781	11485.659	58.404	76.6	2.1	NO	0.999	NO	bd
10	10 190328P1_11	Standard	100.000	3.74	87572.344	11495.679	76.178	99.9	-0.1	NO	0.999	NO	bb

Page 87 of 168 Work Order 1900478

Vista Analytical Laboratory

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: HFPO-DA

Coefficient of Determination: R^2 = 0.998566

Calibration curve: 0.278394 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

# Name	Туре	Std. Conc	RI	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 190328P1_2	Standard	0.250	3.90	65.068	11052,179	0.059	0.2	-15.4	NO	0.999	NO	MMX
2 190328P1_3	Standard	0.500	3.90	104.448	11250.450	0.093	0.3	-33.3	NO	0.999	NO	MM
3 190328P1_4	Standard	1.000	3.91	288.022	11798.468	0.244	0.9	-12.3	NO	0.999	NO	MM
4 190328P1_5	Standard	2.000	3.90	565.570	11275.746	0.502	1.8	-9.9	NO	0.999	NO	bb
5 190328P1_6	Standard	5.000	3.90	1577.268	11708.892	1.347	4.8	-3.2	NO	0.999	NO	bb
6 190328P1_7	Standard	10.000	3.91	3422.813	10851.720	3.154	11.3	13.3	NO	0.999	NO	bb
7 190328P1_8	Standard	25.000	3.90	8567.425	11732.616	7.302	26.2	4.9	NO	0.999	NO	bb
8 190328P1_9	Standard	50.000	3.90	15328.733	11241.349	13.636	49.0	-2.0	NO	0.999	NO	bd
9 190328P1_10	Standard	75.000	3.90	23815.156	11485.659	20.735	74.5	-0.7	NO	0.999	NO	bb
10 190328P1_11	Standard	100.000	3.90	31884.613	11495.679	27.736	99.6	-0.4	NO	0.999	NO	bd

Compound name: PFHpA

Coefficient of Determination: R^2 = 0.999727

Calibration curve: 1.01987 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

7.7 megraje	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded_
1-6-3-7	1 190328P1_2	Standard	0.250	4.21	294.598	11052.179	0.267	0.3	4.5	NO	1.000	NO	MM
2	2 190328P1_3	Standard	0.500	4.21	590.741	11250.450	0.525	0.5	3.0	NO	1.000	NO	MM
3	3 190328P1_4	Standard	1.000	4.22	1218.960	11798.468	1.033	1.0	1.3	NO	1.000	NO	bb
4	4 190328P1_5	Standard	2.000	4.22	2342.238	11275.746	2.077	2.0	1.8	NO	1.000	NO	bb
5	5 190328P1_6	Standard	5.000	4.22	5951.956	11708.892	5.083	5.0	-0.3	NO	1.000	NO	bb
6	6 190328P1_7	Standard	10.000	4.21	11376.994	10851.720	10.484	10.3	2.8	NO	1.000	NO	bb
7	7 190328P1_8	Standard	25.000	4.22	28507.971	11732.616	24.298	23.8	-4.7	NO .	1.000	NO	bb
8	8 190328P1_9	Standard	50.000	4.21	57242.527	11241.349	50.921	49.9	-0.1	NO	1.000	NO	bb
9	9 190328P1_10	Standard	75.000	4.22	88204.695	11485.659	76.796	75.3	0.4	NO	1.000	NO	bb
10	10 190328P1_11	Standard	100.000	4.22	117951.328	11495.679	102.605	100.6	0.6	NO	1.000	NO	bb

Work Order 1900478 Page 88 of 168

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: ADONA

Coefficient of Determination: R^2 = 0.998368

Calibration curve: 1.43734 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	BT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 190328P1_2	Standard	0.250	4.29	427.747	11052.179	0.387	0.3	7.7	NO	0.998	NO	bb
2	2 190328P1_3	Standard	0.500	4.28	837.115	11250.450	0.744	0.5	3.5	NO	0.998	NO	bb
3	3 190328P1_4	Standard	1.000	4.29	1736.306	11798.468	1.472	1.0	2.4	NO	0.998	NO	bb
4	4 190328P1_5	Standard	2.000	4.28	3157.703	11275.746	2.800	1.9	-2.6	NO	0.998	NO	bd
5	5 190328P1_6	Standard	5.000	4.29	8359.892	11708.892	7.140	5.0	-0.7	NO	0.998	NO	bb
6	6 190328P1_7	Standard	10.000	4.29	17509.102	10851.720	16.135	11.2	12.3	NO	0.998	NO	bd
7	7 190328P1_8	Standard	25.000	4.29	45411.184	11732.616	38.705	26.9	7.7	NO	0.998	NO	bd
8	8 190328P1_9	Standard	50.000	4.29	78818.117	11241.349	70.114	48.8	-2.4	NO	0.998	NO	bb
9	9 190328P1_10	Standard	75.000	4.29	125191.867	11485.659	108.998	75.8	1.1	NO	0.998	NO	bb
10	10 190328P1_11	Standard	100.000	4.29	160698.828	11495.679	139.791	97.3	-2.7	NO	0.998	NO	bb ·

Compound name: PFHxS

Coefficient of Determination: R^2 = 0.997285

Calibration curve: 0.770531 * x

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT -	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 - 4 - 1	1 190328P1_2	Standard	0.228	4.33	16.419	5818.330	0.081	0.1	-53.9	NO	0.997	NO	MMX
2	2 190328P1_3	Standard	0.456	4.33	55.297	5789.858	0.274	0.4	-22.0	NO	0.997	NO	MM
3	3 190328P1_4	Standard	0.912	4.32	116.896	5861.137	0.572	0.7	-18.5	NO	0.997	NO	MM
4	4 190328P1_5	Standard	1.820	4.32	245.766	6040.236	1.168	1.5	-16.7	NO	0.997	NO	MM
5	5 190328P1_6	Standard	4.560	4.33	698.320	5930.806	3.379	4.4	-3.8	NO	0.997	NO	MM
6	6 190328P1_7	Standard	9.120	4.32	1326.804	5470.568	6.961	9.0	-0.9	NO	0.997	NO	MM
7	7 190328P1_8	Standard	22.800	4.32	3293.969	6052.243	15.620	20.3	-11.1	NO	0.997	NO	MM
8	8 190328P1_9	Standard	45.500	4.32	6760.159	5564.294	34.868	45.3	-0.5	NO	0.997	NO	MM
9	9 190328P1_10	Standard	68.200	4.32	10591.532	5469.428	55.577	72.1	5.8	NO	0.997	NO	MM
10	10 190328P1_11	Standard	91.000	4.32	14075.313	5781.354	69.873	90.7	-0.3	NO	0.997	NO	MM

Work Order 1900478 Page 89 of 168

Vista Analytical Laboratory

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: PFOA

Coefficient of Determination: R^2 = 0.999778

Calibration curve: 0.970341 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RI	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 190328P1_2	Standard	0.250	4.58	344.253	11052.179	0.311	0.3	28.4	NO	1.000	NO	MM
2	2 190328P1_3	Standard	0.500	4.59	513.015	11250.450	0.456	0.5	-6.0	NO	1.000	NO	MM
3	3 190328P1_4	Standard	1.000	4.58	1112.664	11798.468	0.943	1.0	-2.8	NO	1.000	NO	bb
4	4 190328P1_5	Standard	2.000	4.59	2140.172	11275.746	1.898	2.0	-2.2	NO	1.000	NO	bb
5	5 190328P1_6	Standard	5.000	4.59	5658.542	11708.892	4.833	5.0	-0.4	NO	1.000	NO	bb
6	6 190328P1_7	Standard	10.000	4.58	10669.905	10851.720	9.832	10.1	1.3	NO	1.000	NO	bb
7	7 190328P1_8	Standard	25.000	4.59	27648.229	11732.616	23.565	24.3	-2.9	NO	1.000	NO	bb
8	8 190328P1_9	Standard	50.000	4.59	54912.332	11241.349	48.849	50.3	0.7	NO	1.000	NO	bb
9	9 190328P1_10	Standard	75.000	4.59	83073.938	11485.659	72.328	74.5	-0.6	NO	1.000	NO	bb
10	10 190328P1_11	Standard	100.000	4.59	112385.609	11495.679	97.763	100.8	8.0	NO	1.000	NO	bb

Compound name: PFNA

Coefficient of Determination: R^2 = 0.999217

Calibration curve: 0.865972 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

The second	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 190328P1_2	Standard	0.250	4.90	193.182	11052.179	0.175	0.2	-19.3	NO	0.999	NO	bb
2	2 190328P1_3	Standard	0.500	4.89	528.521	11250.450	0.470	0.5	8.5	NO	0.999	NO	bb
3 100 1	3 190328P1_4	Standard	1.000	4.90	932.813	11798.468	0.791	0.9	-8.7	NO	0.999	NO	bb
4	4 190328P1_5	Standard	2.000	4.89	2046.033	11275.746	1.815	2.1	4.8	NO	0.999	NO	db
5	5 190328P1_6	Standard	5.000	4.89	4887.097	11708.892	4.174	4.8	-3.6	NO	0.999	NO	bb
6	6 190328P1_7	Standard	10.000	4.89	9239.409	10851.720	8.514	9.8	-1.7	NO	0.999	NO	bb
7	7 190328P1_8	Standard	25.000	4.89	23556.918	11732.616	20.078	23.2	-7.3	NO	0.999	NO	bb
8	8 190328P1_9	Standard	50.000	4.89	49202.332	11241.349	43.769	50.5	1.1	NO	0.999	NO	bb
949	9 190328P1_10	Standard	75.000	4.89	76062.672	11485.659	66.224	76.5	2.0	NO	0.999	NO	bb
10	10 190328P1_11	Standard	100.000	4.89	99691.672	11495.679	86.721	100.1	0.1	NO	0.999	NO	bb

Work Order 1900478 Page 90 of 168

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: R^2 = 0.998587

Calibration curve: 0.875608 * x

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	- □ CoD	CoD Flag	x=excluded
	1 190328P1_2	Standard	0.232	4.95	47.961	5818.330	0.237	0.3	16.5	NO	0.999	NO	MM
2	2 190328P1_3	Standard	0.464	4.94	76.061	5789.858	0.377	0.4	-7.2	NO	0.999	NO	MM
3	3 190328P1_4	Standard	0.928	4.95	131.723	5861.137	0.645	0.7	-20.6	NO	0.999	NO	MM
4	4 190328P1_5	Standard	1.860	4.94	291.838	6040.236	1.387	1.6	-14.9	NO	0.999	NO	MM
5	5 190328P1_6	Standard	4.640	4.94	778.410	5930.806	3.767	4.3	-7.3	NO	0.999	NO	MM
6	6 190328P1_7	Standard	9.240	4.95	1507.219	5470.568	7.907	9.0	-2.3	NO	0.999	NO	MM
7	7 190328P1_8	Standard	23.100	4.95	3956.451	6052.243	18.762	21.4	-7.2	NO	0.999	NO	MM
8	8 190328P1_9	Standard	46.200	4.95	7925.417	5564.294	40.878	46.7	1.1	NO	0.999	NO	MM
9	9 190328P1_10	Standard	69.400	4.95	11998.520	5469.428	62.960	71.9	3.6	NO	0.999	NO	MM
10	10 190328P1_11	Standard	92.500	4.95	16261.275	5781.354	80.725	92.2	-0.3	NO	0.999	NO	MM

Compound name: 9CI-PF3ONS

Coefficient of Determination: R^2 = 0.997938

Calibration curve: 2.42042 * x

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 190328P1_2	Standard	0.250	5.10	90.887	5818.330	0.448	0.2	-25.9	NO	0.998	NO	bb
2	2 190328P1_3	Standard	0.500	5.09	202.370	5789.858	1.003	0.4	-17.1	NO	0.998	NO	MM
3.5	3 190328P1_4	Standard	1.000	5.10	495.884	5861.137	2.428	1.0	0.3	NO	0.998	NO	bd
4	4 190328P1_5	Standard	2.000	5.10	918.101	6040.236	4.362	1.8	-9.9	NO	0.998	NO	bb
5	5 190328P1_6	Standard	5.000	5.10	2308.596	5930.806	11.172	4.6	-7.7	NO	0.998	NO	bb
6	6 190328P1_7	Standard	10.000	5.10	4977.998	5470.568	26.116	10.8	7.9	NO	0.998	NO	bb
7	7 190328P1_8	Standard	25.000	5.10	13080.917	6052.243	62.030	25.6	2.5	NO	0.998	NO	bb
8	8 190328P1_9	Standard	50.000	5.09	23047.838	5564.294	118.878	49.1	-1.8	NO	0.998	NO	bd
9	9 190328P1_10	Standard	75.000	5.09	36437.941	5469.428	191.203	79.0	5.3	NO	0.998	NO	bb
10	10 190328P1_11	Standard	100.000	5.10	46904.773	5781.354	232.846	96.2	-3.8	NO	0.998	NO	bd .

Work Order 1900478 Page 91 of 168

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: R^2 = 0.999626 Calibration curve: 0.000338008 * x^2 + 1.01705 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	, RI	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
J company	1 190328P1_2	Standard	0.250	5.18	306.084	11052,179	0.277	0.3	8.9	NO	1.000	NO	bb
2	2 190328P1_3	Standard	0.500	5.17	614.436	11250.450	0.546	0.5	7.4	NO	1.000	NO	bb
3	3 190328P1_4	Standard	1.000	5.16	1262.785	11798.468	1.070	1.1	5.2	NO	1.000	NO	bb
4	4 190328P1_5	Standard	2.000	5.16	2189.023	11275.746	1.941	1.9	-4.6	NO	1.000	NO	bb
5	5 190328P1_6	Standard	5.000	5.16	5921.377	11708.892	5.057	5.0	-0.7	NO	1.000	NO	bb
6	6 190328P1_7	Standard	10.000	5.16	11806.867	10851.720	10.880	10.7	6.6	NO	1.000	NO	bb
7	7 190328P1_8	Standard	25.000	5.16	28970.063	11732.616	24.692	24.1	-3.7	NO	1.000	NO	bb
8	8 190328P1_9	Standard	50.000	5.16	57933.727	11241.349	51.536	49.8	-0.3	NO	1.000	NO	bb
9	9 190328P1_10	Standard	75.000	5.16	90697.648	11485.659	78.966	75.7	1.0	NO	1.000	NO	bb
10	10 190328P1_11	Standard	100.000	5.16	120415.898	11495.679	104.749	99.7	-0.3	NO	1.000	NO	bb

Compound name: N-MeFOSAA

Coefficient of Determination: $R^2 = 0.998828$ Calibration curve: $0.0011037 * x^2 + 0.725197 * x$

Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Ment Park	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1300,05	1 190328P1_2	Standard	0.250	5.26	49.721	17412.145	0.114	0.2	-37.0	NO	0.999	NO	bb
2	2 190328P1_3	Standard	0.500	5.27	125.047	17407.193	0.287	0.4	-20.8	NO	0.999	NO	bb
3	3 190328P1_4	Standard	1.000	5.27	306.263	17546.832	0.698	1.0	-3.9	NO	0.999	NO	ММ
4	4 190328P1_5	Standard	2.000	5.27	603.898	17769.572	1.359	1.9	-6.5	NO	0.999	NO	ММ
5	5 190328P1_6	Standard	5.000	5.27	1740.253	17789.320	3.913	5.4	7.0	NO	0.999	NO	ММ
6	6 190328P1_7	Standard	10.000	5.27	3251.459	17481.215	7.440	10.1	1.0	NO	0.999	NO	ММ
7	7 190328P1_8	Standard	25.000	5.27	8496.299	18924.680	17.958	23.9	-4.4	NO	0.999	NO	ММ
8	8 190328P1_9	Standard	50.000	5.27	17242.857	17723.484	38.915	49.9	-0.2	NO	0.999	NO	ММ
9	9 190328P1_10	Standard	75.000	5.27	27069.723	17138.338	63.179	77.9	3.9	NO	0.999	NO	ММ
10	10 190328P1_11	Standard	100.000	5.27	36299.789	17735.316	81.870	98.2	-1.8	NO	0.999	NO	ММ

Work Order 1900478 Page 92 of 168

Quantify Compound Summary Report

MassLynx V4.2 SCN977

Vista Analytical Laboratory

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.999044

Calibration curve: 0.688491 * x

Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 190328P1_2	Standard	0.250	5.38	35.037	17412.145	0.080	0.1	-53.2	NO	0.999	NO	MMX
2	2 190328P1_3	Standard	0.500	5.37	112.522	17407.193	0.259	0.4	-24.9	NO	0.999	NO	MM
3	3 190328P1_4	Standard	1.000	5.38	234.142	17546.832	0.534	0.8	-22.5	NO	0.999	NO	MM
4	4 190328P1_5	Standard	2.000	5.38	536.302	17769.572	1.207	1.8	-12.3	NO	0.999	NO	MM
5	5 190328P1_6	Standard	5.000	5.38	1479.490	17789.320	3.327	4.8	-3.4	NO	0.999	NO	MM
6	6 190328P1_7	Standard	10.000	5.38	2942.915	17481.215	6.734	9.8	-2.2	NO	0.999	NO	MM
7	7 190328P1_8	Standard	25.000	5.38	7722.744	18924.680	16.323	23.7	-5.2	NO	0.999	NO	MM
8	8 190328P1_9	Standard	50.000	5.38	15117.973	17723.484	34.120	49.6	-0.9	NO	0.999	NO	MM
9	9 190328P1_10	Standard	75.000	5.38	22598.893	17138.338	52.745	76.6	2.1	NO	0.999	NO	MM
10	10 190328P1_11	Standard	100.000	5.38	30864.838	17735.316	69.612	101.1	1.1	NO	0.999	NO	ММ

Compound name: PFUnA

Coefficient of Determination: R^2 = 0.999779

Calibration curve: 1.33481 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
I Sale	1 190328P1_2	Standard	0.250	5.38	417.207	11052.179	0.377	0.3	13.1	NO	1.000	NO	bb
2	2 190328P1_3	Standard	0.500	5.38	744.890	11250.450	0.662	0.5	-0.8	NO	1.000	NO	bd
3	3 190328P1_4	Standard	1.000	5.39	1575.699	11798.468	1.336	1.0	0.1	NO	1.000	NO	bb
4	4 190328P1_5	Standard	2.000	5.38	3094.538	11275.746	2.744	2.1	2.8	NO	1.000	NO	bb
5	5 190328P1_6	Standard	5.000	5.38	7676.759	11708.892	6.556	4.9	-1.8	NO	1.000	NO	bb
6	6 190328P1_7	Standard	10.000	5.38	14396.731	10851.720	13.267	9.9	-0.6	NO	1.000	NO	bb
7	7 190328P1_8	Standard	25.000	5.39	37527.027	11732.616	31.985	24.0	-4.2	NO	1.000	NO	bb
8	8 190328P1_9	Standard	50.000	5.38	75522.070	11241.349	67.182	50.3	0.7	NO	1.000	NO	bb
9	9 190328P1_10	Standard	75.000	5.38	115362.516	11485.659	100.440	75.2	0.3	NO	1.000	NO	bb
10	10 190328P1_11	Standard	100.000	5.39	154247.000	11495.679	134.178	100.5	0.5	NO	1.000	NO	bb

Work Order 1900478 Page 93 of 168

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: 11CI-PF3OUdS

Coefficient of Determination: R^2 = 0.998329

Calibration curve: 2.67821 * x

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

The state of the s	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
A town to be a second	1 190328P1_2	Standard	0.250	5.52	131.924	5818.330	0.651	0.2	-2.8	NO	0.998	NO	MM
2	2 190328P1_3	Standard	0.500	5.52	233.414	5789.858	1.157	0.4	-13.6	NO	0.998	NO	MM
3	3 190328P1_4	Standard	1.000	5.53	505.521	5861.137	2.475	0.9	-7.6	NO	0.998	NO	bb
4 40000	4 190328P1_5	Standard	2.000	5.52	906.274	6040.236	4.306	1.6	-19.6	NO	0.998	NO	bb
5	5 190328P1_6	Standard	5.000	5.52	2607.332	5930.806	12.617	4.7	-5.8	NO	0.998	NO	bb
6	6 190328P1_7	Standard	10.000	5.52	5661.112	5470.568	29.700	11.1	10.9	NO	0.998	NO	bb
7	7 190328P1_8	Standard	25.000	5.52	14611.459	6052.243	69.288	25.9	3.5	NO	0.998	NO	bb
8	8 190328P1_9	Standard	50.000	5.52	24870.189	5564.294	128.278	47.9	-4.2	NO	0.998	NO	bd
9	9 190328P1_10	Standard	75.000	5.52	39429.336	5469.428	206.900	77.3	3.0	NO	0.998	NO	bb
10	10 190328P1_11	Standard	100.000	5.52	53260.613	5781.354	264.398	98.7	-1.3	NO	0.998	NO	bd

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.999692

Calibration curve: 1.67575 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

A LANGE TO SERVICE TO	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 - year -y . Colorest	1 190328P1_2	Standard	0.250	5.59	521.319	11052.179	0.472	0.3	12.6	NO	1.000	NO	bb
2	2 190328P1_3	Standard	0.500	5.58	914.982	11250.450	0.813	0.5	-2.9	NO	1.000	NO	bb
3	3 190328P1_4	Standard	1.000	5.58	1956.214	11798.468	1.658	1.0	-1.1	NO	1.000	NO	bb
4	4 190328P1_5	Standard	2.000	5.58	3743.514	11275.746	3.320	2.0	-0.9	NO	1.000	NO	bb
5	5 190328P1_6	Standard	5.000	5.58	9562.463	11708.892	8.167	4.9	-2.5	NO	1.000	NO	bd
6	6 190328P1_7	Standard	10.000	5.58	17930.846	10851.720	16.524	9.9	-1.4	NO	1.000	NO	bb
7	7 190328P1_8	Standard	25.000	5.58	47234.938	11732.616	40.260	24.0	-3.9	NO	1.000	NO	bb
8	8 190328P1_9	Standard	50.000	5.58	93251.063	11241.349	82.954	49.5	-1.0	NO	1.000	NO	bb
9	9 190328P1_10	Standard	75.000	5.58	144625.875	11485.659	125.919	75 <i>.</i> 1	0.2	NO	1.000	NO	bb
10	10 190328P1_11	Standard	100.000	5.58	195739.969	11495.679	170.273	101.6	1.6	NO	1.000	NO	dd

Work Order 1900478 Page 94 of 168

Vista Analytical Laboratory

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld Dataset:

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time Printed:

Compound name: PFTrDA
Coefficient of Determination: R^2 = 0.999787

Calibration curve: 1.69111 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

NOT THE STATE OF T	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
145	1 190328P1_2	Standard	0.250	5.76	481.584	11052.179	0.436	0.3	3.1	NO	1.000	NO	bb
2	2 190328P1_3	Standard	0.500	5.75	1024.533	11250.450	0.911	0.5	7.7	NO	1.000	NO	dd
3	3 190328P1_4	Standard	1.000	5.76	2136.686	11798.468	1.811	1.1	7.1	NO	1.000	NO	bb
4	4 190328P1_5	Standard	2.000	5.75	3802.516	11275.746	3.372	2.0	-0.3	NO	1.000	NO	bd
5	5 190328P1_6	Standard	5.000	5.75	9678.479	11708.892	8.266	4.9	-2.2	NO	1.000	NO	bb
6	6 190328P1_7	Standard	10.000	5.75	18599.035	10851.720	17.139	10.1	1.3	NO	1.000	NO	bb
7	7 190328P1_8	Standard	25.000	5.75	48598.766	11732.616	41.422	24.5	-2.0	NO	1.000	NO	bb
8	8 190328P1_9	Standard	50.000	5.75	94695.273	11241.349	84.238	49.8	-0.4	NO	1.000	NO	bb
9	9 190328P1_10	Standard	75.000	5.75	143968.891	11485.659	125.347	74.1	-1.2	NO	1.000	NO	bd
10	10 190328P1_11	Standard	100.000	5.75	197200.531	11495.679	171.543	101.4	1.4	NO	1.000	NO	bb

Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.999568

Calibration curve: 1.59498 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1.00	1 190328P1_2	Standard	0.250	5.91	447.268	11052.179	0.405	0.3	1.5	NO	1.000	NO	bb
2	2 190328P1_3	Standard	0.500	5.90	870.199	11250.450	0.773	0.5	-3.0	NO	1.000	NO	bb
3	3 190328P1_4	Standard	1.000	5.90	1988.218	11798.468	1.685	1.1	5.7	NO	1.000	NO	bb
4	4 190328P1_5	Standard	2.000	5.90	3791.021	11275.746	3.362	2.1	5.4	NO	1.000	NO	bb
5	5 190328P1_6	Standard	5.000	5.90	9138.347	11708.892	7.805	4.9	-2.1	NO	1.000	NO	bb
6	6 190328P1_7	Standard	10.000	5.90	17766.066	10851.720	16.372	10.3	2.6	NO	1.000	NO	bb
7	7 190328P1_8	Standard	25.000	5.90	44392.930	11732.616	37.837	23.7	-5.1	NO	1.000	NO	bb
8	8 190328P1_9	Standard	50.000	5.90	88751.023	11241.349	78.951	49.5	-1.0	NO	1.000	NO	bb
9	9 190328P1_10	Standard	75.000	5.90	139703.984	11485.659	121.633	76.3	1.7	NO	1.000	NO	bb
10	10 190328P1_11	Standard	100.000	5.90	183733.188	11495.679	159.828	100.2	0.2	NO	1.000	NO	bb

Page 95 of 168 Work Order 1900478

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: 13C2-PFHxA

Response Factor: 1.00045

RRF SD: 0.0300683, Relative SD: 3.00549

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)

Curve type: RF

	Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1 1	I 190328P1_2	Standard	10.000	3.74	11446.940	11052.179	10.357	10.4	3.5	NO	NO	bb
2	2 190328P1_3	Standard	10.000	3.74	11355.578	11250.450	10.093	10.1	0.9	NO	NO	bb
3 3	3 190328P1_4	Standard	10.000	3.74	11526.254	11798.468	9.769	9.8	-2.4	NO	NO	bb
4	1 190328P1_5	Standard	10.000	3.74	11610.755	11275.746	10.297	10.3	2.9	NO	NO	bd
5	5 190328P1_6	Standard	10.000	3.74	11505.086	11708.892	9.826	9.8	-1.8	NO	NO	bd
6	6 190328P1_7	Standard	10.000	3.74	11232.259	10851.720	10.351	10.3	3.5	NO	NO	bd
7	7 190328P1_8	Standard	10.000	3.74	11011.896	11732.616	9.386	9.4	-6.2	NO	NO	bd
8 8	3 190328P1_9	Standard	10.000	3.74	11183.225	11241.349	9.948	9.9	-0.6	NO	NO	bd
9 9	9 190328P1_10	Standard	10.000	3.74	11537.298	11485.659	10.045	10.0	0.4	NO	NO	bd
10 10	190328P1_11	Standard	10.000	3.75	11463.763	11495.679	9.972	10.0	-0.3	NO	NO	bd

Compound name: 13C3-HFPO-DA

Response Factor: 0.0850231

RRF SD: 0.00412777, Relative SD: 4.85488

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 190328P1_2	Standard	10.000	3.90	962.747	11052.179	0.871	10.2	2.5	NO	NO	MM
2	2 190328P1_3	Standard	10.000	3.90	1016.602	11250.450	0.904	10.6	6.3	NO	NO	bb
3	3 190328P1_4	Standard	10.000	3.90	954.733	11798.468	0.809	9.5	-4.8	NO	NO	MM
4	4 190328P1_5	Standard	10.000	3.90	997.596	11275.746	0.885	10.4	4.1	NO	NO	MM
5	5 190328P1_6	Standard	10.000	3.90	973.189	11708.892	0.831	9.8	-2.2	NO	NO	bb
6	6 190328P1_7	Standard	10.000	3.91	984.363	10851.720	0.907	10.7	6.7	NO	NO	bb
7	7 190328P1_8	Standard	10.000	3.91	923.511	11732.616	0.787	9.3	-7.4	NO	NO	bb
8	8 190328P1_9	Standard	10.000	3.90	937.547	11241.349	0.834	9.8	-1.9	NO	NO	bb
9	9 190328P1_10	Standard	10.000	3.90	935.943	11485.659	0.815	9.6	-4.2	NO	NO	bd
10	10 190328P1_11	Standard	10.000	3.90	987.937	11495.679	0.859	10.1	1.1	NO	NO	bd

Work Order 1900478 Page 96 of 168

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 1.20833

RRF SD: 0.0438257, Relative SD: 3.62697

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 190328P1_2	Standard	10.000 5	5.16	14204.684	11052.179	12.852	10,6	6.4	NO	NO	bd
2	2 190328P1_3	Standard	10.000 5	5.16	13820.920	11250.450	12.285	10.2	1.7	NO	NO	bd
3	3 190328P1_4	Standard	10.000 5	5.16	13783.155	11798.468	11.682	9.7	-3.3	NO	NO	bd
4	4 190328P1_5	Standard	10.000 5	5.16	13549.769	11275.746	12.017	9.9	-0.6	NO	NO	bd
5	5 190328P1_6	Standard	10.000 5	5.16	13739.922	11708.892	11.735	9.7	-2.9	NO	NO	bd
6	6 190328P1_7	Standard	10.000 5	5.16	13636.746	10851.720	12.566	10.4	4.0	NO	NO	bb
7	7 190328P1_8	Standard	10.000 5	5.16	13495.252	11732.616	11.502	9.5	-4.8	NO	NO	bd
8	8 190328P1_9	Standard	10.000 5	5.16	13867.783	11241.349	12.336	10.2	2.1	NO	NO	bd
9	9 190328P1_10	Standard	10.000 5	5.16	13411.643	11485.659	11.677	9.7	-3.4	NO	NO	bd
10	_10 190328P1_11	Standard	10.000 5	5.16	14002.133	11495.679	12.180	10.1	8.0	NO.	NO	bb

Compound name: d5-N-EtFOSAA

Response Factor: 1.01954

RRF SD: 0.0345669, Relative SD: 3.39042

Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
p erior	1 190328P1_2	Standard	40.000 5.38	18344.367	17412.145	42.142	41.3	3.3	NO	NO	bb
2	2 190328P1_3	Standard	40.000 5.38	18149.766	17407.193	41.706	40.9	2.3	NO	NO	bb
3	3 190328P1_4	Standard	40.000 5.38	18516.000	17546.832	42.209	41.4	3.5	NO	NO	bb
4	4 190328P1_5	Standard	40.000 5.38	17987.186	17769.572	40.490	39.7	-0.7	NO	NO	bd
5	5 190328P1_6	Standard	40.000 5.38	17854.006	17789.320	40.145	39.4	-1.6	NO	NO	bb
6	6 190328P1_7	Standard	40.000 5.38	17775.303	17481.215	40.673	39.9	-0.3	NO	NO	bb
7	7 190328P1_8	Standard	40.000 5.38	17726.957	18924.680	37.468	36.8	-8.1	NO	NO	bb
8	8 190328P1_9	Standard	40.000 5.38	18140.938	17723.484	40.942	40.2	0.4	NO	NO	bb
9	9 190328P1_10	Standard	40.000 5.38	17854.117	17138.338	41.671	40.9	2.2	NO	NO	bd
10	10 190328P1_11	Standard	40.000 5.38	17899.926	17735.316	40.371	39.6	-1.0	NO	NO	bb

Work Order 1900478 Page 97 of 168

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 190328P1_2	Standard	10.000	4.59	11052.179	11052.179	10.000	10.0	0.0	NO	NO	bd
2	2 190328P1_3	Standard	10.000	4.58	11250.450	11250.450	10.000	10.0	0.0	NO	NO	bd
3	3 190328P1_4	Standard	10.000	4.59	11798.468	11798.468	10.000	10.0	0.0	NO	NO	bb
4	4 190328P1_5	Standard	10.000	4.58	11275.746	11275.746	10.000	10.0	0.0	NO	NO	bb
5	5 190328P1_6	Standard	10.000	4.59	11708.892	11708.892	10.000	10.0	0.0	NO	NO	bb
6	6 190328P1_7	Standard	10.000	4.59	10851.720	10851.720	10.000	10.0	0.0	NO	NO	bd
7	7 190328P1_8	Standard	10.000	4.59	11732.616	11732.616	10.000	10.0	0.0	NO	NO	bb
8	8 190328P1_9	Standard	10.000	4.58	11241.349	11241.349	10.000	10.0	0.0	NO	NO	bd
9	9 190328P1_10	Standard	10.000	4.58	11485.659	11485.659	10.000	10.0	0.0	NO	NO	bb
10	10 190328P1_11	Standard	10.000	4.59	11495.679	11495.679	10.000	10.0	0.0	NO	NO	bd

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)

Curve type: RF

y department	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
150000	1 190328P1_2	Standard	28.700	4.95	5818.330	5818.330	28.700	28.7	0.0	NO		NO	bb
2	2 190328P1_3	Standard	28.700	4.95	5789.858	5789.858	28.700	28.7	0.0	NO		NO	bb
3	3 190328P1_4	Standard	28.700	4.95	5861.137	5861.137	28.700	28.7	0.0	NO		NO	bb
4	4 190328P1_5	Standard	28.700	4.95	6040.236	6040.236	28.700	28.7	0.0	NO		NO	bb
5 - 11	5 190328P1_6	Standard	28.700	4.95	5930.806	5930.806	28.700	28.7	0.0	NO		NO	bb
6	6 190328P1_7	Standard	28.700	4.95	5470.568	5470.568	28.700	28.7	0.0	NO		NO	bb
7	7 190328P1_8	Standard	28.700	4.95	6052.243	6052.243	28.700	28.7	0.0	NO		NO	bb
8	8 190328P1_9	Standard	28.700	4.95	5564.294	5564.294	28.700	28.7	0.0	NO		NO	bb
9	9 190328P1_10	Standard	28.700	4.95	5469.428	5469.428	28.700	28.7	0.0	NO		NO	bb
10	<u>10 190</u> 328P1_11	Standard	28.700	4.95	5781.354	5781.354	28.700	28.7	0.0	NO		NO	bd

Work Order 1900478 Page 98 of 168

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:13:02 Pacific Daylight Time

Compound name: d3-N-MeFOSAA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 190328P1_2	Standard	40.000	5.27	17412.145	17412.145	40.000	40.0	0.0	NO	411-41-41	NO	bb
2 market	2 190328P1_3	Standard	40.000	5.27	17407.193	17407.193	40.000	40.0	0.0	NO		NO	bb
3	3 190328P1_4	Standard	40.000	5.27	17546.832	17546.832	40.000	40.0	0.0	NO		NO	bd
4	4 190328P1_5	Standard	40.000	5.27	17769.572	17769.572	40.000	40.0	0.0	NO		NO	bd
5	5 190328P1_6	Standard	40.000	5.27	17789.320	17789.320	40.000	40.0	0.0	NO		NO	bd
6	6 190328P1_7	Standard	40.000	5.27	17481.215	17481.215	40.000	40.0	0.0	NO		NO	bd
7	7 190328P1_8	Standard	40.000	5.27	18924.680	18924.680	40.000	40.0	0.0	NO		NO	bb
8	8 190328P1_9	Standard	40.000	5.27	17723.484	17723.484	40.000	40.0	0.0	NO		NO	bb
9	9 190328P1_10	Standard	40.000	5.27	17138.338	17138.338	40.000	40.0	0.0	NO		NO	dd
10	10 190328P1_11	Standard	40.000	5.27	17735.316	17735.316	40.000	40.0	0.0	NO		NO	bd

Work Order 1900478 Page 99 of 168

Page 1 of 1

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time

Printed:

Thursday, March 28, 2019 18:13:18 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Name: 190328P1_2, Date: 28-Mar-2019, Time: 10:55:07, ID: ST190328P1-1 537 CS-4 19C2502, Description: 537 CS-4 19C2502

	# Name	IS#	CoD C	oD Flag %	6RSD
lefonde i	1 PFBS	24	0.9987	NO	~
2	2 PFHxA	23	0.9994	NO	
3	3 HFPO-DA	23	0.9986	NO	
4	4 PFHpA	23	0.9997	NO	
5	5 ADONA	23	0.9984	NO	
6	6 PFHxS	24	0.9973	NO	
7	7 PFOA	23	0.9998	NO	
8	8 PFNA	23	0.9992	NO	
9	9 PFOS	24	0.9986	NO	
10	10 9CI-PF3ONS	24	0.9979	NO	- 1
11	11 PFDA	23	0.9996	NO	
12	12 N-MeFOSAA	25	0.9988	NO	
13	13 N-EtFOSAA	25	0.9990	NO	
14	14 PFUnA	23	0.9998	NO	
15	15 11CI-PF3OUdS	24	0.9983	NO	
16	16 PFDoA	23	0.9997	NO	
17	17 PFTrDA	23	0.9998	NO	
18	18 PFTeDA	23	0.9996	NO	
19	19 13C2-PFHxA	23		NO	3.005
20	20 13C3-HFPO-DA	23		NO	4.855
21	21 13C2-PFDA	23		NO	3.627
22	22 d5-N-EtFOSAA	25		NO	3.390
23	23 13C2-PFOA	23		NO	0.000
24	24 13C4-PFOS	24		NO	0.000
25	25 d3-N-MeFOSAA	25		NO	0.000

Page 100 of 168 Work Order 1900478

	HIGH	11798.47	RPD			
Compound 23: 13C2-PFOA	LOW	10851.72	8.359736			
ID	Name	Туре	Std. Conc RT	Area	IS Area	Primary Flags
1 ST190328P1-1 537 CS-4 19C2502	190328P1_2	Standard	10	4.59 11052.1	8 11052.18	bd
2 ST190328P1-2 537 CS-3 19C2503	190328P1_3	Standard	10	4.58 11250.4		
3 ST190328P1-3 537 CS-2 19C2504	190328P1_4	Standard	10	4.59 11798.4		
4 ST190328P1-4 537 CS-1 19C2505	190328P1_5	Standard	10	4.58 11275.7		
5 ST190328P1-5 537 CS0 19C2506	190328P1_6	Standard	10	4.59 11708.8		
6 ST190328P1-6 537 CS1 19C2507	190328P1_7	Standard	10	4.59 10851.7	2 10851.72	bd Low
7 ST190328P1-7 537 CS2 19C2508	190328P1_8	Standard	10	4.59 11732.6		
8 ST190328P1-8 537 CS3 19C2509	190328P1_9	Standard	10	4.58 11241.3	5 11241.35	bd
9 ST190328P1-9 537 CS4 19C2510	190328P1_10	Standard	10	4.58 11485.6	6 11485.66	bb
10 ST190328P1-10 537 CS5 19C2511	190328P1_11	Standard	10	4.59 11495.6	8 11495.68	bd
				AVERAGE	11389.28	
	HIGH	6052.243	RPD			
ompound 24: 13C4-PFOS	HIGH LOW		RPD 10.11685			
Compound 24: 13C4-PFOS				Area	IS Area	Primary Flags
·	LOW	5469.428	10.11685	Area 4.95 5818.33		
ID	LOW Name	5469.428 Type	10.11685 Std. Conc RT		0 5818.330	bb
ID 1 ST190328P1-1 537 CS-4 19C2502	Name 190328P1_2	5469.428 Type Standard	Std. Conc RT 28.7	4.95 5818.33	0 5818.330 8 5789.858	bb bb
ID 1 ST190328P1-1 537 CS-4 19C2502 2 ST190328P1-2 537 CS-3 19C2503	Name 190328P1_2 190328P1_3	5469.428 Type Standard Standard	Std. Conc RT 28.7 28.7	4.95 5818.33 4.95 5789.85	0 5818.330 8 5789.858 7 5861.137	bb bb bb
ID 1 ST190328P1-1 537 CS-4 19C2502 2 ST190328P1-2 537 CS-3 19C2503 3 ST190328P1-3 537 CS-2 19C2504	Name 190328P1_2 190328P1_3 190328P1_4	Type Standard Standard Standard	Std. Conc RT 28.7 28.7 28.7	4.95 5818.33 4.95 5789.85 4.95 5861.13	0 5818.330 8 5789.858 7 5861.137 6 6040.236	bb bb bb
ID 1 ST190328P1-1 537 CS-4 19C2502 2 ST190328P1-2 537 CS-3 19C2503 3 ST190328P1-3 537 CS-2 19C2504 4 ST190328P1-4 537 CS-1 19C2505	Name 190328P1_2 190328P1_3 190328P1_4 190328P1_5	Type Standard Standard Standard Standard Standard Standard	Std. Conc RT 28.7 28.7 28.7 28.7 28.7	4.95 5818.33 4.95 5789.85 4.95 5861.13 4.95 6040.23 4.95 5930.80 4.95 5470.56	0 5818.330 8 5789.858 7 5861.137 6 6040.236 6 5930.806 8 5470.568	bb bb bb bb bb
ID 1 ST190328P1-1 537 CS-4 19C2502 2 ST190328P1-2 537 CS-3 19C2503 3 ST190328P1-3 537 CS-2 19C2504 4 ST190328P1-4 537 CS-1 19C2505 5 ST190328P1-5 537 CS0 19C2506	Name 190328P1_2 190328P1_3 190328P1_4 190328P1_5 190328P1_6	Type Standard Standard Standard Standard Standard Standard Standard	Std. Conc RT 28.7 28.7 28.7 28.7 28.7 28.7	4.95 5818.33 4.95 5789.85 4.95 5861.13 4.95 6040.23 4.95 5930.80	0 5818.330 8 5789.858 7 5861.137 6 6040.236 6 5930.806 8 5470.568	bb bb bb bb bb
ID 1 ST190328P1-1 537 CS-4 19C2502 2 ST190328P1-2 537 CS-3 19C2503 3 ST190328P1-3 537 CS-2 19C2504 4 ST190328P1-4 537 CS-1 19C2505 5 ST190328P1-5 537 CS0 19C2506 6 ST190328P1-6 537 CS1 19C2507	Name 190328P1_2 190328P1_3 190328P1_4 190328P1_5 190328P1_6 190328P1_7	Type Standard Standard Standard Standard Standard Standard Standard Standard Standard	Std. Conc RT 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	4.95 5818.33 4.95 5789.85 4.95 5861.13 4.95 6040.23 4.95 5930.80 4.95 5470.56	5818.330 8 5789.858 7 5861.137 6 6040.236 6 5930.806 8 5470.568 3 6052.243	bb bb bb bb bb bb
ID 1 ST190328P1-1 537 CS-4 19C2502 2 ST190328P1-2 537 CS-3 19C2503 3 ST190328P1-3 537 CS-2 19C2504 4 ST190328P1-4 537 CS-1 19C2505 5 ST190328P1-5 537 CS0 19C2506 6 ST190328P1-6 537 CS1 19C2507 7 ST190328P1-7 537 CS2 19C2508	Name 190328P1_2 190328P1_3 190328P1_4 190328P1_5 190328P1_6 190328P1_7 190328P1_8	Type Standard	Std. Conc RT 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	4.95 5818.33 4.95 5789.85 4.95 5861.13 4.95 6040.23 4.95 5930.80 4.95 5470.56 4.95 6052.24	0 5818.330 8 5789.858 7 5861.137 6 6040.236 6 5930.806 8 5470.568 3 6052.243 4 5564.294	bb bb bb bb bb bb
1 ST190328P1-1 537 CS-4 19C2502 2 ST190328P1-2 537 CS-3 19C2503 3 ST190328P1-3 537 CS-2 19C2504 4 ST190328P1-4 537 CS-1 19C2505 5 ST190328P1-5 537 CS0 19C2506 6 ST190328P1-6 537 CS1 19C2507 7 ST190328P1-7 537 CS2 19C2508 8 ST190328P1-8 537 CS3 19C2509	Name 190328P1_2 190328P1_3 190328P1_4 190328P1_5 190328P1_6 190328P1_7 190328P1_8 190328P1_9	Type Standard	Std. Conc RT 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	4.95 5818.33 4.95 5789.85 4.95 5861.13 4.95 6040.23 4.95 5930.80 4.95 5470.56 4.95 6052.24 4.95 5564.29	5818.330 8 5789.858 7 5861.137 6 6040.236 6 5930.806 8 5470.568 3 6052.243 4 5564.294 8 5469.428	bb bb bb bb bb bb bb bb bb

OF 3 20/10 Page 101 of 168

	HIGH	18924.68	RPD				
Compound 25: d3-N-MeFOSAA	LOW	17138.34	9.90678				
ID	Name	Туре	Std. Conc RT		Area	IS Area	Primary Flags
1 ST190328P1-1 537 CS-4 19C2502	190328P1_2	Standard	40	5.27	17412.15	17412.15	bb
2 ST190328P1-2 537 CS-3 19C2503	190328P1_3	Standard	40	5.27	17407.19	17407.19	bb
3 ST190328P1-3 537 CS-2 19C2504	190328P1_4	Standard	40	5.27	17546.83	17546.83	bd
4 ST190328P1-4 537 CS-1 19C2505	190328P1_5	Standard	40	5.27	17769.57	17769.57	bd
5 ST190328P1-5 537 CS0 19C2506	190328P1_6	Standard	40	5.27	17789.32	17789.32	bd
6 ST190328P1-6 537 CS1 19C2507	190328P1_7	Standard	40	5.27	17481.22	17481.22	bd .
7 ST190328P1-7 537 CS2 19C2508	190328P1_8	Standard	40	5.27	18924.68	18924.68	bb Hinh
8 ST190328P1-8 537 CS3 19C2509	190328P1_9	Standard	40	5.27	17723.48	17723.48	bb
9 ST190328P1-9 537 CS4 19C2510	190328P1_10	Standard	40	5.27	17138.34	17138.34	dd 🐠
10 ST190328P1-10 537 CS5 19C2511	190328P1_11	Standard	40	5.27	17735.32	17735.32	bd
					AVERAGE	17692.81	

Work Order 1900478 Page 102 of 168

Work Order 1900478 Page 103 of 168

Work Order 1900478 Page 104 of 168

Untitled

Last Altered:

Thursday, March 28, 2019 18:15:25 Pacific Daylight Time

Printed:

Thursday, March 28, 2019 18:15:44 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Compound name: PFBS

	# Name	ID STATE OF THE ST	Acq.Date	Acq.Time
	1 190328P1_1	IPA	28-Mar-19	10:44:30
2	2 190328P1_2	ST190328P1-1 537 CS-4 19C2502	28-Mar-19	10:55:07
3	3 190328P1_3	ST190328P1-2 537 CS-3 19C2503	28-Mar-19	11:05:41
4	4 190328P1_4	ST190328P1-3 537 CS-2 19C2504	28-Mar-19	11:16:17
5	5 190328P1_5	ST190328P1-4 537 CS-1 19C2505	28-Mar-19	11:26:51
6	6 190328P1_6	ST190328P1-5 537 CS0 19C2506	28-Mar-19	11:37:26
7	7 190328P1_7	ST190328P1-6 537 CS1 19C2507	28-Mar-19	11:48:01
8	8 190328P1_8	ST190328P1-7 537 CS2 19C2508	28-Mar-19	11:58:36
9.	9 190328P1_9	ST190328P1-8 537 CS3 19C2509	28-Mar-19	12:09:11
10	10 190328P1_10	ST190328P1-9 537 CS4 19C2510	28-Mar-19	12:19:45
11	11 190328P1_11	ST190328P1-10 537 CS5 19C2511	28-Mar-19	12:30:19
12	12 190328P1_12	IPA	28-Mar-19	12:40:55
13	13 190328P1_13	ICV190328P1-1 537 ICV 19C2512	28-Mar-19	12:51:29

Work Order 1900478 Page 105 of 168

Vista Analytical Laboratory Q1

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Compound name: PFBS

Coefficient of Determination: R^2 = 0.998723

Calibration curve: 0.853818 * x

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: PFHxA

Coefficient of Determination: R^2 = 0.999418

Calibration curve: 0.762567 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: HFPO-DA

Coefficient of Determination: R^2 = 0.998566

Calibration curve: 0.278394 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: PFHpA

Coefficient of Determination: R^2 = 0.999727

Calibration curve: 1.01987 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900478 Page 109 of 168

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: ADONA

Coefficient of Determination: R^2 = 0.998368

Calibration curve: 1.43734 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900478 Page 110 of 168

Work Order 1900478 Page 111 of 168

45.0

50.0

55.0

65.0

60.0

70.0

75.0

80.0

85.0

90.0

10.0

5.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Work Order 1900478 Page 112 of 168

MassLynx V4.2 SCN977

Page 8 of 18

Vista Analytical Laboratory Q1

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time

Printed:

Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: PFNA

Coefficient of Determination: R^2 = 0.999217

Calibration curve: 0.865972 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900478

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: R^2 = 0.998587

Calibration curve: 0.875608 * x

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: 9CI-PF3ONS

Coefficient of Determination: R^2 = 0.997938

Calibration curve: 2.42042 * x

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Page 11 of 18

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: $R^2 = 0.999626$ Calibration curve: $0.000338008 \times x^2 + 1.01705 \times x$

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $R^2 = 0.998828$ Calibration curve: $0.0011037 * x^2 + 0.725197 * x$

Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900478 Page 117 of 168

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.999044

Calibration curve: 0.688491 * x

Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900478 Page 118 of 168

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: PFUnA

Coefficient of Determination: R^2 = 0.999779

Calibration curve: 1.33481 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: 11CI-PF3OUdS

Coefficient of Determination: R^2 = 0.998329

Calibration curve: 2.67821 * x

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900478 Page 120 of 168

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.999692

Calibration curve: 1.67575 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900478 Page 121 of 168

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: PFTrDA

Coefficient of Determination: R^2 = 0.999787

Calibration curve: 1.69111 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1900478 Page 122 of 168

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:11:38 Pacific Daylight Time

Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.999568

Calibration curve: 1.59498 * x

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.gld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time

Printed: Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Name: 190328P1_2, Date: 28-Mar-2019, Time: 10:55:07, ID: ST190328P1-1 537 CS-4 19C2502, Description: 537 CS-4 19C2502

Work Order 1900478

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Printed:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.gld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time

Printed: Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Quantify Sample Report M

MassLynx V4.2 SCN977

Vista Analytical Laboratory

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Name: 190328P1_4, Date: 28-Mar-2019, Time: 11:16:17, ID: ST190328P1-3 537 CS-2 19C2504, Description: 537 CS-2 19C2504

Work Order 1900478

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Printed: Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Quantify Sample Report

Vista Analytical Laboratory

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.gld

MassLynx V4.2 SCN977

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.gld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

•

Dataset: D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.gld

Last Altered: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Printed: Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Printed:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Name: 190328P1_6, Date: 28-Mar-2019, Time: 11:37:26, ID: ST190328P1-5 537 CS0 19C2506, Description: 537 CS0 19C2506

Work Order 1900478

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Name: 190328P1_6, Date: 28-Mar-2019, Time: 11:37:26, ID: ST190328P1-5 537 CS0 19C2506, Description: 537 CS0 19C2506

Work Order 1900478

•

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Dataset:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Printed:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.gld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

MassLynx V4.2 SCN977

Page 22 of 40

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Name: 190328P1_7, Date: 28-Mar-2019, Time: 11:48:01, ID: ST190328P1-6 537 CS1 19C2507, Description: 537 CS1 19C2507

Work Order 1900478

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.gld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time

Printed: Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.gld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Name: 190328P1_8, Date: 28-Mar-2019, Time: 11:58:36, ID: ST190328P1-7 537 CS2 19C2508, Description: 537 CS2 19C2508

Work Order 1900478

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Page 29 of 40

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.gld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Name: 190328P1_9, Date: 28-Mar-2019, Time: 12:09:11, ID: ST190328P1-8 537 CS3 19C2509, Description: 537 CS3 19C2509

Work Order 1900478

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed: Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Dataset:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Quantify Sample Report Vista Analytical Laboratory

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:08:33 Pacific Daylight Time

Printed:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:11:53 Pacific Daylight Time

Name: 190328P1_11, Date: 28-Mar-2019, Time: 12:30:19, ID: ST190328P1-10 537 CS5 19C2511, Description: 537 CS5 19C2511

Work Order 1900478

Quantify Sample Report Vista Analytical Laboratory

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-CRV.qld

Last Altered: Printed:

Thursday, March 28, 2019 15:24:26 Pacific Daylight Time Thursday, March 28, 2019 18:11:53 Pacific Daylight Time

Name: 190328P1_11, Date: 28-Mar-2019, Time: 12:30:19, ID: ST190328P1-10 537 CS5 19C2511, Description: 537 CS5 19C2511

Work Order 1900478

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-ICV.qld

Last Altered:

Thursday, March 28, 2019 18:17:04 Pacific Daylight Time

Printed:

Dataset:

Thursday, March 28, 2019 18:17:17 Pacific Daylight Time

JAD 3/29/19

@ Not in W.

Method: D:\PFAS3.PRO\MethDB\PFAS_DW_L18_032819.mdb 28 Mar 2019 15:24:22 Calibration: D:\PFAS3.PRO\CurveDB\537_Q5_03-28-19_L18.cdb 28 Mar 2019 15:24:24

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 80.0	1.60e3	5.67e3	1.00		3.46	3.43	8.07	9.46	94.6
2	2 PFHxA	313.1 > 269.1	8.53e3	1.18e4	1.00		3.74	3.74	7.22	9.47	94.7
3	3 HFPO-DA	285 > 168.9		1.18e4	1.00		3.90				(6)
4	4 PFHpA	363 > 319	1.16e4	1.18e4	1.00		4.20	4.22	9.86	9.67	96.7
5	5 ADONA	377.1>251		1.18e4	1.00		4.29				(A)
6	6 PFHxS	399 > 80.0	1.44e3	5.67e3	1.00		4.33	4.32	7.30	9.47	94.7
7	7 PFOA	413 > 369	1.12e4	1.18e4	1.00		4.58	4.59	9.51	9.80	98.0
8	8 PFNA	463 > 419	9.77e3	1.18e4	1.00		4.90	4.89	8.27	9.55	95.5
9	9 PFOS	499 >80.0	1.63e3	5.67e3	1.00		4.95	4.95	8.25	9.42	94.2
10	10 9CI-PF3ONS	531.1>351.1		5.67e3	1.00		5.10				(f)
11	11 PFDA	513 > 469	1.13e4	1.18e4	1.00		5.16	5.16	9.60	9.41	94.1
12	12 N-MeFOSAA	570 > 419.1	3.00e3	1.73e4	1.00		5.27	5.27	6.95	9.44	94.4
13	13 N-EtFOSAA	584.0 >419.1	2.88e3	1.73e4	1.00		5.38	5.38	6.67	9.68	96.8
14	14 PFUnA	563 > 519	1.45e4	1.18e4	1.00		5.38	5.38	12.3	9.21	92.1
15	15 11CI-PF3OUdS	630.9>451.0		5.67e3	1.00		5.52				()
16	16 PFDoA	613 > 569	1.75e4	1.18e4	1.00		5.58	5.58	14.8	8.85	88.5
17	17 PFTrDA	662.9 > 619	1.88e4	1.18e4	1.00		5.75	5.75	16.0	9.43	94.3
18	18 PFTeDA	712.9 > 669	1.72e4	1.18e4	1.00		5.91	5.90	14.5	9.11	91.1
19	19 13C2-PFHxA	315.1 > 270	1.11e4	1.18e4	1.00	1.000	3.74	3.74	9.38	9.37	93.7
20	20 13C3-HFPO-DA	287 >185	9.67e2	1.18e4	1.00	0.085	3.90	3.91	0.819	9.63	96.3
21	21 13C2-PFDA	515.0 > 470.0	1.35e4	1.18e4	1.00	1.208	5.16	5.16	11.4	9.47	94.7
22 23	22 d5-N-EtFOSAA	589.1 > 419.0	1.79e4	1.73e4	1.00	1.020	5.38	5.38	41.5	40.7	101.8
RC20000011/10 0000	23 13C2-PFOA	415 > 370	1.18e4	1.18e4	1.00	1.000	4.59	4.58	10.0	10.0	100.0
24	24 13C4-PFOS	502.9 > 79.9	5.67e3	5.67e3	1.00	1.000	4.95	4.95	28.7	28.7	100.0
25	25 d3-N-MeFOSAA	573.0 > 419.0	1.73e4	1.73e4	1.00	1.000	5.27	5.27	40.0	40.0	100.0

Quantify Sample Report MassLynx V4.2 SCN977

Vista Analytical Laboratory

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-ICV.qld

Last Altered: Printed:

Thursday, March 28, 2019 18:17:04 Pacific Daylight Time Thursday, March 28, 2019 18:17:17 Pacific Daylight Time

Method: D:\PFAS3.PRO\MethDB\PFAS DW L18 032819.mdb 28 Mar 2019 15:24:22 Calibration: D:\PFAS3.PRO\CurveDB\537 Q5 03-28-19 L18.cdb 28 Mar 2019 15:24:24

Page 165 of 168

Dataset:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-ICV.qld

Last Altered:

Printed:

Thursday, March 28, 2019 18:17:04 Pacific Daylight Time Thursday, March 28, 2019 18:17:17 Pacific Daylight Time

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-ICV.qld

Last Altered: Printed:

Thursday, March 28, 2019 18:17:04 Pacific Daylight Time

Thursday, March 28, 2019 18:17:17 Pacific Daylight Time

Dataset:

Printed:

D:\PFAS3.PRO\RESULTS\190328P1\190328P1-ICV.qld

Last Altered:

Thursday, March 28, 2019 18:17:04 Pacific Daylight Time Thursday, March 28, 2019 18:17:17 Pacific Daylight Time


```
"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t
est_type","cas_rn","chemical_name","result_value","result_error_delta","result_type_code","reportable_result","detect_
flag", "lab_qualifiers", "organic_yn", "method_detection_limit", "reporting_detection_limit", "quantatation_limit", "result_u
nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me
asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik
e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta
tus"
"Charlie's Pasture-DW 031319", "537", "03/28/19", "18:51", "N", "NA", "000", "375-73-
nn nn nn nn ân nn nn nú nú
"Charlie's Pasture-DW 031319","537","03/28/19","18:51","N","NA","000","307-24-4","PERFLUOROHEXANOIC
. ... ... ... ... ... ... ... ...
"Charlie's Pasture-DW 031319","537","03/28/19","18:51","N","NA","000","375-85-9","PERFLUOROHEPTANOIC
ACID
`nn nn nn íní nn nn nn nn ínn '
"Charlie's Pasture-DW 031319", "537", "03/30/19", "16:48", "N", "NA", "DL1", "355-46-
4"."PERFLUOROHEXANESULFONIC ACID
···· , , , , , , , , , , , ,
"Charlie's Pasture-DW 031319","537","03/30/19","16:48","N","NA","DL1","335-67-1","PERFLUOROOCTANOIC
nn nn nn nn nn nn nn nn
"Charlie's Pasture-DW 031319","537","03/28/19","18:51","N","NA","000","375-95-1","PERFLUORONONANOIC
"Charlie's Pasture-DW 031319","537","03/30/19","16:48","N","NA","DL1","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"Charlie's Pasture-DW 031319","537","03/28/19","18:51","N","NA","000","335-76-2","PERFLUORODECANOIC
ACID
"Charlie's Pasture-DW 031319","537","03/28/19","18:51","N","NA","000","2355-31-
nn nn nn nn nn nn in in in in
"Charlie's Pasture-DW 031319","537","03/28/19","18:51","N","NA","000","2991-50-
. ... ... ... ... ... ... ...
"Charlie's Pasture-DW 031319", "537", "03/28/19", "18:51", "N", "NA", "000", "2058-94-
8"."PERFLUOROUNDECANOIC ACID
nn nn nn nn in in in in
"Charlie's Pasture-DW 031319","537","03/28/19","18:51","N","NA","000","307-55-1","PERFLUORODODECANOIC
ACID
"Charlie's Pasture-DW 031319", "537", "03/28/19", "18:51", "N", "NA", "000", "72629-94-
```

```
"Charlie's Pasture-DW 031319", "537", "03/28/19", "18:51", "N", "NA", "000", "376-06-
"Charlie's Pasture-DW 031319","537","03/28/19","18:51","N","NA","000","13C2-PFHxA","13C2-
PFHxA","98.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","98.8","98.8","98.8","","","","","","130","
"Charlie's Pasture-DW 031319","537","03/28/19","18:51","N","NA","000","13C2-PFDA","13C2-
PFDA","90.0","","IS","Yes","Y","","Y","","","","PCT_RÉC","","","","100","90.0","90.0","90.0","","","","","","130",""
"Charlie's Pasture-DW 031319", "537", "03/28/19", "18:51", "N", "NA", "000", "d5-EtFOSAA", "d5-
EtFOSAA","86.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","86.6","86.6","86.6","","","","","130
"Dup-1","537","03/28/19","19:01","N","NA","000","375-73-
"Dup-1","537","03/28/19","19:01","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"Dup-1","537","03/28/19","19:01","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"Dup-1","537","03/30/19","16:59","N","NA","DL1","355-46-4","PERFLUOROHEXANESULFONIC ACID
"Dup-1","537","03/30/19","16:59","N","NA","DL1","335-67-1","PERFLUOROOCTANOIC ACID
"Dup-1","537","03/28/19","19:01","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"Dup-1","537","03/30/19","16:59","N","NA","DL1","1763-23-1","HEPTADECAFLUOROACTANESULFONIC
ACID SOLUTION
"Dup-1","537","03/28/19","19:01","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
"Dup-1","537","03/28/19","19:01","N","NA","000","2355-31-
"Dup-1","537","03/28/19","19:01","N","NA","000","2991-50-
"Dup-1","537","03/28/19","19:01","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
"Dup-1","537","03/28/19","19:01","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
"Dup-1","537","03/28/19","19:01","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00306","0.00502","0.0101","UG_L","UG_L","","","","","","","","",""
, , , , , , , ,
```

```
"Dup-1","537","03/28/19","19:01","N","NA","000","376-06-
"Dup-1","537","03/28/19","19:01","N","NA","000","13C2-PFHxA","13C2-
PFHxA","107","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","107","107","","","","","","","130","",
"Dup-1","537","03/28/19","19:01","N","NA","000","13C2-PFDA","13C2-
PFDA","100","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","100","100","","","","","","","70","130","","
"Dup-1","537","03/28/19","19:01","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","95.2","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","95.2","95.2","","","","","","130
", ", ", ",
"Field Blank","537","03/28/19","19:12","N","NA","000","375-73-
n na na na nà nà nà na
"Field Blank","537","03/28/19","19:12","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
. ... ... ... ... ... ... ...
"Field Blank","537","03/28/19","19:12","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
... ... ... ... ... ...
"Field Blank","537","03/28/19","19:12","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
nn nn nn nn nn nn nn nn nn nn
"Field Blank", "537", "03/28/19", "19:12", "N", "NA", "000", "375-95-1", "PERFLUORONONANOIC ACID
"Field Blank","537","03/28/19","19:12","N","NA","000","1763-23-1","HEPTADECAFLUOROACTANESULFONIC
ACID SOLUTION
"Field Blank", "537", "03/28/19", "19:12", "N", "NA", "000", "335-76-2", "PERFLUORODECANOIC ACID
"Field Blank", "537", "03/28/19", "19:12", "N", "NA", "000", "2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.00999","UG_L","UG_L","","","","","","","",""
"Field Blank", "537", "03/28/19", "19:12", "N", "NA", "000", "2991-50-
"Field Blank","537","03/28/19","19:12","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
"Field Blank","537","03/28/19","19:12","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
, , , , , , , ,
"Field Blank", "537", "03/28/19", "19:12", "N", "NA", "000", "72629-94-
.. ... ... ... ... ... ... ... ...
"Field Blank", "537", "03/28/19", "19:12", "N", "NA", "000", "376-06-
```

```
"Field Blank","537","03/28/19","19:12","N","NA","000","13C2-PFHxA","13C2-
PFHxA","105","","IS","Yes","Y","","","","","","PCT_REC","","","","100","105","105","105","","","","","","","130","",
"Field Blank", "537", "03/28/19", "19:12", "N", "NA", "000", "13C2-PFDA", "13C2-PFD
"Field Blank", "537", "03/28/19", "19:12", "N", "NA", "000", "d5-EtFOSAA", "d5-
EtFOSAA","97.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","97.6","97.6","97.6","","","","","130
, , , ,
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","375-73-
... ... ... ... ... ...
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","2355-31-
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","2991-50-
. ... ... ... ... ... ... ...
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
"", ", ", ", ", ", "
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","72629-94-
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","376-06-
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","13C2-PFHxA","13C2-
```

```
PFHxA","105","","IS","Yes","Y","","","","","","PCT_REC","","","","100","105","105","","","","","","","130","",
"" "" ""
 "B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","13C2-PFDA","13C2-
"B9C0124-BLK1","537","03/28/19","18:30","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","94.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","94.1","94.1","","","","","","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130","130"
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","375-73-
5","PFBS","0.0713","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0708","0.0
713","101","","","","","","70","130","","","","",""
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.0850","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0800","0.0
850","106","","","","","","70","130","","","",""
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0819","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0800","0.0
819","102","","","","","70","130","","","",""
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC\ ACID\ ACI
(PFHXS)","0.0736","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0728","0.0
736","101","","","","","","70","130","","","",""
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)", "0.0832", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.0800", "0.
32","104","","","","",""70","130","","","",""
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","1763-23-
 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","2355-31-
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","2991-50-
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)", "0.0710", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.00800", "0.0100", "0.0100", "UG\_L", "UG\_L
710","88.8","","","","","","70","130","","","",""
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)", "0.0696", "", "TRG", "Yes", "Y", "", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "0.00800", "
696","87.0","","","","","","70","130","","","",""
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","72629-94-
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","376-06-
7", "PFTeDA", "0.0700", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.000000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.
0.0700","87.5","","","","","","70","130","","","","",""
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","13C2-PFHxA","13C2-
PFHxA","109","","IS","Yes","Y","","","","","","PCT_REC","","","","100","109","109","109","","","","","","","130","",
```

```
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","13C2-PFDA","13C2-
PFDA","95.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","95.5","95.5","95.5","","","","","","130",""
"B9C0124-BS1","537","03/30/19","16:37","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","97.2","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","97.2","97.2","","","","","","130
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","375-73-
5","PFBS","0.0657","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0708","0.0
657","92.9","","","","8.08","70","130","","","",""
 "B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)", "0.0751", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0100", "0.0100", "UG\_L", "UG\_L"
 751","93.9","","","","","12.3","70","130","","","",""
 "B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.0660","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0728","0.0
660","90.7","","","","","10.9","70","130","","","","",""
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)", "0.0766", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0700", "0.0100", "UG\_L", "UG\_L",
66","95.8","","","","8.18","70","130","","","",""
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)", "0.0718", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0718", "UG\_L", "
 18","89.7","","","","15.2","70","130","","","",""
 "B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","1763-23-
  1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0715","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","0.0740","0.0715","96. 6","","","","","1.89","70","130","","","",""
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)", "0.0755", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.07070", "UG\_L", 
55","94.4","","","","1.42","70","130","","","",""
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","2355-31-
9", "MeFOSAA", "0.0752", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0100", "UG\_L", "UG
","0.0752","94.0","","","","","2.34","70","130","","","",""
  "B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","2991-50-
6", "EtFOSAA", "0.0728", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0100", "UG\_L", "UG
  ,"0.0728","91.0","","","","","5.49","70","130","","","","",""
 "B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","0.0733","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","0.0800","0.0
733","91.6","","","","","3.18","70","130","","","","",""
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)", "0.0695", "", "TRG", "Yes", "Y", "", "V", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0100", "0.0100", "UG\_L", "UG_L", "UG_L", "UG_L"
695","86.8","","","","","0.153","70","130","","","","",""
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","72629-94-
8", "PFTrDA", "0.0691", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.000000", "1.00000", "1.00000", "1.00000", "1.00000", "1.00000", "1.
0.0691","86.4","","","","1.10","70","130","","","",""
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","376-06-
7", "PFTeDA", "0.0665", "", "TRG", "Yes", "Y", "", "Y", "0.00304", "0.00500", "0.0100", "UG\_L", "UG\_L", "", "", "", "0.0800", "0.0100", "UG\_L", "UG\_
0.0665","83.1","","","","5.21","70","130","","","",""
"B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","13C2-PFHxA","13C2-
PFHxA","94.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","94.4","94.4","94.4","","","","","","130","
","","",
  "B9C0124-BSD1","537","03/28/19","18:19","N","NA","000","13C2-PFDA","13C2-
PFDA","95.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","95.6","95.6","95.6","","","","","","130",""
```


LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AMEC Foster Wheeler, Inc. 7376 SW Durham Road Portland, OR 97224 Attn: Ms. Kimberly Shiroodi May 23, 2019

Attn: Ms. Kimberly Shiroodi Kimberly.Shiroodi@woodplc.com

SUBJECT: Former Chase Field, Data Validation

Dear Ms. Shiroodi,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on May 23, 2019. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project #45129:

SDG # Fraction 1803982, 1804167 Perfluorinated Alkyl Acids 1900154, 1900478

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds or Per- and Polyfluoroalkyl Substances, Sites at Various Base Realignment and Closure Installations; June 2017
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1, 2017
- USEPA, National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

Pgeng@lab-data.com.

Project Manager/Senior Chemist

	746 pages-ADV	/	ASAP											/	Attac	hme	ent	1																					
	90/10 EDD		LDC #4	51:	29	(W	000	l Er	ıviı	ron	me	nt	& I	nfr	ast	ruc	tu	re S	Sol	uti	on	s, C	DR	/ C	has	se l	Fie	ld,	TO	00	18)				K	MEA	PO	009	36
LDC	SDG#	DATE REC'D	(1) DATE DUE		As 7M)										·																								
Matri	x: Water/Soil			W	s	w	s	W	s	w	s	٧	s	W	s	w	s	w	s	w	S	W	s	W	s	W	s	w	s	w	s	W	s	w	s	w	s	w	s
Α	1803982	05/23/19	ASAP	3	0	L											\sqcup	\Box																				$ \bot $	
В	1804167	05/23/19	ASAP	1	0	<u> </u>																						_						\Box		\Box		\dashv	_
С	1900154	05/23/19	ASAP	1	0	<u> </u>																														\square		_	_
D	1900478	05/23/19	ASAP	1	0	<u> </u>																				\Box		_		\Box						\square	_	\dashv	4
				-	 	├	-										-	_								\perp	\blacksquare			_					\Box			\dashv	4
-		-		-		ļ																_														\dashv		\dashv	4
\vdash		 		+		-	-						<u> </u>				\dashv	-														Н	Н	-		\rightarrow	\dashv	\dashv	\dashv
\vdash				+-	-	╁─	-									-	\dashv	\dashv	_						\vdash											\vdash	\dashv	\dashv	-
\vdash		<u> </u>		+	┢	 		H	\vdash	-						\vdash	\dashv			\vdash		_			\vdash	-		\dashv				\vdash	\vdash			\vdash	\dashv	\dashv	\dashv
 	,			╁╴	╁	\vdash			\vdash		<u> </u>					\vdash	-	\vdash				_		_	\vdash							-				\Box	\dashv	\dashv	-
				╁		t^-			 	\vdash								\Box								_				_						\Box	-	一	ᅦ
				†						\vdash																										\Box	一	一	\dashv
				t		T																														\sqcap	\dashv		ᆌ
						T																														П			
						Ī																														П			
																																				Ш			
				<u> </u>	<u> </u>	<u> </u>							<u> </u>			Ш																				Ш	_		
				<u> </u>	L	<u> </u>					ļ			L			_	\Box				_														Ш		\square	_
				1_		<u> </u>	<u> </u>									\square	_														_					\square		\dashv	_
				ļ	_	<u> </u>		ļ			_		<u></u>	ļ									<u> </u>			_					<u> </u>	<u> </u>		_					\dashv
		ļ		<u> </u>	-	↓ —	ļ	-	_			_		 				_				├—	_	_							<u> </u>		<u> </u>	<u> </u>		\vdash			$-\parallel$
		-		+-	\vdash	┼—	 	\vdash		_	_	\vdash	-	 		$\vdash \vdash$						├—	_	_						 		-		-	_	\vdash		\vdash	\dashv
 		ļ ——		-	 	┼	\vdash	\vdash	_	<u> </u>	<u> </u>	<u> </u>		 	ļ	$\vdash \vdash$		Н			<u> </u>	<u> </u>		_			-		<u> </u>		-	├		-				$\overline{}$	$-\parallel$
		 		+	+	+	├	 	_	_	\vdash	<u> </u>		<u> </u>		\vdash				\vdash		ļ	 		 					\vdash	\vdash	-	 	 		\vdash	-	-	$-\parallel$
		 		+	\vdash	+	\vdash	├	\vdash	\vdash	\vdash	\vdash	\vdash	 		\vdash		\vdash		\vdash	 	\vdash	\vdash	 	 	-		\vdash	\vdash	 	-	\vdash	\vdash	\vdash	\vdash			\vdash	\dashv
		 		+-	╁	+-	\vdash	\vdash		\vdash				-		\vdash		H			<u> </u>			-	\vdash				<u> </u>	┢	 	\vdash		 		H	-	\vdash	\square
-				\top	t	t^-		T	\vdash	 				_	 	Н		\vdash			ļ	 	\vdash		\vdash				 	 		T			<u> </u>	H	-	Н	\square
Fotal	T /PG			6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Former Chase Field

LDC Report Date: May 23, 2019

Parameters: Perfluorinated Alkyl Acids

Validation Level: Stage 4

Laboratory: Vista Analytical Laboratory

Sample Delivery Group (SDG): 1803982

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
Big Field-DW-120618	1803982-01	Water	12/06/18
Behind the Base-DW-120618	1803982-03	Water	12/06/18
Shooting Range 1-DW-120618	1803982-05	Water	12/06/18
Shooting Range 1-DW-120618MS	1803982-05MS	Water	12/06/18
Shooting Range 1-DW-120618MSD	1803982-05MSD	Water	12/06/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537. Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

For each calibration standard, except the lowest point, all compounds were within 70-130% of their true value. For the lowest calibration point, all compounds were within 50-150% of their true value.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Source Blank was identified as a source blank. No contaminants were found.

Sample Shooting Range 1-FB-120618 was identified as a field blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were not within the QC limits for Shooting Range 1-DW-120618MS/MSD. No data were qualified since the parent sample results were greater than the spiked concentration

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
Shooting Range 1-DW-120618MS/MSD (Shooting Range 1-DW-120618)	PFOA	43 (≤30)	J (all detects)	А

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples Shooting Range 1-DW-120618 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ng					
Compound	Shooting Range 1-DW-120618	DUP-1	RPD (Limits)	Difference (Limits)	Flag	A or P
PFBS	34.2	32.0	-	2.2 (≤10.6)	-	-
PFHxA	213	194	9 (≤30)	-	_	-
РННрА	87.2	76.0	14 (≤30)	-	-	-
PFHxS	362	299	19 (≤30)	-	-	-

	Concentration (ng					
Compound	Shooting Range 1-DW-120618	DUP-1	RPD (Limits)	Difference (Limits)	Flag	A or P
PFOA	246	185	28 (≤30)	-	-	ı
PFNA	21.7	15.7	-	6 (≤10.6)	-	-
PFOS	375	268	33 (≤30)	-	J (all detects)	А

XI. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD RPD and field duplicate RPD, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1803982

Sample	Compound	Flag	A or P	Reason
Shooting Range 1-DW-120618	PFOA	J (all detects)	А	Matrix spike/Matrix spike duplicate (RPD)
Shooting Range 1-DW-120618 DUP-1	PFOS	J (all detects)	А	Field duplicates (RPD)

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1803982

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1803982

No Sample Data Qualified in this SDG

						, /
LDC	#:45129A96VALIDATIC	N COMP	LETENESS	WORKSHEET		Date:
	#: _1803982		Stage 4		Ī	Page://of_/
Labo	ratory: <u>Vista Analytical Laboratory</u>					Reviewer: Reviewer:
MET	HOD: LC/MS Perfluorinated Alkyl Acids (EPA Metho	d 537M), Re	v.1.1)	2.10	10000000000000000000000000000000000000
	samples listed below were reviewed for ea ation findings worksheets.	ach of the fo	ollowing valida	ition areas. Validatior	n findings are	noted in attached
	Validation Area			Comme	nts	
l.	Sample receipt/Technical holding times	<u>_</u>				
11.	GC/MS Instrument performance check	14				
III.	Initial calibration/ICV	HA	₹ 3 00	20%. Yo Tru	0=30/50	To (10W) KN
IV.	Continuing calibration / 13C	\bigoplus	œV//	se = 30/0	, / '	
V.	Laboratory Blanks	A	/			
VI.	Field blanks	ND	5B=5	+B=4		
VII.	Surrogate spikes	A				
VIII	. Matrix spike/Matrix spike duplicates	=W				
IX.	Laboratory control samples	A	105			
X.	Field duplicates	w	0=3	+6		
XI.	Labeled Compounds	A				
XII.	Compound quantitation RL/LOQ/LODs	A				
XIII.	Target compound identification	A				
XIV.	System performance	ϕ				
XV.	Overall assessment of data	1				
Note:	N = Not provided/applicable R = Ri	No compounds nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sour OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1	Big Field-DW-120618			1803982-01	Water	12/06/18
2	Behind the Base-DW-120618			1803982-03	Water	12/06/18
3	Shooting Range 1-DW-120618			1803982-05	Water	12/06/18
4	Shooting Range 1-FB-120618			1803982-06	Water	12/06/18
5	Source Blank			1803982-07	Water	12/06/18
	DUP.1			1003902-00	Water	12/08/18

	Client ID	Lab ID	Matrix	Date
1_	Big Field-DW-120618	 1803982-01	Water	12/06/18
2	Behind the Base-DW-120618	 1803982-03	Water	12/06/18
3	Shooting Range 1-DW-120618	 1803982-05	Water	12/06/18
4	Shooting Range 1-FB-120618	 1803982-06	Water	12/06/18
5	Source Blank	 1803982-07	Water	12/06/18
6	DUP 1	 1803982-08	Water	12/06/18
7	Shooting Range 1-DW-120618MS	1803982-05MS	Water	12/06/18
8	Shooting Range 1-DW-120618MSD	 1803982-05MSD	Water	12/06/18
9		 		
10_				
Votes	S:	 		
	B810076-BK			
	,			

VALIDATION FINDINGS CHECKLIST

Page: / of Age in the Age in the

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?	/			
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of <u>></u> 0.990?	/			
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				low ≈ 50% for drinking worder
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				waster
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration < 30%?				
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?		•		
Were all percent differences (%D) of the Instrument Sensitivity Check < 30%?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?		•		
Was there contamination in the laboratory blanks?			-	
VI. Field blanks				
Were field blanks identified in this SDG?		-		
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates	8 m 3 lo ().			
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			-	
IX. Laboratory control samples		7	ugar. Hete	
Was an LCS analyzed per extraction batch for this SDG?	//			

VALIDATION FINDINGS CHECKLIST

Page: of Pag

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Labeled compounds	y Tugy Light	Andrew Street		
Were labeled compound percent recoveries (%R) within the QC limits?				
XII. Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?				
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?				
XIV. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

ALTHOD. 1 TOOM TOAS			
A. Perfluorohexanoic acid (PFHxA)			· .
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)			
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriDA)			
I. Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N.Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)			
R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS)			
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS)	·		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)			
V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)			
		<u> </u>	

LDC #45/24/96

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: _____of ___ Reviewer: _____2nd Reviewer: ______

METHOD: LC/MS PFAS (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

N(N/A) Were all duplicate sample relative percent differences (RPD) or differences within QC limits?

╧	V(N/A)	vvere all duplicate s	ampie relative	percent unierences ((RPD) or differences v	Within QO III III S :		
#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Assoçiated Samples	Qualifications
		7/8	PEHDA	240 (50-150)	()	(.)	3 (det3)	No Qual (>1x)
		1	PTHYS	T03(1)	187 (50-150)	()	/	
Ш			DADA	1350() 190(V)	420()	()		
Ш			PENA	190 (V)	()	()		,
H			2505	()	378 (V)	()		V A
\Vdash	_		774		()	50. (2 30)		200 SNo land is
\Vdash			POOK	()	()	116 (
\parallel			PROA	()	()	105		10-1-60
H			TTNA 2405	()	()	353() 102(V)		103/A-
$\ \cdot \ $			1410)	()	()	(V)	-	No cenal (7-15)
			TADA	()	()	43 (530)	3 (dots)	Job/A
П				()		1 /	ing conc)	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
П				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

LDC# 15/29A96

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: Reviewer:	(of	
2nd Reviewer:_	14	_

METHOD: PFCs (EPA Method 537, Rev.1.1))

L	Concentra	(≤30)	D:#******			
Compound	3	6	RPD	Difference	Limits	Qual
PFBS	34.2	32.0		2.2	≤10.6	
PFHxA	213	194	9			
РННрА	87.2	76.0	14			
PFHxS	362	299	19			
PFOA	246	185	28			
PFNA	21.7	15.7		6	≤10.6	
PFOS	375	268	33			blote/

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2019\45129A96_WOOD.wpd

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/14/2018	PFOS	1	0.232	0.1988737
		2	0.464	0.3287097
		3	0.928	0.7292670
i l		4	1.860	1.2784472
		5	4.640	3.7459125
		6	9.240	7.2972533
\		7	23.100	21.6975380
		8	46.200	43.6619180
		9	69.400	63.9538080
		10	92.500	80.7597070

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.89864913	0.899774
Correlation Coefficient	0.999427	0.99745
Coefficient of Determination (r^2)	0.998854	

Page: 2 of 3
Reviewee: 2nd Reviewer: 2

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/14/2018	PFOA	1	0.250	0.2171360
		2	0.500	0.0506222
		3	1.000	0.9565940
		4	2.000	1.7298860
Ų.		5	5.000	4.5899330
		6	10.000	9.5954070
		7	25.000	21.7876640
		8	50.000	48.7801400
		9	75.000	69.3161600
		10	100.000	89.8638830

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.91588519	0.920346
Correlation Coefficient	0.999562	0.99867
Coefficient of Determination (r^2)	0.999124	

Page: 3 of 3 Reviewwe: 2 of 3 Page: 3 of 3 Reviewer: 3 of 3

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/16/2018	PFOA	1	0.250	0.2255790
		2	0.500	0.5356500
		3	1.000	1.0843630
		4	2.000	1.9421290
:		5	5.000	5.2501000
		6	10.000	10.1869490
		7	25.000	26.3859800
		8	50.000	53.8977810
		9	75.000	74.5942910
		10	100.000	103.2234300

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.02778311	1.031910
Correlation Coefficient	0.999669	0.99911
Coefficient of Determination (r^2)	0.999338	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of
Reviewer:_	9
nd Reviewer:	Me

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	%D	%D
1	1812/AP2.66	12/5/18	PFOA (¹³C₂-PFOA)	10.0	9.63	9.63	3.7	3.7
			PFOS (13C ₈ -PFOS)	9.24	T.75	T. T5	16.	16.1
2	18/19/2	12/17/18	PFOA (¹³ C ₂ -PFOA)	2.00	2.18	2.18	9.1	9.1
			PFOS (13C ₈ -PFOS)					
3			PFOA (¹³C₂-PFOA)					
			PFOS (¹³ C ₈ -PFOS)					
4			PFOA (¹³C₂-PFOA)					
			PFOS (¹³ C ₈ -PFOS)					

Comments: Refer to Continuing Calibration fin	<u>dings worksheet for list of q</u>	ualifications and associated	samples when reported result	<u>s do not agree within 10.0% of the</u>
recalculated results				

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	of
Reviewer:_	9
2nd Reviewer:	N6

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below
using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: ______

Compound		ike ded	Sample Concentration (<i>NS</i>)		Sample ntration	Matrix Percent F	-	Matrix Spik Percent I		MS/M	sn o (use BR)
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PFOA	20.0	%. . v	246	515	331	1350	1332	120	421	105	106
PFOS	18.4	18.T	375	39T	445	123	120	378	374	102	103
								<u> </u>			
								<u></u>			

Comments: Refer to Matrix Spike/Matrix	Spike Duplicates findings we	<u>orksheet for list of qualific</u>	cations and associated sar	nples when reported resul	<u>ts do not agree within 10.0%</u>
of the recalculated results.					
	- 				

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	
Reviewer:	9
2nd Reviewer	DIC

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: B8LosT6-B3

Compound	Sp Ad (<i>US</i>	oike ded	Conce	Spike LCS Concentration (N5/4) Percent Recovery		LCSD Percent Recovery		L CS/L CSD RPD		
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PFOA	20.0	NA	2.2	NA	106	106				
PFOS	18.5	V	26	4	117	117				
			 			<i>'</i>				
						<u> </u>				
				-						
										
									, ,	

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample	Duplicates findings worksh	eet for list of qualification	ns and associated samples	when reported
results do not agree within 10.0% of the recalculated results.		·		•	

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of
Reviewer:_	9
2nd reviewer:_	N

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Percent solids, applicable to soil and solid matrices

(Y)	N	N/A
(Y/	N	N/A

%S

only.

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	on = $(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)$ $(A_{\bullet})(RRF)(V_{\circ})(V_{\bullet})(\%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. 3
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	1272
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = $(2630(279)(0.))$
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	4862!08T (0920346) (0.239)
V_{l}	=	Volume of extract injected in microliters (ul)	= 246.0 NS/1
V_{t}	=	Volume of the concentrated extract in microliters (ul)	/
Df	=	Dilution Factor.	

2.0	= Factor of 2 to accou	int for GPC cleanup			
#	Sample ID	Compound	Reported Concentration (US/4	Calculated Concentration ()	Qualification
	3	-ben i	216		
 		TIDA			
	The fifth and the section of			<u> </u>	
<u> </u>					
 					
					<u> </u>
-					
					·

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Former Chase Field

LDC Report Date: May 23, 2019

Perfluorinated Alkyl Acids Parameters:

Validation Level: Stage 4

Vista Analytical Laboratory Laboratory:

Sample Delivery Group (SDG): 1804167

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
PW2-122018-DW	1804167-01	Water	12/20/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

For each calibration standard, except the lowest point, all compounds were within 70-130% of their true value. For the lowest calibration point, all compounds were within 50-150% of their true value.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Be upon the data validation all results are considered valid and usable for all purposes.	

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG

LDC#	:45129B96	VALIDATIO	N COMP	PLETENES	S WORKSHEE	ET	Date: <u>5/23/</u>
SDG#						Page: / of /	
Labora							Reviewer: 4
METH	OD: LC/MS Perfluorinate	ed Alkyl Acids (E	EPA Metho	od 537 M/x Re	v.1-1)	2nd	Reviewer:
	amples listed below were ion findings worksheets.	reviewed for ea	ach of the f	ollowing valida	ation areas. Valida	ation findings are	e noted in attached
	Validation A	rea			Con	nments	
1.	Sample receipt/Technical ho	lding times		_			·-
11.	GC/MS Instrument performat	nce check					
III.	Initial calibration/ICV		A A	ASDX2	To. Y. The	< 3950 (10W). 10×39
IV.	Continuing calibration //	3C	A	acV=	30/30/0	7	
V.	Laboratory Blanks		T X				
VI.	Field blanks		A)				
VII.	Surrogate spikes		X				
VIII.	Matrix spike/Matrix spike dup	licates	N	05			
IX.	Laboratory control samples		A	105/m			
X.	Field duplicates		N	/ -			
XI.	Labeled Compounds	,	A				
XII.	Compound quantitation RL/L	OQ/LODs	4				
XIII.	Target compound identification		1				
XIV.	System performance	•	4				
XV.	Overall assessment of data		A				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	R = Rir	lo compounds nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER	ırce blank :
0	Client ID				Lab ID	Matrix	Date
1 F	PW2-122018-DW				1804167-01	Water	12/20/18
2							
3							
4							
5							
6							
7							
8							
9							
Notes:	. 771					- 	
_ <i>‡</i>	3840193-P4						_
					<u> </u>		

VALIDATION COMPLETENESS WORKSHEET

LDC #45P9B96

VALIDATION FINDINGS CHECKLIST

Page: /of > Reviewer: 9 2nd Reviewer: Me

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?		<u> </u>]	
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?		<u> </u>		
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	1	<u> </u>	ļ	
Were all percent relative standard deviations (%RSD) ≤ 20%?	1	<u> </u>	<u> </u>	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of ≥ 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				< 50% few lookst stal
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?			1 (44)	-50% few lookst stal for during W
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				The state of the s
IV. Continuing calibration	A Fire M			
Was a continuing calibration analyzed daily?			<u> </u>	
Were all percent differences (%D) of the continuing calibration ≤ 30%?		<u> </u>		
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				
Were all percent differences (%D) of the Instrument Sensitivity Check ≤ 30%?			<u> </u>	
V. Laboratory Blanks		in of plateon	Ariana Language Language	
Was a laboratory blank associated with every sample in this SDG?			<u> </u>	
Was a laboratory blank analyzed for each matrix and concentration?		L	<u> </u>	
Was there contamination in the laboratory blanks?	'			
VI. Field blanks				
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch for this SDG?	//	i '		

VALIDATION FINDINGS CHECKLIST

Page: of Reviewer: 100 April 2014

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates	\$ 1			
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Labeled compounds		intratori Labration	THE NELT	
Were labeled compound percent recoveries (%R) within the QC limits?				
XII. Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?				
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?				
XIV. System performance		Part de la companya d		
System performance was found to be acceptable.				
XIII. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.	7			

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

VIETHOD: PFUS/PFUAS		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS)		
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS)		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	·	
V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)		

Page: ____ of ___ Reviewwe: ______ 2nd Reviewer: ______

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/30/2018	PFOA	1	0.250	0.2325030
		2	0.500	0.4798370
1		3	1.000	0.9733980
		4	2.000	1.9247560
<u>}</u>		5	5.000	5.2004250
		6	10.000	9.1517780
[7	25.000	24.118581
		8	50.000	53.590312
 		9	75.000	81.475686
		10	100.000	109.05315

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.08160882	1.064930
Correlation Coefficient	0.999715	0.99788
Coefficient of Determination (r^2)	0.999431	

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
12/30/2018	PFOS	1	0.232	0.0784112
1		2	0.464	0.2796298
		3	0.928	0.9002042
1		4	1.860	1.3489832
		5	4.640	3.3358268
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6	9.240	6.8112131
ii i		7	23.10	18.209455
1		8	46.20	40.303338
		9	69.40	56.077719
		10	92.50	78.913789

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.83926116	0.830260
Correlation Coefficient	0.999501	0.99746
Coefficient of Determination (r^2)	0.999003	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of/_
Reviewer:	9
nd Reviewer:	W

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF A_x = Area of compound,

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

 C_x = Concentration of compound,

				1	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	%D	%D
1	181=301-33	1=30/18	PFOA (¹³ C ₂ -PFOA)	10.0	864	8.64	139136	13.6
		/ /	PFOS (¹³C₀-PFOS)	9=4	7.88	7.88	H.7	4.7
2			PFOA (¹³C₂-PFOA)					
			PFOS (¹³ C ₈ -PFOS)					
3			PFOA (¹³C₂-PFOA)					
			PFOS (13C ₈ -PFOS)					
4			PFOA (¹³C₂-PFOA)					
			PFOS (¹³ C ₈ -PFOS)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within	10.0% of the
recalculated results	

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

2nd Reviewer:

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: B810 93

Compound	Sr Ad	oike ded	Spike Concentration				I CSD Percent Recovery		LCS/LCSD RPD	
Service Service										
and the second of the second o	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PFOA	0.0400	0.0400	0.0403	0.0412	101	101	103	103	2.15	2.22
PFOS	0.0370	0.0310	0.0335	0.0403	20.6	905	109	109	18.	184
		']		
		ļ								
				,						
		, .								

Comments: Refer to L	aboratory Control Sample/Laboratory	Control Sample Duplicates	s findings worksheet	t for list of qualification	s and associated	samples when reported
results do not agree wi	thin 10.0% of the recalculated results	3.	•			

only.

2.0

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

Page:_	
Reviewer:	α
2nd reviewer:	N6

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Factor of 2 to account for GPC cleanup

	N/A N/A	Were all reported results recalculated and Were all recalculated results for detected t	verified for all level IV samples? arget compounds agree within 10.0% of the reported results'
Conce	entratio	$n = \frac{(A_{\circ})(I_{\circ})(V_{\circ})(DF)(2.0)}{(A_{\circ})(RRF)(V_{\circ})(V_{\circ})(\%S)}$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. NO . 910X B840193-BS/
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	10-07/2 10-0
İs	=	Amount of internal standard added in nanograms (ng)	Conc. = 693.2% (10.3%) () () () ()
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	0112110649510.5 (020
V,	=	Volume of extract injected in microliters (ul)	=0.0403 M4C
V_t	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices	

<u> </u>		introduction of occariop			
#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
	Sample ID B8 20193- B 5	PFOA	0.0403		
ļ					
-					
-					
 					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Former Chase Field

LDC Report Date:

May 23, 2019

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1900154

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
PW4-011719-DW	1900154-01	Water	01/17/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

For each calibration standard, except the lowest point, all compounds were within 70-130% of their true value. For the lowest calibration point, all compounds were within 50-150% of their true value.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

upon the data validation all results are considered valid	d and usable for all purposes.	

The quality control criteria reviewed were met and are considered acceptable. Based

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG

SDG #	#:45129C96 VALIDATIO #:1900154 atory:_Vista Analytical Laboratory		PLETENES Stage 4	SS WORKSHEE		Date:
The sa	AOD: LC/MS Perfluorinated Alkyl Acids (E			•		
valida	tion findings worksheets.					
	Validation Area			Cor	nments	
I.	Sample receipt/Technical holding times	A				
11.	GC/MS Instrument performance check	A				
181.	Initial calibration/ICV	AA	B50<=	Sp. Tre	0=30/50/6	. /eV=300
IV.	Continuing calibration	A	COVI	1sc = 3	70	
V.	Laboratory Blanks	\triangle				
VI.	Field blanks	N				
VII.	Surrogate spikes	A			- Type - C	
VIII.	Matrix spike/Matrix spike duplicates	M	00			
IX.	Laboratory control samples	A	103			
X.	Field duplicates	1				
XI.	Labeled Compounds	A				
XII.	Compound quantitation RL/LOQ/LODs	A		······		
XIII.	Target compound identification	A	-	· · · · · · · · · · · · · · · · · · ·		
XIV.	System performance	8			·	
	Overall assessment of data	<u> </u>				
XV.	A = Acceptable ND = N N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER:	irce blank
-	Client ID			Lab ID	Matrix	Date
1 1	PW4-011719-DW			1900154-01	Water	01/17/19
2						
3		. <u></u> "				
4		·····				
5		··········				
6						
7						
8		· · · ·				
9						
lotes:	01 1 1					
_ 	39A0154-B4					
					+	
 				···		

LDC #:45/9096

VALIDATION FINDINGS CHECKLIST

Page: /of Z Reviewer: 9 2nd Reviewer: \(\sum_{\lambda} \lambda_{\lambda}

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
L Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?	/			
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				<50% of lowest stal (drinking W)
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				(drinking W)
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration		ro. Couldry		
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?				
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				
Were all percent differences (%D) of the Instrument Sensitivity Check ≤ 30%?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?	<u> </u>			
VI. Field blanks				
Were field blanks identified in this SDG?			^	
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates			12 yau	The state of the s
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch for this SDG?				

VALIDATION FINDINGS CHECKLIST

Page: → of → Reviewer: 9
2nd Reviewer: №0

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?			1	
Were target compounds detected in the field duplicates?			/	
XI. Labeled compounds) 19,0 (1)	ho A Tag	4). 1970 T. A	
Were labeled compound percent recoveries (%R) within the QC limits?				
XII. Compound quantitation			plane :	
Did the laboratory reporting limits (RL) meet the QAPP RLs?	/			
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?				
XIV. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data	_/			
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WETHOD: Prosiproas		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriDA)		
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS)		
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS)		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		
V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)		
	<u> </u>	L

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
1/25/2019	PFOA	1	0.250	0.2101130
		2	0.500	0.4714000
		3	1.000	0.8984130
		4	2.000	1.8618960
		5	5.000	4.4924390
		6	10.000	9.3954590
		7	25.000	24.368296
ŀ		8	50.000	47.758120
		9	75.000	73.077953
		10	100.000	94.537468

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.95618300	0.956545
Correlation Coefficient	0.999903	0.99969
Coefficient of Determination (r^2)	0.999805	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
1/25/2019	PFOS	1	0.232	0.1832208
		2	0.464	0.4657522
		3	0.928	0.8556761
]		4	1.860	1.6506001
		5	4.640	4.6646023
		6	9.240	9.4894971
		7	23.10	23.772614
		8	46.20	48.721777
		9	69.40	72.647365
		10	92.50	100.994340

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.07089390	1.059870
Correlation Coefficient	0.999772	0.99909
Coefficient of Determination (r^2)	0.999544	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	<u></u>
Reviewer:	9
2nd Reviewer:	10/6

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	%D	%D
1	1901-342-33	1/5/19	PFOA (¹³C₂-PFOA)	10.0	10.2	10.2	1.8	1.8
		/ / /	PFOS (¹³ C ₈ -PFOS)	924	9.14	a.H	(.)	1./
2			PFOA (¹³ C ₂ -PFOA)					
			PFOS (13C ₈ -PFOS)					
<u></u>								
3			PFOA (13C ₂ -PFOA)					
			PFOS (¹³ C ₈ -PFOS)					
<u> </u>								
4			PFOA (¹³ C ₂ -PFOA)					
			PFOS (13C ₈ -PFOS)					

Comments:	Refer to Continuin	g Calibration	findings worksheet f	or list of	qualifications	and associated	d samples wher	reported resul	ts do not agree	e within	10.0% of the
recalculated	results										

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:	<u></u>	
Reviewer:_	9	
2nd Reviewer	NG	

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: P740154-

Compound	Ad	nike ded (1)	Conçe	Spike Concentration		I CS Percent Recovery		L CSD Percent Recovery		L CS/L CSD RPD	
And the second s	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated	
PFOA	0.0800	NX	0.0761	NA	a5.8	as.9					
PFOS	0.0740	V	0.0666		20.0	90,0					
		i									

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Dupl	icates findings worksh	eet for list of qualification	s and associated samp	les when reported
results do not agree within 10.0% of the recalculated results.				•	

%S

2.0

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of	<i>r</i>
Reviewer:	9	
2nd reviewer:	N6	

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Percent solids, applicable to soil and solid matrices

Factor of 2 to account for GPC cleanup

YN YN	N/A N/A	Were all reported results recalculated and Were all recalculated results for detected t	verified for all level IV samples? arget compounds agree within 10.0% of the reported results?
Conc	entratio	$n = (A_{\circ})(I_{\circ})(V_{\circ})(DF)(2.0)$ $(A_{\circ})(RRF)(V_{\circ})(V_{\circ})(%S)$	Example:
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. <u>ND</u> , <u>PF05</u> B9A0154-BS1
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l ^s	=	Amount of internal standard added in nanograms (ng)	Conc. = (4001.65, -8.7)()()()()
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	,
V_{l}	=	Volume of extract injected in microliters (ul)	=0.0666 ME/L
V_{t}	=	Volume of the concentrated extract in microliters (ul)	-
Df	=	Dilution Factor.	

2.0		nt for Gr C cleanup			
#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
	BAX015A-BS	OF0.S	0.0616		
-					-
					
 					
		W 2004			
		······································			

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Former Chase Field

LDC Report Date:

May 23, 2019

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1900478

	Laboratory Sample		Collection	
Sample Identification	Identification	Matrix	Date	
Charlie's Pasture-EW 031319	1900478-01	Water	03/13/19	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

For each calibration standard, except the lowest point, all compounds were within 70-130% of their true value. For the lowest calibration point, all compounds were within 50-150% of their true value.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria.

The percent differences (%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Field Blank was identified as a field blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples Charlie's Pasture-EW 031319 and Dup-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (n					
Compound	Charlie's Pasture-EW 031319	Dup-1	RPD (Limits)	Difference (Limits)	Flag	A or P
PFBS	0.0424	0.0444	-	0.002 (≤0.0101)	_	-
PFHxA	0.368	0.401	9 (≤30)	-	<u>.</u>	-
PHHpA	0.183	0.192	5 (≤30)	-	-	-
PFHxS	1.04	0.886	16 (≤30)	-	-	-
PFOA	0.807	0.827	2 (≤30)	-	-	-
PFNA	0.0280	0.0316	-	0.0036 (≤0.0101)	-	-
PFOS	1.52	1.38	10 (≤30)	-	-	-

XI. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG

Former Chase Field Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG

SDG#	#:45129D96VALIDATION COMPLETENESS WORKSHEET						7/19 1		
	OD: LC/MS Perfluorinate		EPA Metho	d 537 M)				Reviewer: <u>M</u>	
	amples listed below were ion findings worksheets.	reviewed for ea	ch of the fo	ollowing	validation a	reas. Validati	ion findings are	noted in attache	∍d
	Validation A	rea				Comr	ments		
I.	Sample receipt/Technical hol	ding times	A						╝
II.	GC/MS Instrument performar	nce check	1						
111.	Initial calibration/ICV		AA	R50=	≤20/0.	Y The	2=3990/0	.1e/=3	\mathbb{Z}_2
IV.	Continuing calibration	30	A	ac	V/15	253	90	/]
V.	Laboratory Blanks		1						
VI.	Field blanks		NO	FE	. =.3				i
VII.	Surrogate spikes		A						7
VIII.	Matrix spike/Matrix spike dup	licates	W	09	3				7
IX.	Laboratory control samples		4	10	<i>= D</i>				1
Χ.	Field duplicates		w	10=	1+2				1
XI.	Labeled Compounds		A	400	10				1
XII.	Compound quantitation RL/L0	OO/LODs	A	/	,				1
XIII.	Target compound identification		A				<u> </u>		1
XIV.	System performance		A						1
	 	·	A	_			<u> </u>		╢
XV.	Overall assessment of data		<u> </u>		-				الــ
ote:	A = Acceptable N = Not provided/applicable SW = See worksheet	R = Rin	o compounds sate eid blank	detected	TB :	Duplicate = Trip blank = Equipment bla	OTHER:	rce blank	
C	Client ID				Lab I	D	Matrix	Date]
1 ,	Charlie's Pasture-EW 031319				1900	478-01	Water	03/13/19	
τ	Oup-1				1900	178-02	Water	03/13/19	1
	ield Blank				1900	178-03	Water	03/13/19	7
1		- 							1
5			 						1
3				-					1
,		- <u>-</u> ,	···•						1
3									1
									1
otes:									=1 =1
1	9-0124-34-1								
	·								

LDC#: 45/-9098

VALIDATION FINDINGS CHECKLIST

Page:_	_/of≥
Reviewer:	'9
2nd Reviewer:_	Ne

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?		<u> </u>	ļ	
Was cooler temperature criteria met?			<u> </u>	
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Were all analytes within 70-130% or percent differences (%D) $\le 30\%$ of their true value for each calibration standard?				for drinbing W
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				for drinking W
IIIb. Initial Calibration Verification	<u> </u>			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) < 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?				<u> </u>
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				
Were all percent differences (%D) of the Instrument Sensitivity Check ≤ 30%?		*********		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
Ⅵ. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?			1 1 2 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?		_		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	- 28 23			
IX. Laboratory control samples			Ä.	
Was an LCS analyzed per extraction batch for this SDG?		1		

VALIDATION FINDINGS CHECKLIST

Page: of 2
Reviewer: 1
2nd Reviewer: 1

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates		15.		
Were field duplicate pairs identified in this SDG?		·		
Were target compounds detected in the field duplicates?				
XI. Labeled compounds		Aires Sub	y zamelili Ligip Zi	
Were labeled compound percent recoveries (%R) within the QC limits?				
XII. Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?				
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification			S. A.	
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?				
XIV. System performance			inger Legitin	
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

WETHOD: PFOS/PFOAS		
A. Perfluorohexanoic acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)	,	
H. Perfluorotridecanoic acid (PFTriDA)		
I. Perfluorotetradecanoic acid (PFTeDA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroheptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluorooctane Sulfonamide (FOSA)		
P. Perfluorobutanoic acid (PFBA)		
Q. Perfluoropentanoic acis (PFPeA)		
R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS)		
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS)		
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)		
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)		
V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)		

LDC#4519696

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:	_of_	
Reviewer:	9	
2nd Reviewer:_	Ne	<u>, </u>

METHOD: PFCs (EPA Method 537, Rev.1.1))

	Concentration (ng/L)		(≤30)			
Compound	1	2	RPD	Difference	Limits	Qual
PFBS	0.0424	0.0444	,	0.002	≤0.0101	
PFHxA	0.368	0.401	9			
РННрА	0.183	0.192	5			
PFHxS	1.04	0.886	16			
PFOA	0.807	0.827	2			
PFNA	0.0280	0.0316		0.0036	≤0.0101	
PFOS	1.52	1.38	10			

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2019\45129D96_WOOD.wpd

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
3/28/2019	PFOA	1	0.250	0.3114790
ļ		2	0.500	0.4559950
		3	1.000	0.9430580
		4	2.000	1.8980310
		5	5.000	4.8326870
		6	10.000	9.8324550
		7	25.000	23.5652720
		8	50.000	48.8485250
		9	75.000	72.3284030
		10	100.000	97.7633500

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.97244451	0.970341
Correlation Coefficient	0.999965	0.99978
Coefficient of Determination (r^2)	0.999929	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: of Page: of Page:
Method: PFACs (EPA Method 537)

Calibration			(Y)	(X)
Date	Analyte	Standard	Concentration	Area
3/28/2019	PFOS	1	0.232	0.2365741
		2	0.464	0.3770290
		3	0.928	0.6450009
		4	1.860	1.3866577
		5	4.640	3.7668348
		6	9.240	7.9072546
		7	23.10	18.761660
		8	46.20	40.878403
		9	69.40	62.960426
<u> </u>		10	92.50	80.724788

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.88238504	0.875608
Correlation Coefficient	0.999735	0.99859
Coefficient of Determination (r^2)	0.999469	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of
Reviewer:	9
2nd Reviewer:	W

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	%D	%D
1	1903-871-38	3/28/19	PFOA (¹³ C ₂ -PFOA)	10.0	10.1.	10.1	06	0.8
		/ / /	PFOS (13C ₈ -PFOS)	Q.24	8T/	8.69	5.8	5.9
								/
2	1903001=	3/30/19	PFOA (¹³C₂-PFOA)	2.00	2.16	2.16	80	7.8
		/ /	PFOS (13C ₈ -PFOS)	186	1.40	1.40	24.6	24.6
3			PFOA (¹³C₂-PFOA)					
			PFOS (13C ₈ -PFOS)					
4			PFOA (¹³C₂-PFOA)					
			PFOS (13C ₈ -PFOS)				·	

Comments: _i	Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when re-	eported results do not ag	ree within 10.0% of the	<u>ne</u>
recalculated re	sults			

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	_of
Reviewer:_	<u>`</u>
2nd Reviewer:	Dille

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: Bigoon

LCS Spike Spike LCSD LCS/LCSD Added/ Concentration (MS/L) **Percent Recovery** Compound **Percent Recovery RPD** LCS LCSD **LCS LCSD** Reported Recalc. Reported Recalc. Reported Recalculated <u>ප</u>/ජ 0.0832 0.0766 00800 0.0800 **PFOA** 96.6 94.8 89 0.0TK0 0.000 Q4.7 0.0740 **PFOS**

Comments: Refer to Laboratory Control Sample/Laboratory C	control Sample Duplicates	findings worksheet for	r list of qualifications an	d associated sample	es when reported
results do not agree within 10.0% of the recalculated results.	·		•		
					· · · · · · · · · · · · · · · · · · ·

Y N N/A

%S

2.0

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	(of]
Reviewer:	a-
2nd reviewer:_	NG

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Percent solids, applicable to soil and solid matrices

Factor of 2 to account for GPC cleanup

<u>y</u> N	N/A	Were all recalculated results for detected t	arget compounds agree within 10.0% of the reported results'
Con	centratio	$n = \frac{(A_{\bullet})(I_{\circ})(V_{t})(DF)(2.0)}{(A_{i_{\circ}})(RRF)(V_{\circ})(V_{t})(\%S)}$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D.
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	78. T
Is	=	Amount of internal standard added in nanograms (ng)	Conc. = $(5.^{\circ}63)(-8.^{\circ})(-67)(-67)(-67)(-67)(-67)(-67)(-67)(-67$
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
V_{i}	=	Volume of extract injected in microliters (ul)	= 1.5-1.5/2
V_t	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	

Were all reported results recalculated and verified for all level IV samples?

		T T T T T T T T T T T T T T T T T T T						
#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification			
		ÞF0 S	152	153				
}		103	1.3					
			<u> </u>					
ļ								
					-			
 								
 								
<u> </u>								
<u> </u>								
 								
<u> </u>				_				
	_							
	1							
 								
					ļ			
]					
					<u> </u>			
ll l		<u> </u>		L	1			

INSTALLATION_ID	SITE_NAME	LOCATION_NAME	LOCATION_TYPE	LOCATION_TYPE_DESC	COORD_X*	COORD_Y*	SAMPLE_NAME	SAMPLE_MATRIX	SAMPLE_MATRIX_DESC	COLLECT_DATE	ANALYTICAL_METHOD_GRP_DESC	SDG
CHASE_FIELD_NAS	TBC	CHARLIES_PASTURE	DW	Domestic Well	-97.674956	28.358511	CHARLIE'S PASTURE-DW 031319	WP	Drinking Water	13-Mar-19	Perfluoroalkyl Compounds	1900478
CHASE_FIELD_NAS	TBC	CHARLIES_PASTURE	DW	Domestic Well	-97.674956	28.358511	DUP-1_20190313	WG	Ground water	13-Mar-19	Perfluoroalkyl Compounds	1900478