

Groundwater Sample Results,
Combined Level 2 and Level 4 Laboratory Report,
Data Validation Report,
and the Sample Location Report, SDG WE53-7

Naval Computer and Telecommunications Area, Master Station Atlantic Detachment Cutler Cutler, Maine

August 2019

TETRA TECH NUS, INC. NCTAMSLANT CUTLER CTO WE53 SDG: WE53-7 SH4401 & SH4521

KATAHDIN ANALYTICAL SERVICES, INC. 600 TECHNOLOGY WAY SCARBOROUGH, ME 04074

TABLE OF CONTENTS Total number of pages: 3665 plus Subcontracted Data

	pages: 5005 piu.	s Subcontracted L	ala	
SAMPLE DATA PACKAGE		0000001		
Narrative		0000002	to	0000012
Supporting Documents		0000013	to	0000012
Chain of Custody Record	****	0000013	to	0000033
Login Report		0000038	to	0000037
SAMPLE DATA SUMMARY				
Report of Analytical Results		A0000001	to	A0000712
VOLATILE DATA		1000001		
QC Summary	4 ft & 10 da m 19 19 to 10 da m 19 19 16 da da m 10 m 19 16 da da m 10 m 19 16 da da m 10 m 19 16 da da da m 19	1000002	to	1000017
Sample Data	******	1000002	to	1000017 1000132
Standards Data	**************************************	100013	to	1000132
Raw QC Data		1000133	to	1000284
Logbooks and Supporting Documents		1000233	to	1000337
VOLATILE SIM DATA		2000001		
QC Summary		2000002	to	2000011
Sample Data	医骨骨 计记录 计分析 化化 计自由 医骨骨 化二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	200002	to to	2000011 2000091
Standards Data		2000012	to	2000091
Raw QC Data	######################################	2000124	to	2000123
Logbooks and Supporting Documents	bb ba are p @ B di bi are p p p p di ai are, p p B di ba ai p p p B bi di bi p p p p	2000124	to	2000140
SEMIVOLATILE DATA		3000001		
QC Summary		3000002	to	3000021
Sample Data	**************	3000022	to	3000124
Standards Data	电电子存储 电电子 未就 然后 中午 化 体 经 电中平 乔龙 经 计电子 异核 计 计电子	3000125	to	3000431
Raw QC Data	A P B B B B B B B B B B B B B B B B B B	3000432	to	3000480
Logbooks and Supporting Documents		3000481	to	3000491
METALS DATA		4000001		
Sample Data		4000002	40	1000010
QC Summary		400002	to to	4000049
Raw Data		400030	to	4000250
Logbooks and Supporting Documents		4000231	to to	4000765 4000778
		1000700	10	4000//8

SIM DATA		6000001		
QC Summary				
Sample Data		6000002	to	6000012
Standards Data		6000013	to	6000117
Raw QC Data		6000118	to	6000216
Logbooks and Supporting Documents	******************************	6000217	to	6000272
Broom and Supporting Documents		6000273	to	6000278
PESTICIDE DATA		= 000001		
		7000001		
QC Summary		7000002	to	7000006
Sample Data	==+++++===++++========+++++=====++++====	7000007	to	7000015
Standards Data		7000016	to	700013
Raw QC Data		7000111	to	7000110
Logbooks and Supporting Documents	**********	7000131	to	7000130
PCB DATA		8000001		
QC Summary	***************************************	800000		
Sample Data		8000002	to	8000010
Standards Data		8000011	to	8000055
Raw QC Data	*	8000056	to	8000189
Logbooks and Supporting Documents		8000190	to	8000218
5		8000219	to	8000230
EPH DATA		0000001		
		9000001		
QC Summary		9000002	4.0	0000010
Sample Data		900002	to	9000019
Standards Data			to	9000137
Raw QC Data	******	9000138 9000212	to	9000211
Logbooks and Supporting Documents		9000212	to	9000290
	···	9000291	to	9000314
VPH DATA		11000001		
		1100001		
QC Summary		11000002	to	1100000
Sample Data		11000002	to to	11000006
Standards Data		1100007		11000089
Raw QC Data		11000090	to	11000146
Logbooks and Supporting Documents		11000147	to	11000170
		110001/1	to	11000174
SUBCONTRACTED DATA				
THE PAINTER OF THE PA	방 수 쓰 꾸 꾸 중 참 내 수 꾸 점 한 소 보 수 무 중 참 내 수 무 중 참 하 수 무 중 참 하 보 수 무 중 참 하 보 수 무 중 하 보 수 무 중 하 보 수 무 중 수 무 주 수 무 중 수 무 주 수 무 중 수 무 주 수 무 주 수 무 주 수 무 주 수 무 주 수 무 주 수 무 주 수 무 주 수 무 주 수 무 주 수 무 주 수 무 주 수 무 주 수 무 수 무	Paginated by		
		Sub Lab		

SAMPLE DATA PACKAGE

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS NCTAMSLANT CUTLER CTO WE53 FTA SDG: WE53-7 SH4401 & SH4521

Sample Receipt

The following samples were received on June 19 and 20, 2014 and were logged in under Katahdin Analytical Services work order number SH4401 and SH4521 for a hardcopy due date of July 9, 2014.

KATAHDIN	TTNUS
Sample No.	
SH4401-1	Sample Identification FTA-GW-TB01-061714
SH4401-2	
SH4401-3	FTA-MW-9-061714
SH4401-4	FTA-MW-9-061714 FTA-MW-10-061714
SH4401-5	FTA-MW-10-061714 FTA-MW-10-061714
SH4401-6	FTA-MW-11-061714
SH4401-7	FTA-MW-11-061714
SH4401-8	FTA-MW-12-061714
SH4401-9	FTA-MW-12-061714 FTA-MW-12-061714
SH4401-10	FTA-MW-5-061814
SH4401-11	FTA-MW-5-061814
SH4401-12	FTA-MW-203-061814
SH4401-13	FTA-MW-203-061814
SH4401-14	FTA-GW-DUP01-061814
SH4401-15	FTA-GW-DUP01-061814
SH4401-16	FTA-MW-218-061814
SH4401-17	FTA-MW-218-061814
SH4401-18	FTA-MW-206-061814
SH4401-19	FTA-MW-206-061814
SH4401-20	FTA-MW-14-061714
SH4401-21	FTA-MW-14-061714
SH4521-1	FTA-GW-TB02-061814
SH4521-2	FTA-MW-208-061814
SH4521-3	FTA-MW-208-061814
SH4521-4	FTA-MW-1-061814
SH4521-5	FTA-MW-1-601814
SH4521-6	FTA-GW-DUP02-061814
SH4521-7	FTA-GW-DUP02-061814
SH4521-8	FTA-GW-210-061814
SH4521-9	FTA-MW-210-061814
SH4521-10	FTA-SW-01-061914
SH4521-11	FTA-SW-01-061914
SH4521-12	FTA-SW-02-061914
SH4521-13	FTA-SW-02-061914
SH4521-14	FTA-SW-03-061914

SH4521-15	FTA-SW-03-061914
SH4521-16	FTA-SW-06-061914
SH4521-17	FTA-SW-06-061914
SH4521-18	FTA-SW-07-061914
SH4521-19	FTA-SW-07-061914
SH4521-20	FTA-SW-08-061914
SH4521-21	FTA-SW-08-061914
SH4521-22	FTA-SW-DUP01-061914
SH4521-23	FTA-SW-DUP01-061914
SH4521-24	FTA-SD-RB01-062014

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in this narrative or in the Report of Analysis.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, Ms. Jennifer Obrin. This narrative is an integral part of the Report of Analysis.

Organics Analysis

The samples of SDG WE53-7 were analyzed in accordance with "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846, 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA, and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA, and/or Method for the Determination of Extractable Petroleum Hydrocarbons (EPH)

MADEP, May 2004, Revision 1.1, and/or for the specific methods listed below or on the Report of Analysis.

Samples SH4521-8 and 14 were used for the matrix spikes (MS's) and matrix spike duplicates (MSD's), as per client request.

8081B Analysis

Sample SH4521-24 was manually integrated for the surrogate TCX. The specific reasons for the manual integrations are indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are based on DoD QSM acceptance limits for the full list of spiked compounds and laboratory established acceptance limits for toxaphene. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard

operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

8260B SIM Analysis

Sample SH4401-2 was manually integrated for the target analyte vinyl chloride. The specific reasons for the manual integrations are indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

8260B SCAN Analysis

Samples SH4521-4 and 22RA were manually integrated for the analyte acetone. The specific reasons for the manual integrations are indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

Samples SH4521-4, 6 and 14 had a high recovery for the surrogate 1,2-dichloroethane-d4, which was outside of the DoD QSM established acceptance limits. Since a high recovery would indicate a high bias, and there were no analytes detected above the LOQ, no further action was taken.

The initial calibration analyzed on the C instrument on 6/09/14 had %RSD values for some target analytes that exceeded the method acceptance limit of 15%. For these analytes, either a linear or quadratic model was used for quantitation instead of an average response factor. The analyte chloroethane failed for both the linear and quadratic models in the initial calibration curve due to the correlation coefficient and the coefficient of determination being less than the method acceptance criteria of 0.995 and 0.990, respectively. This analyte was calibrated using the average model.

The independent check standard (file D8868A), associated with the initial calibration analyzed on the D instrument on 06/11/14, had a high concentration for the target analyte acetone, which exceeded the DoD QSM acceptance limit of $\pm 20\%$ of the expected value from the ICAL. The Independent Check Report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated.

The calibration verification standard (CV) (file C7869) had a high response for the compound 2hexanone. The CV (file D9205) had a low response for the compound 1,1,-dichloroethene. These responses resulted in %D's that were greater than the DoD QSM acceptance limits of 20%.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are based on DoD QSM acceptance limits for the full list of spiked compounds and laboratory established acceptance limits for all other analytes. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

8270D SIM Analysis

Samples SH4401-14 and SH4521-16 were manually integrated for the analytes hexachlorocyclopentadiene and/or indeno(1,2,3-cd)pyrene. The specific reason for the manual integration is indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

The initial calibration analyzed on the N instrument on 06/26/2014 had %RSD values for several analytes that exceeded the method acceptance limit of 15%. For these analytes, either a linear or quadratic model was used for quantitation instead of an average response factor. The target analyte 3,3'-dichlorobenzidine failed for both the linear and quadratic models in the initial calibration curve due to the correlation coefficient and the coefficient of determination being less than the method acceptance criteria of 0.995 and 0.990 respectively. This compound was calibrated using the average model. The corresponding independent check standard (file N2928) had a high concentration for the target analyte 1,4-dioxane and low concentrations for the target analytes 2,2'-oxybis(1-chloropropane), hexachlorocyclopentadiene, 2,4-dinitrophenol and bis(2-ethylhexyl)phthalate, which exceeded the DoD QSM acceptance limit of ±20% of the expected value from the ICAL. The Independent Check Report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated.

The CV (file N2940) had a high response for the target analyte bis(2-ethylhexyl)phthalate and low responses for nitrobenzene and dibenzo(a,h)anthracene, which resulted in %D's that were greater than the acceptance limit of 20% from DoD QSM.

The CV (file N2957) had a high response for the target analyte bis(2-ethylhexyl)phthalate, which resulted in a %D that was greater than the acceptance limit of 20% from DoD QSM.

The target analyte benzo(a)anthracene was detected below ½ of the LOQ in the method blank WG145278-1. According to the DoD QSM section D.1.1.1, a method blank is considered to be contaminated if the concentration of any target analyte in the blank exceeds ½ the reporting limit and is greater than 1/10 the amount measured in any sample or 1/10 the regulatory limit (whichever is greater). Since the method blank was acceptable, no further action was taken.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are statistically derived limits for the full list of spiked compounds and are statistically derived limits for the surrogates. Although DoD QSM acceptance limits were requested for this project, laboratory established acceptance limits were used because the DoD QSM does not list acceptance limits for 8270SIM. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these statistical acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

The LCS/LCSD WG145278-2 and 3 had low recoveries for four spiked target analytes and five analytes, respectively, and high recoveries for one analyte and two analytes, respectively, that were outside of the laboratory established acceptance limits. The DoD QSM allowable number of exceedances for 38 target analytes is two analytes. If the DoD QSM acceptance limits are applied, the

LCS and LCSD had acceptable recoveries for the spiked analytes, after factoring the allowable number of exceedances. Therefore, no further action was taken.

The LCS/LCSD WG145381-2 and 3 had low recoveries for four spiked target analytes and three analytes, respectively, and high recoveries for one analyte and two analytes, respectively, that were outside of the laboratory established acceptance limits. The DoD QSM allowable number of exceedances for 38 target analytes is two analytes. If the DoD QSM acceptance limits are applied, the LCS and LCSD had acceptable recoveries for the spiked analytes, after factoring the allowable number of exceedances. Therefore, no further action was taken.

There was no recovery for the spiked analyte 3,3'-dichlorobenzidine in the MS/MSD WG145381-4 and 5. This may be due to oxidative loss of this analyte during solvent concentration as mentioned in the CLP methods SOM01.2 or OLC02.1.

8270D SCAN Analysis

Samples SH4401-2, 6 and 8 had low or no recoveries for the surrogates 2-fluorophenol, phenol-d6, 2,4,6-tribromophenol and/or terphenyl-d14, which were outside DoD QSM acceptance limits. These samples were reextracted one day out of hold time and reanalyzed. Sample SH4401-2RE had similar surrogate recoveries, possibly indicating a matrix effect. Samples SH4401-6RE and 8RE had acceptable surrogate recoveries. The results for both extractions are reported.

The LCS/LCSD (WG145380-2 and 3) had low responses for one or two internal standards that resulted in %D's which were outside the laboratory acceptance limit of -50% to +100% of the response of the internal standard of the midpoint of the ICAL. Since the associated samples had acceptable responses for internal standards, no further action was taken.

The independent check standard (file U6206) associated with the initial calibration on the U instrument on 06/30/2014 had a low concentration for the target analytes benzaldehyde and hexachlorocyclopentadiene, which exceeded the DoD QSM acceptance limit of ±20% of the expected value from the ICAL.

The initial calibration analyzed on the U instrument on 7/3/14 had the analyte benzaldehyde fail for both the linear and quadratic models in the initial calibration curve due to the correlation coefficient and the coefficient of determination being less than the method acceptance criteria of 0.995 and 0.990, respectively. This compound was calibrated using the average model. The corresponding independent check standard (file U6273) had a low concentration for the target analyte benzaldehyde, which exceeded the DoD QSM acceptance limit of $\pm 20\%$ of the expected value from the ICAL. The Independent Check Report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated.

The analyte benzaldehyde is an EPA CLP compound that is very sensitive to the condition of the injection port of the GC/MS instrument. Consequently, the response of this analyte may fluctuate from one analysis to another which may result in high %RSD's for initial calibrations, high %D's for CV's, and low or high recoveries for LCS's.

The calibration verification standards (CV) (files U6381, U6399 and U6417) had very low responses for the analyte benzaldehyde. The CV (file U6399) also had a high response for the analyte 4-

nitrophenol. These responses resulted in %D's that were greater than the acceptance limit of +/- 20% from DoD QSM.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are based on DoD QSM acceptance limits for the full list of spiked compounds and laboratory established acceptance limits for all other analytes. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

8082A Analysis

Sample SH4521-22 was manually integrated for the extraction surrogate, TCX. The specific reasons for the manual integrations are indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

Samples SH4521-12, 16, 18, and 20 as well as the method blank and LCS/D, WG145483-1-3, had low recoveries for the surrogate TCX on both channels, which were outside of the laboratory established acceptance limits. Since the recoveries of DCB were within the acceptance limits, the samples were not reextracted.

Sample SH4521-10 had low recoveries for the surrogates TCX and DCB on both channels, which were outside the laboratory established and DoD QSM acceptance limits, respectively. This sample was reextracted within hold time, analyzed and had acceptable surrogate recoveries. Therefore, only the reextract is reported.

Sample SH4521-22 had low recoveries for the surrogates TCX and DCB on both channels, which were outside the laboratory established and DoD QSM acceptance limits, respectively. This sample was reextracted within hold time, analyzed and had low recoveries for TCX and DCB on both channels, confirming the initial extract. The results for both extractions are reported.

The method blank, WG146110-1, had a low recovery for the surrogate TCX on channel B, which was outside of the laboratory established acceptance limits. Since the recovery was within the acceptance limits on the confirmation channel, the associated samples were not reextracted.

The closing calibration verification standard (CV) (file 7HF754) had high responses for Aroclor 1260 and DCB on channel A, which resulted in %D's that were outside of the DoD QSM acceptance limits of 20%. Since the responses were acceptable on channel B, the associated samples were not reanalyzed.

The opening CV (file 7HG290) had a low response for Aroclor 1260 on channel B, which resulted in a %D that was outside of the DoD QSM acceptance limits of 20%. Since the responses were acceptable on channel A, the associated samples were not reanalyzed.

The closing CV (file 7HG303) had a high response for TCX on channel A, which resulted in a %D that was outside of the DoD QSM acceptance limits of 20%. Since the response was acceptable on channel B, the associated samples were not reanalyzed.

MADEP-VPH Analysis

The LCS, WG146189-2 had a low recovery for the surrogate 2,5-dibromotoluene on the PID that was outside of the method acceptance limits. Since the recovery was acceptable on the FID, the LCSD, WG146189-3, had acceptable surrogate recoveries, and the LCS/LCSD had acceptable spike recoveries, no further action was taken.

The opening CV (file 2HG10156) had high responses for ten target analytes on the FID. The closing CV (file 2HG10173) had high responses for six target analytes on the FID. These responses resulted in %D's that were above the method acceptance limit of 25%. A high bias would indicate a high bias. Since only the hydrocarbon ranges are reported and there were no ranges detected above the MDL in the associated samples, the samples were not reanalyzed.

MADEP-EPH Analysis

Sample SH4521-18 had a low recovery for the aliphatic extraction surrogate 5-alpha androstane that was outside of method acceptance limits. The sample was reextracted within hold time and had a similar surrogate deviation. The results from both extractions are reported.

The LCS WG145668-2 had a low recovery for the aliphatic range C9-C18 that was outside of method acceptance limits. Since the LCSD was acceptable and these QC samples were associated with the reextracted sample, no further action was taken.

The C11-C22 Aromatics range was detected above ½ the reporting limit, but below the LOQ, in the method blank WG145668-1. According to the DoD QSM section D.1.1.1, a method blank is considered to be contaminated if the concentration of any target analyte in the blank exceeds ½ the reporting limit. The analyte that was also detected in any of the associated samples was flagged with a "B" qualifier indicating that the analyte was detected in the method blank analyzed and/or extracted concurrently with the sample.

There were no other protocol deviations or observations noted by the organics laboratory staff.

Metals Analysis

The samples of SDG WE53-7 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

Inductively-Coupled Plasma Atomic Emission Spectroscopic Analysis (ICP)

Aqueous-matrix Katahdin Sample Numbers SH4401-(2-18) were digested for ICP analysis on 06/20/14 (QC Batch HF20ICW2) in accordance with USEPA Method 3010A. Katahdin Sample

Number SH4401-7 was prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SH4401- (19-21) were digested for ICP analysis on 06/23/14 (QC Batch HF23ICW2) in accordance with USEPA Method 3010A. Katahdin Sample Number SH4401-19 was prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SH4521- (2-7, 9-14, 16-20, and 24) were digested for ICP analysis on 06/24/14 (QC Batch HF24ICW1) in accordance with USEPA Method 3010A. Katahdin Sample Numbers SH4521- (9 and 14) were prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SH4521- (8, 15, and 21-23) were digested for ICP analysis on 06/24/14 (QC Batch HF24ICW2) in accordance with USEPA Method 3010A. Katahdin Sample Numbers SH4521- (8 and 15) were prepared with duplicate matrix-spiked aliquots.

ICP analyses of the SDG WE53-7 sample digestates were performed using a Thermo iCAP 6500 ICP spectrometer in accordance with USEPA Method 6010C. All samples were analyzed within holding times and all analytical run QC criteria were met.

Inductively-Coupled Plasma Mass Spectrometric Analysis (ICP-MS)

Aqueous-matrix Katahdin Sample Numbers SH4401- (2-18) were digested for ICP-MS analysis on 06/20/14 (QC Batch HF20IMW2) in accordance with USEPA Method 3010A. Katahdin Sample Number SH4401-7 was prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SH4401- (19-21) were digested for ICP-MS analysis on 06/23/14 (QC Batch HF23IMW2) in accordance with USEPA Method 3010A. Katahdin Sample Number SH4401-19 was prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SH4521- (2-7, 9-14, 16-20, and 24) were digested for ICP-MS analysis on 06/24/14 (QC Batch HF24IMW1) in accordance with USEPA Method 3010A. Katahdin Sample Numbers SH4521- (9 and 14) were prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SH4521- (8, 15, and 21-23) were digested for ICP-MS analysis on 06/24/14 (QC Batch HF24IMW2) in accordance with USEPA Method 3010A. Katahdin Sample Numbers SH4521- (9 and 14) were prepared with duplicate matrix-spiked aliquots.

ICP-MS analyses of SDG WE53-7 sample digestates were performed using an Agilent 7500 ICP-MS spectrometer in accordance with USEPA Method 6020A. Results for all standards and samples are reported using the mean of 3 replicate measurements. All sample digestates were diluted by a factor of 5 during analysis to reduce mass interferences from chlorine, which is present in the digestates from the hydrochloric acid used in digesting the samples. All samples were analyzed within holding times and all analytical run QC criteria were met.

Internal standard recoveries for ICP-MS analyses can be found in the raw data section of the accompanying data package. The following table indicates which analytes are associated with each internal standard element.

Internal Standard Element	Associated Analytes
Lithium	Beryllium
Scandium	Sodium, Magnesium, Aluminum, Potassium, Calcium
Germanium	Vanadium, Chromium, Manganese, Iron, Cobalt, Nickel, Copper, Zinc, Arsenic, Selenium, Silver, Cadmium
Terbium	Antimony, Barium
Bismuth	Lead, Thallium

Instrument tuning information can also be found in the raw data section in the report labeled "6020 QC Tune Report". The relative standard deviation was determined from 4 replicate measurements. The peak width was measured at 10% of the peak height.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA)

Aqueous-matrix Katahdin Sample Numbers SH4401- (2, 4, 6, 8, 10, 12, 14, 16, 18, and 20) and SH4521- (2, 4, 6, 8, and 10) were digested for mercury analysis on 06/26/14 (QC Batch HF26HGW3) in accordance with USEPA Method 7470A. Katahdin Sample Number SH4521-8 was prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SH4521- (12, 14, 16, 18, 20, 21, and 23) were digested for mercury analysis on 06/29/14 (QC Batch HF29HGW2) in accordance with USEPA Method 7470A. A duplicate of SH4521-8 was prepared in this batch. Katahdin Sample Number SH4521-14 was prepared in duplicate and with a matrix-spiked aliquot.

Aqueous-matrix Katahdin Sample Numbers SH4401- (3, 5, 7, 9, 11, 13, 15, 17, 19, and 21) and SH4521- (3, 5, 7, 9, 11, 13, 15, 17, 22, and 24) were digested for mercury analysis on 06/29/14 (QC Batch HF29HGW3) in accordance with USEPA Method 7470A. Katahdin Sample Numbers SH4521- (9 and 15) were prepared in duplicate and with matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SH4521-19 was digested for mercury analysis on 07/03/14 (QC Batch HG03HGW2) in accordance with USEPA Method 7470A.

Mercury analyses of SDG WE53-7 sample digestates were performed using a Cetac M6100 automated mercury analyzer in accordance with USEPA Method 7470A. All samples were analyzed within holding times and all analytical run QC criteria were met.

Matrix QC Summary

The measured recovery of copper in one of the matrix-spiked aliquots of Katahdin Sample Number SH4401-7 is outside the project acceptance criteria (80% - 120% recovery of the added element, if the native concentration is less than four times the amount added).

The measured recovery of calcium in the matrix-spiked aliquots of Katahdin Sample Numbers SH4401-19 and SH4521- (8 and 9) are outside the project acceptance criteria (80% - 120% recovery of the added element, if the native concentration is less than four times the amount added). For calcium this may be attributed to the native concentration in the sample being significantly higher than

the spike amount added.

The measured recovery of calcium in one each of the matrix-spiked aliquots of Katahdin Sample Numbers SH4521- (14 and 15) are outside the project acceptance criteria (80% - 120% recovery of the added element, if the native concentration is less than four times the amount added).

The measured recovery of all analytes in the post-digestion matrix spiked aliquots of Katahdin Sample Numbers SH4401-7 and SH4521- (8, 9, and 15) are within the project acceptance criteria (75% - 125% recovery of the added element).

The measured recovery of calcium in the post-digestion matrix spiked aliquot of Katahdin Sample Number SH4401-19 is outside the project acceptance criteria (75% - 125% recovery of the added element). For calcium this may be attributed to the native concentration in the sample being significantly higher than the spike amount added.

The measured recovery of arsenic in the post-digestion matrix spiked aliquot of Katahdin Sample Number SH4521-14 is outside the project acceptance criteria (75% - 125% recovery of the added element).

The matrix-spiked duplicate analysis of Katahdin Sample Number SH4401-7 is outside the laboratory's acceptance limit (<20% relative difference between duplicate matrix-spiked aliquots) for copper.

The matrix-spiked duplicate analysis of Katahdin Sample Numbers SH4401-19 and SH4521- (8, 9, 14, and 15) are within the laboratory's acceptance limit (<20% relative difference between duplicate matrix-spiked aliquots) for all analytes.

The duplicate analysis of Katahdin Sample Numbers SH4521- (8, 9, 14, and 15) are within the laboratory's acceptance limit (<20% relative difference between duplicate aliquots) for mercury.

The serial dilution analysis of Katahdin Sample Numbers SH4401- (7 and 19) and SH4521- (8, 9, 14, and 15) are within the laboratory's acceptance limit (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD) for all analytes.

Reporting of Metals Results

Per client request, analytical results for client samples on Form I and preparation blanks on Form IIIP have been reported using the laboratory's limits of detection (LOD). All results were evaluated down to the laboratory's method detection limits (MDLs). Results that fall between the MDL and the LOQ are flagged with "J" in the C-qualifier column, and the measured concentration appears in the concentration column. Results that are less than the MDL are flagged with "U" in the C-qualifier column, and the LOD is listed in the concentration column. These LOQs, MDLs, and LODs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results on Forms VA, VD, VII, and IX for client samples, matrix QC samples (duplicates and matrix spikes), and laboratory control samples have been reported down to the laboratory's method detection limits (MDLs). Analytical results that are below the MDLs are flagged with "U" in the C-qualifier column, and the measured concentration is listed in the concentration column.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, LODs, MDLs, and LOQs are listed on Form 10 of the accompanying data package.

Subcontracted Data

Analyses for Perchlorate by Method SW8321 were performed by subcontract laboratories. Please refer to the sections of the data package titled Subcontracted Data.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Operations Manager or the Quality Assurance Officer as verified by the following signature.

Leslie Dimond

Quality Assurance Officer

Katahdin Analytical Services, Inc.

Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
М3	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
М8	Analysis such as GRO, DRO and TPH require a baseline hold.
М9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.

Client: Tela Cela	#CT-Lot	1			ample Receipt Condition Report		
16.77			KAS PM: TO Sampled By: Chent				
Project:		KIM	KIMS Entry By: ODS				
KAS Work Order#: 5/14400 / SH4401	<u></u>	KIM	VS Revi	iew By	Received By:		
SDG #: Cooler:		of_	8		Date/Time Rec.: 6-19-14/08:00		
Receipt Criteria	Υ	N	EX*	NA	Comments and/or Resolution		
Custody seals present / intact?		-	-	<u> </u>	Commission and or recording.		
Chain of Custody present in cooler?		\ <u>\</u>					
3. Chain of Custody signed by client?	1/						
4. Chain of Custody matches samples?							
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C): 3.2		
Samples received at <6 °C w/o freezing?					Note: Not required for metals analysis.		
ice packs or ice present?					The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may		
If yes, was there sufficient ice to meet temperature requirements?					not meet certain regulatory requirements and may invalidate certain data.		
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?					Note: No cooling process required for metals analysis.		
6. Volatiles:							
Aqueous: No bubble larger than a pea? Soil/Sediment:	<u> </u>	i	,				
Received in airtight container?			,	1_1	1		
Received in methanol?	-	-					
Methanol covering soil?	-				-		
D.I. Water - Received within 48 hour HT?				$\overrightarrow{-}$			
Air: Refer to KAS COC for canister/flow controller requirements.	√ if air	r include	L led				
7. Trip Blank present in cooler?				/			
8. Proper sample containers and volume?							
9. Samples within hold time upon receipt?	7						
10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9				/			
Cyanide – pH >12				1	l		
Log-In Notes to Exceptions: document any pr	- <u> - - - - - - - - - - - - - </u>	:45					
mw-14 not on AQ cha	^ , Pi	rese	-1	ies u₁ ¿^	r discrepancies or pri adjustments		

Katahdin Analytical Service	<i>i</i> 5, mc.	;	———			ample Receipt Condition Report
Client: Tech Tech			KA	S PM:	: ;	JO Sampled By: Chent
Project:				VIS Entr		
	H4401		KIN	/IS Revi	riew By	y: Received By: 6
SDG #:	Cooler:	2	of	8		Date/Time Rec.: 6-19-14/08:00
Receipt Criteria		ΙΥ	I N	EV*	1	
Custody seals present / intact?		-	IN	EX*	NA NA	A Comments and/or Resolution
		<u> </u>	1		 	
Chain of Custody present in cooler?		/				
3. Chain of Custody signed by client?		/				·
4. Chain of Custody matches samples?						
5. Temperature Blanks present? If not, temperature of any sample w/ IR gun.	take		 			Temp (°C): 0_9
Samples received at <6 °C w/o freez	ing?					Note: Not required for metals analysis.
Ice packs or ice present?			f T			The lack of ice or ice packs (i.e. no attempt to
If yes, was there sufficient ice to mee temperature requirements?						begin cooling process) or insufficient ice may not meet certain regulatory requirements and may invalidate certain data.
If temp. out, has the cooling process (i.e. ice or packs present) and sample collection times <6hrs., but samples a yet cool?	e					Note: No cooling process required for metals analysis.
6. Volatiles:			i			
Aqueous: No bubble larger than a pea? Soil/Sediment:			-			
Received in airtight container?			1		1	
Received in methanol?	ľ	1	-			1
Methanol covering soil?	ľ	7		_		-{
D.I. Water - Received within 48 hour HT?				1	~	1
Air: Refer to KAS COC for canister/flow controller requirements.		√ if air	include	ed		
. Trlp Blank present in cooler?		7				
. Proper sample containers and volume?		1				
. Samples within hold time upon receipt?		1				
 Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 						
Sunge - /5	-			- 1		
Cyanide – pH >12	_		í	1 ~	~	r discrepancies or pH adjustments

Katahdin Analytical Services, Inc		Sample Receipt Condition Report						
Client: Tehn Tech			S PM:		TO Sampled By: Clear			
Project:		KIN	//S Entr	Entry By: O Delivered By: ODS				
KAS Work Order#: 5714400 / 84440	<i>ا</i>	KIM	MS Revi	iew By	Received By:			
SDG #: Cooler:	3	of	8		Date/Time Rec.: 6-19-14/08:00			
Possint Criteria		1	1	7				
Receipt Criteria	Y	N	EX*	' NA	Comments and/or Resolution			
Custody seals present / intact?		/						
2. Chain of Custody present in cooler?	/							
3. Chain of Custody signed by client?	1/							
4. Chain of Custody matches samples?								
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C): 2 . 1			
Samples received at <6 °C w/o freezing?			7		Note: Not required for metals analysis.			
Ice packs or ice present?					The lack of ice or ice packs (i.e. no attempt to			
If yes, was there sufficient ice to meet temperature requirements?					begin cooling process) or insufficient ice may not meet certain regulatory requirements and may invalidate certain data.			
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?					Note: No cooling process required for metals analysis.			
6. Volatiles:	1/	,		, ,				
Aqueous: No bubble larger than a pea? Soil/Sediment:								
Received in airtight container?			Î	/	l ·			
Received in methanol?			_	7	1			
Methanol covering soil?				1	i			
D.I. Water - Received within 48 hour HT?	1 X	7	1	7	·			
Air: Refer to KAS COC for canister/flow controller requirements.	√ if air	r include	ed					
7. Trip Blank present in cooler?								
3. Proper sample containers and volume?	1							
). Samples within hold time upon receipt?								
 Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 								
	1 1	- 1						
Sulfide - >9 Cyanide – pH >12	•			· .				

Sample Receipt Condition Report
JO Sampled By: Chent
y: 6 Delivered By: 6DS
By: Received By:
Date/Time Rec.: 6-19-14/08:00
NA Comments and/or Resolution
Temp (°C): 3.7
Note: Not required for metals analysis.
The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may
not meet certain regulatory requirements and may invalidate certain data.
Note: No cooling process required for metals analysis.
フェーニー
\exists
s or discrepancies or pH adjustments
or c

Katahdin Analytical Services, Inc.				Sample Receipt Condition Report					
Client: Tehn Tech			KA	S PM:		TO	Sampled By: Clear		
Project:			KIN	MS Entry	у Ву: (Or Delivered By: ODS			
KAS Work Order#: SHYYOO SHY	401		KIN	MS Revi	iew By		Received By:		
SDG #: Coo		5	of	8		Date/Time	e Rec.: 6-19-14/08:00		
			-						
Receipt Criteria		Υ	N	EX*	NA	Com	ments and/or Resolution		
Custody seals present / intact?			/						
2. Chain of Custody present in cooler?		1							
3. Chain of Custody signed by client?		/							
4. Chain of Custody matches samples?		1							
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.						Temp (°C):	0.6		
Samples received at <6 °C w/o freezing?						Note: Not rer	quired for metals analysis.		
lce packs or ice present?						The lack of ic	ce or ice packs (i.e. no attempt to process) or insufficient ice may		
If yes, was there sufficient ice to meet temperature requirements?			 -			not meet certa	ain regulatory requirements and certain data.		
If temp. out, has the cooling process begu (i.e. ice or packs present) and sample collection times <6hrs., but samples are ne yet cool?						Note: No coo analysis.	oling process required for metals		
6. Volatiles:						1	-		
Aqueous: No bubble larger than a pea? Soil/Sediment:	 	+			<u> </u>				
Received in airtight container?					1				
Received in methanol?						ľ			
Methanol covering soil?		T							
D.I. Water - Received within 48 hour HT?		I				1			
Air: Refer to KAS COC for canister/flow controller requirements.	\	if air	r includ	bet					
7. Trip Blank present in cooler?					7				
8. Proper sample containers and volume?		1							
9. Samples within hold time upon receipt?		1							
10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9		1							
Cyanide - pH >12		+	-	-	7				
Log-In Notes to Exceptions: document an	w prob	·lem	~ with	, samt	100 O	- discrenancie	a a nU adjustments		
no in those to make a man and a man	y pica.	101112) Asiri	Senip	IGG U.	uisorepariore	s or pri aujustinente		
,									
						•			

Katahdin Analytical Services, Inc.				Sample Receipt Condition Report					
Client: Tehn Tech			KAS PM: TO Sampled By: Clear						
Project:			KIN	AS Entry	у Ву: (Delivered By: CDS			
KAS Work Order#: 5/14400/8	H4401		KIN	IS Revi	riew By:	Received By: 6			
SDG #:	Cooler:	6	of	8		Date/Time Rec.: 6-19-14/08:00			
		Т.,	7	1	7				
Receipt Criteria		Y	N	EX*	NA NA	Comments and/or Resolution			
Custody seals present / intact?			/						
2. Chain of Custody present in cooler?									
3. Chain of Custody signed by client?									
4. Chain of Custody matches samples?									
5. Temperature Blanks present? If not, temperature of any sample w/ IR gun.	take					Temp (°C):			
Samples received at <6 °C w/o freez	zing?			<u> </u>		Note: Not required for metals analysis.			
ice packs or ice present?		/				The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may			
If yes, was there sufficient ice to meet temperature requirements?						not meet certain regulatory requirements and may invalidate certain data.			
If temp. out, has the cooling process (i.e. ice or packs present) and sample collection times <6hrs., but samples yet cool?	е					Note: No cooling process required for metals analysis.			
6. Volatiles:									
Aqueous: No bubble larger than a pea? Soil/Sediment:					H				
Received in airtight container?	1	4			1				
Received in methanol?]	4				en e			
Methanol covering soil?									
D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow		√ if air	r includ	l ded	-				
controller requirements.		· · ·	r						
7. Trip Blank present in cooler?									
8. Proper sample containers and volume?	,	1							
9. Samples within hold time upon receipt?									
10. Aqueous samples properly preserved' Metals, COD, NH3, TKN, O/G, phenol TPO4, N+N, TOC, DRO, TPH – pH <2	l,			ç	76	~			
Sulfide - >9	F								
✓ Cyanide – pH >12		ı	- 1	1 -	- I				

Katahdin Analytical Services, Inc.	g Pilkeridarbaranskan	***************************************	Sample Receipt Condition Report					
Client: Tehn Tech	KA!	S PM:	J	TO Sampled By: Clear				
Project:		KIM	IS Entr	ry By: _	Delivered By: ODS			
KAS Work Order#: 5714400 / 844401		KIM	IS Revi	riew By:	Received By:			
SDG #: Cooler:	7	of	8		Date/Time Rec.: 6-19-14/08:00			
	7							
Receipt Criteria	Y	N	EX*	NA	Comments and/or Resolution			
Custody seals present / intact?		/						
2. Chain of Custody present in cooler?								
3. Chain of Custody signed by client?	/				·			
4. Chain of Custody matches samples?								
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C): 2. 2			
Samples received at <6 °C w/o freezing?			/ <u>'</u>		Note: Not required for metals analysis.			
Ice packs or ice present?					The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may			
If yes, was there sufficient ice to meet temperature requirements?		-			not meet certain regulatory requirements and may invalidate certain data.			
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?					Note: No cooling process required for metals analysis.			
6. Volatiles:								
Aqueous: No bubble larger than a pea? Soli/Sediment:		\square						
Received in airtight container?		ı]		1				
Received in methanol?					ľ			
Methanol covering soil?								
D.I. Water - Received within 48 hour HT?								
Air: Refer to KAS COC for canister/flow controller requirements.	√ if air	ir includ	led					
7. Trip Blank present in cooler?								
8. Proper sample containers and volume?	1							
9. Samples within hold time upon receipt?								
10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9								
Cyanide - pH >12	+		-+	$\overline{\mathcal{A}}$				
	1.1.5	- ::4b		-				
* Log-In Notes to Exceptions: document any pr	DDIETTS	5 Wim	samp	∤les or	r discrepancies or pH adjustments			

Katahdin Analytical Services, Inc	Sample Receipt Condition Report				
Client: Tehn Tech	·- <u></u>		S PM:		TO Sampled By: Chent
Project:	***************************************	KIN	MS Entry	y Ву: <i>(</i>	Or Delivered By: CDS
KAS Work Order#: 5714400 / 8/14401	<i>I</i>		MS Revie	iew By	Received By: GY
SDG #: Cooler:		of	8		Date/Time Rec.: 6-19-14/08:00
Receipt Criteria	Τγ	T	T _{EV*}	T	
	1	N	EX*	NA	Comments and/or Resolution
Custody seals present / intact?		/			
2. Chain of Custody present in cooler?	1/				
3. Chain of Custody signed by client?					
4. Chain of Custody matches samples?	1				
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C):
Samples received at <6 °C w/o freezing?					Note: Not required for metals analysis.
ice packs or ice present?					The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may
If yes, was there sufficient ice to meet temperature requirements?					not meet certain regulatory requirements and may invalidate certain data.
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?					Note: No cooling process required for metals analysis.
6. Volatiles:	1				1
Aqueous: No bubble larger than a pea? Soll/Sediment:					
Received in airtight container?				لِــــا	
Received in methanol?					
Methanol covering soil?	<u> </u>				
D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for capieter/flow	1:50	1	· -1		
Air: Refer to KAS COC for canister/flow controller requirements.	√ IT air	r includ	led		
7. Trip Blank present in cooler?			-	1	
8. Proper sample containers and volume?					
9. Samples within hold time upon receipt?					
10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2					
College 20	<i>t</i> 1				
Sulfide - >9 Cyanide - pH >12		ļ	£ -	- 1	4

Katahdin Analytical Services, Ir		Sample Receipt Condition Report					
Client: Tetra Tech	KA	S PM:		To	Sampled By: Clert		
Project:	,	KIN	1S Entr		CN	Delivered By: Clent	
KAS Work Order#: 5H 4521/452)	4523	KIN	IS Rev	iew By	(M)	Received By:	
SDG #: Coole	er: 1	of	1-8	14	Date/Time	/	
					- U Date, inte	Rec.: 6-20-14/15:00	
Receipt Criteria	Υ	N	EX*	NA	Comr	ments and/or Resolution	
Custody seals present / intact?		V					
2. Chain of Custody present in cooler?							
3. Chain of Custody signed by client?							
4. Chain of Custody matches samples?							
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C):).9	
Samples received at <6 °C w/o freezing?			•		1	uired for metals analysis.	
Ice packs or ice present?					The lack of ice	or ice packs (i.e. no attempt to	
If yes, was there sufficient ice to meet temperature requirements?					begin cooling	process) or insufficient ice may in regulatory requirements and	
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?						ing process required for metals	
. Volatiles:							
queous: No bubble larger than a pea? oil/Sediment:				\preceq			
Received in airtight container?							
Received in methanol?				フ			
Methanol covering soil?				V			
.I. Water - Received within 48 hour HT?				\checkmark			
Ir: Refer to KAS COC for canister/flow controller requirements.	√ if air i	nclude	∍d				
Trip Blank present in cooler?				7			
Proper sample containers and volume?							
Samples within hold time upon receipt?							
. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2	/						
Sulfide - >9							
Cyanide – pH >12	11 3			/			

Katahdin Analytical Services, In	<u> </u>	Sample Receipt Condition Report					
18 MZ 1ECT	KA	S PM:	J	0	Sampled By: Clert		
Project:		KIN	MS Entr	у Ву:	GN	Delivered By: Clear	
KAS Work Order#: 5H 4521/4521	452	3 KIN	//S Rev	iew By:		Received By:	
SDG #: Coole	r: 7	of	+5	-14	Date/Time		
				•	U Baco mine	Rec.: 6-20-14/15:00	
Receipt Criteria	Υ	N	EX*	NA	Comr	ments and/or Resolution	
Custody seals present / intact?		V					
2. Chain of Custody present in cooler?							
3. Chain of Custody signed by client?	1						
4. Chain of Custody matches samples?							
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C):	3.4	
Samples received at <6 °C w/o freezing?						uired for metals analysis.	
Ice packs or ice present?					The lack of ice	or ice packs (i.e. no attempt to	
If yes, was there sufficient ice to meet temperature requirements?	1				pegin cooling i	process) or insufficient ice may in regulatory requirements and	
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?						ing process required for metals	
6. Volatiles:							
Aqueous: No bubble larger than a pea?							
Soll/Sediment:							
Received in airtight container? Received in methanol?							
Methanol covering soil?				$ \preceq $			
J.I. Water - Received within 48 hour HT?				\mathcal{A}			
Air: Refer to KAS COC for canister/flow controller requirements.	√ if air	includ	ed	-			
. Trip Blank present in cooler?				7			
Proper sample containers and volume?							
Samples within hold time upon receipt?							
D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2							
Sulfide - >9			-				
Cyanide – pH >12							
Log-In Notes to Exceptions: document any p	roblems	with s	sample	es or o	discrepancies	or pH adjustments	

Katahdin Analytical Services, Inc. Sample Receipt Condition Report Client: T_{e_c} L KAS PM: Sampled By: Project: KIMS Entry By: Delivered By: 544521 KAS Work Order#: KIMS Review By: Received By: SDG #: Cooler: Date/Time Rec.: Receipt Criteria Υ Ν EX* NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take Temp (°C): temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Note: Not required for metals analysis. Ice packs or ice present? The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may If yes, was there sufficient ice to meet not meet certain regulatory requirements and temperature requirements? may invalidate certain data. If temp. out, has the cooling process begun (i.e. ice or packs present) and sample Note: No cooling process required for metals collection times <6hrs., but samples are not analysis. yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow √ if air included controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12 * Log-In Notes to Exceptions: document any problems with samples or discrepancies or pH adjustments

Katandin Analytical Services, Inc.				Sample Receipt Condition Report						
Client: Tetra Tech		KA	S PM:		To	Sampled By: Clert				
Project:	•	KIN	1S Ente		CN	Delivered By: Client				
KAS Work Order#: 5H 4521/4522	4523	KIN	IS Rev	iew B	: 10	Received By:				
SDG #: Coole		of -		- 14	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
		_ ''	<u> </u>	,	// Date/Tim	e Rec.: 6-20-14/15:00				
Receipt Criteria	Υ	N	EX*	NA	Com	ments and/or Resolution				
Custody seals present / intact?		V				The second secon				
2. Chain of Custody present in cooler?										
3. Chain of Custody signed by client?	V									
4. Chain of Custody matches samples?	/									
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C):	4.7				
Samples received at <6 °C w/o freezing?					Note: Not red	quired for metals analysis.				
Ice packs or ice present?					The lack of ic	e or ice packs (i.e. no attempt to				
If yes, was there sufficient ice to meet temperature requirements?					not meet certa	process) or insufficient ice may ain regulatory requirements and e certain data.				
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?				/		ling process required for metals				
6. Volatiles:				/						
Aqueous: No bubble larger than a pea? Soil/Sediment:				/						
Received in airtight container?			ĺ							
Received in methanol?										
Methanol covering soil?				-						
.l. Water - Received within 48 hour HT?				-						
ir: Refer to KAS COC for canister/flow controller requirements.	√ if air	includ	ed [•					
Trip Blank present in cooler?	,			1						
Proper sample containers and volume?	17									
Samples within hold time upon receipt?	1									
D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9										
Cyanide – pH >12				-						
og-In Notes to Exceptions: document any	problems									
o assess to Exceptione, accomment any	hioneins	With	sampi	es or	discrepancies	or pH adjustments				
•										

Katahdin Analytical Services, Inc. Sample Receipt Condition Report Client: T_{e_c} L KAS PM: Sampled By: To Project: KIMS Entry By: Delivered By: 544521 KAS Work Order#: KIMS Review By: Received By: SDG #: Date/Time Rec.: 6-20-14 15:00 Receipt Criteria Υ Ν EX* NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? Temperature Blanks present? If not, take Temp (°C): temperature of any sample w/ IR gun. 16 Samples received at <6 °C w/o freezing? Note: Not required for metals analysis. Ice packs or ice present? The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may If yes, was there sufficient ice to meet not meet certain regulatory requirements and temperature requirements? may invalidate certain data. If temp, out, has the cooling process begun (i.e. ice or packs present) and sample Note: No cooling process required for metals collection times <6hrs., but samples are not analysis. yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow √ if air included controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12 Log-In Notes to Exceptions: document any problems with samples or discrepancies or pH adjustments

Katahdin Analytical Services, Inc. Sample Receipt Condition Report Client: Tech KAS PM: Sampled By: To Project: KIMS Entry By: Delivered By: 544521 KAS Work Order#: KIMS Review By: Received By: SDG #: Cooler: Date/Time Rec.: 6-20-14 15:00 Receipt Criteria Υ EX* Ν NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take Temp (°C): temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Note: Not required for metals analysis. Ice packs or ice present? The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may If yes, was there sufficient ice to meet not meet certain regulatory requirements and temperature requirements? may invalidate certain data. If temp. out, has the cooling process begun (i.e. ice or packs present) and sample Note: No cooling process required for metals collection times <6hrs., but samples are not analysis. yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow √ if air included controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12 * Log-In Notes to Exceptions: document any problems with samples or discrepancies or pH adjustments

Katahdin Analytical Services, In	Sa	Sample Receipt Condition Report			
Client: Tetra Tech	KA	S PM:	_	To Sampled By: Clert	
Project:		KIN	1S Entr		Delivered By: Clar
KAS Work Order#: 5H4521/4521	14523	-	IS Revi		
SDG #: Coolé	/	of -		14	Al-
					Date/Time Rec.: 6-20-14/15:00
Receipt Criteria	Υ	N	EX*	NA	Comments and/or Resolution
1. Custody seals present / intact?		V			
2. Chain of Custody present in cooler?					
3. Chain of Custody signed by client?					
4. Chain of Custody matches samples?					
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.	√				Temp (°C): 6.0
Samples received at <6 °C w/o freezing?					Note: Not required for metals analysis.
Ice packs or ice present?					The lack of ice or ice packs (i.e. no attempt to
If yes, was there sufficient ice to meet temperature requirements?					begin cooling process) or insufficient ice may not meet certain regulatory requirements and may invalidate certain data.
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?				/	Note: No cooling process required for metals analysis.
6. Volatiles:					
Aqueous: No bubble larger than a pea? Soil/Sediment:					
Received in airtight container?			ĺ		
Received in methanol?	-				
Methanol covering soil?				\dashv	
O.I. Water - Received within 48 hour HT?				-	
Air: Refer to KAS COC for canister/flow controller requirements.	√ if air	air included			
. Trip Blank present in cooler?				7	
. Proper sample containers and volume?					
. Samples within hold time upon receipt?	17				
0. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9	/		,		
Cyanide pH >12					
Log-In Notes to Exceptions: document any p	roblems	with s	sample	es or e	discrepancies or pH adjustments

Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 'Trip Blank present in cooler? Seproper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12	Katahdin Analytical Services, Inc	·	Sample Receipt Condition Report					
KAS Work Order#: 5#4521/4521/1523 KIMS Review By: Received By: Governments and/or Resolution Receipt Criteria Y N EX* NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample will R gun. Samples received at <6 °C w/o freezing? If yes, was there sufficient loc to meet temperature requirements? If temp, out, has the cooling process begun (i.e. fee or packs present) and sample collection times <6hrs., but samples are not yet cool? 8. Voletiles: Received in airtight container? Received in methanol? Methanol covering soil? 9. Wethanol covering soil? 9. Proper sample containers and volume? 9. Samples within hold time upon receipt? 9. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N=N, TOC, DRO, TPH - pH <2 Suiffide - >9 (Vanide - pH >12)	Client: Tetra Tech				フ	0	Sampled By: Clert	
KAS Work Order#: 5 1 2 1 4 5 2 1 5 2 1 5 2 1 5 2 1 5 2 5 5 5 5 5 5 5 5		,	KIN	IS Entr	у Ву:	GN	Delivered By: (/:ex+	
Receipt Criteria Receipt Criteria Y N EX' NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample wil R gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient lice to meet temperature requirements? If temp, out, has the cooling process begun (i.e. ice or packs present) and sample collection times chirs., but samples are not yet cool? Soll/Sediment: Received in methanol? Methanol covering soil? Jur Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Aqueous sample containers and volume? Samples within hold time upon receipt? Output Degrin Cooler (i.e. no attempt to begin cooling process) or insufficient loe may invalidate certain data. Note: No cooling process required for metala analysis. Vif air included Ontroller requirements. Trip Blank present in cooler? Aqueous sample containers and volume? Samples within hold time upon receipt? Output Degrin Cooler (i.e. no attempt to begin cooling process) or insufficient loe may invalidate certain data. Trip Blank present in cooler? Aqueous Sample containers and volume? Samples within hold time upon receipt? Output Degrin Cooler (i.e. no attempt to begin cooling process required for metala analysis. Trip Blank present in cooler? Aqueous Sample containers and volume? Aqueous Samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH > 12	KAS Work Order#: 5H4521/4522/	4523	KIM	IS Revi	iew Bk	\hat{a}		
1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp, out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soll/Sediment: Received in artight container? Received in in methanol? Methanol covering soil? 2.I. Water - Received within 48 hour HT? Wir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TNN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH > 12	SDG #: Cooler:	8_	_of	15	14	Date/Time	Rec.: 6-20-14/15:00	
1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp, out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hr., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soll/Sediment: Received in artiflot container? Received in methanol? Methanol covering soil? 2.1. Water - Received within 48 hour HT? Vir. Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TNN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH > 12	Pacoint Critorio	1.		I> <-	1			
2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp, out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6 hrs., but samples are not yet cool? Aqueous: No bubble larger than a pea? Soil/Sediment: Received in aritight container? Received in aritight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Wir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, NH+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH > 12		Y	N	EX*	NA NA	Comr	ments and/or Resolution	
3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Votaties: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in intendency? Methanol covering soil? 2. Water - Received within 48 hour HT? Hirr Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Custody seals present / intact?		V					
4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yel cool? 3. Volatiles: Received in airtight container? Received in methanol? Mir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12	2. Chain of Custody present in cooler?							
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 8. Volatiles: Received in airtight container? Received in methanol? Methanol covering soil? 9. I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? 9. Proper sample containers and volume? Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenoi, TPO4, N+N, TOC, DRO, TPH - pH <2 Suffice - >9 Cyanide - pH >12	3. Chain of Custody signed by client?							
temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 8. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulficle ->9 Cyanide - pH >12	4. Chain of Custody matches samples?							
Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in methanol? Methanol covering soil? OI. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide ->9 Cyanide - pH >12	5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C):	0.8	
If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 9. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? 11. Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH > 12	Samples received at <6 °C w/o freezing?		***************************************			Note: Not req	uired for metals analysis.	
n yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH − pH <2 Sulfide - >9 Cyanide − pH >12	Ice packs or ice present?					The lack of ice	e or ice packs (i.e. no attempt to	
(i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH − pH <2 Sulfide - >9 Cyanide − pH >12	temperature requirements?					not meet certa	nin regulatory requirements and	
Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 'Trip Blank present in cooler? Seproper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12	(i.e. ice or packs present) and sample collection times <6hrs., but samples are not					Note: No cool analysis.	ing process required for metals	
Soll/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Seproper sample containers and volume? Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12				· · · · · ·				
Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12								
Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? S. Proper sample containers and volume? S. Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12	* * * * * *							
Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? 10. Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH < 2 11. Sulfide - >9 12. Cyanide - pH > 12					\dashv			
Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 90. Aqueous samples properly preserved? 91. Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH < 2 92. Sulfide - >9 93. Cyanide – pH > 12	Methanol covering soil?	_			egthankowskip			
controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 90. Aqueous samples properly preserved? 91. Metals, COD, NH3, TKN, O/G, phenol, 92. TPO4, N+N, TOC, DRO, TPH – pH <2 93. Sulfide - >9 94. Cyanide – pH >12					7			
S. Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12		√ if air	includ	ed				
Samples within hold time upon receipt? 0. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	. Trip Blank present in cooler?							
0. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Proper sample containers and volume?	/						
Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Samples within hold time upon receipt?	1						
Cyanide – pH >12	Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2	1						
					/			
Log-In Notes to Exceptions: document any problems with samples or discrepancies or pH adjustments		<u> L.</u>			<u>/</u>			

Katahdin Analytical Services, Inc. Sample Receipt Condition Report Client: Tech KAS PM: Sampled By: To Project: KIMS Entry By: Delivered By: 544521 KAS Work Order#: KIMS Review By: Received By: SDG#: Date/Time Rec.: 15000 Receipt Criteria Υ N EX* NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take Temp (°C): 5. 7 temperature of any sample w/ IR oun. Samples received at <6 °C w/o freezing? Note: Not required for metals analysis. Ice packs or ice present? The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may If yes, was there sufficient ice to meet not meet certain regulatory requirements and temperature requirements? may invalidate certain data. If temp. out, has the cooling process begun (i.e. ice or packs present) and sample Note: No cooling process required for metals collection times <6hrs., but samples are not analysis. vet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow √ if air included controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12 Log-In Notes to Exceptions: document any problems with samples or discrepancies or pH adjustments

Katahdin Analytical Services, Inc. Sample Receipt Condition Report Client: Tech KAS PM: Sampled By: To Project: KIMS Entry By: Delivered By: 544521 KAS Work Order#: KIMS Review By: Received By: SDG #: Coolér: Date/Time Rec.: 15:00 Receipt Criteria Υ Ν EX* NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take Temp (°C): temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Note: Not required for metals analysis. ice packs or ice present? The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may If yes, was there sufficient ice to meet not meet certain regulatory requirements and temperature requirements? may invalidate certain data. If temp. out, has the cooling process begun (i.e. ice or packs present) and sample Note: No cooling process required for metals collection times <6hrs., but samples are not analysis. vet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow √ if air included controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12 Log-In Notes to Exceptions: document any problems with samples or discrepancies or pH adjustments

Katahdin Analytical Services, Inc	, ' ja			Sai	mple Receipt Condition Report
Client: Tetra Tech		KA	S PM:		Sampled By: Clert
Project:		KIN	1S Entr		Gr Delivered By: Client
KAS Work Order#: 5H 4521/4522/	4523	KIN	S Revi	ew By	
SDG #: Cooler:	<u>15-7</u> И	of ^c	15	74	Date/Time Rec.: 6-20-14/15:00
					J 20 17 Broom
Receipt Criteria	Υ	N	EX*	NA	Comments and/or Resolution
Custody seals present / intact?		V			
2. Chain of Custody present in cooler?	1				
3. Chain of Custody signed by client?	1				
4. Chain of Custody matches samples?	1				
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.		-		·	Temp (°C): 2. 9
Samples received at <6 °C w/o freezing?					Note: Not required for metals analysis.
Ice packs or ice present?					The lack of ice or ice packs (i.e. no attempt to
If yes, was there sufficient ice to meet temperature requirements?					begin cooling process) or insufficient ice may not meet certain regulatory requirements and may invalidate certain data.
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?					Note: No cooling process required for metals analysis.
6. Volatiles:					
Aqueous: No bubble larger than a pea? Soil/Sediment:					
Received in airtight container?				/	
Received in methanol?				/	
Methanol covering soil?					
D.I. Water - Received within 48 hour HT?				/ -	
Air: Refer to KAS COC for canister/flow controller requirements.	√ if air	includ	led	<u> </u>	
7. Trip Blank present in cooler?		*		7	
3. Proper sample containers and volume?	1				
9. Samples within hold time upon receipt?	1				
0. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9	1	-			
Cyanide - pH >12				\leftarrow	
		. 1 داد		<u> </u>	
Log-In Notes to Exceptions: document any pr	ONGHE	o VVILFI	samp	ies of	uiscrepancies or pH adjustments

Receipt Criteria Y N EX* NA Comments and/or Resolution	elient: Tetra Tech		KA	S PM:		mple Receipt Condition Repor
KAS Work Order#: SHUS 21 4 5 2 1 4 5 2 3 KIMS Review By: Date/Time Rec.: 6-2 0-14 SDG #: Date/	roject:		KIM	IS Entr		
Receipt Criteria Y N EX* NA Comments and/or Resolu 1. Custody seals present / Intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. loc or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soil/SedIment: Received in methanol? Methanol covering soil? Proper sample containers and volume? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples property preserved? Metals, COD, NH3, TKN, O/G, phenol, TPOA, NH, TCO, DRO, TPH – pH <2	AS Work Order#: SHUS21/4521/4	· · · · · ·	- -			
Receipt Criteria Receipt Criteria Y N EX* NA Comments and/or Resolu Custody seals present / intact? Chain of Custody present in cooler? Chain of Custody present in cooler? Chain of Custody signed by client? Chain of Custody matches samples? Temperature Blanks present? If not, take temperature of any sample will R gun. Samples received at <6 °C w/o freezing? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6 hrs., but samples are not yel cool? Note: No cooling process required for analysis.		<u>دردر</u> سوا	of	1-8	-14 -14	
1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? It epacks or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp, out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soil/SedIment: Received in methanol? Methanol covering soil? Other was the cooling process and the four HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Other was a pack of custody received? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2	COOK!	10	_ 0′		•	Date/Time Rec.: 6-20-14/15:00
1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? It epacks or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? Aqueous: No bubble larger than a pea? Soil/Sediment: Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenoi, TPO4, N+N, TOC, DRO, TPH - pH <2	Receipt Criteria	Υ	N	EX*	NA	Comments and/or Resolution
2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample will R gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soli/Sediment: Received in airtight container? Received in intertanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, NN, TOC, DRO, TPH - pH <2	Custody seals present / intact?		V			
3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp, out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/SedIment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Mr. Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2	Chain of Custody present in cooler?					
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2	Chain of Custody signed by client?					
temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? Note: No cooling process required for metals analysis. Note: No cooling process required for metals analysis. Note: No cooling process required for metals analysis. Note: No cooling process required for analysis.	Chain of Custody matches samples?	/				
Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2	Temperature Blanks present? If not, take nperature of any sample w/ IR gun.	سند			·	Temp (°C): 3_6
It yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? 8. Proper sample containers and volume? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <22	Samples received at <6 °C w/o freezing?					Note: Not required for metals analysis.
If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2	Ice packs or ice present?					The lack of ice or ice packs (i.e. no attempt
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 6. Proper sample containers and volume? 7. Samples within hold time upon receipt? 7. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2			-			begin cooling process) or insufficient ice ma not meet certain regulatory requirements an
Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2	(i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?					Note: No cooling process required for metal analysis.
Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH < 2						
Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Mir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2						
Methanol covering soil? O.I. Water - Received within 48 hour HT? Nir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH − pH <2	Received in airtight container?					
O.I. Water - Received within 48 hour HT? Nir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH − pH <2	Received in methanol?					
Air: Refer to KAS COC for canister/flow controller requirements. ✓ Trip Blank present in cooler? ✓ Proper sample containers and volume? ✓ Samples within hold time upon receipt? ✓ O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2					7	
controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2					/	
. Proper sample containers and volume? . Samples within hold time upon receipt? 0. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2		√if air	includ	ed		
. Samples within hold time upon receipt? 0. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2	rip Blank present in cooler?					
0. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2	roper sample containers and volume?					
Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2	amples within hold time upon receipt?	/				
	Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2	/				
Cyanide - pH >12						
Log-In Notes to Exceptions: document any problems with samples or discrepancies or pH adjustments		hla	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V	<u> </u>	

Client: Tetra Tech Project: KAS Work Order#: SH 4521/4522 SDG #: Cooler:	4523	KIN	S PM: IS Entr	J	mple Receipt Condition Report Sampled By: Clert Delivered By: Clert
KAS Work Order#: 5H4521/4522/	4523		1S Entr		
211772119724	4523				1 Donvoide Dy. () ex.
SDG #: Cooler:		KIM	IS Rev	iew B	
	_ 13	_ of	15	74	Date/Time Rec.: 6-20-14/15:00
Receipt Criteria	Ιγ	N	EX*	NA	Comments and/or Resolution
Custody seals present / intact?		V			Comments and/or Resolution
2. Chain of Custody present in cooler?		<i>V</i>			
Chain of Custody signed by client?	1				
4. Chain of Custody matches samples?					
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.		·			Temp (°C):
Samples received at <6 °C w/o freezing?					Note: Not required for metals analysis.
Ice packs or ice present?					The lack of ice or ice packs (i.e. no attempt to
If yes, was there sufficient ice to meet temperature requirements?		,			begin cooling process) or insufficient ice may not meet certain regulatory requirements and may invalidate certain data.
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?				/	Note: No cooling process required for metals analysis.
6. Volatiles:					· · · · · · · · · · · · · · · · · · ·
Aqueous: No bubble larger than a pea? Soil/Sediment:		$ \checkmark $			
Received in airtight container?		ĺ			
Received in methanol?					
Methanol covering soil?	7				
.l. Water - Received within 48 hour HT?				\mathcal{I}	
ir: Refer to KAS COC for canister/flow controller requirements.	√if air	includ	ed		
Trip Blank present in cooler?	/				
Proper sample containers and volume?	/				
Samples within hold time upon receipt?					
D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9				/	
Cyanide – pH >12				<u>/</u>	
				$\angle \bot$	discrepancies or pH adjustments

Client: Tele Le KAS PM: Jo Sampled By: Clent Project: KAS Work Order#: 5 // 4 / 5 21 / 4 5 2 2 / 4 5 2 2 KIMS Review By: Received By: Clent Project: Receipt Criteria Y N Ex* NA Comments and/or Resolution 1. Custody seals present / Intact? 2. Chain of Custody present in cooler? 3. Chain of Custody present in cooler? 4. Chain of Custody signed by client? 4. Chain of Custody signed by client? 5. Temperature Blanks present? If not, take temperature of any sample will R gun. 5. Samples received at <6 °C w/o freezing? If yes, was there sufficient loe to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hr., but samples are not yet cool? 6. Volatiles: Received in intright container? Received in methanol? Methanol covering soil? 7. Wir Refer to KAS COC for canister/flow controller requirements and volume? 8. Samples within hold time upon receipt? 9. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Suffide - >9 Cyanide - pH >12	Client: The Country Co	Katahdin Analytical Services, Inc	٠ ٠	947/1		Sa	mple Receipt Condition Repor
Project: KAS Work Order#: 5#4521/4521/4522 KIMS Review By: SDG #: Receipt Criteria Y N EX' NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w IR gun. Samples received at <6 °C w/o freezing? If yes, was there sufficient ice to meet temperature requirements? If yes, was there sufficient ice to meet temperature requirements? If temp out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6 hrs., but samples are not yet cool? 3. Volatiles: Received in methanol? Methanol covering soil? 2. Water - Received within 48 hour HT? Wir. Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Advances in Note Cooling process properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide: >8 Cyanide – pH >12 Visit for individed container and volume? All substitute of the ph =12 Sulfide – pH >12 Sulfide – pH >12 Delivered By: Creative Received by: Proper sample container Beceived By: Creative By: Cooler Tyle Source Because By: Description Received By: Proper Security By: Description Re	Project: KIMS Entry By: Delivered By: Cl: a+	Client: Tetra Tech		KA	S PM:		
KAS Work Order#: 5 # 4 \$ 2 1 4 \$ 2 2 4 5 2 3 \$ KIMS Review By:	KAS Work Order#: 5 # 4 \$21 4 \$22 4 \$22 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2	Project:	,	KIN	/IS Entr		0
Receipt Criteria Y N EX* NA Comments and/or Resolution Receipt Criteria Y N EX* NA Comments and/or Resolution 1. Custody seals present / Intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. lee or packs present) and sample collection times <6hrs., but samples are not yet cool? Augueous: No bubble larger than a pea? Soli/Sediment: Received in methanol? Methanol covering soil? If Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, NHN, TOC, DRO, TPH – pH <2 Sulfide - pH >12	Receipt Criteria Y N EX' NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample wil R gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If femp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs. but samples are not yet cool? Augueous: No bubble larger than a pea? Soll/Sediment: Received in methanol? Methanol covering soil? It water - Received within 48 hour HT? It: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Methanol containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, OG, phenol, TPO4, NH3, TOC, DRO, TPH – pH <2 Sulfide - >9 Vyanide - pH >12	KAS Work Order#: 5H 4521/4522	4523	KIN	/IS Revi	ew By:	
Receipt Criteria Y N EX* NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatilies: Aqueous: No bubble larger than a pea? Soll/Sediment: Received in methanol? Methanol covering soil? Jir. Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Methanol covering soil? Jir. Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Methanol containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, OJG, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide - pH > 12	Receipt Criteria Y N EX* NA Comments and/or Resolution 1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample wi IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6 hrs., but samples are not yet cool? Avueous: No bubble larger than a pea? Soll/Sediment: Received in methanol? Methanol covering soll? Jir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Aqueous samples properly preserved? Acqueous samples properly preserved? Acqueous samples properly preserved? Adueous samples properly preserved? Adueous samples properly preserved? Acqueous samples properly preserved?		10				
1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp, out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Acueous: No bubble larger than a pea? Acueous in airtight container? Received in airtight container? Received in methanol? Alt: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH > 12	1. Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample will Rg un. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp, out, has the cooling process begun (i.e. loe or packs present) and sample collection times *6hrs., but samples are not yet cool? 3. Votetiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in methanol? Methanol covering soil? Jir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPC4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide - pH > 12						1 30.7500
2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in artight container? Received in methanol? Methanol covering soil? 2.1. Water - Received within 48 hour HT? If refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH > 12	2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/l IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in aritight container? Received in methanol? Methanol covering soil? 2. Water - Received within 48 hour HT? Iri: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH > 12	Receipt Criteria	Υ	N	EX*	NA	Comments and/or Resolution
3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6 hrs., but samples are not yet cool? 3. Votatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in intelnation? Methanol covering soil? 1. Water - Received within 48 hour HT? Iri: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH > 12	3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in methanol? Methanol covering soil? 1. Water - Received within 48 hour HT? Iri: Refer to KAS COC for canister/filow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12	1. Custody seals present / intact?		V			
4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Received in airtight container? Received in methanol? Methanol covering soil? 2. Water - Received within 48 hour HT? If: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH > 12	4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Received in airtight container? Received in methanol? Methanol covering soil? 2. Water - Received within 48 hour HT? Iii: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPCA, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH > 12	2. Chain of Custody present in cooler?					
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatilles: Received in airtight container? Received in methanol? Methanol covering soil? 3. If air included Controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide ->9 Cyanide – pH >12	5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Received in airtight container? Received in methanol? Methanol covering soil? 1. Water - Received within 48 hour HT? If: Refer to KAS COC for canister/fllow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH > 12	3. Chain of Custody signed by client?	1				
Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? Note: No cooling process required for metal analysis.	Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6 hrs., but samples are not yet cool? Note: No cooling process required for metals analysis.	4. Chain of Custody matches samples?					
Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? Note: No cooling process required for metal analysis.	Samples received at <6 °C w/o freezing? Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6 hrs., but samples are not yet cool? Note: No cooling process required for metals analysis.	5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C): 3-8
Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soil/SedIment: Received in airtight container? Received within 48 hour HT? Jir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Cyanide – pH >12	Ice packs or ice present? If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? Note: No cooling process required for metals analysis. Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? Methanol covering soil? Methanol requirements. Trip Blank present in cooler? Proper sample containers and volume? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfice ->9 Cyanide – pH > 12	Samples received at <6 °C w/o freezing?					
If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? OI. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide ->9 Cyanide – pH >12	If yes, was there sufficient ice to meet temperature requirements? If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? OI. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Ice packs or ice present?					The lack of ice or ice packs (i.e. no attempt to
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 3. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? 2.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide ->9 Cyanide - pH >12	If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? Oi. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide ->9 Cyanide - pH >12	If yes, was there sufficient ice to meet temperature requirements?					begin cooling process) or insufficient ice ma not meet certain regulatory requirements an
Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12	Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Nir: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12	(i.e. ice or packs present) and sample collection times <6hrs., but samples are not					Note: No cooling process required for metal
Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12	Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12						
Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12	Received in airtight container? Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH >12						
Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Received in methanol? Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH − pH <2 Sulfide - >9 Cyanide − pH > 12						
Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Methanol covering soil? O.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH − pH <2 Sulfide - >9 Cyanide − pH >12				- 	$-\mathcal{A}$	
D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH > 12	D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cyanide - pH > 12	4				-	
controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	controller requirements. Trip Blank present in cooler? Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12					7	
Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Proper sample containers and volume? Samples within hold time upon receipt? Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12		√ if air	includ	ed		
Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Samples within hold time upon receipt? D. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	. Trip Blank present in cooler?				/	
O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	O. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Proper sample containers and volume?					
Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12	Samples within hold time upon receipt?	1				
Cyanide – pH >12	Cyanide – pH >12	Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2		-		4	
					1		
-09-in Notes to Exceptions; document any problems with complex or discourse size	and problems with samples or discrepancies or pH adjustments		roblems	with	campi	<u> </u>	diographic

600 Technology Way Scarborough, ME 04070 Tel: (207) 874-2400

Fax: (207) 775-4029

Chain of Custody

Clie	nt: Tetra Tech		Contact:	Phone		-840	<u>ک</u>	Fax #:	474-8	ડે પ લુલ				
Add	iress: 250 Andia	/ S4. # 7(2)			MA			Zip Co	de: 😂	2 018.	7			
Pur	chase Order #:		Proj. Name/No	: Cuther Fr	al et	o we	53	Katahd	in Quote	e #:				
Bill	(if different than above):			Address:										
San		rian Ger		<u> </u>				Copies						
	LAB USE ONLY	Work Order # Katahdin Pro	~ 1. 1.	448/0				Analy		Containe rvatives	r Type			
Ren	marks:	Katanum Pro	ject Number		Filt. Y/N	Filt. Y/N	Filt. Y/N	Filt. Y/N	Filt.	Filt.	Filt. Y/N	Filt. Y/N	Filt. Y/N	Filt. Y/N
	oping Info: oill No:	FEDEX	UPS	CLIENT										
	np C	Temp Blank	Intact	Not Intact	3	- 3	Ĭ	3	1 4 2 5 1 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	strail of the	Ş	8×188		
*	Sample Description	Date/Time Collected	Matrix	No. of Containers	3	र र र र र	Ş	D Z	Total	Dissel-	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Ē		
	FTA-GW-TB01-061714	6117114 C&60	AQ	8	X	X	X							
	FTA-MW-9-061714	1020	GW	18	X	X	X	X	X	X	X	X		
	FTA-MW-10-661714	1230	Ì	18	X	X	芩	X	X	X	X	X		
	FTA-MW-II-0617114	1020		18	X	X	〉	X	X	X	X	X		
	FTA-MW-12-061714	1240		18	X			X	X	X	X	X		
	FTA-MU-5-061814	61814 0952		18	X	X	X	X	X	X	X	\sim		
	PTA-AW-203 - 061810	1020		18	X	X	X	X	X	X	7	X		
	PTA-GW-D401-061814			18	X	X	X	X	X	X	X	X		
	FTA-MW-218-00-1814	6118/14 1238		18	X	X	X	X	X	X	X	X		
	FTA-MW-206-061814	6118/14 1245	<u> </u>	18	$ \times $	X	X	X	\times	\times	\times	\sim		
				L.maren Porton										
		**************************************		<u> </u>										
COI	MMENTS:		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u></u>	<u> </u>	<u> </u>			
	Standa		Regeived B	Relings	uished By	v:		Date/Ti	me	<u></u>	Receive	ed Bv:		
1	<u> </u>	6/18/14 1700	MUU ARO											
Reli	nquished By:	Date/Time	Received By:	Relinq	uished By	y:		Date/Ti	me		Receive	ed By:		

The terms and conditions on the following page hereof shall govern services, except when a signed contractual agreement exists.

600 Technology Way Scarborough, ME 04074 Tel: (207) 874-2400 Fax: (207) 775-4029

CHAIN of CUSTODY

PLEASE BEAR DOWN AND PRINT LEGIBLY IN PEN

Page ____ of ____

Tetra Tech	Contact	Mescuso	Phone #	414-8400	Fax# (978)474-8	490
Address 250 Andow St. # 200 City	Wilming		State /		Zip Code 01887	<u> </u>
	'No. Cuties-		····		in Quote #	***************************************
Bill (if different than above)	Address					
Sampler (Print/Sign) Brian Geringer/ Bu	2-			Copies To:		
LAB USE ONLY WORK ORDER #: 544521				SAND CONTAIN PRESERVATEVE		
KATAHDIN PROJECT NUMBER	Filt		Filt. Filt.	Filt. Filt.		Filt. DY ON
TEMA INC.				\$ 5 5	3	(0
SHIPPING INFO:	ENT	Chlorde			etals Metals os	
AIRBILL NO: TEMP BLANK INTACT INO	T INTACT			η· Δ	Z Z	ldes,
* Sample Description Date / Time coll'd Matrix	No of >	Ving	EPH EPH	Svocs	Total Metals Dissolved Med Prox/Pros	Rstades/RBS
FTA-GH-TB02-061814 6/18/14/1600 AG	8 >		X			
FTA-MW-208-061814 ","/1615 GW	18 >		$\times \times $	\times	$\times \times \times$	
FTA-MW-1-061814 / 1630 ""	18 🗙		$\times \times $	\times	$\times \times \times$	
FTA-GW-DUPOQ-001814 \$ /0000	18 ×		$\times \times$	\times	$\times \times \times$	
FTA-6456 210-061814 6/19/14/0900 V	52 ×		$\times \times$	\times	$\times \times \times$	
FTA-SW-01-061914 " " / 0920 SW	14 🗙		\times	XX	$\times \times$	
" " -02-061914 /1042 ","	14 ×		\times	$\times \times$	$\times \times$	
-03-061914 /1215	40 ×		\times	XX	$\times \times$	
-06-061914 /1435	14 X	\times	X	$\times \times$	$\times \times$	
-07-061914 / 1715	14 ×		\times	$\times \times$	$\times \times$	
1-08-061914 /1630	14 ×		\times	$\times \times$	$\times \times$	
FTA-SU-DUPOI-061914 1 /0000 1	14 X		X	$\times \times$	$\times \times$	
FTA-SD-RBON-068014 6-80-14/0800 AG	10 X		X	X	X	X
COMMENTS Standard TAT-FTA-MW-210-061814.	+ FTA-SW-C	3-861914	are QC	The square of th	THE PROPERTY OF THE PROPERTY O	
Relinquished By: (Signature)			d By: (Signature)	Date / Tin	ne Received By: (Signat	ture)
B= B= 6/20/4 1500						
Relinquished By: (Signature) Date / Time Received By: ((Signature)	Relinquished	d By: (Signature)	Date / Tin	ne Received By: (Signat	ture)

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Web

Collect

Date/Time

Quote/Incoming: TT-CUTLERWE53A(

Account: TETRAT001

Primary Report Address:

Tetra Tech NUS, Inc.

661 Anderson Drive

Vanessa Good

Foster Plaza 7

Tetra Tech NUS, Inc.

NCTAMSLANT Cutler CTO WE53 AOCs

Project: TT-CUTLERWE53AOCS

Login Information:

ANALYSIS INSTRUCTIONS : DoD QSM with DoD limits. ND to LOD. "J" flag

between MDL and LOQ. VOAs soils pres w/ sod bisul/MeOH. EPH/VPH- report ranges only. Decant sediments for all except VOA/VPH is there is standing water. Run TS first. Increase sample weight to compensate for TS. If mositure still too high further steps will be needed. Metals (6020A/7471A/7471B-run MS/lab dup, post dig

Page: 1 of 11

spike and serial dilutions. SVOA/PAH-

1045366 106-CTO WE53 112G02585

8270D.PCBs-8082A-SOXHLET EXCRACTION.

Final volume for Pest/PCB=2mls.

: JO/GN

: JO

Pittsburgh,PA 15220

Primary invoice Address:

Accounts Pavable Tetra Tech NUS, Inc. 661 Andersen Drive

Foster Plaza 7

Pittsburgh,PA 15220

Report CC Addresses: Invoice CC Addresses:

Laboratory

Sample ID

Client

Sample Number

CHECK NO.

CLIENT PO#

CLIENT PROJECT MANAGE: Mindi Messmer

CONTRACT

COOLER TEMPERATURE

: 3.2, 0.9, 2.1, 3.3, 0.6, 1.9, 2.2, 0.8 **DELIVERY SERVICES** : CDS

EDD FORMAT LOGIN INITIALS

PM

PROJECT NAME

REGULATORY LIST

oc Receive

Verbal

NCTAMSLANT Cutter CTO WE53 FT/ Due

: KAS119QC-CSV

: N62467-04-D-0055

IV Date Date Mailed

			CEGULATURT LIST		
SH4401-1	FTA-GW-TB01-061714	17-JUN-14 08:00 R	REPORTAINSTRUCTIONS	Summary pack and 2 CDs to	sage needs all forms. Send HC √anessa. Email PDF to Mindi. If
Matríx	Product	Hold Date (shortest)	Bottle Type	Bottili Comceeds file	e limits, please nnail CD.
Aqueous	S MA-VPH-LOD	01-JUL-14 S	DG 18mL Vial+HCI	: WE53-7	
Aqueous	S SW8260-S	01-JUL-14	40mL Vial+HCl		
Aqueous	S SW8260SIM-S	_{01-JUL-14} Տ	DG STATUSICI	: Begin	
SH4401-2	FTA-MW-9-061714	17-JUN-14 10:20	19-JUN-14	08-JUL	-14
Matrix	Product	Hold Date (shortest)	Bottle Type	Bottle Count	Comments
Aqueous	S MA-EPH-LOD	01-JUL-14	1L N-Amber Glass		
Aqueous	S MA-VPH-LOD	01-JUL-14	40mL Viai+HCI		
Aqueous	S SW3010-PREP	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW3010MS-PREP	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6010-ALUMINUM	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6010-BARIUM	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6010-CALCIUM	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6010-IRON	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6010-MAGNESIUM	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6010-MANGANESE	14-DEC-14	250mt_Plastic+HNO3		
Aqueous	S SW6010-POTASSIUM	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6010-SODIUM	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6010-ZINC	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6020-ANTIMONY	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6020-ARSENIC	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6020-BERYLLIUM	14-DEC-14	250ml. Plastic+HNO3		
Aqueous	S SW6020-CADMIUM	14-DEC-14	250mL Plastic+HNQ3		
Aqueous	S SW6020-CHROMIUM	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6020-COBALT	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6020-COPPER	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6020-LEAD	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6020-NICKEL	14-DEC-14	250ml. Plastic+HNO3		
Aqueous	S SW6020-SELENIUM	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW6020-SILVER	14-DEC-14	250ml. Plastic+HNO3		
Aqueous	S SW6020-THALLIUM	14-DEC-14	250ml. Plastic+HNO3		
Aqueous	S SW6020-VANADIUM	14-DEC-14	250mL Plastic+HNO3		
Aqueous	S SW7470-MERCURY	15-JUL-14	500mL Plastic+HNO3		- 0
Aqueous	S SW8260-S	01-JUL-14	40mL Vial+HCl		<i>∞</i>
Aqueous	S SW8260SIM-S	01-JUL-14	40mL Vial+HCl		-101-101
Aqueous	S SW8270-S	24-JUN-14	1L N-Amber Glass		101
Aqueous	S SW8270SIM-S	24-JUN-14	1L N-Amber Glass		06-19-14
Aqueous	S SW8321PERC-SUB	15-JUL-14			0

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A0

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laborator	~	Client	Collect	Receive		Verbal	Due	WHATE - 1
Sample ID)	Sample Number	Date/Time	Date	PR	Date	Date	Mailed
SH4401-3	F	FTA-MW-9-061714	17-JUN-14 10:20	19-JUN-14			08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Co	ount	Comments
Aqueous	S		14-DEC-14	250mL Plastic				
Aqueous	S	SW3010MS-PREP	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ALUMINUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-BARIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-CALCIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-IRON-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-MAGNESIUM-DIS	14-DEC-14	250ml. Plastic				
Aqueous	S	SW6010-MANGANESE-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-POTASSIUM-DIS	14-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-SODIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ZINC-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-ANTIMONY-DIS	14-DEC-14	250mL Plastic				
Aqueous	_	SW6020-ARSENIC-DIS	14-DEC-14	250mL Plastic-				
Aqueous	S	SW6020-BERYLLIUM-DIS	14-DEC-14	250mL Plastic-				
Aqueous	S	SW6020-CADMIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-CHROMIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-COBALT-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-COPPER-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-LEAD-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-NICKEL-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-SELENIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-SILVER-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-THALLIUM-DIS	14-DEC-14	250ml. Plastic+				
Aqueous	S	SW6020-VANADIUM-DIS	14-DEC-14	250mL Plastic+				
Aqueous	S	SW7470-MERCURY-DIS	15-JUL-14	500mL Plastic+	HNO3	****		
SH4401-4	F	TA-MW-10-061714	17-JUN-14 12:30	19-JUN-14			08-JUL-14	
Matrix	_	Product	Hold Date (shortest)	Bottle Type		Bottle Co	unt	Comments
Aqueous	S	MA-EPH-LOD	01-JUL-14	1L N-Amber Gl	ass			
Aqueous	S	MA-VPH-LOD	01-JUL-14	40mL Vial+HCl				
Aqueous	S	SW3010-PREP	14-DEC-14	250mL Plastic+				
Aqueous	S	SW3010MS-PREP	14-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-ALUMINUM	14-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-BARIUM	14-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-CALCIUM	14-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-IRON	14-DEC-14	250mL Plastic+				
Aqueous	s s	SW6010-MAGNESIUM	14-DEC-14	250mL Plastic+				
Aqueous		SW6010-MANGANESE	14-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-POTASSIUM	14-DEC-14	250mL Plastic+				
Aqueous	S S	SW6010-SODIUM SW6010-ZINC	14-DEC-14	250mL Plastic+				
Aqueous Aqueous	S	SW6010-ZINC SW6020-ANTIMONY	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-ARSENIC	14-DEC-14 14-DEC-14	250ml. Plastic+				
Aqueous		SW6020-BERYLLIUM	14-DEC-14 14-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-BERYLLIUM SW6020-CADMIUM		250mL Plastic+				
Aqueous			14-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-CHROMIUM SW6020-CORALT	14-DEC-14	250mL Plastic+i				
Aqueous	S	SW6020-COBALT SW6020-COPPER	14-DEC-14	250ml. Plastic+				
Aqueous	S	SW6020-COPPER SW6020-LEAD	14-DEC-14 14-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-NICKEL	14-DEC-14 14-DEC-14	250mL Plastic+i				
Aqueous	S	SW6020-NICKEL SW6020-SELENIUM	14-DEC-14 14-DEC-14	250mL Plastic+i				
Aqueous		SW6020-SELENIUM SW6020-SILVER	14-DEC-14 14-DEC-14	250mL Plastic+I				
Aqueous	S	SW6020-SILVER SW6020-THALLIUM	14-DEC-14 14-DEC-14	250mL Plastic+I				<u>~</u>
		SW6020-VANADIUM		250mL Plastic+I				€ - W
-	•		14-DEC-14	250mL Plastic+				
Aqueous	S		46 (10 44	EDDml Disserved				
Aqueous Aqueous	s	SW7470-MERCURY	15-JUL-14	500mL Plastic+I	HNO3			101
Aqueous Aqueous Aqueous	s s	SW7470-MERCURY SW8260-S	01-JUL-14	40mL Vial+HCI	HNO3			210.701
Aqueous Aqueous Aqueous Aqueous	s s	SW7470-MERCURY SW8260-S SW8260SIM-S	01-JUL-14 01-JUL-14	40mL Vial+HCl 40mL Vial+HCl				06.19.14
Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$	SW7470-MERCURY SW8260-S SW8260SIM-S SW8270-S	01-JUL-14 01-JUL-14 24-JUN-14	40mL Vial+HCl 40mL Vial+HCl 1L N-Amber Gla	\$S			06.101
Aqueous Aqueous Aqueous Aqueous	s s s	SW7470-MERCURY SW8260-S SW8260SIM-S	01-JUL-14 01-JUL-14	40mL Vial+HCl 40mL Vial+HCl	\$S			06.101

Page: 2 of 11

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A(

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laborato	ry	Client	Collect	Receive	-	Verbal	Due	
Sample II		Sample Number	Date/Time	Date	PR	Date	Date	Mailed
SH4401-5	F	TA-MW-10-061714	17-JUN-14 12:30	19-JUN-14			08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Co	ount	Comments
Aqueous	S	SW3010-PREP	14-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	SW3010MS-PREP	14-DEC-14	250mL Plastic	+HNO3			
Aqueous	s	SW6010-ALUMINUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-BARIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	s	SW6010-CALCIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-IRON-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-MAGNESIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-MANGANESE-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-POTASSIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-SODIUM-DIS	14-DEC-14	250ml. Plastic				
Aqueous	S	SW6010-ZINC-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-ANTIMONY-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-ARSENIC-DIS	14-DEC-14	250ml. Plastic				
Aqueous	S	SW6020-BERYLLIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-CADMIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-CHROMIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-COBALT-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-COPPER-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-LEAD-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-NICKEL-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-SELENIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous Aqueous	S	SW6020-SILVER-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-THALLIUM-DIS SW6020-VANADIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW7470-MERCURY-DIS	14 DEC-14 15-JUL-14	250mL Plastic				
SH4401-6		TA-MW-11-061714		500mL Plastic-	rnivos		00 1111 44	
	Γ-	TA-WW-11-001714	17-JUN-14 10:20	19-JUN-14			08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Co.	unt	Comments
Aqueous	S S	MA-EPH-LOD	01-JUL-14	1L N-Amber GI				
Aqueous Aqueous	S	MA-VPH-LOD SW3010-PREP	01-JUL-14	40mL Vial+HC				
Aqueous	S	SW3010-PREP	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ALUMINUM	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-BARIUM	14-DEC-14 14-DEC-14	250mL Plastics				
Aqueous	s	SW6010-CALCIUM	14-DEC-14	250mL Plastic				
Aqueous	s	SW6010-PRON	14-DEC-14	250mL Plastic				
Aqueous	s	SW6010-MAGNESIUM	14-DEC-14	250mL Plastic+ 250mL Plastic+				
Aqueous	s	SW6010-MANGANESE	14-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-POTASSIUM	14-DEC-14	250mL Plastic+				
Aqueous	Š	SW6010-SODIUM	14-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-ZINC	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-ANTIMONY	14-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-ARSENIC	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-BERYLLIUM	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-CADMIUM	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-CHROMIUM	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-COBALT	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-COPPER	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-LEAD	14-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-NICKEL	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-SELENIUM	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-SILVER	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-THALLIUM	14-DEC-14	250mL Plastic+				
Aqueous		SW6020-VANADIUM	14-DEC-14	250mL Plastic+				~
Aqueous	s	SW7470~MERCURY	15-JUL-14	500mL Plastic+				M. ~ M)
Aqueous	S	SW8260-S	01-JUL-14	40mL Vial+HCI				- U M
Aqueous	s	SW8260SIM-S	01-JUL-14	40mL Vial+HCl				Vio.f.
Aqueous		SW8270-S	24-JUN-14	1L N-Amber Gla	ISS			08-19-14
		014/007004110						
Aqueous Aqueous		SW8270SIM-S SW8321PERC-SUB	24-JUN-14 15-JUL-14	1L N-Amber Gla	155			_

Page: 3 of 11

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A0

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laborator	ν	Client	Collect	Receive	Verbal	Due	
Sample ID	-	Sample Number	Date/Time	Date PR	Date	Date	Mailed
SH4401-7	F	FTA-MW-11-061714	17-JUN-14 10:20	19-JUN-14		08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Cou	ınt	Comments
Aqueous		SW3010-PREP	14-DEC-14	250mL Plastic+HNO:	3		
Aqueous	S	SW3010MS-PREP	14-DEC-14	250mL Plastic+HNO:	1		
Aqueous	S	SW6010-ALUMINUM-DIS	14-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6010-BARIUM-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-CALCIUM-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-IRON-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	\$	SW6010-MAGNESIUM-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-MANGANESE-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	s	SW6010-POTASSIUM-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-SODIUM-DIS	14-DEC-14	250ml. Plastic+HNO3			
Aqueous	S	SW6010-ZINC-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-ANTIMONY-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-ARSENIC-DIS	14-DEC-14	250ml. Plastic+HNO3			
Aqueous	S	SW6020-BERYLLIUM-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-CADMIUM-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-CHROMIUM-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-COBALT-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S S	SW6020-COPPER-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-LEAD-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-NICKEL-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-SELENIUM-DIS	14-DEC-14	250ml. Plastic+HNO3			
Aqueous Aqueous	S	SW6020-SILVER-DIS SW6020-THALLIUM-DIS	14-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-VANADIUM-DIS	14-DEC-14 14-DEC-14	250mL Plastic+HNO3			
Aqueous	s	SW7470-MERCURY-DIS	15-JUL-14	250mL Plastic+HNO3 500mL Plastic+HNO3			
SH4401-8		TA-MW-12-061714	17-JUN-14 12:40	19-JUN-14	- P.YE. 11. 1	08-JUL-14	
Matrix	******	Product	Hold Date (shortest)	Bottle Type	Partia Carr		
Aqueous	s	MA-EPH-LOD	01-JUL-14	1L N-Amber Glass	Bottle Cour	n	Comments
Aqueous	S	MA-VPH-LOD	01-30L-14 01-JUL-14	40mL Vial+HCI			
Aqueous	s	SW3010-PREP	14-DEC-14	250mL Plastic+HNO3			
Aqueous	s	SW3010MS-PREP	14-DEC-14	250mL Plastic+HNQ3			
Aqueous	s	SW6010-ALUMINUM	14-DEC-14	250mL Plastic+HNO3			
Aqueous	s	SW6010-BARIUM	14-DEC-14	250mL Plastic+HNO3			
Aqueous				LOOME (lasto · lines			
	s	SW6010-CALCIUM	14-DEC-14	250ml Plastic+HNO3			
Aqueous	s s	SW6010-CALCIUM SW6010-IRON	14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous	s s	SW6010-CALCIUM SW6010-IRON SW6010-MAGNESIUM	14-DEC-14	250mL Plastic+HNO3			
Aqueous Aqueous Aqueous	s	SW6010-IRON	14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous	s s	SW6010-IRON SW6010-MAGNESIUM	14-DEC-14 14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	s s	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE	14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous	\$ \$ \$ \$	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM	14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM	14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$ \$ \$ \$ \$ \$	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC	14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	s s s s s s s s	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY	14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	5 5 5 5 5 5 5 5 5	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC	14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	555555555555555555555555555555555555555	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM	14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CHROMIUM SW6020-COBALT	14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER	14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14 14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CADMIUM SW6020-COBALT SW6020-CPPER SW6020-LEAD	14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	\circ	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-SODIUM SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CADMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL	14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	s s s s s s s s s s s s s s s s s	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM	14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	s s s s s s s s s s s s s s s s s s s	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SOILUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SELENIUM	14-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	99999999999999999	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CHROMIUM SW6020-COBALT SW6020-COPER SW6020-LEAD SW6020-LEAD SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM	14-DEC-14	250mL Plastic+HNO3			
Aqueous	99999999999999999	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CADMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-THALLIUM	14-DEC-14	250mL Plastic+HNO3			
Aqueous	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SW6010-IRON SW6010-MAGNESIUM SW6010-MANGANESE SW6010-POTASSIUM SW6010-SODIUM SW6010-SODIUM SW6010-ZINC SW6020-ARTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CADMIUM SW6020-CHROMIUM SW6020-COPPER SW6020-LEAD SW6020-ILEAD SW6020-NICKEL SW6020-SILENIUM SW6020-SILVER SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY	14-DEC-14	250mL Plastic+HNO3			OP a .14
Aqueous		SW6010-IRON SW6010-MAGNESIUM SW6010-MAGNESE SW6010-POTASSIUM SW6010-SODIUM SW6010-SODIUM SW6010-SODIUM SW6020-ARSENIC SW6020-ARSENIC SW6020-CADMIUM SW6020-CADMIUM SW6020-CADMIUM SW6020-COBALT SW6020-COPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S	14-DEC-14	250mL Plastic+HNO3			OP, q.14
Aqueous	******************	SW6010-IRON SW6010-MAGNESIUM SW6010-MAGNESE SW6010-POTASSIUM SW6010-SODIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CADMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-ILEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S SW8260SIM-S	14-DEC-14	250mL Plastic+HNO3 350mL Plastic+HNO3 40mL Vial+HCI			06,9.14
Aqueous	******************	SW6010-IRON SW6010-MAGNESIUM SW6010-MAGNESE SW6010-POTASSIUM SW6010-SODIUM SW6010-SODIUM SW6010-ZINC SW6020-ARTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CHROMIUM SW6020-CHROMIUM SW6020-COPPER SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SELENIUM SW6020-THALLIUM SW6020-THALLIUM SW6020-THALLIUM SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S SW8260SIM-S SW8270-S	14-DEC-14 15-JUL-14 01-JUL-14 01-JUL-14 01-JUL-14	250mL Plastic+HNO3 40mL Vial+HCI 40mL Vial+HCI			06.19.14
Aqueous	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SW6010-IRON SW6010-MAGNESIUM SW6010-MAGNESE SW6010-POTASSIUM SW6010-SODIUM SW6010-SODIUM SW6010-ZINC SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CADMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-ILEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S SW8260SIM-S	14-DEC-14	250mL Plastic+HNO3 350mL Plastic+HNO3 40mL Vial+HCI			06.19.14

Page: 4 of 11

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A(

Page: 5 of 11

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

Laboratory	/	Client	Collect	Receive		Verbal	Due	
Sample ID		Sample Number	Date/Time	Date	PR	Date	Date	Mailed
SH4401-9	F	TA-MW-12-061714	17-JUN-14 12:40	19-JUN-14			08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Co	ount	Comments
Aqueous	S	SW3010-PREP	14-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	SW3010MS-PREP	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ALUMINUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-BARIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-CALCIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-IRON-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-MAGNESIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-MANGANESE-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-POTASSIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-SODIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ZINC-DIS	14-DEC-14	250mL Plastic-				
Aqueous	S	SW6020-ANTIMONY-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-ARSENIC-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-BERYLLIUM-DIS	14-DEC-14	250mL Plastic-				
Aqueous	S	SW6020-CADMIUM-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-CHROMIUM-DIS	14-DEC-14	250mL Plastic-				
Aqueous	S	SW6020-COBALT-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-COPPER-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-LEAD-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-NICKEL-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-SELENIUM-DIS	14-DEC-14	250mL Plastic-				
Aqueous	S	SW6020-SILVER-DIS	14-DEC-14	250mL Plastic				
Aqueous	S	SW6020-THALLIUM-DIS	14-DEC-14	250ml. Plastic⁴				
Aqueous	S	SW6020-VANADIUM-DIS	14-DEC-14	250mL Plastic+				
Aqueous	s	SW7470-MERCURY-DIS	15-JUL-14	500mL Plastic	HNO3			
SH4401-10	F	TA-MW-5-061814	18-JUN-14 09:52	19-JUN-14			08-JUL-14	
Matrix	_	Product	Hold Date (shortest)	Bottle Type		Bottle Co.	unt	Comments
Aqueous		MA-EPH-LOD	02-JUL-14	1L N-Amber GI	ass			
Aqueous		MA-VPH-LOD	02-JUL-14	40mL Vial+HCl				
Aqueous		SW3010-PREP	15-DEC-14	250mL Plastic+				
Aqueous		SW3010MS-PREP	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-ALUMINUM	15-DEC-14	250mL Plastic+				
Aqueous		SW6010-BARIUM	15-DEC-14	250mL Plastic+				
Aqueous		SW6010-CALCIUM	15-DEC-14	250mL Plastic+				
Aqueous		SW6010-IRON	15-DEC-14	250mL Plastic+				
Aqueous		SW6010-MAGNESIUM	15-DEC-14	250mL Plastic+				
Aqueous		SW6010-MANGANESE	15-DEC-14	250mL Plastic+				
Aqueous		SW6010-POTASSIUM	15-DEC-14	250mL Plastic+				
Aqueous		SW6010-SODIUM	15-DEC-14	250mL Plastic+				
Aqueous		SW6010-ZINC	15-DEC-14	250mL Plastic+				
Aqueous Aqueous		SW6020-ANTIMONY	15-DEC-14	250mL Plastic+				
Aqueous Aqueous		SW6020-ARSENIC SW6020-BERYLLIUM	15-DEC-14	250mL Plastic+				
Aqueous Aqueous			15-DEC-14	250mL Plastic+				
Aqueous Aqueous		SW6020-CADMIUM SW6020-CHROMIUM	15-DEC-14	250ml. Plastic+				
Aqueous		SW6020-COBALT	15-DEC-14 15-DEC-14	250mL Plastic+ 250mL Plastic+				
Aqueous		SW6020-COPPER	15-DEC-14	250mL Plastic+ 250mL Plastic+				
Aqueous Aqueous		SW6020-COPPER SW6020-LEAD	15-DEC-14 15-DEC-14	250mL Plastic+				
Aqueous		SW6020-LEAD SW6020-NICKEL	15-DEC-14	250mL Plastic+				
Aqueous		SW6020-SELENIUM	15-DEC-14	250mL Plastic+				
Aqueous		SW6020-SILVER	15-DEC-14	250mL Plastic+				
		SW6020-THALLIUM	15-DEC-14	250mL Plastic+				
		SW6020-VANADIUM	15-DEC-14 15-DEC-14	250ml. Plastic+				
Aqueous Aqueous		SW7470-MERCURY	16-JUL-14	500mL Plastic+				(X . 1)U
Aqueous	S		10.005.14	OUGHL FIASIUT	11400			$\mathcal{L}_{\mathbf{I}}$
Aqueous Aqueous			02-101-14	40ml Vial+UC				
Aqueous Aqueous Aqueous	s	SW8260-S	02-JUL-14 02-JUL-44	40mL Vial+HCl				-' v.f.
Aqueous Aqueous Aqueous Aqueous	S S	SW8260-S SW8260SIM-S	02-JUL-14	40mL Vial+HCi	una.			W. 1.
Aqueous Aqueous Aqueous	S S	SW8260-S						OP.19.14

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A(

Page: 6 of 11

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

Laborator Sample ID	-	Client Sample Number	Collect Date/Time	Receive Date Pr	Verbal Date	Due Date	Mailed
SH4401-11	F	TA-MW-5-061814	18-JUN-14 09:52	19-JUN-14		08-JUL-14	PARTITION OF THE PARTIT
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Co	unt	Comments
Aqueous	S	SW3010-PREP	15-DEC-14	250mL Plastic+HN0	03		
Aqueous	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+HN0)3		
Aqueous	S	SW6010-ALUMINUM-DIS	15-DEC-14	250ml. Plastic+HN0	3		
Aqueous	S	SW6010-BARIUM-DIS	15-DEC-14	250mL Plastic+HN0)3		
Aqueous	S	SW6010-CALCIUM-DIS	15-DEC-14	250ml. Plastic+HN0)3		
Aqueous	S	SW6010-IRON-DIS	15-DEC-14	250mL Plastic+HN0)3		
Aqueous	S	SW6010-MAGNESIUM-DIS	15-DEC-14	250mL Plastic+HN0	93		
Aqueous	S	SW6010-MANGANESE-DIS	15-DEC-14	250mL Plastic+HN0	3		
Aqueous	S	SW6010-POTASSIUM-DIS	15-DEC-14	250mL Plastic+HN0	03		
Aqueous	S	SW6010-SODIUM-DIS	15-DEC-14	250ml, Plastic+HN0	3		
Aqueous	S	SW6010-ZINC-DIS	15-DEC-14	250mL Plastic+HN0	03		
Aqueous	S	SW6020-ANTIMONY-DIS	15-DEC-14	250mL Plastic+HN0			
Aqueous	S	SW6020-ARSENIC-DIS	15-DEC-14	250ml, Plastic+HN0	93		
Aqueous	S	SW6020-BERYLLIUM-DIS	15-DEC-14	250mL Plastic+HNC			
Aqueous	S	SW6020-CADMIUM-DIS	15-DEC-14	250mL Plastic+HNC			
Aqueous	S	SW6020-CHROMIUM-DIS	15-DEC-14	250mL Plastic+HNC			
Aqueous	S	SW6020-COBALT-DIS	15-DEC-14	250mL Plastic+HNC			
Aqueous	S	SW6020-COPPER-DIS	15-DEC-14	250ml. Plastic+HNC			
Aqueous	S	SW6020-LEAD-DIS	15-DEC-14	250mL Plastic+HNC			
Aqueous	S	SW6020-NICKEL-DIS	15-DEC-14	250mL Plastic+HNC			
Aqueous	S	SW6020-SELENIUM-DIS	15-DEC-14	250ml, Plastic+HNC			
Aqueous	S	SW6020-SILVER-DIS	15-DEC-14	250mL Plastic+HNC			
Aqueous	S	SW6020-THALLIUM-DIS SW6020-VANADIUM-DIS	15-DEC-14	250mL Plastic+HNC	-		
Aqueous Aqueous	s s	SW7470-MERCURY-DIS	15-DEC-14	250mL Plastic+HNC			
SH4401-12		TA-MW-203-061814	16-JUL-14 18-JUN-14 10:20	500mL Plastic+HNC	3	08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Co.		Commonto
Aqueous	s	MA-EPH-LOD	02-JUL-14	1L N-Amber Glass	Pome Cor	m	Comments
Aqueous	s	MA-VPH-LOD	02-JUL-14	40mL Vial+HCl			
Aqueous	s	SW3010-PREP	15-DEC-14	250mL Plastic+HNC	3		
Aqueous	s	SW3010MS-PREP	15-DEC-14	250mL Plastic+HNO			
Aqueous	s	SW6010-ALUMINUM	15-DEC-14	250mL Plastic+HNO			
Aqueous	s	SW6010-BARIUM	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6010-CALCIUM	15-DEC-14	250mL Plastic+HNO			
Aqueous	s	SW6010-JRON	15-DEC-14	250mL Plastic+HNO			
Aqueous	s	SW6010-MAGNESIUM	15-DEC-14	250ml, Plastic+HNO			
Aqueous	s	SW6010-MANGANESE	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6010-POTASSIUM	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6010-SODIUM	15-DEC-14	250mL Plastic+HNO			
Aqueous	s	SW6010-ZINC	15-DEC-14	250mL Plastic+HNO			
Aqueous	s	SW6020-ANTIMONY	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6020-ARSENIC	15-DEC-14	250ml. Plastic+HNO	3		
Aqueous	s	SW6020-BERYLLIUM	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-CADMIUM	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	\$	SW6020-CHROMIUM	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	s	SW6020-COBALT	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-COPPER	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-LEAD	15-DEC-14	250ml. Plastic+HNO	3		
Aqueous	S	SW6020-NICKEL	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-SELENIUM	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	s	SW6020-SILVER	15-DEC-14	250mL Plastic+HNO			
Aqueous		SW6020-THALLIUM	15-DEC-14	250mL Plastic+HNO			08, 9.14
Aqueous	S	SW6020-VANADIUM	15-DEC-14	250mL Plastic+HNO:			\sim
Aqueous		SW7470-MERCURY	16-JUL-14	500mL Plastic+HNO:	3		CX ~. M
Aqueous		SW8260-S	02-JUL-14	40mL Vial+HCl			- 4,01.1
Aqueous		SW8260SIM-S	02-JUL-14	40mL Vial+HCI			mln.1
		SW8270-S	25-JUN-14	1L N-Amber Glass			F N V
Aqueous							1)
	s	SW8270SIM-S SW8321PERC-SUB	25-JUN-14 16-JUL-14	1L N-Amber Glass			

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A(

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laboratory Sample ID	/	Client Sample Number	Collect Date/Time	Receive Date PR	Verbal Date	Due Date	Mailed
SH4401-13	F	FTA-MW-203-061814	18-JUN-14 10:20	19-JUN-14		08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Cou	ınt	Comments
Aqueous	s	SW3010-PREP	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-ALUMINUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-BARIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-CALCIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-JRON-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-MAGNESIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-MANGANESE-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-POTASSIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-SODIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	s	SW6010-ZINC-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	s	SW6020-ANTIMONY-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	s	SW6020-ARSENIC-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-BERYLLIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	s	SW6020-CADMIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-CHROMIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-COBALT-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-COPPER-DIS	15-DEC-14	250ml Plastic+HNO3			
Aqueous	s	SW6020-LEAD-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-NICKEL-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-SELENIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-SILVER-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-THALLIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-VANADIUM-DIS	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW7470-MERCURY-DIS	16-JUL-14	500mL Plastic+HNO3			
SH4401-14	F	TA-GW-DUP01-061814	18-JUN-14 00:00	19-JUN-14		08-JUL-14	
Matrix	_	Product	Hold Date (shortest)	Bottle Type	Bottle Cou	nt	Comments
Aqueous	S	MA-EPH-LOD	02-JUL-14	1L N-Amber Glass			
Aqueous	S	MA-VPH-LOD	02-JUL-14	40mL Vial+HCl			
Aqueous	S	SW3010-PREP	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-ALUMINUM	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-BARIUM	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-CALCIUM	15-DEC-14	250mL Plastic+HNO3			
,	S	SW6010-IRON	15-DEC-14	250mL Plastic+HNO3			
,	S	SW6010-MAGNESIUM	15-DEC-14	250mL Plastic+HNO3			
•	S	SW6010-MANGANESE	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-POTASSIUM	15-DEC-14	250mL Plastic+HNO3			
	s s	SW6010-SODIUM SW6010-ZINC	15-DEC-14	250mL Plastic+HNO3			
-	S	SW6020-ANTIMONY	15-DEC-14 15-DEC-14	250mL Plastic+HNO3			
•	S	SW6020-ARSENIC	15-DEC-14 15-DEC-14	250ml. Plastic+HNO3 250ml. Plastic+HNO3			
	S						
		SW6020-BERYLLIUM SW6020-CADMIUM	15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
				ZOURN EXECUTERING DO			
Anneous							
	s	SW6020-CHROMIUM	15-DEC-14	250mL Plastic+HNO3			
Aqueous	s s	SW6020-CHROMIUM SW6020-COBALT	15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous	8 8 8	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER	15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous	\$ \$ \$ \$	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$ \$	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$ \$ \$ \$	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$ \$ \$ \$ \$ \$	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	8 8 8 8 8 8 8 8	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	8 5 5 5 5 5 5 5 5	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			OP 2.14
Aqueous	8888888888	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCI			or any
Aqueous	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S SW8260SIM-S	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 16-JUL-14 02-JUL-14	250mL Plastic+HNO3 40mL Vial+HCI 40mL Vial+HCI			06,19.1rd
Aqueous	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	SW6020-CHROMIUM SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCI			06.19.14

Page: 7 of 11

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A(

Page: 8 of 11

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

Laborator Sample ID	/	Client Sample Number	Collect Date/Time	Receive Date PR	Verbal Date	Due Date	Mailed
SH4401-15	F	TA-GW-DUP01-061814	18-JUN-14 00:00	19-JUN-14	· PMM-1-1-1-1-1-1	08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Cor	unt	Comments
Aqueous	S	SW3010-PREP	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6010-ALUMINUM-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6010-BARIUM-DIS	15-DEC-14	250ml. Plastic+HNO	3		
Aqueous	S	SW6010-CALCIUM-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6010-IRON-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6010-MAGNESIUM-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6010-MANGANESE-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	s	SW6010-POTASSIUM-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6010-SODIUM-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6010-ZINC-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-ANTIMONY-DIS	15-DEC-14	250mL Plastic+HNO	3	•	
Aqueous	S	SW6020-ARSENIC-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-BERYLLIUM-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	s	SW6020-CADMIUM-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-CHROMIUM-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-COBALT-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-COPPER-DIS	15-DEC-14	250ml. Plastic+HNO:	3		
Aqueous	S	SW6020-LEAD-DIS	15-DEC-14	250mL Plastic+HNO:	3		
Aqueous	S	SW6020-NICKEL-DIS	15-DEC-14	250mL Plastic+HNO:			
Aqueous	S	SW6020-SELENIUM-DIS	15-DEC-14	250mL Plastic+HNO:	3		
Aqueous	S	SW6020-SILVER-DIS	15-DEC-14	250mL Plastic+HNO:	3		
Aqueous	S	SW6020-THALLIUM-DIS	15-DEC-14	250ml, Plastic+HNO:			
Aqueous	s	SW6020-VANADIUM-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW7470-MERCURY-DIS	16-JUL-14	500mL Plastic+HNO3			
SH4401-16	F	TA-MW-218-061814	18-JUN-14 12:38	19-JUN-14		08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Cou	nt	Comments
Aqueous		MA-EPH-LOD	02-JUL-14	1L N-Amber Glass			
Aqueous	S	MA-VPH-LOD	02-JUL-14	40mL Vial+HCl			
Aqueous		SW3010-PREP	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-ALUMINUM	15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6010-BARIUM	15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6010-CALCIUM	15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6010-IRON	15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6010-MAGNESIUM	15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6010-MANGANESE	15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6010-POTASSIUM	15-DEC-14	250mL Plastic+HNO3			
Aqueous Aqueous		SW6010-SODIUM SW6010-ZINC	15-DEC-14 15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6020-ANTIMONY	15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous		SW6020-ARSENIC	15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous		SW6020-BERYLLIUM	15-DEC-14 15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6020-CADMIUM	15-DEC-14 15-DEC-14				
Aqueous		SW6020-CADMIUM SW6020-CHROMIUM	15-DEC-14 15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6020-COBALT	15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous		SW6020-COPPER	15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6020-LEAD	15-DEC-14	250mL Plastic+HNO3			
Aqueous		SW6020-NICKEL	15-DEC-14	250mL Plastic+HNO3			
7		SW6020-SELENIUM	15-DEC-14	250mL Plastic+HNO3			
Aqueous			15-DEC-14 15-DEC-14	250mL Plastic+HNO3			
•		SWb02U-SILVER		ZOVINE I IASHOTRINOS			
Aqueous	s	SW6020-SILVER SW6020-THALLIUM		250ml Plastic+HNO2			
Aqueous Aqueous	s s	SW6020-THALLIUM	15-DEC-14	250mL Plastic+HNO3			Service .
Aqueous Aqueous Aqueous	S S	SW6020-THALLIUM SW6020-VANADIUM	15-DEC-14 15-DEC-14	250ml. Plastic+HNO3			ο λ
Aqueous Aqueous Aqueous Aqueous	S S S	SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY	15-DEC-14 15-DEC-14 16-JUL-14	250ml, Plastic+HNO3 500ml, Plastic+HNO3			00 a.14
Aqueous Aqueous Aqueous Aqueous Aqueous	s s s	SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S	15-DEC-14 15-DEC-14 16-JUL-14 02-JUL-14	250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCl			op _a ,u
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY	15-DEC-14 15-DEC-14 16-JUL-14 02-JUL-14 02-JUL-14	250ml. Plastic+HNO3 500ml. Plastic+HNO3 40mL Vial+HCl 40mL Vial+HCl			000,101 W
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	s s s s s	SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S SW8260SIM-S	15-DEC-14 15-DEC-14 16-JUL-14 02-JUL-14	250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCl			06,9.14

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A(

Account:TETRAT001

Web

Project: TT-CUTLERWE53AOCS

Tetra Tech NUS, Inc.

NCTAMSLANT Cutler CTO WE53 AOCs

Laboratory Sample ID	,	Client Sample Number	Collect Date/Time	Receive Date PR	Verbal Date	Due Date	Mailed
SH4401-17	F	TA-MW-218-061814	18-JUN-14 12:38	19-JUN-14		08-JUL-14	77 TH TO HELD
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Co	unt	Comments
Aqueous	S	SW3010-PREP	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6010-ALUMINUM-DIS	15-DEC-14	250ml. Plastic+HNO	3		
Aqueous	s	SW6010-BARIUM-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6010-CALCIUM-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6010-IRON-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	s	SW6010-MAGNESIUM-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	s	SW6010-MANGANESE-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6010-POTASSIUM-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6010-SODIUM-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6010-ZINC-DIS	15-DEC-14	250mL Plastic+HNO	3		
Aqueous	S	SW6020-ANTIMONY-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6020-ARSENIC-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6020-BERYLLIUM-DIS	15-DEC-14	250ml. Plastic+HNO			
Aqueous	S	SW6020-CADMIUM-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6020-CHROMIUM-DIS	15-DEC-14	250ml, Plastic+HNO			
Aqueous	S	SW6020-COBALT-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6020-COPPER-DIS	15-DEC-14	250mL Plastic+HNO:			
Aqueous	S	SW6020-LEAD-DIS	15-DEC-14	250ml, Plastic+HNO:			
Aqueous	s	SW6020-NICKEL-DIS	15-DEC-14	250mL Plastic+HNO:			
Aqueous	S	SW6020-SELENIUM-DIS	15-DEC-14	250mL Plastic+HNO:			
•	S	SW6020-SILVER-DIS	15-DEC-14	250mL Plastic+HNO			
Aqueous	S	SW6020-THALLIUM-DIS	15-DEC-14	250mL Plastic+HNO:			
Aqueous	s	SW6020-VANADIUM-DIS	15-DEC-14	250mL Plastic+HNO			
 	S	SW7470-MERCURY-DIS	16-JUL-14	500mL Plastic+HNO	}		
SH4401-18	F	TA-MW-206-061814	18-JUN-14 12:45	19-JUN-14		08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Cou	ınt	Comments
,	S	MA-EPH-LOD	02-JUL-14	1L N-Amber Glass			
•	S	MA-VPH-LOD	02-JUL-14	40mL Vial+HCI			
•	s	SW3010-PREP	15-DEC-14	250mL Plastic+HNO3			
•	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+HNO3			
,	s	SW6010-ALUMINUM	15-DEC-14	250mL Plastic+HNO3			
	S	SW6010-BARIUM	15-DEC-14	250mL Plastic+HNO3			
	S	SW6010-CALCIUM	15-DEC-14	250mL Plastic+HNO3			
-	s	SW6010-IRON	15-DEC-14	250mL Plastic+HNO3			
•	s	SW6010-MAGNESIUM	15-DEC-14	250mL Plastic+HNO3			
•		SW6010-MANGANESE	15-DEC-14	250mL Plastic+HNO3			
-	S	SW6010-POTASSIUM	15-DEC-14	250mL Plastic+HNO3			
-	s s	SW6010-SODIUM	15-DEC-14	250mL Plastic+HNO3			
•		SW6010-ZINC	15-DEC-14	250mL Plastic+HNO3			
	S S	SW6020-ANTIMONY	15-DEC-14	250mL Plastic+HNO3			
		SW6020-ARSENIC	15-DEC-14	250mL Plastic+HNO3			
	S	SW6020-BERYLLIUM	15-DEC-14	250mL Plastic+HNO3			
Adaeons	S	SW6020-CADMIUM SW6020-CHROMIUM	15-DEC-14	250mL Plastic+HNO3			
Anuanus	9						
•			15-DEC-14	250mL Plastic+HNO3			
Aqueous	S	SW6020-COBALT	15-DEC-14	250mL Plastic+HNO3			
Aqueous Aqueous	s s	SW6020-COBALT SW6020-COPPER	15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous	\$ \$ \$	SW6020-COBALT SW6020-COPPER SW6020-LEAD	15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$	SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$	SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$ \$	SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	S S S S S S	SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	\$ \$ \$ \$ \$ \$ \$ \$	SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			
Aqueous	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 16-JUL-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3			00° 0.14
Aqueous	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 16-JUL-14 02-JUL-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCl			OP, a.M
Aqueous	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S SW8260SIM-S	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 16-JUL-14 02-JUL-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCl			06.101.1M
Aqueous	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	SW6020-COBALT SW6020-COPPER SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S	15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 15-DEC-14 16-JUL-14 02-JUL-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCl			06.19.14

Page: 9 of 11

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A(

Page: 10 of 11

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

Laboratory Sample ID	,	Client Sample Number	Collect Date/Time	Receive Date P	Verbal R Date	Due Date	Mailed
SH4401-19	F	TA-MW-206-061814	18-JUN-14 12:45	19-JUN-14		08-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottl	e Count	Comments
Aqueous	S	SW3010-PREP	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+HN	03		
Aqueous	S	SW6010-ALUMINUM-DIS	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	s	SW6010-BARIUM-DIS	15-DEC-14	250mL Plastic+HN	03		
Aqueous	S	SW6010-CALCIUM-DIS	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	s	SW6010-IRON-DIS	15-DEC-14	250mL Plastic+HN	03		
Aqueous	\$	SW6010-MAGNESIUM-DIS	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	s	SW6010-MANGANESE-DIS	15-DEC-14	250ml, Plastic+HN	23		
Aqueous	s	SW6010-POTASSIUM-DIS	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	S	SW6010-SODIUM-DIS	15-DEC-14	250mL Plastic+HN	23		
Aqueous	S	SW6010-ZINC-DIS	15-DEC-14	250mL Plastic+HN	D 3		
Aqueous	S	SW6020-ANTIMONY-DIS	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	s	SW6020-ARSENIC-DIS	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	s	SW6020-BERYLLIUM-DIS	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	s	SW6020-CADMIUM-DIS	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	s	SW6020-CHROMIUM-DIS	15-DEC-14	250mL Plastic+HN	D3		
Aqueous	s	SW6020-COBALT-DIS	15-DEC-14	250mL Plastic+HN	03		
Aqueous	s	SW6020-COPPER-DIS	15-DEC-14	250mL Plastic+HN)3		
Aqueous	s	SW6020-LEAD-DIS	15-DEC-14	250mL Plastic+HN	03		
Aqueous	s	SW6020-NICKEL-DIS	15-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6020-SELENIUM-DIS	15-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6020-SILVER-DIS	15-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6020-THALLIUM-DIS	15-DEC-14	250mL Plastic+HN			
Aqueous	š	SW6020-VANADIUM-DIS	15-DEC-14	250mL Plastic+HN			
Aqueous		SW7470-MERCURY-DIS	16-JUL-14	500mL Plastic+HN			
SH4401-20		TA-MW-14-061714	17-JUN-14 16:00	19-JUN-14		08-JUL-14	·
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle	e Count	Comments
Aqueous	s	MA-EPH-LOD	01-JUL-14	1L N-Amber Glass			
Aqueous	s	MA-VPH-LOD	01-JUL-14	40mL Vial+HCl			
Aqueous	s	SW3010-PREP	14-DEC-14	250mL Plastic+HN	03		
Aqueous	s	SW3010MS-PREP	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6010-ALUMINUM	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6010-BARIUM	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6010-CALCIUM	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6010-IRON	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6010-MAGNESIUM	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6010-MANGANESE	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6010-POTASSIUM	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6010-SODIUM	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6010-ZINC	14-DEC-14	250mL Plastic+HN			
Aqueous	s	SW6020-ANTIMONY	14-DEC-14	250mL Plastic+HN			
Aqueous	S	SW6020-ARSENIC	14-DEC-14	250mL Plastic+HN			
Aqueous	S	SW6020-BERYLLIUM	14-DEC-14	250mL Plastic+HN			
Aqueous	S	SW6020-CADMIUM	14-DEC-14	250mL Plastic+HN			
Aqueous	S	SW6020-CHROMIUM	14-DEC-14	250mL Plastic+HN			
	S	SW6020-COBALT	14-DEC-14	250mL Plastic+HN6			
	S	SW6020-COPPER	14-DEC-14	250mL Plastic+HN			
	S	SW6020-LEAD	14-DEC-14	250ml, Plastic+HN			
	S	SW6020-LEAD SW6020-NICKEL	14-DEC-14	250mL Plastic+HN0			
•	S	SW6020-NICKEL SW6020-SELENIUM	14-DEC-14 14-DEC-14	250mL Plastic+HN0			
•		SW6020-SELENIUM SW6020-SILVER	14-DEC-14	250mL Plastic+HN0			
	S S						
•		SW6020-THALLIUM	14-DEC-14	250mL Plastic+HN0 250mL Plastic+HN0			
Aqueous		CIARGOOO IRAAADU ISA			io .		fire CMA
Aqueous Aqueous	S	SW6020-VANADIUM	14-DEC-14		10		
Aqueous Aqueous Aqueous	S S	SW7470-MERCURY	15-JUL-14	500ml. Plastic+HN6	03		J. a. 19
Aqueous Aqueous Aqueous Aqueous	\$ \$ \$	SW7470-MERCURY SW8260-S	15-JUL-14 01-JUL-14	500ml. Plastic+HN0 40mL Vial+HCl	03		00.19
Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$	SW7470-MERCURY SW8260-S SW8260SIM-S	15-JUL-14 01-JUL-14 01-JUL-14	500ml. Plastic+HN6 40mL Vial+HCl 40mL Vial+HCl	93		06.19.19
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$ \$	SW7470-MERCURY SW8260-S SW8260SIM-S SW8270-S	15-JUL-14 01-JUL-14 01-JUL-14 24-JUN-14	500ml. Plastic+HN6 40mL Vial+HCl 40mL Vial+HCl 1L N-Amber Glass	93		00.19.14
Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	\$ \$ \$ \$ \$	SW7470-MERCURY SW8260-S SW8260SIM-S	15-JUL-14 01-JUL-14 01-JUL-14	500ml. Plastic+HN6 40mL Vial+HCl 40mL Vial+HCl	93		00.19.19

Login Chain of Custody Report (Ino1)

Jun. 19, 2014 02:57 PM

Login Number: SH4401

Quote/Incoming: TT-CUTLERWE53A(

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laboratory Sample ID		Client Sample Number	Collect Date/Time	Receive Date	PR	Verbal Date	Due Date	Mailed	to to recommend
SH4401-21	F	TA-MW-14-061714	17-JUN-14 16:00	19-JUN-14			08-JUL-14		
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle C	ount	Comments	
Aqueous	S	SW3010-PREP	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	S	SW3010MS-PREP	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	S	SW6010-ALUMINUM-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	S	SW6010-BARIUM-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	S	SW6010-CALCIUM-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	s	SW6010-IRON-DIS	14-DEC-14	250ml, Plastic	+HNO3				
Aqueous	s	SW6010-MAGNESIUM-DIS	14-DEC-14	250mL Plastic	+HNO3				
Aqueous	s	SW6010-MANGANESE-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	s	SW6010-POTASSIUM-DIS	14-DEC-14	250mL, Plastic	:+HNO3				
Aqueous	s	SW6010-SODIUM-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	S	SW6010-ZINC-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	s	SW6020-ANTIMONY-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	s	SW6020-ARSENIC-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	S	SW6020-BERYLLIUM-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	S	SW6020-CADMIUM-DIS	14-DEC-14	250mL Plastic	:+HNO3				
Aqueous	S	SW6020-CHROMIUM-DIS	14-DEC-14	250mL Plastic	+HNO3				
Aqueous	S	SW6020-COBALT-DIS	14-DEC-14	250mL Plastic	+HNO3				
Aqueous	S	SW6020-COPPER-DIS	14-DEC-14	250mL Plastic	+НNО3				
Aqueous	S	SW6020-LEAD-DIS	14-DEC-14	250mL Plastic	+HNO3				
Aqueous	S	SW6020-NICKEL-DIS	14-DEC-14	250mL Plastic	+HNO3				
Aqueous	s	SW6020-SELENIUM-DIS	14-DEC-14	250mL Plastic	+HNO3				
Aqueous	S	SW6020-SILVER-DIS	14-DEC-14	250mL Plastic	+HNO3				
Aqueous	S	SW6020-THALLIUM-DIS	14-DEC-14	250mL Plastic	+HNO3				
Aqueous	S	SW6020-VANADIUM-DIS	14-DEC-14	250mL Plastic	+HNO3				
Aqueous	S	SW7470-MERCURY-DIS	15-JUL-14	500ml. Plastic	+HNO3				

Total Samples: 21 Total Analyses: 573

08.9.14 06.00048

Page: 11 of 11

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Account: TETRAT001

Primary Report Address:

Tetra Tech NUS, Inc.

661 Anderson Drive

Pittsburgh,PA 15220

Vanessa Good

Foster Plaza 7

Tetra Tech NUS, Inc.

Login Information:

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

ANALYSIS INSTRUCTIONS : DoD QSM with DoD limits. ND to LOD. "J" flag between MDL and LOQ. VOAs soils pres w/ sod

bisul/MeOH. EPH/VPH- report ranges only. Decant sediments for all except VOA/VPH is there is standing water. Run TS first. Increase sample weight to compensate for TS. If mositure still too high further steps will be needed. Metals (6020A/7471A/7471B-run MS/lab dup, post dig

Page: 1 of 13

spike and serial dilutions. SVOA/PAH-

8270D.PCBs-8082A-SOXHLET EXCRACTION.

Final volume for Pest/PCB=2mls.

Primary invoice Address:

CHECK NO.

: 1045366 106-CTO WE53 112G02585

CLIENT PO# Accounts Payable

Web

CLIENT PROJECT MANAGE: Mindi Messmer

Tetra Tech NUS, Inc. CONTRACT 661 Andersen Drive

: N62467-04-D-0055 : 0.9, 3.4, 4.3, 4.7, 1.6, 3.5, 6.0, 0.8, 5.7, 2.4, 2.9,

COOLER TEMPERATURE 3.6, 6.0, 3.8

DELIVERY SERVICES

: Client

Pittsburgh,PA 15220

Foster Plaza 7

EDD FORMAT

LOGIN INITIALS

: KAS119QC-CSV : GN

Report CC Addresses: Invoice CC Addresses:

: 40

Laborator Sample ID	-	Client Sample Number	Collect Date/Time	PR Gegeive iame QC Late el PR	Verbal NCTAMBUANT Cutter CTO WE53 Date : IV Date Mailed
SH4521-1	f	FTA-GW-TB02-061814	18-JUN-14 16:00	REQUIATORY LIST 20-JUN-14 REPORT INSTRUCTION	09-JUL-14 DNS : Summary package needs all forms Send HC
Matrix Aqueous Aqueous Aqueous SH4521-2	s s s	SW8260-S	Hold Date (shortesi 02-JUL-14 02-JUL-14 02-JUL-14 18-JUN-14 16:15	### Bottle Type 40mL Vial+HCl SDG 18mL Vial+HCl 40mL Vial+HCl SD20-SUN-14	Bottende anCDs to Vanessacdameits PDF to Mindi. If file exceeds file limits, please mail CD. : WE53-7 : End 09-JUL-14
Matrix		Product	Hold Date (shortest		Bottle Count Comments
Aqueous	<i></i>	MA-EPH-LOD MA-VPH-LOD SW3010-PREP SW3010-MS-PREP SW6010-ALUMINUM SW6010-BARIUM SW6010-IRON SW6010-MAGNESIUM SW6010-MAGNESIUM SW6010-POTASSIUM SW6010-POTASSIUM SW6010-SODIUM SW6010-SODIUM SW6020-ANTIMONY SW6020-ARSENIC SW6020-BERYLLIUM SW6020-CADMIUM SW6020-CADMIUM SW6020-COPPER SW6020-LEAD SW6020-LEAD SW6020-SILVER SW6020-SILVER SW6020-SILVER SW6020-VANADIUM SW6020-VANADIUM SW7470-MERCURY	02-JUL-14 02-JUL-14 15-DEC-14	1L N-Amber Glass 40mL Vial+HCI 250mL Plastic+HNO3	
Aqueous Aqueous Aqueous Aqueous Aqueous	55555	SW8260-S SW8260SIM-S SW8270-S SW8270SIM-S SW8321PERC-SUB	02-JUL-14 02-JUL-14 25-JUN-14 25-JUN-14 16-JUL-14	40mL Vial+HCl 40mL Vial+HCl 1L N-Amber Glass 1L N-Amber Glass	06.51.1M

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laborator	y	Client	Collect	Receive		Verbal	Due	
Sample ID		Sample Number	Date/Time	Date	PR	Date	Date	Mailed
SH4521-3	F	-TA-MW-208-061814	18-JUN-14 16:15	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Cour	nt	Comments
Aqueous	S	SW3010-PREP	15-DEC-14	250mL Plastic				
Aqueous	S	SW3010MS-PREP	15-DEC-14	250ml. Plastic	+HNO3			
Aqueous	S	SW6010-ALUMINUM-DIS	15-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-BARIUM-DIS	15-DEC-14	250mL Plastic				
Aqueous	S	SW6010-CALCIUM-DIS	15-DEC-14	250mL Plastic				
Aqueous	S	SW6010-IRON-DIS	15-DEC-14	250mL Plastic-				
Aqueous Aqueous	S	SW6010-MAGNESIUM-DIS SW6010-MANGANESE-DIS	15-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-POTASSIUM-DIS	15-DEC-14 15-DEC-14	250mL Plastic				
Aqueous	S	SW6010-SODIUM-DIS	15-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ZINC-DIS	15-DEC-14	250mL Plastic				
Aqueous	s	SW6020-ANTIMONY-DIS	15-DEC-14	250ml. Plastics				
Aqueous	s	SW6020-ARSENIC-DIS	15-DEC-14	250mL Plastic				
Aqueous	s	SW6020-BERYLLIUM-DIS	15-DEC-14	250mL Plastic				
Aqueous	s	SW6020-CADMIUM-DIS	15-DEC-14	250mL Plastic				
Aqueous	S	SW6020-CHROMIUM-DIS	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-COBALT-DIS	15-DEC-14	250mt. Plastic+				
Aqueous	\$	SW6020-COPPER-DIS	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-LEAD-DIS	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-NICKEL-DIS	15-DEC-14	250ml. Plastic+				
Aqueous	s	SW6020-SELENIUM-DIS	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-SILVER-DIS	15-DEC-14	250mL Plastic+				
Aqueous	\$	SW6020-THALLIUM-DIS	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-VANADIUM-DIS	15-DEC-14	250mL Plastic+	ниоз			
Aqueous	S	SW7470-MERCURY-DIS	16-JUL-14	500mL Plastic+	HNO3			
SH4521-4	F	TA-MW-1-061814	18-JUN-14 16:30	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Coun	f	Comments
Aqueous		MA-EPH-LOD	02-JUL-14	1L N-Amber Gia	ass			
Aqueous	S	MA-VPH-LOD	02-JUL-14	40mL Vial+HCl				
Aqueous	S	SW3010-PREP	15-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-ALUMINUM	15-DEC-14	250ml. Plastic+				
Aqueous	S	SW6010-BARIUM	15-DEC-14	250mL Plastic+				
Aqueous	S S	SW6010-CALCIUM	15-DEC-14	250mL Plastic+				
Aqueous Aqueous	S	SW6010-IRON	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-MAGNESIUM SW6010-MANGANESE	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-MANGANESE SW6010-POTASSIUM	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-SODIUM	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-SODIOW SW6010-ZINC	15-DEC-14 15-DEC-14	250mL Plastic+ 250mL Plastic+				
Aqueous	s	SW6020-ANTIMONY	15-DEC-14	250mL Plastic+i				
Aqueous		SW6020-ARSENIC	15-DEC-14	250mL Plastic+l				
Aqueous		SW6020-BERYLLIUM	15-DEC-14	250mL Plastic+l				
Aqueous		SW6020-CADMIUM	15-DEC-14	250mL Plastic+				
Aqueous		SW6020-CHROMIUM	15-DEC-14	250mL Plastic+I				
Aqueous	s	SW6020-COBALT	15-DEC-14	250mL Plastic+l				
Aqueous	s	SW6020-COPPER	15-DEC-14	250mL Plastic+I				
Aqueous	s	SW6020-LEAD	15-DEC-14	250mL Plastic+I				
Aqueous	S	SW6020-NICKEL	15-DEC-14	250mL Plastic+F				
Aqueous	s	SW6020-SELENIUM	15-DEC-14	250mL Plastic+I	HNO3			
•		SW6020-SILVER	15-DEC-14	250mL Plastic+l	fNO3			
•		SW6020-THALLIUM	15-DEC-14	250mL Plastic+	1NO3			\sim
		SW6020-VANADIUM	15-DEC-14	250mL Plastic+f	NO3			(X) 14
		SW7470-MERCURY	16-JUL-14	500mL Plastic+F	4NO3			06.81.14
•		SW8260-S	02-JUL-14	40mL Vial+HCl				(°, ¢,
	S	SW8260SIM-S	02-JUL-14	40mL Vial+HCl				O(0)
•								
Aqueous	S	SW8270-S	25-JUN-14	1L N-Amber Gla				00
Aqueous Aqueous	s s	SW8270-S SW8270SIM-S SW8321PERC-SUB	25-JUN-14 25-JUN-14 16-JUL-14	1L N-Amber Gla 1L N-Amber Gla				00

Page: 2 of 13

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Page: 3 of 13

Account: TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

Laborator	ry	Client	Collect	Receive		Verbal	Due	
Sample II	-	Sample Number	Date/Time	Date	PR	Date	Date	Mailed
SH4521-5	i	FTA-MW-1-061814	18-JUN-14 16:30	20-JUN-14	*****		09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Co.	unt	Comments
Aqueous	S		15-DEC-14	250mL Plastic	+HNO3			
Aqueous	S		15-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	-	15-DEC-14	250mL Plastic	+HNO3			
Aqueous	S		15-DEC-14	250mL Plastic	+HNO3			
Aqueous	S		15-DEC-14	250mL Plastic				
Aqueous	S		15-DEC-14	250mL Plastic				
Aqueous	S		15-DEC-14	250mL Plastic				
Aqueous	S	· ·	15-DEC-14	250mL Plastic				
Aqueous	S	SW6010-POTASSIUM-DIS	15-DEC-14	250mL Plastic				
Aqueous	S		15-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ZINC-DIS	15-DEC-14	250mL Plastic				
Aqueous	S	SW6020-ANTIMONY-DIS	15-DEC-14	250mL Plastic				
Aqueous	S	SW6020-ARSENIC-DIS	15-DEC-14	250mL Plastic				
Aqueous	s	SW6020-BERYLLIUM-DIS	15-DEC-14	250mL Plastic				
Aqueous	\$	SW6020-CADMIUM-DIS	15-DEC-14	250ml. Plastic				
Aqueous	S	SW6020-CHROMIUM-DIS	15-DEC-14	250mL Plastic				
Aqueous	S	SW6020-COBALT-DIS	15-DEC-14	250mt. Plastic				
Aqueous	S	SW6020-COPPER-DIS	15-DEC-14	250mL Plastic				
Aqueous Aqueous	S	SW6020-LEAD-DIS SW6020-NICKEL-DIS	15-DEC-14	250mL Plastic				
Aqueous	S		15-DEC-14	250ml, Plastic				
Aqueous	S	SW6020-SELENIUM-DIS SW6020-SILVER-DIS	15-DEC-14	250mL Plastic				
Aqueous	S	SW6020-THALLIUM-DIS	15-DEC-14 15-DEC-14	250mL Plastic				
Aqueous	S	SW6020-VANADIUM-DIS	15-DEC-14	250mL Plastic- 250mL Plastic-				
Aqueous	s	SW7470-MERCURY-DIS	16-JUL-14	500ml. Plastic				
SH4521-6		TA-GW-DUP02-061814	18-JUN-14 00:00	20-JUN-14	TINOS		09-JUL-14	
			****				09-JUL-14	
Matrix	_	Product	Hold Date (shortest)	Bottle Type		Bottle Cou	int	Comments
Aqueous	S	MA-EPH-LOD	02-JUL-14	1L N-Amber GI	ass			
Aqueous	S	MA-VPH-LOD	02-JUL-14	40mL Vial+HCI				
Aqueous Aqueous	S	SW3010-PREP	15-DEC-14	250mL Plastic+				
Aqueous	S	SW3010MS-PREP	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-ALUMINUM SW6010-BARIUM	15-DEC-14 15-DEC-14	250ml. Plastic+				
Aqueous	S	SW6010-CALCIUM	15-DEC-14 15-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-IRON	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-MAGNESIUM	15-DEC-14	250mL Plastic+ 250mL Plastic+				
Aqueous	Š	SW6010-MANGANESE	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-POTASSIUM	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-SODIUM	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-ZINC	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-ANTIMONY	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-ARSENIC	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-BERYLLIUM	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-CADMIUM	15-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-CHROMIUM	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-COBALT	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-COPPER	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-LEAD	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-NICKEL	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-SELENIUM	15-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-SILVER	15-DEC-14	250mL Plastic+l				
Aqueous	S	SW6020-THALLIUM	15-DEC-14	250mL Plastic+l				
Aqueous	S	SW6020-VANADIUM	15-DEC-14	250mL Plastic+l				ON IL
Aqueous	s	SW7470-MERCURY	16-JUL-14	500mL Plastic+i				\sim 1 $^{\prime}$ () 1 $^{\prime}$
Aqueous	Ş	SW8260-S	02-JUL-14	40mL Vial+HCI				00.91.14
Aqueous	s	SW8260SIM-S	02-JUL-14	40ml, Viai+HCI				$\sim 10^{-2}$
•		PM(0070 D	OF HINLAA	41 N A C OI-				1 10
Aqueous	s	SW8270-S	25~JUN-14	1L N-Amber Gla	SS			
Aqueous Aqueous Aqueous	s	SW8270SIM-S SW8321PERC-SUB	25-JUN-14 25-JUN-14	1L N-Amber Gla				C

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Page: 4 of 13

Account: TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

Laboratory Sample ID		Client Sample Number	Collect Date/Time	Receive Date PR	Verbal Date	Due Date	Mailed	
SH4521-7	F	FTA-GW-DUP02-061814	18-JUN-14 00:00	20-JUN-14	***************************************	09-JUL-14		
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Co	unt	Comments	
Aqueous	S	SW3010-PREP	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW3010MS-PREP	15-DEC-14	250ml. Plastic+HNO	3		•	
Aqueous	S	SW6010-ALUMINUM-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6010-BARIUM-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6010-CALCIUM-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6010-IRON-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6010-MAGNESIUM-DIS	15-DEC-14	250ml. Plastic+HNO	3			
Aqueous	S	SW6010-MANGANESE-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6010-POTASSIUM-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6010-SODIUM-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6010-ZINC-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6020-ANTIMONY-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6020-ARSENIC-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6020-BERYLLIUM-DIS	15-DEC-14	250mL Plastic+HNO				
Aqueous	S	SW6020-CADMIUM-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	s	SW6020-CHROMIUM-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	s	SW6020-COBALT-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6020-COPPER-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW6020-LEAD-DIS	15-DEC-14	250mL Plastic+HNO:	3			
Aqueous	S	SW6020-NICKEL-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	s	SW6020-SELENIUM-DIS	15~DEC-14	250mt_Plastic+HNO	3			
Aqueous	s	SW6020-SILVER-DIS	15-DEC-14	250mL Plastic+HNO:	3			
Aqueous	S	SW6020-THALLIUM-DIS	15-DEC-14	250ml, Plastic+HNO				
Aqueous	S	SW6020-VANADIUM-DIS	15-DEC-14	250mL Plastic+HNO	3			
Aqueous	S	SW7470-MERCURY-DIS	16-JUL-14	500mL Plastic+HNO3				
SH4521-8	F	TA-MW-210-061814	19-JUN-14 09:00	20-JUN-14		09-JUL-14		
Matrix		Product	Hold Date (shortest)	Bottle Type	Bottle Co.	ınt	Comments	
Aqueous	S	MA-EPH-LOD	03-JUL-14	1L N-Amber Glass			MS/MSD	
Aqueous	S	MA-VPH-LOD	03-JUL-14	40mL Vial+HCI				
Aqueous	S	SW3010-PREP	16-DEC-14	250mL Plastic+HNO3	i			
Aqueous	S	SW3010MS-PREP	16-DEC-14	250mL Plastic+HNO3	•			
Aqueous	S	SW6010-ALUMINUM	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6010-BARIUM	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6010-CALCIUM	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6010-IRON	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6010-MAGNESIUM	16-DEC-14	250mL Plastic+HNO3				
4queous	S	SW6010-MANGANESE	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6010-POTASSIUM	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6010-SODIUM	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6010-ZINC	16-DEC-14	250ml. Plastic+HNO3				
Aqueous	S	SW6020-ANTIMONY	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6020-ARSENIC	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6020-BERYLLIUM	16-DEC-14	250mL Plastic+HNO3				
Aqueous	S	SW6020-CADMIUM	16-DEC-14	250mL Plastic+HNO3				
queous	S	SW6020-CHROMIUM	16-DEC-14	250mL Plastic+HNO3				
queous	s	SW6020-COBALT	16-DEC-14	250mL Plastic+HNO3				
		SIMSOON COORED						
queous	s	SW6020-COPPER	16-DEC-14	250ml. Plastic+HNO3				
		SW6020-LEAD	16-DEC-14 16-DEC-14	250mL Plastic+HNO3				
queous	s							
iqueous	s s	SW6020-LEAD	16-DEC-14	250mL Plastic+HNO3				
dneons dneons	s s s	SW6020-LEAD SW6020-NICKEL	16-DEC-14 16-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3				
nqueous nqueous nqueous	S S S	SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM	16-DEC-14 16-DEC-14 16-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			- n	,
Aqueous Aqueous Aqueous	S S S S	SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER	16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			€ N	λ
dneons dneons dneons dneons	S S S S S S S	SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM	16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3			٧ . ١ ١ ٢	λ
dueons dueons dueons dueons dueons	\$ \$ \$ \$ \$ \$	SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM	16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 17-JUL-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3			00 21.12	λ
queous queous queous queous queous queous queous queous	S S S S S S S S S S	SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S	16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 17-JUL-14 03-JUL-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCI			00.21.12	λ
queous queous queous queous queous queous queous queous queous	5 5 5 5 5 5 5 5	SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S SW8260-S	16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 17-JUL-14 03-JUL-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCI			06.91.14	λ
aqueous	5 5 5 5 5 5 5 5 5	SW6020-LEAD SW6020-NICKEL SW6020-SELENIUM SW6020-SILVER SW6020-THALLIUM SW6020-VANADIUM SW7470-MERCURY SW8260-S	16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 16-DEC-14 17-JUL-14 03-JUL-14	250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 250mL Plastic+HNO3 500mL Plastic+HNO3 40mL Vial+HCI			06.91.1	λ

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laborator	•	Client Sample Number	Collect Date/Time	Receive Date	PR	Verbal Date	Due Date	Mailed
SH4521-9		TA-MW-210-061814	**************************************	***************************************				Maneu
	,		19-JUN-14 09:00	20-JUN-14			09-JUL-14	
Matrix	^	Product	Hold Date (shortest)	Bottle Type		Bottle Co	unt	Comments
Aqueous	S	SW3010-PREP	16-DEC-14	250mL Plastic				MS/MSD
Aqueous Aqueous	S	SW3010MS-PREP	16-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ALUMINUM-DIS SW6010-BARIUM-DIS	16-DEC-14 16-DEC-14	250mL Plastic				
Aqueous	s	SW6010-CALCIUM-DIS	16-DEC-14	250mL Plastic 250mL Plastic				
Aqueous	s	SW6010-IRON-DIS	16-DEC-14	250mL Plastic				
Aqueous	s	SW6010-MAGNESIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	s	SW6010-MANGANESE-DIS	16-DEC-14	250mL Plastic				
Aqueous	s	SW6010-POTASSIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6010-SODIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ZINC-DIS	16-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	SW6020-ANTIMONY-DIS	16-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	SW6020-ARSENIC-DIS	16-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	SW6020-BERYLLIUM-DIS	16-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	SW6020-CADMIUM-DIS	16-DEC-14	250mt. Plastic	FOMH+			
Aqueous	S	SW6020-CHROMIUM-DIS	16-DEC-14	250mL Plastic-	+HNO3			
Aqueous	S	SW6020-COBALT-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6020-COPPER-DIS	16-DEC-14	250mL Plastic-				
Aqueous	S	SW6020-LEAD-DIS	16-DEC-14	250mL Plastic-				
Aqueous	S	SW6020-NICKEL-DIS	16-DEC-14	250mL Plastic				
Aqueous	s s	SW6020-SELENIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous Aqueous	S	SW6020-SILVER-DIS SW6020-THALLIUM-DIS	16-DEC-14 16-DEC-14	250mL Plastic				
Aqueous	S	SW6020-VANADIUM-DIS	16-DEC-14	250mL Plastic- 250mL Plastic-				
Aqueous	s	SW7470-MERCURY-DIS	17-JUL-14	500mL Plastic				
SH4521-10		TA-SW-01-061914	19-JUN-14 09:20	20-JUN-14	111100	 	09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		D. W. O.		
Aqueous	s	MA-EPH-LOD	03-JUL-14	1L N-Amber GI		Bottle Co.	int	Comments
Aqueous	s	SW3010-PREP	16-DEC-14	250ml, Plastic+				
Aqueous	Š	SW3010MS-PREP	16-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-ALUMINUM	16-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-BARIUM	16-DEC-14	250mL, Plastic+				
Aqueous	S	SW6010-CALCIUM	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6010-IRON	16-DEC-14	250mL Plastic+	ниоз			
Aqueous	S	SW6010-MAGNESIUM	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6010-MANGANESE	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6010-POTASSIUM	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6010-SODIUM	16-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-ZINC	16-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-ANTIMONY	16-DEC-14	250mL Plastic+				
Aqueous Aqueous	S S	SW6020-ARSENIC SW6020-BERYLLIUM	16-DEC-14 16-DEC-14	250mL Plastic+				
Aqueous		SW6020-CADMIUM	16-DEC-14 16-DEC-14	250mL Plastic+				
Aqueous		SW6020-CHROMIUM	16-DEC-14	250mL Plastic+ 250mL Plastic+				
Aqueous		SW6020-COBALT	16-DEC-14	250mL Plastic+				
Aqueous		SW6020-COPPER	16-DEC-14	250mL Plastic+				
Aqueous		SW6020-LEAD	16-DEC-14	250mL Plastic+				
Aqueous		SW6020-NICKEL	16-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-SELENIUM	16-DEC-14	250mL Plastic+				
-	S	SW6020-SILVER	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW6020-THALLIUM	16-DEC-14	250mL Plastic+i	HNO3			~ ~ ·
Aqueous		SW6020-VANADIUM	16-DEC-14	250mL Plastic+l	HNO3			\sim \sim \sim 1 \sim
•		SW7470-MERCURY	17-JUL-14	500mL Plastic+I				$\sim l \sim l \cdot l \cdot l$
		SW8082-S	19-JUL-14	1L N-Amber Gla	ISS			· · · · · · · · · · · · · · · · · · ·
		SW8260-S	03-JUL-14	40mL Vial+HCI				06.91.14
		SW8260SIM-S SW8270-S	03-JUL-14	40mL Vial+HCI				$\mathcal{O}_{\mathcal{O}}$
		SW8270-S SW8270SIM-S	26-JÚN-14 26-JUN-14	1L N-Amber Gla				
-40000		OTTOE (OGNIVE O	20-3019-14	1L N-Amber Gla	58			

Page: 5 of 13

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Account: TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laborator Sample ID	-	Client Sample Number	Collect Date/Time	Receive		Verbal	Due	
· · · · · · · · · · · · · · · · · · ·			Date/Time	Date	PR	Date	Date	Mailed
SH4521-11	F	TA-SW-01-061914	19-JUN-14 09:20	20-JUN-14			09-JUL-14	M
Matrix	_	Product	Hold Date (shortest)	Bottle Type		Bottle Co	ount	Comments
Aqueous	S	SW3010-PREP	16-DEC-14	250mL Plastic				
Aqueous	S	SW3010MS-PREP	16-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	SW6010-ALUMINUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6010-BARIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6010-CALCIUM-DIS	16-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-IRON-DIS	16-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-MAGNESIUM-DIS	16-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-MANGANESE-DIS	16-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-POTASSIUM-DIS	16-DEC-14	250mL Plastic-				
Aqueous	\$	SW6010-SODIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6010-ZINC-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6020-ANTIMONY-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6020-ARSENIC-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6020-BERYLLIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6020-CADMIUM-DIS	16-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-CHROMIUM-DIS	16-DEC-14	250mL Plastic+				
Aqueous		SW6020-COBALT-DIS	16-DEC-14	250mL Plastic+				
Aqueous	S	SW6020-COPPER-DIS	16-DEC-14	250mL Plastic+				
Aqueous		SW6020-LEAD-DIS	16-DEC-14	250ml. Plastic+				
Aqueous		SW6020-NICKEL-DIS	16-DEC-14	250mL Plastic+				
Aqueous		SW6020-SELENIUM-DIS	16-DEC-14	250mL Plastic+				
Aqueous		SW6020-SILVER-DIS	16-DEC-14	250mL Plastic+				
Aqueous		SW6020-THALLIUM-DIS	16-DEC-14	250mL Plastic+				
Aqueous		SW6020-VANADIUM-DIS	16-DEC-14	250mL Plastic+				
Aqueous		SW7470-MERCURY-DIS	17-JUL-14	500mL Plastic+	HNO3			
SH4521-12	F	TA-SW-02-061914	19-JUN-14 10:42	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type	W. 1.	Bottle Co.	ınt	Comments
Aqueous		MA-EPH-LOD	03-JUL-14	1L N-Amber Gla				
Aqueous		SW3010-PREP	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW3010MS-PREP	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW6010-ALUMINUM	16-DEC-14	250ml. Plastic+	HNO3			
Aqueous		SW6010-BARIUM	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW6010-CALCIUM	16-DEC-14	250mt. Plastic+	HNO3			
Aqueous		SW6010-IRON	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW6010-MAGNESIUM	16-DEC-14	250mL Plastic+i	HNO3			
Aqueous		SW6010-MANGANESE	16-DEC-14	250ml Plastic+l	HNO3			
Aqueous		SW6010-POTASSIUM	16-DEC-14	250mL Plastic+I	HNO3			
Aqueous		SW6010-SODIUM	16-DEC-14	250mL Plastic+l	HNO3			
Aqueous		SW6010-ZINC	16-DEC-14	250mL Plastic+l				
Aqueous		SW6020-ANTIMONY	16-DEC-14	250mL Plastic+l				
Aqueous		SW6020-ARSENIC	16-DEC-14	250mL Plastic+l				
	_	SW6020-BERYLLIUM	16-DEC-14	250mL Plastic+				
		SW6020-CADMIUM	16-DEC-14	250mL Plastic+l				
-		SW6020-CHROMIUM	16-DEC-14	250mL Plastic+l				
		SW6020-COBALT	16-DEC-14	250mL Plastic+l				
		SW6020-COPPER	16-DEC-14	250mL Plastic+F				
-		SW6020-LEAD	16-DEC-14	250mL Plastic+H				
		SW6020-NICKEL	16-DEC-14	250ml. Plastic+h				
-		SW6020-SELENIUM	16-DEC-14	250mL Plastic+F				
•		SW6020-SILVER	16-DEC-14	250ml, Plastic+F				
•		SW6020-THALLIUM	16-DEC-14	250mL Plastic+h	INO3			
•		SW6020-VANADIUM	16-DEC-14	250mL Plastic+F	INO3			\sim \sim
		SW7470-MERCURY	17-JUL-14	500mL Plastic+H				$\sim 0^{\sim 1 \cdot 1^{-1}}$
		SW8082-S	19-JUL-14	1L N-Amber Glas	SS			\mathcal{A}_{I}
		SW8260-S	03-JUL-14	40mL Vial+HCI				into, O.
		SW8260SIM-S	03-JUL-14	40mL Vial+HCI				08° 1.14
		SW8270-S	26-JUN-14	1L N-Amber Glas				\mathbf{C}
Aqueous	S S	SW8270SIM-S	26-JUN-14	1L N-Amber Glas				

Page: 6 of 13

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Account:TETRAT001

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Web

Laboratory		Client	C-U4			32 4 4		
Sample ID	y	Sample Number	Collect Date/Time	Receive Date		Verbal	Due	
Gampio ID			Date/Time	Date	PR	Date	Date	Mailed
SH4521-13		FTA-SW-02-061914	19-JUN-14 10:42	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Cou	nt	Comments
Aqueous	S		16-DEC-14	250mL Plastic	:+HNO3			
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S	· · · · · · · · · · · · · · · · · · ·	16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250ml. Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250ml. Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250ml, Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250ml. Plastic				
Aqueous	s		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S	· · · · · · · · · · · · · · · · · · ·	16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC~14	250ml. Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S		16-DEC-14	250mL Plastic				
Aqueous	S	SW6020-SILVER-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6020-THALLIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous Aqueous	S	SW6020-VANADIUM-DIS SW7470-MERCURY-DIS	16-DEC-14	250mL Plastic				
			17-JUL-14	500mL Plastic	+HNU3			
SH4521-14	_ 	TA-SW-03-061914	19-JUN-14 12:15	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Cour	ot	Comments
Aqueous	S		03-JUL-14	1L N-Amber G	ass			MS/MSD
Aqueous	S	SW3010-PREP	16-DEC-14	250mL Plastic-	+HNO3			
Aqueous	S	SW3010MS-PREP	16-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-ALUMINUM	16-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-BARIUM	16-DEC-14	250mL Plastic-				
Aqueous	S	SW6010-CALCIUM	16-DEC-14	250ml. Plastic				
	S	SW6010-IRON	16-DEC-14	250mL Plastic				
	s s	SW6010-MAGNESIUM	16-DEC-14	250mL Plastic				
•	S	SW6010-MANGANESE	16-DEC-14	250mL Plastic				
•	S	SW6010-POTASSIUM	16-DEC-14	250mL Plastic+				
•	S	SW6010-SODIUM SW6010-ZINC	16-DEC-14	250mL Plastics				
	S	SW6020-ANTIMONY	16-DEC-14	250ml, Plastic+				
	S	SW6020-ANTIMONY SW6020-ARSENIC	16-DEC-14 16-DEC-14	250mL Plastic+				
	S	SW6020-BERYLLIUM	16-DEC-14	250mL Plastic+				
•	S	SW6020-CADMIUM	16-DEC-14 16-DEC-14	250mL Plastic+				
	S	SW6020-CHROMIUM	16-DEC-14	250mL Plastic+ 250mL Plastic+				
	s	SW6020-COBALT	16-DEC-14	250mL Plastic+ 250mL Plastic+				
-	S	SW6020-COPPER	16-DEC-14	250mL Plastic+ 250mL Plastic+				
	s	SW6020-LEAD	16-DEC-14	250mL Plastic+				
	s	SW6020-NICKEL	16-DEC-14	250mL Plastic+				
	s	SW6020-SELENIUM	16-DEC-14	250mL Plastic+				
	s	SW6020-SILVER	16-DEC-14	250mL Plastic+				
•	s	SW6020-THALLIUM	16-DEC-14	250mL Plastic+				_
	s	SW6020-VANADIUM	16-DEC-14	250mL Plastic+				\sim \sim \sim \sim
	s	SW7470-MERCURY	17-JUL-14	500mL Plastic+				W14
	s	SW8260-S	03-JUL-14	40mL Vial+HCI	, 100			" \ \ ' \
	s	SW8260SiM-S	03-JUL-14	40mL Vial+HCI				· · · · · · · · · · · · · · · · · · ·
	s	SW8270-S	26-JUN-14	1L N-Amber Gla	ass			Ch. 31.14
•	S	SW8270SIM-S	26-JUN-14	1L N-Amber Gia				
,	-		20 00,1-17	IL IN-MITTOR GIR	400			

Page: 7 of 13

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laboratory	,	Client Sample Number	Collect	Receive		Verbal	Due	
Sample ID		Sample Number	Date/Time	Date F	PR_	Date	Date	Mailed
SH4521-15	F	FTA-SW-03-061914	19-JUN-14 12:15	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Cou	nt	Comments
Aqueous	S		16-DEC-14	250ml. Plastic+H				MS/MSD
Aqueous	S	SW3010MS-PREP	16-DEC-14	250mL Plastic+H				
Aqueous	S	SW6010-ALUMINUM-DIS	16-DEC-14	250mL Plastic+H				
Aqueous Aqueous	S	SW6010-BARIUM-DIS SW6010-CALCIUM-DIS	16-DEC-14 16-DEC-14	250mL Plastic+H				
Aqueous	S	SW6010-IRON-DIS	16-DEC-14 16-DEC-14	250mL Plastic+H 250mL Plastic+H				
Aqueous	s	SW6010-MAGNESIUM-DIS	16-DEC-14	250mL Plastic+H				
Aqueous	s	SW6010-MANGANESE-DIS	16-DEC-14	250mL Plastic+H				
Aqueous	S	SW6010-POTASSIUM-DIS	16-DEC-14	250mL Plastic+H				
Aqueous	s	SW6010-SODIUM-DIS	16-DEC-14	250mL Plastic+H				
Aqueous	s	SW6010-ZINC-DIS	16-DEC-14	250mL Plastic+H				
Aqueous	S	SW6020-ANTIMONY-DIS	16-DEC-14	250mL Plastic+H				
Aqueous	s	SW6020-ARSENIC-DIS	16-DEC-14	250mL Plastic+H	NO3			
Aqueous	s	SW6020-BERYLLIUM-DIS	16-DEC-14	250mL, Plastic+H	NO3			
Aqueous	s	SW6020-CADMIUM-DIS	16-DEC-14	250mL Plastic+H	NO3			
Aqueous	S	SW6020-CHROMIUM-DIS	16-DEC-14	250mL Plastic+H	NO3			
Aqueous	S	SW6020-COBALT-DIS	16-DEC-14	250mL Plastic+H				
Aqueous	s	SW6020-COPPER-DIS	16-DEC-14	250mL Plastic+H	NO3			
•	S	SW6020-LEAD-DIS	16-DEC-14	250mL Plastic+Hi				
	S	SW6020-NICKEL-DIS	16-DEC-14	250mL Plastic+HI				
	s s	SW6020-SELENIUM-DIS	16-DEC-14	250mL Plastic+HI				
•	S	SW6020-SILVER-DIS SW6020-THALLIUM-DIS	16-DEC-14 16-DEC-14	250ml Plastic+Hi				
•	S	SW6020-VANADIUM-DIS	16-DEC-14	250mL Plastic+HI 250mL Plastic+HI				
	s	SW7470-MERCURY-DIS	17-JUL-14	500mL Plastic+HI				
SH4521-16		TA-SW-06-061914	19-JUN-14 14:35	20-JUN-14	100		09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Cour		Co
	s	MA-EPH-LOD	03-JUL-14	1L N-Amber Glass		Bottle Cour	n	Comments
	s	SW3010-PREP	16-DEC-14	250mL Plastic+HI				
Aqueous	s	SW3010MS-PREP	16-DEC-14	250mL Plastic+HN				
Aqueous	s	SW6010-ALUMINUM	16-DEC-14	250mL Plastic+HN				
Aqueous	s	SW6010-BARIUM	16-DEC-14	250ml., Plastic+HN				
Aqueous	S	SW6010-CALCIUM	16-DEC-14	250mL Plastic+HN	1O3			
-	S	SW6010-IRON	16-DEC-14	250ml. Plastic+HN	103			
	s	SW6010-MAGNESIUM	16-DEC-14	250mL Plastic+HN				
•	S	SW6010-MANGANESE	16-DEC-14	250mL Plastic+HN				
•	S	SW6010-POTASSIUM	16-DEC-14	250mL Plastic+HN				
	S	SW6010-SODIUM	16-DEC-14	250mL Plastic+HN				
	S S	SW6010-ZINC SW6020-ANTIMONY	16-DEC-14 16-DEC-14	250mL Plastic+HN				
		SW6020-ARSENIC	16-DEC-14 16-DEC-14	250mL Plastic+HN 250mL Plastic+HN				
		SW6020-BERYLLIUM	16-DEC-14	250mL Plastic+HN				
	_	SW6020-CADMIUM	16-DEC-14	250mL Plastic+HN				
		SW6020-CHROMIUM	16-DEC-14	250mL Plastic+HN				
Aqueous :		SW6020-COBALT	16-DEC-14	250mL Plastic+HN				
Aqueous S	S	SW6020-COPPER	16-DEC-14	250mL Plastic+HN				
Aqueous :	S	SW6020-LEAD	16-DEC-14	250mL Plastic+HN				
-		SW6020-NICKEL	16-DEC-14	250mL Plastic+HN				
-		SW6020-SELENIUM	16-DEC-14	250mL Plastic+HN	103			
•		SW6020-SILVER	16-DEC-14	250mL Plastic+HN	О3			
		SW6020-THALLIUM	16-DEC-14	250mL Plastic+HN				6
		SW6020-VANADIUM	16-DEC-14	250mL Plastic+HN				\sim \sim \sim
•		SW7470-MERCURY	17-JUL-14	500mL Plastic+HN				
		SW8082-S	19-JUL-14	1L N-Amber Glass				- '.' \
		SW8260-S SW8260SIM-S	03-JUL-14	40mL Vial+HCl				~10
Aqueous S		SW8260SIM-S SW8270-S	03-JUL-14 26-JUN-14	40mL Viai+HCi				00.91.1M
Aqueous S		SW8270SIM-S	26-JUN-14 26-JUN-14	1L N-Amber Glass 1L N-Amber Glass				
.,	- '		20-0014-14	TE IN-ATTIDET GIASS				

Page: 8 of 13

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A0

Page: 9 of 13

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

Laborator Sample ID		Client Sample Number	Collect Date/Time	Receive Date	PR	Verbal Date	Due Date	Mailed
SH4521-17	F	TA-SW-06-061914	19-JUN-14 14:35	20-JUN-14		· · · · · · · · · · · · · · · · · · ·	09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Co.	unt	Comments
Aqueous	S	SW3010-PREP	16-DEC-14	250mL Plastic-	HNO3			
Aqueous	s	SW3010MS-PREP	16-DEC-14	250ml, Plastic-	FONH:			
Aqueous	S	SW6010-ALUMINUM-DIS	16-DEC-14	250mL Plastic	HNO3			
Aqueous	S	SW6010-BARIUM-DIS	16-DEC-14	250mL Plastic	HNO3			
Aqueous	s	SW6010-CALCIUM-DIS	16-DEC-14	250mL Plastic-	FONH-			
Aqueous	S	SW6010-IRON-DIS	16-DEC-14	250mL Plastic	FONH			
Aqueous	S	SW6010-MAGNESIUM-DIS	16-DEC-14	250mL Plastic	HNO3			
Aqueous	s	SW6010-MANGANESE-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6010-POTASSIUM-DIS	16-DEC-14	250mL Plastic	HNO3			
Aqueous	S	SW6010-SOĐIUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6010-ZINC-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6020-ANTIMONY-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6020-ARSENIC-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6020-BERYLLIUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6020-CADMIUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6020-CHROMIUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6020-COBALT-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6020-COPPER-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6020-LEAD-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6020-NICKEL-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6020-SELENIUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6020-SILVER-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	s	SW6020-THALLIUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW6020-VANADIUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW7470-MERCURY-DIS	17-JUL-14	500mL Plastic+	HNO3			
SH4521-18	F	TA-SW-07-061914	19-JUN-14 17:15	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Cou	ınt	Comments
Aqueous	S	MA-EPH-LOD	03-JUL-14	1L N-Amber Gla	ass			
Aqueous	s	SW3010-PREP	16-DEC~14	250mL Plastic+	ниоз			
Aqueous	s	SW3010MS-PREP	16-DEC-14	250ml, Plastic+	HNO3			
Aqueous		SW6010-ALUMINUM	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW6010-BARIUM	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW6010-CALCIUM	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW6010-IRON	16-DEC-14	250mL Plastic+l	EONH			
Aqueous		SW6010-MAGNESIUM	16-DEC-14	250ml. Plastic+l	HNO3			
Aqueous		SW6010-MANGANESE	16-DEC-14	250mL Plastic+I	HNO3			
Aqueous		SW6010-POTASSIUM	16-DEC-14	250mL Plastic+	HNO3			
Aqueous		SW6010-SODIUM	16-DEC-14	250mL Plastic+l	HNO3			
Aqueous		SW6010-ZINC	16-DEC-14	250mL Plastic+I	HNO3			
Aqueous		SW6020-ANTIMONY	16-DEC-14	250mL Plastic+l	HNO3			
Aqueous		SW6020-ARSENIC	16-DEC-14	250mL Plastic+				
Aqueous	_	SW6020-BERYLLIUM	16-DEC-14	250mL Plastic+l				
Aqueous		SW6020-CADMIUM	16-DEC-14	250mL Plastic+I				
Aqueous		SW6020-CHROMIUM	16-DEC-14	250mL Plastic+h	fNO3			
Aqueous		SW6020-COBALT	16-DEC-14	250mL Plastic+F	HNO3			
Aqueous		SW6020-COPPER	16-DEC-14	250mL Plastic+h				
Aqueous		SW6020-LEAD	16-DEC-14	250mL Plastic+h	NO3			
		SW6020-NICKEL	16-DEC-14	250mL Plastic+h				
		SW6020-SELENIUM	16-DEC-14	250mL Plastic+h				
•		SW6020-SILVER	16-DEC-14	250mL Plastic+h				
		SW6020-THALLIUM	16-DEC-14	250mL Plastic+F				
		SW6020-VANADIUM	16-DEC-14	250mL Plastic+F				\sim () \sim 1 λ
		SW7470-MERCURY	17-JUL-14	500mL Plastic+F				(X) ~ \\ \'
•		SW8082-S	19-JUL-14	1L N-Amber Glas	SS			~ · 17 /
		SW8260-S	03-JUL-14	40mL Vial+HCI				$\mathcal{L}_{\mathcal{C}}$
		SW8260SIM-S	03-JUL-14	40mL Vial+HCi				06.91.14
Aqueous	S	SW8270-S	26-JUN-14	1L N-Amber Glas	ss			\mathcal{C}
Aqueous	S 5	SW8270\$#M-S	26-JUN-14	1L N-Amber Glas				

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Account: TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laboratory Sample ID		Client Sample Number	Collect Date/Time	Receive Date PI	₹	Verbal Date	Due Date	Mailed
SH4521-19	F	TA-SW-07-061914	19-JUN-14 17:15	20-JUN-14		***************************************	09-JUL-14	
Matrix	~	Product	Hold Date (shortest)	Bottle Type		Bottle Cour	nt	Comments
Aqueous	s	SW3010-PREP	16-DEC-14	250mL Plastic+HN	03			
Aqueous	S	SW3010MS-PREP	16-DEC-14	250mL Plastic+HN	О3			
Aqueous	S	SW6010-ALUMINUM-DIS	16-DEC-14	250mL Plastic+HN	О3			
Aqueous	S	SW6010-BARIUM-DIS	16-DEC-14	250mL Plastic+HN	03			
Aqueous	S	SW6010-CALCIUM-DIS	16-DEC-14	250mL Plastic+HN	О3			
Aqueous	S	SW6010-IRON-DIS	16-DEC-14	250mL Plastic+HN	03			
Aqueous	S	SW6010-MAGNESIUM-DIS	16-DEC-14	250mL Plastic+HN	D3			
Aqueous	S	SW6010-MANGANESE-DIS	16-DEC-14	250mL Plastic+HN	D3			
Aqueous	S	SW6010-POTASSIUM-DIS	16-DEC-14	250mL Plastic+HN	D3			
Aqueous	S	SW6010-SODIUM-DIS	16-DEC-14	250ml. Plastic+HN	23			
Aqueous	S	SW6010-ZINC-DIS	16-DEC-14	250mL Plastic+HN	3C			
Aqueous	S	SW6020-ANTIMONY-DIS	16-DEC-14	250mL Plastic+HNI	D3			
Aqueous	S	SW6020-ARSENIC-DIS	16-DEC-14	250ml. Plastic+HN6	Э3			
Aqueous	S	SW6020-BERYLLIUM-DIS	16-DEC-14	250mL Plastic+HN0	23			
Aqueous	S	SW6020-CADMIUM-DIS	16-DEC-14	250mL Plastic+HN0	23			
Aqueous	S	SW6020-CHROMIUM-DIS	16-DEC-14	250mL Plastic+HN0	03			
Aqueous	S	SW6020-COBALT-DIS	16-DEC-14	250mL Plastic+HN6	03			
Aqueous	S	SW6020-COPPER-DIS	16-DEC-14	250mL Plastic+HN0	23			
Aqueous	S	SW6020-LEAD-DIS	16-DEC-14	250mL Plastic+HN0)3			
Aqueous	S	SW6020-NICKEL-DIS	16-DEC-14	250mL Plastic+HN0	03			
Aqueous	s	SW6020-SELENIUM-DIS	16-DEC-14	250mL Plastic+HN0	03			
Aqueous	S	SW6020-SILVER-DIS	16-DEC-14	250mL Plastic+HN0	03			
Aqueous	s	SW6020-THALLIUM-DIS	16-DEC-14	250mL Plastic+HN0	23			
Aqueous	S	SW6020-VANADIUM-DIS	16-DEC-14	250mL Plastic+HN0)3			
Aqueous	S	SW7470-MERCURY-DIS	17-JUL-14	500mL Plastic+HN0	03			
SH4521-20	F	TA-SW-08-061914	19-JUN-14 16:30	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Coun	t	Comments
Aqueous	s	MA-EPH-LOD	03-JUL-14	1L N-Amber Glass				
Aqueous	S	SW3010-PREP	16-DEC-14	250mL Plastic+HN0	3			
Aqueous	S	SW3010MS-PREP	16-DEC-14	250ml. Plastic+HNC	3			
Aqueous	S	SW6010-ALUMINUM	16-DEC-14	250mL Plastic+HNC	3			
Aqueous	S	SW6010-BARIUM	16-DEC-14	250mL Plastic+HNC	3			
Aqueous	S	SW6010-CALCIUM	16-DEC-14	250mL Plastic+HNC	3			
Aqueous	S	SW6010-IRON	16-DEC-14	250mL Plastic+HNC	3			
Aqueous	S	SW6010-MAGNESIUM	16-DEC-14	250mL Plastic+HNC	3			
Aqueous	S	SW6010-MANGANESE	16-DEC-14	250mt, Plastic+HNC	13			
Aqueous	S	SW6010-POTASSIUM	16-DEC-14	250mL Plastic+HNC	3			
Aqueous	S	SW6010-SODIUM	16-DEC-14	250ml. Plastic+HNC	3			
Aqueous		SW6010-ZINC	16-DEC-14	250mL Plastic+HNC				
Aqueous		SW6020-ANTIMONY	16-DEC-14	250mL Plastic+HNC				
Aqueous		SW6020-ARSENIC	16-DEC-14	250mL Plastic+HNC				
Aqueous	_	SW6020-BERYLLIUM	16-DEC-14	250mL Plastic+HNC				
Aqueous		SW6020-CADMIUM	16-DEC-14	250mL Plastic+HNC				
Aqueous		SW6020-CHROM!UM	16-DEC-14	250mL Plastic+HNO				
Aqueous		SW6020-COBALT	16-DEC-14	250mL Plastic+HNO				
Aqueous		SW6020-COPPER	16-DEC-14	250mL Plastic+HNO				
Aqueous		SW6020-LEAD	16-DEC-14	250ml. Plastic+HNO				
		SW6020-NICKEL	16-DEC-14	250mL Plastic+HNO				
		SW6020-SELENIUM	16-DEC-14	250mL Plastic+HNO				
•		SW6020-SILVER	16-DEC-14	250mL Plastic+HNO				
-		SW6020-THALLIUM	16-DEC-14	250mL Plastic+HNO				1. 0
•		SW6020-VANADIUM	16-DEC-14	250mL Plastic+HNO				\sim \sim . \sim
		SW7470-MERCURY	17-JUL-14	500mL Plastic+HNO	3			~ 1.1
•		SW8082-S	19-JUL-14	1L N-Amber Glass				()
		SW8260-\$	03-JUL-14	40mL Vial+HCI				~10°.
•		SW8260SIM-S	03-JUL-14	40mL Vial+HCl				06.91.1H
•		SW8270-S	26-JUN-14	1L N-Amber Glass				
CALIFEDRAL STATE	S:	SW8270SIM-S	26-JUN-14	N-Amber Glass				

Page: 10 of 13

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Quote/Incoming: TT-CUTLERWE53A(

Account: TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laborator		Client	Collect	Receive		Verbal	Due	
Sample ID		Sample Number	Date/Time	Date	PR	Date	Date	Mailed
SH4521-21	Ī	FTA-SW-08-061914	19-JUN-14 16:30	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Co	unt	Comments
Aqueous	S		16-DEC-14	250mL Plastic+	HNO3			
Aqueous	\$	SW3010MS-PREP	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6010-ALUMINUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6010-BARIUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6010-CALCIUM-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6010-IRON-DIS	16-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-MAGNESIUM-DIS	16-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-MANGANESE-DIS	16-DEC-14	250mL Plastic+	HNO3			
Aqueous	S	SW6010-POTASSIUM-DIS	16-DEC-14	250mt. Plastic+l				
Aqueous	S	SW6010-SODIUM-DIS	16-DEC-14	250mL Plastic+l	HNO3			
Aqueous	S	SW6010-ZINC-DIS	16-DEC-14	250mL Plastic+I	-INO3			
Aqueous	S	SW6020-ANTIMONY-DIS	16-DEC-14	250mL Plastic+I	NO3			
Aqueous	S	SW6020-ARSENIC-DIS	16-DEC-14	250mL Plastic+l	FOM-			
Aqueous	S	SW6020-BERYLLIUM-DIS	16-DEC-14	250mL Plastic+l				
Aqueous	S	SW6020-CADMIUM-DIS	16-DEC-14	250mL Plastic+I	HNO3			
Aqueous	S	SW6020-CHROMIUM-DIS	16-DEC-14	250ml, Plastic+l	HNO3			
Aqueous	\$	SW6020-COBALT-DIS	16-DEC-14	250mL Plastic+H	HNO3			
Aqueous	S	SW6020-COPPER-DIS	16-DEC-14	250mL Plastic+h	HNO3			
Aqueous	S	SW6020-LEAD-DIS	16-DEC-14	250mL Plastic+h	NO3			
Aqueous	S	SW6020-NICKEL-DIS	16-DEC-14	250mL Plastic+F	NO3			
Aqueous	S	SW6020-SELENIUM-DIS	16-DEC-14	250mL Plastic+h				
Aqueous	S	SW6020-SILVER-DIS	16-DEC-14	250mL Plastic+F	NO3			
Aqueous	S	SW6020-THALLIUM-DIS	16-DEC-14	250mL Plastic+F	fNO3			
Aqueous	S	SW6020-VANADIUM-DIS	16-DEC-14	250mL Plastic+F				
Aqueous	S	SW7470-MERCURY-DIS	17-JUL-14	500mL Plastic+F	INO3			
SH4521-22	F	TA-SW-DUP01-061914	19-JUN-14 00:00	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type	******	Bottle Cou	nt	Comments
Aqueous	S	MA-EPH-LOD	03-JUL-14	1L N-Amber Glas	88			
Aqueous	\$	SW3010-PREP	16-DEC-14	250mL Plastic+H	NO3			
Aqueous	S	SW3010MS-PREP	16-DEC-14	250mL Plastic+H	KONI			
Aqueous	S	SW6010-ALUMINUM	16-DEC-14	250ml, Plastic+h	INO3			
Aqueous	S	SW6010-BARIUM	16-DEC-14	250mL Plastic+H	NO3			
Aqueous	S	SW6010-CALCIUM	16-DEC-14	250mL Plastic+H	NO3			
Aqueous	S	SW6010-IRON	16-DEC-14	250ml. Plastic+H	NO3			
Aqueous	S	SW6010-MAGNESIUM	16-DEC-14	250mL Plastic+H	NO3			
Aqueous	S	SW6010-MANGANESE	16-DEC-14	250mL Plastic+H	NO3			
Aqueous		SW6010-POTASSIUM	16-DEC-14	250ml. Plastic+H	NO3			
Aqueous		SW6010-SODIUM	16-DEC-14	250mL Plastic+H	NO3			
Aqueous		SW6010-ZINC	16-DEC-14	250ml. Plastic+H	NO3			
Aqueous		SW6020-ANTIMONY	16-DEC-14	250mL Plastic+H	NO3			
Aqueous		SW6020-ARSENIC	16-DEC-14	250mL Plastic+H	NO3			
Aqueous	_	SW6020-BERYLLIUM	16-DEC-14	250mL Plastic+H	NO3			
		SW6020-CADMIUM	16-DEC-14	250mL Plastic+H	NO3			
Aqueous		SW6020-CHROMIUM	16-DEC-14	250mL Plastic+H	NO3			
Aqueous		SW6020-COBALT	16-DEC-14	250mL Plastic+H	NO3			
		SW6020-COPPER	16-DEC-14	250mL Plastic+Hi	NO3			
•		SW6020-LEAD	16-DEC-14	250mL Plastic+H				
•		SW6020-NICKEL	16-DEC-14	250mL Plastic+Hi	NO3			
		SW6020-SELENIUM	16-DEC-14	250mL Plastic+HI	NO3			
		SW6020-SILVER	16-DEC-14	250mL Plastic+HI	VO 3			
		SW6020-THALLIUM	16-DEC-14	250mL Plastic+HI	NO3			
		SW6020-VANADIUM	16-DEC-14	250mL Plastic+HI	VO3			, · · · · · · · · · · · · · · · · · · ·
		SW7470-MERCURY	17-JUL-14	500mL Plastic+Hf	VO3			$\alpha \sim \alpha$
		SW8082-S	19-JUL-14	1L N-Amber Glass	S			
		SW8260-S	03-JUL-14	40mL Vial+HCl				· - - · · · · · · · · · · · · · · · · · · ·
		SW8260SIM-S	03-JUL-14	40mL Vial+HCl				06.91.1N
Aqueous	S	SW8270-S	26-JUN-14	1L N-Amber Glass	3			
Aqueous	S :	SW8270SIM-S	26-JUN-14	1L N-Amber Glass				

Page: 11 of 13

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: \$H4521

Quote/Incoming: TT-CUTLERWE53A(

Account:TETRAT001

Web

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laborator	V	Client	Collect	Receive		Verbal	Due	
Sample ID		Sample Number	Date/Time	Date	PR	Date	Date	Mailed
SH4521-23	ı	FTA-SW-DUP01-061914	19-JUN-14 00:00	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Cor	unt	Comments
Aqueous	S		16-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	SW3010MS-PREP	16-DEC-14	250ml. Plastic	+HNO3			
Aqueous	s	SW6010-ALUMINUM-DIS	16-DEC-14	250mL Plastic	+HNO3			
Aqueous	S		16-DEC-14	250mL Plastic	+HNO3			
Aqueous	S	SW6010-CALCIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6010-IRON-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6010-MAGNESIUM-DIS SW6010-MANGANESE-DIS	16-DEC-14	250ml. Plastic				
Aqueous Aqueous	S	SW6010-MANGANESE-DIS SW6010-POTASSIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6010-FOTASSIGM-DIS	16-DEC-14 16-DEC-14	250mL Plastic				
Aqueous	s	SW6010-ZINC-DIS	16-DEC-14	250mL Plastic 250mL Plastic				
Aqueous	s	SW6020-ANTIMONY-DIS	16-DEC-14	250mL Plastic				
Aqueous	s	SW6020-ARSENIC-DIS	16-DEC-14	250mL Plastic				
Aqueous	s	SW6020-BERYLLIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	s	SW6020-CADMIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	s	SW6020-CHROMIUM-DIS	16-DEC-14	250mL Plastic				
Aqueous	s	SW6020-COBALT-DIS	16-DEC-14	250mL Plastic				
Aqueous	S	SW6020-COPPER-DIS	16-DEC-14	250mL Plastic				
Aqueous	s	SW6020-LEAD-DIS	16-DEC-14	250mL Plastic-	+HNO3			
Aqueous	s	SW6020-NICKEL-DIS	16-DEC-14	250mL Plastic	•НNО3			
Aqueous	s	SW6020-SELENIUM-DIS	16-DEC-14	250ml. Plastic-	FONH+			
Aqueous	s	SW6020-SILVER-DIS	16-DEC-14	250mL Plastic-	ниоз			
Aqueous	S	SW6020-THALLIUM-DIS	16-DEC-14	250mL Plastic-	нноз			
Aqueous	s	SW6020-VANADIUM-DIS	16-DEC-14	250mL Plastic	HNO3			
Aqueous	S	SW7470-MERCURY-DIS	17-JUL-14	500mL Plastic	HNO3			
SH4521-24	F	TA-SD-RB01-062014	20-JUN-14 08:00	20-JUN-14			09-JUL-14	
Matrix		Product	Hold Date (shortest)	Bottle Type		Bottle Cou	nt	Comments
Aqueous	s	MA-EPH-LOD	04-JUL-14	1L N-Amber GI				
Aqueous	S	SW3010-PREP	17-DEC-14	250ml. Plastic+				
Aqueous	S	SW3010MS-PREP	17-DEC-14	250mL Plastic+				
Aqueous Aqueous	s s	SW6010-ALUMINUM SW6010-BARIUM	17-DEC-14	250mL Plastic+				
Aqueous	S	SW6010-CALCIUM	17-DEC-14 17-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-IRON	17-DEC-14	250mL Plastic+ 250mL Plastic+				
Aqueous	s	SW6010-MAGNESIUM	17-DEC-14 17-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-MANGANESE	17-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-POTASSIUM	17-DEC-14	250mL Plastic+				
Aqueous	s	SW6010-SODIUM	17-DEC-14	250mL Plastic+				
	s	SW6010-ZINC	17-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-ANTIMONY	17-DEC-14	250ml. Plastic+				
Aqueous	s	SW6020-ARSENIC	17-DEC-14	250mL Plastic+				
Aqueous	s	SW6020-BERYLLIUM	17-DEC-14	250mL Plastic+				
-	s	SW6020-CADMIUM	17-DEC-14	250mL Plastic+	HNO3			
	S	SW6020-CHROMIUM	17-DEC-14	250mL Plastic+	HNO3			
	s	SW6020-COBALT	17-DEC-14	250mL Plastic+				
-	S	SW6020-COPPER	17-DEC-14	250mL Plastic+				
-	S	SW6020-LEAD	17-DEC-14	250mL Plastic+				
•	S	SW6020-NICKEL	17-DEC-14	250mL Plastic+				
	s s	SW6020-SELENIUM SW6020-SILVER	17-DEC-14	250mL Plastic+				
		SW6020-SILVER SW6020-THALLIUM	17-DEC-14 17-DEC-14	250mL Plastic+				
		SW6020-VANADIUM	17-DEC-14 17-DEC-14	250mL Plastic+				_ ^ '1
		SW7470-MERCURY	17-DEC-14 18-JUL-14	250mL Plastic+l				~W
		SW8081-S	27-JUN-14	500mL Plastic+l				$\sim 0 \text{ V/}$
Aqueous	-							· O `
•	s	SW8082-S	20-JUL -14		100			
Aqueous		SW8082-S SW8260-S	20-JUL-14 04-JUL-14	1L N-Amber Gla 40ml, Vial+HCI	ISS			\sim 10
Aqueous Aqueous	s		20-JUL-14 04-JUL-14 27-JUN-14	40mL Vial+HCl 1L N-Amber Gla				06.91.14

Page: 12 of 13

Login Chain of Custody Report (Ino1)

Jun. 21, 2014 11:44 AM

Login Number: SH4521

Web

Account: TETRAT001

Tetra Tech NUS, Inc.

Project: TT-CUTLERWE53AOCS

NCTAMSLANT Cutler CTO WE53 AOCs

Laboratory Client Sample ID Sample Number	Collect Date/Time	Receive Date PR	Verbal Date	Due Date	Mailed
---	----------------------	--------------------	----------------	-------------	--------

Quote/Incoming: TT-CUTLERWE53A(

Total Samples: 24 Total Analyses: 653

0000061

Page: 13 of 13

SAMPLE DATA SUMMARY PACKAGE

KATAHDIN ANALYTICAL SERVICES - ORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
- Compound recovery outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ)(previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

or

- J Used for Pesticides, PCBs, Herbicides, Formaldehyde, Explosives and Method 504.1 analytes when there is a greater than 40% difference for detected concentrations between the two GC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- C Indicates that the flagged compound did not meet DoD criteria in the corresponding daily calibration verification (CV).
- L Indicates that the flagged compound did not meet DoD criteria in the corresponding Laboratory Control Sample (LCS) and/or Laboratory Control Sample Duplicate (LCSD) prepared and/or analyzed concurrently with the sample.
- M Indicates that the flagged compound did not meet DoD criteria in the Matrix Spike and/or Matrix Spike Duplicate prepared and/or analyzed concurrently with the native sample.
- N Presumptive evidence of a compound based on a mass spectral library search.
- A Indicates that a tentatively identified compound is a suspected aldol-condensation product.
- P Used for Pesticide/Aroclor analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. (for CLP methods only).

METALS SAMPLE FLAGGING

FLAG	SPECIFIED MEANING
E	The reported value is estimated because of the presence of interference (as indicated by serial dilution).
N	The pre-digestion spiked sample recovery is not within control limits.
*	The duplicate sample analysis relative percent difference (RPD) is not within control limits.
В	Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
А	The post-digestion spiked sample recovery is not within control limits.
•	Analytical run QC sample (e.g. ICV, CCV, ICB, CCB, ICSA, ICSAB) not within control limits.
U	The analyte was not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
	Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
J	The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ) (previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

Report of Analytical Results

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-1

Client ID: FTA-GW-TB01-061714 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7853.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14 **Extracted By:**REC

Extraction Method: SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		98.9	%					
Toluene-d8		98.1	%					

Page 1 of

Report of Analytical Results

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-1

Client ID: FTA-GW-TB01-061714 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7853.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		117.	%					
Dibromofluoromethane		102.	%					

Report of Analytical Results

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-2

Client ID: FTA-MW-9-061714 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7855.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14 **Extracted By:**REC

Extraction Method: SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	J	0.38	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	J	0.81	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		99.0	%					
Toluene-d8		96.0	%					

Page 1 of 2

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-2

Client ID: FTA-MW-9-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7855.D

Sample Date: 17-JUN-14
Received Date: 19-JUN-14
Extract Date: 22 JUN-14

Extract Date: 23-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		115.	%					
Dibromofluoromethane		102.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-4

Client ID: FTA-MW-10-061714 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7856.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14 **Extracted By:**REC

Lab Prep Batch: WG145261

Extraction Method: SW846 5030

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		96.0	%					
Toluene-d8		97.2	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-4

Client ID: FTA-MW-10-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7856.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		116.	%					
Dibromofluoromethane		100.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-6

Client ID: FTA-MW-11-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7857.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14 Extract Date: 23-JUN-14

Extract Date: 23-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 Lab Prep Batch: WG145261 Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	J	0.24	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		97.9	%					
Toluene-d8		95.5	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-6

Client ID: FTA-MW-11-061714 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7857.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By:REC

Extraction Method: SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		113.	%					
Dibromofluoromethane		103.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-8

Client ID: FTA-MW-12-061714 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7858.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14 **Extracted By:**REC

Extraction Method: SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		95.2	%					
Toluene-d8		94.4	%					

Page 1 of 2

http://www.katahdinlab.com

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-8

Client ID: FTA-MW-12-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7858.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		113.	%					
Dibromofluoromethane		100.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-10

Client ID: FTA-MW-5-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7859.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14 **Extracted By:**REC

Extraction Method: SW846 5030

Lab Prep Batch: WG145261

Analyst: REC

Analysis Date: 23-JUN-14

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		95.6	%					
Toluene-d8		94.4	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-10

Client ID: FTA-MW-5-061814

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7859.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		113.	%					
Dibromofluoromethane		98.8	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-12

Client ID: FTA-MW-203-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7860.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 23-JUN-14

Extract Date: 23-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		98.6	%					
Toluene-d8		96.0	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-12

Client ID: FTA-MW-203-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7860.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		118.	%					
Dibromofluoromethane		102.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-14

Client ID: FTA-GW-DUP01-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7861.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 23-JUN-14

Extract Date: 23-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		97.8	%					
Toluene-d8		95.4	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-14

Client ID: FTA-GW-DUP01-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7861.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		118.	%					
Dibromofluoromethane		103.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-16

Client ID: FTA-MW-218-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7862.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14 **Extracted By:**REC

Lab Prep Batch: WG145261

Extraction Method: SW846 5030

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		95.1	%					
Toluene-d8		92.9	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-16

Client ID: FTA-MW-218-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7862.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		114.	%					
Dibromofluoromethane		99.0	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-18

Client ID: FTA-MW-206-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7863.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 23-JUN-14

Extract Date: 23-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene		22	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene		8.2	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		97.0	%					
Toluene-d8		95.7	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-18

Client ID: FTA-MW-206-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7863.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		116.	%					
Dibromofluoromethane		103.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-20

Client ID: FTA-MW-14-061714 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7864.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14 **Extracted By:**REC

Extraction Method: SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		93.7	%					
Toluene-d8		96.2	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-20

Client ID: FTA-MW-14-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7864.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4	*	120.	%					
Dibromofluoromethane		103.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-1

Client ID: FTA-GW-TB02-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7874.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 24 JUN-14

Extract Date: 24-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 Lab Prep Batch: WG145321 Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		96.3	%					
Toluene-d8		98.6	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-1

Client ID: FTA-GW-TB02-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7874.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-JUN-14

Extract Date: 24-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		119.	%					
Dibromofluoromethane		99.8	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-2

Client ID: FTA-MW-208-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7876.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-JUN-14

Extract Date: 24-JUN-14
Extracted By: REC

Extraction Method: SW846 5030 Lab Prep Batch: WG145321 **Analysis Date:** 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		88.7	%					
Toluene-d8		98.5	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-2

Client ID: FTA-MW-208-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7876.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14

Extract Date: 24-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4	*	120.	%					
Dibromofluoromethane		106.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-4

Client ID: FTA-MW-1-061814

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7877.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-JUN-14

Extract Date: 24-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	J	3.0	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		90.0	%					
Toluene-d8		88.9	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-4

Client ID: FTA-MW-1-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7877.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14

Extract Date: 24-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4	*	126.	%					
Dibromofluoromethane		102.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-6

Client ID: FTA-GW-DUP02-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7878.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-JUN-14

Extract Date: 24-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		93.0	%					
Toluene-d8		97.9	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-6

Client ID: FTA-GW-DUP02-061814 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7878.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-JUN-14

Extracted By:REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4	*	123.	%					
Dibromofluoromethane		107.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-8

Client ID: FTA-MW-210-061814 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7879.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 24-JUN-14 **Extracted By:**REC

Extraction Method: SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane		1.0	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane		1.0	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		96.6	%					
Toluene-d8		95.2	%					

Page 1 of 2

http://www.katahdinlab.com

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-8

Client ID: FTA-MW-210-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7879.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 24-JUN-14

Extracted By:REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		118.	%					
Dibromofluoromethane		107.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-10

Client ID: FTA-SW-01-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7880.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-JUN-14

Extract Date: 24-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		90.7	%					
Toluene-d8		94.1	%					

Page 1 of 2

http://www.katahdinlab.com

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-10

Client ID: FTA-SW-01-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7880.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 24-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		119.	%					
Dibromofluoromethane		101.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-12

Client ID: FTA-SW-02-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7881.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-JUN-14

Extract Date: 24-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		85.9	%					
Toluene-d8		96.6	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-12

Client ID: FTA-SW-02-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7881.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 24-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		118.	%					
Dibromofluoromethane		102.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-14

Client ID: FTA-SW-03-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7882.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-JUN-14

Extract Date: 24-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	UMM	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	UM	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	UM	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	UM	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	UM	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	UM	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	UM	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	UM	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	UM	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	UM	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	UM	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	UM	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	UM	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	UM	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	UM	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	UM	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	UM	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	UM	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	UM	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	UM	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	UM	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	UM	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		93.9	%					
Toluene-d8		94.1	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-14

Client ID: FTA-SW-03-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7882.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 24-JUN-14

Extracted By: REC **Extraction Method:** SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4	*	126.	%					
Dibromofluoromethane		107.	%					

Client: Tetra Tech NUS, Inc. Lab ID: SH4521-16RA

Client ID: FTA-SW-06-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: D9210.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extract Date: 28-JUN-14 Extracted By: DJP

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145586

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone		7.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	J	0.86	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		95.2	%					
Toluene-d8		111.	%					

Page 1 of 2

http://www.katahdinlab.com

Client: Tetra Tech NUS, Inc. Lab ID: SH4521-16RA

Client ID: FTA-SW-06-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: D9210.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extract Date: 28-JUN-14

Extracted By: DJP Extraction Method: SW846 5030 Lab Prep Batch: WG145586 Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		117.	%					
Dibromofluoromethane		112.	%					

Client: Tetra Tech NUS, Inc. Lab ID: SH4521-18RA Client ID: FTA-SW-07-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: D9211.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extract Date: 28-JUN-14 Extracted By: DJP

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145586

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone		6.0	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene		5.1	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		98.3	%					
Toluene-d8		114.	%					

Client: Tetra Tech NUS, Inc. Lab ID: SH4521-18RA

Client ID: FTA-SW-07-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: D9211.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 28-JUN-14

Extracted By: DJP Extraction Method: SW846 5030

Lab Prep Batch: WG145586

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		118.	%					
Dibromofluoromethane	*	115.	%					

Client: Tetra Tech NUS, Inc. Lab ID: SH4521-20RA

Client ID: FTA-SW-08-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: D9212.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extract Date: 28-JUN-14 Extracted By: DJP

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145586

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	J	4.1	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		91.2	%					
Toluene-d8		108.	%					

Client: Tetra Tech NUS, Inc. Lab ID: SH4521-20RA

Client ID: FTA-SW-08-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: D9212.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extracted By: DJP

Extraction Method: SW846 5030

Lab Prep Batch: WG145586

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		112.	%					
Dibromofluoromethane		111.	%					

Client: Tetra Tech NUS, Inc. Lab ID: SH4521-22RA

Client ID: FTA-SW-DUP01-061914 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: D9213.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extract Date: 28-JUN-14 Extracted By: DJP

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145586

Analyst: DJP Analysis Method: SW846 8260B

Analysis Date: 28-JUN-14
Analyst: DIP

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone		11	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene		1.0	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		94.4	%					
Toluene-d8		110.	%					

Client: Tetra Tech NUS, Inc. Lab ID: SH4521-22RA

Client ID: FTA-SW-DUP01-061914 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: D9213.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extracted By: DJP

Extraction Method: SW846 5030

Lab Prep Batch: WG145586

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		114.	%					
Dibromofluoromethane		112.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-24

Client ID: FTA-SD-RB01-062014 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7875.D

Sample Date: 20-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-IUN-14

Extract Date: 24-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 Lab Prep Batch: WG145321 Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		89.6	%					
Toluene-d8		93.0	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-24

Client ID: FTA-SD-RB01-062014 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: C7875.D

Sample Date: 20-JUN-14 Received Date: 20-JUN-14 Extract Date: 24-JUN-14

Extract Date: 24-JUN-14
Extracted By: REC

Extraction Method: SW846 5030

Lab Prep Batch: WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
1,2-Dichloroethane-d4		112.	%					
Dibromofluoromethane		101.	%					

Client:

Lab ID: WG145261-2

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: C7849.D

Sample Date: Received Date:

Extract Date: 23-JUN-14

Extracted By:REC

Extraction Method: SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		96.0	%					

Client:

Lab ID: WG145261-2

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: C7849.D

Sample Date: Received Date:

Extract Date: 23-JUN-14

Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ A	DJ MDL A	DJ LOD
Toluene-d8		95.4	%					
1,2-Dichloroethane-d4		113.	%					
Dibromofluoromethane		98.0	%					

Client:

Lab ID: WG145321-2

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: C7873.D

Sample Date: Received Date:

Extract Date: 24-JUN-14

Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		96.0	%					

Client:

Lab ID: WG145321-2

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: C7873.D

Sample Date: Received Date:

Extract Date: 24-JUN-14

Extracted By: REC

Extraction Method: SW846 5030 **Lab Prep Batch:** WG145321

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL	ADJ LOD
Toluene-d8		99.0	%				
1,2-Dichloroethane-d4		117.	%				
Dibromofluoromethane		104.	%				

Client:

Lab ID: WG145586-2

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: D9209.D

Sample Date: Received Date:

Extract Date: 28-JUN-14

Extracted By: DJP

Extraction Method: SW846 5030

Lab Prep Batch: WG145586

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
m+p-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Xylenes (Total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		93.6	%					

Client:

Lab ID: WG145586-2

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: D9209.D

Sample Date: Received Date:

Extract Date: 28-JUN-14

Extracted By: DJP

Extraction Method: SW846 5030

Lab Prep Batch: WG145586

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL	ADJ LOD
Toluene-d8		108.	%				
1,2-Dichloroethane-d4		113.	%				
Dibromofluoromethane		106.	%				

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: NCTAMSLANT Cutler CTO WE53 Matrix: AQ

Lab Code: KAS SDG: WE53-7

Client Sample ID	Lab Sample ID	Col. ID BFB	#	DBF	#	DCA	#	TOL	#
FTA-GW-TB01-061714	SH4401-1	98.9		102.		117.		98.1	
FTA-MW-5-061814	SH4401-10	95.6		98.8		113.		94.4	
FTA-MW-203-061814	SH4401-12	98.6		102.		118.		96.0	
FTA-GW-DUP01-061814	SH4401-14	97.8		103.		118.		95.4	
FTA-MW-218-061814	SH4401-16	95.1		99.0		114.		92.9	
FTA-MW-206-061814	SH4401-18	97.0		103.		116.		95.7	
FTA-MW-9-061714	SH4401-2	99.0		102.		115.		96.0	
FTA-MW-14-061714	SH4401-20	93.7		103.		120.	*	96.2	
FTA-MW-10-061714	SH4401-4	96.0		100.		116.		97.2	
FTA-MW-11-061714	SH4401-6	97.9		103.		113.		95.5	
FTA-MW-12-061714	SH4401-8	95.2		100.		113.		94.4	
FTA-GW-TB02-061814	SH4521-1	96.3		99.8		119.		98.6	
FTA-SW-01-061914	SH4521-10	90.7		101.		119.		94.1	
FTA-SW-02-061914	SH4521-12	85.9		102.		118.		96.6	
FTA-SW-03-061914	SH4521-14	93.9		107.		126.	*	94.1	
FTA-SW-06-061914	SH4521-16RA	95.2		112.		117.		111.	
FTA-SW-07-061914	SH4521-18RA	98.3		115.	*	118.		114.	
FTA-MW-208-061814	SH4521-2	88.7		106.		120.	*	98.5	
FTA-SW-08-061914	SH4521-20RA	91.2		111.		112.		108.	
FTA-SW-DUP01-061914	SH4521-22RA	94.4		112.		114.		110.	
FTA-SD-RB01-062014	SH4521-24	89.6		101.		112.		93.0	
FTA-MW-1-061814	SH4521-4	90.0		102.		126.	*	88.9	
FTA-GW-DUP02-061814	SH4521-6	93.0		107.		123.	*	97.9	
FTA-MW-210-061814	SH4521-8	96.6		107.		118.		95.2	
Laboratory Control S	WG145261-1	103.		94.4		102.		94.9	
Method Blank Sample	WG145261-2	96.0		98.0		113.		95.4	
Laboratory Control S	WG145321-1	99.0		95.0		98.9		94.8	
Method Blank Sample	WG145321-2	96.0		104.		117.		99.0	
Matrix Spike	WG145321-5	102.		96.2		112.		95.0	
Matrix Spike Duplica	WG145321-6	102.		97.6		111.		95.2	
Matrix Spike	WG145321-7	102.		96.6		109.		95.5	
Matrix Spike Duplica	WG145321-8	104.		97.2		108.		97.2	
Laboratory Control S	WG145586-1	103.		94.0		85.6		104.	
Method Blank Sample	WG145586-2	93.6		106.		113.		108.	

Form 2 **System Monitoring Compound Recovery**

Project: NCTAMSLANT Cutler CTO WE53 Lab Name: Katahdin Analytical Services Matrix: AQ

Lab Code: KAS SDG: WE53-7

		QC Limits
DCA	1,2-DICHLOROETHANE-D4	70-120
BFB	P-BROMOFLUOROBENZENE	75-120
DBF	DIBROMOFLUOROMETHANE	85-115
TOL	TOLUENE-D8	85-120

^{# =} Column to be used to flag recovery limits.
* = Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

Client:

Lab ID: WG145261-1 Client ID: LCS

Project: SDG: WE53-7

LCS File ID: C7846.D

Sample Date: Received Date:

Extract Date: 23-JUN-14

Extracted By: REC Extraction Method: SW846 5030

Lab Prep Batch: WG145261

Analysis Date: 23-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

Report Date: 15-JUL-14

Compound	Recovery (%)	Conc Added	Conc Recovere	ed Conc Units	Limits
Chloromethane	103.	50.0	51.6	ug/L	40-125
Chloroethane	80.6	50.0	40.3	ug/L	60-135
1,1-Dichloroethene	106.	50.0	53.0	ug/L	70-130
Methylene Chloride	105.	50.0	52.6	ug/L	55-140
Acetone	109.	50.0	54.5	ug/L	40-140
trans-1,2-Dichloroethene	100.	50.0	50.1	ug/L	60-140
Methyl tert-butyl Ether	114.	100.	114.	ug/L	65-125
1,1-Dichloroethane	108.	50.0	54.0	ug/L	70-135
cis-1,2-Dichloroethene	102.	50.0	50.8	ug/L	70-125
Chloroform	107.	50.0	53.4	ug/L	65-135
Carbon Tetrachloride	107.	50.0	53.7	ug/L	65-140
1,1,1-Trichloroethane	108.	50.0	54.2	ug/L	65-130
Benzene	102.	50.0	51.1	ug/L	80-120
1,2-Dichloroethane	111.	50.0	55.3	ug/L	70-130
Trichloroethene	103.	50.0	51.5	ug/L	70-125
Toluene	100.	50.0	50.0	ug/L	75-120
1,1,2-Trichloroethane	106.	50.0	53.0	ug/L	75-125
Chlorobenzene	107.	50.0	53.3	ug/L	80-120
Ethylbenzene	98.0	50.0	49.0	ug/L	75-125
m+p-Xylenes	107.	100.	107.	ug/L	75-130
o-Xylene	110.	50.0	55.1	ug/L	80-120
Styrene	107.	50.0	53.7	ug/L	65-135
Isopropylbenzene	104.	50.0	51.8	ug/L	75-125
1,1,2,2-Tetrachloroethane	109.	50.0	54.5	ug/L	65-130
1,3-Dichlorobenzene	110.	50.0	55.1	ug/L	75-125
1,4-Dichlorobenzene	99.8	50.0	49.9	ug/L	75-125
1,2-Dichlorobenzene	112.	50.0	55.9	ug/L	70-120
1,2,4-Trichlorobenzene	108.	50.0	53.9	ug/L	65-135
Xylenes (Total)	108.	150.	162.	ug/L	89-116
Methylcyclohexane	98.8	50.0	49.4	ug/L	73-125
2-Hexanone	99.6	50.0	49.8	ug/L	55-130
Vinyl Chloride	100.	50.0	50.1	ug/L	50-145
Tetrachloroethene	90.6	50.0	45.3	ug/L	45-150
P-Bromofluorobenzene	103.			_	75-120
Toluene-d8	94.9				85-120

Client:

Lab ID: WG145261-1

Client ID: LCS Project:

SDG: WE53-7

LCS File ID: C7846.D

Sample Date: Analysis Date: 23-JUN-14

Received Date: Analyst: REC

Extract Date: 23-JUN-14 **Analysis Method:** SW846 8260B

Extracted By: REC **Matrix:** AQ **Extraction Method:** SW846 5030 **% Solids:** NA

Lab Prep Batch: WG145261 Report Date: 15-JUL-14

Compound	Recovery (%)	Conc Added Conc Recovered Conc Units	Limits
1,2-Dichloroethane-d4	102.		70-120
Dibromofluoromethane	94.4		85-115

Client:

Lab ID: WG145321-1 Client ID: LCS

Project: SDG: WE53-7

LCS File ID: C7870.D

Sample Date: Analysis Date: 24-JUN-14

Received Date: Analyst: REC
Extract Date: 24-JUN-14 Analysis Method: SW846 8260B

Extracted By: REC Matrix: AQ
Extraction Method: SW846 5030 % Solids: NA

Lab Prep Batch: WG145321 Report Date: 15-JUL-14

Compound	Recovery (%)	Conc Added	Conc Recovere	ed Conc Units	Limits
Chloromethane	99.8	50.0	49.9	ug/L	40-125
Chloroethane	81.2	50.0	40.6	ug/L	60-135
1,1-Dichloroethene	105.	50.0	52.4	ug/L	70-130
Methylene Chloride	104.	50.0	51.8	ug/L	55-140
Acetone	117.	50.0	58.5	ug/L	40-140
trans-1,2-Dichloroethene	98.0	50.0	49.0	ug/L	60-140
Methyl tert-butyl Ether	105.	100.	105.	ug/L	65-125
1,1-Dichloroethane	106.	50.0	53.1	ug/L	70-135
cis-1,2-Dichloroethene	98.2	50.0	49.1	ug/L	70-125
Chloroform	105.	50.0	52.6	ug/L	65-135
Carbon Tetrachloride	107.	50.0	53.6	ug/L	65-140
1,1,1-Trichloroethane	106.	50.0	53.1	ug/L	65-130
Benzene	97.8	50.0	48.9	ug/L	80-120
1,2-Dichloroethane	109.	50.0	54.4	ug/L	70-130
Trichloroethene	102.	50.0	50.8	ug/L	70-125
Toluene	99.4	50.0	49.7	ug/L	75-120
1,1,2-Trichloroethane	99.6	50.0	49.8	ug/L	75-125
Chlorobenzene	104.	50.0	51.8	ug/L	80-120
Ethylbenzene	95.2	50.0	47.6	ug/L	75-125
m+p-Xylenes	106.	100.	106.	ug/L	75-130
o-Xylene	110.	50.0	55.0	ug/L	80-120
Styrene	106.	50.0	53.1	ug/L	65-135
Isopropylbenzene	105.	50.0	52.7	ug/L	75-125
1,1,2,2-Tetrachloroethane	104.	50.0	52.1	ug/L	65-130
1,3-Dichlorobenzene	106.	50.0	53.2	ug/L	75-125
1,4-Dichlorobenzene	98.0	50.0	49.0	ug/L	75-125
1,2-Dichlorobenzene	108.	50.0	53.8	ug/L	70-120
1,2,4-Trichlorobenzene	96.8	50.0	48.4	ug/L	65-135
Xylenes (Total)	107.	150.	160.	ug/L	89-116
Methylcyclohexane	99.8	50.0	49.9	ug/L	73-125
2-Hexanone	88.4	50.0	44.2	ug/L	55-130
Vinyl Chloride	102.	50.0	51.0	ug/L	50-145
Tetrachloroethene	85.8	50.0	42.9	ug/L	45-150
P-Bromofluorobenzene	99.0			S	75-120
Toluene-d8	94.8				85-120

Page 1 of 2

Client:

Lab ID: WG145321-1

Client ID: LCS

Project: SDG: WE53-7

LCS File ID: C7870.D

Sample Date: Analysis Date: 24-JUN-14

Received Date: Analyst: REC

Extract Date: 24-JUN-14 Analysis Method: SW846 8260B

Matrix: AQ **Extracted By:**REC **Extraction Method:** SW846 5030 % Solids: NA

Lab Prep Batch: WG145321 **Report Date:** 15-JUL-14

Compound	Recovery (%)	Conc Added Conc Recovered Conc Units	Limits
1,2-Dichloroethane-d4	98.9		70-120
Dibromofluoromethane	95.0		85-115

Client:

Lab ID: WG145586-1 Client ID: LCS

Project: SDG: WE53-7

LCS File ID: D9206.D

Sample Date: Analysis Date: 28-JUN-14

Received Date: Analyst: DJP

Extract Date: 28-JUN-14 **Analysis Method:** SW846 8260B

Extracted By: DJP **Matrix:** AQ **Extraction Method:** SW846 5030 **% Solids:** NA

Lab Prep Batch: WG145586 Report Date: 15-JUL-14

Compound	Recovery (%)	Conc Added	Conc Recovere	ed Conc Units	Limits
Chloromethane	112.	50.0	56.0	ug/L	40-125
Chloroethane	96.4	50.0	48.2	ug/L	60-135
1,1-Dichloroethene	90.2	50.0	45.1	ug/L	70-130
Methylene Chloride	97.2	50.0	48.6	ug/L	55-140
Acetone	133.	50.0	66.4	ug/L	40-140
trans-1,2-Dichloroethene	90.6	50.0	45.3	ug/L	60-140
Methyl tert-butyl Ether	85.9	100.	85.9	ug/L	65-125
1,1-Dichloroethane	91.4	50.0	45.7	ug/L	70-135
cis-1,2-Dichloroethene	93.8	50.0	46.9	ug/L	70-125
Chloroform	91.6	50.0	45.8	ug/L	65-135
Carbon Tetrachloride	97.6	50.0	48.8	ug/L	65-140
1,1,1-Trichloroethane	97.4	50.0	48.7	ug/L	65-130
Benzene	92.4	50.0	46.2	ug/L	80-120
1,2-Dichloroethane	89.8	50.0	44.9	ug/L	70-130
Trichloroethene	93.4	50.0	46.7	ug/L	70-125
Toluene	93.8	50.0	46.9	ug/L	75-120
1,1,2-Trichloroethane	99.2	50.0	49.6	ug/L	75-125
Chlorobenzene	95.4	50.0	47.7	ug/L	80-120
Ethylbenzene	86.6	50.0	43.3	ug/L	75-125
m+p-Xylenes	97.4	100.	97.4	ug/L	75-130
o-Xylene	92.0	50.0	46.0	ug/L	80-120
Styrene	87.2	50.0	43.6	ug/L	65-135
Isopropylbenzene	105.	50.0	52.6	ug/L	75-125
1,1,2,2-Tetrachloroethane	97.4	50.0	48.7	ug/L	65-130
1,3-Dichlorobenzene	100.	50.0	50.2	ug/L	75-125
1,4-Dichlorobenzene	86.8	50.0	43.4	ug/L	75-125
1,2-Dichlorobenzene	102.	50.0	50.8	ug/L	70-120
1,2,4-Trichlorobenzene	98.8	50.0	49.4	ug/L	65-135
Xylenes (Total)	95.3	150.	143.	ug/L	89-116
Methylcyclohexane	95.4	50.0	47.7	ug/L	73-125
2-Hexanone	89.8	50.0	44.9	ug/L	55-130
Vinyl Chloride	100.	50.0	50.2	ug/L	50-145
Tetrachloroethene	88.2	50.0	44.1	ug/L	45-150
P-Bromofluorobenzene	103.			5	75-120
Toluene-d8	104.				85-120

Page 1 of 2

Client:

Lab ID: WG145586-1 Client ID: LCS

Project:

SDG: WE53-7

LCS File ID: D9206.D

Sample Date: Analysis Date: 28-JUN-14

Received Date: Analyst: DJP

Extract Date: 28-JUN-14 Analysis Method: SW846 8260B

Extracted By: DJP **Matrix:** AQ **Extraction Method:** SW846 5030 **% Solids:** NA

Lab Prep Batch: WG145586 Report Date: 15-JUL-14

Compound	Recovery (%)	Conc Added Conc Recovered Conc Units	Limits
1,2-Dichloroethane-d4	85.6		70-120
Dibromofluoromethane	94.0		85-115

MS ID: WG145321-5 MSD ID: WG145321-6 Sample ID: SH4521-8

Client ID: FTA-MW-210-061814

Project: SDG: WE53-7

MS File ID: C7887.D

Received Date:

Extract Date: 24-JUN-14 **Extracted By:**REC

Extraction Method: SW846 5030 Lab Prep Batch: WG145321 **Report Date:** 15-JUL-14

MSD File ID: C7888.D

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

	MS	MSD	Conc	Samp	MS	MSD	MS Rec	MSD Re	c	RPD	
Compound	Spike	Spike	Units	Conc	Conc	Conc	(%)	(%)	RPD (%)	Limit	Limits
Chloromethane	50.0	50.0	ug/L	U1.0	58.7	59.6	117.	119.	2	30	40-125
Chloroethane	50.0	50.0	ug/L	U1.0	62.4	50.6	125.	101.	21	30	60-135
1,1-Dichloroethene	50.0	50.0	ug/L	U0.50	59.4	59.3	119.	119.	0	30	70-130
Methylene Chloride	50.0	50.0	ug/L	U2.5	56.9	57.3	114.	115.	1	30	55-140
Acetone	50.0	50.0	ug/L	U2.5	50.4	51.1	101.	102.	1	30	40-140
trans-1,2-Dichloroethene	50.0	50.0	ug/L	U0.50	54.4	54.3	109.	109.	0	30	60-140
Methyl tert-butyl Ether	100.	100.	ug/L	U0.50	103.	108.	103.	108.	5	30	65-125
1,1-Dichloroethane	50.0	50.0	ug/L	1.0	63.3	61.4	125.	121.	3	30	70-135
cis-1,2-Dichloroethene	50.0	50.0	ug/L	U0.50	55.6	54.0	111.	108.	3	30	70-125
Chloroform	50.0	50.0	ug/L	U0.50	59.4	58.2	119.	116.	2	30	65-135
Carbon Tetrachloride	50.0	50.0	ug/L	U0.50	57.1	55.6	114.	111.	3	30	65-140
1,1,1-Trichloroethane	50.0	50.0	ug/L	1.0	62.0	58.7	122.	115.	5	30	65-130
Benzene	50.0	50.0	ug/L	U0.50	55.0	53.5	110.	107.	3	30	80-120
1,2-Dichloroethane	50.0	50.0	ug/L	U0.50	57.8	55.2	116.	110.	5	30	70-130
Trichloroethene	50.0	50.0	ug/L	U0.50	57.0	54.4	114.	109.	5	30	70-125
Toluene	50.0	50.0	ug/L	U0.50	55.2	52.8	110.	106.	4	30	75-120
1,1,2-Trichloroethane	50.0	50.0	ug/L	U0.50	54.1	52.3	108.	105.	3	30	75-125
Chlorobenzene	50.0	50.0	ug/L	U0.50	55.6	54.4	111.	109.	2	30	80-120
Ethylbenzene	50.0	50.0	ug/L	U0.50	50.8	49.7	102.	99.4	2	30	75-125
m+p-Xylenes	100.	100.	ug/L	U1.0	114.	110.	114.	110.	4	30	75-130
o-Xylene	50.0	50.0	ug/L	U0.50	56.6	54.8	113.	110.	3	30	80-120
Styrene	50.0	50.0	ug/L	U0.50	55.2	53.3	110.	107.	4	30	65-135
Isopropylbenzene	50.0	50.0	ug/L	U0.50	57.0	55.1	114.	110.	3	30	75-125
1,1,2,2-Tetrachloroethane	50.0	50.0	ug/L	U0.50	52.8	50.9	106.	102.	4	30	65-130
1,3-Dichlorobenzene	50.0	50.0	ug/L	U0.50	55.7	53.6	111.	107.	4	30	75-125
1,4-Dichlorobenzene	50.0	50.0	ug/L	U0.50	50.9	48.9	102.	97.8	4	30	75-125
1,2-Dichlorobenzene	50.0	50.0	ug/L	U0.50	53.8	53.5	108.	107.	0	30	70-120
1,2,4-Trichlorobenzene	50.0	50.0	ug/L	U0.50	39.4	42.1	78.8	84.2	7	30	65-135
Xylenes (Total)	150.	150.	ug/L	U1.5	171.	165.	114.	110.	4	30	89-116
Methylcyclohexane	50.0	50.0	ug/L	U0.50	60.9	60.5	122.	121.	1	30	73-125
2-Hexanone	50.0	50.0	ug/L	U2.5	37.8	39.3	75.6	78.6	4	30	55-130
Vinyl Chloride	50.0	50.0	ug/L	U1.0	63.3	62.3	127.	125.	2	30	50-145
Tetrachloroethene	50.0	50.0	ug/L	U0.50	43.8	43.4	87.6	86.8	1	30	45-150

MS ID: WG145321-5 **MSD ID:** WG145321-6 **Sample ID:** SH4521-8

Client ID: FTA-MW-210-061814

Project: SDG: WE53-7

P-Bromofluorobenzene

1,2-Dichloroethane-d4 Dibromofluoromethane

Toluene-d8

MS File ID: C7887.D

Received Date: Extract Date: 24-JUN-14 Extracted By: REC

Extraction Method: SW846 5030 Lab Prep Batch: WG145321 Report Date: 15-JUL-14 MSD File ID: C7888.D Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

102.	102.	75-120
95.0	95.2	85-120
112.	111.	70-120
96.2	97.6	85-115

MS ID: WG145321-7 **MSD ID:** WG145321-8 **Sample ID:** SH4521-14

Client ID: FTA-SW-03-061914

Project: SDG: WE53-7

MS File ID: C7889.D

Received Date: Analysis Date: 24-JUN-14

Extract Date: 24-JUN-14 Analyst: REC Extracted By: REC Analysis Meth

Extraction Method: SW846 5030 Lab Prep Batch: WG145321 Report Date: 15-JUL-14 MSD File ID: C7890.D Analyst: REC Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

	MS	MSD	Conc	Samp	MS	MSD	MS Rec	MSD Re	c	RPD	
Compound	Spike	Spike	Units	Conc	Conc	Conc	(%)	(%)	RPD (%)	Limit	Limits
Chloromethane	50.0	50.0	ug/L	UMM1.0	63.7	74.0	127.*	148.*	15	30	40-125
Chloroethane	50.0	50.0	ug/L	U1.0	52.3	57.8	105.	116.	10	30	60-135
1,1-Dichloroethene	50.0	50.0	ug/L	UM0.50	62.1	74.8	124.	150.*	18	30	70-130
Methylene Chloride	50.0	50.0	ug/L	U2.5	57.8	68.7	116.	137.	17	30	55-140
Acetone	50.0	50.0	ug/L	UM2.5	64.9	72.1	130.	144.*	10	30	40-140
trans-1,2-Dichloroethene	50.0	50.0	ug/L	U0.50	56.6	67.4	113.	135.	17	30	60-140
Methyl tert-butyl Ether	100.	100.	ug/L	UM0.50	123.	133.	123.	133.*	8	30	65-125
1,1-Dichloroethane	50.0	50.0	ug/L	UM0.50	62.2	73.6	124.	147.*	17	30	70-135
cis-1,2-Dichloroethene	50.0	50.0	ug/L	UM0.50	55.6	67.6	111.	135.*	19	30	70-125
Chloroform	50.0	50.0	ug/L	UM0.50	59.1	69.0	118.	138.*	15	30	65-135
Carbon Tetrachloride	50.0	50.0	ug/L	U0.50	57.3	67.6	115.	135.	16	30	65-140
1,1,1-Trichloroethane	50.0	50.0	ug/L	UM0.50	61.0	72.0	122.	144.*	16	30	65-130
Benzene	50.0	50.0	ug/L	UM0.50	55.5	65.8	111.	132.*	17	30	80-120
1,2-Dichloroethane	50.0	50.0	ug/L	UM0.50	57.3	67.6	115.	135.*	16	30	70-130
Trichloroethene	50.0	50.0	ug/L	UM0.50	55.5	67.5	111.	135.*	20	30	70-125
Toluene	50.0	50.0	ug/L	UM0.50	55.0	63.9	110.	128.*	15	30	75-120
1,1,2-Trichloroethane	50.0	50.0	ug/L	UM0.50	54.0	63.9	108.	128.*	17	30	75-125
Chlorobenzene	50.0	50.0	ug/L	UM0.50	55.6	65.3	111.	131.*	16	30	80-120
Ethylbenzene	50.0	50.0	ug/L	U0.50	51.6	60.8	103.	122.	16	30	75-125
m+p-Xylenes	100.	100.	ug/L	UM1.0	113.	133.	113.	133.*	16	30	75-130
o-Xylene	50.0	50.0	ug/L	UM0.50	58.1	68.3	116.	137.*	16	30	80-120
Styrene	50.0	50.0	ug/L	U0.50	54.9	64.9	110.	130.	17	30	65-135
Isopropylbenzene	50.0	50.0	ug/L	UM0.50	57.1	69.4	114.	139.*	19	30	75-125
1,1,2,2-Tetrachloroethane	50.0	50.0	ug/L	UM0.50	58.6	65.2	117.	130.*	11	30	65-130
1,3-Dichlorobenzene	50.0	50.0	ug/L	UM0.50	55.9	66.4	112.	133.*	17	30	75-125
1,4-Dichlorobenzene	50.0	50.0	ug/L	U0.50	50.8	60.6	102.	121.	18	30	75-125
1,2-Dichlorobenzene	50.0	50.0	ug/L	UM0.50	56.9	67.9	114.	136.*	18	30	70-120
1,2,4-Trichlorobenzene	50.0	50.0	ug/L	U0.50	50.0	56.9	100.	114.	13	30	65-135
Xylenes (Total)	150.	150.	ug/L	UM1.5	171.	202.	114.	135.*	17	30	89-116
Methylcyclohexane	50.0	50.0	ug/L	U0.50	59.9	58.5	120.	117.	2	30	73-125
2-Hexanone	50.0	50.0	ug/L	U2.5	54.8	59.5	110.	119.	8	30	55-130
Vinyl Chloride	50.0	50.0	ug/L	UM1.0	66.2	77.5	132.	155.*	16	30	50-145
Tetrachloroethene	50.0	50.0	ug/L	U0.50	45.1	54.4	90.2	109.	19	30	45-150

MS ID: WG145321-7 MSD ID: WG145321-8 **Sample ID:** SH4521-14

Client ID: FTA-SW-03-061914

Project:

MS File ID: C7889.D

SDG: WE53-7

P-Bromofluorobenzene Toluene-d8 1,2-Dichloroethane-d4

Dibromofluoromethane

Received Date: Extract Date: 24-JUN-14 **Extracted By:**REC

Extraction Method: SW846 5030 Lab Prep Batch: WG145321 Report Date: 15-JUL-14 MSD File ID: C7890.D

Analysis Date: 24-JUN-14

Analyst: REC

Analysis Method: SW846 8260B

Matrix: AQ % Solids: NA

102.	104.	75-120
95.5	97.2	85-120
109.	108.	70-120
96.6	97.2	85-115

Form 4 Method Blank Summary - VOA

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Lab Sample ID : WG145261-2Lab File ID : C7849.DDate Analyzed : 23-JUN-14

Instrument ID: GCMS-C Time Analyzed: 10:56

Heated Purge: No

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG145261-1	C7846.D	06/23/14	09:12
FTA-GW-TB01-061714	SH4401-1	C7853.D	06/23/14	12:58
FTA-MW-9-061714	SH4401-2	C7855.D	06/23/14	13:58
FTA-MW-10-061714	SH4401-4	C7856.D	06/23/14	14:28
FTA-MW-11-061714	SH4401-6	C7857.D	06/23/14	14:59
FTA-MW-12-061714	SH4401-8	C7858.D	06/23/14	15:29
FTA-MW-5-061814	SH4401-10	C7859.D	06/23/14	15:59
FTA-MW-203-061814	SH4401-12	C7860.D	06/23/14	16:30
FTA-GW-DUP01-061814	SH4401-14	C7861.D	06/23/14	17:00
FTA-MW-218-061814	SH4401-16	C7862.D	06/23/14	17:31
FTA-MW-206-061814	SH4401-18	C7863.D	06/23/14	18:01
FTA-MW-14-061714	SH4401-20	C7864.D	06/23/14	18:33

Form 4 Method Blank Summary - VOA

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

Lab Sample ID: WG145321-2

Lab File ID : C7873.DDate Analyzed : 24-JUN-14Instrument ID : GCMS-CTime Analyzed : 10:26

Heated Purge: No

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG145321-1	C7870.D	06/24/14	08:39
FTA-GW-TB02-061814	SH4521-1	C7874.D	06/24/14	10:56
FTA-SD-RB01-062014	SH4521-24	C7875.D	06/24/14	11:27
FTA-MW-208-061814	SH4521-2	C7876.D	06/24/14	11:57
FTA-MW-1-061814	SH4521-4	C7877.D	06/24/14	12:28
FTA-GW-DUP02-061814	SH4521-6	C7878.D	06/24/14	12:58
FTA-MW-210-061814	SH4521-8	C7879.D	06/24/14	13:29
FTA-SW-01-061914	SH4521-10	C7880.D	06/24/14	13:59
FTA-SW-02-061914	SH4521-12	C7881.D	06/24/14	14:30
FTA-SW-03-061914	SH4521-14	C7882.D	06/24/14	15:01
Matrix Spike	WG145321-5	C7887.D	06/24/14	17:32
Matrix Spike Duplica	WG145321-6	C7888.D	06/24/14	18:02
Matrix Spike	WG145321-7	C7889.D	06/24/14	18:33
Matrix Spike Duplica	WG145321-8	C7890.D	06/24/14	19:05

Form 4 Method Blank Summary - VOA

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Lab Sample ID : WG145586-2

Lab File ID : D9209.DDate Analyzed : 28-JUN-14Instrument ID : GCMS-DTime Analyzed : 11:05

Heated Purge: No

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG145586-1	D9206.D	06/28/14	09:18
FTA-SW-06-061914	SH4521-16RA	D9210.D	06/28/14	11:37
FTA-SW-07-061914	SH4521-18RA	D9211.D	06/28/14	12:10
FTA-SW-08-061914	SH4521-20RA	D9212.D	06/28/14	12:43
FTA-SW-DUP01-061914	SH4521-22RA	D9213.D	06/28/14	13:16

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 09-JUN-14

Lab File ID : CB839.DTime Analyzed : 10:43Instrument ID : GCMS-CHeated Purge : No

m/e	Ion Abundance Criteria	% Rel	
50	15.0 - 40.0% of mass 95	21.4	
75	30.0 - 60.0% of mass 95	54.3	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	6.4	
173	Less than 2.0% of mass 174	0.7	0.90
174	Greater than 50.0% of mass 95	78.1	
175	5.0 - 9.0% of mass 174	6.8	8.77
176	95.0 - 101.0% of mass 174	77.9	99.79
177	5.0 - 9.0% of mass 176	5.1	6.52^{2}

1-Value is % mass 174

2-Value is % mass 176

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Initial Calibration	WG144357-6	C7524.D	06/09/14	11:06
Initial Calibration	WG144357-5	C7525.D	06/09/14	11:36
Initial Calibration	WG144357-2	C7528.D	06/09/14	13:08
Initial Calibration	WG144357-1	C7529.D	06/09/14	13:39
Initial Calibration	WG144357-4	C7530.D	06/09/14	14:16
Initial Calibration	WG144357-3	C7531.D	06/09/14	15:05
Independent Source	WG144357-7	C7532A.D	06/09/14	15:57

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 23-JUN-14

Lab File ID : CB852.DTime Analyzed : 08:04Instrument ID : GCMS-CHeated Purge : No

m/e	Ion Abundance Criteria	% Rel	
50	15.0 - 40.0% of mass 95	19.5	
75	30.0 - 60.0% of mass 95	49.5	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	6.7	
173	Less than 2.0% of mass 174	0.3	0.39
174	Greater than 50.0% of mass 95	83.0	
175	5.0 - 9.0% of mass 174	6.8	8.19
176	95.0 - 101.0% of mass 174	81.3	97.90
177	5.0 - 9.0% of mass 176	5.5	6.77

1-Value is % mass 174

2-Value is % mass 176

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG145261-4	C7845.D	06/23/14	08:30
Laboratory Control S	WG145261-1	C7846.D	06/23/14	09:12
Method Blank Sample	WG145261-2	C7849.D	06/23/14	10:56
FTA-GW-TB01-061714	SH4401-1	C7853.D	06/23/14	12:58
FTA-MW-9-061714	SH4401-2	C7855.D	06/23/14	13:58
FTA-MW-10-061714	SH4401-4	C7856.D	06/23/14	14:28
FTA-MW-11-061714	SH4401-6	C7857.D	06/23/14	14:59
FTA-MW-12-061714	SH4401-8	C7858.D	06/23/14	15:29
FTA-MW-5-061814	SH4401-10	C7859.D	06/23/14	15:59
FTA-MW-203-061814	SH4401-12	C7860.D	06/23/14	16:30
FTA-GW-DUP01-061814	SH4401-14	C7861.D	06/23/14	17:00
FTA-MW-218-061814	SH4401-16	C7862.D	06/23/14	17:31
FTA-MW-206-061814	SH4401-18	C7863.D	06/23/14	18:01
FTA-MW-14-061714	SH4401-20	C7864.D	06/23/14	18:33

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 24-JUN-14

Lab File ID : CB853.DTime Analyzed : 07:30Instrument ID : GCMS-CHeated Purge : No

m/e	Ion Abundance Criteria	% Rel	
50	15.0 - 40.0% of mass 95	18.0	
75	30.0 - 60.0% of mass 95	49.2	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	7.6	
173	Less than 2.0% of mass 174	0.9	1.06
174	Greater than 50.0% of mass 95	81.8	
175	5.0 - 9.0% of mass 174	6.3	7.67
176	95.0 - 101.0% of mass 174	79.4	97.08
177	5.0 - 9.0% of mass 176	5.2	6.53

1-Value is % mass 174

2-Value is % mass 176

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG145321-4	C7869.D	06/24/14	07:53
Laboratory Control S	WG145321-1	C7870.D	06/24/14	08:39
Method Blank Sample	WG145321-2	C7873.D	06/24/14	10:26
FTA-GW-TB02-061814	SH4521-1	C7874.D	06/24/14	10:56
FTA-SD-RB01-062014	SH4521-24	C7875.D	06/24/14	11:27
FTA-MW-208-061814	SH4521-2	C7876.D	06/24/14	11:57
FTA-MW-1-061814	SH4521-4	C7877.D	06/24/14	12:28
FTA-GW-DUP02-061814	SH4521-6	C7878.D	06/24/14	12:58
FTA-MW-210-061814	SH4521-8	C7879.D	06/24/14	13:29
FTA-SW-01-061914	SH4521-10	C7880.D	06/24/14	13:59
FTA-SW-02-061914	SH4521-12	C7881.D	06/24/14	14:30
FTA-SW-03-061914	SH4521-14	C7882.D	06/24/14	15:01
Matrix Spike	WG145321-5	C7887.D	06/24/14	17:32
Matrix Spike Duplica	WG145321-6	C7888.D	06/24/14	18:02
Matrix Spike	WG145321-7	C7889.D	06/24/14	18:33
Matrix Spike Duplica	WG145321-8	C7890.D	06/24/14	19:05

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 11-JUN-14

Lab File ID : DB350.DTime Analyzed : 13:38Instrument ID : GCMS-DHeated Purge : No

m/e	Ion Abundance Criteria	, , ,	elative idance
50	15.0 - 40.0% of mass 95	17.3	
75	30.0 - 60.0% of mass 95	43.2	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	7.6	
173	Less than 2.0% of mass 174	0.0	0.0
174	Greater than 50.0% of mass 95	65.8	
175	5.0 - 9.0% of mass 174	5.8	8.81
176	95.0 - 101.0% of mass 174	66.2	100.48
177	5.0 - 9.0% of mass 176	4.4	6.64

1-Value is % mass 174

2-Value is % mass 176

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Initial Calibration	WG144515-3	D8861.D	06/11/14	14:03
Initial Calibration	WG144515-2	D8862.D	06/11/14	14:35
Initial Calibration	WG144515-1	D8863.D	06/11/14	15:07
Initial Calibration	WG144515-6	D8865.D	06/11/14	16:13
Initial Calibration	WG144515-5	D8866.D	06/11/14	16:45
Initial Calibration	WG144515-4	D8867.D	06/11/14	17:18
Independent Source	WG144515-7	D8868A.D	06/11/14	17:50

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 28-JUN-14

Lab File ID : DB368.DTime Analyzed : 08:08Instrument ID : GCMS-DHeated Purge : No

m/e	/e Ion Abundance Criteria		lative dance
50	15.0 - 40.0% of mass 95	19.7	
75	30.0 - 60.0% of mass 95	53.9	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	6.7	
173	Less than 2.0% of mass 174	0.0	0.0
174	Greater than 50.0% of mass 95	78.0	
175	5.0 - 9.0% of mass 174	4.9	6.34
176	95.0 - 101.0% of mass 174	74.8	95.93
177	5.0 - 9.0% of mass 176	5.9	7.93

1-Value is % mass 174

2-Value is % mass 176

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG145586-4	D9205.D	06/28/14	08:35
Laboratory Control S	WG145586-1	D9206.D	06/28/14	09:18
Method Blank Sample	WG145586-2	D9209.D	06/28/14	11:05
FTA-SW-06-061914	SH4521-16RA	D9210.D	06/28/14	11:37
FTA-SW-07-061914	SH4521-18RA	D9211.D	06/28/14	12:10
FTA-SW-08-061914	SH4521-20RA	D9212.D	06/28/14	12:43
FTA-SW-DUP01-061914	SH4521-22RA	D9213.D	06/28/14	13:16

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical ServicesSDG: WE53-7Project : NCTAMSLANT Cutler CTO WE53Instrument ID: GCMS-C

Lab File IDs: C7529.D C7528.D C7531.D Column ID:

C7530.D C7525.D C7524.D **Calibration Date(s):** 09-JUN-14 11:06

09-JUN-14 15:05

	1.0000	5.0000	20.0000	50.0000	100.0000	200.0000	New	b	m1	m2	%RSD	Max	
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					%RSD	
Chloromethane	0.36067	0.37477	0.38896	0.34444	0.32717	0.29427	AVG		0.34838		9.85057	15.00000	О
Vinyl chloride	0.28054	0.31750	0.32999	0.28885	0.28949	0.26908	AVG		0.29591		7.81623	15.00000	О
Chloroethane	0.17901	0.16462	0.17094	0.09587	0.08089	0.08440	AVG		0.12929		36.16127	15.00000	W
1,1-Dichloroethene	0.20580	0.22923	0.25783	0.23243	0.22922	0.22226	AVG		0.22946		7.35829	15.00000	О
Methylene Chloride	14097	50160	179771	423894	855390	1678621	LNR	-0.01951	0.27418		0.99991	0.99000	О
Acetone	0.06460	0.06654	0.06972	0.07727	0.06715	0.07976	AVG		0.07084		8.77506	15.00000	О
trans-1,2-Dichloroethene	0.25131	0.26074	0.30799	0.27317	0.27642	0.26721	AVG		0.27281		7.12806	15.00000	О
Methyl tert-butyl ether	0.43118	0.47331	0.52123	0.56092	0.55730	0.53347	AVG		0.51290		9.94732	15.00000	О
1,1-Dichloroethane	0.44999	0.48271	0.48143	0.43751	0.43722	0.43009	AVG		0.45316		5.14098	15.00000	О
cis-1,2-Dichloroethene	0.26421	0.30353	0.30914	0.29019	0.29419	0.28396	AVG		0.29087		5.46750	15.00000	О
Chloroform	0.43218	0.51340	0.48930	0.46393	0.45379	0.43874	AVG		0.46523		6.67792	15.00000	О
Carbon Tetrachloride	0.19297	0.25577	0.27377	0.25650	0.25874	0.25377	AVG		0.24859		11.33714	15.00000	О
1,1,1-Trichloroethane	0.35124	0.42939	0.46760	0.41840	0.41446	0.40943	AVG		0.41509		9.06663	15.00000	О
Benzene	0.62558	0.76372	0.76467	0.69321	0.65542	0.59016	AVG		0.68213		10.56398	15.00000	О
1,2-Dichloroethane	0.24680	0.23812	0.22346	0.21291	0.21525	0.21239	AVG		0.22482		6.44507	15.00000	О
Trichloroethene	0.16563	0.20678	0.20093	0.18257	0.18035	0.17958	AVG		0.18597		8.17064	15.00000	О
Toluene	0.38694	0.50253	0.49969	0.45113	0.43666	0.41010	AVG		0.44784		10.44874	15.00000	О
Tetrachloroethene	0.16453	0.20658	0.21128	0.19862	0.19923	0.19866	AVG		0.19648		8.38945	15.00000	О
1,1,2-Trichloroethane	0.13971	0.14734	0.13452	0.13175	0.13079	0.13057	AVG		0.13578		4.87292	15.00000	О
2-Hexanone	9712	85958	339437	1015896	1930811	3794126	LNR	-0.11295	0.08298		0.99789	0.99000	О
Chlorobenzene	0.51250	0.55602	0.53914	0.50703	0.49374	0.43541	AVG		0.50731		8.25413	15.00000	О
Ethylbenzene	0.26916	0.31927	0.31801	0.29884	0.29742	0.27642	AVG		0.29652		6.97344	15.00000	О
Xylenes (total)	+++++	+++++	+++++	+++++	+++++	+++++	AVG		0.000e+00		0.000e+0	15.00000	M (
m+p-Xylenes	0.28397	0.37980	0.38306	0.35178	0.33385	0.27841	AVG		0.33514		13.61210	15.00000	О
o-Xylene	0.24358	0.31611	0.34061	0.33529	0.33700	0.30577	AVG		0.31306		11.70764	15.00000	О
Styrene	0.40147	0.56900	0.58874	0.58969	0.57472	0.49523	AVG		0.53648		13.95163	15.00000	О
Isopropylbenzene	24777	198711	808839	1861815	3501823	5943207	QUA	0.01705	0.53061	0.09197	0.99935	0.99000	О
1,1,2,2-Tetrachloroethane	0.35916	0.38980	0.34740	0.34915	0.34018	0.33805	AVG		0.35396		5.39053	15.00000	О
1,3-Dichlorobenzene	0.71455	0.82898	0.79553	0.75113	0.74797	0.66917	AVG		0.75122		7.55316	15.00000	О
1,4-Dichlorobenzene	0.96005	0.91054	0.85404	0.81548	0.81360	0.71400	AVG		0.84462		10.13379	15.00000	О
1,2-Dichlorobenzene	0.63742	0.70594	0.70556	0.68265	0.68320	0.62055	AVG		0.67255		5.30217	15.00000	О
1,2,4-Trichlorobenzene	5435	55122	186489	551745	1069490	2340919	LNR	0.02199	0.42133		0.99949	0.99000	О
Methylcyclohexane	0.39760	0.48518	0.48364	0.44832	0.43498	0.45452	AVG		0.45070		7.26460	15.00000	О
Dibromofluoromethane	0.27013	0.30843	0.28405	0.28583	0.27893	0.27734	AVG		0.28412		4.62316	15.00000	
1,2-Dichloroethane-D4	0.29542	0.31967	0.29207	0.28049	0.27149	0.27486	AVG		0.28900		6.13252	15.00000	
Toluene-D8	0.57695	0.67926	0.69882	0.65565	0.60319	0.53742	AVG		0.62521		10.06179	15.00000	П
P-Bromofluorobenzene	0.23366	0.27813	0.28189	0.27783	0.27069	0.26588	AVG		0.26801		6.63950	15.00000	

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical ServicesSDG: WE53-7Project : NCTAMSLANT Cutler CTO WE53Instrument ID: GCMS-C

Lab File IDs: C7529.D C7528.D C7531.D Column ID:

C7530.D C7525.D C7524.D Calibration Date(s): 09-JUN-14 11:06

09-JUN-14 15:05

Legend: O = Kept Original Curve

Y = Failed Minimum RF

W = Failed %RSD Value

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical ServicesSDG: WE53-7Project : NCTAMSLANT Cutler CTO WE53Instrument ID: GCMS-D

Lab File IDs: D8863.D D8862.D D8861.D Column ID:

D8867.D D8866.D D8865.D **Calibration Date(s):** 11-JUN-14 14:03

11-JUN-14 17:18

	1.0000	5.0000	20.0000	50.0000	100.0000	200.0000	New	b	m1	m2	%RSD	Max	
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					%RSD	
Chloromethane	5583	29208	88242	325103	607521	893361	LNR	-0.07536	0.50813		0.99512	0.99000	О
Vinyl chloride	0.71660	0.81779	0.64834	0.66344	0.57627	0.57657	AVG		0.66650		13.74564	15.00000	О
Chloroethane	4304	21970	79023	230405	411881	570418	QUA	-0.01726	1.92228	0.93764	0.99953	0.99000	О
1,1-Dichloroethene	0.46560	0.47848	0.40004	0.47123	0.40273	0.42374	AVG		0.44030		8.10055	15.00000	О
Methylene Chloride	8579	28391	86127	295398	549992	924716	LNR	-0.03486	0.51494		0.99849	0.99000	О
Acetone	0.10172	0.13535	0.12822	0.13259	0.12043	0.13452	AVG		0.12547		10.25315	15.00000	О
trans-1,2-Dichloroethene	0.48665	0.55193	0.45979	0.53805	0.48044	0.49969	AVG		0.50276		7.04743	15.00000	О
Methyl tert-butyl ether	7314	50372	209805	1075487	2226418	3861423	LNR	0.11070	1.09268		0.99805	0.99000	0
1,1-Dichloroethane	0.96584	1.03644	0.89268	0.89566	0.79965	0.85141	AVG		0.90695		9.24667	15.00000	О
cis-1,2-Dichloroethene	0.51486	0.56099	0.50577	0.56007	0.52000	0.55189	AVG		0.53560		4.62815	15.00000	О
Chloroform	0.95064	1.02976	0.86780	0.87941	0.79208	0.83787	AVG		0.89293		9.51162	15.00000	О
Carbon Tetrachloride	0.30460	0.35379	0.33351	0.38150	0.34975	0.38186	AVG		0.35084		8.40720	15.00000	О
1,1,1-Trichloroethane	0.60213	0.76616	0.68590	0.75308	0.68015	0.74027	AVG		0.70462		8.71606	15.00000	О
Benzene	1.20269	1.40763	1.28510	1.36542	1.22561	1.28045	AVG		1.29448		6.11088	15.00000	О
1,2-Dichloroethane	0.41166	0.44706	0.40102	0.39151	0.35576	0.38089	AVG		0.39798		7.72139	15.00000	О
Trichloroethene	0.26735	0.34165	0.29902	0.31152	0.28611	0.33730	AVG		0.30716		9.44843	15.00000	О
Toluene	0.58029	0.82208	0.77109	0.83801	0.77541	0.85755	AVG		0.77407		13.03761	15.00000	О
Tetrachloroethene	0.24379	0.25563	0.24722	0.27496	0.24972	0.26887	AVG		0.25670		4.88980	15.00000	О
1,1,2-Trichloroethane	0.20370	0.25344	0.24091	0.25193	0.23065	0.27152	AVG		0.24203		9.59688	15.00000	О
2-Hexanone	3381	33868	186069	723419	1403537	2688605	LNR	-0.12947	0.15707		0.99706	0.99000	О
Chlorobenzene	0.96794	0.99954	0.83340	0.88184	0.77254	0.76965	AVG		0.87082		11.18289	15.00000	О
Ethylbenzene	0.43379	0.50719	0.45212	0.49365	0.44890	0.46264	AVG		0.46638		6.05937	15.00000	О
Xylenes (total)	+++++	+++++	+++++	+++++	+++++	+++++	AVG		0.000e+00		0.000e+0	15.00000	М (
m+p-Xylenes	0.42651	0.56498	0.54895	0.61544	0.56613	0.57722	AVG		0.54987		11.71774	15.00000	О
o-Xylene	3198	22814	109409	429616	915753	1886975	LNR	0.02237	0.54698		0.99907	0.99000	О
Styrene	5136	42949	205507	782375	1698997	3419911	LNR	0.01522	0.99322		0.99956	0.99000	О
Isopropylbenzene	1.36140	1.85267	1.96879	2.22558	1.88838	1.89962	AVG		1.86607		15.08675	15.00000	W
1,1,2,2-Tetrachloroethane	0.70600	0.78315	0.73745	0.77385	0.65355	0.68898	AVG		0.72383		6.95685	15.00000	О
1,3-Dichlorobenzene	0.88009	1.12941	1.07602	1.20288	1.06857	1.10807	AVG		1.07751		10.03003	15.00000	О
1,4-Dichlorobenzene	1.41018	1.43747	1.25612	1.36202	1.21498	1.26424	AVG		1.32417		6.90590	15.00000	О
1,2-Dichlorobenzene	0.91238	1.13526	1.09963	1.22188	1.07066	1.10460	AVG		1.09073		9.31990	15.00000	О
1,2,4-Trichlorobenzene	2504	18231	84401	363731	755977	1488828	LNR	-0.00659	0.69940		0.99781	0.99000	О
Methylcyclohexane	0.45727	0.48971	0.51310	0.54946	0.54997	0.64334	AVG		0.53381		12.06367	15.00000	О
Dibromofluoromethane	0.46414	0.52982	0.45743	0.46315	0.43184	0.49067	AVG		0.47284		7.11092	15.00000	
1,2-Dichloroethane-D4	0.65052	0.66089	0.54484	0.52851	0.45843	0.52807	AVG		0.56188		13.99307	15.00000	
Toluene-D8	0.78981	1.07993	1.01331	1.09300	0.99801	1.07313	AVG		1.00786		11.25813	15.00000	
P-Bromofluorobenzene	0.28576	0.37748	0.36495	0.42664	0.42671	+++++	AVG		0.37631		15.38229	15.00000	

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical ServicesSDG: WE53-7Project : NCTAMSLANT Cutler CTO WE53Instrument ID: GCMS-D

Lab File IDs: D8863.D D8862.D D8861.D Column ID:

D8867.D D8866.D D8865.D **Calibration Date(s):** 11-JUN-14 14:03

11-JUN-14 17:18

Legend: O = Kept Original Curve

Y = Failed Minimum RF

W = Failed %RSD Value

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

Lab ID: WG145261-4

Lab File ID: C7845.D

SDG: WE53-7

Analytical Date: 06/23/14 08:30

Instrument ID: GCMS-C

Initial Calibration Date(s): 06/09/14 11:06 06/09/14 15:05 **Column ID:**

Initial Calibration Dat	e(s): 06/09/14 11:06	06/09/14 15	:05	Column	ID.		
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
2 Chloromethane	0.34838	0.39556	0.39556	0.100	13.54160	20.00000	Averaged
3 Vinyl chloride	0.29591	0.32177	0.32177	0.010	8.74065	20.00000	Averaged
5 Chloroethane	0.12929	0.12373	0.12373	0.010	-4.30164	20.00000	Averaged
9 1,1-Dichloroethene	0.22946	0.22920	0.22920	0.100	-0.11587	20.00000	Averaged
14 Methylene Chloride	50.00000	53.91961	0.30103	0.010	7.83922	20.00000	Linear
15 Acetone	0.07084	0.07282	0.07282	0.010	2.78831	20.00000	Averaged
17 trans-1,2-Dichloroethene	0.27281	0.27018	0.27018	0.010	-0.96151	20.00000	Averaged
19 Methyl tert-butyl ether	0.51290	0.54263	0.54263	0.010	5.79684	20.00000	Averaged
25 1,1-Dichloroethane	0.45316	0.48282	0.48282	0.100	6.54501	20.00000	Averaged
29 cis-1,2-Dichloroethene	0.29087	0.29043	0.29043	0.010	-0.14992	20.00000	Averaged
34 Chloroform	0.46523	0.50932	0.50932	0.010	9.47853	20.00000	Averaged
35 Carbon Tetrachloride	0.24859	0.26555	0.26555	0.010	6.82280	20.00000	Averaged
38 1,1,1-Trichloroethane	0.41509	0.46567	0.46567	0.010	12.18605	20.00000	Averaged
41 Benzene	0.68213	0.69081	0.69081	0.010	1.27309	20.00000	Averaged
47 1,2-Dichloroethane	0.22482	0.24351	0.24351	0.010	8.31563	20.00000	Averaged
48 Trichloroethene	0.18597	0.18953	0.18953	0.010	1.91237	20.00000	Averaged
57 Toluene	0.44784	0.45882	0.45882	0.010	2.45170	20.00000	Averaged
59 Tetrachloroethene	0.19648	0.18718	0.18718	0.010	-4.73687	20.00000	Averaged
61 1,1,2-Trichloroethane	0.13578	0.13911	0.13911	0.010	2.45413	20.00000	Averaged
65 2-Hexanone	250	277	0.09377	0.010	10.74731	20.00000	Linear
67 Chlorobenzene	0.50731	0.50446	0.50446	0.300	-0.56100	20.00000	Averaged
68 Ethylbenzene	0.29652	0.28749	0.28749	0.010	-3.04384	20.00000	Averaged
70 Xylenes (total)	++++	0.34549	0.34549	0.010	++++	20.00000	Averaged
71 m+p-Xylenes	0.33514	0.35374	0.35374	0.010	5.54952	20.00000	Averaged
72 o-Xylene	0.31306	0.32900	0.32900	0.010	5.09103	20.00000	Averaged
73 Styrene	0.53648	0.58947	0.58947	0.010	9.87887	20.00000	Averaged
75 Isopropylbenzene	50.00000	48.29413	1.43251	0.010	-3.41174	20.00000	Quadratic
81 1,1,2,2-Tetrachloroethane	0.35396	0.37087	0.37087	0.300	4.77855	20.00000	Averaged
90 1,3-Dichlorobenzene	0.75122	0.76204	0.76204	0.010	1.43951	20.00000	Averaged
92 1,4-Dichlorobenzene	0.84462	0.83685	0.83685	0.010	-0.92022	20.00000	Averaged
95 1,2-Dichlorobenzene	0.67255	0.68634	0.68634	0.010	2.04917	20.00000	Averaged
99 1,2,4-Trichlorobenzene	50.00000	46.78563	0.38497	0.010	-6.42875	20.00000	Linear
04 Methylcyclohexane	0.45070	0.44980	0.44980	0.010	-0.20116	20.00000	Averaged
37 Dibromofluoromethane	0.28412	0.27254	0.27254	0.010	-4.07671	20.00000	Averaged
45 1,2-Dichloroethane-D4	0.28900	0.30214	0.30214	0.010	4.54809	20.00000	Averaged
55 Toluene-D8	0.62521	0.59131	0.59131	0.010	-5.42274	20.00000	Averaged
76 P-Bromofluorobenzene	0.26801	0.27237	0.27237	0.010	1.62660	20.00000	Averaged

Column ID:

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

SDG: WE53-7 Lab ID: WG145261-4 **Analytical Date:** 06/23/14 08:30 Lab File ID: C7845.D **Instrument ID: GCMS-C**

Initial Calibration Date(s): 06/09/14 11:06 06/09/14 15:05

* = Compound out of QC criteria

Column ID:

Lab Name: Katahdin Analytical Services

Project : NCTAMSLANT Cutler CTO WE53

Lab ID : WG145321-4

Lab File ID : C7869.D

SDG: WE53-7

Analytical Date: 06/24/14 07:53

Instrument ID: GCMS-C

Initial Calibration Date(s): 06/09/14 11:06 06/09/14 15:05

Initial Calibration Dat	e(s): 06/09/14 11:06	06/09/14 15	:05	Column	ID:			
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type	
2 Chloromethane	0.34838	0.38032	0.38032	0.100	9.16800	20.00000	Averaged	
3 Vinyl chloride	0.29591	0.30709	0.30709	0.010	3.77662	20.00000	Averaged	
5 Chloroethane	0.12929	0.11350	0.11350	0.010	-12.21125	20.00000	Averaged	
9 1,1-Dichloroethene	0.22946	0.22468	0.22468	0.100	-2.08148	20.00000	Averaged	
14 Methylene Chloride	50.00000	53.03208	0.29616	0.010	6.06415	20.00000	Linear	
15 Acetone	0.07084	0.08213	0.08213	0.010	15.93700	20.00000	Averaged	
17 trans-1,2-Dichloroethene	0.27281	0.26612	0.26612	0.010	-2.45088	20.00000	Averaged	
19 Methyl tert-butyl ether	0.51290	0.56019	0.56019	0.010	9.21932	20.00000	Averaged	
25 1,1-Dichloroethane	0.45316	0.47772	0.47772	0.100	5.42001	20.00000	Averaged	
29 cis-1,2-Dichloroethene	0.29087	0.28509	0.28509	0.010	-1.98846	20.00000	Averaged	
34 Chloroform	0.46523	0.50042	0.50042	0.010	7.56536	20.00000	Averaged	
35 Carbon Tetrachloride	0.24859	0.27116	0.27116	0.010	9.08030	20.00000	Averaged	
38 1,1,1-Trichloroethane	0.41509	0.45219	0.45219	0.010	8.93988	20.00000	Averaged	
41 Benzene	0.68213	0.69699	0.69699	0.010	2.17911	20.00000	Averaged	
47 1,2-Dichloroethane	0.22482	0.24859	0.24859	0.010	10.57426	20.00000	Averaged	
48 Trichloroethene	0.18597	0.18746	0.18746	0.010	0.79692	20.00000	Averaged	
57 Toluene	0.44784	0.45218	0.45218	0.010	0.96906	20.00000	Averaged	
59 Tetrachloroethene	0.19648	0.18753	0.18753	0.010	-4.55532	20.00000	Averaged	
61 1,1,2-Trichloroethane	0.13578	0.14475	0.14475	0.010	6.60881	20.00000	Averaged	
65 2-Hexanone	250	341	0.11499	0.010	36.32335	20.00000	Linear	
67 Chlorobenzene	0.50731	0.50444	0.50444	0.300	-0.56444	20.00000	Averaged	
68 Ethylbenzene	0.29652	0.29387	0.29387	0.010	-0.89267	20.00000	Averaged	
70 Xylenes (total)	++++	0.34232	0.34232	0.010	++++	20.00000	Averaged	
71 m+p-Xylenes	0.33514	0.35363	0.35363	0.010	5.51451	20.00000	Averaged	
72 o-Xylene	0.31306	0.31971	0.31971	0.010	2.12375	20.00000	Averaged	
73 Styrene	0.53648	0.59232	0.59232	0.010	10.40939	20.00000	Averaged	
75 Isopropylbenzene	50.00000	47.79325	1.41988	0.010	-4.41350	20.00000	Quadratic	
81 1,1,2,2-Tetrachloroethane	0.35396	0.41355	0.41355	0.300	16.83532	20.00000	Averaged	
90 1,3-Dichlorobenzene	0.75122	0.77784	0.77784	0.010	3.54354	20.00000	Averaged	
92 1,4-Dichlorobenzene	0.84462	0.85222	0.85222	0.010	0.89963	20.00000	Averaged	
95 1,2-Dichlorobenzene	0.67255	0.70312	0.70312	0.010	4.54471	20.00000	Averaged	
99 1,2,4-Trichlorobenzene	50.00000	53.19250	0.43896	0.010	6.38500	20.00000	Linear	
04 Methylcyclohexane	0.45070	0.43870	0.43870	0.010	-2.66377	20.00000	Averaged	
37 Dibromofluoromethane	0.28412	0.25907	0.25907	0.010	-8.81600	20.00000	Averaged	
45 1,2-Dichloroethane-D4	0.28900	0.28819	0.28819	0.010	-0.27929	20.00000	Averaged	
55 Toluene-D8	0.62521	0.57793	0.57793	0.010	-7.56228	20.00000	Averaged	
76 P-Bromofluorobenzene	0.26801	0.27595	0.27595	0.010	2.95986	20.00000	Averaged	

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53 **SDG:** WE53-7 **Lab ID**: WG145321-4 **Analytical Date:** 06/24/14 07:53

Lab File ID : C7869.D Instrument ID: GCMS-C

Initial Calibration Date(s): 06/09/14 11:06 06/09/14 15:05 **Column ID:**

* = Compound out of QC criteria

Lab Name: Katahdin Analytical Services

Project : NCTAMSLANT Cutler CTO WE53

Lab ID : WG145586-4

Lab File ID : D9205.D

SDG: WE53-7

Analytical Date: 06/28/14 08:35

Instrument ID: GCMS-D

Initial Calibration Date(s): 06/11/14 14:03 06/11/14 17:18 **Column ID:**

Initial Calibration Dat	e(s): 06/11/14 14:03	06/11/14 1/	:18	Column	ID.			
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type	
2 Chloromethane	50.00000	48.32864	0.52943	0.100	-3.34271	20.00000	Linear	
3 Vinyl chloride	0.66650	0.56971	0.56971	0.010	-14.52211	20.00000	Averaged	
5 Chloroethane	50.00000	46.44781	0.41017	0.010	-7.10438	20.00000	Quadratic	
9 1,1-Dichloroethene	0.44030	0.34881	0.34881	0.100	-20.77979	20.00000	Averaged	
14 Methylene Chloride	50.00000	45.22904	0.48375	0.010	-9.54193	20.00000	Linear	
15 Acetone	0.12547	0.11014	0.11014	0.010	-12.21595	20.00000	Averaged	
17 trans-1,2-Dichloroethene	0.50276	0.40881	0.40881	0.010	-18.68703	20.00000	Averaged	
19 Methyl tert-butyl ether	100	80.93158	0.82384	0.010	-19.06842	20.00000	Linear	
25 1,1-Dichloroethane	0.90695	0.77667	0.77667	0.100	-14.36429	20.00000	Averaged	
29 cis-1,2-Dichloroethene	0.53560	0.46651	0.46651	0.010	-12.89864	20.00000	Averaged	
34 Chloroform	0.89293	0.78265	0.78265	0.010	-12.35014	20.00000	Averaged	
35 Carbon Tetrachloride	0.35084	0.32209	0.32209	0.010	-8.19220	20.00000	Averaged	
38 1,1,1-Trichloroethane	0.70462	0.64402	0.64402	0.010	-8.60027	20.00000	Averaged	
41 Benzene	1.29448	1.12449	1.12449	0.010	-13.13208	20.00000	Averaged	
47 1,2-Dichloroethane	0.39798	0.35350	0.35350	0.010	-11.17710	20.00000	Averaged	
48 Trichloroethene	0.30716	0.27635	0.27635	0.010	-10.03056	20.00000	Averaged	
57 Toluene	0.77407	0.71824	0.71824	0.010	-7.21277	20.00000	Averaged	
59 Tetrachloroethene	0.25670	0.22969	0.22969	0.010	-10.52199	20.00000	Averaged	
61 1,1,2-Trichloroethane	0.24203	0.23504	0.23504	0.010	-2.88765	20.00000	Averaged	
65 2-Hexanone	250	252	0.16246	0.010	0.84395	20.00000	Linear	
67 Chlorobenzene	0.87082	0.83819	0.83819	0.300	-3.74685	20.00000	Averaged	
68 Ethylbenzene	0.46638	0.40324	0.40324	0.010	-13.53811	20.00000	Averaged	
70 Xylenes (total)	++++	0.53081	0.53081	0.010	++++	20.00000	Averaged	
71 m+p-Xylenes	0.54987	0.54389	0.54389	0.010	-1.08694	20.00000	Averaged	
72 o-Xylene	50.00000	47.24654	0.50463	0.010	-5.50692	20.00000	Linear	
73 Styrene	50.00000	42.86936	0.83645	0.010	-14.26128	20.00000	Linear	
75 Isopropylbenzene	1.86607	2.00552	2.00552	0.010	7.47244	20.00000	Averaged	
81 1,1,2,2-Tetrachloroethane	0.72383	0.67731	0.67731	0.300	-6.42712	20.00000	Averaged	
90 1,3-Dichlorobenzene	1.07751	1.09677	1.09677	0.010	1.78796	20.00000	Averaged	
92 1,4-Dichlorobenzene	1.32417	1.14020	1.14020	0.010	-13.89295	20.00000	Averaged	
95 1,2-Dichlorobenzene	1.09073	1.12326	1.12326	0.010	2.98194	20.00000	Averaged	
99 1,2,4-Trichlorobenzene	50.00000	46.10836	0.64957	0.010	-7.78329	20.00000	Linear	
104 Methylcyclohexane	0.53381	0.51359	0.51359	0.010	-3.78669	20.00000	Averaged	
37 Dibromofluoromethane	0.47284	0.45381	0.45381	0.010	-4.02607	20.00000	Averaged	
45 1,2-Dichloroethane-D4	0.56188	0.50609	0.50609	0.010	-9.92885	20.00000	Averaged	
55 Toluene-D8	1.00786	1.04087	1.04087	0.010	3.27516	20.00000	Averaged	
76 P-Bromofluorobenzene	0.37631	0.39778	0.39778	0.010	5.70600	20.00000	Averaged	

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

SDG: WE53-7 Lab ID: WG145586-4 **Analytical Date:** 06/28/14 08:35 Lab File ID: D9205.D **Instrument ID:** GCMS-D

Initial Calibration Date(s): 06/11/14 14:03 06/11/14 17:18 Column ID:

* = Compound out of QC criteria

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Project : NCTAMSLANT Cutler CTO WI
Lab ID : WG144357-4
Lab File ID : C7530.D
SDG: WE53-7
Analytical Date: 06/09/14 14:16
Instrument ID: GCMS-C

		PENTAFLUOF	ROBENZENE	1,4-DIFLUOR	OBENZENE	CHLOROBE	ENZENE-D5
		Area #	RT #	Area #	RT #	Area #	RT #
	Std.	1508419	8.07	2172315	8.72	2155688	12.21
	Upper Limit	3016838	8.57	4344630	9.22	4311376	12.71
		754209.5	7.57		8.22		11.71
	Lower Limit	/54209.5	1.51	1086157.5	8.22	1077844	11./1
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG145261-4	1127904	8.06	1700036	8.72	1719184	12.21
Laboratory Control S	WG145261-1	1212114	8.06	1769162	8.73	1796750	12.21
Method Blank Sample	WG145261-2	994425	8.07	1550314	8.72	1571676	12.21
FTA-GW-TB01-061714	SH4401-1	978849	8.06	1498797	8.72	1556677	12.21
FTA-MW-9-061714	SH4401-2	963736	8.06	1504427	8.72	1522424	12.21
FTA-MW-10-061714	SH4401-4	959638	8.07	1494223	8.72	1515863	12.21
FTA-MW-11-061714	SH4401-6	956071	8.06	1506551	8.72	1483398	12.21
FTA-MW-12-061714	SH4401-8	949525	8.06	1490050	8.72	1530543	12.21
FTA-MW-5-061814	SH4401-10	950307	8.06	1504545	8.72	1505593	12.21
FTA-MW-203-061814	SH4401-12	948396	8.06	1503202	8.72	1518853	12.21
FTA-GW-DUP01-0618	SH4401-14	941202	8.06	1501735	8.72	1523667	12.21
FTA-MW-218-061814	SH4401-16	973510	8.07	1533190	8.72	1554924	12.21
FTA-MW-206-061814	SH4401-18	949887	8.07	1497262	8.72	1500638	12.21
FTA-MW-14-061714	SH4401-20	947370	8.06	1492605	8.72	1509216	12.21
Continuing Calibrati	WG145321-4	1150363	8.06	1680504	8.72	1686639	12.21
Laboratory Control S	WG145321-1	1217735	8.06	1793795	8.72	1794320	12.21
Method Blank Sample	WG145321-2	915193	8.06	1488746	8.72	1584149	12.21
FTA-GW-TB02-061814	SH4521-1	911494	8.06	1465357	8.72	1577419	12.21
FTA-SD-RB01-062014	SH4521-24	983838	8.07	1510057	8.72	1558667	12.21
FTA-MW-208-061814	SH4521-2	957025	8.07	1530270	8.73	1444476	12.21
FTA-MW-1-061814	SH4521-4	894297	8.06	1512860	8.72	1420608	12.21
FTA-GW-DUP02-0618	SH4521-6	865679	8.06	1412937	8.72	1387385	12.21
FTA-MW-210-061814	SH4521-8	894640	8.06	1468868	8.72	1442354	12.21
FTA-SW-01-061914	SH4521-10	921107	8.06	1461056	8.72	1398654	12.21
FTA-SW-02-061914	SH4521-12	915219	8.07	1448754	8.73	1400592	12.21
FTA-SW-03-061914	SH4521-14	750060 *	8.06	1310770	8.72	1327756	12.21
Matrix Spike	WG145321-5	949487	8.06	1495328	8.72	1562834	12.21
Matrix Spike Duplica	WG145321-6	1028830	8.07	1600121	8.72	1645928	12.21
Matrix Spike	WG145321-7	1061174	8.06	1661127	8.73	1686204	12.21
Matrix Spike Duplica	WG145321-8	1074170	8.07	1664867	8.72	1719178	12.21

SDG: WE53-7

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Lab ID :WG144357-4Analytical Date: 06/09/14 14:16Lab File ID :C7530.DInstrument ID: GCMS-C

		1,4-DICHLO	RO	BENZ	ENE-D4
		Area	#	RT	#
	Std.	1334267		15.55	
	Upper Limit	2668534		16.05	
	Lower Limit	667133.5		15.05	
Client Sample ID	Lab Sample ID				
Continuing Calibrati	WG145261-4	1040390		15.54	
Laboratory Control S	WG145261-1	1079151		15.54	
Method Blank Sample	WG145261-2	866485		15.54	
FTA-GW-TB01-061714		845220		15.54	
FTA-MW-9-061714	SH4401-2	839876		15.54	
FTA-MW-10-061714	SH4401-4	839049		15.54	
FTA-MW-11-061714	SH4401-6	840957		15.54	
FTA-MW-12-061714	SH4401-8	836018		15.54	
FTA-MW-5-061814	SH4401-10	824483		15.54	
FTA-MW-203-061814	SH4401-12	826115		15.54	
FTA-GW-DUP01-0618	SH4401-14	841747		15.54	
FTA-MW-218-061814	SH4401-16	794826		15.54	
FTA-MW-206-061814	SH4401-18	826344		15.54	
FTA-MW-14-061714	SH4401-20	785130		15.54	
Continuing Calibrati	WG145321-4	1013294		15.54	
Laboratory Control S	WG145321-1	1033307		15.54	
Method Blank Sample	WG145321-2	863647		15.54	
FTA-GW-TB02-061814	SH4521-1	795688		15.54	
FTA-SD-RB01-062014	SH4521-24	774160		15.54	
FTA-MW-208-061814	SH4521-2	747475		15.54	
FTA-MW-1-061814	SH4521-4	763350		15.54	
FTA-GW-DUP02-0618	SH4521-6	736547		15.54	
FTA-MW-210-061814	SH4521-8	824229		15.54	
FTA-SW-01-061914	SH4521-10	820749		15.54	
FTA-SW-02-061914	SH4521-12	710750		15.54	
FTA-SW-03-061914	SH4521-14	695252		15.54	
Matrix Spike	WG145321-5	920555		15.54	
Matrix Spike Duplica	WG145321-6	970507		15.54	
Matrix Spike	WG145321-7	981935		15.54	
Matrix Spike Duplica	WG145321-8	996885		15.54	

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Project : NCTAMSLANT Cutler CTO WI
Lab ID : WG144357-4
Lab File ID : C7530.D
SDG: WE53-7
Analytical Date: 06/09/14 14:16
Instrument ID: GCMS-C

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SDG: WE53-7

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Lab ID :WG144515-4Analytical Date: 06/11/14 17:18Lab File ID :D8867.DInstrument ID: GCMS-D

		PENTAFLUO	ROBENZENE	1,4-DIFLUOR	ROBENZENE	CHLOROBE	ENZENE-D5
		Area #	RT #	Area #	RT #	Area #	RT #
	Std.	508846	7.93	805504	8.59	764958	12.08
	Upper Limit	1017692	8.43	1611008	9.09	1529916	12.58
	Lower Limit	254423	7.43	402752	8.09	382479	11.58
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG145586-4	456290	7.92	756716	8.59	756615	12.07
Laboratory Control S	WG145586-1	516090	7.93	839368	8.59	820233	12.07
Method Blank Sample	WG145586-2	351492	7.92	637801	8.59	570749	12.07
FTA-SW-06-061914	SH4521-16RA	321844	7.92	598150	8.59	541606	12.07
FTA-SW-07-061914	SH4521-18RA	296296	7.92	556675	8.59	504354	12.07
FTA-SW-08-061914	SH4521-20RA	314491	7.92	580658	8.59	525706	12.07
FTA-SW-DUP01-0619	SH4521-22RA	300103	7.93	551979	8.59	513550	12.07

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SDG: WE53-7

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Lab ID :WG144515-4Analytical Date: 06/11/14 17:18Lab File ID :D8867.DInstrument ID: GCMS-D

		1,4-DICHLORO	BENZENE-D4
		Area #	RT #
	Std.	449110	15.38
	Upper Limit	898220	15.88
	Lower Limit	224555	14.88
Client Sample ID	Lab Sample ID		
Continuing Calibrati	WG145586-4	443255	15.37
Laboratory Control S	WG145586-1	476492	15.37
Method Blank Sample	WG145586-2	294224	15.37
FTA-SW-06-061914	SH4521-16RA	281198	15.37
FTA-SW-07-061914	SH4521-18RA	265836	15.37
FTA-SW-08-061914	SH4521-20RA	273817	15.37
FTA-SW-DUP01-0619	SH4521-22RA	268526	15.37

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-1

Client ID: FTA-GW-TB01-061714 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0473.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 28-JUN-14

Extracted By: DJP
Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		115.	%					
Toluene-D8		105.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-2

Client ID: FTA-MW-9-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0479.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14 Extract Date: 28-JUN-14

Extracted By:DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride		0.84	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		117.	%					
Toluene-D8		95.4	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-4

Client ID: FTA-MW-10-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0474.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14 Extract Date: 28-JUN-14

Extracted By: DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	J	0.081	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	J	0.012	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		120.	%					
Toluene-D8		96.4	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-6

Client ID: FTA-MW-11-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0475.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 28-JUN-14

Extracted By: DJP
Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		119.	%					
Toluene-D8		97.1	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-8

Client ID: FTA-MW-12-061714 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0476.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14 Extract Date: 28-JUN-14

Extracted By: DJP

Lab Prep Batch: WG145589

Extraction Method: SW846 8260BSIM

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		123.	%					
Toluene-D8		98.4	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-10

Client ID: FTA-MW-5-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0477.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 28-JUN-14

Extracted By: DJP
Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		123.	%					
Toluene-D8		90.3	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-12

Client ID: FTA-MW-203-061814 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0469.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 28-JUN-14

Extracted By: DJP **Extraction Method:** SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		109.	%					
Toluene-D8		99.0	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-14

Client ID: FTA-GW-DUP01-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0470.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 28-JUN-14

Extracted By: DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		120.	%					
Toluene-D8		92.1	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-16

Client ID: FTA-MW-218-061814 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0471.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 28-JUN-14

Extracted By: DJP **Extraction Method:** SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		113.	%					
Toluene-D8		93.8	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-18

Client ID: FTA-MW-206-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0472.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 28-JUN-14

Extracted By:DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	J	0.054	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		111.	%					
Toluene-D8		101.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-20

Client ID: FTA-MW-14-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0478.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14 Extract Date: 28-JUN-14

Extract Date: 28-JUN-14

Extracted By: DJP
Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		117.	%					
Toluene-D8		82.9	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-1

Client ID: FTA-GW-TB02-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0480.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extracted By:DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		120.	%					
Toluene-D8		101.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-2

Client ID: FTA-MW-208-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0481.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extracted By: DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		119.	%					
Toluene-D8		103.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-4

Client ID: FTA-MW-1-061814

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0482.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14

Extract Date: 28-JUN-14 Extracted By: DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		118.	%					
Toluene-D8		102.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-6

Client ID: FTA-GW-DUP02-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0483.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 28-JUN-14

Extracted By:DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		121.	%					
Toluene-D8		100.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-8

Client ID: FTA-MW-210-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0489.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 30-JUN-14

Extracted By:DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145683

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	J	0.011	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		108.	%					
Toluene-D8		112.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-10

Client ID: FTA-SW-01-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0490.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 30-JUN-14

Extracted By: DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145683

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		118.	%					
Toluene-D8		105.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-12

Client ID: FTA-SW-02-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0491.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 30-JUN-14

Extract Date: 30-JUN-14
Extracted By: DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145683

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		114.	%					
Toluene-D8		113.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-14

Client ID: FTA-SW-03-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0492.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 30-JUN-14

Extracted By:DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145683

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		119.	%					
Toluene-D8		96.8	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-16

Client ID: FTA-SW-06-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0493.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 30-JUN-14

Extracted By:DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145683

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		118.	%					
Toluene-D8		104.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-18

Client ID: FTA-SW-07-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0494.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 30-JUN-14

Extracted By: DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145683

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		116.	%					
Toluene-D8		87.6	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-20

Client ID: FTA-SW-08-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0495.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 30-JUN-14 Extracted By: DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145683

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		116.	%					
Toluene-D8		104.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-22

Client ID: FTA-SW-DUP01-061914 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: S0496.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 30-JUN-14 Extracted By: DJP

Extraction Method: SW846 8260BSIM

Lab Prep Batch: WG145683

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		115.	%					
Toluene-D8		98.5	%					

Client:

Lab ID: WG145589-2

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: S0468.D

Sample Date: Received Date:

Extract Date: 28-JUN-14

Extracted By: DJP

Extraction Method:~SW846~8260BSIM

Lab Prep Batch: WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		105.	%					
Toluene-D8		96.8	%					

Client:

Lab ID: WG145683-2

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: S0488.D

Sample Date: Received Date:

Extract Date: 30-JUN-14

Extracted By: DJP

Extraction Method:~SW846~8260BSIM

Lab Prep Batch: WG145683

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	0.050	ug/L	1	.1	0.10	0.024	0.050
Tetrachloroethene	U	0.025	ug/L	1	.05	0.050	0.0091	0.025
Dibromofluoromethane		103.	%					
Toluene-D8		108.	%					

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: NCTAMSLANT Cutler CTO WE53 Matrix: AQ

Lab Code: KAS SDG: WE53-7

Client Sample ID	Lab Sample ID	Col. ID D	OBF #	TOL #
FTA-GW-TB01-061714	SH4401-1	1	15.	105.
FTA-MW-5-061814	SH4401-10	1	23.	90.3
FTA-MW-203-061814	SH4401-12	1	09.	99.0
FTA-GW-DUP01-061814	SH4401-14	1	20.	92.1
FTA-MW-218-061814	SH4401-16	1	13.	93.8
FTA-MW-206-061814	SH4401-18	1	11.	101.
FTA-MW-9-061714	SH4401-2	1	17.	95.4
FTA-MW-14-061714	SH4401-20	1	17.	82.9
FTA-MW-10-061714	SH4401-4	1	20.	96.4
FTA-MW-11-061714	SH4401-6	1	19.	97.1
FTA-MW-12-061714	SH4401-8	1	23.	98.4
FTA-GW-TB02-061814	SH4521-1	1	20.	101.
FTA-SW-01-061914	SH4521-10	1	18.	105.
FTA-SW-02-061914	SH4521-12	1	14.	113.
FTA-SW-03-061914	SH4521-14	1	19.	96.8
FTA-SW-06-061914	SH4521-16	1	18.	104.
FTA-SW-07-061914	SH4521-18	1	16.	87.6
FTA-MW-208-061814	SH4521-2	1	19.	103.
FTA-SW-08-061914	SH4521-20	1	16.	104.
FTA-SW-DUP01-061914	SH4521-22	1	15.	98.5
FTA-MW-1-061814	SH4521-4	1	18.	102.
FTA-GW-DUP02-061814	SH4521-6	1	21.	100.
FTA-MW-210-061814	SH4521-8	1	08.	112.
Laboratory Control S	WG145589-1	1	00.	90.5
Method Blank Sample	WG145589-2	1	05.	96.8
Laboratory Control S	WG145683-1	9	9.3	94.6
Method Blank Sample	WG145683-2	1	03.	108.
Matrix Spike	WG145683-5	1	13.	91.2
Matrix Spike Duplica	WG145683-6	1	09.	89.1
Matrix Spike	WG145683-7	1	09.	88.2
Matrix Spike Duplica	WG145683-8	1	13.	89.5

QC Limits

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: NCTAMSLANT Cutler CTO WE53 Matrix: AQ

Lab Code: KAS SDG: WE53-7

TOL TOLUENE-D8 70-130

DBF DIBROMOFLUOROMETHANE 70-130

= Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

LCS Recovery Report

Client:

Lab ID: WG145589-1

Client ID: LCS

Project: SDG: WE53-7

LCS File ID: S0467.D

Sample Date: Received Date:

Extract Date: 28-JUN-14

Extracted By: DJP

Extraction Method: SW846 8260BSIM **Lab Prep Batch:** WG145589

Analysis Date: 28-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

Compound	Recovery (%)	Conc Added	Conc Added Conc Recovered Conc Units				
Vinyl Chloride	94.0	0.500	0.470	ug/L	70-130		
Tetrachloroethene	84.0	0.500	0.420	ug/L	70-130		
Dibromofluoromethane	100.				70-130		
Toluene-D8	90.5				70-130		

LCS Recovery Report

Client:

Lab ID: WG145683-1

Client ID: LCS

Project: SDG: WE53-7

LCS File ID: S0487.D

Sample Date: Analysis Date: 30-JUN-14

Received Date: Analyst: DJP
Extract Date: 30-JUN-14 Analysis Method: SW846 8260BSIM

Extracted By:DJP **Matrix:** AQ **Extraction Method:** SW846 8260BSIM **% Solids:** NA

Lab Prep Batch: WG145683 Report Date: 10-JUL-14

Compound	Recovery (%)	Conc Added	Conc Added Conc Recovered Conc Units				
Vinyl Chloride	90.0	0.500	0.450	ug/L	70-130		
Tetrachloroethene	100.	0.500	0.500	ug/L	70-130		
Dibromofluoromethane	99.3				70-130		
Toluene-D8	94.6				70-130		

MS/MSD Recovery Report

MS ID: WG145683-5 MSD ID: WG145683-6 Sample ID: SH4521-8

Client ID: FTA-MW-210-061814

Project: SDG: WE53-7 **MS File ID:** S0497.D

Received Date: Extract Date: 30-JUN-14

Extracted By: DJP

Extraction Method: SW846 8260BSIM Lab Prep Batch: WG145683 **Report Date:** 10-JUL-14 MSD File ID: S0498.D

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

	MS	MSD	Conc	Samp	MS	MSD	MS Rec	MSD Re	c	RPD	
Compound	Spike	Spike	Units	Conc	Conc	Conc	(%)	(%)	RPD (%)	Limit	Limits
Vinyl Chloride	0.500	0.500	ug/L	U0.050	0.410	0.410	82.0	82.0	0	20	70-130
Tetrachloroethene	0.500	0.500	ug/L	J0.011	0.430	0.390	83.8	75.8	10	20	70-130
Dibromofluoromethane							113.	109.			70-130
Toluene-D8							91.2	89.1			70-130

MS/MSD Recovery Report

MS ID: WG145683-7 MSD ID: WG145683-8 Sample ID: SH4521-14

Client ID: FTA-SW-03-061914

Project: SDG: WE53-7

MS File ID: S0499.D

Received Date: Extract Date: 30-JUN-14

Extracted By: DJP

Extraction Method: SW846 8260BSIM Lab Prep Batch: WG145683

Report Date: 10-JUL-14 **MSD File ID:** S0500.D

Analysis Date: 30-JUN-14

Analyst: DJP

Analysis Method: SW846 8260BSIM

Matrix: AQ % Solids: NA

	MS	MSD	Conc	Samp	MS	MSD	MS Rec	MSD Re	c	RPD	
Compound	Spike	Spike	Units	Conc	Conc	Conc	(%)	(%)	RPD (%)	Limit	Limits
Vinyl Chloride	0.500	0.500	ug/L	U0.050	0.450	0.510	90.0	102.	12	20	70-130
Tetrachloroethene	0.500	0.500	ug/L	U0.025	0.420	0.420	84.0	84.0	0	20	70-130
Dibromofluoromethane							109.	113.			70-130
Toluene-D8							88.2	89.5			70-130

Form 4 Method Blank Summary - VOA

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

Lab Sample ID: WG145589-2

Lab File ID : S0468.DDate Analyzed : 28-JUN-14Instrument ID : GCMS-STime Analyzed : 09:04

Heated Purge: No

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG145589-1	S0467.D	06/28/14	08:22
FTA-MW-203-061814	SH4401-12	S0469.D	06/28/14	09:44
FTA-GW-DUP01-061814	SH4401-14	S0470.D	06/28/14	10:23
FTA-MW-218-061814	SH4401-16	S0471.D	06/28/14	11:02
FTA-MW-206-061814	SH4401-18	S0472.D	06/28/14	11:41
FTA-GW-TB01-061714	SH4401-1	S0473.D	06/28/14	12:20
FTA-MW-10-061714	SH4401-4	S0474.D	06/28/14	12:59
FTA-MW-11-061714	SH4401-6	S0475.D	06/28/14	13:38
FTA-MW-12-061714	SH4401-8	S0476.D	06/28/14	14:17
FTA-MW-5-061814	SH4401-10	S0477.D	06/28/14	14:56
FTA-MW-14-061714	SH4401-20	S0478.D	06/28/14	15:35
FTA-MW-9-061714	SH4401-2	S0479.D	06/28/14	16:14
FTA-GW-TB02-061814	SH4521-1	S0480.D	06/28/14	16:53
FTA-MW-208-061814	SH4521-2	S0481.D	06/28/14	17:33
FTA-MW-1-061814	SH4521-4	S0482.D	06/28/14	18:12
FTA-GW-DUP02-061814	SH4521-6	S0483.D	06/28/14	18.51

Form 4 Method Blank Summary - VOA

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

Lab Sample ID: WG145683-2

Lab File ID : S0488.DDate Analyzed : 30-JUN-14Instrument ID : GCMS-STime Analyzed : 10:05

Heated Purge: No

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG145683-1	S0487.D	06/30/14	09:26
FTA-MW-210-061814	SH4521-8	S0489.D	06/30/14	10:54
FTA-SW-01-061914	SH4521-10	S0490.D	06/30/14	11:33
FTA-SW-02-061914	SH4521-12	S0491.D	06/30/14	12:12
FTA-SW-03-061914	SH4521-14	S0492.D	06/30/14	12:51
FTA-SW-06-061914	SH4521-16	S0493.D	06/30/14	13:30
FTA-SW-07-061914	SH4521-18	S0494.D	06/30/14	14:08
FTA-SW-08-061914	SH4521-20	S0495.D	06/30/14	14:47
FTA-SW-DUP01-061914	SH4521-22	S0496.D	06/30/14	15:26
Matrix Spike	WG145683-5	S0497.D	06/30/14	16:05
Matrix Spike Duplica	WG145683-6	S0498.D	06/30/14	16:44
Matrix Spike	WG145683-7	S0499.D	06/30/14	17:23
Matrix Spike Duplica	WG145683-8	S0500.D	06/30/14	18:02

Form 5 Volatile Organic Instrument Performance Check

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 27-JUN-14

Lab File ID : SB442.DTime Analyzed : 10:12Instrument ID : GCMS-SHeated Purge : No

m/e	Ion Abundance Criteria	% Rel	
50	15.0 - 40.0% of mass 95	17.2	
75	30.0 - 60.0% of mass 95	48.4	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	8.0	
173	Less than 2.0% of mass 174	0.0	0.0
174	Greater than 50.0% of mass 95	73.2	
175	5.0 - 9.0% of mass 174	6.0	8.18
176	95.0 - 101.0% of mass 174	72.1	98.50
177	5.0 - 9.0% of mass 176	4.4	6.17

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following samples, LCS, MS, MSD and standards:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Initial Calibration	WG145721-4	S0452.D	06/27/14	10:40
Initial Calibration	WG145721-3	S0453.D	06/27/14	11:19
Initial Calibration	WG145721-2	S0455.D	06/27/14	12:36
Initial Calibration	WG145721-1	S0456.D	06/27/14	13:15
Initial Calibration	WG145721-6	S0457.D	06/27/14	13:54
Initial Calibration	WG145721-5	S0458.D	06/27/14	14:33

Form 5 Volatile Organic Instrument Performance Check

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 28-JUN-14

Lab File ID : SB443.DTime Analyzed : 07:02Instrument ID : GCMS-SHeated Purge : No

m/e	Ion Abundance Criteria		elative idance
50	15.0 - 40.0% of mass 95	15.9	
75	30.0 - 60.0% of mass 95	44.5	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	7.0	
173	Less than 2.0% of mass 174	0.3	0.38
174	Greater than 50.0% of mass 95	77.4	
175	5.0 - 9.0% of mass 174	5.7	7.32 1
176	95.0 - 101.0% of mass 174	77.5	100.06
177	5.0 - 9.0% of mass 176	4.8	6.24

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following samples, LCS, MS, MSD and standards:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG145589-4	S0466.D	06/28/14	07:33
Laboratory Control S	WG145589-1	S0467.D	06/28/14	08:22
Independent Source	WG145589-5	S0467A.D	06/28/14	08:22
Method Blank Sample	WG145589-2	S0468.D	06/28/14	09:04
FTA-MW-203-061814	SH4401-12	S0469.D	06/28/14	09:44
FTA-GW-DUP01-061814	SH4401-14	S0470.D	06/28/14	10:23
FTA-MW-218-061814	SH4401-16	S0471.D	06/28/14	11:02
FTA-MW-206-061814	SH4401-18	S0472.D	06/28/14	11:41
FTA-GW-TB01-061714	SH4401-1	S0473.D	06/28/14	12:20
FTA-MW-10-061714	SH4401-4	S0474.D	06/28/14	12:59
FTA-MW-11-061714	SH4401-6	S0475.D	06/28/14	13:38
FTA-MW-12-061714	SH4401-8	S0476.D	06/28/14	14:17
FTA-MW-5-061814	SH4401-10	S0477.D	06/28/14	14:56
FTA-MW-14-061714	SH4401-20	S0478.D	06/28/14	15:35
FTA-MW-9-061714	SH4401-2	S0479.D	06/28/14	16:14
FTA-GW-TB02-061814	SH4521-1	S0480.D	06/28/14	16:53
FTA-MW-208-061814	SH4521-2	S0481.D	06/28/14	17:33
FTA-MW-1-061814	SH4521-4	S0482.D	06/28/14	18:12
FTA-GW-DUP02-061814	SH4521-6	S0483.D	06/28/14	18:51

Form 5 Volatile Organic Instrument Performance Check

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 30-JUN-14

Lab File ID : SB444.DTime Analyzed : 08:07Instrument ID : GCMS-SHeated Purge : No

m/e	Ion Abundance Criteria	% Rel	
50	15.0 - 40.0% of mass 95	15.5	
75	30.0 - 60.0% of mass 95	41.3	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	7.2	
173	Less than 2.0% of mass 174	1.3	1.61
174	Greater than 50.0% of mass 95	80.5	
175	5.0 - 9.0% of mass 174	5.2	6.46
176	95.0 - 101.0% of mass 174	77.9	96.80
177	5.0 - 9.0% of mass 176	5.3	6.74

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following samples, LCS, MS, MSD and standards:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG145683-4	S0486.D	06/30/14	08:41
Laboratory Control S	WG145683-1	S0487.D	06/30/14	09:26
Method Blank Sample	WG145683-2	S0488.D	06/30/14	10:05
FTA-MW-210-061814	SH4521-8	S0489.D	06/30/14	10:54
FTA-SW-01-061914	SH4521-10	S0490.D	06/30/14	11:33
FTA-SW-02-061914	SH4521-12	S0491.D	06/30/14	12:12
FTA-SW-03-061914	SH4521-14	S0492.D	06/30/14	12:51
FTA-SW-06-061914	SH4521-16	S0493.D	06/30/14	13:30
FTA-SW-07-061914	SH4521-18	S0494.D	06/30/14	14:08
FTA-SW-08-061914	SH4521-20	S0495.D	06/30/14	14:47
FTA-SW-DUP01-061914	SH4521-22	S0496.D	06/30/14	15:26
Matrix Spike	WG145683-5	S0497.D	06/30/14	16:05
Matrix Spike Duplica	WG145683-6	S0498.D	06/30/14	16:44
Matrix Spike	WG145683-7	S0499.D	06/30/14	17:23
Matrix Spike Duplica	WG145683-8	S0500.D	06/30/14	18:02

Form 6 Initial Calibration Summary

Lab Name: Katahdin Analytical Services SDG: WE53-7

Project : NCTAMSLANT Cutler CTO WE53 **Instrument ID:** GCMS-S **Lab File IDs :** S0456.D S0455.D S0453.D **Column ID:**

S0452.D S0458.D S0457.D **Calibration Date(s):** 27-JUN-14 10:40

27-JUN-14 14:33

	0.0500000	0.0750000	0.1000000	0.5000000	1.0000	2.0000	New	b	m1	m2	%RSD	Max	
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	vel 6 Crv			%RS			
Vinyl chloride	4.13227	4.03505	3.51013	3.38049	3.56828	3.53051	AVG		3.69279		8.41670	15.00000	О
Tetrachloroethene	3.55461	2.55393	2.89706	2.57286	2.91769	3.01144	AVG		2.91793		12.5087€	15.00000	О
Dibromofluoromethane	0.40496	0.39907	0.38119	0.35111	0.35574	0.35535	AVG		0.37457		6.36484	15.00000	
Toluene-D8	1.32148	1.33027	1.26594	1.21413	1.26897	1.17340	AVG		1.26237		4.80601	15.00000	

Legend: O = Kept Original Curve

Y = Failed Minimum RF W = Failed %RSD Value

Form 7 Calibration Verification Summary

Lab Name: Katahdin Analytical Services

Project : NCTAMSLANT Cutler CTO WE53 FTA
Lab ID : WG145589-4
Lab File ID : S0466.D
SDG: WE53-7
Analytical Date: 06/28/14 07:33
Instrument ID: GCMS-S

Initial Calibration Date(s): 06/27/14 10:40 06/27/14 14:33 **Column ID:**

Compound	RRF/Amount	RF0.500	CCAL RRF	Min %D/ %Drift	Max %D/ %Drift	Curve Type
2 Vinyl chloride	3.69279	3.64595	0.010	-1.2682; 20.00000	Averaged	
24 Tetrachloroethene	3.05982	2.76882	0.010	-9.5102 20.00000	Averaged	
11 Dibromofluoromethane	0.37670	0.44502	0.010	18.1349 20.00000	Averaged	
22 Toluene-D8	1.26040	1.30663	0.010	3.66821 20.00000	Averaged	

^{* =} Compound out of QC criteria

Form 7 Calibration Verification Summary

Lab Name: Katahdin Analytical Services

Project : NCTAMSLANT Cutler CTO WE53 FTA
Lab ID : WG145683-4
Lab File ID : S0486.D

SDG: WE53-7
Analytical Date: 06/30/14 08:41
Instrument ID: GCMS-S

Initial Calibration Date(s): 06/27/14 10:40 06/27/14 14:33 **Column ID:**

Compound	RRF/Amount	RF0.500	CCAL RRF	Min %D/ %Drift	Max %D/ %Drift	Curve Type
2 Vinyl chloride	3.69279	4.19155	0.010	13.5063 20.00000	Averaged	
24 Tetrachloroethene	3.05982	3.38055	0.010	10.4820 20.00000	Averaged	
11 Dibromofluoromethane	0.37670	0.40129	0.010	6.52654 20.00000	Averaged	
22 Toluene-D8	1.26040	1.15015	0.010	-8.7467: 20.00000	Averaged	

^{* =} Compound out of QC criteria

Form 8 Internal Standard Area and RT Summary

SDG: WE53-7

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Lab ID :WG145721-3Analytical Date: 06/27/14 11:19Lab File ID :S0453.DInstrument ID: GCMS-S

		PENTAFLUO	ROBENZENE	CHLOROBENZENE-D5		
		Area #	RT #	Area #	RT #	
	Std.	19691	7.52	17564	11.57	
	Upper Limit	39382	8.02	35128	12.07	
	Lower Limit	9845.5	7.02	8782	11.07	
Client Sample ID	Lab Sample ID					
Continuing Calibrati	WG145589-4	19698	7.51	18462	11.57	
Laboratory Control S	WG145589-1	19633	7.51	17918	11.57	
Method Blank Sample	WG145589-2	18317	7.52	15837	11.57	
FTA-MW-203-061814	SH4401-12	16167	7.52	13832	11.57	
FTA-GW-DUP01-0618	SH4401-14	15970	7.52	15417	11.57	
FTA-MW-218-061814	SH4401-16	17012	7.52	16190	11.57	
FTA-MW-206-061814	SH4401-18	17525	7.52	15072	11.57	
FTA-GW-TB01-061714	SH4401-1	15817	7.51	12717	11.57	
FTA-MW-10-061714	SH4401-4	15764	7.51	14151	11.57	
FTA-MW-11-061714	SH4401-6	16439	7.52	14078	11.57	
FTA-MW-12-061714	SH4401-8	15882	7.52	13364	11.57	
FTA-MW-5-061814	SH4401-10	15560	7.51	15046	11.57	
FTA-MW-14-061714	SH4401-20	16498	7.52	17042	11.57	
FTA-MW-9-061714	SH4401-2	16142	7.51	14553	11.57	
FTA-GW-TB02-061814	SH4521-1	15943	7.52	13609	11.57	
FTA-MW-208-061814	SH4521-2	15954	7.52	13076	11.57	
FTA-MW-1-061814	SH4521-4	15813	7.51	12619	11.57	
FTA-GW-DUP02-0618	SH4521-6	15296	7.51	12832	11.57	

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area RT Upper Limit = + 0.50 minutes of internal standard RT RT Lower Limit = - 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Form 8 Internal Standard Area and RT Summary

SDG: WE53-7

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Lab ID :WG145721-3Analytical Date: 06/27/14 11:19Lab File ID :S0453.DInstrument ID: GCMS-S

		PENTAFLUOI	ROBENZENE	CHLOROBE	NZENE-D5
		Area #	RT #	Area #	RT #
	Std.	19691	7.52	17564	11.57
	Upper Limit	39382	8.02	35128	12.07
	Lower Limit	9845.5	7.02	8782	11.07
Client Sample ID	Lab Sample ID				
Continuing Calibrati	WG145683-4	18909	7.52	17409	11.57
Laboratory Control S	WG145683-1	18670	7.51	16119	11.57
Method Blank Sample	WG145683-2	17003	7.51	12628	11.57
FTA-MW-210-061814	SH4521-8	15957	7.51	10944	11.57
FTA-SW-01-061914	SH4521-10	15810	7.51	11921	11.57
FTA-SW-02-061914	SH4521-12	15367	7.51	10516	11.57
FTA-SW-03-061914	SH4521-14	15608	7.51	12838	11.57
FTA-SW-06-061914	SH4521-16	15210	7.51	11681	11.57
FTA-SW-07-061914	SH4521-18	16277	7.52	14495	11.59
FTA-SW-08-061914	SH4521-20	15298	7.51	11365	11.57
FTA-SW-DUP01-0619	SH4521-22	15368	7.51	12364	11.57
Matrix Spike	WG145683-5	16697	7.51	14362	11.57
Matrix Spike Duplica	WG145683-6	17337	7.52	15126	11.57
Matrix Spike	WG145683-7	17065	7.52	15293	11.57
Matrix Spike Duplica	WG145683-8	16749	7.51	15352	11.57

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-2

Client ID: FTA-MW-9-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6384.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14 Extract Date: 23-JUN-14

Extract Date: 23-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 **Lab Prep Batch:** WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.4	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.4	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.4	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.4	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.4	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.4	2.7	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.4	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.4	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.4	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.4	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.4	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.4	3.7	7.1
Caprolactam	ULL	7.1	ug/L	1	10	9.4	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.4	0.94	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.4	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.4	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.4	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.4	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.4	2.0	7.1
2-Fluorophenol	*	0.00	%					
Phenol-D6	*	0.00	%					
Nitrobenzene-d5		65.4	%					
2-Fluorobiphenyl		69.3	%					
2,4,6-Tribromophenol	*	18.5	%					

Page 1 of 2

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-2

Client ID: FTA-MW-9-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6384.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		76.7	%					

Client: Tetra Tech NUS, Inc. Lab ID: SH4401-2RE

Client ID: FTA-MW-9-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6422.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14 Extract Date: 25-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 **Lab Prep Batch:** WG145380

Analysis Date: 14-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.5	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.5	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.5	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.5	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.5	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.5	2.8	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.5	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.5	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.5	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.5	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.5	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.5	3.7	7.1
Caprolactam	UL	7.1	ug/L	1	10	9.5	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.5	0.95	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.5	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.5	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.5	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.5	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.5	2.0	7.1
2-Fluorophenol	*	0.00	%					
Phenol-D6	*	0.00	%					
Nitrobenzene-d5		62.0	%					
2-Fluorobiphenyl		64.0	%					
2,4,6-Tribromophenol	*	21.1	%					

Page 1 of 2

http://www.katahdinlab.com

Client: Tetra Tech NUS, Inc. **Lab ID:** SH4401-2RE

Client ID: FTA-MW-9-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6422.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM **Extraction Method:** SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 14-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL ADJ LOD
Terphenyl-d14		75.0	%			

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-4

Client ID: FTA-MW-10-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6288.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14 Extract Date: 23 JUN-14

Extract Date: 23-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 **Lab Prep Batch:** WG145277

Analysis Date: 04-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.2	ug/L	1	10	9.6	1.7	7.2
2-Methylphenol	U	7.2	ug/L	1	10	9.6	3.6	7.2
Isophorone	U	7.2	ug/L	1	10	9.6	1.6	7.2
2-Nitrophenol	U	7.2	ug/L	1	10	9.6	2.6	7.2
2,4-Dimethylphenol	U	7.2	ug/L	1	10	9.6	4.2	7.2
4-Chloro-3-Methylphenol	U	7.2	ug/L	1	10	9.6	3.5	7.2
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.5	18.
2-Chloronaphthalene	U	7.2	ug/L	1	10	9.6	2.8	7.2
Dimethyl Phthalate	U	7.2	ug/L	1	10	9.6	1.9	7.2
Diethylphthalate	U	7.2	ug/L	1	10	9.6	1.9	7.2
N-Nitrosodiphenylamine	U	7.2	ug/L	1	10	9.6	3.6	7.2
Carbazole	U	7.2	ug/L	1	10	9.6	2.0	7.2
Di-N-Butylphthalate	U	7.2	ug/L	1	10	9.6	2.4	7.2
Butylbenzylphthalate	U	7.2	ug/L	1	10	9.6	1.8	7.2
Di-N-Octylphthalate	U	7.2	ug/L	1	10	9.6	1.7	7.2
Acetophenone	U	7.2	ug/L	1	10	9.6	3.8	7.2
Caprolactam	ULL	7.2	ug/L	1	10	9.6	0.38	7.2
Benzaldehyde	U	7.2	ug/L	1	10	9.6	0.96	7.2
2,3,4,6-Tetrachlorophenol	U	7.2	ug/L	1	10	9.6	2.6	7.2
4-Bromophenyl-Phenylether	U	7.2	ug/L	1	10	9.6	1.8	7.2
4-Chlorophenyl-Phenylether	U	7.2	ug/L	1	10	9.6	2.1	7.2
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.2	ug/L	1	10	9.6	1.4	7.2
Acenaphthylene	U	7.2	ug/L	1	10	9.6	1.4	7.2
Anthracene	U	7.2	ug/L	1	10	9.6	1.6	7.2
Fluorene	U	7.2	ug/L	1	10	9.6	2.0	7.2
Fluoranthene	U	7.2	ug/L	1	10	9.6	2.3	7.2
Benzo(g,h,i)perylene	U	7.2	ug/L	1	10	9.6	1.4	7.2
Benzo(k)fluoranthene	U	7.2	ug/L	1	10	9.6	1.5	7.2
Bis(2-Chloroethoxy)Methane	U	7.2	ug/L	1	10	9.6	2.0	7.2
2-Fluorophenol		23.2	%					
Phenol-D6		13.7	%					
Nitrobenzene-d5		54.8	%					
2-Fluorobiphenyl		58.1	%					
2,4,6-Tribromophenol		64.1	%					

Page 1 of 2

http://www.katahdinlab.com

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-4

Client ID: FTA-MW-10-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6288.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 04-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		65.6	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-6

Client ID: FTA-MW-11-061714 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6385.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM **Extraction Method:** SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.5	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.5	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.5	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.5	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.5	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.5	2.8	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.5	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.5	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.5	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.5	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.5	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.5	3.7	7.1
Caprolactam	ULL	7.1	ug/L	1	10	9.5	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.5	0.95	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.5	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.5	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.5	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.5	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.5	2.0	7.1
2-Fluorophenol		20.1	%					
Phenol-D6		15.7	%					
Nitrobenzene-d5		54.7	%					
2-Fluorobiphenyl		57.3	%					
2,4,6-Tribromophenol		47.3	%					

Page 1 of

http://www.katahdinlab.com

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-6

Client ID: FTA-MW-11-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6385.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM

Extraction Method: SW846 3510 **Lab Prep Batch:** WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14	*	34.9	%					

Client: Tetra Tech NUS, Inc. Lab ID: SH4401-6RE

Client ID: FTA-MW-11-061714 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6423.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Lab Prep Batch: WG145380

Extraction Method: SW846 3510

Analysis Date: 14-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.5	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.5	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.5	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.5	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.5	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.5	2.8	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.5	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.5	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.5	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.5	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.5	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.5	3.7	7.1
Caprolactam	UL	7.1	ug/L	1	10	9.5	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.5	0.95	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.5	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.5	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.5	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.5	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.5	2.0	7.1
2-Fluorophenol		38.4	%					
Phenol-D6		26.2	%					
Nitrobenzene-d5		64.6	%					
2-Fluorobiphenyl		69.6	%					
2,4,6-Tribromophenol		83.9	%					

Page 1 of

Client: Tetra Tech NUS, Inc. Lab ID: SH4401-6RE

Client ID: FTA-MW-11-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6423.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM
Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 14-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		86.8	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-8

Client ID: FTA-MW-12-061714 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6386.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14 Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	8.0	ug/L	1	10	11.	1.9	8.0
2-Methylphenol	U	8.0	ug/L	1	10	11.	4.0	8.0
Isophorone	U	8.0	ug/L	1	10	11.	1.8	8.0
2-Nitrophenol	U	8.0	ug/L	1	10	11.	2.9	8.0
2,4-Dimethylphenol	U	8.0	ug/L	1	10	11.	4.7	8.0
4-Chloro-3-Methylphenol	U	8.0	ug/L	1	10	11.	3.8	8.0
2,4,5-Trichlorophenol	U	20	ug/L	1	25	26.	3.8	20.
2-Chloronaphthalene	U	8.0	ug/L	1	10	11.	3.1	8.0
Dimethyl Phthalate	U	8.0	ug/L	1	10	11.	2.1	8.0
Diethylphthalate	U	8.0	ug/L	1	10	11.	2.1	8.0
N-Nitrosodiphenylamine	U	8.0	ug/L	1	10	11.	3.9	8.0
Carbazole	U	8.0	ug/L	1	10	11.	2.2	8.0
Di-N-Butylphthalate	U	8.0	ug/L	1	10	11.	2.6	8.0
Butylbenzylphthalate	U	8.0	ug/L	1	10	11.	2.0	8.0
Di-N-Octylphthalate	U	8.0	ug/L	1	10	11.	1.9	8.0
Acetophenone	U	8.0	ug/L	1	10	11.	4.1	8.0
Caprolactam	ULL	8.0	ug/L	1	10	11.	0.42	8.0
Benzaldehyde	U	8.0	ug/L	1	10	11.	1.1	8.0
2,3,4,6-Tetrachlorophenol	U	8.0	ug/L	1	10	11.	2.9	8.0
4-Bromophenyl-Phenylether	U	8.0	ug/L	1	10	11.	2.0	8.0
4-Chlorophenyl-Phenylether	U	8.0	ug/L	1	10	11.	2.3	8.0
4-Nitrophenol	U	20	ug/L	1	25	26.	1.9	20.
Acenaphthene	U	8.0	ug/L	1	10	11.	1.6	8.0
Acenaphthylene	U	8.0	ug/L	1	10	11.	1.6	8.0
Anthracene	U	8.0	ug/L	1	10	11.	1.8	8.0
Fluorene	U	8.0	ug/L	1	10	11.	2.2	8.0
Fluoranthene	U	8.0	ug/L	1	10	11.	2.6	8.0
Benzo(g,h,i)perylene	U	8.0	ug/L	1	10	11.	1.6	8.0
Benzo(k)fluoranthene	U	8.0	ug/L	1	10	11.	1.7	8.0
Bis(2-Chloroethoxy)Methane	U	8.0	ug/L	1	10	11.	2.2	8.0
2-Fluorophenol	*	14.5	%					
Phenol-D6	*	9.06	%					
Nitrobenzene-d5		61.3	%					
2-Fluorobiphenyl		65.4	%					
2,4,6-Tribromophenol	*	36.4	%					

Page 1 of

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-8

Client ID: FTA-MW-12-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6386.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL ADJ LOD
Terphenyl-d14		89.8	%			

Client: Tetra Tech NUS, Inc. Lab ID: SH4401-8RE

Client ID: FTA-MW-12-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6424.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14 Extract Date: 25-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 **Lab Prep Batch:** WG145380

Analysis Date: 14-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.5	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.5	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.5	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.5	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.5	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.5	2.8	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.5	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.5	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.5	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.5	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.5	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.5	3.7	7.1
Caprolactam	UL	7.1	ug/L	1	10	9.5	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.5	0.95	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.5	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.5	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.5	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.5	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.5	2.0	7.1
2-Fluorophenol		24.9	%					
Phenol-D6		16.1	%					
Nitrobenzene-d5		64.0	%					
2-Fluorobiphenyl		68.9	%					
2,4,6-Tribromophenol		70.3	%					

Page 1 of 2

Client: Tetra Tech NUS, Inc. Lab ID: SH4401-8RE

Client ID: FTA-MW-12-061714 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6424.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM
Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 14-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL ADJ LOD
Terphenyl-d14		102.	%			

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-10

Client ID: FTA-MW-5-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6387.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 23 JUN-14

Extract Date: 23-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 **Lab Prep Batch:** WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.4	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.4	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.4	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.4	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.4	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.4	2.7	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.4	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.4	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.4	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.4	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.4	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.4	3.7	7.1
Caprolactam	ULL	7.1	ug/L	1	10	9.4	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.4	0.94	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.4	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.4	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.4	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.4	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.4	2.0	7.1
2-Fluorophenol		28.2	%					
Phenol-D6		19.4	%					
Nitrobenzene-d5		62.6	%					
2-Fluorobiphenyl		64.1	%					
2,4,6-Tribromophenol		76.2	%					

Page 1 of

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029 http://www.katahdinlab.com

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-10

Client ID: FTA-MW-5-061814

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6387.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		79.5	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-12

Client ID: FTA-MW-203-061814 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6388.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14 **Extracted By:**AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.4	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.4	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.4	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.4	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.4	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.4	2.7	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.4	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.4	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.4	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.4	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.4	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.4	3.7	7.1
Caprolactam	ULL	7.1	ug/L	1	10	9.4	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.4	0.94	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.4	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.4	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.4	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.4	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.4	2.0	7.1
2-Fluorophenol		27.1	%					
Phenol-D6		19.0	%					
Nitrobenzene-d5		55.1	%					
2-Fluorobiphenyl		61.8	%					
2,4,6-Tribromophenol		81.7	%					

Page 1 of

http://www.katahdinlab.com

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-12

Client ID: FTA-MW-203-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6388.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		75.7	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-14

Client ID: FTA-GW-DUP01-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6389.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM **Extraction Method:** SW846 3510 Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.4	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.4	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.4	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.4	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.4	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.4	2.7	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.4	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.4	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.4	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.4	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.4	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.4	3.7	7.1
Caprolactam	ULL	7.1	ug/L	1	10	9.4	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.4	0.94	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.4	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.4	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.4	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.4	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.4	2.0	7.1
2-Fluorophenol		33.3	%					
Phenol-D6		22.2	%					
Nitrobenzene-d5		63.4	%					
2-Fluorobiphenyl		67.8	%					
2,4,6-Tribromophenol		88.4	%					

Page 1 of

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-14

Client ID: FTA-GW-DUP01-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6389.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		90.3	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-16

Client ID: FTA-MW-218-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6390.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 23 JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.3	ug/L	1	10	9.7	1.7	7.3
2-Methylphenol	U	7.3	ug/L	1	10	9.7	3.7	7.3
Isophorone	U	7.3	ug/L	1	10	9.7	1.6	7.3
2-Nitrophenol	U	7.3	ug/L	1	10	9.7	2.6	7.3
2,4-Dimethylphenol	U	7.3	ug/L	1	10	9.7	4.3	7.3
4-Chloro-3-Methylphenol	U	7.3	ug/L	1	10	9.7	3.5	7.3
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.5	18.
2-Chloronaphthalene	U	7.3	ug/L	1	10	9.7	2.8	7.3
Dimethyl Phthalate	U	7.3	ug/L	1	10	9.7	2.0	7.3
Diethylphthalate	U	7.3	ug/L	1	10	9.7	1.9	7.3
N-Nitrosodiphenylamine	U	7.3	ug/L	1	10	9.7	3.6	7.3
Carbazole	U	7.3	ug/L	1	10	9.7	2.0	7.3
Di-N-Butylphthalate	U	7.3	ug/L	1	10	9.7	2.4	7.3
Butylbenzylphthalate	U	7.3	ug/L	1	10	9.7	1.8	7.3
Di-N-Octylphthalate	U	7.3	ug/L	1	10	9.7	1.7	7.3
Acetophenone	U	7.3	ug/L	1	10	9.7	3.8	7.3
Caprolactam	ULL	7.3	ug/L	1	10	9.7	0.39	7.3
Benzaldehyde	U	7.3	ug/L	1	10	9.7	0.97	7.3
2,3,4,6-Tetrachlorophenol	U	7.3	ug/L	1	10	9.7	2.6	7.3
4-Bromophenyl-Phenylether	U	7.3	ug/L	1	10	9.7	1.8	7.3
4-Chlorophenyl-Phenylether	U	7.3	ug/L	1	10	9.7	2.1	7.3
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.3	ug/L	1	10	9.7	1.4	7.3
Acenaphthylene	U	7.3	ug/L	1	10	9.7	1.4	7.3
Anthracene	U	7.3	ug/L	1	10	9.7	1.6	7.3
Fluorene	U	7.3	ug/L	1	10	9.7	2.0	7.3
Fluoranthene	U	7.3	ug/L	1	10	9.7	2.3	7.3
Benzo(g,h,i)perylene	U	7.3	ug/L	1	10	9.7	1.4	7.3
Benzo(k)fluoranthene	U	7.3	ug/L	1	10	9.7	1.6	7.3
Bis(2-Chloroethoxy)Methane	U	7.3	ug/L	1	10	9.7	2.0	7.3
2-Fluorophenol		34.8	%					
Phenol-D6		22.1	%					
Nitrobenzene-d5		55.4	%					
2-Fluorobiphenyl		57.5	%					
2,4,6-Tribromophenol		78.4	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-16

Client ID: FTA-MW-218-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6390.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		81.2	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-18

Client ID: FTA-MW-206-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6391.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14 Extract Date: 23 JUN-14

Extract Date: 23-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145277 Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.4	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.4	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.4	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.4	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.4	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.4	2.7	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.4	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.4	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.4	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.4	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.4	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.4	3.7	7.1
Caprolactam	ULL	7.1	ug/L	1	10	9.4	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.4	0.94	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.4	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.4	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.4	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.4	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.4	2.0	7.1
2-Fluorophenol		26.4	%					
Phenol-D6		16.1	%					
Nitrobenzene-d5		52.5	%					
2-Fluorobiphenyl		57.3	%					
2,4,6-Tribromophenol		74.9	%					

Page 1 of 2

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-18

Client ID: FTA-MW-206-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6391.D

Sample Date: 18-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		76.8	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-20

Client ID: FTA-MW-14-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6392.D

Sample Date: 17-JUN-14
Received Date: 19-JUN-14
Extract Date: 23 JUN-14

Extract Date: 23-JUN-14

Extracted By: AM **Extraction Method:** SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.4	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.4	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.4	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.4	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.4	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.4	2.7	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.4	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.4	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.4	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.4	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.4	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.4	3.7	7.1
Caprolactam	ULL	7.1	ug/L	1	10	9.4	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.4	0.94	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.4	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.4	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.4	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.4	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.4	2.0	7.1
2-Fluorophenol		28.1	%					
Phenol-D6		18.7	%					
Nitrobenzene-d5		54.2	%					
2-Fluorobiphenyl		58.9	%					
2,4,6-Tribromophenol		89.9	%					

Page 1 of 2

Client: Tetra Tech NUS, Inc.

Lab ID: SH4401-20

Client ID: FTA-MW-14-061714

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6392.D

Sample Date: 17-JUN-14 Received Date: 19-JUN-14

Extract Date: 23-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		95.5	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-2

Client ID: FTA-MW-208-061814 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6393.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14 **Extracted By:**AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.5	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.5	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.5	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.5	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.5	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.5	2.8	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.5	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.5	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.5	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.5	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.5	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.5	3.7	7.1
Caprolactam	UL	7.1	ug/L	1	10	9.5	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.5	0.95	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.5	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.5	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.5	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.5	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.5	2.0	7.1
2-Fluorophenol		31.8	%					
Phenol-D6		19.7	%					
Nitrobenzene-d5		54.5	%					
2-Fluorobiphenyl		58.0	%					
2,4,6-Tribromophenol		78.9	%					

Page 1 of

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-2

Client ID: FTA-MW-208-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6393.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		88.9	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-4

Client ID: FTA-MW-1-061814

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6394.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 25-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 **Lab Prep Batch:** WG145380

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.6	ug/L	1	10	10.	1.8	7.6
2-Methylphenol	U	7.6	ug/L	1	10	10.	3.8	7.6
Isophorone	U	7.6	ug/L	1	10	10.	1.7	7.6
2-Nitrophenol	U	7.6	ug/L	1	10	10.	2.7	7.6
2,4-Dimethylphenol	U	7.6	ug/L	1	10	10.	4.4	7.6
4-Chloro-3-Methylphenol	U	7.6	ug/L	1	10	10.	3.6	7.6
2,4,5-Trichlorophenol	U	19	ug/L	1	25	25.	3.6	19.
2-Chloronaphthalene	U	7.6	ug/L	1	10	10.	2.9	7.6
Dimethyl Phthalate	U	7.6	ug/L	1	10	10.	2.0	7.6
Diethylphthalate	U	7.6	ug/L	1	10	10.	2.0	7.6
N-Nitrosodiphenylamine	U	7.6	ug/L	1	10	10.	3.7	7.6
Carbazole	U	7.6	ug/L	1	10	10.	2.1	7.6
Di-N-Butylphthalate	U	7.6	ug/L	1	10	10.	2.5	7.6
Butylbenzylphthalate	U	7.6	ug/L	1	10	10.	1.9	7.6
Di-N-Octylphthalate	U	7.6	ug/L	1	10	10.	1.8	7.6
Acetophenone	U	7.6	ug/L	1	10	10.	3.9	7.6
Caprolactam	UL	7.6	ug/L	1	10	10.	0.40	7.6
Benzaldehyde	U	7.6	ug/L	1	10	10.	1.0	7.6
2,3,4,6-Tetrachlorophenol	U	7.6	ug/L	1	10	10.	2.7	7.6
4-Bromophenyl-Phenylether	U	7.6	ug/L	1	10	10.	1.9	7.6
4-Chlorophenyl-Phenylether	U	7.6	ug/L	1	10	10.	2.2	7.6
4-Nitrophenol	U	19	ug/L	1	25	25.	1.8	19.
Acenaphthene	U	7.6	ug/L	1	10	10.	1.5	7.6
Acenaphthylene	U	7.6	ug/L	1	10	10.	1.5	7.6
Anthracene	U	7.6	ug/L	1	10	10.	1.7	7.6
Fluorene	U	7.6	ug/L	1	10	10.	2.1	7.6
Fluoranthene	U	7.6	ug/L	1	10	10.	2.4	7.6
Benzo(g,h,i)perylene	U	7.6	ug/L	1	10	10.	1.5	7.6
Benzo(k)fluoranthene	U	7.6	ug/L	1	10	10.	1.6	7.6
Bis(2-Chloroethoxy)Methane	U	7.6	ug/L	1	10	10.	2.1	7.6
2-Fluorophenol		35.1	%					
Phenol-D6		23.3	%					
Nitrobenzene-d5		57.2	%					
2-Fluorobiphenyl		62.1	%					
2,4,6-Tribromophenol		71.6	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-4

Client ID: FTA-MW-1-061814

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6394.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		96.2	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-6

Client ID: FTA-GW-DUP02-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6395.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14 Extract Date: 25 JUN-14

Extract Date: 25-JUN-14

Extracted By: AM
Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.5	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.5	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.5	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.5	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.5	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.5	2.8	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.5	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.5	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.5	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.5	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.5	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.5	3.7	7.1
Caprolactam	UL	7.1	ug/L	1	10	9.5	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.5	0.95	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.5	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.5	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.5	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.5	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.5	2.0	7.1
2-Fluorophenol		40.9	%					
Phenol-D6		26.8	%					
Nitrobenzene-d5		68.3	%					
2-Fluorobiphenyl		72.3	%					
2,4,6-Tribromophenol		88.9	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-6

Client ID: FTA-GW-DUP02-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6395.D

Sample Date: 18-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		89.5	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-8

Client ID: FTA-MW-210-061814 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6404.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.4	1.7	7.1
2-Methylphenol	UMM	7.1	ug/L	1	10	9.4	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.4	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.4	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.4	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	UM	7.1	ug/L	1	10	9.4	2.7	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.4	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.4	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.4	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.4	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.4	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.4	3.7	7.1
Caprolactam	ULM	7.1	ug/L	1	10	9.4	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.4	0.94	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.4	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.4	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.4	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.4	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.4	2.0	7.1
2-Fluorophenol		33.7	%					
Phenol-D6		21.9	%					
Nitrobenzene-d5		59.6	%					
2-Fluorobiphenyl		66.9	%					
2,4,6-Tribromophenol		101.	%					

Page 1 of

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-8

Client ID: FTA-MW-210-061814 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6404.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		92.0	%					_

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-10

Client ID: FTA-SW-01-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6396.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 25-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.2	ug/L	1	10	9.6	1.7	7.2
2-Methylphenol	U	7.2	ug/L	1	10	9.6	3.6	7.2
Isophorone	U	7.2	ug/L	1	10	9.6	1.6	7.2
2-Nitrophenol	U	7.2	ug/L	1	10	9.6	2.6	7.2
2,4-Dimethylphenol	U	7.2	ug/L	1	10	9.6	4.2	7.2
4-Chloro-3-Methylphenol	U	7.2	ug/L	1	10	9.6	3.5	7.2
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.5	18.
2-Chloronaphthalene	U	7.2	ug/L	1	10	9.6	2.8	7.2
Dimethyl Phthalate	U	7.2	ug/L	1	10	9.6	1.9	7.2
Diethylphthalate	U	7.2	ug/L	1	10	9.6	1.9	7.2
N-Nitrosodiphenylamine	U	7.2	ug/L	1	10	9.6	3.6	7.2
Carbazole	U	7.2	ug/L	1	10	9.6	2.0	7.2
Di-N-Butylphthalate	U	7.2	ug/L	1	10	9.6	2.4	7.2
Butylbenzylphthalate	U	7.2	ug/L	1	10	9.6	1.8	7.2
Di-N-Octylphthalate	U	7.2	ug/L	1	10	9.6	1.7	7.2
Acetophenone	U	7.2	ug/L	1	10	9.6	3.8	7.2
Caprolactam	UL	7.2	ug/L	1	10	9.6	0.38	7.2
Benzaldehyde	U	7.2	ug/L	1	10	9.6	0.96	7.2
2,3,4,6-Tetrachlorophenol	U	7.2	ug/L	1	10	9.6	2.6	7.2
4-Bromophenyl-Phenylether	U	7.2	ug/L	1	10	9.6	1.8	7.2
4-Chlorophenyl-Phenylether	U	7.2	ug/L	1	10	9.6	2.1	7.2
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.2	ug/L	1	10	9.6	1.4	7.2
Acenaphthylene	U	7.2	ug/L	1	10	9.6	1.4	7.2
Anthracene	U	7.2	ug/L	1	10	9.6	1.6	7.2
Fluorene	U	7.2	ug/L	1	10	9.6	2.0	7.2
Fluoranthene	U	7.2	ug/L	1	10	9.6	2.3	7.2
Benzo(g,h,i)perylene	U	7.2	ug/L	1	10	9.6	1.4	7.2
Benzo(k)fluoranthene	U	7.2	ug/L	1	10	9.6	1.5	7.2
Bis(2-Chloroethoxy)Methane	U	7.2	ug/L	1	10	9.6	2.0	7.2
2-Fluorophenol		39.4	%					
Phenol-D6		26.1	%					
Nitrobenzene-d5		57.5	%					
2-Fluorobiphenyl		61.8	%					
2,4,6-Tribromophenol		88.0	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-10

Client ID: FTA-SW-01-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6396.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM **Extraction Method:** SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 11-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL ADJ LOD
Terphenyl-d14		94.9	%			

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-12

Client ID: FTA-SW-02-061914 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6408.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Analysis Date: 12-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.5	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.5	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.5	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.5	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.5	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.5	2.8	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.5	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.5	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.5	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.5	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.5	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.5	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.5	3.7	7.1
Caprolactam	UL	7.1	ug/L	1	10	9.5	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.5	0.95	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.5	2.6	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.5	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.5	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.5	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.5	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.5	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.5	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.5	2.0	7.1
2-Fluorophenol		37.6	%					
Phenol-D6		24.2	%					
Nitrobenzene-d5		58.8	%					
2-Fluorobiphenyl		58.2	%					
2,4,6-Tribromophenol		79.1	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-12

Client ID: FTA-SW-02-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6408.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		76.4	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-14

Client ID: FTA-SW-03-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6409.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 25-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM
Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.6	ug/L	1	10	10.	1.8	7.6
2-Methylphenol	UMM	7.6	ug/L	1	10	10.	3.9	7.6
Isophorone	U	7.6	ug/L	1	10	10.	1.7	7.6
2-Nitrophenol	U	7.6	ug/L	1	10	10.	2.8	7.6
2,4-Dimethylphenol	U	7.6	ug/L	1	10	10.	4.5	7.6
4-Chloro-3-Methylphenol	U	7.6	ug/L	1	10	10.	3.7	7.6
2,4,5-Trichlorophenol	U	19	ug/L	1	25	26.	3.7	19.
2-Chloronaphthalene	UM	7.6	ug/L	1	10	10.	3.0	7.6
Dimethyl Phthalate	U	7.6	ug/L	1	10	10.	2.0	7.6
Diethylphthalate	U	7.6	ug/L	1	10	10.	2.0	7.6
N-Nitrosodiphenylamine	U	7.6	ug/L	1	10	10.	3.8	7.6
Carbazole	U	7.6	ug/L	1	10	10.	2.1	7.6
Di-N-Butylphthalate	U	7.6	ug/L	1	10	10.	2.6	7.6
Butylbenzylphthalate	U	7.6	ug/L	1	10	10.	1.9	7.6
Di-N-Octylphthalate	U	7.6	ug/L	1	10	10.	1.8	7.6
Acetophenone	U	7.6	ug/L	1	10	10.	4.0	7.6
Caprolactam	UL	7.6	ug/L	1	10	10.	0.41	7.6
Benzaldehyde	U	7.6	ug/L	1	10	10.	1.0	7.6
2,3,4,6-Tetrachlorophenol	U	7.6	ug/L	1	10	10.	2.8	7.6
4-Bromophenyl-Phenylether	U	7.6	ug/L	1	10	10.	1.9	7.6
4-Chlorophenyl-Phenylether	U	7.6	ug/L	1	10	10.	2.2	7.6
4-Nitrophenol	U	19	ug/L	1	25	26.	1.8	19.
Acenaphthene	U	7.6	ug/L	1	10	10.	1.5	7.6
Acenaphthylene	U	7.6	ug/L	1	10	10.	1.5	7.6
Anthracene	U	7.6	ug/L	1	10	10.	1.7	7.6
Fluorene	U	7.6	ug/L	1	10	10.	2.1	7.6
Fluoranthene	U	7.6	ug/L	1	10	10.	2.4	7.6
Benzo(g,h,i)perylene	U	7.6	ug/L	1	10	10.	1.5	7.6
Benzo(k)fluoranthene	U	7.6	ug/L	1	10	10.	1.6	7.6
Bis(2-Chloroethoxy)Methane	U	7.6	ug/L	1	10	10.	2.1	7.6
2-Fluorophenol		38.4	%					
Phenol-D6		26.0	%					
Nitrobenzene-d5		56.9	%					
2-Fluorobiphenyl		61.6	%					
2,4,6-Tribromophenol		89.4	%					

Page 1 of 2

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-14

Client ID: FTA-SW-03-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6409.D

Sample Date: 19-JUN-14 **Received Date:** 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		76.0	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-16

Client ID: FTA-SW-06-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6412.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14 Extract Date: 25-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.5	ug/L	1	10	10.	1.8	7.5
2-Methylphenol	U	7.5	ug/L	1	10	10.	3.8	7.5
Isophorone	U	7.5	ug/L	1	10	10.	1.7	7.5
2-Nitrophenol	U	7.5	ug/L	1	10	10.	2.7	7.5
2,4-Dimethylphenol	U	7.5	ug/L	1	10	10.	4.4	7.5
4-Chloro-3-Methylphenol	U	7.5	ug/L	1	10	10.	3.6	7.5
2,4,5-Trichlorophenol	U	19	ug/L	1	25	25.	3.6	19.
2-Chloronaphthalene	U	7.5	ug/L	1	10	10.	2.9	7.5
Dimethyl Phthalate	U	7.5	ug/L	1	10	10.	2.0	7.5
Diethylphthalate	U	7.5	ug/L	1	10	10.	2.0	7.5
N-Nitrosodiphenylamine	U	7.5	ug/L	1	10	10.	3.7	7.5
Carbazole	U	7.5	ug/L	1	10	10.	2.1	7.5
Di-N-Butylphthalate	U	7.5	ug/L	1	10	10.	2.5	7.5
Butylbenzylphthalate	U	7.5	ug/L	1	10	10.	1.9	7.5
Di-N-Octylphthalate	U	7.5	ug/L	1	10	10.	1.8	7.5
Acetophenone	U	7.5	ug/L	1	10	10.	3.9	7.5
Caprolactam	UL	7.5	ug/L	1	10	10.	0.40	7.5
Benzaldehyde	U	7.5	ug/L	1	10	10.	1.0	7.5
2,3,4,6-Tetrachlorophenol	U	7.5	ug/L	1	10	10.	2.7	7.5
4-Bromophenyl-Phenylether	U	7.5	ug/L	1	10	10.	1.9	7.5
4-Chlorophenyl-Phenylether	U	7.5	ug/L	1	10	10.	2.2	7.5
4-Nitrophenol	U	19	ug/L	1	25	25.	1.8	19.
Acenaphthene	U	7.5	ug/L	1	10	10.	1.5	7.5
Acenaphthylene	U	7.5	ug/L	1	10	10.	1.5	7.5
Anthracene	U	7.5	ug/L	1	10	10.	1.7	7.5
Fluorene	U	7.5	ug/L	1	10	10.	2.1	7.5
Fluoranthene	U	7.5	ug/L	1	10	10.	2.4	7.5
Benzo(g,h,i)perylene	U	7.5	ug/L	1	10	10.	1.5	7.5
Benzo(k)fluoranthene	U	7.5	ug/L	1	10	10.	1.6	7.5
Bis(2-Chloroethoxy)Methane	U	7.5	ug/L	1	10	10.	2.1	7.5
2-Fluorophenol		27.1	%					
Phenol-D6		20.3	%					
Nitrobenzene-d5		57.6	%					
2-Fluorobiphenyl		60.5	%					
2,4,6-Tribromophenol		76.2	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-16

Client ID: FTA-SW-06-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6412.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		60.7	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-18

Client ID: FTA-SW-07-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6413.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.1	ug/L	1	10	9.4	1.7	7.1
2-Methylphenol	U	7.1	ug/L	1	10	9.4	3.6	7.1
Isophorone	U	7.1	ug/L	1	10	9.4	1.6	7.1
2-Nitrophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
2,4-Dimethylphenol	U	7.1	ug/L	1	10	9.4	4.2	7.1
4-Chloro-3-Methylphenol	U	7.1	ug/L	1	10	9.4	3.4	7.1
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.4	18.
2-Chloronaphthalene	U	7.1	ug/L	1	10	9.4	2.7	7.1
Dimethyl Phthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
Diethylphthalate	U	7.1	ug/L	1	10	9.4	1.9	7.1
N-Nitrosodiphenylamine	U	7.1	ug/L	1	10	9.4	3.5	7.1
Carbazole	U	7.1	ug/L	1	10	9.4	2.0	7.1
Di-N-Butylphthalate	U	7.1	ug/L	1	10	9.4	2.4	7.1
Butylbenzylphthalate	U	7.1	ug/L	1	10	9.4	1.8	7.1
Di-N-Octylphthalate	U	7.1	ug/L	1	10	9.4	1.7	7.1
Acetophenone	U	7.1	ug/L	1	10	9.4	3.7	7.1
Caprolactam	UL	7.1	ug/L	1	10	9.4	0.38	7.1
Benzaldehyde	U	7.1	ug/L	1	10	9.4	0.94	7.1
2,3,4,6-Tetrachlorophenol	U	7.1	ug/L	1	10	9.4	2.5	7.1
4-Bromophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	1.8	7.1
4-Chlorophenyl-Phenylether	U	7.1	ug/L	1	10	9.4	2.1	7.1
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Acenaphthylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Anthracene	U	7.1	ug/L	1	10	9.4	1.6	7.1
Fluorene	U	7.1	ug/L	1	10	9.4	2.0	7.1
Fluoranthene	U	7.1	ug/L	1	10	9.4	2.3	7.1
Benzo(g,h,i)perylene	U	7.1	ug/L	1	10	9.4	1.4	7.1
Benzo(k)fluoranthene	U	7.1	ug/L	1	10	9.4	1.5	7.1
Bis(2-Chloroethoxy)Methane	U	7.1	ug/L	1	10	9.4	2.0	7.1
2-Fluorophenol		40.2	%					
Phenol-D6		26.5	%					
Nitrobenzene-d5		65.0	%					
2-Fluorobiphenyl		69.2	%					
2,4,6-Tribromophenol		102.	%					

Page 1 of 2

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-18

Client ID: FTA-SW-07-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6413.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL ADJ LOD
Terphenyl-d14		74.3	%			

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-20

Client ID: FTA-SW-08-061914 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6414.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.4	ug/L	1	10	9.8	1.8	7.4
2-Methylphenol	U	7.4	ug/L	1	10	9.8	3.7	7.4
Isophorone	U	7.4	ug/L	1	10	9.8	1.7	7.4
2-Nitrophenol	U	7.4	ug/L	1	10	9.8	2.6	7.4
2,4-Dimethylphenol	U	7.4	ug/L	1	10	9.8	4.3	7.4
4-Chloro-3-Methylphenol	U	7.4	ug/L	1	10	9.8	3.5	7.4
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.5	18.
2-Chloronaphthalene	U	7.4	ug/L	1	10	9.8	2.8	7.4
Dimethyl Phthalate	U	7.4	ug/L	1	10	9.8	2.0	7.4
Diethylphthalate	U	7.4	ug/L	1	10	9.8	2.0	7.4
N-Nitrosodiphenylamine	U	7.4	ug/L	1	10	9.8	3.6	7.4
Carbazole	U	7.4	ug/L	1	10	9.8	2.0	7.4
Di-N-Butylphthalate	U	7.4	ug/L	1	10	9.8	2.4	7.4
Butylbenzylphthalate	U	7.4	ug/L	1	10	9.8	1.9	7.4
Di-N-Octylphthalate	U	7.4	ug/L	1	10	9.8	1.8	7.4
Acetophenone	U	7.4	ug/L	1	10	9.8	3.8	7.4
Caprolactam	UL	7.4	ug/L	1	10	9.8	0.39	7.4
Benzaldehyde	U	7.4	ug/L	1	10	9.8	0.98	7.4
2,3,4,6-Tetrachlorophenol	U	7.4	ug/L	1	10	9.8	2.6	7.4
4-Bromophenyl-Phenylether	U	7.4	ug/L	1	10	9.8	1.9	7.4
4-Chlorophenyl-Phenylether	U	7.4	ug/L	1	10	9.8	2.2	7.4
4-Nitrophenol	U	18	ug/L	1	25	24.	1.8	18.
Acenaphthene	U	7.4	ug/L	1	10	9.8	1.5	7.4
Acenaphthylene	U	7.4	ug/L	1	10	9.8	1.5	7.4
Anthracene	U	7.4	ug/L	1	10	9.8	1.7	7.4
Fluorene	U	7.4	ug/L	1	10	9.8	2.0	7.4
Fluoranthene	U	7.4	ug/L	1	10	9.8	2.4	7.4
Benzo(g,h,i)perylene	U	7.4	ug/L	1	10	9.8	1.5	7.4
Benzo(k)fluoranthene	U	7.4	ug/L	1	10	9.8	1.6	7.4
Bis(2-Chloroethoxy)Methane	U	7.4	ug/L	1	10	9.8	2.0	7.4
2-Fluorophenol		37.4	%					
Phenol-D6		25.0	%					
Nitrobenzene-d5		58.0	%					
2-Fluorobiphenyl		61.5	%					
2,4,6-Tribromophenol		88.6	%					

Page 1 of

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-20

Client ID: FTA-SW-08-061914

Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6414.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Terphenyl-d14		67.1	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-22

Client ID: FTA-SW-DUP01-061914 **Project:** NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6415.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.3	ug/L	1	10	9.7	1.7	7.3
2-Methylphenol	U	7.3	ug/L	1	10	9.7	3.7	7.3
Isophorone	U	7.3	ug/L	1	10	9.7	1.6	7.3
2-Nitrophenol	U	7.3	ug/L	1	10	9.7	2.6	7.3
2,4-Dimethylphenol	U	7.3	ug/L	1	10	9.7	4.3	7.3
4-Chloro-3-Methylphenol	U	7.3	ug/L	1	10	9.7	3.5	7.3
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.5	18.
2-Chloronaphthalene	U	7.3	ug/L	1	10	9.7	2.8	7.3
Dimethyl Phthalate	U	7.3	ug/L	1	10	9.7	2.0	7.3
Diethylphthalate	U	7.3	ug/L	1	10	9.7	1.9	7.3
N-Nitrosodiphenylamine	U	7.3	ug/L	1	10	9.7	3.6	7.3
Carbazole	U	7.3	ug/L	1	10	9.7	2.0	7.3
Di-N-Butylphthalate	U	7.3	ug/L	1	10	9.7	2.4	7.3
Butylbenzylphthalate	U	7.3	ug/L	1	10	9.7	1.8	7.3
Di-N-Octylphthalate	U	7.3	ug/L	1	10	9.7	1.7	7.3
Acetophenone	U	7.3	ug/L	1	10	9.7	3.8	7.3
Caprolactam	UL	7.3	ug/L	1	10	9.7	0.39	7.3
Benzaldehyde	U	7.3	ug/L	1	10	9.7	0.97	7.3
2,3,4,6-Tetrachlorophenol	U	7.3	ug/L	1	10	9.7	2.6	7.3
4-Bromophenyl-Phenylether	U	7.3	ug/L	1	10	9.7	1.8	7.3
4-Chlorophenyl-Phenylether	U	7.3	ug/L	1	10	9.7	2.1	7.3
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Acenaphthene	U	7.3	ug/L	1	10	9.7	1.4	7.3
Acenaphthylene	U	7.3	ug/L	1	10	9.7	1.4	7.3
Anthracene	U	7.3	ug/L	1	10	9.7	1.6	7.3
Fluorene	U	7.3	ug/L	1	10	9.7	2.0	7.3
Fluoranthene	U	7.3	ug/L	1	10	9.7	2.3	7.3
Benzo(g,h,i)perylene	U	7.3	ug/L	1	10	9.7	1.4	7.3
Benzo(k)fluoranthene	U	7.3	ug/L	1	10	9.7	1.6	7.3
Bis(2-Chloroethoxy)Methane	U	7.3	ug/L	1	10	9.7	2.0	7.3
2-Fluorophenol		30.2	%					
Phenol-D6		21.1	%					
Nitrobenzene-d5		55.1	%					
2-Fluorobiphenyl		57.7	%					
2,4,6-Tribromophenol		87.2	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-22

Client ID: FTA-SW-DUP01-061914 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6415.D

Sample Date: 19-JUN-14 Received Date: 20-JUN-14

Extract Date: 25-JUN-14

Extracted By: AM Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL ADJ LOD
Terphenyl-d14		62.3	%			

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-24

Client ID: FTA-SD-RB01-062014 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6421.D

Sample Date: 20-JUN-14 Received Date: 20-JUN-14 Extract Date: 25-JUN-14

Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 14-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
2-Nitrophenol	U	7.2	ug/L	1	10	9.6	2.6	7.2
2,4-Dimethylphenol	U	7.2	ug/L	1	10	9.6	4.2	7.2
Bis(2-Chloroethoxy)Methane	U	7.2	ug/L	1	10	9.6	2.0	7.2
2,4-Dichlorophenol	U	7.2	ug/L	1	10	9.6	2.9	7.2
Caprolactam	UL	7.2	ug/L	1	10	9.6	0.38	7.2
4-Chloro-3-Methylphenol	U	7.2	ug/L	1	10	9.6	3.5	7.2
2-Methylnaphthalene	U	7.2	ug/L	1	10	9.6	3.1	7.2
2,4,5-Trichlorophenol	U	18	ug/L	1	25	24.	3.5	18.
2-Nitroaniline	U	18	ug/L	1	25	24.	1.7	18.
Dimethyl Phthalate	U	7.2	ug/L	1	10	9.6	1.9	7.2
3-Nitroaniline	U	18	ug/L	1	25	24.	1.4	18.
4-Nitrophenol	U	18	ug/L	1	25	24.	1.7	18.
Dibenzofuran	U	7.2	ug/L	1	10	9.6	1.5	7.2
Diethylphthalate	U	7.2	ug/L	1	10	9.6	1.9	7.2
4-Chlorophenyl-Phenylether	U	7.2	ug/L	1	10	9.6	2.1	7.2
4-Bromophenyl-Phenylether	U	7.2	ug/L	1	10	9.6	1.8	7.2
Carbazole	U	7.2	ug/L	1	10	9.6	2.0	7.2
Bis(2-Ethylhexyl)Phthalate	U	7.2	ug/L	1	10	9.6	1.7	7.2
Di-N-Octylphthalate	U	7.2	ug/L	1	10	9.6	1.7	7.2
Acenaphthylene	U	7.2	ug/L	1	10	9.6	1.4	7.2
Anthracene	U	7.2	ug/L	1	10	9.6	1.6	7.2
Benzaldehyde	U	7.2	ug/L	1	10	9.6	0.96	7.2
Benzo(g,h,i)perylene	U	7.2	ug/L	1	10	9.6	1.4	7.2
Benzo(k)fluoranthene	U	7.2	ug/L	1	10	9.6	1.5	7.2
Chrysene	U	7.2	ug/L	1	10	9.6	1.6	7.2
Dibenzo(a,h)anthracene	U	7.2	ug/L	1	10	9.6	1.6	7.2
Fluoranthene	U	7.2	ug/L	1	10	9.6	2.3	7.2
Fluorene	U	7.2	ug/L	1	10	9.6	2.0	7.2
Hexachlorocyclopentadiene	U	7.2	ug/L	1	10	9.6	1.2	7.2
Phenanthrene	U	7.2	ug/L	1	10	9.6	2.3	7.2
Phenol	U	7.2	ug/L	1	10	9.6	1.7	7.2
Pyrene	U	7.2	ug/L	1	10	9.6	1.8	7.2
Isophorone	U	7.2	ug/L	1	10	9.6	1.6	7.2
2-Fluorophenol		43.9	%					
Phenol-d6		29.0	%					

Client: Tetra Tech NUS, Inc.

Lab ID: SH4521-24

Client ID: FTA-SD-RB01-062014 Project: NCTAMSLANT Cutler CTO

SDG: WE53-7

Lab File ID: U6421.D

Sample Date: 20-JUN-14 Received Date: 20-JUN-14 Extract Date: 25-JUN-14

Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 14-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Nitrobenzene-d5		74.5	%					
2-Fluorobiphenyl		77.0	%					
2,4,6-Tribromophenol		73.0	%					
Terphenyl-d14		76.7	%					

Client:

Lab ID: WG145380-1

Client ID: Method Blank Sample

Project: SDG: WE53-7

Lab File ID: U6209.D

Sample Date: Received Date:

Extract Date: 25-JUN-14

Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 30-JUN-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.5	ug/L	1	10	10.	1.8	7.5
2-Methylphenol	U	7.5	ug/L	1	10	10.	3.8	7.5
Isophorone	U	7.5	ug/L	1	10	10.	1.7	7.5
2-Nitrophenol	U	7.5	ug/L	1	10	10.	2.7	7.5
2,4-Dimethylphenol	U	7.5	ug/L	1	10	10.	4.4	7.5
4-Chloro-3-Methylphenol	U	7.5	ug/L	1	10	10.	3.6	7.5
2,4,5-Trichlorophenol	U	19	ug/L	1	25	25.	3.6	19.
2-Chloronaphthalene	U	7.5	ug/L	1	10	10.	2.9	7.5
Dimethyl Phthalate	U	7.5	ug/L	1	10	10.	2.0	7.5
Diethylphthalate	U	7.5	ug/L	1	10	10.	2.0	7.5
N-Nitrosodiphenylamine	U	7.5	ug/L	1	10	10.	3.7	7.5
Carbazole	U	7.5	ug/L	1	10	10.	2.1	7.5
Di-N-Butylphthalate	U	7.5	ug/L	1	10	10.	2.5	7.5
Butylbenzylphthalate	U	7.5	ug/L	1	10	10.	1.9	7.5
Di-N-Octylphthalate	U	7.5	ug/L	1	10	10.	1.8	7.5
Acetophenone	U	7.5	ug/L	1	10	10.	3.9	7.5
Caprolactam	U	7.5	ug/L	1	10	10.	0.40	7.5
Benzaldehyde	U	7.5	ug/L	1	10	10.	1.0	7.5
2,3,4,6-Tetrachlorophenol	U	7.5	ug/L	1	10	10.	2.7	7.5
4-Bromophenyl-Phenylether	U	7.5	ug/L	1	10	10.	1.9	7.5
4-Chlorophenyl-Phenylether	U	7.5	ug/L	1	10	10.	2.2	7.5
4-Nitrophenol	U	19	ug/L	1	25	25.	1.8	19.
Acenaphthene	U	7.5	ug/L	1	10	10.	1.5	7.5
Acenaphthylene	U	7.5	ug/L	1	10	10.	1.5	7.5
Anthracene	U	7.5	ug/L	1	10	10.	1.7	7.5
Fluorene	U	7.5	ug/L	1	10	10.	2.1	7.5
Fluoranthene	U	7.5	ug/L	1	10	10.	2.4	7.5
Benzo(g,h,i)perylene	U	7.5	ug/L	1	10	10.	1.5	7.5
Benzo(k)fluoranthene	U	7.5	ug/L	1	10	10.	1.6	7.5
Bis(2-Chloroethoxy)Methane	U	7.5	ug/L	1	10	10.	2.1	7.5
2-Fluorophenol		42.7	%					
Phenol-D6		27.9	%					
Nitrobenzene-d5		66.0	%					
2-Fluorobiphenyl		69.2	%					

Client:

Lab ID: WG145380-1

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: U6209.D

Sample Date: Received Date:

Extract Date: 25-JUN-14

Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 30-JUN-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
2,4,6-Tribromophenol		84.2	%					_
Terphenyl-d14		79.5	%					

Client:

Lab ID: WG145380-1

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: U6209.D

Sample Date: Received Date:

Extract Date: 25-JUN-14

Extracted By:AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 30-JUN-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
2-Nitrophenol	U	7.5	ug/L	1	10	10.	2.7	7.5
2,4-Dimethylphenol	U	7.5	ug/L	1	10	10.	4.4	7.5
Bis(2-Chloroethoxy)Methane	U	7.5	ug/L	1	10	10.	2.1	7.5
2,4-Dichlorophenol	U	7.5	ug/L	1	10	10.	3.0	7.5
Caprolactam	U	7.5	ug/L	1	10	10.	0.40	7.5
4-Chloro-3-Methylphenol	U	7.5	ug/L	1	10	10.	3.6	7.5
2-Methylnaphthalene	U	7.5	ug/L	1	10	10.	3.2	7.5
2,4,5-Trichlorophenol	U	19	ug/L	1	25	25.	3.6	19.
2-Nitroaniline	U	19	ug/L	1	25	25.	1.8	19.
Dimethyl Phthalate	U	7.5	ug/L	1	10	10.	2.0	7.5
3-Nitroaniline	U	19	ug/L	1	25	25.	1.5	19.
4-Nitrophenol	U	19	ug/L	1	25	25.	1.8	19.
Dibenzofuran	U	7.5	ug/L	1	10	10.	1.6	7.5
Diethylphthalate	U	7.5	ug/L	1	10	10.	2.0	7.5
4-Chlorophenyl-Phenylether	U	7.5	ug/L	1	10	10.	2.2	7.5
4-Bromophenyl-Phenylether	U	7.5	ug/L	1	10	10.	1.9	7.5
Carbazole	U	7.5	ug/L	1	10	10.	2.1	7.5
Bis(2-Ethylhexyl)Phthalate	U	7.5	ug/L	1	10	10.	1.8	7.5
Di-N-Octylphthalate	U	7.5	ug/L	1	10	10.	1.8	7.5
Acenaphthylene	U	7.5	ug/L	1	10	10.	1.5	7.5
Anthracene	U	7.5	ug/L	1	10	10.	1.7	7.5
Benzaldehyde	U	7.5	ug/L	1	10	10.	1.0	7.5
Benzo(g,h,i)perylene	U	7.5	ug/L	1	10	10.	1.5	7.5
Benzo(k)fluoranthene	U	7.5	ug/L	1	10	10.	1.6	7.5
Chrysene	U	7.5	ug/L	1	10	10.	1.7	7.5
Dibenzo(a,h)anthracene	U	7.5	ug/L	1	10	10.	1.7	7.5
Fluoranthene	U	7.5	ug/L	1	10	10.	2.4	7.5
Fluorene	U	7.5	ug/L	1	10	10.	2.1	7.5
Hexachlorocyclopentadiene	U	7.5	ug/L	1	10	10.	1.2	7.5
Phenanthrene	U	7.5	ug/L	1	10	10.	2.4	7.5
Phenol	U	7.5	ug/L	1	10	10.	1.8	7.5
Pyrene	U	7.5	ug/L	1	10	10.	1.9	7.5
Isophorone	U	7.5	ug/L	1	10	10.	1.7	7.5
2-Fluorophenol		42.7	%					

Report of Analytical Results

Client:

Lab ID: WG145380-1

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: U6209.D

Sample Date: Received Date:

Extract Date: 25-JUN-14

Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145380

Analysis Date: 30-JUN-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol-d6		27.9	%					
Nitrobenzene-d5		66.0	%					
2-Fluorobiphenyl		69.2	%					
2,4,6-Tribromophenol		84.2	%					
Terphenyl-d14		79.5	%					

Report of Analytical Results

Client:

Lab ID: WG145277-1

Client ID: Method Blank Sample

Project: SDG: WE53-7

Lab File ID: U6210.D

Sample Date: Received Date:

Extract Date: 23-JUN-14

Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 30-JUN-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	7.5	ug/L	1	10	10.	1.8	7.5
2-Methylphenol	U	7.5	ug/L	1	10	10.	3.8	7.5
Isophorone	U	7.5	ug/L	1	10	10.	1.7	7.5
2-Nitrophenol	U	7.5	ug/L	1	10	10.	2.7	7.5
2,4-Dimethylphenol	U	7.5	ug/L	1	10	10.	4.4	7.5
4-Chloro-3-Methylphenol	U	7.5	ug/L	1	10	10.	3.6	7.5
2,4,5-Trichlorophenol	U	19	ug/L	1	25	25.	3.6	19.
2-Chloronaphthalene	U	7.5	ug/L	1	10	10.	2.9	7.5
Dimethyl Phthalate	U	7.5	ug/L	1	10	10.	2.0	7.5
Diethylphthalate	U	7.5	ug/L	1	10	10.	2.0	7.5
N-Nitrosodiphenylamine	U	7.5	ug/L	1	10	10.	3.7	7.5
Carbazole	U	7.5	ug/L	1	10	10.	2.1	7.5
Di-N-Butylphthalate	U	7.5	ug/L	1	10	10.	2.5	7.5
Butylbenzylphthalate	U	7.5	ug/L	1	10	10.	1.9	7.5
Di-N-Octylphthalate	U	7.5	ug/L	1	10	10.	1.8	7.5
Acetophenone	U	7.5	ug/L	1	10	10.	3.9	7.5
Caprolactam	U	7.5	ug/L	1	10	10.	0.40	7.5
Benzaldehyde	U	7.5	ug/L	1	10	10.	1.0	7.5
2,3,4,6-Tetrachlorophenol	U	7.5	ug/L	1	10	10.	2.7	7.5
4-Bromophenyl-Phenylether	U	7.5	ug/L	1	10	10.	1.9	7.5
4-Chlorophenyl-Phenylether	U	7.5	ug/L	1	10	10.	2.2	7.5
4-Nitrophenol	U	19	ug/L	1	25	25.	1.8	19.
Acenaphthene	U	7.5	ug/L	1	10	10.	1.5	7.5
Acenaphthylene	U	7.5	ug/L	1	10	10.	1.5	7.5
Anthracene	U	7.5	ug/L	1	10	10.	1.7	7.5
Fluorene	U	7.5	ug/L	1	10	10.	2.1	7.5
Fluoranthene	U	7.5	ug/L	1	10	10.	2.4	7.5
Benzo(g,h,i)perylene	U	7.5	ug/L	1	10	10.	1.5	7.5
Benzo(k)fluoranthene	U	7.5	ug/L	1	10	10.	1.6	7.5
Bis(2-Chloroethoxy)Methane	U	7.5	ug/L	1	10	10.	2.1	7.5
2-Fluorophenol		50.8	%					
Phenol-D6		33.5	%					
Nitrobenzene-d5		76.1	%					
2-Fluorobiphenyl		78.2	%					

Page 1 of

Report of Analytical Results

Client:

Lab ID: WG145277-1

Client ID: Method Blank Sample

Project:

SDG: WE53-7

Lab File ID: U6210.D

Sample Date: Received Date:

Extract Date: 23-JUN-14

Extracted By: AM

Extraction Method: SW846 3510

Lab Prep Batch: WG145277

Analysis Date: 30-JUN-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Report Date: 16-JUL-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
2,4,6-Tribromophenol		89.4	%					
Terphenyl-d14		92.4	%					

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: NCTAMSLANT Cutler CTO WE53 Matrix: AQ

Lab Code: KAS SDG: WE53-7

Client Sample ID	Lab Sample ID	Col. ID	2FBP	#	2FP	#	NBZ	#	PHL	#	TBP	#	TPH	#
FTA-MW-5-061814	SH4401-10		64.1		28.2		62.6		19.4		76.2		79.5	
FTA-MW-203-061814	SH4401-12		61.8		27.1		55.1		19.0		81.7		75.7	
FTA-GW-DUP01-061814	SH4401-14		67.8		33.3		63.4		22.2		88.4		90.3	
FTA-MW-218-061814	SH4401-16		57.5		34.8		55.4		22.1		78.4		81.2	
FTA-MW-206-061814	SH4401-18		57.3		26.4		52.5		16.1		74.9		76.8	
FTA-MW-9-061714	SH4401-2		69.3		0.00	*	65.4		0.00	*	18.5	*	76.7	
FTA-MW-14-061714	SH4401-20		58.9		28.1		54.2		18.7		89.9		95.5	
FTA-MW-9-061714	SH4401-2RE		64.0		0.00	*	62.0		0.00	*	21.1	*	75.0	
FTA-MW-10-061714	SH4401-4		58.1		23.2		54.8		13.7		64.1		65.6	
FTA-MW-11-061714	SH4401-6		57.3		20.1		54.7		15.7		47.3		34.9	*
FTA-MW-11-061714	SH4401-6RE		69.6		38.4		64.6		26.2		83.9		86.8	
FTA-MW-12-061714	SH4401-8		65.4		14.5	*	61.3		9.06	*	36.4	*	89.8	
FTA-MW-12-061714	SH4401-8RE		68.9		24.9		64.0		16.1		70.3		102.	
FTA-SW-01-061914	SH4521-10		61.8		39.4		57.5		26.1		88.0		94.9	
FTA-SW-02-061914	SH4521-12		58.2		37.6		58.8		24.2		79.1		76.4	
FTA-SW-03-061914	SH4521-14		61.6		38.4		56.9		26.0		89.4		76.0	
FTA-SW-06-061914	SH4521-16		60.5		27.1		57.6		20.3		76.2		60.7	
FTA-SW-07-061914	SH4521-18		69.2		40.2		65.0		26.5		102.		74.3	
FTA-MW-208-061814	SH4521-2		58.0		31.8		54.5		19.7		78.9		88.9	
FTA-SW-08-061914	SH4521-20		61.5		37.4		58.0		25.0		88.6		67.1	
FTA-SW-DUP01-061914	SH4521-22		57.7		30.2		55.1		21.1		87.2		62.3	
FTA-SD-RB01-062014	SH4521-24		77.0		43.9		74.5		29.0		73.0		76.7	
FTA-MW-1-061814	SH4521-4		62.1		35.1		57.2		23.3		71.6		96.2	
FTA-GW-DUP02-061814	SH4521-6		72.3		40.9		68.3		26.8		88.9		89.5	
FTA-MW-210-061814	SH4521-8		66.9		33.7		59.6		21.9		101.		92.0	
Method Blank Sample	WG145277-1		78.2		50.8		76.1		33.5		89.4		92.4	
Laboratory Control S	WG145277-2		77.2		43.7		73.8		27.5		89.8		94.6	
Laboratory Control S	WG145277-3		80.0		45.7		75.9		29.8		99.8		103.	
Method Blank Sample	WG145380-1		69.2		42.7		66.0		27.9		84.2		79.5	
Laboratory Control S	WG145380-2		79.1		41.7		70.9		26.8		83.4		111.	
Laboratory Control S	WG145380-3		87.5		50.4		75.3		35.8		95.3		122.	
Matrix Spike	WG145380-4		75.2		42.6		67.3		28.8		95.9		90.4	
Matrix Spike Duplica	WG145380-5		69.8		36.8		59.8		25.9		92.9		92.5	
Matrix Spike	WG145380-6		82.1		45.0		75.0		31.4		102.		89.1	
Matrix Spike Duplica	WG145380-7		59.1		28.7		63.7		21.9		84.1		54.5	

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: NCTAMSLANT Cutler CTO WE53 Matrix: AQ

Lab Code: KAS SDG: WE53-7

		QC Limits
2FBP	2-FLUOROBIPHENYL	50-110
2FP	2-FLUOROPHENOL	20-110
PHL	PHENOL-D6	10-115
TPH	TERPHENYL-D14	50-135
NBZ	NITROBENZENE-D5	40-110
TBP	2,4,6-TRIBROMOPHENOL	40-125

^{# =} Column to be used to flag recovery limits.

^{* =} Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

LCS ID: WG145277-2 **LCSD ID:** WG145277-3

Project: SDG: WE53-7

Report Date: 16-JUL-14 LCS File ID: U6219.D

Received Date: Extract Date: 23-JUN-14

Extracted By:AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145277 LCSD File ID: U6220.D

Analysis Date: 01-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
Phenol	100.	28.1	28.1	30.4	30.4	ug/L	8	30	0-115
2-Methylphenol	100.	58.9	58.9	60.7	60.7	ug/L	3	30	40-110
Isophorone	50.0	41.2	82.4	43.4	86.8	ug/L	5	30	50-110
2-Nitrophenol	100.	72.4	72.4	76.4	76.4	ug/L	5	30	40-115
2,4-Dimethylphenol	100.	65.9	65.9	70.0	70.0	ug/L	6	30	30-110
4-Chloro-3-Methylphenol	100.	77.4	77.4	86.8	86.8	ug/L	11	30	45-110
2,4,5-Trichlorophenol	100.	80.1	80.1	86.0	86.0	ug/L	7	30	50-110
2-Chloronaphthalene	50.0	25.6	51.2	27.4	54.8	ug/L	7	30	50-105
Dimethyl Phthalate	50.0	39.1	78.2	41.4	82.8	ug/L	6	30	25-125
Diethylphthalate	50.0	45.4	90.8	49.7	99.4	ug/L	9	30	40-120
N-Nitrosodiphenylamine	50.0	36.0	72.0	39.8	79.6	ug/L	10	30	50-110
Carbazole	50.0	45.6	91.2	50.0	100.	ug/L	9	30	50-115
Di-N-Butylphthalate	50.0	49.7	99.4	54.2	108.	ug/L	9	30	55-115
Butylbenzylphthalate	50.0	46.8	93.6	49.6	99.2	ug/L	6	30	45-115
Di-N-Octylphthalate	50.0	42.2	84.4	45.6	91.2	ug/L	8	30	35-135
Acetophenone	50.0	38.6	77.2	40.0	80.0	ug/L	4	30	49-102
Caprolactam	50.0	2.28	4.56*	4.00	8.00*	ug/L	55*	30	10-86
Benzaldehyde	50.0	79.2	158.	77.8	156.	ug/L	2	30	10-189
2,3,4,6-Tetrachlorophenol	100.	82.2	82.2	91.6	91.6	ug/L	11	30	49-119
4-Bromophenyl-Phenylether	50.0	44.0	88.0	47.9	95.8	ug/L	8	30	50-115
4-Chlorophenyl-Phenylether	50.0	44.0	88.0	48.6	97.2	ug/L	10	30	50-110
4-Nitrophenol	100.	34.4	34.4	42.9	42.9	ug/L	22	30	0-125
Acenaphthene	50.0	42.7	85.4	45.4	90.8	ug/L	6	30	45-110
Acenaphthylene	50.0	39.9	79.8	43.0	86.0	ug/L	7	30	50-105
Anthracene	50.0	46.0	92.0	50.6	101.	ug/L	10	30	67-112
Fluorene	50.0	45.2	90.4	48.8	97.6	ug/L	8	30	50-110
Fluoranthene	50.0	48.0	96.0	49.9	99.8	ug/L	4	30	55-115
Benzo(g,h,i)perylene	50.0	44.9	89.8	49.8	99.6	ug/L	10	30	40-125
Benzo(k)fluoranthene	50.0	45.9	91.8	50.0	100.	ug/L	8	30	45-125
Bis(2-Chloroethoxy)Methane	50.0	32.5	65.0	33.6	67.2	ug/L	3	30	45-105
2-Fluorophenol			43.7		45.7				20-110
Phenol-D6			27.5		29.8				10-115
Nitrobenzene-d5			73.8		75.9				40-110
2-Fluorobiphenyl			77.2		80.0				50-110

Page 1 of

LCS ID: WG145277-2 **LCSD ID:** WG145277-3

Project: SDG: WE53-7

Report Date: 16-JUL-14 **LCS File ID:** U6219.D

Received Date: Extract Date: 23-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145277 LCSD File ID: U6220.D Analysis Date: 01-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

2,4,6-Tribromophenol	89.8	99.8	40-125
Terphenyl-d14	94.6	103.	50-135

LCS ID: WG145380-2 LCSD ID: WG145380-3

Project: SDG: WE53-7

Report Date: 16-JUL-14 LCS File ID: U6241.D

Received Date: Extract Date: 25-JUN-14

Extracted By:AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380 LCSD File ID: U6242.D

Analysis Date: 01-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
Phenol	100.	27.6	27.6	36.8	36.8	ug/L	28	30	0-115
2-Methylphenol	100.	56.8	56.8	65.7	65.7	ug/L	14	30	40-110
Isophorone	50.0	42.9	85.8	47.1	94.2	ug/L	9	30	50-110
2-Nitrophenol	100.	70.6	70.6	76.8	76.8	ug/L	8	30	40-115
2,4-Dimethylphenol	100.	66.5	66.5	72.7	72.7	ug/L	9	30	30-110
4-Chloro-3-Methylphenol	100.	79.0	79.0	89.9	89.9	ug/L	13	30	45-110
2,4,5-Trichlorophenol	100.	78.7	78.7	88.7	88.7	ug/L	12	30	50-110
2-Chloronaphthalene	50.0	25.8	51.6	28.4	56.8	ug/L	10	30	50-105
Dimethyl Phthalate	50.0	39.2	78.4	43.6	87.2	ug/L	11	30	25-125
Diethylphthalate	50.0	47.1	94.2	51.2	102.	ug/L	8	30	40-120
N-Nitrosodiphenylamine	50.0	41.2	82.4	43.7	87.4	ug/L	6	30	50-110
Carbazole	50.0	43.8	87.6	46.4	92.8	ug/L	6	30	50-115
Di-N-Butylphthalate	50.0	48.3	96.6	50.0	100.	ug/L	3	30	55-115
Butylbenzylphthalate	50.0	51.5	103.	55.6	111.	ug/L	8	30	45-115
Di-N-Octylphthalate	50.0	50.2	100.	53.1	106.	ug/L	6	30	35-135
Acetophenone	50.0	37.8	75.6	40.7	81.4	ug/L	7	30	49-102
Caprolactam	50.0	3.75	7.50*	5.61	11.2	ug/L	40*	30	10-86
Benzaldehyde	50.0	78.5	157.	91.9	184.	ug/L	16	30	10-189
2,3,4,6-Tetrachlorophenol	100.	82.6	82.6	93.8	93.8	ug/L	13	30	49-119
4-Bromophenyl-Phenylether	50.0	47.1	94.2	51.3	103.	ug/L	8	30	50-115
4-Chlorophenyl-Phenylether	50.0	45.7	91.4	51.1	102.	ug/L	11	30	50-110
4-Nitrophenol	100.	34.1	34.1	46.5	46.5	ug/L	31*	30	0-125
Acenaphthene	50.0	43.3	86.6	47.7	95.4	ug/L	10	30	45-110
Acenaphthylene	50.0	42.1	84.2	45.7	91.4	ug/L	8	30	50-105
Anthracene	50.0	48.2	96.4	52.1	104.	ug/L	8	30	67-112
Fluorene	50.0	46.6	93.2	51.8	104.	ug/L	10	30	50-110
Fluoranthene	50.0	40.3	80.6	42.3	84.6	ug/L	5	30	55-115
Benzo(g,h,i)perylene	50.0	43.2	86.4	43.6	87.2	ug/L	1	30	40-125
Benzo(k)fluoranthene	50.0	51.9	104.	52.2	104.	ug/L	0	30	45-125
Bis(2-Chloroethoxy)Methane	50.0	33.3	66.6	36.4	72.8	ug/L	9	30	45-105
2-Fluorophenol			41.7		50.4				20-110
Phenol-D6			26.8		35.8				10-115
Nitrobenzene-d5			70.9		75.3				40-110
2-Fluorobiphenyl			79.1		87.5				50-110

Page 1 of

LCS ID: WG145380-2 **LCSD ID:** WG145380-3

Project: SDG: WE53-7

Report Date: 16-JUL-14 **LCS File ID:** U6241.D

Received Date: Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380 LCSD File ID: U6242.D Analysis Date: 01-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

2,4,6-Tribromophenol	83.4	95.3	40-125
Terphenyl-d14	111.	122.	50-135

LCS ID: WG145380-2 **LCSD ID:** WG145380-3

Project: SDG: WE53-7

Report Date: 16-JUL-14 LCS File ID: U6241.D

Received Date: Extract Date: 25-JUN-14

Extracted By:AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380 LCSD File ID: U6242.D

Analysis Date: 01-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
2-Nitrophenol	100.	70.6	70.6	76.8	76.8	ug/L	8	30	40-115
2,4-Dimethylphenol	100.	66.5	66.5	72.7	72.7	ug/L	9	30	30-110
Bis(2-Chloroethoxy)Methane	50.0	33.3	66.6	36.4	72.8	ug/L	9	30	45-105
2,4-Dichlorophenol	100.	72.4	72.4	76.7	76.7	ug/L	6	30	50-105
Caprolactam	50.0	3.75	7.50*	5.61	11.2	ug/L	40*	30	10-86
4-Chloro-3-Methylphenol	100.	79.0	79.0	89.9	89.9	ug/L	13	30	45-110
2-Methylnaphthalene	50.0	35.8	71.6	38.8	77.6	ug/L	8	30	45-105
2,4,5-Trichlorophenol	100.	78.7	78.7	88.7	88.7	ug/L	12	30	50-110
2-Nitroaniline	50.0	37.1	74.2	42.6	85.2	ug/L	14	30	50-115
Dimethyl Phthalate	50.0	39.2	78.4	43.6	87.2	ug/L	11	30	25-125
3-Nitroaniline	50.0	33.4	66.8	38.1	76.2	ug/L	13	30	20-125
4-Nitrophenol	100.	34.1	34.1	46.5	46.5	ug/L	31*	30	0-125
Dibenzofuran	50.0	43.4	86.8	48.0	96.0	ug/L	10	30	55-105
Diethylphthalate	50.0	47.1	94.2	51.2	102.	ug/L	8	30	40-120
4-Chlorophenyl-Phenylether	50.0	45.7	91.4	51.1	102.	ug/L	11	30	50-110
4-Bromophenyl-Phenylether	50.0	47.1	94.2	51.3	103.	ug/L	8	30	50-115
Carbazole	50.0	43.8	87.6	46.4	92.8	ug/L	6	30	50-115
Bis(2-Ethylhexyl)Phthalate	50.0	51.2	102.	54.3	109.	ug/L	6	30	40-125
Di-N-Octylphthalate	50.0	50.2	100.	53.1	106.	ug/L	6	30	35-135
Acenaphthylene	50.0	42.1	84.2	45.7	91.4	ug/L	8	30	50-105
Anthracene	50.0	48.2	96.4	52.1	104.	ug/L	8	30	55-110
Benzaldehyde	50.0	78.5	157.	91.9	184.	ug/L	16	30	10-189
Benzo(g,h,i)perylene	50.0	43.2	86.4	43.6	87.2	ug/L	1	30	40-125
Benzo(k)fluoranthene	50.0	51.9	104.	52.2	104.	ug/L	0	30	45-125
Chrysene	50.0	51.5	103.	54.5	109.	ug/L	6	30	55-110
Dibenzo(a,h)anthracene	50.0	37.2	74.4	39.2	78.4	ug/L	5	30	40-125
Fluoranthene	50.0	40.3	80.6	42.3	84.6	ug/L	5	30	55-115
Fluorene	50.0	46.6	93.2	51.8	104.	ug/L	10	30	50-110
Hexachlorocyclopentadiene	50.0	22.7	45.4	25.2	50.4	ug/L	10	30	23-70
Phenanthrene	50.0	48.4	96.8	51.6	103.	ug/L	6	30	50-115
Phenol	100.	27.6	27.6	36.8	36.8	ug/L	28	30	0-115
Pyrene	50.0	63.9	128.	68.3	137.*	ug/L	7	30	50-130
Isophorone	50.0	42.9	85.8	47.1	94.2	ug/L	9	30	50-110
2-Fluorophenol			41.7		50.4				20-110

Page 1 of

LCS ID: WG145380-2 **LCSD ID:** WG145380-3

Project: SDG: WE53-7

Report Date: 16-JUL-14 **LCS File ID:** U6241.D

Received Date: Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380 LCSD File ID: U6242.D Analysis Date: 01-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

Phenol-d6	26.8	35.8	10-115
Nitrobenzene-d5	70.9	75.3	40-110
2-Fluorobiphenyl	79.1	87.5	50-110
2,4,6-Tribromophenol	83.4	95.3	40-125
Terphenyl-d14	111.	122.	50-135

MS ID: WG145380-4 MSD ID: WG145380-5 Sample ID: SH4521-8

Client ID: FTA-MW-210-061814

Project: SDG: WE53-7

MS File ID: U6405.D

Received Date: Extract Date: 25-JUN-14

Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380 Report Date: 16-JUL-14 MSD File ID: U6406.D Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

	MS	MSD	Conc	Samp	MS	MSD	MS Rec	MSD Re	c	RPD	
Compound	Spike	Spike	Units	Conc	Conc	Conc	(%)	(%)	RPD (%)	Limit	Limits
Phenol	94.3	98.0	ug/L	U7.1	27.	25.	28.9	25.8	8	30	0-115
2-Methylphenol	94.3	98.0	ug/L	UMM7.1	U7.1	7.4	0*	0*	0	30	40-110
Isophorone	47.2	49.0	ug/L	U7.1	38.	34.	80.6	70.0	10	30	50-110
2-Nitrophenol	94.3	98.0	ug/L	U7.1	66.	62.	70.5	62.7	8	30	40-115
2,4-Dimethylphenol	94.3	98.0	ug/L	U7.1	56.	50.	59.7	51.2	11	30	30-110
4-Chloro-3-Methylphenol	94.3	98.0	ug/L	U7.1	80.	75.	85.1	76.3	7	30	45-110
2,4,5-Trichlorophenol	94.3	98.0	ug/L	U18	83.	81.	88.1	82.9	2	30	50-110
2-Chloronaphthalene	47.2	49.0	ug/L	UM7.1	24.	23.	51.7	47.3*	5	30	50-105
Dimethyl Phthalate	47.2	49.0	ug/L	U7.1	40.	40.	85.2	81.4	1	30	25-125
Diethylphthalate	47.2	49.0	ug/L	U7.1	47.	47.	98.8	95.1	0	30	40-120
N-Nitrosodiphenylamine	47.2	49.0	ug/L	U7.1	35.	37.	75.0	75.3	4	30	50-110
Carbazole	47.2	49.0	ug/L	U7.1	43.	43.	91.8	87.7	1	30	50-115
Di-N-Butylphthalate	47.2	49.0	ug/L	U7.1	47.	48.	99.8	97.9	2	30	55-115
Butylbenzylphthalate	47.2	49.0	ug/L	U7.1	43.	45.	90.7	92.4	6	30	45-115
Di-N-Octylphthalate	47.2	49.0	ug/L	U7.1	36.	39.	75.9	78.7	8	30	35-135
Acetophenone	47.2	49.0	ug/L	U7.1	34.	31.	72.7	63.2	10	30	49-102
Caprolactam	47.2	49.0	ug/L	ULM7.1	5.5	4.5	11.6	9.18*	20	30	10-86
Benzaldehyde	47.2	49.0	ug/L	U7.1	21.	12.	44.1	24.9	52*	30	10-189
2,3,4,6-Tetrachlorophenol	94.3	98.0	ug/L	U7.1	82.	83.	87.1	84.9	1	30	49-119
4-Bromophenyl-Phenylether	47.2	49.0	ug/L	U7.1	42.	44.	90.1	89.4	3	30	50-115
4-Chlorophenyl-Phenylether	47.2	49.0	ug/L	U7.1	44.	43.	92.4	88.3	1	30	50-110
4-Nitrophenol	94.3	98.0	ug/L	U18	41.	41.	43.0	41.9	1	30	0-125
Acenaphthene	47.2	49.0	ug/L	U7.1	39.	39.	82.9	79.2	1	30	45-110
Acenaphthylene	47.2	49.0	ug/L	U7.1	38.	36.	79.7	73.2	5	30	50-105
Anthracene	47.2	49.0	ug/L	U7.1	45.	46.	95.0	94.8	4	30	67-112
Fluorene	47.2	49.0	ug/L	U7.1	44.	44.	93.7	88.7	2	30	50-110
Fluoranthene	47.2	49.0	ug/L	U7.1	45.	45.	95.0	91.4	0	30	55-115
Benzo(g,h,i)perylene	47.2	49.0	ug/L	U7.1	51.	54.	109.	110.	5	30	40-125
Benzo(k)fluoranthene	47.2	49.0	ug/L	U7.1	42.	44.	89.7	89.8	4	30	45-125
Bis(2-Chloroethoxy)Methane	47.2	49.0	ug/L	U7.1	29.	26.	60.6	52.8	10	30	45-105
2-Fluorophenol							42.6	36.8			20-110
Phenol-D6							28.8	25.9			10-115
Nitrobenzene-d5							67.3	59.8			40-110

Page 1 of 2

MS ID: WG145380-4 MSD ID: WG145380-5 Sample ID: SH4521-8

Client ID: FTA-MW-210-061814

Project: SDG: WE53-7

MS File ID: U6405.D

2-Fluorobiphenyl 2,4,6-Tribromophenol

Terphenyl-d14

Received Date: Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380 Report Date: 16-JUL-14 MSD File ID: U6406.D Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

75.2	69.8	50-110
95.9	92.9	40-125
90.4	92.5	50-135

MS ID: WG145380-6 **MSD ID:** WG145380-7 **Sample ID:** SH4521-14

Client ID: FTA-SW-03-061914

Project: SDG: WE53-7

MS File ID: U6410.D

Received Date: Extract Date: 25-JUN-14

Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380 Report Date: 16-JUL-14 MSD File ID: U6411.D Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

	MS	MSD	Conc	Samp	MS	MSD	MS Rec	MSD Re	c	RPD	
Compound	Spike	Spike	Units	Conc	Conc	Conc	(%)	(%)	RPD (%)	Limit	Limits
Phenol	97.1	96.2	ug/L	U7.6	30.	21.	31.0	21.5	37*	30	0-115
2-Methylphenol	97.1	96.2	ug/L	UMM7.6	U7.3	7.2	0*	0*	0	30	40-110
Isophorone	48.5	48.1	ug/L	U7.6	41.	34.	83.8	70.3	18	30	50-110
2-Nitrophenol	97.1	96.2	ug/L	U7.6	73.	56.	74.9	58.1	26	30	40-115
2,4-Dimethylphenol	97.1	96.2	ug/L	U7.6	67.	49.	68.8	51.3	30	30	30-110
4-Chloro-3-Methylphenol	97.1	96.2	ug/L	U7.6	80.	59.	82.8	61.2	31*	30	45-110
2,4,5-Trichlorophenol	97.1	96.2	ug/L	U19	88.	69.	90.7	72.1	24	30	50-110
2-Chloronaphthalene	48.5	48.1	ug/L	UM7.6	27.	22.	54.8	46.0*	18	30	50-105
Dimethyl Phthalate	48.5	48.1	ug/L	U7.6	43.	29.	88.0	60.1	38*	30	25-125
Diethylphthalate	48.5	48.1	ug/L	U7.6	50.	41.	103.	86.1	19	30	40-120
N-Nitrosodiphenylamine	48.5	48.1	ug/L	U7.6	38.	34.	78.9	69.9	13	30	50-110
Carbazole	48.5	48.1	ug/L	U7.6	45.	42.	92.3	86.5	7	30	50-115
Di-N-Butylphthalate	48.5	48.1	ug/L	U7.6	50.	44.	102.	90.5	13	30	55-115
Butylbenzylphthalate	48.5	48.1	ug/L	U7.6	47.	42.	96.4	87.4	11	30	45-115
Di-N-Octylphthalate	48.5	48.1	ug/L	U7.6	40.	32.	82.0	67.0	21	30	35-135
Acetophenone	48.5	48.1	ug/L	U7.6	38.	32.	78.3	66.8	17	30	49-102
Caprolactam	48.5	48.1	ug/L	UL7.6	5.7	7.3	11.7	15.2	25	30	10-86
Benzaldehyde	48.5	48.1	ug/L	U7.6	24.	22.	49.2	45.8	8	30	10-189
2,3,4,6-Tetrachlorophenol	97.1	96.2	ug/L	U7.6	91.	71.	93.4	74.2	24	30	49-119
4-Bromophenyl-Phenylether	48.5	48.1	ug/L	U7.6	45.	38.	92.1	79.9	15	30	50-115
4-Chlorophenyl-Phenylether	48.5	48.1	ug/L	U7.6	47.	39.	97.0	80.3	20	30	50-110
4-Nitrophenol	97.1	96.2	ug/L	U19	44.	31.	45.1	32.0	35*	30	0-125
Acenaphthene	48.5	48.1	ug/L	U7.6	44.	38.	89.8	78.2	15	30	45-110
Acenaphthylene	48.5	48.1	ug/L	U7.6	40.	34.	82.8	71.1	16	30	50-105
Anthracene	48.5	48.1	ug/L	U7.6	46.	40.	93.7	82.8	13	30	67-112
Fluorene	48.5	48.1	ug/L	U7.6	48.	41.	98.0	85.3	15	30	50-110
Fluoranthene	48.5	48.1	ug/L	U7.6	46.	39.	95.6	80.9	18	30	55-115
Benzo(g,h,i)perylene	48.5	48.1	ug/L	U7.6	54.	42.	112.	86.7	26	30	40-125
Benzo(k)fluoranthene	48.5	48.1	ug/L	U7.6	47.	39.	97.4	82.0	18	30	45-125
Bis(2-Chloroethoxy)Methane	48.5	48.1	ug/L	U7.6	31.	25.	63.8	52.0	21	30	45-105
2-Fluorophenol							45.0	28.7			20-110
Phenol-D6							31.4	21.9			10-115
Nitrobenzene-d5							75.0	63.7			40-110
Ì											

Page 1 of 2

MS ID: WG145380-6 MSD ID: WG145380-7 Sample ID: SH4521-14

Client ID: FTA-SW-03-061914

Project: SDG: WE53-7

MS File ID: U6410.D

2-Fluorobiphenyl 2,4,6-Tribromophenol

Terphenyl-d14

Received Date: Extract Date: 25-JUN-14 Extracted By: AM

Extraction Method: SW846 3510 Lab Prep Batch: WG145380 Report Date: 16-JUL-14 MSD File ID: U6411.D Analysis Date: 12-JUL-14

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: AQ % Solids: NA

82.1	59.1	50-110
102.	84.1	40-125
89 1	54 5	50-135

Method Blank Summary

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Lab Sample ID : WG145277-1Lab File ID : U6210.DDate Extracted : 23-JUN-14

Instrument ID : GCMS-U

Matrix : AQ

Date Analyzed : 30-JUN-14

Time Analyzed : 17:44

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG145277-2	U6219.D	07/01/14	00:14
Laboratory Control S	WG145277-3	U6220.D	07/01/14	00:57
FTA-MW-10-061714	SH4401-4	U6288.D	07/04/14	02:16
FTA-MW-9-061714	SH4401-2	U6384.D	07/11/14	13:07
FTA-MW-11-061714	SH4401-6	U6385.D	07/11/14	13:49
FTA-MW-12-061714	SH4401-8	U6386.D	07/11/14	14:32
FTA-MW-5-061814	SH4401-10	U6387.D	07/11/14	15:15
FTA-MW-203-061814	SH4401-12	U6388.D	07/11/14	15:58
FTA-GW-DUP01-061814	SH4401-14	U6389.D	07/11/14	16:41
FTA-MW-218-061814	SH4401-16	U6390.D	07/11/14	17:24
FTA-MW-206-061814	SH4401-18	U6391.D	07/11/14	18:07
FTA-MW-14-061714	SH4401-20	U6392.D	07/11/14	18:49

Method Blank Summary

Lab Name: Katahdin Analytical ServicesSDG: WE53-7Project: NCTAMSLANT Cutler CTO WE53Lab Sample ID: WG145380-1Lab File ID: U6209.DDate Extracted: 25-JUN-14Instrument ID: GCMS-UDate Analyzed: 30-JUN-14

Matrix: AQ Time Analyzed: 17:00

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG145380-2	U6241.D	07/01/14	20:50
Laboratory Control S	WG145380-3	U6242.D	07/01/14	21:33
FTA-MW-208-061814	SH4521-2	U6393.D	07/11/14	19:32
FTA-MW-1-061814	SH4521-4	U6394.D	07/11/14	20:15
FTA-GW-DUP02-061814	SH4521-6	U6395.D	07/11/14	20:57
FTA-SW-01-061914	SH4521-10	U6396.D	07/11/14	21:40
FTA-MW-210-061814	SH4521-8	U6404.D	07/12/14	11:49
Matrix Spike	WG145380-4	U6405.D	07/12/14	12:32
Matrix Spike Duplica	WG145380-5	U6406.D	07/12/14	13:15
FTA-SW-02-061914	SH4521-12	U6408.D	07/12/14	14:40
FTA-SW-03-061914	SH4521-14	U6409.D	07/12/14	15:22
Matrix Spike	WG145380-6	U6410.D	07/12/14	16:05
Matrix Spike Duplica	WG145380-7	U6411.D	07/12/14	16:47
FTA-SW-06-061914	SH4521-16	U6412.D	07/12/14	17:30
FTA-SW-07-061914	SH4521-18	U6413.D	07/12/14	18:13
FTA-SW-08-061914	SH4521-20	U6414.D	07/12/14	18:55
FTA-SW-DUP01-061914	SH4521-22	U6415.D	07/12/14	19:38
FTA-SD-RB01-062014	SH4521-24	U6421.D	07/14/14	12:27
FTA-MW-9-061714	SH4401-2RE	U6422.D	07/14/14	13:10
FTA-MW-11-061714	SH4401-6RE	U6423.D	07/14/14	13:54
FTA-MW-12-061714	SH4401-8RE	U6424.D	07/14/14	14:37

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 30-JUN-14Lab File ID : UD163.DTime Analyzed : 09:48

Lab File ID : UD163.D Instrument ID : GCMS-U

m/e

% Relative Abundance

51	30.0 - 60.0% of mass 198	31.7	
68	Less than 2.0% of mass 69	0.4	1.08
69	Less than 100.0% of mass 198	38.3	
70	Less than 2.0% of mass 69	0.0	0.0
127	40.0 - 60.0% of mass 198	44.6	
197	Less than 1.0% of mass 198	0.2	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	6.7	
275	10.0 - 30.0% of mass 198	19.9	
365	1.0 - 100.0% of mass 198	2.3	
441	0.0 - 100.0% of mass 443	10.0	84.75
442	40.0 - 100.0% of mass 198	62.4	
443	17.0 - 23.0% of mass 442	11.9	18.98

¹⁻Value is % mass 69

Ion Abundance Criteria

3-Value is % mass 442

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Initial Calibration	WG145667-4	U6200.D	06/30/14	10:09
Initial Calibration	WG145667-2	U6201.D	06/30/14	10:56
Initial Calibration	WG145667-3	U6202.D	06/30/14	11:40
Initial Calibration	WG145667-5	U6203.D	06/30/14	12:23
Initial Calibration	WG145667-6	U6204.D	06/30/14	13:06
Initial Calibration	WG145667-7	U6205.D	06/30/14	13:49
Independent Source	WG145667-8	U6206 D	06/30/14	14.32

²⁻Value is % mass 443

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 30-JUN-14

Lab File ID : UD164.D **Time Analyzed :** 15:13

Instrument ID: GCMS-U

m/e	Ion Abundance Criteria	% Rel	
51	30.0 - 60.0% of mass 198	31.8	
68	Less than 2.0% of mass 69	0.4	1.02
69	Less than 100.0% of mass 198	37.8	
70	Less than 2.0% of mass 69	0.0	0.0
127	40.0 - 60.0% of mass 198	44.5	
197	Less than 1.0% of mass 198	0.0	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	6.9	
275	10.0 - 30.0% of mass 198	21.5	
365	1.0 - 100.0% of mass 198	2.3	
441	0.0 - 100.0% of mass 443	13.1	84.54
442	40.0 - 100.0% of mass 198	80.7	
443	17.0 - 23.0% of mass 442	15.4	19.12

¹⁻Value is % mass 69

3-Value is % mass 442

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG145703-2	U6207.D	06/30/14	15:33
Method Blank Sample	WG145380-1	U6209.D	06/30/14	17:00
Method Blank Sample	WG145277-1	U6210.D	06/30/14	17:44
Laboratory Control S	WG145277-2	U6219.D	07/01/14	00:14
Laboratory Control S	WG145277-3	U6220.D	07/01/14	00:57

²⁻Value is % mass 443

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 01-JUL-14

Lab File ID: UD165.D Time Analyzed: 13:13

Instrument ID: GCMS-U

m/e	Ion Abundance Criteria	% Rel	
51	30.0 - 60.0% of mass 198	30.5	
68	Less than 2.0% of mass 69	0.5	1.22
69	Less than 100.0% of mass 198	37.2	
70	Less than 2.0% of mass 69	0.0	0.0^{-1}
127	40.0 - 60.0% of mass 198	44.0	
197	Less than 1.0% of mass 198	0.0	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	6.6	
275	10.0 - 30.0% of mass 198	20.0	
365	1.0 - 100.0% of mass 198	2.2	
441	0.0 - 100.0% of mass 443	11.9	85.31 2
442	40.0 - 100.0% of mass 198	72.4	
443	17.0 - 23.0% of mass 442	13.9	19.25^{3}

¹⁻Value is % mass 69

3-Value is % mass 442

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG145731-2	U6231.D	07/01/14	13:32
Laboratory Control S	WG145380-2	U6241.D	07/01/14	20:50
Laboratory Control S	WG145380-3	U6242.D	07/01/14	21:33

²⁻Value is % mass 443

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 03-JUL-14

Lab File ID : UD167.D **Time Analyzed :** 10:12

Instrument ID: GCMS-U

m/e	Ion Abundance Criteria	% Rel	
51	30.0 - 60.0% of mass 198	46.7	
68	Less than 2.0% of mass 69	0.4	0.88
69	Less than 100.0% of mass 198	45.7	
70	Less than 2.0% of mass 69	0.0	0.0
127	40.0 - 60.0% of mass 198	49.2	
197	Less than 1.0% of mass 198	0.0	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	6.1	
275	10.0 - 30.0% of mass 198	22.3	
365	1.0 - 100.0% of mass 198	2.8	
441	0.0 - 100.0% of mass 443	10.8	86.35
442	40.0 - 100.0% of mass 198	66.3	
443	17.0 - 23.0% of mass 442	12.5	18.82

¹⁻Value is % mass 69

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Initial Calibration	WG145897-4	U6267.D	07/03/14	10:31
Initial Calibration	WG145897-2	U6268.D	07/03/14	11:17
Initial Calibration	WG145897-3	U6269.D	07/03/14	12:01
Initial Calibration	WG145897-5	U6270.D	07/03/14	12:46
Initial Calibration	WG145897-6	U6271.D	07/03/14	13:30
Initial Calibration	WG145897-7	U6272.D	07/03/14	14:15
Independent Source	WG145897-8	U6273.D	07/03/14	14:59

²⁻Value is % mass 443

³⁻Value is % mass 442

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 03-JUL-14

Lab File ID : UD168.D **Time Analyzed :** 15:42

Instrument ID: GCMS-U

m/e	Ion Abundance Criteria	% Rel	
51	30.0 - 60.0% of mass 198	48.8	
68	Less than 2.0% of mass 69	0.3	0.74
69	Less than 100.0% of mass 198	46.1	
70	Less than 2.0% of mass 69	0.0	0.0
127	40.0 - 60.0% of mass 198	50.4	
197	Less than 1.0% of mass 198	0.3	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	6.5	
275	10.0 - 30.0% of mass 198	22.6	
365	1.0 - 100.0% of mass 198	3.2	
441	0.0 - 100.0% of mass 443	12.6	81.31
442	40.0 - 100.0% of mass 198	81.7	
443	17.0 - 23.0% of mass 442	15.5	19.00

¹⁻Value is % mass 69

3-Value is % mass 442

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed Time Analyzed			
Continuing Calibrati	WG145924-2	U6274.D	07/03/14	16:01		
FTA-MW-10-061714	SH4401-4	U6288.D	07/04/14	02:16		

²⁻Value is % mass 443

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 11-JUL-14

Lab File ID: UD173.D Time Analyzed: 10:21

Instrument ID: GCMS-U

m/e	Ion Abundance Criteria	% Rel	
51	30.0 - 60.0% of mass 198	43.2	
68	Less than 2.0% of mass 69	0.3	0.71
69	Less than 100.0% of mass 198	40.8	
70	Less than 2.0% of mass 69	0.0	0.0
127	40.0 - 60.0% of mass 198	46.9	
197	Less than 1.0% of mass 198	0.0	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	6.9	
275	10.0 - 30.0% of mass 198	23.0	
365	1.0 - 100.0% of mass 198	2.5	
441	0.0 - 100.0% of mass 443	14.3	87.34
442	40.0 - 100.0% of mass 198	86.3	
443	17.0 - 23.0% of mass 442	16.3	18.92

¹⁻Value is % mass 69

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG146330-2	U6381.D	07/11/14	10:40
FTA-MW-9-061714	SH4401-2	U6384.D	07/11/14	13:07
FTA-MW-11-061714	SH4401-6	U6385.D	07/11/14	13:49
FTA-MW-12-061714	SH4401-8	U6386.D	07/11/14	14:32
FTA-MW-5-061814	SH4401-10	U6387.D	07/11/14	15:15
FTA-MW-203-061814	SH4401-12	U6388.D	07/11/14	15:58
FTA-GW-DUP01-061814	SH4401-14	U6389.D	07/11/14	16:41
FTA-MW-218-061814	SH4401-16	U6390.D	07/11/14	17:24
FTA-MW-206-061814	SH4401-18	U6391.D	07/11/14	18:07
FTA-MW-14-061714	SH4401-20	U6392.D	07/11/14	18:49
FTA-MW-208-061814	SH4521-2	U6393.D	07/11/14	19:32
FTA-MW-1-061814	SH4521-4	U6394.D	07/11/14	20:15
FTA-GW-DUP02-061814	SH4521-6	U6395.D	07/11/14	20:57
FTA-SW-01-061914	SH4521-10	U6396.D	07/11/14	21:40

²⁻Value is % mass 443

³⁻Value is % mass 442

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 12-JUL-14

Lab File ID: UD174.D Time Analyzed: 07:57

Instrument ID: GCMS-U

m/e	Ion Abundance Criteria	% Rel	
51	30.0 - 60.0% of mass 198	47.6	
68	Less than 2.0% of mass 69	0.6	1.33
69	Less than 100.0% of mass 198	46.0	
70	Less than 2.0% of mass 69	0.0	0.0
127	40.0 - 60.0% of mass 198	50.9	
197	Less than 1.0% of mass 198	0.0	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	7.0	
275	10.0 - 30.0% of mass 198	23.2	
365	1.0 - 100.0% of mass 198	2.3	
441	0.0 - 100.0% of mass 443	11.8	85.17
442	40.0 - 100.0% of mass 198	74.5	
443	17.0 - 23.0% of mass 442	13.9	18.63

¹⁻Value is % mass 69

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG146400-2	U6399.D	07/12/14	08:16
FTA-MW-210-061814	SH4521-8	U6404.D	07/12/14	11:49
Matrix Spike	WG145380-4	U6405.D	07/12/14	12:32
Matrix Spike Duplica	WG145380-5	U6406.D	07/12/14	13:15
FTA-SW-02-061914	SH4521-12	U6408.D	07/12/14	14:40
FTA-SW-03-061914	SH4521-14	U6409.D	07/12/14	15:22
Matrix Spike	WG145380-6	U6410.D	07/12/14	16:05
Matrix Spike Duplica	WG145380-7	U6411.D	07/12/14	16:47
FTA-SW-06-061914	SH4521-16	U6412.D	07/12/14	17:30
FTA-SW-07-061914	SH4521-18	U6413.D	07/12/14	18:13
FTA-SW-08-061914	SH4521-20	U6414.D	07/12/14	18:55
FTA-SW-DUP01-061914	SH4521-22	U6415 D	07/12/14	19.38

²⁻Value is % mass 443

³⁻Value is % mass 442

Lab Name : Katahdin Analytical ServicesSDG : WE53-7Project : NCTAMSLANT Cutler CTO WE53Date Analyzed : 14-JUL-14

Lab File ID: UD175.D Time Analyzed: 09:14

Instrument ID: GCMS-U

m/e	Ion Abundance Criteria	% Rel	
51	30.0 - 60.0% of mass 198	44.4	
68	Less than 2.0% of mass 69	0.6	1.54
69	Less than 100.0% of mass 198	40.2	
70	Less than 2.0% of mass 69	0.0	0.0
127	40.0 - 60.0% of mass 198	48.1	
197	Less than 1.0% of mass 198	0.0	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	6.5	
275	10.0 - 30.0% of mass 198	24.2	
365	1.0 - 100.0% of mass 198	2.6	
441	0.0 - 100.0% of mass 443	14.7	91.77 2
442	40.0 - 100.0% of mass 198	84.8	
443	17.0 - 23.0% of mass 442	16.0	18.86 ³

¹⁻Value is % mass 69

3-Value is % mass 442

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG146446-2	U6417.D	07/14/14	09:35
FTA-SD-RB01-062014	SH4521-24	U6421.D	07/14/14	12:27
FTA-MW-9-061714	SH4401-2RE	U6422.D	07/14/14	13:10
FTA-MW-11-061714	SH4401-6RE	U6423.D	07/14/14	13:54
FTA-MW-12-061714	SH4401-8RE	U6424.D	07/14/14	14:37

²⁻Value is % mass 443

Lab Name: Katahdin Analytical Services SDG: WE53-7

Project: NCTAMSLANT Cutter CTO WE53

Instrument ID: GCMS L

Project : NCTAMSLANT Cutler CTO WE53 **Instrument ID:** GCMS-U **Lab File IDs :** U6201.D U6202.D U6200.D **Column ID:**

U6203.D U6204.D U6205.D **Calibration Date(s):** 30-JUN-14 10:09

30-JUN-14 13:49

	10.0000	25.0000	50.0000	75.0000	100.0000	125.0000	New	b	m1	m2	%RSD	Max	
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					%RSD	
Benzaldehyde	0.15539	0.15033	0.13878	0.13702	0.12523	0.11577	AVG		0.13709		10.85949	15.00000	О
Phenol	1.53256	1.51327	1.48366	1.44497	1.38141	1.40132	AVG		1.45953		4.16835	30.00000	О
2-Methylphenol	1.13878	1.10274	1.10607	1.11745	1.10143	1.10681	AVG		1.11221		1.27538	15.00000	О
Acetophenone	0.41056	0.40198	0.39656	0.38428	0.37763	0.37532	AVG		0.39105		3.62381	15.00000	О
Isophorone	0.62793	0.61119	0.61074	0.59912	0.58069	0.59092	AVG		0.60343		2.77897	15.00000	О
2-Nitrophenol	0.17547	0.16933	0.17181	0.16965	0.16494	0.16042	AVG		0.16860		3.13301	30.00000	О
2,4-Dimethylphenol	0.31950	0.31174	0.31094	0.29694	0.28730	0.28032	AVG		0.30112		5.11905	15.00000	О
Bis(2-Chloroethoxy)methane	0.39499	0.46905	0.44647	0.41460	0.40704	0.39389	AVG		0.42101		7.20846	15.00000	О
Caprolactam	0.08851	0.08412	0.08864	0.08357	0.08279	0.08530	AVG		0.08549		2.95827	15.00000	О
4-Chloro-3-Methylphenol	0.26579	0.25939	0.26265	0.24091	0.23562	0.21875	AVG		0.24718		7.49501	30.00000	О
2,4,5-Trichlorophenol	0.36331	0.37055	0.37973	0.36674	0.35051	0.35485	AVG		0.36428		2.91497	15.00000	О
2-Chloronaphthalene	1.46726	1.41883	1.38009	1.39614	1.31911	1.31452	AVG		1.38266		4.25876	15.00000	О
Dimethyl Phthalate	1.21458	1.17779	1.13809	1.06373	1.00892	0.98147	AVG		1.09743		8.57244	15.00000	О
Acenaphthylene	1.66472	1.57187	1.50356	1.42650	1.30580	1.25046	AVG		1.45382		10.87127	15.00000	О
Acenaphthene	0.98358	0.95666	0.92076	0.88807	0.81375	0.80874	AVG		0.89526		8.11675	30.00000	О
4-Nitrophenol	0.17181	0.15974	0.20805	0.17110	0.16884	0.16669	AVG		0.17437		9.78352	15.00000	О
2,3,4,6-Tetrachlorophenol	0.28140	0.28340	0.29055	0.25546	0.25342	0.25710	AVG		0.27022		6.15726	15.00000	О
Diethylphthalate	1.20662	1.16331	1.13811	1.01095	0.93494	0.90593	AVG		1.05998		11.93742	15.00000	О
Fluorene	1.17282	1.16497	1.10694	1.03885	0.96716	0.92742	AVG		1.06303		9.64297	15.00000	О
4-Chlorophenyl-phenylether	0.54401	0.53196	0.52673	0.49628	0.47239	0.45928	AVG		0.50511		6.82963	15.00000	О
N-Nitrosodiphenylamine	0.62645	0.61453	0.57492	0.60060	0.57853	0.57992	AVG		0.59582		3.59977	30.00000	О
4-Bromophenyl-phenylether	0.21796	0.20069	0.20188	0.20762	0.20477	0.19859	AVG		0.20525		3.40386	15.00000	О
Anthracene	0.99663	0.93752	0.87853	0.86823	0.81217	0.79010	AVG		0.88053		8.75762	15.00000	О
Carbazole	0.85013	0.76920	0.81809	0.74036	0.71313	0.73528	AVG		0.77103		6.87405	15.00000	О
Di-n-butylphthalate	1.27631	1.19654	1.13294	0.97884	0.94521	0.94732	AVG		1.07953		13.16079	15.00000	О
Fluoranthene	0.97247	0.90298	0.94097	0.79838	0.76626	0.75781	AVG		0.85648		10.95328	30.00000	О
Butylbenzylphthalate	0.64005	0.61943	0.58218	0.54003	0.55237	0.54475	AVG		0.57980		7.22311	15.00000	О
Di-n-octylphthalate	1.81649	1.63565	1.87804	1.46516	1.56816	1.63607	AVG		1.66660		9.26963	30.00000	О
Benzo(k)fluoranthene	1.07911	1.05329	1.05729	1.01039	0.99992	0.99125	AVG		1.03188		3.48594	15.00000	О
Benzo(g,h,i)perylene	0.59167	0.63743	0.60132	0.61755	0.60861	0.57745	AVG		0.60567		3.43961	15.00000	О
2-Fluorophenol	1.16319	1.14746	1.13691	1.16943	1.14792	1.08439	AVG		1.14155		2.65997	15.00000	
Phenol-D6	1.44286	1.42322	1.36045	1.41276	1.38785	1.36397	AVG		1.39852		2.37934	15.00000	
Nitrobenzene-D5	0.32848	0.31798	0.32307	0.31976	0.31002	0.31029	AVG		0.31827		2.27125	15.00000	
2-Fluorobiphenyl	1.15271	1.13800	1.08257	1.07884	1.02434	0.97890	AVG		1.07589		6.14802	15.00000	
2,4,6-Tribromophenol	0.17894	0.17643	0.18135	0.16194	0.15856	0.15750	AVG		0.16912		6.46192	15.00000	
Terphenyl-D14	0.92555	0.92317	0.81272	0.81855	0.83666	0.83233	AVG		0.85816		6.06195	15.00000	

Lab Name : Katahdin Analytical ServicesSDG: WE53-7Project : NCTAMSLANT Cutler CTO WE53Instrument ID: GCMS-U

Lab File IDs: U6201.D U6202.D U6200.D **Column ID:**

U6203.D U6204.D U6205.D **Calibration Date(s):** 30-JUN-14 10:09

30-JUN-14 13:49

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					Max	
	10.0000	25.0000	50.0000	75.0000	100.0000	125.0000	New	b	m1	m2	%RSD	%RSD	
Benzaldehyde	0.15539	0.15033	0.13878	0.13702	0.12523	0.11577	AVG		0.13709		10.85949	15.00000	О
Phenol	1.53256	1.51327	1.48366	1.44497	1.38141	1.40132	AVG		1.45953		4.16835	30.00000	О
Isophorone	0.62793	0.61119	0.61074	0.59912	0.58069	0.59092	AVG		0.60343		2.77897	15.00000	О
2-Nitrophenol	0.17547	0.16933	0.17181	0.16965	0.16494	0.16042	AVG		0.16860		3.13301	30.00000	О
2,4-Dimethylphenol	0.31950	0.31174	0.31094	0.29694	0.28730	0.28032	AVG		0.30112		5.11905	15.00000	О
Bis(2-Chloroethoxy)methane	0.39499	0.46905	0.44647	0.41460	0.40704	0.39389	AVG		0.42101		7.20846	15.00000	О
2,4-Dichlorophenol	0.27979	0.28113	0.26901	0.25744	0.24497	0.23476	AVG		0.26118		7.22517	30.00000	О
Caprolactam	0.08851	0.08412	0.08864	0.08357	0.08279	0.08530	AVG		0.08549		2.95827	15.00000	О
4-Chloro-3-Methylphenol	0.26579	0.25939	0.26265	0.24091	0.23562	0.21875	AVG		0.24718		7.49501	30.00000	О
2-Methylnaphthalene	0.62849	0.60119	0.57901	0.54511	0.51852	0.51328	AVG		0.56427		8.22345	15.00000	О
Hexachlorocyclopentadiene	0.36163	0.36238	0.35004	0.33780	0.31007	0.29263	AVG		0.33576		8.53466	15.00000	О
2,4,5-Trichlorophenol	0.36331	0.37055	0.37973	0.36674	0.35051	0.35485	AVG		0.36428		2.91497	15.00000	О
2-Nitroaniline	0.30819	0.30995	0.31914	0.30468	0.30127	0.29634	AVG		0.30660		2.56096	15.00000	О
Dimethyl Phthalate	1.21458	1.17779	1.13809	1.06373	1.00892	0.98147	AVG		1.09743		8.57244	15.00000	О
Acenaphthylene	1.66472	1.57187	1.50356	1.42650	1.30580	1.25046	AVG		1.45382		10.87127	15.00000	О
3-Nitroaniline	0.23090	0.23052	0.26188	0.24720	0.25043	0.25824	AVG		0.24653		5.40877	15.00000	О
Dibenzofuran	1.41525	1.37018	1.36127	1.28988	1.22655	1.18222	AVG		1.30756		6.92456	15.00000	О
4-Nitrophenol	0.17181	0.15974	0.20805	0.17110	0.16884	0.16669	AVG		0.17437		9.78352	15.00000	О
Diethylphthalate	1.20662	1.16331	1.13811	1.01095	0.93494	0.90593	AVG		1.05998		11.93742	15.00000	О
Fluorene	1.17282	1.16497	1.10694	1.03885	0.96716	0.92742	AVG		1.06303		9.64297	15.00000	О
4-Chlorophenyl-phenylether	0.54401	0.53196	0.52673	0.49628	0.47239	0.45928	AVG		0.50511		6.82963	15.00000	О
4-Bromophenyl-phenylether	0.21796	0.20069	0.20188	0.20762	0.20477	0.19859	AVG		0.20525		3.40386	15.00000	О
Phenanthrene	1.02214	0.96111	0.90874	0.89338	0.85009	0.84873	AVG		0.91403		7.37336	15.00000	О
Anthracene	0.99663	0.93752	0.87853	0.86823	0.81217	0.79010	AVG		0.88053		8.75762	15.00000	О
Carbazole	0.85013	0.76920	0.81809	0.74036	0.71313	0.73528	AVG		0.77103		6.87405	15.00000	О
Fluoranthene	0.97247	0.90298	0.94097	0.79838	0.76626	0.75781	AVG		0.85648		10.95328	30.00000	О
Pyrene	1.44894	1.41961	1.23999	1.26648	1.31003	1.28531	AVG		1.32839		6.44884	15.00000	О
Chrysene	0.93088	0.87886	0.80859	0.83179	0.77773	0.77181	AVG		0.83327		7.41351	15.00000	О
bis(2-Ethylhexyl)phthalate	0.89093	0.85422	0.81018	0.73208	0.74820	0.74303	AVG		0.79644		8.28681	15.00000	О
Di-n-octylphthalate	1.81649	1.63565	1.87804	1.46516	1.56816	1.63607	AVG		1.66660		9.26963	30.00000	О
Benzo(k)fluoranthene	1.07911	1.05329	1.05729	1.01039	0.99992	0.99125	AVG		1.03188		3.48594	15.00000	О
Dibenzo(a,h)anthracene	0.52651	0.56700	0.56453	0.59444	0.58453	0.57740	AVG		0.56907		4.14995	15.00000	О
Benzo(g,h,i)perylene	0.59167	0.63743	0.60132	0.61755	0.60861	0.57745	AVG		0.60567		3.43961	15.00000	О
2-Fluorophenol	1.16319	1.14746	1.13691	1.16943	1.14792	1.08439	AVG		1.14155		2.65997	15.00000	
Phenol-D6	1.44286	1.42322	1.36045	1.41276	1.38785	1.36397	AVG		1.39852		2.37934	15.00000	П
Nitrobenzene-D5	0.32848	0.31798	0.32307	0.31976	0.31002	0.31029	AVG		0.31827		2.27125	15.00000	П
2-Fluorobiphenyl	1.15271	1.13800	1.08257	1.07884	1.02434	0.97890	AVG		1.07589		6.14802	15.00000	

Lab Name: Katahdin Analytical Services SDG: WE53-7

U6203.D U6204.D U6205.D Calibration Date(s): 30-JUN-14 10:09

30-JUN-14 13:49

2,4,6-Tribromophenol	0.17894	0.17643	0.18135	0.16194	0.15856	0.15750	AVG	0.16912	6.46192	15.00000	
Terphenyl-D14	0.92555	0.92317	0.81272	0.81855	0.83666	0.83233	AVG	0.85816	6.06195	15.00000	

Legend: O = Kept Original Curve

Y = Failed Minimum RF W = Failed %RSD Value

Lab Name : Katahdin Analytical ServicesSDG: WE53-7Project : NCTAMSLANT Cutler CTO WE53Instrument ID: GCMS-U

Lab File IDs: U6268.D U6269.D U6267.D Column ID:

U6270.D U6271.D U6272.D **Calibration Date(s):** 03-JUL-14 10:31

03-JUL-14 14:15

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					Max	
	10.0000	25.0000	50.0000	75.0000	100.0000	125.0000	New	b	m1	m2	%RSD	%RSD	
Benzaldehyde	0.85085	0.79250	0.80641	0.56791	0.49926	0.46216	AVG		0.66318		26.01349	15.00000	W
Phenol	1.54595	1.57600	1.69519	1.43415	1.40580	1.48201	AVG		1.52318		6.96637	30.00000	О
2-Methylphenol	1.15917	1.17176	1.31001	1.17775	1.15838	1.23139	AVG		1.20141		4.96169	15.00000	О
Acetophenone	0.44859	0.45039	0.48295	0.40450	0.39856	0.42119	AVG		0.43436		7.40080	15.00000	О
Isophorone	0.63373	0.63081	0.68631	0.59852	0.59049	0.62561	AVG		0.62758		5.39026	15.00000	О
2-Nitrophenol	0.17320	0.18125	0.19283	0.16954	0.16534	0.16847	AVG		0.17510		5.85696	30.00000	О
2,4-Dimethylphenol	0.33826	0.34194	0.36884	0.31579	0.31012	0.31614	AVG		0.33185		6.72256	15.00000	О
Bis(2-Chloroethoxy)methane	0.40160	0.46353	0.49053	0.41670	0.41138	0.41524	AVG		0.43316		8.17969	15.00000	О
Caprolactam	0.07888	0.08501	0.09643	0.08622	0.08193	0.09182	AVG		0.08672		7.43573	15.00000	О
4-Chloro-3-Methylphenol	0.27608	0.27749	0.31032	0.26330	0.24263	0.25414	AVG		0.27066		8.68439	30.00000	О
2,4,5-Trichlorophenol	0.36481	0.38753	0.42818	0.36295	0.35219	0.35620	AVG		0.37531		7.63678	15.00000	О
2-Chloronaphthalene	1.58279	1.61612	1.63616	1.38784	1.29999	1.25346	AVG		1.46273		11.59822	15.00000	О
Dimethyl Phthalate	1.24624	1.22912	1.30438	1.06915	1.01472	1.01301	AVG		1.14610		11.23275	15.00000	О
Acenaphthylene	1.84781	1.88837	1.90762	1.56121	1.49773	1.44551	AVG		1.69138		12.54013	15.00000	О
Acenaphthene	1.10162	1.13423	1.17711	0.98774	0.93262	0.87963	AVG		1.03549		11.53503	30.00000	О
4-Nitrophenol	0.21406	0.23254	0.24969	0.20600	0.21118	0.20032	AVG		0.21897		8.49147	15.00000	О
2,3,4,6-Tetrachlorophenol	0.29899	0.31675	0.33542	0.27783	0.26489	0.27206	AVG		0.29433		9.42486	15.00000	О
Diethylphthalate	1.34195	1.33772	1.41534	1.15045	1.08512	1.05125	AVG		1.23031		12.47367	15.00000	О
Fluorene	1.19522	1.18078	1.25986	1.03631	0.98591	0.96385	AVG		1.10365		11.22048	15.00000	О
4-Chlorophenyl-phenylether	0.55749	0.55672	0.59159	0.48980	0.46890	0.47212	AVG		0.52277		9.99425	15.00000	О
N-Nitrosodiphenylamine	0.55100	0.55061	0.59091	0.50841	0.50602	0.52883	AVG		0.53930		5.92172	30.00000	О
4-Bromophenyl-phenylether	0.20340	0.19212	0.20973	0.18672	0.18306	0.18517	AVG		0.19337		5.60573	15.00000	О
Anthracene	1.05657	0.98410	1.02318	0.84487	0.84566	0.81094	AVG		0.92755		11.42268	15.00000	О
Carbazole	0.82547	0.81157	0.80257	0.70131	0.72260	0.70585	AVG		0.76156		7.54744	15.00000	О
Di-n-butylphthalate	1.40002	1.25429	1.25169	1.04052	1.05549	1.05715	AVG		1.17653		12.55197	15.00000	О
Fluoranthene	1.04609	0.95480	0.90557	0.77341	0.79144	0.75487	AVG		0.87103		13.40958	30.00000	О
Butylbenzylphthalate	0.72605	0.67805	0.65332	0.62684	0.63584	0.70405	AVG		0.67069		5.83995	15.00000	О
Di-n-octylphthalate	2.13471	1.84301	1.92060	2.00945	2.00120	2.49856	AVG		2.06792		11.23875	30.00000	О
Benzo(k)fluoranthene	1.21791	1.12119	1.03689	1.03952	1.03256	1.07409	AVG		1.08703		6.65953	15.00000	О
Benzo(g,h,i)perylene	0.52534	0.65602	0.57670	0.52307	0.51118	0.43973	AVG		0.53867		13.43366	15.00000	О
2-Fluorophenol	1.25458	1.26775	1.37365	1.18384	1.18840	1.22458	AVG		1.24880		5.59789	15.00000	
Phenol-D6	1.37940	1.37925	1.50192	1.33070	1.35434	1.38003	AVG		1.38761		4.27645	15.00000	
Nitrobenzene-D5	0.34353	0.34295	0.37342	0.32131	0.31824	0.32813	AVG		0.33793		6.02969	15.00000	
2-Fluorobiphenyl	1.21215	1.21681	1.24997	1.04409	1.02925	0.99629	AVG		1.12476		10.05275	15.00000	
2,4,6-Tribromophenol	0.21118	0.21054	0.22451	0.18747	0.17270	0.17847	AVG		0.19748		10.53619	15.00000	
Terphenyl-D14	0.99031	0.93090	0.93673	0.90787	0.89943	1.08491	AVG		0.95836		7.27138	15.00000	

Lab Name : Katahdin Analytical ServicesSDG: WE53-7Project : NCTAMSLANT Cutler CTO WE53Instrument ID: GCMS-U

Lab File IDs: U6268.D U6269.D U6267.D Column ID:

U6270.D U6271.D U6272.D **Calibration Date(s):** 03-JUL-14 10:31

03-JUL-14 14:15

Legend: O = Kept Original Curve

Y = Failed Minimum RF

W = Failed %RSD Value

Lab Name : Katahdin Analytical ServicesSDG: WE53-7Project : NCTAMSLANT Cutler CTO WE53Instrument ID: GCMS-U

Lab File IDs: U6268.D U6269.D U6267.D **Column ID**:

U6270.D U6271.D U6272.D **Calibration Date(s):** 03-JUL-14 10:31

03-JUL-14 14:15

	10.0000	25.0000	50.0000	75.0000	100.0000	125.0000	New	b	m1	m2	%RSD	Max	
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					%RSD	
Benzaldehyde	0.85085	0.79250	0.80641	0.56791	0.49926	0.46216	AVG		0.66318		26.01349	15.00000	W
Phenol	1.54595	1.57600	1.69519	1.43415	1.40580	1.48201	AVG		1.52318		6.96637	30.00000	О
Isophorone	0.63373	0.63081	0.68631	0.59852	0.59049	0.62561	AVG		0.62758		5.39026	15.00000	О
2-Nitrophenol	0.17320	0.18125	0.19283	0.16954	0.16534	0.16847	AVG		0.17510		5.85696	30.00000	О
2,4-Dimethylphenol	0.33826	0.34194	0.36884	0.31579	0.31012	0.31614	AVG		0.33185		6.72256	15.00000	О
Bis(2-Chloroethoxy)methane	0.40160	0.46353	0.49053	0.41670	0.41138	0.41524	AVG		0.43316		8.17969	15.00000	О
2,4-Dichlorophenol	0.24077	0.25766	0.27063	0.22844	0.21916	0.22035	AVG		0.23950		8.76475	30.00000	О
Caprolactam	0.07888	0.08501	0.09643	0.08622	0.08193	0.09182	AVG		0.08672		7.43573	15.00000	О
4-Chloro-3-Methylphenol	0.27608	0.27749	0.31032	0.26330	0.24263	0.25414	AVG		0.27066		8.68439	30.00000	О
2-Methylnaphthalene	0.61128	0.60635	0.65469	0.54257	0.52970	0.53660	AVG		0.58020		8.81057	15.00000	О
Hexachlorocyclopentadiene	0.39528	0.42028	0.44017	0.34668	0.33700	0.29888	AVG		0.37305		14.54719	15.00000	О
2,4,5-Trichlorophenol	0.36481	0.38753	0.42818	0.36295	0.35219	0.35620	AVG		0.37531		7.63678	15.00000	О
2-Nitroaniline	0.40693	0.43638	0.48375	0.40718	0.40080	0.41247	AVG		0.42459		7.42322	15.00000	О
Dimethyl Phthalate	1.24624	1.22912	1.30438	1.06915	1.01472	1.01301	AVG		1.14610		11.23275	15.00000	О
Acenaphthylene	1.84781	1.88837	1.90762	1.56121	1.49773	1.44551	AVG		1.69138		12.54013	15.00000	О
3-Nitroaniline	0.29303	0.31699	0.35267	0.30599	0.29611	0.31358	AVG		0.31306		6.88535	15.00000	О
Dibenzofuran	1.43816	1.50524	1.55813	1.28499	1.24079	1.23152	AVG		1.37647		10.33442	15.00000	О
4-Nitrophenol	0.21406	0.23254	0.24969	0.20600	0.21118	0.20032	AVG		0.21897		8.49147	15.00000	О
Diethylphthalate	1.34195	1.33772	1.41534	1.15045	1.08512	1.05125	AVG		1.23031		12.47367	15.00000	О
Fluorene	1.19522	1.18078	1.25986	1.03631	0.98591	0.96385	AVG		1.10365		11.22048	15.00000	О
4-Chlorophenyl-phenylether	0.55749	0.55672	0.59159	0.48980	0.46890	0.47212	AVG		0.52277		9.99425	15.00000	О
4-Bromophenyl-phenylether	0.20340	0.19212	0.20973	0.18672	0.18306	0.18517	AVG		0.19337		5.60573	15.00000	О
Phenanthrene	1.07365	1.00832	1.04339	0.90467	0.87388	0.89720	AVG		0.96685		8.81820	15.00000	О
Anthracene	1.05657	0.98410	1.02318	0.84487	0.84566	0.81094	AVG		0.92755		11.42268	15.00000	О
Carbazole	0.82547	0.81157	0.80257	0.70131	0.72260	0.70585	AVG		0.76156		7.54744	15.00000	О
Fluoranthene	1.04609	0.95480	0.90557	0.77341	0.79144	0.75487	AVG		0.87103		13.40958	30.00000	О
Pyrene	1.49571	1.42405	1.46102	1.39879	1.36305	1.63046	AVG		1.46218		6.46962	15.00000	О
Chrysene	0.91838	0.91532	0.85565	0.82608	0.78468	0.83020	AVG		0.85505		6.19986	15.00000	О
bis(2-Ethylhexyl)phthalate	0.94891	0.91154	0.88531	0.86422	0.85682	0.94697	AVG		0.90229		4.44999	15.00000	О
Di-n-octylphthalate	2.13471	1.84301	1.92060	2.00945	2.00120	2.49856	AVG		2.06792		11.23875	30.00000	О
Benzo(k)fluoranthene	1.21791	1.12119	1.03689	1.03952	1.03256	1.07409	AVG		1.08703		6.65953	15.00000	О
Dibenzo(a,h)anthracene	0.44781	0.58138	0.52060	0.51946	0.50685	0.47548	AVG		0.50860		8.94764	15.00000	О
Benzo(g,h,i)perylene	0.52534	0.65602	0.57670	0.52307	0.51118	0.43973	AVG		0.53867		13.43366	15.00000	О
2-Fluorophenol	1.25458	1.26775	1.37365	1.18384	1.18840	1.22458	AVG		1.24880		5.59789	15.00000	
Phenol-D6	1.37940	1.37925	1.50192	1.33070	1.35434	1.38003	AVG		1.38761		4.27645	15.00000	
Nitrobenzene-D5	0.34353	0.34295	0.37342	0.32131	0.31824	0.32813	AVG		0.33793		6.02969	15.00000	
2-Fluorobiphenyl	1.21215	1.21681	1.24997	1.04409	1.02925	0.99629	AVG		1.12476		10.05275	15.00000	

Lab Name: Katahdin Analytical Services SDG: WE53-7

Project: NCTAMSLANT Cuttor CTO WE53

Project : NCTAMSLANT Cutler CTO WE53 **Instrument ID:** GCMS-U **Lab File IDs :** U6268.D U6269.D U6267.D **Column ID:**

U6270.D U6271.D U6272.D **Calibration Date(s):** 03-JUL-14 10:31

03-JUL-14 14:15

2,4,6-Tribromophenol	0.21118	0.21054	0.22451	0.18747	0.17270	0.17847	AVG	0.19748	10.53619	15.00000	
Terphenyl-D14	0.99031	0.93090	0.93673	0.90787	0.89943	1.08491	AVG	0.95836	7.27138	15.00000	

Legend: O = Kept Original Curve

Y = Failed Minimum RF W = Failed %RSD Value

Lab Name: Katahdin Analytical Services

Project :NCTAMSLANT Cutler CTO WE53
Lab ID :WG145703-2
Lab File ID :U6207.D
SDG: WE53-7
Analytical Date: 06/30/14 15:33
Instrument ID: GCMS-U

Initial Calibration Date(s): 06/30/14 10:09 06/30/14 13:49 **Column ID:**

Initial Calibration Date	(s): 06/30/14 10:09	06/30/14 1.	3:49	Column	ID.			
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type	
11 Benzaldehyde	0.13709	0.15574	0.15574	0.010	13.60479	20.00000	Averaged	
15 Phenol	1.45953	1.55946	1.55946	0.010	6.84651	20.01000	Averaged	
23 2-Methylphenol	1.11221	1.11965	1.11965	0.010	0.66851	20.00000	Averaged	
27 Acetophenone	0.39105	0.39360	0.39360	0.010	0.65079	20.00000	Averaged	
36 Isophorone	0.60343	0.60905	0.60905	0.010	0.93045	20.00000	Averaged	
37 2-Nitrophenol	0.16860	0.16976	0.16976	0.010	0.68516	20.01000	Averaged	
38 2,4-Dimethylphenol	0.30112	0.30198	0.30198	0.010	0.28542	20.00000	Averaged	
40 Bis(2-Chloroethoxy)methane	0.42101	0.44820	0.44820	0.010	6.45920	20.00000	Averaged	
52 Caprolactam	0.08549	0.08543	0.08543	0.010	-0.06566	20.00000	Averaged	
54 4-Chloro-3-Methylphenol	0.24718	0.25937	0.25937	0.010	4.92908	20.01000	Averaged	
62 2,4,5-Trichlorophenol	0.36428	0.37654	0.37654	0.010	3.36516	20.00000	Averaged	
65 2-Chloronaphthalene	1.38266	1.38018	1.38018	0.010	-0.17914	20.00000	Averaged	
73 Dimethyl Phthalate	1.09743	1.14459	1.14459	0.010	4.29794	20.00000	Averaged	
75 Acenaphthylene	1.45382	1.50787	1.50787	0.010	3.71771	20.00000	Averaged	
79 Acenaphthene	0.89526	0.90581	0.90581	0.010	1.17830	20.01000	Averaged	
83 4-Nitrophenol	0.17437	0.16645	0.16645	0.050	-4.54133	20.00000	Averaged	
87 2,3,4,6-Tetrachlorophenol	0.27022	0.26798	0.26798	0.010	-0.83066	20.00000	Averaged	
89 Diethylphthalate	1.05998	1.08733	1.08733	0.010	2.58106	20.00000	Averaged	
90 Fluorene	1.06303	1.08317	1.08317	0.010	1.89447	20.00000	Averaged	
91 4-Chlorophenyl-phenylether	0.50511	0.51441	0.51441	0.010	1.84211	20.00000	Averaged	
96 N-Nitrosodiphenylamine	0.59582	0.60034	0.60034	0.010	0.75765	20.01000	Averaged	
105 4-Bromophenyl-phenylether	0.20525	0.21348	0.21348	0.010	4.01046	20.00000	Averaged	
116 Anthracene	0.88053	0.88990	0.88990	0.010	1.06433	20.00000	Averaged	
119 Carbazole	0.77103	0.76675	0.76675	0.010	-0.55542	20.00000	Averaged	
121 Di-n-butylphthalate	1.07953	1.09094	1.09094	0.010	1.05719	20.00000	Averaged	
126 Fluoranthene	0.85648	0.85013	0.85013	0.010	-0.74117	20.01000	Averaged	
135 Butylbenzylphthalate	0.57980	0.57872	0.57872	0.010	-0.18703	20.00000	Averaged	
144 Di-n-octylphthalate	1.66660	1.50987	1.50987	0.010	-9.40392	20.01000	Averaged	
147 Benzo(k)fluoranthene	1.03188	0.99347	0.99347	0.010	-3.72174	20.00000	Averaged	
155 Benzo(g,h,i)perylene	0.60567	0.65666	0.65666	0.010	8.41826	20.00000	Averaged	
8 2-Fluorophenol	1.14155	1.18909	1.18909	0.010	4.16473	20.00000	Averaged	
13 Phenol-D6	1.39852	1.44957	1.44957	0.010	3.65022	20.00000	Averaged	
33 Nitrobenzene-D5	0.31827	0.31817	0.31817	0.010	-0.02906	20.00000	Averaged	
63 2-Fluorobiphenyl	1.07589	1.09694	1.09694	0.010	1.95577	20.00000	Averaged	
100 2,4,6-Tribromophenol	0.16912	0.17510	0.17510	0.010	3.53852	20.00000	Averaged	
129 Terphenyl-D14	0.85816	0.92854	0.92854	0.010	8.20107	20.00000	Averaged	

Column ID:

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

SDG: WE53-7 **Lab ID:** WG145703-2 **Analytical Date:** 06/30/14 15:33 Lab File ID: U6207.D **Instrument ID: GCMS-U**

Initial Calibration Date(s): 06/30/14 10:09 06/30/14 13:49

* = Compound out of QC criteria

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

Lab ID: WG145703-2

Lab File ID: U6207.D

SDG: WE53-7

Analytical Date: 06/30/14 15:33

Instrument ID: GCMS-U

Initial Calibration Date(s): 06/30/14 10:09 06/30/14 13:49 **Column ID:**

Initial Calibration Date(s): 06/30/14 10:09	06/30/14 13	3:49	Column	ш.		
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
11 Benzaldehyde	0.13709	0.15574	0.15574	0.010	13.60479	20.00000	Averaged
15 Phenol	1.45953	1.55946	1.55946	0.010	6.84651	20.01000	Averaged
36 Isophorone	0.60343	0.60905	0.60905	0.010	0.93045	20.00000	Averaged
37 2-Nitrophenol	0.16860	0.16976	0.16976	0.010	0.68516	20.01000	Averaged
38 2,4-Dimethylphenol	0.30112	0.30198	0.30198	0.010	0.28542	20.00000	Averaged
40 Bis(2-Chloroethoxy)methane	0.42101	0.44820	0.44820	0.010	6.45920	20.00000	Averaged
41 2,4-Dichlorophenol	0.26118	0.27149	0.27149	0.010	3.94831	20.01000	Averaged
52 Caprolactam	0.08549	0.08543	0.08543	0.010	-0.06566	20.00000	Averaged
54 4-Chloro-3-Methylphenol	0.24718	0.25937	0.25937	0.010	4.92908	20.01000	Averaged
56 2-Methylnaphthalene	0.56427	0.56576	0.56576	0.010	0.26511	20.00000	Averaged
60 Hexachlorocyclopentadiene	0.33576	0.34194	0.34194	0.050	1.84119	20.00000	Averaged
62 2,4,5-Trichlorophenol	0.36428	0.37654	0.37654	0.010	3.36516	20.00000	Averaged
69 2-Nitroaniline	0.30660	0.31308	0.31308	0.010	2.11416	20.00000	Averaged
73 Dimethyl Phthalate	1.09743	1.14459	1.14459	0.010	4.29794	20.00000	Averaged
75 Acenaphthylene	1.45382	1.50787	1.50787	0.010	3.71771	20.00000	Averaged
77 3-Nitroaniline	0.24653	0.24498	0.24498	0.010	-0.62672	20.00000	Averaged
82 Dibenzofuran	1.30756	1.33503	1.33503	0.010	2.10109	20.00000	Averaged
83 4-Nitrophenol	0.17437	0.16645	0.16645	0.050	-4.54133	20.00000	Averaged
89 Diethylphthalate	1.05998	1.08733	1.08733	0.010	2.58106	20.00000	Averaged
90 Fluorene	1.06303	1.08317	1.08317	0.010	1.89447	20.00000	Averaged
91 4-Chlorophenyl-phenylether	0.50511	0.51441	0.51441	0.010	1.84211	20.00000	Averaged
105 4-Bromophenyl-phenylether	0.20525	0.21348	0.21348	0.010	4.01046	20.00000	Averaged
115 Phenanthrene	0.91403	0.90509	0.90509	0.010	-0.97870	20.00000	Averaged
116 Anthracene	0.88053	0.88990	0.88990	0.010	1.06433	20.00000	Averaged
119 Carbazole	0.77103	0.76675	0.76675	0.010	-0.55542	20.00000	Averaged
126 Fluoranthene	0.85648	0.85013	0.85013	0.010	-0.74117	20.01000	Averaged
128 Pyrene	1.32839	1.44728	1.44728	0.010	8.94974	20.00000	Averaged
142 Chrysene	0.83327	0.83434	0.83434	0.010	0.12798	20.00000	Averaged
143 bis(2-Ethylhexyl)phthalate	0.79644	0.78305	0.78305	0.010	-1.68087	20.00000	Averaged
144 Di-n-octylphthalate	1.66660	1.50987	1.50987	0.010	-9.40392	20.01000	Averaged
147 Benzo(k)fluoranthene	1.03188	0.99347	0.99347	0.010	-3.72174	20.00000	Averaged
154 Dibenzo(a,h)anthracene	0.56907	0.59083	0.59083	0.010	3.82291	20.00000	Averaged
155 Benzo(g,h,i)perylene	0.60567	0.65666	0.65666	0.010	8.41826	20.00000	Averaged
8 2-Fluorophenol	1.14155	1.18909	1.18909	0.010	4.16473	20.00000	Averaged
13 Phenol-D6	1.39852	1.44957	1.44957	0.010	3.65022	20.00000	Averaged
33 Nitrobenzene-D5	0.31827	0.31817	0.31817	0.010	-0.02906	20.00000	Averaged
63 2-Fluorobiphenyl	1.07589	1.09694	1.09694	0.010	1.95577	20.00000	Averaged
100 2,4,6-Tribromophenol	0.16912	0.17510	0.17510	0.010	3.53852	20.00000	Averaged
129 Terphenyl-D14	0.85816	0.92854	0.92854	0.010	8.20107	20.00000	Averaged

Lab Name: Katahdin Analytical Services

Project :NCTAMSLANT Cutler CTO WE53

SDG: WE53-7 **Lab ID:** WG145703-2 **Analytical Date:** 06/30/14 15:33 Lab File ID: U6207.D **Instrument ID: GCMS-U**

Initial Calibration Date(s): 06/30/14 10:09 06/30/14 13:49

Column ID:

^{* =} Compound out of QC criteria

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53 **SDG:** WE53-7 **Lab ID**:WG145731-2 **Analytical Date:** 07/01/14 13:32

Lab File ID: U6231.D **Instrument ID: GCMS-U**

			CCAL	Min	%D/	Max %D/	
Compound	RRF/Amount	RF50	RRF50	IVIIII	%Drift	%Drift	Curve Type
11 Benzaldehyde	0.13709	0.14731	0.14731	0.010	7.46012	20.00000	Averaged
15 Phenol	1.45953	1.66962	1.66962	0.010	14.39388	20.01000	Averaged
23 2-Methylphenol	1.11221	1.22010	1.22010	0.010	9.70027	20.00000	Averaged
27 Acetophenone	0.39105	0.43549	0.43549	0.010	11.36291	20.00000	Averaged
36 Isophorone	0.60343	0.67892	0.67892	0.010	12.50947	20.00000	Averaged
37 2-Nitrophenol	0.16860	0.18706	0.18706	0.010	10.94714	20.01000	Averaged
38 2,4-Dimethylphenol	0.30112	0.32656	0.32656	0.010	8.44764	20.00000	Averaged
40 Bis(2-Chloroethoxy)methane	0.42101	0.50522	0.50522	0.010	20.00318	20.00000	Averaged
52 Caprolactam	0.08549	0.09581	0.09581	0.010	12.06775	20.00000	Averaged
54 4-Chloro-3-Methylphenol	0.24718	0.28454	0.28454	0.010	15.11186	20.01000	Averaged
62 2,4,5-Trichlorophenol	0.36428	0.42237	0.42237	0.010	15.94626	20.00000	Averaged
65 2-Chloronaphthalene	1.38266	1.52531	1.52531	0.010	10.31732	20.00000	Averaged
73 Dimethyl Phthalate	1.09743	1.23280	1.23280	0.010	12.33575	20.00000	Averaged
75 Acenaphthylene	1.45382	1.68884	1.68884	0.010	16.16599	20.00000	Averaged
79 Acenaphthene	0.89526	1.03839	1.03839	0.010	15.98752	20.01000	Averaged
83 4-Nitrophenol	0.17437	0.17288	0.17288	0.050	-0.85471	20.00000	Averaged
87 2,3,4,6-Tetrachlorophenol	0.27022	0.28793	0.28793	0.010	6.55528	20.00000	Averaged
89 Diethylphthalate	1.05998	1.17950	1.17950	0.010	11.27593	20.00000	Averaged
90 Fluorene	1.06303	1.20407	1.20407	0.010	13.26855	20.00000	Averaged
91 4-Chlorophenyl-phenylether	0.50511	0.55596	0.55596	0.010	10.06774	20.00000	Averaged
96 N-Nitrosodiphenylamine	0.59582	0.68278	0.68278	0.010	14.59431	20.01000	Averaged
105 4-Bromophenyl-phenylether	0.20525	0.22997	0.22997	0.010	12.04289	20.00000	Averaged
16 Anthracene	0.88053	0.96016	0.96016	0.010	9.04395	20.00000	Averaged
119 Carbazole	0.77103	0.75285	0.75285	0.010	-2.35751	20.00000	Averaged
121 Di-n-butylphthalate	1.07953	1.05932	1.05932	0.010	-1.87166	20.00000	Averaged
126 Fluoranthene	0.85648	0.78159	0.78159	0.010	-8.74300	20.01000	Averaged
135 Butylbenzylphthalate	0.57980	0.65472	0.65472	0.010	12.92189	20.00000	Averaged
144 Di-n-octylphthalate	1.66660	1.94710	1.94710	0.010	16.83093	20.01000	Averaged
147 Benzo(k)fluoranthene	1.03188	1.13452	1.13452	0.010	9.94695	20.00000	Averaged
155 Benzo(g,h,i)perylene	0.60567	0.60554	0.60554	0.010	-0.02257	20.00000	Averaged
8 2-Fluorophenol	1.14155	1.29229	1.29229	0.010	13.20448	20.00000	Averaged
13 Phenol-D6	1.39852	1.53388	1.53388	0.010	9.67862	20.00000	Averaged
33 Nitrobenzene-D5	0.31827	0.34638	0.34638	0.010	8.83355	20.00000	Averaged
63 2-Fluorobiphenyl	1.07589	1.20810	1.20810	0.010	12.28842	20.00000	Averaged
100 2,4,6-Tribromophenol	0.16912	0.17418	0.17418	0.010	2.99110	20.00000	Averaged
129 Terphenyl-D14	0.85816	0.97354	0.97354	0.010	13.44500	20.00000	Averaged

Column ID:

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

SDG: WE53-7 **Lab ID**:WG145731-2 **Analytical Date:** 07/01/14 13:32 Lab File ID: U6231.D **Instrument ID: GCMS-U**

Initial Calibration Date(s): 06/30/14 10:09 06/30/14 13:49

* = Compound out of QC criteria

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53
Lab ID: WG145731-2
Analytical Date: 07/01/14 13:32
Lab File ID: U6231.D
Instrument ID: GCMS-U

Initial Calibration Date(s): 06/30/14 10:09 06/30/14 13:49 **Column ID:**

Initial Calibration Date	(s): 06/30/14 10:09	06/30/14 13	3:49	Column	ID:			
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type	
11 Benzaldehyde	0.13709	0.14731	0.14731	0.010	7.46012	20.00000	Averaged	
15 Phenol	1.45953	1.66962	1.66962	0.010	14.39388	20.01000	Averaged	
36 Isophorone	0.60343	0.67892	0.67892	0.010	12.50947	20.00000	Averaged	
37 2-Nitrophenol	0.16860	0.18706	0.18706	0.010	10.94714	20.01000	Averaged	
38 2,4-Dimethylphenol	0.30112	0.32656	0.32656	0.010	8.44764	20.00000	Averaged	
40 Bis(2-Chloroethoxy)methane	0.42101	0.50522	0.50522	0.010	20.00318	20.00000	Averaged	
41 2,4-Dichlorophenol	0.26118	0.29394	0.29394	0.010	12.54222	20.01000	Averaged	
52 Caprolactam	0.08549	0.09581	0.09581	0.010	12.06775	20.00000	Averaged	
54 4-Chloro-3-Methylphenol	0.24718	0.28454	0.28454	0.010	15.11186	20.01000	Averaged	
56 2-Methylnaphthalene	0.56427	0.62014	0.62014	0.010	9.90173	20.00000	Averaged	
60 Hexachlorocyclopentadiene	0.33576	0.36346	0.36346	0.050	8.24890	20.00000	Averaged	
62 2,4,5-Trichlorophenol	0.36428	0.42237	0.42237	0.010	15.94626	20.00000	Averaged	
69 2-Nitroaniline	0.30660	0.34215	0.34215	0.010	11.59816	20.00000	Averaged	
73 Dimethyl Phthalate	1.09743	1.23280	1.23280	0.010	12.33575	20.00000	Averaged	
75 Acenaphthylene	1.45382	1.68884	1.68884	0.010	16.16599	20.00000	Averaged	
77 3-Nitroaniline	0.24653	0.26168	0.26168	0.010	6.14774	20.00000	Averaged	
82 Dibenzofuran	1.30756	1.49842	1.49842	0.010	14.59687	20.00000	Averaged	
83 4-Nitrophenol	0.17437	0.17288	0.17288	0.050	-0.85471	20.00000	Averaged	
89 Diethylphthalate	1.05998	1.17950	1.17950	0.010	11.27593	20.00000	Averaged	
90 Fluorene	1.06303	1.20407	1.20407	0.010	13.26855	20.00000	Averaged	
91 4-Chlorophenyl-phenylether	0.50511	0.55596	0.55596	0.010	10.06774	20.00000	Averaged	
105 4-Bromophenyl-phenylether	0.20525	0.22997	0.22997	0.010	12.04289	20.00000	Averaged	
115 Phenanthrene	0.91403	0.98340	0.98340	0.010	7.58918	20.00000	Averaged	
116 Anthracene	0.88053	0.96016	0.96016	0.010	9.04395	20.00000	Averaged	
119 Carbazole	0.77103	0.75285	0.75285	0.010	-2.35751	20.00000	Averaged	
126 Fluoranthene	0.85648	0.78159	0.78159	0.010	-8.74300	20.01000	Averaged	
128 Pyrene	1.32839	1.58883	1.58883	0.010	19.60545	20.00000	Averaged	
142 Chrysene	0.83327	0.94435	0.94435	0.010	13.33021	20.00000	Averaged	
143 bis(2-Ethylhexyl)phthalate	0.79644	0.92563	0.92563	0.010	16.22138	20.00000	Averaged	
144 Di-n-octylphthalate	1.66660	1.94710	1.94710	0.010	16.83093	20.01000	Averaged	
147 Benzo(k)fluoranthene	1.03188	1.13452	1.13452	0.010	9.94695	20.00000	Averaged	
154 Dibenzo(a,h)anthracene	0.56907	0.54665	0.54665	0.010	-3.93897	20.00000	Averaged	
155 Benzo(g,h,i)perylene	0.60567	0.60554	0.60554	0.010	-0.02257	20.00000	Averaged	
8 2-Fluorophenol	1.14155	1.29229	1.29229	0.010	13.20448	20.00000	Averaged	
13 Phenol-D6	1.39852	1.53388	1.53388	0.010	9.67862	20.00000	Averaged	
33 Nitrobenzene-D5	0.31827	0.34638	0.34638	0.010	8.83355	20.00000	Averaged	
63 2-Fluorobiphenyl	1.07589	1.20810	1.20810	0.010	12.28842	20.00000	Averaged	
100 2,4,6-Tribromophenol	0.16912	0.17418	0.17418	0.010	2.99110	20.00000	Averaged	
129 Terphenyl-D14	0.85816	0.97354	0.97354	0.010	13.44500	20.00000	Averaged	

Column ID:

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

SDG: WE53-7 **Lab ID**: WG145731-2 **Analytical Date:** 07/01/14 13:32 Lab File ID: U6231.D **Instrument ID: GCMS-U**

Initial Calibration Date(s): 06/30/14 10:09 06/30/14 13:49

* = Compound out of QC criteria

Lab Name: Katahdin Analytical Services

Project : NCTAMSLANT Cutler CTO WE53
Lab ID : WG145924-2
Lab File ID : U6274.D
SDG: WE53-7
Analytical Date: 07/03/14 16:01
Instrument ID: GCMS-U

Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15 **Column ID:**

Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
11 Benzaldehyde	0.66318	0.74182	0.74182	0.010	11.85663	20.00000	Averaged
15 Phenol	1.52318	1.66786	1.66786	0.010	9.49821	20.01000	Averaged
23 2-Methylphenol	1.20141	1.29530	1.29530	0.010	7.81524	20.00000	Averaged
27 Acetophenone	0.43436	0.47206	0.47206	0.010	8.67733	20.00000	Averaged
36 Isophorone	0.62758	0.69278	0.69278	0.010	10.38922	20.00000	Averaged
37 2-Nitrophenol	0.17510	0.19186	0.19186	0.010	9.56944	20.01000	Averaged
38 2,4-Dimethylphenol	0.33185	0.35940	0.35940	0.010	8.30160	20.00000	Averaged
40 Bis(2-Chloroethoxy)methane	0.43316	0.49012	0.49012	0.010	13.14875	20.00000	Averaged
52 Caprolactam	0.08672	0.09064	0.09064	0.010	4.51844	20.00000	Averaged
54 4-Chloro-3-Methylphenol	0.27066	0.29640	0.29640	0.010	9.51148	20.01000	Averaged
62 2,4,5-Trichlorophenol	0.37531	0.42065	0.42065	0.010	12.08127	20.00000	Averaged
65 2-Chloronaphthalene	1.46273	1.66609	1.66609	0.010	13.90325	20.00000	Averaged
73 Dimethyl Phthalate	1.14610	1.30412	1.30412	0.010	13.78766	20.00000	Averaged
75 Acenaphthylene	1.69138	1.92458	1.92458	0.010	13.78795	20.00000	Averaged
79 Acenaphthene	1.03549	1.16615	1.16615	0.010	12.61731	20.01000	Averaged
83 4-Nitrophenol	0.21897	0.25792	0.25792	0.050	17.78753	20.00000	Averaged
87 2,3,4,6-Tetrachlorophenol	0.29433	0.32565	0.32565	0.010	10.64284	20.00000	Averaged
89 Diethylphthalate	1.23031	1.38223	1.38223	0.010	12.34814	20.00000	Averaged
90 Fluorene	1.10365	1.24309	1.24309	0.010	12.63367	20.00000	Averaged
91 4-Chlorophenyl-phenylether	0.52277	0.58456	0.58456	0.010	11.81989	20.00000	Averaged
96 N-Nitrosodiphenylamine	0.53930	0.58233	0.58233	0.010	7.97971	20.01000	Averaged
105 4-Bromophenyl-phenylether	0.19337	0.20840	0.20840	0.010	7.77576	20.00000	Averaged
116 Anthracene	0.92755	1.00823	1.00823	0.010	8.69824	20.00000	Averaged
119 Carbazole	0.76156	0.84011	0.84011	0.010	10.31452	20.00000	Averaged
121 Di-n-butylphthalate	1.17653	1.24919	1.24919	0.010	6.17603	20.00000	Averaged
126 Fluoranthene	0.87103	0.93211	0.93211	0.010	7.01266	20.01000	Averaged
135 Butylbenzylphthalate	0.67069	0.62561	0.62561	0.010	-6.72149	20.00000	Averaged
144 Di-n-octylphthalate	2.06792	1.71322	1.71322	0.010	-17.15238	20.01000	Averaged
147 Benzo(k)fluoranthene	1.08703	0.99555	0.99555	0.010	-8.41575	20.00000	Averaged
155 Benzo(g,h,i)perylene	0.53867	0.60661	0.60661	0.010	12.61224	20.00000	Averaged
8 2-Fluorophenol	1.24880	1.39427	1.39427	0.010	11.64847	20.00000	Averaged
13 Phenol-D6	1.38761	1.52154	1.52154	0.010	9.65243	20.00000	Averaged
33 Nitrobenzene-D5	0.33793	0.37012	0.37012	0.010	9.52455	20.00000	Averaged
63 2-Fluorobiphenyl	1.12476	1.30074	1.30074	0.010	15.64586	20.00000	Averaged
100 2,4,6-Tribromophenol	0.19748	0.22396	0.22396	0.010	13.40842	20.00000	Averaged
129 Terphenyl-D14	0.95836	0.89668	0.89668	0.010	-6.43605	20.00000	Averaged

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53
Lab ID: WG145924-2
Analytical Date: 07/03/14 16:01
Lab File ID: U6274.D
Instrument ID: GCMS-U

Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15 **Column ID:**

* = Compound out of QC criteria

Lab Name: Katahdin Analytical Services

Project :NCTAMSLANT Cutler CTO WE53
Lab ID :WG146330-2
Lab File ID :U6381.D
SDG: WE53-7
Analytical Date: 07/11/14 10:40
Instrument ID: GCMS-U

Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15 **Column ID:**

Initial Calibration Date	(s): 07/03/14 10:31	0//03/14 14	1 :15	Column	ш.			
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type	
11 Benzaldehyde	0.66318	0.13535	0.13535	0.010	-79.59047	20.00000	Averaged	
15 Phenol	1.52318	1.55627	1.55627	0.010	2.17251	20.01000	Averaged	
23 2-Methylphenol	1.20141	1.24740	1.24740	0.010	3.82816	20.00000	Averaged	
27 Acetophenone	0.43436	0.42953	0.42953	0.010	-1.11323	20.00000	Averaged	
36 Isophorone	0.62758	0.63868	0.63868	0.010	1.76808	20.00000	Averaged	
37 2-Nitrophenol	0.17510	0.17941	0.17941	0.010	2.45878	20.01000	Averaged	
38 2,4-Dimethylphenol	0.33185	0.33631	0.33631	0.010	1.34525	20.00000	Averaged	
40 Bis(2-Chloroethoxy)methane	0.43316	0.45722	0.45722	0.010	5.55353	20.00000	Averaged	
52 Caprolactam	0.08672	0.09965	0.09965	0.010	14.91911	20.00000	Averaged	
54 4-Chloro-3-Methylphenol	0.27066	0.29965	0.29965	0.010	10.70939	20.01000	Averaged	
62 2,4,5-Trichlorophenol	0.37531	0.39357	0.39357	0.010	4.86505	20.00000	Averaged	
65 2-Chloronaphthalene	1.46273	1.44675	1.44675	0.010	-1.09251	20.00000	Averaged	
73 Dimethyl Phthalate	1.14610	1.25055	1.25055	0.010	9.11301	20.00000	Averaged	
75 Acenaphthylene	1.69138	1.72803	1.72803	0.010	2.16698	20.00000	Averaged	
79 Acenaphthene	1.03549	1.06470	1.06470	0.010	2.82033	20.01000	Averaged	
83 4-Nitrophenol	0.21897	0.25743	0.25743	0.050	17.56746	20.00000	Averaged	
87 2,3,4,6-Tetrachlorophenol	0.29433	0.31844	0.31844	0.010	8.19489	20.00000	Averaged	
89 Diethylphthalate	1.23031	1.37881	1.37881	0.010	12.07073	20.00000	Averaged	
90 Fluorene	1.10365	1.16460	1.16460	0.010	5.52201	20.00000	Averaged	
91 4-Chlorophenyl-phenylether	0.52277	0.56466	0.56466	0.010	8.01262	20.00000	Averaged	
96 N-Nitrosodiphenylamine	0.53930	0.53297	0.53297	0.010	-1.17325	20.01000	Averaged	
105 4-Bromophenyl-phenylether	0.19337	0.18982	0.18982	0.010	-1.83413	20.00000	Averaged	
116 Anthracene	0.92755	0.92749	0.92749	0.010	-0.00711	20.00000	Averaged	
119 Carbazole	0.76156	0.78740	0.78740	0.010	3.39271	20.00000	Averaged	
121 Di-n-butylphthalate	1.17653	1.20849	1.20849	0.010	2.71697	20.00000	Averaged	
126 Fluoranthene	0.87103	0.87880	0.87880	0.010	0.89194	20.01000	Averaged	
135 Butylbenzylphthalate	0.67069	0.68099	0.68099	0.010	1.53622	20.00000	Averaged	
144 Di-n-octylphthalate	2.06792	2.01437	2.01437	0.010	-2.58973	20.01000	Averaged	
147 Benzo(k)fluoranthene	1.08703	1.07374	1.07374	0.010	-1.22207	20.00000	Averaged	
155 Benzo(g,h,i)perylene	0.53867	0.55883	0.55883	0.010	3.74196	20.00000	Averaged	
8 2-Fluorophenol	1.24880	1.24871	1.24871	0.010	-0.00708	20.00000	Averaged	
13 Phenol-D6	1.38761	1.43519	1.43519	0.010	3.42952	20.00000	Averaged	
33 Nitrobenzene-D5	0.33793	0.33427	0.33427	0.010	-1.08381	20.00000	Averaged	
63 2-Fluorobiphenyl	1.12476	1.10826	1.10826	0.010	-1.46707	20.00000	Averaged	
100 2,4,6-Tribromophenol	0.19748	0.23072	0.23072	0.010	16.83379	20.00000	Averaged	
129 Terphenyl-D14	0.95836	0.97829	0.97829	0.010	2.08022	20.00000	Averaged	

Column ID:

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

SDG: WE53-7 **Lab ID:** WG146330-2 **Analytical Date:** 07/11/14 10:40 Lab File ID: U6381.D **Instrument ID: GCMS-U**

Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15

* = Compound out of QC criteria

Lab Name: Katahdin Analytical Services

Project : NCTAMSLANT Cutler CTO WE53SDG: WE53-7Lab ID : WG146400-2Analytical Date: 07/12/14 08:16Lab File ID : U6399.DInstrument ID: GCMS-U

Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15 **Column ID:**

Illitiai Calibration Date	(8): 07/03/14 10:31	0 // 03/14 14	+:13	Column	ID.			
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type	
11 Benzaldehyde	0.66318	0.11889	0.11889	0.010	-82.07286	20.00000	Averaged	,
15 Phenol	1.52318	1.51601	1.51601	0.010	-0.47068	20.01000	Averaged	
23 2-Methylphenol	1.20141	1.24242	1.24242	0.010	3.41327	20.00000	Averaged	
27 Acetophenone	0.43436	0.43780	0.43780	0.010	0.79006	20.00000	Averaged	
36 Isophorone	0.62758	0.62809	0.62809	0.010	0.08107	20.00000	Averaged	
37 2-Nitrophenol	0.17510	0.17806	0.17806	0.010	1.68602	20.01000	Averaged	
38 2,4-Dimethylphenol	0.33185	0.34029	0.34029	0.010	2.54477	20.00000	Averaged	
40 Bis(2-Chloroethoxy)methane	0.43316	0.46089	0.46089	0.010	6.40065	20.00000	Averaged	
52 Caprolactam	0.08672	0.09236	0.09236	0.010	6.50524	20.00000	Averaged	
54 4-Chloro-3-Methylphenol	0.27066	0.28730	0.28730	0.010	6.14648	20.01000	Averaged	
62 2,4,5-Trichlorophenol	0.37531	0.39617	0.39617	0.010	5.55947	20.00000	Averaged	
65 2-Chloronaphthalene	1.46273	1.49163	1.49163	0.010	1.97596	20.00000	Averaged	
73 Dimethyl Phthalate	1.14610	1.24242	1.24242	0.010	8.40409	20.00000	Averaged	
75 Acenaphthylene	1.69138	1.78965	1.78965	0.010	5.81023	20.00000	Averaged	
79 Acenaphthene	1.03549	1.08634	1.08634	0.010	4.91054	20.01000	Averaged	
83 4-Nitrophenol	0.21897	0.26643	0.26643	0.050	21.67710	20.00000	Averaged	
87 2,3,4,6-Tetrachlorophenol	0.29433	0.32246	0.32246	0.010	9.56078	20.00000	Averaged	
89 Diethylphthalate	1.23031	1.37813	1.37813	0.010	12.01560	20.00000	Averaged	
90 Fluorene	1.10365	1.19815	1.19815	0.010	8.56227	20.00000	Averaged	
91 4-Chlorophenyl-phenylether	0.52277	0.56636	0.56636	0.010	8.33764	20.00000	Averaged	
96 N-Nitrosodiphenylamine	0.53930	0.53121	0.53121	0.010	-1.49934	20.01000	Averaged	
105 4-Bromophenyl-phenylether	0.19337	0.19362	0.19362	0.010	0.12846	20.00000	Averaged	
116 Anthracene	0.92755	0.94949	0.94949	0.010	2.36476	20.00000	Averaged	
119 Carbazole	0.76156	0.79429	0.79429	0.010	4.29767	20.00000	Averaged	
121 Di-n-butylphthalate	1.17653	1.26658	1.26658	0.010	7.65417	20.00000	Averaged	
126 Fluoranthene	0.87103	0.92250	0.92250	0.010	5.90961	20.01000	Averaged	
135 Butylbenzylphthalate	0.67069	0.72593	0.72593	0.010	8.23547	20.00000	Averaged	
144 Di-n-octylphthalate	2.06792	2.03584	2.03584	0.010	-1.55136	20.01000	Averaged	
147 Benzo(k)fluoranthene	1.08703	1.08801	1.08801	0.010	0.09062	20.00000	Averaged	
155 Benzo(g,h,i)perylene	0.53867	0.60293	0.60293	0.010	11.92854	20.00000	Averaged	
8 2-Fluorophenol	1.24880	1.26787	1.26787	0.010	1.52716	20.00000	Averaged	
13 Phenol-D6	1.38761	1.41362	1.41362	0.010	1.87495	20.00000	Averaged	
33 Nitrobenzene-D5	0.33793	0.33700	0.33700	0.010	-0.27686	20.00000	Averaged	
63 2-Fluorobiphenyl	1.12476	1.14572	1.14572	0.010	1.86322	20.00000	Averaged	
100 2,4,6-Tribromophenol	0.19748	0.23284	0.23284	0.010	17.90562	20.00000	Averaged	
		1.04522	1.04522	0.010	9.06361	20.00000	Averaged	

Column ID:

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

SDG: WE53-7 Lab ID: WG146400-2 **Analytical Date:** 07/12/14 08:16 Lab File ID: U6399.D **Instrument ID: GCMS-U**

Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15

* = Compound out of QC criteria

Lab Name: Katahdin Analytical Services

Project : NCTAMSLANT Cutler CTO WE53 **SDG:** WE53-7 **Lab ID :** WG146446-2 **Analytical Date:** 07/14/14 09:35

Lab File ID: U6417.D Instrument ID: GCMS-U Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15 Column ID:

11 Benzaldehyde15 Phenol23 2-Methylphenol27 Acetophenone	0.66318 1.52318	0.07551						
23 2-Methylphenol	1 52318		0.07551	0.010	-88.61351	20.00000	Averaged	*
	1.52510	1.51855	1.51855	0.010	-0.30414	20.01000	Averaged	
27 Acetophenone	1.20141	1.19016	1.19016	0.010	-0.93620	20.00000	Averaged	
	0.43436	0.42876	0.42876	0.010	-1.28996	20.00000	Averaged	
36 Isophorone	0.62758	0.61714	0.61714	0.010	-1.66453	20.00000	Averaged	
37 2-Nitrophenol	0.17510	0.17662	0.17662	0.010	0.86524	20.01000	Averaged	
38 2,4-Dimethylphenol	0.33185	0.33000	0.33000	0.010	-0.55645	20.00000	Averaged	
40 Bis(2-Chloroethoxy)methane	0.43316	0.44771	0.44771	0.010	3.35716	20.00000	Averaged	
52 Caprolactam	0.08672	0.08505	0.08505	0.010	-1.92820	20.00000	Averaged	
54 4-Chloro-3-Methylphenol	0.27066	0.26337	0.26337	0.010	-2.69334	20.01000	Averaged	
62 2,4,5-Trichlorophenol	0.37531	0.38288	0.38288	0.010	2.01808	20.00000	Averaged	
65 2-Chloronaphthalene	1.46273	1.53175	1.53175	0.010	4.71855	20.00000	Averaged	
73 Dimethyl Phthalate	1.14610	1.17570	1.17570	0.010	2.58221	20.00000	Averaged	
75 Acenaphthylene	1.69138	1.75501	1.75501	0.010	3.76210	20.00000	Averaged	
79 Acenaphthene	1.03549	1.06739	1.06739	0.010	3.07985	20.01000	Averaged	
83 4-Nitrophenol	0.21897	0.23240	0.23240	0.050	6.13471	20.00000	Averaged	
87 2,3,4,6-Tetrachlorophenol	0.29433	0.29428	0.29428	0.010	-0.01511	20.00000	Averaged	
89 Diethylphthalate	1.23031	1.24617	1.24617	0.010	1.28933	20.00000	Averaged	
90 Fluorene	1.10365	1.13896	1.13896	0.010	3.19875	20.00000	Averaged	
91 4-Chlorophenyl-phenylether	0.52277	0.53647	0.53647	0.010	2.62026	20.00000	Averaged	
96 N-Nitrosodiphenylamine	0.53930	0.55256	0.55256	0.010	2.45885	20.01000	Averaged	
105 4-Bromophenyl-phenylether	0.19337	0.19818	0.19818	0.010	2.48904	20.00000	Averaged	
116 Anthracene	0.92755	0.94680	0.94680	0.010	2.07507	20.00000	Averaged	
119 Carbazole	0.76156	0.79551	0.79551	0.010	4.45720	20.00000	Averaged	
121 Di-n-butylphthalate	1.17653	1.17194	1.17194	0.010	-0.38964	20.00000	Averaged	
126 Fluoranthene	0.87103	0.89450	0.89450	0.010	2.69505	20.01000	Averaged	
135 Butylbenzylphthalate	0.67069	0.63866	0.63866	0.010	-4.77535	20.00000	Averaged	
144 Di-n-octylphthalate	2.06792	1.79921	1.79921	0.010	-12.99406	20.01000	Averaged	
147 Benzo(k)fluoranthene	1.08703	1.03593	1.03593	0.010	-4.70075	20.00000	Averaged	
155 Benzo(g,h,i)perylene	0.53867	0.61067	0.61067	0.010	13.36551	20.00000	Averaged	
8 2-Fluorophenol	1.24880	1.25757	1.25757	0.010	0.70227	20.00000	Averaged	
13 Phenol-D6	1.38761	1.42431	1.42431	0.010	2.64502	20.00000	Averaged	
33 Nitrobenzene-D5	0.33793	0.33867	0.33867	0.010	0.21912	20.00000	Averaged	
63 2-Fluorobiphenyl	1.12476	1.18086	1.18086	0.010	4.98815	20.00000	Averaged	
100 2,4,6-Tribromophenol	0.19748	0.20568	0.20568	0.010	4.15236	20.00000	Averaged	
129 Terphenyl-D14	0.95836	0.85653	0.85653	0.010	-10.62571	20.00000	Averaged	

Column ID:

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

SDG: WE53-7 **Lab ID**:WG146446-2 **Analytical Date:** 07/14/14 09:35 Lab File ID: U6417.D **Instrument ID: GCMS-U**

Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15

* = Compound out of QC criteria

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

Lab ID: WG146446-2

Lab File ID: U6417.D

SDG: WE53-7

Analytical Date: 07/14/14 09:35

Instrument ID: GCMS-U

Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15 **Column ID:**

Initial Calibration Date((8): 0//03/14 10:31	0 // 0 3 / 14 12	t.13	Column			
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
11 Benzaldehyde	0.66318	0.07551	0.07551	0.010	-88.61351	20.00000	Averaged
15 Phenol	1.52318	1.51855	1.51855	0.010	-0.30414	20.01000	Averaged
36 Isophorone	0.62758	0.61714	0.61714	0.010	-1.66453	20.00000	Averaged
37 2-Nitrophenol	0.17510	0.17662	0.17662	0.010	0.86524	20.01000	Averaged
38 2,4-Dimethylphenol	0.33185	0.33000	0.33000	0.010	-0.55645	20.00000	Averaged
40 Bis(2-Chloroethoxy)methane	0.43316	0.44771	0.44771	0.010	3.35716	20.00000	Averaged
41 2,4-Dichlorophenol	0.23950	0.25078	0.25078	0.010	4.70954	20.01000	Averaged
52 Caprolactam	0.08672	0.08505	0.08505	0.010	-1.92820	20.00000	Averaged
54 4-Chloro-3-Methylphenol	0.27066	0.26337	0.26337	0.010	-2.69334	20.01000	Averaged
56 2-Methylnaphthalene	0.58020	0.58280	0.58280	0.010	0.44899	20.00000	Averaged
60 Hexachlorocyclopentadiene	0.37305	0.40851	0.40851	0.050	9.50587	20.00000	Averaged
62 2,4,5-Trichlorophenol	0.37531	0.38288	0.38288	0.010	2.01808	20.00000	Averaged
69 2-Nitroaniline	0.42459	0.37584	0.37584	0.010	-11.48158	20.00000	Averaged
73 Dimethyl Phthalate	1.14610	1.17570	1.17570	0.010	2.58221	20.00000	Averaged
75 Acenaphthylene	1.69138	1.75501	1.75501	0.010	3.76210	20.00000	Averaged
77 3-Nitroaniline	0.31306	0.30051	0.30051	0.010	-4.00922	20.00000	Averaged
82 Dibenzofuran	1.37647	1.42034	1.42034	0.010	3.18709	20.00000	Averaged
83 4-Nitrophenol	0.21897	0.23240	0.23240	0.050	6.13471	20.00000	Averaged
89 Diethylphthalate	1.23031	1.24617	1.24617	0.010	1.28933	20.00000	Averaged
90 Fluorene	1.10365	1.13896	1.13896	0.010	3.19875	20.00000	Averaged
91 4-Chlorophenyl-phenylether	0.52277	0.53647	0.53647	0.010	2.62026	20.00000	Averaged
105 4-Bromophenyl-phenylether	0.19337	0.19818	0.19818	0.010	2.48904	20.00000	Averaged
115 Phenanthrene	0.96685	0.96724	0.96724	0.010	0.04004	20.00000	Averaged
116 Anthracene	0.92755	0.94680	0.94680	0.010	2.07507	20.00000	Averaged
119 Carbazole	0.76156	0.79551	0.79551	0.010	4.45720	20.00000	Averaged
126 Fluoranthene	0.87103	0.89450	0.89450	0.010	2.69505	20.01000	Averaged
128 Pyrene	1.46218	1.29537	1.29537	0.010	-11.40836	20.00000	Averaged
142 Chrysene	0.85505	0.85031	0.85031	0.010	-0.55421	20.00000	Averaged
143 bis(2-Ethylhexyl)phthalate	0.90229	0.87396	0.87396	0.010	-3.14024	20.00000	Averaged
144 Di-n-octylphthalate	2.06792	1.79921	1.79921	0.010	-12.99406	20.01000	Averaged
47 Benzo(k)fluoranthene	1.08703	1.03593	1.03593	0.010	-4.70075	20.00000	Averaged
154 Dibenzo(a,h)anthracene	0.50860	0.56654	0.56654	0.010	11.39388	20.00000	Averaged
155 Benzo(g,h,i)perylene	0.53867	0.61067	0.61067	0.010	13.36551	20.00000	Averaged
8 2-Fluorophenol	1.24880	1.25757	1.25757	0.010	0.70227	20.00000	Averaged
13 Phenol-D6	1.38761	1.42431	1.42431	0.010	2.64502	20.00000	Averaged
33 Nitrobenzene-D5	0.33793	0.33867	0.33867	0.010	0.21912	20.00000	Averaged
63 2-Fluorobiphenyl	1.12476	1.18086	1.18086	0.010	4.98815	20.00000	
100 2,4,6-Tribromophenol	0.19748	0.20568	0.20568	0.010	4.98813	20.00000	Averaged Averaged
	0.17/40	0.20300	0.20368	0.010	-10.62571	20.00000	Averaged Averaged

SDG: WE53-7

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Lab ID :WG145667-4Analytical Date: 06/30/14 10:09Lab File ID :U6200.DInstrument ID: GCMS-U

		1,4-DICHLORO	DBENZENE-D4	NAPHTHA	ALENE-D8	ACENAPHT	THENE-D10
		Area #	RT #_	Area #	RT #	Area #	RT #
	Std.	309873	8.52	1219522	11.34	681765	15.45
	Upper Limit	619746	9.02	2439044	11.84	1363530	15.95
	Lower Limit	154936.5	8.02	609761	10.84	340882.5	14.95
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG145703-2	301382	8.52	1239829	11.34	670741	15.45
Method Blank Sample	WG145380-1	344822	8.52	1360447	11.34	739636	15.45
Method Blank Sample	WG145277-1	343614	8.52	1356901	11.34	736288	15.45
Laboratory Control S	WG145277-2	324416	8.52	1285503	11.34	719625	15.45
Laboratory Control S	WG145277-3	311581	8.53	1213676	11.34	681792	15.45
Continuing Calibrati	WG145731-2	306152	8.52	1220603	11.34	637429	15.45
Laboratory Control S	WG145380-2	330328	8.52	1303089	11.34	733977	15.44
Laboratory Control S	WG145380-3	330235	8.53	1322385	11.33	732480	15.44

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area RT Upper Limit = + 0.50 minutes of internal standard RT RT Lower Limit = - 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SDG: WE53-7

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Lab ID : WG145667-4Analytical Date: 06/30/14 10:09Lab File ID : U6200.DInstrument ID: GCMS-U

		PHENANTH	HRENE-D10	CHRYSE	ENE-D12	PERYLE	NE-D12
		Area #	RT #_	Area #	RT #	Area #	RT #_
	Std.	1087358	18.95	841991	25.23	586711	28.34
	Upper Limit	2174716	19.45	1683982	25.73	1173422	28.84
	Lower Limit	543679	18.45	420995.5	24.73	293355.5	27.84
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG145703-2	971674	18.95	571956	25.22	434718	28.35
Method Blank Sample	WG145380-1	1114673	18.94	954899	25.22	671643	28.34
Method Blank Sample	WG145277-1	1081544	18.94	817215	25.22	602385	28.34
Laboratory Control S	WG145277-2	1106512	18.95	706379	25.22	489438	28.34
Laboratory Control S	WG145277-3	1051690	18.95	630771	25.22	447048	28.35
Continuing Calibrati	WG145731-2	880888	18.95	434876	25.22	309276	28.33
Laboratory Control S	WG145380-2	1048497	18.94	420875 *	25.21	268197 *	28.33
Laboratory Control S	WG145380-3	1095087	18.94	430764	25.21	284863 *	28.34

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area RT Upper Limit = + 0.50 minutes of internal standard RT RT Lower Limit = - 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SDG: WE53-7

Lab Name: Katahdin Analytical Services Project: NCTAMSLANT Cutler CTO WI

Lab ID :WG145897-4 **Analytical Date:** 07/03/14 10:31 Lab File ID: U6267.D **Instrument ID:** GCMS-U

		1,4-DICHLOF	ROBENZENE-D4	NAPHTHALENE-D8	ACENAPHTHENE-D10
		Area	# RT #_	Area # RT #	Area # RT #
	Std .	233471	8.52	$\frac{-1100 - \pi}{933058} = 11.33$	$\frac{1100 + 101 + 101}{447104}$
	Upper Limit	466942	9.02	1866116 11.83	894208 15.94
	Lower Limit	116735.5	8.02	466529 10.83	223552 14.94
Client Sample ID	Lab Sample ID				
Continuing Calibrati	WG145924-2	248563	8.52	999733 11.33	453717 15.44
FTA-MW-10-061714	SH4401-4	294123	8.52	1181833 11.32	549390 15.43
Continuing Calibrati	WG146330-2	275576	8.50	1124091 11.31	575085 15.42
FTA-MW-9-061714	SH4401-2	244114	8.50	996221 11.31	483857 15.41
FTA-MW-11-061714	SH4401-6	262434	8.50	1045879 11.30	512500 15.41
FTA-MW-12-061714	SH4401-8	249050	8.50	1015110 11.30	492455 15.41
FTA-MW-5-061814	SH4401-10	246375	8.50	983719 11.31	495203 15.41
FTA-MW-203-061814	SH4401-12	254567	8.50	1017527 11.31	503036 15.41
FTA-GW-DUP01-0618	SH4401-14	249519	8.50	1024597 11.31	490478 15.41
FTA-MW-218-061814	SH4401-16	249543	8.50	987040 11.30	484894 15.41
FTA-MW-206-061814	SH4401-18	251797	8.50	1004021 11.31	496888 15.41
FTA-MW-14-061714	SH4401-20	236743	8.50	929248 11.30	468568 15.41
FTA-MW-208-061814	SH4521-2	239336	8.50	954048 11.31	471614 15.41
FTA-MW-1-061814	SH4521-4	249343	8.50	1001672 11.31	487232 15.41
FTA-GW-DUP02-0618	SH4521-6	229031	8.50	934465 11.30	455777 15.41
FTA-SW-01-061914	SH4521-10	219417	8.49	884102 11.30	440321 15.41
Continuing Calibrati	WG146400-2	246823	8.49	1000261 11.30	487805 15.41
FTA-MW-210-061814	SH4521-8	241625	8.49	962136 11.30	458089 15.41
Matrix Spike	WG145380-4	275304	8.50	1111593 11.30	559861 15.41
Matrix Spike Duplica	WG145380-5	258437	8.50	1038562 11.30	511085 15.41
FTA-SW-02-061914	SH4521-12	246975	8.49	941443 11.30	476753 15.41
FTA-SW-03-061914	SH4521-14	254215	8.49	1011928 11.30	491327 15.41
Matrix Spike	WG145380-6	257073	8.50	1046894 11.30	518523 15.41
Matrix Spike Duplica	WG145380-7	238467	8.49	970410 11.30	490853 15.41
FTA-SW-06-061914	SH4521-16	240236	8.49	954572 11.30	469847 15.41
FTA-SW-07-061914	SH4521-18	242872	8.49	972368 11.30	476340 15.41
FTA-SW-08-061914	SH4521-20	249341	8.49	1015245 11.30	496648 15.41
FTA-SW-DUP01-0619	SH4521-22	252736	8.49	1030617 11.30	493905 15.41

SDG: WE53-7

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Lab ID :WG145897-4Analytical Date: 07/03/14 10:31Lab File ID :U6267.DInstrument ID: GCMS-U

		PHENANTHI	RENE-D10	CHRYSE	ENE-D12	PERYLE	NE-D12
		Area #	RT #	Area #	RT #	Area #	RT #
	Std.	784946	18.94	500835	25.21	337999	28.33
	Upper Limit	1569892	19.44	1001670	25.71	675998	28.83
	Lower Limit	392473	18.44	250417.5	24.71	168999.5	27.83
		372173	10.11	230117.3	21.71	100777.3	27.03
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG145924-2	780749	18.94	545833	25.21	404369	28.34
FTA-MW-10-061714	SH4401-4	917684	18.92	558428	25.20	394420	28.33
Continuing Calibrati	WG146330-2	1062026	18.92	640786	25.19	427729	28.31
FTA-MW-9-061714	SH4401-2	842104	18.91	528005	25.18	382957	28.31
FTA-MW-11-061714	SH4401-6	889246	18.91	666664	25.18	489680	28.31
FTA-MW-12-061714	SH4401-8	836843	18.91	521570	25.18	358785	28.31
FTA-MW-5-061814	SH4401-10	826033	18.91	563155	25.18	401263	28.31
FTA-MW-203-061814	SH4401-12	870352	18.91	531929	25.18	374387	28.31
FTA-GW-DUP01-0618	SH4401-14	858052	18.91	559457	25.18	371811	28.31
FTA-MW-218-061814	SH4401-16	851397	18.91	602673	25.18	409404	28.31
FTA-MW-206-061814	SH4401-18	862739	18.91	594718	25.18	451383	28.31
FTA-MW-14-061714	SH4401-20	830966	18.91	489354	25.18	334992	28.31
FTA-MW-208-061814	SH4521-2	808007	18.91	531888	25.18	395364	28.31
FTA-MW-1-061814	SH4521-4	847707	18.91	489775	25.18	348958	28.31
FTA-GW-DUP02-0618	SH4521-6	806100	18.91	630122	25.18	463014	28.31
FTA-SW-01-061914	SH4521-10	764123	18.90	484735	25.17	339129	28.31
Continuing Calibrati	WG146400-2	907084	18.91	539419	25.19	378561	28.31
FTA-MW-210-061814	SH4521-8	847013	18.90	601304	25.17	396170	28.30
Matrix Spike	WG145380-4	1007827	18.91	627587	25.19	471383	28.31
Matrix Spike Duplica	WG145380-5	896797	18.91	521211	25.18	360791	28.30
FTA-SW-02-061914	SH4521-12	822294	18.90	615327	25.17	382763	28.30
FTA-SW-03-061914	SH4521-14	891388	18.90	640019	25.17	410911	28.30
Matrix Spike	WG145380-6	949437	18.91	554348	25.18	398898	28.31
Matrix Spike Duplica	WG145380-7	899384	18.91	461254	25.18	313047	28.30
FTA-SW-06-061914	SH4521-16	837863	18.90	460910	25.17	293936	28.30
FTA-SW-07-061914	SH4521-18	868439	18.90	498116	25.17	317555	28.30
FTA-SW-08-061914	SH4521-20	842143	18.90	464420	25.17	318780	28.30
FTA-SW-DUP01-0619	SH4521-22	936300	18.90	599201	25.17	369705	28.30

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Project: NCTAMSLANT Cutler CTO WI
Lab ID: WG145897-4
Lab File ID: U6267.D
SDG: WE53-7
Analytical Date: 07/03/14 10:31
Instrument ID: GCMS-U

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Project: NCTAMSLANT Cutler CTO WI
Lab ID: WG145897-4
Lab File ID: U6267.D
SDG: WE53-7
Analytical Date: 07/03/14 10:31
Instrument ID: GCMS-U

		1,4-DICHLORO	BENZENE-D4	NAPHTH	ALENE-D8	ACENAPHT	THENE-D10
		Area #	RT #	Area #	RT #	Area #	RT #
	Std.	233471	8.52	933058	11.33	447104	15.44
	Upper Limit	466942	9.02	1866116	11.83	894208	15.94
	Lower Limit	116735.5	8.02	466529	10.83	223552	14.94
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG146446-2	259048	8.49	1015838	11.30	463253	15.41
FTA-SD-RB01-062014	SH4521-24	222313	8.49	847881	11.30	378080	15.40
FTA-MW-9-061714	SH4401-2RE	266333	8.49	1058577	11.30	506672	15.40
FTA-MW-11-061714	SH4401-6RE	241177	8.49	986002	11.30	478275	15.41
FTA-MW-12-061714	SH4401-8RE	240328	8.49	962435	11.30	459649	15.41

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area RT Upper Limit = + 0.50 minutes of internal standard RT RT Lower Limit = - 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Lab Name: Katahdin Analytical Services
Project: NCTAMSLANT Cutler CTO WI

Project: NCTAMSLANT Cutler CTO WI
Lab ID: WG145897-4
Lab File ID: U6267.D
SDG: WE53-7
Analytical Date: 07/03/14 10:31
Instrument ID: GCMS-U

		PHENANTH	IRENE-D10	CHRY	SENE-D12	PERYLE	ENE-D12
		Area #	RT #	Area	# RT #	Area #	RT #
	Std.	784946	18.94	500835	25.21	337999	28.33
	Upper Limit	1569892	19.44	1001670	25.71	675998	28.83
	Lower Limit	392473	18.44	250417.5	24.71	168999.5	27.83
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG146446-2	770842	18.91	548653	25.18	426962	28.31
FTA-SD-RB01-062014	SH4521-24	534094	18.90	366954	25.17	306636	28.30
FTA-MW-9-061714	SH4401-2RE	803141	18.90	447040	25.17	334312	28.30
FTA-MW-11-061714	SH4401-6RE	805793	18.90	484294	25.17	375092	28.30
FTA-MW-12-061714	SH4401-8RE	779330	18.90	427718	25.17	318248	28.30

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area RT Upper Limit = + 0.50 minutes of internal standard RT RT Lower Limit = - 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SDG: WE53-7

Column ID:

Lab Name: Katahdin Analytical Services

Project: NCTAMSLANT Cutler CTO WE53

Lab ID :WG146446-2Analytical Date: 07/14/14 09:35Lab File ID :U6417.DInstrument ID: GCMS-U

Initial Calibration Date(s): 07/03/14 10:31 07/03/14 14:15

* = Compound out of QC criteria

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-9-061714

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4401-002

Concentration Units: ug/L

					ADJUSTED					
CAS No.	Analyte	Concentration	\mathbf{C}	Q M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, TOTAL	74	J	P	1	300	15.	100		
7440-36-0	ANTIMONY, TOTAL	0.50	U	MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, TOTAL	2.7	J	MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, TOTAL	4.97	J	P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, TOTAL	0.20	U	MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, TOTAL	0.053	J	MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, TOTAL	7010		P	1	100	11.	80		
7440-47-3	CHROMIUM, TOTAL	4.28	J	MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, TOTAL	4.22		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, TOTAL	0.85	J	MS	5	3.0	0.19	2.0		
7439-89-6	IRON, TOTAL	3210		P	1	100	5.4	80		
7439-92-1	LEAD, TOTAL	0.19	J	MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, TOTAL	1930		P	1	100	7.8	80		
7439-96-5	MANGANESE, TOTAL	3060		P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, TOTAL	0.047	J	CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, TOTAL	1.71	J	MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, TOTAL	553	J	P	1	1000	41.	500		
7782-49-2	SELENIUM, TOTAL	3.0	U	MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, TOTAL	0.40	U	MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, TOTAL	3890		P	1	1000	24.	500		
7440-28-0	THALLIUM, TOTAL	0.40	U	MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, TOTAL	1.0	J	MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, TOTAL	1.9	J	P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-9-061714

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4401-003

Concentration Units: ug/L

						ADJUSTED				
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, DISSOLVED	38	J		P	1	300	15.	100	
7440-36-0	ANTIMONY, DISSOLVED	0.060	J		MS	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, DISSOLVED	2.6	J		MS	5	5.0	2.3	4.0	
7440-39-3	BARIUM, DISSOLVED	4.36	J		P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, DISSOLVED	0.058	J		MS	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, DISSOLVED	6930			P	1	100	11.	80	
7440-47-3	CHROMIUM, DISSOLVED	0.59	J		MS	5	5.0	0.22	4.0	
7440-48-4	COBALT, DISSOLVED	4.18			MS	5	1.0	0.060	0.30	
7440-50-8	COPPER, DISSOLVED	1.3	J		MS	5	3.0	0.19	2.0	
7439-89-6	IRON, DISSOLVED	3070			P	1	100	5.4	80	
7439-92-1	LEAD, DISSOLVED	0.24	J		MS	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, DISSOLVED	1850			P	1	100	7.8	80	
7439-96-5	MANGANESE, DISSOLVED	3020			P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, DISSOLVED	1.2	J		MS	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, DISSOLVED	550	J		P	1	1000	41.	500	
7782-49-2	SELENIUM, DISSOLVED	0.77	J		MS	5	5.0	0.19	3.0	
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40	
7440-23-5	SODIUM, DISSOLVED	3820			P	1	1000	24.	500	
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, DISSOLVED	0.51	J		MS	5	5.0	0.50	4.0	
7440-66-6	ZINC, DISSOLVED	2.6	J		P	1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-10-061714

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-004

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	36	J		P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	0.061	J		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, TOTAL	4.3	J		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, TOTAL	1.6	J		P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, TOTAL	0.16	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, TOTAL	3670			P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	4.41	J		MS	5	5.0	0.22	4.0
7440-48-4	COBALT, TOTAL	5.07			MS	5	1.0	0.060	0.30
7440-50-8	COPPER, TOTAL	2.64	J		MS	5	3.0	0.19	2.0
7439-89-6	IRON, TOTAL	1350			P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	0.40	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, TOTAL	1040			P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	1690			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.044	J		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	30.0			MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, TOTAL	662	J		P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	3.0	U		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, TOTAL	3630			P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, TOTAL	0.60	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, TOTAL	2.0	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-10-061714

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-005

 $\textbf{Concentration Units:} \ ug/L$

						ADJUSTED			
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, DISSOLVED	19	J		P	1	300	15.	100
7440-36-0	ANTIMONY, DISSOLVED	0.50	U		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, DISSOLVED	3.4	J		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, DISSOLVED	1.8	J		P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, DISSOLVED	0.13	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, DISSOLVED	3820			P	1	100	11.	80
7440-47-3	CHROMIUM, DISSOLVED	4.50	J		MS	5	5.0	0.22	4.0
7440-48-4	COBALT, DISSOLVED	5.39			MS	5	1.0	0.060	0.30
7440-50-8	COPPER, DISSOLVED	1.1	J		MS	5	3.0	0.19	2.0
7439-89-6	IRON, DISSOLVED	1210			P	1	100	5.4	80
7439-92-1	LEAD, DISSOLVED	0.18	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, DISSOLVED	1060			P	1	100	7.8	80
7439-96-5	MANGANESE, DISSOLVED	1740			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, DISSOLVED	2.90			MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, DISSOLVED	678	J		P	1	1000	41.	500
7782-49-2	SELENIUM, DISSOLVED	0.77	J		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, DISSOLVED	3750			P	1	1000	24.	500
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, DISSOLVED	1.3	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, DISSOLVED	4.0	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-11-061714

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-006

 $\textbf{Concentration Units:} \ ug/L$

						ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, TOTAL	56	J		P	1	300	15.	100		
7440-36-0	ANTIMONY, TOTAL	0.056	J		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, TOTAL	1.4	J		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, TOTAL	0.066	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, TOTAL	4580			P	1	100	11.	80		
7440-47-3	CHROMIUM, TOTAL	4.61	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, TOTAL	0.10	J		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, TOTAL	0.75	J		MS	5	3.0	0.19	2.0		
7439-89-6	IRON, TOTAL	241			P	1	100	5.4	80		
7439-92-1	LEAD, TOTAL	0.13	J		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, TOTAL	1630			P	1	100	7.8	80		
7439-96-5	MANGANESE, TOTAL	488			P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, TOTAL	0.035	J		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, TOTAL	1.3	J		MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, TOTAL	500	J		P	1	1000	41.	500		
7782-49-2	SELENIUM, TOTAL	3.0	U		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, TOTAL	4430			P	1	1000	24.	500		
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, TOTAL	1.4	J		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, TOTAL	1.3	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-11-061714

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-007

Concentration Units: ug/L

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, DISSOLVED	43	J		P	1	300	15.	100
7440-36-0	ANTIMONY, DISSOLVED	0.50	U		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, DISSOLVED	1.7	J		P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, DISSOLVED	0.080	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, DISSOLVED	4470			P	1	100	11.	80
7440-47-3	CHROMIUM, DISSOLVED	4.67	J		MS	5	5.0	0.22	4.0
7440-48-4	COBALT, DISSOLVED	0.079	J		MS	5	1.0	0.060	0.30
7440-50-8	COPPER, DISSOLVED	0.70	J	N*	MS	5	3.0	0.19	2.0
7439-89-6	IRON, DISSOLVED	198			P	1	100	5.4	80
7439-92-1	LEAD, DISSOLVED	0.094	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, DISSOLVED	1570			P	1	100	7.8	80
7439-96-5	MANGANESE, DISSOLVED	463			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, DISSOLVED	1.4	J		MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, DISSOLVED	528	J		P	1	1000	41.	500
7782-49-2	SELENIUM, DISSOLVED	0.39	J		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, DISSOLVED	4350			P	1	1000	24.	500
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, DISSOLVED	1.1	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, DISSOLVED	2.5	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-12-061714

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-008

 $\textbf{Concentration Units:} \ ug/L$

								ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD				
7429-90-5	ALUMINUM, TOTAL	269	J		P	1	300	15.	100				
7440-36-0	ANTIMONY, TOTAL	0.10	J		MS	5	1.0	0.055	0.50				
7440-38-2	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0				
7440-39-3	BARIUM, TOTAL	7.67			P	1	5.0	0.23	3.0				
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20				
7440-43-9	CADMIUM, TOTAL	1.60			MS	5	1.0	0.030	0.20				
7440-70-2	CALCIUM, TOTAL	3780			P	1	100	11.	80				
7440-47-3	CHROMIUM, TOTAL	4.32	J		MS	5	5.0	0.22	4.0				
7440-48-4	COBALT, TOTAL	1.49			MS	5	1.0	0.060	0.30				
7440-50-8	COPPER, TOTAL	1.2	J		MS	5	3.0	0.19	2.0				
7439-89-6	IRON, TOTAL	744			P	1	100	5.4	80				
7439-92-1	LEAD, TOTAL	0.63	J		MS	5	1.0	0.075	0.50				
7439-95-4	MAGNESIUM, TOTAL	1330			P	1	100	7.8	80				
7439-96-5	MANGANESE, TOTAL	1500			P	1	5.0	1.1	4.0				
7439-97-6	MERCURY, TOTAL	0.043	J		CV	1	0.20	0.013	0.10				
7440-02-0	NICKEL, TOTAL	1.79	J		MS	5	2.0	0.15	1.2				
7440-09-7	POTASSIUM, TOTAL	663	J		P	1	1000	41.	500				
7782-49-2	SELENIUM, TOTAL	3.0	U		MS	5	5.0	0.19	3.0				
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40				
7440-23-5	SODIUM, TOTAL	3960			P	1	1000	24.	500				
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40				
7440-62-2	VANADIUM, TOTAL	1.6	J		MS	5	5.0	0.50	4.0				
7440-66-6	ZINC, TOTAL	3.8	J		P	1	20	0.72	10				

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-12-061714

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-009

 $\textbf{Concentration Units:} \ ug/L$

						AΓ	JUSTED		
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, DISSOLVED	46	J		P	1	300	15.	100
7440-36-0	ANTIMONY, DISSOLVED	0.50	U		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, DISSOLVED	4.71	J		P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, DISSOLVED	0.17	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, DISSOLVED	4150			P	1	100	11.	80
7440-47-3	CHROMIUM, DISSOLVED	4.45	J		MS	5	5.0	0.22	4.0
7440-48-4	COBALT, DISSOLVED	1.47			MS	5	1.0	0.060	0.30
7440-50-8	COPPER, DISSOLVED	0.64	J		MS	5	3.0	0.19	2.0
7439-89-6	IRON, DISSOLVED	539			P	1	100	5.4	80
7439-92-1	LEAD, DISSOLVED	0.12	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, DISSOLVED	1410			P	1	100	7.8	80
7439-96-5	MANGANESE, DISSOLVED	1570			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, DISSOLVED	1.75	J		MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, DISSOLVED	730	J		P	1	1000	41.	500
7782-49-2	SELENIUM, DISSOLVED	3.0	U		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, DISSOLVED	4460			P	1	1000	24.	500
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, DISSOLVED	0.76	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, DISSOLVED	4.2	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-5-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-010

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	89	J		P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	0.068	J		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, TOTAL	3.9	J		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, TOTAL	3.74	J		P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, TOTAL	0.13	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, TOTAL	6530			P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	5.15			MS	5	5.0	0.22	4.0
7440-48-4	COBALT, TOTAL	2.09			MS	5	1.0	0.060	0.30
7440-50-8	COPPER, TOTAL	1.5	J		MS	5	3.0	0.19	2.0
7439-89-6	IRON, TOTAL	1520			P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	0.50	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, TOTAL	1520			P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	208			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.038	J		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	2.39			MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, TOTAL	735	J		P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	3.0	U		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, TOTAL	4600			P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, TOTAL	1.5	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, TOTAL	2.1	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-5-061814

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4401-011

Concentration Units: ug/L

							ADJUSTED				
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, DISSOLVED	20	J		P	1	300	15.	100		
7440-36-0	ANTIMONY, DISSOLVED	0.061	J		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, DISSOLVED	4.8	J		MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, DISSOLVED	3.33	J		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, DISSOLVED	0.10	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, DISSOLVED	6460			P	1	100	11.	80		
7440-47-3	CHROMIUM, DISSOLVED	2.61	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, DISSOLVED	1.86			MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, DISSOLVED	1.2	J		MS	5	3.0	0.19	2.0		
7439-89-6	IRON, DISSOLVED	1400			P	1	100	5.4	80		
7439-92-1	LEAD, DISSOLVED	0.12	J		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, DISSOLVED	1470			P	1	100	7.8	80		
7439-96-5	MANGANESE, DISSOLVED	203			P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, DISSOLVED	1.64	J		MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, DISSOLVED	715	J		P	1	1000	41.	500		
7782-49-2	SELENIUM, DISSOLVED	3.0	U		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, DISSOLVED	4550			P	1	1000	24.	500		
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, DISSOLVED	1.3	J		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, DISSOLVED	2.2	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-203-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-012

 $\textbf{Concentration Units:} \ ug/L$

					ADJUSTED					
CAS No.	Analyte	Concentration	\mathbf{C}	Q M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, TOTAL	19	J	P	1	300	15.	100		
7440-36-0	ANTIMONY, TOTAL	0.50	U	MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, TOTAL	4.0	U	MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, TOTAL	0.92	J	P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, TOTAL	0.20	U	MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, TOTAL	0.074	J	MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, TOTAL	2940		P	1	100	11.	80		
7440-47-3	CHROMIUM, TOTAL	3.06	J	MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, TOTAL	0.30	U	MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, TOTAL	0.76	J	MS	5	3.0	0.19	2.0		
7439-89-6	IRON, TOTAL	80	U	P	1	100	5.4	80		
7439-92-1	LEAD, TOTAL	0.21	J	MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, TOTAL	958		P	1	100	7.8	80		
7439-96-5	MANGANESE, TOTAL	11.6		P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, TOTAL	0.045	J	CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, TOTAL	0.71	J	MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, TOTAL	519	J	P	1	1000	41.	500		
7782-49-2	SELENIUM, TOTAL	3.0	U	MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, TOTAL	0.40	U	MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, TOTAL	3200		P	1	1000	24.	500		
7440-28-0	THALLIUM, TOTAL	0.40	U	MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, TOTAL	1.4	J	MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, TOTAL	3.2	J	P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-203-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-013

 $\textbf{Concentration Units:} \ ug/L$

							ADJUSTED				
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, DISSOLVED	34	J		P	1	300	15.	100		
7440-36-0	ANTIMONY, DISSOLVED	0.50	U		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, DISSOLVED	1.1	J		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, DISSOLVED	0.095	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, DISSOLVED	2990			P	1	100	11.	80		
7440-47-3	CHROMIUM, DISSOLVED	3.16	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, DISSOLVED	0.30	U		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, DISSOLVED	1.8	J		MS	5	3.0	0.19	2.0		
7439-89-6	IRON, DISSOLVED	80	U		P	1	100	5.4	80		
7439-92-1	LEAD, DISSOLVED	0.079	J		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, DISSOLVED	983			P	1	100	7.8	80		
7439-96-5	MANGANESE, DISSOLVED	12.6			P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, DISSOLVED	0.98	J		MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, DISSOLVED	536	J		P	1	1000	41.	500		
7782-49-2	SELENIUM, DISSOLVED	3.0	U		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, DISSOLVED	3300			P	1	1000	24.	500		
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, DISSOLVED	1.3	J		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, DISSOLVED	2.9	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-GW-DUP01-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-014

 $\textbf{Concentration Units:} \ ug/L$

						ADJUSTED				
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, TOTAL	100	J		P	1	300	15.	100	
7440-36-0	ANTIMONY, TOTAL	0.055	J		MS	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, TOTAL	4.9	J		MS	5	5.0	2.3	4.0	
7440-39-3	BARIUM, TOTAL	4.89	J		P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, TOTAL	0.11	J		MS	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, TOTAL	6720			P	1	100	11.	80	
7440-47-3	CHROMIUM, TOTAL	3.35	J		MS	5	5.0	0.22	4.0	
7440-48-4	COBALT, TOTAL	2.05			MS	5	1.0	0.060	0.30	
7440-50-8	COPPER, TOTAL	1.3	J		MS	5	3.0	0.19	2.0	
7439-89-6	IRON, TOTAL	1520			P	1	100	5.4	80	
7439-92-1	LEAD, TOTAL	0.56	J		MS	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, TOTAL	1540			P	1	100	7.8	80	
7439-96-5	MANGANESE, TOTAL	217			P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, TOTAL	0.048	J		CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, TOTAL	1.73	J		MS	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, TOTAL	728	J		P	1	1000	41.	500	
7782-49-2	SELENIUM, TOTAL	0.55	J		MS	5	5.0	0.19	3.0	
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40	
7440-23-5	SODIUM, TOTAL	4750			P	1	1000	24.	500	
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, TOTAL	1.5	J		MS	5	5.0	0.50	4.0	
7440-66-6	ZINC, TOTAL	1.8	J		P	1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-GW-DUP01-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-015

 $\textbf{Concentration Units:} \ ug/L$

						ADJUSTED				
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, DISSOLVED	39	J		P	1	300	15.	100	
7440-36-0	ANTIMONY, DISSOLVED	0.065	J		MS	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, DISSOLVED	4.6	J		MS	5	5.0	2.3	4.0	
7440-39-3	BARIUM, DISSOLVED	3.09	J		P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, DISSOLVED	0.092	J		MS	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, DISSOLVED	6380			P	1	100	11.	80	
7440-47-3	CHROMIUM, DISSOLVED	1.6	J		MS	5	5.0	0.22	4.0	
7440-48-4	COBALT, DISSOLVED	1.87			MS	5	1.0	0.060	0.30	
7440-50-8	COPPER, DISSOLVED	0.68	J		MS	5	3.0	0.19	2.0	
7439-89-6	IRON, DISSOLVED	1380			P	1	100	5.4	80	
7439-92-1	LEAD, DISSOLVED	0.12	J		MS	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, DISSOLVED	1450			P	1	100	7.8	80	
7439-96-5	MANGANESE, DISSOLVED	206			P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, DISSOLVED	0.88	J		MS	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, DISSOLVED	684	J		P	1	1000	41.	500	
7782-49-2	SELENIUM, DISSOLVED	3.0	U		MS	5	5.0	0.19	3.0	
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40	
7440-23-5	SODIUM, DISSOLVED	4480			P	1	1000	24.	500	
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, DISSOLVED	1.6	J		MS	5	5.0	0.50	4.0	
7440-66-6	ZINC, DISSOLVED	1.8	J		P	1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-218-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-016

 $\textbf{Concentration Units:} \ ug/L$

					ADJUSTED				
CAS No.	Analyte	Concentration	C	Q M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, TOTAL	276	J	P	1	300	15.	100	
7440-36-0	ANTIMONY, TOTAL	0.073	J	MS	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, TOTAL	4.0	U	MS	5	5.0	2.3	4.0	
7440-39-3	BARIUM, TOTAL	6.72		P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, TOTAL	0.059	J	MS	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, TOTAL	0.098	J	MS	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, TOTAL	1150		P	1	100	11.	80	
7440-47-3	CHROMIUM, TOTAL	1.9	J	MS	5	5.0	0.22	4.0	
7440-48-4	COBALT, TOTAL	1.03		MS	5	1.0	0.060	0.30	
7440-50-8	COPPER, TOTAL	0.67	J	MS	5	3.0	0.19	2.0	
7439-89-6	IRON, TOTAL	128		P	1	100	5.4	80	
7439-92-1	LEAD, TOTAL	0.19	J	MS	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, TOTAL	867		P	1	100	7.8	80	
7439-96-5	MANGANESE, TOTAL	28.7		P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, TOTAL	0.042	J	CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, TOTAL	1.92	J	MS	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, TOTAL	190	J	P	1	1000	41.	500	
7782-49-2	SELENIUM, TOTAL	3.0	U	MS	5	5.0	0.19	3.0	
7440-22-4	SILVER, TOTAL	0.40	U	MS	5	1.0	0.050	0.40	
7440-23-5	SODIUM, TOTAL	6800		P	1	1000	24.	500	
7440-28-0	THALLIUM, TOTAL	0.40	U	MS	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, TOTAL	0.70	J	MS	5	5.0	0.50	4.0	
7440-66-6	ZINC, TOTAL	2.7	J	P	1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-218-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-017

 $\textbf{Concentration Units:} \ ug/L$

						ADJUSTED			
CAS No.	Analyte	Concentration	C	Q M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, DISSOLVED	140	J	P	1	300	15.	100	
7440-36-0	ANTIMONY, DISSOLVED	0.50	U	MS	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, DISSOLVED	4.0	U	MS	5	5.0	2.3	4.0	
7440-39-3	BARIUM, DISSOLVED	6.50		P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, DISSOLVED	0.078	J	MS	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, DISSOLVED	0.080	J	MS	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, DISSOLVED	1170		P	1	100	11.	80	
7440-47-3	CHROMIUM, DISSOLVED	1.7	J	MS	5	5.0	0.22	4.0	
7440-48-4	COBALT, DISSOLVED	1.00		MS	5	1.0	0.060	0.30	
7440-50-8	COPPER, DISSOLVED	0.92	J	MS	5	3.0	0.19	2.0	
7439-89-6	IRON, DISSOLVED	80	U	P	1	100	5.4	80	
7439-92-1	LEAD, DISSOLVED	0.077	J	MS	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, DISSOLVED	858		P	1	100	7.8	80	
7439-96-5	MANGANESE, DISSOLVED	25.7		P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, DISSOLVED	0.10	U	CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, DISSOLVED	2.01		MS	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, DISSOLVED	160	J	P	1	1000	41.	500	
7782-49-2	SELENIUM, DISSOLVED	3.0	U	MS	5	5.0	0.19	3.0	
7440-22-4	SILVER, DISSOLVED	0.40	U	MS	5	1.0	0.050	0.40	
7440-23-5	SODIUM, DISSOLVED	6910		P	1	1000	24.	500	
7440-28-0	THALLIUM, DISSOLVED	0.40	U	MS	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, DISSOLVED	1.1	J	MS	5	5.0	0.50	4.0	
7440-66-6	ZINC, DISSOLVED	2.6	J	P	1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-206-061814

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4401-018

Concentration Units: ug/L

						ADJUSTED				
CAS No.	Analyte	Concentration	C	Q M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, TOTAL	34	J	P	1	300	15.	100		
7440-36-0	ANTIMONY, TOTAL	0.14	J	MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, TOTAL	2.5	J	MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, TOTAL	7.17		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, TOTAL	0.20	U	MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, TOTAL	0.079	J	MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, TOTAL	41700		P	1	100	11.	80		
7440-47-3	CHROMIUM, TOTAL	0.81	J	MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, TOTAL	1.02		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, TOTAL	0.25	J	MS	5	3.0	0.19	2.0		
7439-89-6	IRON, TOTAL	80	U	P	1	100	5.4	80		
7439-92-1	LEAD, TOTAL	0.12	J	MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, TOTAL	7590		P	1	100	7.8	80		
7439-96-5	MANGANESE, TOTAL	220		P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, TOTAL	0.040	J	CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, TOTAL	0.84	J	MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, TOTAL	1560		P	1	1000	41.	500		
7782-49-2	SELENIUM, TOTAL	3.0	U	MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, TOTAL	0.40	U	MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, TOTAL	7850		P	1	1000	24.	500		
7440-28-0	THALLIUM, TOTAL	0.40	U	MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, TOTAL	0.61	J	MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, TOTAL	4.6	J	P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-206-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-019

 $\textbf{Concentration Units:} \ ug/L$

							ADJUSTED				
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, DISSOLVED	35	J		P	1	300	15.	100		
7440-36-0	ANTIMONY, DISSOLVED	0.14	J		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, DISSOLVED	2.6	J		MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, DISSOLVED	6.20			P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, DISSOLVED	0.090	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, DISSOLVED	38600		NA	P	1	100	11.	80		
7440-47-3	CHROMIUM, DISSOLVED	1.1	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, DISSOLVED	0.989	J		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, DISSOLVED	0.78	J		MS	5	3.0	0.19	2.0		
7439-89-6	IRON, DISSOLVED	80	U		P	1	100	5.4	80		
7439-92-1	LEAD, DISSOLVED	0.082	J		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, DISSOLVED	8300			P	1	100	7.8	80		
7439-96-5	MANGANESE, DISSOLVED	210			P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, DISSOLVED	0.98	J		MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, DISSOLVED	1490			P	1	1000	41.	500		
7782-49-2	SELENIUM, DISSOLVED	3.0	U		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, DISSOLVED	7390			P	1	1000	24.	500		
7440-28-0	THALLIUM, DISSOLVED	0.38	J		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, DISSOLVED	4.0	U		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, DISSOLVED	1.0	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-14-061714

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4401-020

 $\textbf{Concentration Units:} \ ug/L$

						ADJUSTED				
CAS No.	Analyte	Concentration	C	Q M	1 DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, TOTAL	279	J	P	1	300	15.	100		
7440-36-0	ANTIMONY, TOTAL	0.12	J	M	S 5	1.0	0.055	0.50		
7440-38-2	ARSENIC, TOTAL	4.0	U	M	S 5	5.0	2.3	4.0		
7440-39-3	BARIUM, TOTAL	5.82		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, TOTAL	0.064	J	M	S 5	1.0	0.034	0.20		
7440-43-9	CADMIUM, TOTAL	0.13	J	M	S 5	1.0	0.030	0.20		
7440-70-2	CALCIUM, TOTAL	6660		P	1	100	11.	80		
7440-47-3	CHROMIUM, TOTAL	1.8	J	M	S 5	5.0	0.22	4.0		
7440-48-4	COBALT, TOTAL	0.27	J	M	S 5	1.0	0.060	0.30		
7440-50-8	COPPER, TOTAL	0.98	J	M	S 5	3.0	0.19	2.0		
7439-89-6	IRON, TOTAL	827		P	1	100	5.4	80		
7439-92-1	LEAD, TOTAL	0.33	J	M	S 5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, TOTAL	2430		P	1	100	7.8	80		
7439-96-5	MANGANESE, TOTAL	70.0		P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, TOTAL	0.044	J	CV	<i>I</i> 1	0.20	0.013	0.10		
7440-02-0	NICKEL, TOTAL	0.62	J	M	S 5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, TOTAL	893	J	P	1	1000	41.	500		
7782-49-2	SELENIUM, TOTAL	3.0	U	M	S 5	5.0	0.19	3.0		
7440-22-4	SILVER, TOTAL	0.40	U	M	S 5	1.0	0.050	0.40		
7440-23-5	SODIUM, TOTAL	6090		P	1	1000	24.	500		
7440-28-0	THALLIUM, TOTAL	0.14	J	M	S 5	1.0	0.060	0.40		
7440-62-2	VANADIUM, TOTAL	1.4	J	M	S 5	5.0	0.50	4.0		
7440-66-6	ZINC, TOTAL	2.1	J	P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-14-061714

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4401-021

Concentration Units: ug/L

						ADJUSTED				
CAS No.	Analyte	Concentration	C	Q M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, DISSOLVED	97	J	P	1	300	15.	100		
7440-36-0	ANTIMONY, DISSOLVED	0.50	U	MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, DISSOLVED	4.0	U	MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, DISSOLVED	3.92	J	P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, DISSOLVED	0.044	J	MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, DISSOLVED	0.050	J	MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, DISSOLVED	6860		P	1	100	11.	80		
7440-47-3	CHROMIUM, DISSOLVED	1.6	J	MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, DISSOLVED	0.23	J	MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, DISSOLVED	0.45	J	MS	5	3.0	0.19	2.0		
7439-89-6	IRON, DISSOLVED	745		P	1	100	5.4	80		
7439-92-1	LEAD, DISSOLVED	0.12	J	MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, DISSOLVED	2430		P	1	100	7.8	80		
7439-96-5	MANGANESE, DISSOLVED	70.2		P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, DISSOLVED	0.10	U	CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, DISSOLVED	0.59	J	MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, DISSOLVED	941	J	P	1	1000	41.	500		
7782-49-2	SELENIUM, DISSOLVED	3.0	U	MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, DISSOLVED	0.40	U	MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, DISSOLVED	6240		P	1	1000	24.	500		
7440-28-0	THALLIUM, DISSOLVED	0.11	J	MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, DISSOLVED	1.6	J	MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, DISSOLVED	2.5	J	P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-208-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4521-002

 $\textbf{Concentration Units:} \ ug/L$

							ADJUSTED			
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, TOTAL	648			P	1	300	15.	100	
7440-36-0	ANTIMONY, TOTAL	0.22	J		MS	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0	
7440-39-3	BARIUM, TOTAL	8.43			P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, TOTAL	0.057	J		MS	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, TOTAL	6180			P	1	100	11.	80	
7440-47-3	CHROMIUM, TOTAL	2.55	J		MS	5	5.0	0.22	4.0	
7440-48-4	COBALT, TOTAL	0.46	J		MS	5	1.0	0.060	0.30	
7440-50-8	COPPER, TOTAL	2.11	J		MS	5	3.0	0.19	2.0	
7439-89-6	IRON, TOTAL	766			P	1	100	5.4	80	
7439-92-1	LEAD, TOTAL	0.56	J		MS	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, TOTAL	2150			P	1	100	7.8	80	
7439-96-5	MANGANESE, TOTAL	53.8			P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, TOTAL	0.041	J		CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, TOTAL	1.54	J		MS	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, TOTAL	1090			P	1	1000	41.	500	
7782-49-2	SELENIUM, TOTAL	1.2	J		MS	5	5.0	0.19	3.0	
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40	
7440-23-5	SODIUM, TOTAL	9180			P	1	1000	24.	500	
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, TOTAL	2.0	J		MS	5	5.0	0.50	4.0	
7440-66-6	ZINC, TOTAL	3.0	J		P	1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-208-061814

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-003

 $\textbf{Concentration Units:} \ ug/L$

							ADJUSTED				
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, DISSOLVED	100	U		P	1	300	15.	100		
7440-36-0	ANTIMONY, DISSOLVED	0.13	J		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, DISSOLVED	4.67	J		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, DISSOLVED	0.056	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, DISSOLVED	6120			P	1	100	11.	80		
7440-47-3	CHROMIUM, DISSOLVED	1.2	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, DISSOLVED	0.30	U		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, DISSOLVED	1.2	J		MS	5	3.0	0.19	2.0		
7439-89-6	IRON, DISSOLVED	7.8	J		P	1	100	5.4	80		
7439-92-1	LEAD, DISSOLVED	0.50	U		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, DISSOLVED	1990			P	1	100	7.8	80		
7439-96-5	MANGANESE, DISSOLVED	41.8			P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, DISSOLVED	0.57	J		MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, DISSOLVED	966	J		P	1	1000	41.	500		
7782-49-2	SELENIUM, DISSOLVED	0.88	J		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, DISSOLVED	9000			P	1	1000	24.	500		
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, DISSOLVED	0.68	J		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, DISSOLVED	0.89	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-1-061814

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-004

 $\textbf{Concentration Units:} \ ug/L$

						AΓ	JUSTED	
CAS No.	Analyte	Concentration	C) M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	1660		P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	0.15	J	MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, TOTAL	7.9		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, TOTAL	8.98		P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	0.078	J	MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, TOTAL	0.042	J	MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, TOTAL	19200		P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	4.08	J	MS	5	5.0	0.22	4.0
7440-48-4	COBALT, TOTAL	0.899	J	MS	5	1.0	0.060	0.30
7440-50-8	COPPER, TOTAL	3.36		MS	5	3.0	0.19	2.0
7439-89-6	IRON, TOTAL	1890		P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	2.50		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, TOTAL	2880		P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	34.8		P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.038	J	CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	6.24		MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, TOTAL	1370		P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	1.2	J	MS	5	5.0	0.19	3.0
7440-22-4	SILVER, TOTAL	0.40	U	MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, TOTAL	4990		P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	0.40	U	MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, TOTAL	3.6	J	MS	5	5.0	0.50	4.0
7440-66-6	ZINC, TOTAL	8.09	J	P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-1-061814

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-005

Concentration Units: ug/L

							ADJUSTED				
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, DISSOLVED	27	J		P	1	300	15.	100		
7440-36-0	ANTIMONY, DISSOLVED	0.12	J		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, DISSOLVED	6.4			MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, DISSOLVED	2.36	J		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, DISSOLVED	0.19	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, DISSOLVED	19100			P	1	100	11.	80		
7440-47-3	CHROMIUM, DISSOLVED	1.0	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, DISSOLVED	0.072	J		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, DISSOLVED	1.3	J		MS	5	3.0	0.19	2.0		
7439-89-6	IRON, DISSOLVED	12	J		P	1	100	5.4	80		
7439-92-1	LEAD, DISSOLVED	0.091	J		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, DISSOLVED	2410			P	1	100	7.8	80		
7439-96-5	MANGANESE, DISSOLVED	1.8	J		P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, DISSOLVED	3.88			MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, DISSOLVED	1100			P	1	1000	41.	500		
7782-49-2	SELENIUM, DISSOLVED	1.3	J		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, DISSOLVED	4900			P	1	1000	24.	500		
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, DISSOLVED	1.0	J		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, DISSOLVED	4.0	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-GW-DUP02-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4521-006

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	(C Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	619			P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	0.18	J		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, TOTAL	2.5	J		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, TOTAL	7.81			P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, TOTAL	0.053	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, TOTAL	6270			P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	2.49	J		MS	5	5.0	0.22	4.0
7440-48-4	COBALT, TOTAL	0.45	J		MS	5	1.0	0.060	0.30
7440-50-8	COPPER, TOTAL	2.18	J		MS	5	3.0	0.19	2.0
7439-89-6	IRON, TOTAL	777			P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	0.63	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, TOTAL	2190			P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	52.4			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.032	J		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	1.4	J		MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, TOTAL	1090			P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	1.6	J		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, TOTAL	9310			P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, TOTAL	1.6	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, TOTAL	3.5	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-GW-DUP02-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4521-007

Concentration Units: ug/L

						ADJUSTED				
CAS No.	Analyte	Concentration	\mathbf{C}	Q M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, DISSOLVED	23	J	P	1	300	15.	100		
7440-36-0	ANTIMONY, DISSOLVED	0.15	J	MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, DISSOLVED	4.0	U	MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, DISSOLVED	4.57	J	P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U	MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, DISSOLVED	0.065	J	MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, DISSOLVED	6360		P	1	100	11.	80		
7440-47-3	CHROMIUM, DISSOLVED	1.7	J	MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, DISSOLVED	0.30	U	MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, DISSOLVED	8.62		MS	5	3.0	0.19	2.0		
7439-89-6	IRON, DISSOLVED	80	U	P	1	100	5.4	80		
7439-92-1	LEAD, DISSOLVED	0.27	J	MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, DISSOLVED	2070		P	1	100	7.8	80		
7439-96-5	MANGANESE, DISSOLVED	43.1		P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, DISSOLVED	0.10	U	CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, DISSOLVED	0.60	J	MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, DISSOLVED	979	J	P	1	1000	41.	500		
7782-49-2	SELENIUM, DISSOLVED	1.2	J	MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, DISSOLVED	0.40	U	MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, DISSOLVED	9240		P	1	1000	24.	500		
7440-28-0	THALLIUM, DISSOLVED	0.40	U	MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, DISSOLVED	1.4	J	MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, DISSOLVED	5.1	J	P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-210-061814

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-008

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	24	J		P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	0.13	J		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, TOTAL	6.06			P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, TOTAL	0.059	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, TOTAL	33000		N	P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	0.73	J		MS	5	5.0	0.22	4.0
7440-48-4	COBALT, TOTAL	0.15	J		MS	5	1.0	0.060	0.30
7440-50-8	COPPER, TOTAL	4.26			MS	5	3.0	0.19	2.0
7439-89-6	IRON, TOTAL	80	U		P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	0.21	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, TOTAL	6100			P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	47.0			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.048	J		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	1.86	J		MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, TOTAL	1540			P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	0.29	J		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, TOTAL	7990			P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, TOTAL	1.1	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, TOTAL	4.9	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-MW-210-061814

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4521-009

 $\textbf{Concentration Units:} \ ug/L$

						AΓ	JUSTED		
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, DISSOLVED	32	J		P	1	300	15.	100
7440-36-0	ANTIMONY, DISSOLVED	0.14	J		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, DISSOLVED	6.01			P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, DISSOLVED	0.14	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, DISSOLVED	32800		N	P	1	100	11.	80
7440-47-3	CHROMIUM, DISSOLVED	0.78	J		MS	5	5.0	0.22	4.0
7440-48-4	COBALT, DISSOLVED	0.26	J		MS	5	1.0	0.060	0.30
7440-50-8	COPPER, DISSOLVED	1.2	J		MS	5	3.0	0.19	2.0
7439-89-6	IRON, DISSOLVED	80	U		P	1	100	5.4	80
7439-92-1	LEAD, DISSOLVED	0.13	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, DISSOLVED	6160			P	1	100	7.8	80
7439-96-5	MANGANESE, DISSOLVED	47.0			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, DISSOLVED	2.14			MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, DISSOLVED	1570			P	1	1000	41.	500
7782-49-2	SELENIUM, DISSOLVED	1.4	J		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, DISSOLVED	7850			P	1	1000	24.	500
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, DISSOLVED	1.2	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, DISSOLVED	1.7	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-01-061914

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4521-010

 $\textbf{Concentration Units:} \ ug/L$

						ADJUSTED				
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, TOTAL	88	J		P	1	300	15.	100	
7440-36-0	ANTIMONY, TOTAL	0.14	J		MS	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0	
7440-39-3	BARIUM, TOTAL	4.44	J		P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, TOTAL	0.066	J		MS	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, TOTAL	7880			P	1	100	11.	80	
7440-47-3	CHROMIUM, TOTAL	0.99	J		MS	5	5.0	0.22	4.0	
7440-48-4	COBALT, TOTAL	0.851	J		MS	5	1.0	0.060	0.30	
7440-50-8	COPPER, TOTAL	2.74	J		MS	5	3.0	0.19	2.0	
7439-89-6	IRON, TOTAL	335			P	1	100	5.4	80	
7439-92-1	LEAD, TOTAL	0.26	J		MS	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, TOTAL	1990			P	1	100	7.8	80	
7439-96-5	MANGANESE, TOTAL	57.4			P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, TOTAL	0.032	J		CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, TOTAL	0.93	J		MS	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, TOTAL	947	J		P	1	1000	41.	500	
7782-49-2	SELENIUM, TOTAL	0.34	J		MS	5	5.0	0.19	3.0	
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40	
7440-23-5	SODIUM, TOTAL	3680			P	1	1000	24.	500	
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, TOTAL	0.77	J		MS	5	5.0	0.50	4.0	
7440-66-6	ZINC, TOTAL	3.3	J		P	1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-01-061914

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-011

Concentration Units: ug/L

						ADJUSTED				
CAS No.	Analyte	Concentration	C	Q I	1	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, DISSOLVED	38	J	P		1	300	15.	100	
7440-36-0	ANTIMONY, DISSOLVED	0.094	J	M	S	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, DISSOLVED	4.0	U	M	S	5	5.0	2.3	4.0	
7440-39-3	BARIUM, DISSOLVED	3.75	J	P		1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U	M	S	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, DISSOLVED	0.062	J	M	S	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, DISSOLVED	7800		P		1	100	11.	80	
7440-47-3	CHROMIUM, DISSOLVED	0.71	J	M	S	5	5.0	0.22	4.0	
7440-48-4	COBALT, DISSOLVED	0.732	J	M	S	5	1.0	0.060	0.30	
7440-50-8	COPPER, DISSOLVED	2.68	J	M	S	5	3.0	0.19	2.0	
7439-89-6	IRON, DISSOLVED	157		P		1	100	5.4	80	
7439-92-1	LEAD, DISSOLVED	0.12	J	M	S	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, DISSOLVED	1940		P		1	100	7.8	80	
7439-96-5	MANGANESE, DISSOLVED	54.9		P		1	5.0	1.1	4.0	
7439-97-6	MERCURY, DISSOLVED	0.10	U	C	V	1	0.20	0.013	0.10	
7440-02-0	NICKEL, DISSOLVED	1.0	J	M	S	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, DISSOLVED	927	J	P		1	1000	41.	500	
7782-49-2	SELENIUM, DISSOLVED	1.0	J	M	S	5	5.0	0.19	3.0	
7440-22-4	SILVER, DISSOLVED	0.40	U	M	S	5	1.0	0.050	0.40	
7440-23-5	SODIUM, DISSOLVED	3670		P		1	1000	24.	500	
7440-28-0	THALLIUM, DISSOLVED	0.40	U	M	S	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, DISSOLVED	1.2	J	M	S	5	5.0	0.50	4.0	
7440-66-6	ZINC, DISSOLVED	3.6	J	P		1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-02-061914

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4521-012

 $\textbf{Concentration Units:} \ ug/L$

					ADJUSTED					
CAS No.	Analyte	Concentration	C Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, TOTAL	1590		P	1	300	15.	100		
7440-36-0	ANTIMONY, TOTAL	0.16	J	MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, TOTAL	3.6	J	MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, TOTAL	11.5		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, TOTAL	0.070	J	MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, TOTAL	2.14		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, TOTAL	8660		P	1	100	11.	80		
7440-47-3	CHROMIUM, TOTAL	2.82	J	MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, TOTAL	1.00		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, TOTAL	9.42		MS	5	3.0	0.19	2.0		
7439-89-6	IRON, TOTAL	1650		P	1	100	5.4	80		
7439-92-1	LEAD, TOTAL	2.02		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, TOTAL	1860		P	1	100	7.8	80		
7439-96-5	MANGANESE, TOTAL	31.1		P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, TOTAL	0.10	U	CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, TOTAL	8.09		MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, TOTAL	1360		P	1	1000	41.	500		
7782-49-2	SELENIUM, TOTAL	0.77	J	MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, TOTAL	0.40	U	MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, TOTAL	3770		P	1	1000	24.	500		
7440-28-0	THALLIUM, TOTAL	0.32	J	MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, TOTAL	3.9	J	MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, TOTAL	5.7	J	P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-02-061914

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-013

Concentration Units: ug/L

						ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, DISSOLVED	94	J		P	1	300	15.	100		
7440-36-0	ANTIMONY, DISSOLVED	0.11	J		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, DISSOLVED	3.3	J		MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, DISSOLVED	3.04	J		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, DISSOLVED	0.059	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, DISSOLVED	8590			P	1	100	11.	80		
7440-47-3	CHROMIUM, DISSOLVED	1.1	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, DISSOLVED	0.16	J		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, DISSOLVED	6.60			MS	5	3.0	0.19	2.0		
7439-89-6	IRON, DISSOLVED	134			P	1	100	5.4	80		
7439-92-1	LEAD, DISSOLVED	0.12	J		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, DISSOLVED	1600			P	1	100	7.8	80		
7439-96-5	MANGANESE, DISSOLVED	15.4			P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, DISSOLVED	1.4	J		MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, DISSOLVED	1050			P	1	1000	41.	500		
7782-49-2	SELENIUM, DISSOLVED	0.80	J		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, DISSOLVED	3760			P	1	1000	24.	500		
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, DISSOLVED	1.4	J		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, DISSOLVED	1.9	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-03-061914

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-014

 $\textbf{Concentration Units:} \ ug/L$

						ADJUSTED					
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, TOTAL	120	J		P	1	300	15.	100		
7440-36-0	ANTIMONY, TOTAL	0.096	J		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, TOTAL	4.0	U	A	MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, TOTAL	12.8			P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, TOTAL	0.18	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, TOTAL	6280		N	P	1	100	11.	80		
7440-47-3	CHROMIUM, TOTAL	1.2	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, TOTAL	1.24			MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, TOTAL	8.54			MS	5	3.0	0.19	2.0		
7439-89-6	IRON, TOTAL	380			P	1	100	5.4	80		
7439-92-1	LEAD, TOTAL	1.59			MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, TOTAL	1360			P	1	100	7.8	80		
7439-96-5	MANGANESE, TOTAL	41.3			P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, TOTAL	0.10	U		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, TOTAL	2.24			MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, TOTAL	1490			P	1	1000	41.	500		
7782-49-2	SELENIUM, TOTAL	0.98	J		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, TOTAL	0.070	J		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, TOTAL	3470			P	1	1000	24.	500		
7440-28-0	THALLIUM, TOTAL	0.077	J		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, TOTAL	1.7	J		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, TOTAL	13.7	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-03-061914

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-015

Concentration Units: ug/L

							ADJUSTED				
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, DISSOLVED	49	J		P	1	300	15.	100		
7440-36-0	ANTIMONY, DISSOLVED	0.14	J		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, DISSOLVED	11.9			P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, DISSOLVED	0.12	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, DISSOLVED	6660		N	P	1	100	11.	80		
7440-47-3	CHROMIUM, DISSOLVED	1.1	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, DISSOLVED	1.12			MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, DISSOLVED	4.01			MS	5	3.0	0.19	2.0		
7439-89-6	IRON, DISSOLVED	215			P	1	100	5.4	80		
7439-92-1	LEAD, DISSOLVED	0.46	J		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, DISSOLVED	1410			P	1	100	7.8	80		
7439-96-5	MANGANESE, DISSOLVED	38.3			P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, DISSOLVED	2.04			MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, DISSOLVED	1460			P	1	1000	41.	500		
7782-49-2	SELENIUM, DISSOLVED	0.80	J		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, DISSOLVED	3740			P	1	1000	24.	500		
7440-28-0	THALLIUM, DISSOLVED	0.067	J		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, DISSOLVED	1.3	J		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, DISSOLVED	10.4	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-06-061914

Matrix: WATER SDG Name: WE53-7

Percent Solida: 0.00

Lob Somple ID: SH4521-01

Percent Solids: 0.00 Lab Sample ID: SH4521-016

 $\textbf{Concentration Units:} \ ug/L$

CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	90	J		P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	0.15	J		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, TOTAL	7.9			MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, TOTAL	17.4			P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, TOTAL	0.11	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, TOTAL	46200			P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	1.2	J		MS	5	5.0	0.22	4.0
7440-48-4	COBALT, TOTAL	5.06			MS	5	1.0	0.060	0.30
7440-50-8	COPPER, TOTAL	3.21			MS	5	3.0	0.19	2.0
7439-89-6	IRON, TOTAL	5890			P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	0.41	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, TOTAL	3990			P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	1080			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.10	U		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	1.87	J		MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, TOTAL	1240			P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	0.88	J		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, TOTAL	3490			P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, TOTAL	1.6	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, TOTAL	4.6	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-06-061914

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4521-017

 $\textbf{Concentration Units:} \ ug/L$

							ADJUSTED			
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, DISSOLVED	48	J		P	1	300	15.	100	
7440-36-0	ANTIMONY, DISSOLVED	0.099	J		MS	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, DISSOLVED	6.5			MS	5	5.0	2.3	4.0	
7440-39-3	BARIUM, DISSOLVED	3.00	J		P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, DISSOLVED	0.069	J		MS	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, DISSOLVED	48500			P	1	100	11.	80	
7440-47-3	CHROMIUM, DISSOLVED	1.0	J		MS	5	5.0	0.22	4.0	
7440-48-4	COBALT, DISSOLVED	4.25			MS	5	1.0	0.060	0.30	
7440-50-8	COPPER, DISSOLVED	1.4	J		MS	5	3.0	0.19	2.0	
7439-89-6	IRON, DISSOLVED	664			P	1	100	5.4	80	
7439-92-1	LEAD, DISSOLVED	0.11	J		MS	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, DISSOLVED	4360			P	1	100	7.8	80	
7439-96-5	MANGANESE, DISSOLVED	1010			P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, DISSOLVED	0.10	U		CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, DISSOLVED	1.83	J		MS	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, DISSOLVED	1320			P	1	1000	41.	500	
7782-49-2	SELENIUM, DISSOLVED	1.4	J		MS	5	5.0	0.19	3.0	
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40	
7440-23-5	SODIUM, DISSOLVED	3780			P	1	1000	24.	500	
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, DISSOLVED	1.3	J		MS	5	5.0	0.50	4.0	
7440-66-6	ZINC, DISSOLVED	2.4	J		P	1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-07-061914

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-018

Concentration Units: ug/L

						ADJUSTED				
CAS No.	Analyte	Concentration	\mathbf{C}	Q M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, TOTAL	110	J	P	1	300	15.	100		
7440-36-0	ANTIMONY, TOTAL	0.19	J	MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, TOTAL	7.9		MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, TOTAL	4.29	J	P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, TOTAL	0.20	U	MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, TOTAL	0.069	J	MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, TOTAL	52500		P	1	100	11.	80		
7440-47-3	CHROMIUM, TOTAL	1.0	J	MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, TOTAL	1.38		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, TOTAL	2.30	J	MS	5	3.0	0.19	2.0		
7439-89-6	IRON, TOTAL	2340		P	1	100	5.4	80		
7439-92-1	LEAD, TOTAL	0.27	J	MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, TOTAL	5260		P	1	100	7.8	80		
7439-96-5	MANGANESE, TOTAL	432		P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, TOTAL	0.10	U	CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, TOTAL	1.66	J	MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, TOTAL	3180		P	1	1000	41.	500		
7782-49-2	SELENIUM, TOTAL	1.4	J	MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, TOTAL	0.40	U	MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, TOTAL	3660		P	1	1000	24.	500		
7440-28-0	THALLIUM, TOTAL	0.40	U	MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, TOTAL	0.93	J	MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, TOTAL	5.4	J	P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-07-061914

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4521-019

 $\textbf{Concentration Units:} \ ug/L$

						ADJUSTED				
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, DISSOLVED	62	J		P	1	300	15.	100	
7440-36-0	ANTIMONY, DISSOLVED	0.21	J		MS	5	1.0	0.055	0.50	
7440-38-2	ARSENIC, DISSOLVED	6.2			MS	5	5.0	2.3	4.0	
7440-39-3	BARIUM, DISSOLVED	2.2	J		P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U		MS	5	1.0	0.034	0.20	
7440-43-9	CADMIUM, DISSOLVED	0.052	J		MS	5	1.0	0.030	0.20	
7440-70-2	CALCIUM, DISSOLVED	56600			P	1	100	11.	80	
7440-47-3	CHROMIUM, DISSOLVED	1.2	J		MS	5	5.0	0.22	4.0	
7440-48-4	COBALT, DISSOLVED	1.35			MS	5	1.0	0.060	0.30	
7440-50-8	COPPER, DISSOLVED	1.8	J		MS	5	3.0	0.19	2.0	
7439-89-6	IRON, DISSOLVED	833			P	1	100	5.4	80	
7439-92-1	LEAD, DISSOLVED	0.12	J		MS	5	1.0	0.075	0.50	
7439-95-4	MAGNESIUM, DISSOLVED	5840			P	1	100	7.8	80	
7439-96-5	MANGANESE, DISSOLVED	372			P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, DISSOLVED	0.045	J		CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, DISSOLVED	1.76	J		MS	5	2.0	0.15	1.2	
7440-09-7	POTASSIUM, DISSOLVED	2910			P	1	1000	41.	500	
7782-49-2	SELENIUM, DISSOLVED	0.86	J		MS	5	5.0	0.19	3.0	
7440-22-4	SILVER, DISSOLVED	0.40	U		MS	5	1.0	0.050	0.40	
7440-23-5	SODIUM, DISSOLVED	3930			P	1	1000	24.	500	
7440-28-0	THALLIUM, DISSOLVED	0.40	U		MS	5	1.0	0.060	0.40	
7440-62-2	VANADIUM, DISSOLVED	1.4	J		MS	5	5.0	0.50	4.0	
7440-66-6	ZINC, DISSOLVED	5.6	J		P	1	20	0.72	10	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-08-061914

Matrix: WATER SDG Name: WE53-7

Percent Solids: 0.00 Lab Sample ID: SH4521-020

 $\textbf{Concentration Units:} \ ug/L$

							ADJUSTED				
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD		
7429-90-5	ALUMINUM, TOTAL	56	J		P	1	300	15.	100		
7440-36-0	ANTIMONY, TOTAL	0.090	J		MS	5	1.0	0.055	0.50		
7440-38-2	ARSENIC, TOTAL	5.1			MS	5	5.0	2.3	4.0		
7440-39-3	BARIUM, TOTAL	1.8	J		P	1	5.0	0.23	3.0		
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20		
7440-43-9	CADMIUM, TOTAL	0.032	J		MS	5	1.0	0.030	0.20		
7440-70-2	CALCIUM, TOTAL	27600			P	1	100	11.	80		
7440-47-3	CHROMIUM, TOTAL	0.88	J		MS	5	5.0	0.22	4.0		
7440-48-4	COBALT, TOTAL	0.53	J		MS	5	1.0	0.060	0.30		
7440-50-8	COPPER, TOTAL	2.27	J		MS	5	3.0	0.19	2.0		
7439-89-6	IRON, TOTAL	1250			P	1	100	5.4	80		
7439-92-1	LEAD, TOTAL	0.18	J		MS	5	1.0	0.075	0.50		
7439-95-4	MAGNESIUM, TOTAL	2560			P	1	100	7.8	80		
7439-96-5	MANGANESE, TOTAL	28.3			P	1	5.0	1.1	4.0		
7439-97-6	MERCURY, TOTAL	0.10	U		CV	1	0.20	0.013	0.10		
7440-02-0	NICKEL, TOTAL	1.1	J		MS	5	2.0	0.15	1.2		
7440-09-7	POTASSIUM, TOTAL	810	J		P	1	1000	41.	500		
7782-49-2	SELENIUM, TOTAL	1.0	J		MS	5	5.0	0.19	3.0		
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40		
7440-23-5	SODIUM, TOTAL	2730			P	1	1000	24.	500		
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40		
7440-62-2	VANADIUM, TOTAL	1.6	J		MS	5	5.0	0.50	4.0		
7440-66-6	ZINC, TOTAL	2.2	J		P	1	20	0.72	10		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-08-061914

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-021

Concentration Units: ug/L

						A		
CAS No.	Analyte	Concentration	\mathbf{C}	Q M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, DISSOLVED	35	J	P	1	300	15.	100
7440-36-0	ANTIMONY, DISSOLVED	0.15	J	MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, DISSOLVED	5.1		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, DISSOLVED	2.2	J	P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U	MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, DISSOLVED	0.061	J	MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, DISSOLVED	26500		P	1	100	11.	80
7440-47-3	CHROMIUM, DISSOLVED	0.99	J	MS	5	5.0	0.22	4.0
7440-48-4	COBALT, DISSOLVED	0.608	J	MS	5	1.0	0.060	0.30
7440-50-8	COPPER, DISSOLVED	2.45	J	MS	5	3.0	0.19	2.0
7439-89-6	IRON, DISSOLVED	794		P	1	100	5.4	80
7439-92-1	LEAD, DISSOLVED	0.16	J	MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, DISSOLVED	2440		P	1	100	7.8	80
7439-96-5	MANGANESE, DISSOLVED	11.0		P	1	5.0	1.1	4.0
7439-97-6	MERCURY, DISSOLVED	0.10	U	CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, DISSOLVED	1.61	J	MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, DISSOLVED	755	J	P	1	1000	41.	500
7782-49-2	SELENIUM, DISSOLVED	0.85	J	MS	5	5.0	0.19	3.0
7440-22-4	SILVER, DISSOLVED	0.40	U	MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, DISSOLVED	2810		P	1	1000	24.	500
7440-28-0	THALLIUM, DISSOLVED	0.40	U	MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, DISSOLVED	1.6	J	MS	5	5.0	0.50	4.0
7440-66-6	ZINC, DISSOLVED	4.0	J	P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-DUP01-061914

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-022

Concentration Units: ug/L

							AΓ		
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	97	J		P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	0.11	J		MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, TOTAL	7.9			MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, TOTAL	20.9			P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	0.20	U		MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, TOTAL	0.074	J		MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, TOTAL	54500			P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	1.1	J		MS	5	5.0	0.22	4.0
7440-48-4	COBALT, TOTAL	5.52			MS	5	1.0	0.060	0.30
7440-50-8	COPPER, TOTAL	3.85			MS	5	3.0	0.19	2.0
7439-89-6	IRON, TOTAL	7060			P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	0.41	J		MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, TOTAL	4770			P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	1240			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.10	U		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	2.09			MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, TOTAL	1310			P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	1.4	J		MS	5	5.0	0.19	3.0
7440-22-4	SILVER, TOTAL	0.40	U		MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, TOTAL	4030			P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	0.40	U		MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, TOTAL	1.6	J		MS	5	5.0	0.50	4.0
7440-66-6	ZINC, TOTAL	6.3	J		P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SW-DUP01-061914

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-023

Concentration Units: ug/L

						ΑI		
CAS No.	Analyte	Concentration	C	Q M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, DISSOLVED	56	J	P	1	300	15.	100
7440-36-0	ANTIMONY, DISSOLVED	0.11	J	MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, DISSOLVED	7.5		MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, DISSOLVED	2.93	J	P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, DISSOLVED	0.20	U	MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, DISSOLVED	0.049	J	MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, DISSOLVED	48600		P	1	100	11.	80
7440-47-3	CHROMIUM, DISSOLVED	0.99	J	MS	5	5.0	0.22	4.0
7440-48-4	COBALT, DISSOLVED	4.14		MS	5	1.0	0.060	0.30
7440-50-8	COPPER, DISSOLVED	1.99	J	MS	5	3.0	0.19	2.0
7439-89-6	IRON, DISSOLVED	522		P	1	100	5.4	80
7439-92-1	LEAD, DISSOLVED	0.10	J	MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, DISSOLVED	4330		P	1	100	7.8	80
7439-96-5	MANGANESE, DISSOLVED	941		P	1	5.0	1.1	4.0
7439-97-6	MERCURY, DISSOLVED	0.10	U	CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, DISSOLVED	2.46		MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, DISSOLVED	1270		P	1	1000	41.	500
7782-49-2	SELENIUM, DISSOLVED	1.4	J	MS	5	5.0	0.19	3.0
7440-22-4	SILVER, DISSOLVED	0.40	U	MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, DISSOLVED	4040		P	1	1000	24.	500
7440-28-0	THALLIUM, DISSOLVED	0.40	U	MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, DISSOLVED	1.0	J	MS	5	5.0	0.50	4.0
7440-66-6	ZINC, DISSOLVED	3.7	J	P	1	20	0.72	10

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: FTA-SD-RB01-062014

Matrix: WATERSDG Name:WE53-7Percent Solids: 0.00Lab Sample ID: SH4521-024

 $\textbf{Concentration Units:} \ ug/L$

							AI		
CAS No.	Analyte	Concentration	\mathbf{C}	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	100	U]	P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	0.50	U	I	MS	5	1.0	0.055	0.50
7440-38-2	ARSENIC, TOTAL	4.0	U	1	MS	5	5.0	2.3	4.0
7440-39-3	BARIUM, TOTAL	3.0	U]	P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	0.20	U	1	MS	5	1.0	0.034	0.20
7440-43-9	CADMIUM, TOTAL	0.059	J	1	MS	5	1.0	0.030	0.20
7440-70-2	CALCIUM, TOTAL	27	J]	P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	0.86	J	1	MS	5	5.0	0.22	4.0
7440-48-4	COBALT, TOTAL	0.30	U	1	MS	5	1.0	0.060	0.30
7440-50-8	COPPER, TOTAL	0.26	J	I	MS	5	3.0	0.19	2.0
7439-89-6	IRON, TOTAL	80	U]	P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	0.50	U	I	MS	5	1.0	0.075	0.50
7439-95-4	MAGNESIUM, TOTAL	80	U	l	P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	4.0	U	I	P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.10	U	($\mathbb{C}\mathbf{V}$	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	1.2	U	1	MS	5	2.0	0.15	1.2
7440-09-7	POTASSIUM, TOTAL	500	U]	P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	0.72	J	1	MS	5	5.0	0.19	3.0
7440-22-4	SILVER, TOTAL	0.40	U	1	MS	5	1.0	0.050	0.40
7440-23-5	SODIUM, TOTAL	25	J]	P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	0.40	U	ľ	MS	5	1.0	0.060	0.40
7440-62-2	VANADIUM, TOTAL	4.0	U	ľ	MS	5	5.0	0.50	4.0
7440-66-6	ZINC, TOTAL	0.82	J]	P	1	20	0.72	10

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF27B	Jun 2	27, 2014	14:55	File: HHF27B	Jun 27, 2014		15:04
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	6.0	5.70	95.0	MERCURY	5.0	4.76	95.2

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF27B	Jun	27, 2014	15:27	File: HHF27B	Jun	27, 2014	15:53
Analyte	True	Found	%R (1)	Analyte	True Found		%R (1)
MERCURY	5.0	4.74	94.8	MERCURY	5.0	5.15	103.0

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF27B	Jun 2	27, 2014	16:18	File: HHF27B	Jun	27, 2014	16:44
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	5.0	4.76	95.2	MERCURY	5.0	4.71	94.2

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF27B	Jun	27, 2014	17:10	File: HHF27B	Jun 27, 2014		17:34
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	5.0	5.12	102.4	MERCURY	5.0	4.87	97.4

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF30A	Jun 3	30, 2014	11:38	File: HHF30A	Jun 30, 2014		11:44	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
MERCURY	6.0	6.01	100.2	MERCURY	5.0	5.07	101.4	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF30A	Jun 3	30, 2014	12:07	File: HHF30A	Jun	30, 2014	12:33	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
MERCURY	5.0	5.46	109.2	MERCURY	5.0	5.34	106.8	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF30A	Jun :	30, 2014	13:12	File: HHF30A	Jun	30, 2014	13:37	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
MERCURY	5.0	5.20	104.0	MERCURY	5.0	5.12	102.4	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF30A	Jun 3	0, 2014	14:03	File: HHF30A	Jun	30, 2014	14:34
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	5.0	5.12	102.4	MERCURY	5.0	5.13	102.6

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHG04A	Jul 04, 2014		12:55	File: HHG04A	Jul 04, 2014		13:01
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	6.0	5.67	94.5	MERCURY	5.0	4.83	96.6

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHG04A	Jul 04, 2014		13:24	File: HHG04A	Jul 04, 2014		13:50
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	5.0	5.13	102.6	MERCURY	5.0	5.32	106.4

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHG04A	Jul 0	04, 2014	14:15	File: HHG04A	Jul 04, 2014		14:41
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	5.0	4.88	97.6	MERCURY	5.0	4.77	95.4

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHF23B	Jun 23, 2014		18:35	File: IHF23B	Jun 23, 2014		19:12
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	10000.0	10100.00	101.0	ALUMINUM	12500.0	12500.00	100.0
BARIUM	400.0	404.90	101.2	BARIUM	500.0	491.10	98.2
CALCIUM	10000.0	10090.00	100.9	CALCIUM	12500.0	12400.00	99.2
IRON	10000.0	10070.00	100.7	IRON	12500.0	12390.00	99.1
MAGNESIUM	10000.0	10160.00	101.6	MAGNESIUM	12500.0	12670.00	101.4
MANGANESE	400.0	405.30	101.3	MANGANESE	500.0	492.10	98.4
POTASSIUM	13600.0	13460.00	99.0	POTASSIUM	12500.0	12450.00	99.6
SODIUM	10000.0	10020.00	100.2	SODIUM	12500.0	12520.00	100.2
ZINC	400.0	405.10	101.3	ZINC	500.0	499.70	99.9

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHF23B	Jun 23, 2014		20:08	File: IHF23B	Jun 23, 2014		21:03
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12380.00	99.0	ALUMINUM	12500.0	12440.00	99.5
BARIUM	500.0	505.00	101.0	BARIUM	500.0	514.10	102.8
CALCIUM	12500.0	12830.00	102.6	CALCIUM	12500.0	13280.00	106.2
IRON	12500.0	12240.00	97.9	IRON	12500.0	12380.00	99.0
MAGNESIUM	12500.0	12520.00	100.2	MAGNESIUM	12500.0	12330.00	98.6
MANGANESE	500.0	487.00	97.4	MANGANESE	500.0	499.90	100.0
POTASSIUM	12500.0	12570.00	100.6	POTASSIUM	12500.0	13200.00	105.6
SODIUM	12500.0	12900.00	103.2	SODIUM	12500.0	13250.00	106.0
ZINC	500.0	480.60	96.1	ZINC	500.0	463.60	92.7

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV

File: IHF23B	Jun	23, 2014	21:58
Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12600.00	100.8
BARIUM	500.0	515.40	103.1
CALCIUM	12500.0	13390.00	107.1
IRON	12500.0	12570.00	100.6
MAGNESIUM	12500.0	12300.00	98.4
MANGANESE	500.0	511.50	102.3
POTASSIUM	12500.0	13370.00	107.0
SODIUM	12500.0	13270.00	106.2
ZINC	500.0	451.30	90.3

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHF26A Jun 26, 2014		13:25 File: IHF26A	Jun 26, 2014		14:02		
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	10000.0	10000.00	100.0	ALUMINUM	12500.0	12310.00	98.5
BARIUM	400.0	412.20	103.1	BARIUM	500.0	503.70	100.7
CALCIUM	10000.0	10020.00	100.2	CALCIUM	12500.0	12260.00	98.1
IRON	10000.0	9921.00	99.2	IRON	12500.0	12050.00	96.4
MAGNESIUM	10000.0	10100.00	101.0	MAGNESIUM	12500.0	12870.00	103.0
MANGANESE	400.0	400.80	100.2	MANGANESE	500.0	477.10	95.4
POTASSIUM	13600.0	13200.00	97.1	POTASSIUM	12500.0	11980.00	95.8
SODIUM	10000.0	10040.00	100.4	SODIUM	12500.0	12380.00	99.0
ZINC	400.0	411.90	103.0	ZINC	500.0	496.70	99.3

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHF26A	Jun 26, 2014		14:48	File: IHF26A	Jun 26, 2014		14:57	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
ALUMINUM	12500.0	12190.00	97.5	ALUMINUM	12500.0	12210.00	97.7	
BARIUM	500.0	503.10	100.6	BARIUM	500.0	503.00	100.6	
CALCIUM	12500.0	12210.00	97.7	CALCIUM	12500.0	12200.00	97.6	
IRON	12500.0	11850.00	94.8	IRON	12500.0	11890.00	95.1	
MAGNESIUM	12500.0	12970.00	103.8	MAGNESIUM	12500.0	13040.00	104.3	
MANGANESE	500.0	474.80	95.0	MANGANESE	500.0	476.10	95.2	
POTASSIUM	12500.0	11830.00	94.6	POTASSIUM	12500.0	11930.00	95.4	
SODIUM	12500.0	12280.00	98.2	SODIUM	12500.0	12310.00	98.5	
ZINC	500.0	495.80	99.2	ZINC	500.0	497.70	99.5	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHF26A	Jun 26, 2014		15:53 File: IHF26A		Jun 26, 2014		16:48	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
ALUMINUM	12500.0	12110.00	96.9	ALUMINUM	12500.0	12210.00	97.7	
BARIUM	500.0	499.50	99.9	BARIUM	500.0	497.40	99.5	
CALCIUM	12500.0	12100.00	96.8	CALCIUM	12500.0	12300.00	98.4	
IRON	12500.0	11680.00	93.4	IRON	12500.0	11820.00	94.6	
MAGNESIUM	12500.0	12980.00	103.8	MAGNESIUM	12500.0	13020.00	104.2	
MANGANESE	500.0	465.40	93.1	MANGANESE	500.0	474.00	94.8	
POTASSIUM	12500.0	11740.00	93.9	POTASSIUM	12500.0	11880.00	95.0	
SODIUM	12500.0	12190.00	97.5	SODIUM	12500.0	12190.00	97.5	
ZINC	500.0	493.30	98.7	ZINC	500.0	493.00	98.6	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHF26A	Jun 26, 2014		17:43	File: IHF26A	Jun 26, 2014		18:39	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
ALUMINUM	12500.0	12130.00	97.0	ALUMINUM	12500.0	12170.00	97.4	
BARIUM	500.0	500.60	100.1	BARIUM	500.0	499.20	99.8	
CALCIUM	12500.0	11970.00	95.8	CALCIUM	12500.0	12100.00	96.8	
IRON	12500.0	11630.00	93.0	IRON	12500.0	11720.00	93.8	
MAGNESIUM	12500.0	12820.00	102.6	MAGNESIUM	12500.0	12880.00	103.0	
MANGANESE	500.0	460.10	92.0	MANGANESE	500.0	462.10	92.4	
POTASSIUM	12500.0	11850.00	94.8	POTASSIUM	12500.0	11890.00	95.1	
SODIUM	12500.0	12290.00	98.3	SODIUM	12500.0	12310.00	98.5	
ZINC	500.0	489.80	98.0	ZINC	500.0	493.20	98.6	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHF26A	Jun 26, 2014		19:34	File: IHF26A	Jun 26, 2014		20:29	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
ALUMINUM	12500.0	12220.00	97.8	ALUMINUM	12500.0	12190.00	97.5	
BARIUM	500.0	502.90	100.6	BARIUM	500.0	516.00	103.2	
CALCIUM	12500.0	12070.00	96.6	CALCIUM	12500.0	12480.00	99.8	
IRON	12500.0	11620.00	93.0	IRON	12500.0	11580.00	92.6	
MAGNESIUM	12500.0	12850.00	102.8	MAGNESIUM	12500.0	13560.00	108.5	
MANGANESE	500.0	462.00	92.4	MANGANESE	500.0	468.40	93.7	
POTASSIUM	12500.0	11970.00	95.8	POTASSIUM	12500.0	12510.00	100.1	
SODIUM	12500.0	12450.00	99.6	SODIUM	12500.0	12770.00	102.2	
ZINC	500.0	493.60	98.7	ZINC	500.0	499.10	99.8	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHG02A	Jul 02, 2014		9:57	File: IHG02A	Jul 02, 2014		10:35
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	10000.0	10130.00	101.3	ALUMINUM	12500.0	12490.00	99.9
BARIUM	400.0	412.00	103.0	BARIUM	500.0	494.80	99.0
CALCIUM	10000.0	10160.00	101.6	CALCIUM	12500.0	12410.00	99.3
IRON	10000.0	10150.00	101.5	IRON	12500.0	12570.00	100.6
MAGNESIUM	10000.0	10210.00	102.1	MAGNESIUM	12500.0	12770.00	102.2
MANGANESE	400.0	411.90	103.0	MANGANESE	500.0	502.90	100.6
POTASSIUM	13600.0	13440.00	98.8	POTASSIUM	12500.0	12570.00	100.6
SODIUM	10000.0	10070.00	100.7	SODIUM	12500.0	12250.00	98.0
ZINC	400.0	411.70	102.9	ZINC	500.0	492.80	98.6

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHG02A	Jul 02, 2014		11:30	File: IHG02A	Jul 02, 2014		12:25	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
ALUMINUM	12500.0	12430.00	99.4	ALUMINUM	12500.0	12470.00	99.8	
BARIUM	500.0	492.30	98.5	BARIUM	500.0	494.80	99.0	
CALCIUM	12500.0	12420.00	99.4	CALCIUM	12500.0	12460.00	99.7	
IRON	12500.0	12580.00	100.6	IRON	12500.0	12580.00	100.6	
MAGNESIUM	12500.0	12740.00	101.9	MAGNESIUM	12500.0	12780.00	102.2	
MANGANESE	500.0	508.80	101.8	MANGANESE	500.0	506.00	101.2	
POTASSIUM	12500.0	12630.00	101.0	POTASSIUM	12500.0	12640.00	101.1	
SODIUM	12500.0	12180.00	97.4	SODIUM	12500.0	12240.00	97.9	
ZINC	500.0	492.50	98.5	ZINC	500.0	493.70	98.7	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV

File: IHG02A	Jul (13:20	
Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12440.00	99.5
BARIUM	500.0	488.90	97.8
CALCIUM	12500.0	12380.00	99.0
IRON	12500.0	12570.00	100.6
MAGNESIUM	12500.0	12660.00	101.3
MANGANESE	500.0	508.90	101.8
POTASSIUM	12500.0	12630.00	101.0
SODIUM	12500.0	12150.00	97.2
ZINC	500.0	490.40	98.1

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHG02C	Jul 02, 2014		23:51	File: IHG02C	Jul 03, 2014		0:28	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
ALUMINUM	10000.0	10160.00	101.6	ALUMINUM	12500.0	12650.00	101.2	
BARIUM	400.0	413.20	103.3	BARIUM	500.0	501.60	100.3	
CALCIUM	10000.0	10220.00	102.2	CALCIUM	12500.0	12690.00	101.5	
IRON	10000.0	10140.00	101.4	IRON	12500.0	12680.00	101.4	
MAGNESIUM	10000.0	10180.00	101.8	MAGNESIUM	12500.0	12860.00	102.9	
MANGANESE	400.0	411.40	102.8	MANGANESE	500.0	505.40	101.1	
POTASSIUM	13600.0	13470.00	99.0	POTASSIUM	12500.0	12520.00	100.2	
SODIUM	10000.0	10120.00	101.2	SODIUM	12500.0	12580.00	100.6	
ZINC	400.0	414.80	103.7	ZINC	500.0	502.90	100.6	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHG02C	Jul 03, 2014		1:24	File: IHG02C	Jul 03, 2014		2:19	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
ALUMINUM	12500.0	12650.00	101.2	ALUMINUM	12500.0	12500.00	100.0	
BARIUM	500.0	507.30	101.5	BARIUM	500.0	499.80	100.0	
CALCIUM	12500.0	12740.00	101.9	CALCIUM	12500.0	12380.00	99.0	
IRON	12500.0	12610.00	100.9	IRON	12500.0	12450.00	99.6	
MAGNESIUM	12500.0	12910.00	103.3	MAGNESIUM	12500.0	12640.00	101.1	
MANGANESE	500.0	502.80	100.6	MANGANESE	500.0	492.80	98.6	
POTASSIUM	12500.0	12490.00	99.9	POTASSIUM	12500.0	12410.00	99.3	
SODIUM	12500.0	12750.00	102.0	SODIUM	12500.0	12560.00	100.5	
ZINC	500.0	508.70	101.7	ZINC	500.0	497.80	99.6	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV

File: IHG02C	Jul	3:14	
Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12430.00	99.4
BARIUM	500.0	498.60	99.7
CALCIUM	12500.0	12310.00	98.5
IRON	12500.0	12290.00	98.3
MAGNESIUM	12500.0	12470.00	99.8
MANGANESE	500.0	488.30	97.7
POTASSIUM	12500.0	12290.00	98.3
SODIUM	12500.0	12560.00	100.5
ZINC	500.0	494.40	98.9

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: JHG01A	Jul 01, 2014		13:48 File: JHG01A	Jul 01, 2014		14:07	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	411.30	102.8	ALUMINUM	500.0	518.60	103.7
ANTIMONY	20.0	20.21	101.1	ANTIMONY	25.0	24.52	98.1
ARSENIC	20.0	20.27	101.4	ARSENIC	25.0	24.61	98.4
BERYLLIUM	20.0	19.55	97.8	BERYLLIUM	25.0	23.01	92.0
CADMIUM	20.0	20.00	100.0	CADMIUM	25.0	25.66	102.6
CALCIUM	4000.0	4215.00	105.4	CALCIUM	5000.0	5034.00	100.7
CHROMIUM	20.0	19.66	98.3	CHROMIUM	25.0	24.76	99.0
COBALT	20.0	20.31	101.5	COBALT	25.0	24.91	99.6
COPPER	20.0	20.05	100.3	COPPER	25.0	24.89	99.6
IRON	4000.0	4137.00	103.4	IRON	5000.0	5018.00	100.4
LEAD	20.0	20.28	101.4	LEAD	25.0	24.56	98.2
MAGNESIUM	4000.0	4233.00	105.8	MAGNESIUM	5000.0	5015.00	100.3
MOLYBDENUM	40.0	41.16	102.9	MOLYBDENUM	25.0	25.46	101.8
NICKEL	20.0	20.85	104.3	NICKEL	25.0	25.00	100.0
POTASSIUM	4000.0	4159.00	104.0	POTASSIUM	5000.0	4984.00	99.7
SELENIUM	20.0	20.42	102.1	SELENIUM	25.0	25.13	100.5
SILVER	20.0	20.34	101.7	SILVER	25.0	25.45	101.8
SODIUM	4000.0	4145.00	103.6	SODIUM	5000.0	4932.00	98.6
THALLIUM	20.0	20.65	103.3	THALLIUM	25.0	24.34	97.4
VANADIUM	20.0	19.84	99.2	VANADIUM	25.0	24.55	98.2

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: JHG01A	Jul 01, 2014		14:47 File: JHG01A	Jul 01, 2014		15:27	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	505.00	101.0	ALUMINUM	500.0	512.50	102.5
ANTIMONY	25.0	24.73	98.9	ANTIMONY	25.0	24.53	98.1
ARSENIC	25.0	24.58	98.3	ARSENIC	25.0	24.61	98.4
BERYLLIUM	25.0	22.93	91.7	BERYLLIUM	25.0	22.34	89.4●
CADMIUM	25.0	25.51	102.0	CADMIUM	25.0	25.79	103.2
CALCIUM	5000.0	5013.00	100.3	CALCIUM	5000.0	5027.00	100.5
CHROMIUM	25.0	24.79	99.2	CHROMIUM	25.0	24.66	98.6
COBALT	25.0	24.86	99.4	COBALT	25.0	24.67	98.7
COPPER	25.0	24.88	99.5	COPPER	25.0	24.77	99.1
IRON	5000.0	5066.00	101.3	IRON	5000.0	4980.00	99.6
LEAD	25.0	24.52	98.1	LEAD	25.0	24.81	99.2
MAGNESIUM	5000.0	5045.00	100.9	MAGNESIUM	5000.0	4974.00	99.5
MOLYBDENUM	25.0	24.89	99.6	MOLYBDENUM	25.0	25.12	100.5
NICKEL	25.0	25.06	100.2	NICKEL	25.0	24.81	99.2
POTASSIUM	5000.0	4969.00	99.4	POTASSIUM	5000.0	4976.00	99.5
SELENIUM	25.0	25.07	100.3	SELENIUM	25.0	24.72	98.9
SILVER	25.0	25.45	101.8	SILVER	25.0	25.50	102.0
SODIUM	5000.0	4968.00	99.4	SODIUM	5000.0	4865.00	97.3
THALLIUM	25.0	24.45	97.8	THALLIUM	25.0	25.00	100.0
VANADIUM	25.0	24.72	98.9	VANADIUM	25.0	24.46	97.8

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: JHG01A	Jul 01, 2014		16:09 File: JHG01A	Jul 01, 2014		16:51	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	527.90	105.6	ALUMINUM	500.0	516.10	103.2
ANTIMONY	25.0	24.55	98.2	ANTIMONY	25.0	24.89	99.6
ARSENIC	25.0	24.94	99.8	ARSENIC	25.0	25.06	100.2
BERYLLIUM	25.0	22.77	91.1	BERYLLIUM	25.0	22.47	89.9
CADMIUM	25.0	26.33	105.3	CADMIUM	25.0	26.00	104.0
CALCIUM	5000.0	5077.00	101.5	CALCIUM	5000.0	5117.00	102.3
CHROMIUM	25.0	25.28	101.1	CHROMIUM	25.0	25.05	100.2
COBALT	25.0	25.35	101.4	COBALT	25.0	25.12	100.5
COPPER	25.0	25.35	101.4	COPPER	25.0	25.29	101.2
IRON	5000.0	5129.00	102.6	IRON	5000.0	5099.00	102.0
LEAD	25.0	25.03	100.1	LEAD	25.0	24.70	98.8
MAGNESIUM	5000.0	5127.00	102.5	MAGNESIUM	5000.0	5066.00	101.3
MOLYBDENUM	25.0	25.53	102.1	MOLYBDENUM	25.0	25.65	102.6
NICKEL	25.0	25.19	100.8	NICKEL	25.0	25.14	100.6
POTASSIUM	5000.0	5061.00	101.2	POTASSIUM	5000.0	5027.00	100.5
SELENIUM	25.0	25.17	100.7	SELENIUM	25.0	25.60	102.4
SILVER	25.0	26.03	104.1	SILVER	25.0	26.11	104.4
SODIUM	5000.0	5032.00	100.6	SODIUM	5000.0	4970.00	99.4
THALLIUM	25.0	24.95	99.8	THALLIUM	25.0	24.92	99.7
VANADIUM	25.0	24.82	99.3	VANADIUM	25.0	25.07	100.3

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: JHG01A	Jul 01, 2014		17:32 File: JHG01A	Jul 01, 2014		18:1	
Analyte	True	Found	%R (1)	Analyte	True	Found	%F
ALUMINUM	500.0	517.80	103.6	ALUMINUM	500.0	509.50	10
ANTIMONY	25.0	24.86	99.4	ANTIMONY	25.0	24.49	9
ARSENIC	25.0	24.90	99.6	ARSENIC	25.0	24.82	9
BERYLLIUM	25.0	22.64	90.6	BERYLLIUM	25.0	22.08	8
CADMIUM	25.0	25.92	103.7	CADMIUM	25.0	25.62	102
CALCIUM	5000.0	5068.00	101.4	CALCIUM	5000.0	5000.00	100
CHROMIUM	25.0	25.25	101.0	CHROMIUM	25.0	24.61	98
COBALT	25.0	25.09	100.4	COBALT	25.0	24.57	98
COPPER	25.0	25.02	100.1	COPPER	25.0	24.34	9
IRON	5000.0	5070.00	101.4	IRON	5000.0	4987.00	99
LEAD	25.0	24.75	99.0	LEAD	25.0	24.43	9
MAGNESIUM	5000.0	5057.00	101.1	MAGNESIUM	5000.0	5021.00	100
MOLYBDENUM	25.0	25.50	102.0	MOLYBDENUM	25.0	24.98	99
NICKEL	25.0	25.19	100.8	NICKEL	25.0	24.40	91
POTASSIUM	5000.0	5030.00	100.6	POTASSIUM	5000.0	4975.00	99
SELENIUM	25.0	25.16	100.6	SELENIUM	25.0	24.74	99
SILVER	25.0	25.84	103.4	SILVER	25.0	25.39	10
SODIUM	5000.0	4926.00	98.5	SODIUM	5000.0	4904.00	98
THALLIUM	25.0	24.93	99.7	THALLIUM	25.0	24.55	9
VANADIUM	25.0	24.79	99.2	VANADIUM	25.0	24.26	9′

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV

File: JHG01A	Jul (01, 2014	18:56
Analyte	True	Found	%R (1)
ALUMINUM	500.0	520.10	104.0
ANTIMONY	25.0	25.01	100.0
ARSENIC	25.0	25.10	100.4
BERYLLIUM	25.0	22.68	90.7
CADMIUM	25.0	26.20	104.8
CALCIUM	5000.0	5098.00	102.0
CHROMIUM	25.0	25.34	101.4
COBALT	25.0	25.45	101.8
COPPER	25.0	25.20	100.8
IRON	5000.0	5096.00	101.9
LEAD	25.0	24.88	99.5
MAGNESIUM	5000.0	5136.00	102.7
MOLYBDENUM	25.0	25.64	102.6
NICKEL	25.0	25.26	101.0
POTASSIUM	5000.0	5095.00	101.9
SELENIUM	25.0	25.55	102.2
SILVER	25.0	26.01	104.0
SODIUM	5000.0	5023.00	100.5
THALLIUM	25.0	25.00	100.0
VANADIUM	25.0	24.94	99.8

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: ICV SAMPLE: CCV

File: JHG02A	Jul 02, 2014		15:33 File: JHG02A	Jul 02, 2014		15:52	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	401.30	100.3	ALUMINUM	500.0	515.70	103.1
ANTIMONY	20.0	20.14	100.7	ANTIMONY	25.0	24.48	97.9
ARSENIC	20.0	20.20	101.0	ARSENIC	25.0	25.25	101.0
BERYLLIUM	20.0	19.82	99.1	BERYLLIUM	25.0	23.23	92.9
CADMIUM	20.0	20.13	100.6	CADMIUM	25.0	26.03	104.1
CALCIUM	4000.0	4186.00	104.7	CALCIUM	5000.0	5105.00	102.1
CHROMIUM	20.0	19.69	98.5	CHROMIUM	25.0	25.34	101.4
COBALT	20.0	20.57	102.8	COBALT	25.0	25.38	101.5
COPPER	20.0	20.15	100.7	COPPER	25.0	25.29	101.2
IRON	4000.0	4150.00	103.8	IRON	5000.0	5098.00	102.0
LEAD	20.0	20.43	102.2	LEAD	25.0	25.08	100.3
MAGNESIUM	4000.0	4166.00	104.2	MAGNESIUM	5000.0	5150.00	103.0
MOLYBDENUM	40.0	41.48	103.7	MOLYBDENUM	25.0	26.06	104.2
NICKEL	20.0	20.83	104.1	NICKEL	25.0	25.61	102.4
POTASSIUM	4000.0	4112.00	102.8	POTASSIUM	5000.0	5006.00	100.1
SELENIUM	20.0	20.50	102.5	SELENIUM	25.0	25.53	102.1
SILVER	20.0	20.63	103.1	SILVER	25.0	25.98	103.9
SODIUM	4000.0	4109.00	102.7	SODIUM	5000.0	5048.00	101.0
THALLIUM	20.0	20.76	103.8	THALLIUM	25.0	25.09	100.4
VANADIUM	20.0	20.18	100.9	VANADIUM	25.0	25.12	100.5

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: JHG02A	Jul 02, 2014		16:32 File: JHG02A	Jul 02, 2014		17:11	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	520.10	104.0	ALUMINUM	500.0	517.30	103.5
ANTIMONY	25.0	24.37	97.5	ANTIMONY	25.0	24.35	97.4
ARSENIC	25.0	24.92	99.7	ARSENIC	25.0	24.90	99.6
BERYLLIUM	25.0	22.61	90.4	BERYLLIUM	25.0	22.08	88.3 ●
CADMIUM	25.0	26.03	104.1	CADMIUM	25.0	26.01	104.0
CALCIUM	5000.0	5100.00	102.0	CALCIUM	5000.0	5047.00	100.9
CHROMIUM	25.0	25.57	102.3	CHROMIUM	25.0	25.33	101.3
COBALT	25.0	25.52	102.1	COBALT	25.0	25.36	101.4
COPPER	25.0	25.50	102.0	COPPER	25.0	25.19	100.8
IRON	5000.0	5115.00	102.3	IRON	5000.0	5030.00	100.6
LEAD	25.0	24.92	99.7	LEAD	25.0	24.95	99.8
MAGNESIUM	5000.0	5144.00	102.9	MAGNESIUM	5000.0	5107.00	102.1
MOLYBDENUM	25.0	25.57	102.3	MOLYBDENUM	25.0	25.52	102.1
NICKEL	25.0	25.29	101.2	NICKEL	25.0	25.50	102.0
POTASSIUM	5000.0	5065.00	101.3	POTASSIUM	5000.0	4991.00	99.8
SELENIUM	25.0	25.67	102.7	SELENIUM	25.0	25.45	101.8
SILVER	25.0	25.96	103.8	SILVER	25.0	25.92	103.7
SODIUM	5000.0	5082.00	101.6	SODIUM	5000.0	4960.00	99.2
THALLIUM	25.0	24.95	99.8	THALLIUM	25.0	24.94	99.8
VANADIUM	25.0	25.38	101.5	VANADIUM	25.0	25.13	100.5

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: JHG02A	Jul (02, 2014	17:52	File: JHG02A	Jul (02, 2014	18:33
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	526.70	105.3	ALUMINUM	500.0	521.30	104.3
ANTIMONY	25.0	24.58	98.3	ANTIMONY	25.0	24.36	97.4
ARSENIC	25.0	25.09	100.4	ARSENIC	25.0	24.95	99.8
BERYLLIUM	25.0	21.73	86.9●	BERYLLIUM	25.0	21.79	87.2 ●
CADMIUM	25.0	26.24	105.0	CADMIUM	25.0	26.18	104.7
CALCIUM	5000.0	5119.00	102.4	CALCIUM	5000.0	5106.00	102.1
CHROMIUM	25.0	25.51	102.0	CHROMIUM	25.0	25.63	102.5
COBALT	25.0	25.27	101.1	COBALT	25.0	25.41	101.6
COPPER	25.0	25.47	101.9	COPPER	25.0	25.21	100.8
IRON	5000.0	5093.00	101.9	IRON	5000.0	5128.00	102.6
LEAD	25.0	25.21	100.8	LEAD	25.0	25.25	101.0
MAGNESIUM	5000.0	5153.00	103.1	MAGNESIUM	5000.0	5118.00	102.4
MOLYBDENUM	25.0	25.87	103.5	MOLYBDENUM	25.0	25.79	103.2
NICKEL	25.0	25.44	101.8	NICKEL	25.0	25.38	101.5
POTASSIUM	5000.0	5071.00	101.4	POTASSIUM	5000.0	4982.00	99.6
SELENIUM	25.0	25.19	100.8	SELENIUM	25.0	25.44	101.8
SILVER	25.0	26.24	105.0	SILVER	25.0	25.97	103.9
SODIUM	5000.0	4990.00	99.8	SODIUM	5000.0	5042.00	100.8
THALLIUM	25.0	25.23	100.9	THALLIUM	25.0	25.34	101.4
VANADIUM	25.0	25.33	101.3	VANADIUM	25.0	25.48	101.9

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

SAMPLE: CCV

File: JHG02A	Jul (02, 2014	19:07
Analyte	True	Found	%R (1)
ALUMINUM	500.0	527.60	105.5
ANTIMONY	25.0	24.79	99.2
ARSENIC	25.0	25.28	101.1
BERYLLIUM	25.0	22.45	89.8
CADMIUM	25.0	26.58	106.3
CALCIUM	5000.0	5151.00	103.0
CHROMIUM	25.0	25.55	102.2
COBALT	25.0	25.73	102.9
COPPER	25.0	25.42	101.7
IRON	5000.0	5163.00	103.3
LEAD	25.0	25.41	101.6
MAGNESIUM	5000.0	5192.00	103.8
MOLYBDENUM	25.0	26.13	104.5
NICKEL	25.0	25.45	101.8
POTASSIUM	5000.0	5000.00	100.0
SELENIUM	25.0	25.57	102.3
SILVER	25.0	26.57	106.3
SODIUM	5000.0	4987.00	99.7
THALLIUM	25.0	25.35	101.4
VANADIUM	25.0	25.36	101.4

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: JHG03A	Jul (03, 2014	17:48	File: JHG03A	Jul (03, 2014	18:08
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	395.00	98.8	ALUMINUM	500.0	499.10	99.8
ARSENIC	20.0	19.87	99.4	ARSENIC	25.0	24.73	98.9
BERYLLIUM	20.0	19.71	98.6	BERYLLIUM	25.0	24.82	99.3
CALCIUM	4000.0	4129.00	103.2	CALCIUM	5000.0	5055.00	101.1
IRON	4000.0	4099.00	102.5	IRON	5000.0	5083.00	101.7
MAGNESIUM	4000.0	4164.00	104.1	MAGNESIUM	5000.0	4997.00	99.9
MOLYBDENUM	40.0	40.92	102.3	MOLYBDENUM	25.0	25.08	100.3
POTASSIUM	4000.0	4059.00	101.5	POTASSIUM	5000.0	4926.00	98.5
SODIUM	4000.0	4065.00	101.6	SODIUM	5000.0	5019.00	100.4

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: JHG03A	Jul (03, 2014	18:47	File: JHG03A	Jul (03, 2014	19:26
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	499.90	100.0	ALUMINUM	500.0	513.50	102.7
ARSENIC	25.0	24.15	96.6	ARSENIC	25.0	24.72	98.9
BERYLLIUM	25.0	23.12	92.5	BERYLLIUM	25.0	23.89	95.6
CALCIUM	5000.0	4980.00	99.6	CALCIUM	5000.0	5051.00	101.0
IRON	5000.0	5058.00	101.2	IRON	5000.0	5102.00	102.0
MAGNESIUM	5000.0	4998.00	100.0	MAGNESIUM	5000.0	5166.00	103.3
MOLYBDENUM	25.0	24.71	98.8	MOLYBDENUM	25.0	25.09	100.4
POTASSIUM	5000.0	4867.00	97.3	POTASSIUM	5000.0	4978.00	99.6
SODIUM	5000.0	4912.00	98.2	SODIUM	5000.0	5033.00	100.7

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: JHG03A	Jul (03, 2014	20:07	File: JHG03A	Jul (03, 2014	20:48
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	502.80	100.6	ALUMINUM	500.0	497.30	99.5
ARSENIC	25.0	24.56	98.2	ARSENIC	25.0	24.57	98.3
BERYLLIUM	25.0	24.77	99.1	BERYLLIUM	25.0	25.21	100.8
CALCIUM	5000.0	5033.00	100.7	CALCIUM	5000.0	4989.00	99.8
IRON	5000.0	5061.00	101.2	IRON	5000.0	5042.00	100.8
MAGNESIUM	5000.0	5078.00	101.6	MAGNESIUM	5000.0	5089.00	101.8
MOLYBDENUM	25.0	24.52	98.1	MOLYBDENUM	25.0	24.39	97.6
POTASSIUM	5000.0	4948.00	99.0	POTASSIUM	5000.0	4962.00	99.2
SODIUM	5000.0	5015.00	100.3	SODIUM	5000.0	5065.00	101.3

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: JHG05A	Jul (05, 2014	14:36	File: JHG05A	Jul (05, 2014	14:56
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	399.00	99.8	ALUMINUM	500.0	499.40	99.9
BERYLLIUM	20.0	19.92	99.6	BERYLLIUM	25.0	23.99	96.0
CALCIUM	4000.0	4047.00	101.2	CALCIUM	5000.0	4963.00	99.3
IRON	4000.0	4061.00	101.5	IRON	5000.0	4947.00	98.9
MAGNESIUM	4000.0	4202.00	105.1	MAGNESIUM	5000.0	4945.00	98.9
MOLYBDENUM	40.0	40.91	102.3	MOLYBDENUM	25.0	24.93	99.7
POTASSIUM	4000.0	4122.00	103.1	POTASSIUM	5000.0	4944.00	98.9
SODIUM	4000.0	4074.00	101.8	SODIUM	5000.0	4853.00	97.1

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: JHG05A	Jul (05, 2014	15:35	File: JHG05A	Jul (05, 2014	16:14
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	504.50	100.9	ALUMINUM	500.0	504.80	101.0
BERYLLIUM	25.0	23.88	95.5	BERYLLIUM	25.0	23.79	95.2
CALCIUM	5000.0	5029.00	100.6	CALCIUM	5000.0	5053.00	101.1
IRON	5000.0	5052.00	101.0	IRON	5000.0	5022.00	100.4
MAGNESIUM	5000.0	5008.00	100.2	MAGNESIUM	5000.0	5009.00	100.2
MOLYBDENUM	25.0	24.87	99.5	MOLYBDENUM	25.0	24.90	99.6
POTASSIUM	5000.0	5003.00	100.1	POTASSIUM	5000.0	5045.00	100.9
SODIUM	5000.0	4836.00	96.7	SODIUM	5000.0	4890.00	97.8

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF27B	Jun	15:02		
Analyte	TRUE	FOUND	% R	
MERCURY	0.2	0.22	110.0	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHF30A	Jun	30, 2014	11:42	
Analyte	TRUE	FOUND	% R	
MERCURY	0.2	0.19	95.0	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: HHG04A	Jul (12:59	
Analyte	TRUE	FOUND	% R
MERCURY	0.2	0.23	115.0

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHF23B	Jun	Jun 23, 2014		
Analyte	TRUE	FOUND	% R	
ALUMINUM	300.0	319.90	106.6	
BARIUM	5.0	5.66	113.2	
CALCIUM	100.0	102.90	102.9	
IRON	100.0	99.96	100.0	
MAGNESIUM	100.0	107.80	107.8	
MANGANESE	5.0	4.53	90.6	
POTASSIUM	1000.0	1021.00	102.1	
SODIUM	1000.0	1062.00	106.2	
ZINC	20.0	20.60	103.0	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHF26A	Jun	Jun 26, 2014		
Analyte	TRUE	FOUND	% R	
ALUMINUM	300.0	313.90	104.6	
BARIUM	5.0	5.52	110.4	
CALCIUM	100.0	99.97	100.0	
IRON	100.0	109.50	109.5	
MAGNESIUM	100.0	108.90	108.9	
MANGANESE	5.0	5.98	119.6	
POTASSIUM	1000.0	1025.00	102.5	
SODIUM	1000.0	1064.00	106.4	
ZINC	20.0	20.78	103.9	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHG02A	Jul 02, 2014		10:06	
Analyte	TRUE	FOUND	% R	
ALUMINUM	300.0	307.10	102.4	
BARIUM	5.0	5.37	107.4	
CALCIUM	100.0	103.10	103.1	
IRON	100.0	105.30	105.3	
MAGNESIUM	100.0	112.40	112.4	
MANGANESE	5.0	5.33	106.6	
POTASSIUM	1000.0	1064.00	106.4	
SODIUM	1000.0	1066.00	106.6	
ZINC	20.0	20.38	101.9	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: IHG02C	Jul 03, 2014		00:00	
Analyte	TRUE	FOUND	% R	
ALUMINUM	300.0	315.00	105.0	
BARIUM	5.0	5.48	109.6	
CALCIUM	100.0	103.00	103.0	
IRON	100.0	95.39	95.4	
MAGNESIUM	100.0	96.10	96.1	
MANGANESE	5.0	5.18	103.6	
POTASSIUM	1000.0	1004.00	100.4	
SODIUM	1000.0	1064.00	106.4	
ZINC	20.0	20.41	102.1	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

File: JHG01A	Jul 01, 2014		13:54	
Analyte	TRUE	FOUND	% R	
ALUMINUM	60.0	61.67	102.8	
ANTIMONY	0.2	0.22	110.0	
ARSENIC	1.0	0.89	89.0	
BERYLLIUM	0.2	0.19	95.0	
CADMIUM	0.2	0.20	100.0	
CALCIUM	20.0	17.59	87.9	
CHROMIUM	1.0	0.95	95.0	
COBALT	0.2	0.22	110.0	
COPPER	0.6	0.63	105.0	
IRON	20.0	21.00	105.0	
LEAD	0.2	0.20	100.0	
MAGNESIUM	20.0	20.32	101.6	
MOLYBDENUM	1.0	0.96	96.0	
NICKEL	0.4	0.39	97.5	
POTASSIUM	200.0	201.80	100.9	
SELENIUM	1.0	0.90	90.0	
SILVER	0.2	0.21	105.0	
SODIUM	200.0	212.50	106.3	
THALLIUM	0.2	0.21	105.0	
VANADIUM	1.0	0.95	95.0	

Lab Name: Katahdin Analytical Services SDG Name: WE53-7

Concentration Units: ug/L

-	•			
File: JHG02A	Jul 02, 2014		15:39	
Analyte	TRUE	FOUND	% R	
ALUMINUM	60.0	62.08	103.5	
ANTIMONY	0.2	0.20	100.0	
ARSENIC	1.0	1.01	101.0	
BERYLLIUM	0.2	0.20	100.0	
CADMIUM	0.2	0.20	100.0	
CALCIUM	20.0	20.80	104.0	
CHROMIUM	1.0	0.97	97.0	
COBALT	0.2	0.21	105.0	
COPPER	0.6	0.63	105.0	
IRON	20.0	21.35	106.8	
LEAD	0.2	0.21	105.0	
MAGNESIUM	20.0	20.54	102.7	
MOLYBDENUM	1.0	1.04	104.0	
NICKEL	0.4	0.43	107.5	
POTASSIUM	200.0	210.80	105.4	
SELENIUM	1.0	0.95	95.0	
SILVER	0.2	0.20	100.0	
SODIUM	200.0	212.80	106.4	
THALLIUM	0.2	0.21	105.0	
VANADIUM	1.0	0.99	99.0	