

Groundwater Sample Results, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG SC38627

Naval Station Newport Newport, Rhode Island

August 2019

```
"1714824-BLK1","EPA 300.0","RES","1714824-BLK1","ESAI","14797-55-8","Nitrate as N","0.100","mg/l","U","0.009","MDL",,"TARGET",,,"0.100","RDL","YES","-99",,"5","5","0.100",
"1714824-BLK1", "EPA 300.0", "RES", "1714824-BLK1", "ESAI", "14808-79-8", "Sulfate as
SO4","1.00","mg/l","U","0.307","MDL",,"TARGET",,,"1.00","RDL","YES","-99",,"5","5","1.00",
"1714824-BLK1", "EPA 300.0", "RES", "1714824-BLK1", "ESAI", "16887-00-6", "Chloride", "0.0900", "mg/l", "J", "0.0897", "MDL", "TARGET", , , "1.00", "RDL", "YES", "-99", , "5", "5", "0.100",
"1714824-BS1", "EPA 300.0", "RES", "1714824-BS1", "ESAI", "14797-55-8", "Nitrate as N", "2.12", "mg/l", , "0.009", "MDL", , "TARGET", "106", , "0.100", "RDL", "YES", "2.00", , "5", "5", "0.100",
"1714824-BS1", "EPA 300.0", "RES", "1714824-BS1", "ESAI", "14808-79-8", "Sulfate as SO4", "21.0", "mg/l", "0.307", "MDL", "TARGET", "105", "1.00", "RDL", "YES", "20.0", "5", "5", "1.00",
"1714824-BS1", "EPA 300.0", "RES", "1714824-BS1", "ESAI", "16887-00-
6","Chloride","20.7","mg/l",,"0.0897","MDL",,"TARGET","104",,"1.00","RDL","YES","20.0",,"5","5","0.100",
 "1714824-SRM1", "EPA 300.0", "RES", "1714824-SRM1", "ESAI", "14797-55-8", "Nitrate as
N","2.71","mg/I",,"0.009","MDL",,"TARGET","108",,"0.100","RDL","YES","2.50",,"5","5","0.100",
"1714824-SRM1","EPA 300.0","RES","1714824-SRM1","ESAI","14808-79-8","Sulfate as SO4","26.8","mg/l",,"0.307","MDL",,"TARGET","107",,"1.00","RDL","YES","25.0",,"5","5","1.00",
"1714824-SRM1","EPA 300.0","RES","1714824-SRM1","ESAI","16887-00-6","Chloride","25.7","mg/l",,"0.0897","MDL",,"TARGET","103",,"1.00","RDL","YES","25.0",,"5","5","0.100",
"1714921-BLK1", "SM18-22 5210B", "RES", "1714921-BLK1", "ESAI", "NA", "Biochemical Oxygen Demand (5-day)", "2.97", "mg/l", "BOD1, U", "2.74", "MDL", "TARGET", "3.00", "RDL", "YES", "-99", "300", "300", "2.97",
"1714921-BLK2", "SM18-22 5210B", "RES", "1714921-BLK2", "ESAI", "NA", "Biochemical Oxygen Demand (5-
day)","2.97","mg/l","U","2.74","MDL",,"TARGET",,,"3.00","RDL","YES","-99",,"300","300","2.97",
"1714921-BS1", "SM18-22 5210B", "RES", "1714921-BS1", "ESAI", "NA", "Biochemical Oxygen Demand (5-
day)","179","mg/l",,"2.74","MDL",,"TARGET","90",,"100","RDL","YES","198",,"300","300","300","2.97",
"1714921-SRM1", "SM18-22 5210B", "RES", "1714921-SRM1", "ESAI", "NA", "Biochemical Oxygen Demand (5-day)", "55.0", "mg/l", "2.74", "MDL", "TARGET", "85", "30.0", "RDL", "YES", "64.5", "300", "300", "2.97", "1714921-SRM2", "SM18-22 5210B", "RES", "1714921-SRM2", "ESAI", "NA", "Biochemical Oxygen Demand (5-
day)","47.0","mg/l",,"2.74","MDL",,"TARGET","73",,"30.0","RDL","YES","64.5",,"300","300","2.97",
"1714942-BLK1", "SM2320B (97, 11)", "RES", "1714942-BLK1", "ESAI", "NA", "Total Alkalinity", "1.87", "mg/l CaCO3", "J", "1.05", "MDL", "TARGET", "4.00", "RDL", "YES", "-99", "50", "50", "3.00", "1714942-BLK2", "SM2320B (97, 11)", "RES", "1714942-BLK2", "ESAI", "NA", "Total Alkalinity", "3.00", "mg/l CaCO3", "U", "1.05", "MDL", "TARGET", "4.00", "RDL", "YES", "-99", "50", "50", "3.00", "3.00", "1714942-BLK2", "SM2320B (97, 11)", "TARGET", "7.00", "RDL", "YES", "-99", "50", "50", "3.00", "3.00", "1714942-BLK2", "50", "50", "3.00", "3.00", "1714942-BLK2", "50", "50", "50", "3.00", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "3.00", "50", "50", "50", "50", "3.00", "50", "3.00", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50
"1714942-BLK3", "SM2320B (97, 11)", "RES", "1714942-BLK3", "ESAI", "NA", "Total Alkalinity", "3.00", "mg/l CaCO3", "U", "1.05", "MDL", "TARGET", , , "4.00", "RDL", "YES", "-99", , "50", "50", "3.00",
"1714942-BLK4", "SM2320B (97, 11)", "RES", "1714942-BLK4", "ESAI", "NA", "Total Alkalinity", "3.00", "mg/l CaCO3", "U", "1.05", "MDL", , "TARGET", , , "4.00", "RDL", "YES", "-99", , "50", "50", "3.00", "1714942-BS1", "SM2320B (97, 11)", "RES", "1714942-BS1", "ESAI", "NA", "Total Alkalinity", "50.9", "mg/l
CaCO3",,"1.05","MDL",,"TARGET","102",,"4.00","RDL","YES","50.0",,"50","50","3.00",
"1714942-BS2", "SM2320B (97, 11)", "RES", "1714942-BS2", "ESAI", "NA", "Total Alkalinity", "50.9", "mg/l
CaCO3",,"1.05","MDL",,"TARGET","102",,"4.00","RDL","YES","50.0",,"50","50","3.00",
"1714942-BS3", "SM2320B (97, 11)", "RES", "1714942-BS3", "ESAI", "NA", "Total Alkalinity", "51.3", "mg/l CaCO3", "1.05", "MDL", "TARGET", "103", "4.00", "RDL", "YES", "50.0", "50", "50", "3.00",
"1714942-BS4", "SM2320B (97, 11)", "RES", "1714942-BS4", "ESAI", "NA", "Total Alkalinity", "50.8", "mg/I
CaCO3",,"1.05","MDL",,"TARGET","102",,"4.00","RDL","YES","50.0",,"50","50","3.00",
"1714942-SRM1", "SM2320B (97, 11)", "RES", "1714942-SRM1", "ESAI", "NA", "Total Alkalinity", "132", "mg/l
CaCO3",,"2.62","MDL",,"TARGET","107",,"10.0","RDL","YES","124",,"20","50","7.50",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","1146-65-2","Naphthalene-
d8","40.0","�g/ml",,"-99","NA",,"ISTD","173",,"-99","NA","YES","40.0",,"980","1","-99", "1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","120-12-
7","Anthracene","1.02","�g/l","U","0.620","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1", "SW846 8270D", "RES", "1715009-BLK1", "ESAI", "129-00-0", "Pyrene", "1.02", " g/l", "U", "0.622", "MDL", "TARGET", "5.10", "RDL", "YES", "-99", "980", "1", "1.02", "1715009-BLK1", "SW846 8270D", "RES", "1715009-BLK1", "ESAI", "15067-26-2", "Acenaphthened10", "40.0", " g/ml", "-99", "NA", "ISTD", "156", "-99", "NA", "YES", "40.0", "980", "1", "-99", "1715009-BLK1", "SW846 8270D", "RES", "1715009-BLK1", "ESAI", "1517-22-2", "Phenanthrened10", "40.0", "10.0", "10.0", "10.0", "11.0", "10.0", "10.0", "11.0", "10.0", "10.0", "11.0", "10.0", "10.0", "11.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "
d10","40.0","\rightarrowg/ml",,"-99","NA",,"ISTD","143",,"-99","NA","YES","40.0",,"980","1","-99",
```

```
"1715009-BLK1", "SW846 8270D", "RES", "1715009-BLK1", "ESAI", "1520-96-3", "Perylene-
 d12","40.0","

g/ml",,"-99","NA",,"ISTD","131",,"-99","NA","YES","40.0",,"980","1","-99",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","1718-51-0","Terphenyl-
"1/15009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","1718-51-0","Terphenyldl4","31.8","

g/l",,"-99","NA",,"SUR","62",,"-99","NA","YES","51.0",,"980","1","-99",

"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","1719-03-5","Chrysene-d12","40.0","

g/ml",,"-99","NA",,"ISTD","136",,"-99","NA","YES","40.0",,"980","1","-99",

"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","191-24-2","Benzo (g,h,i)

perylene","1.02","

g/l","U","0.541","MDL",,"TARGET",,,"5.10","RDL","YES","-99","980","1","1.02",

"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","193-39-5","Indeno (1,2,3-cd)

pyrene","1.02","

g/l","U","0.592","MDL","TARGET",,,"5.10","RDL","YES","-99","980","1","1.02",

"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","205-99-2","Benzo (b)

fluoranthene","1.02","

g/l","U","0.446","MDL","TARGET",","5.10","RDL","YES","-99","980","1","1.02",

"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","205-99-2","Benzo (b)
 fluoranthene","1.02","�g/l","U","0.446","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","206-44-
0","Fluoranthene","1.02","�g/l","U","0.651","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","207-08-9","Benzo (k)
 fluoranthene","1.02","

g/I","U","0.490","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
 "1715009-BLK1", "SW846 8270D", "RES", "1715009-BLK1", "ESAI", "208-96-
 8","Acenaphthylene","1.02","�g/l","U","0.697","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02
 "1715009-BLK1", "SW846 8270D", "RES", "1715009-BLK1", "ESAI", "218-01-
 9","Chrysene","1.02","�g/l","U","0.543","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
 "1715009-BLK1", "SW846 8270D", "RES", "1715009-BLK1", "ESAI", "321-60-8", "2-
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","321-60-8","2-Fluorobiphenyl","19.9","$\oting{q}/\text{!","SGC","-99","NA",,"SUR","39","-99","NA","YES","51.0",,"980","1","-99",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","4165-60-0","Nitrobenzene-d5","22.2","$\oting{q}/\text{!","-99","NA","SUR","43",,"-99","NA","YES","51.0","980","1","-99",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","50-32-8","Benzo (a)
pyrene","1.02","$\oting{q}/\text{!","U","0.573","MDL",,"TARGET",,,"5.10","RDL","YES","-99","980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","53-70-3","Benzo (a)
anthracene","1.02","$\oting{q}/\text{!","U","0.5459","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","56-55-3","Benzo (a)
anthracene","1.02","$\oting{q}/\text{!","U","0.547","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","83-32-
9","Acenaphthene","1.02","$\oting{q}/\text{!","U","0.705","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","85-01-
8","Phenanthrene","1.02","$\oting{q}/\text{!",U","0.598","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","86-73-
7","Fluorene","1.02","$\oting{q}/\text{!",U","0.624","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","86-73-
7","Fluorene","1.02","$\oting{q}/\text{!",U","0.624","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","86-73-
7","Fluorene","1.02","$\oting{q}/\text{!",U","0.624","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02",
"1715009-BLK1","SW846 8270D","RES","1715009-BLK1","ESAI","90-12-0","1-
Methylnaphthalene","1.02","$\oting{q}/\text{!",U",U",0.748","MDL",,"TARGET",,"5.10","RDL","YES","-99",,"980","1","1.02",
"171.02"
 Methylnaphthalene","1.02","

g/l","U","0.748","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02"
 "1715009-BLK1", "SW846 8270D", "RES", "1715009-BLK1", "ESAI", "91-20-3", "Naphthalene", "1.02", "�g/l", "U", "0.699", "MDL", "TARGET", ", "5.10", "RDL", "YES", "-99", "980", "1", "1.02",
  "1715009-BLK1", "SW846 8270D", "RES", "1715009-BLK1", "ESAÎ", "91-57-6", "2-
 Methylnaphthalene","1.02","

g/l","U","0.586","MDL",,"TARGET",,,"5.10","RDL","YES","-99",,"980","1","1.02"
 "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "120-12-
 7","Anthracene","27.0","�g/I","QC2","0.614","MDL",,"TARGET","53",,"5.05","RDL","YES","50.5",,"990","1","1
  .01",
 d10","40.0","

g/ml",,"-99","NA",,"ISTD","152",,"-99","NA","YES","40.0",,"990","1","-99",
 "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "1520-96-3", "Perylene-
```

```
d12","40.0","

g/ml",,"-99","NA",,"ISTD","142",,"-99","NA","YES","40.0",,"990","1","-99",

"1715009-BS1","SW846 8270D","RES","1715009-BS1","ESAI","1718-51-0","Terphenyl-
"1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "1718-51-0", "Terphenyldl4", "41.3", " g/l", "-99", "NA", "SUR", "82", "-99", "NA", "YES", "50.5", "990", "1", "-99", "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "1719-03-5", "Chrysenedl2", "40.0", " g/ml", "-99", "NA", "ISTD", "171", "-99", "NA", "YES", "40.0", "990", "1", "-99", "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "191-24-2", "Benzo (g,h,i) perylene", "24.3", " g/l", "QC2", "0.535", "MDL", "TARGET", "48", "5.05", "RDL", "YES", "50.5", "990", "1", "1.01", "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "193-39-5", "Indeno (1,2,3-cd) pyrene", "26.7", " g/l", "0.586", "MDL", "TARGET", "53", "5.05", "RDL", "YES", "50.5", "990", "1", "1.01", "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "205-99-2", "Benzo (b) fluoranthene", "41.3", " g/l", "0.441", "MDL", "TARGET", "82", "5.05", "RDL", "YES", "50.5", "990", "1", "1.01", "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "206-44-0", "Fluoranthene", "28.6", " g/l", "0.644", "MDL", "TARGET", "57", "5.05", "RDL", "YES", "50.5", "990", "1", "1.01", "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "206-44-0", "Fluoranthene", "28.6", " g/l", "0.644", "MDL", "TARGET", "57", "5.05", "RDL", "YES", "50.5", "990", "1", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01", "1.01",
 "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "207-08-9", "Benzo (k) fluoranthene", "33.8", "�g/l",, "0.485", "MDL",, "TARGET", "67",, "5.05", "RDL", "YES", "50.5", "990", "1", "1.01",
 "1715009-BS1","SW846 8270D","RES","1715009-BS1","ESAI","208-96-
 8","Acenaphthylene","25.2","

g/I",,"0.690","MDL",,"TARGET","50",,"5.05","RDL","YES","50.5",,"990","1","1.
 01",
  "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "218-01-
 9","Chrysene","30.3","�g/l",,"0.537","MDL",,"TARGET","60",,"5.05","RDL","YES","50.5",,"990","1","1.01",
"1715009-BS1","SW846 8270D","RES","1715009-BS1","ESAI","321-60-8","2-
Fluorobiphenyl","30.6","�g/l",,"-99","NA",,"SUR","61",,"-99","NA","YES","50.5",,"990","1","-99",
"1715009-BS1","SW846 8270D","RES","1715009-BS1","ESAI","4165-60-0","Nitrobenzene-
d5","32.2","�g/l",,"-99","NA",,"SUR","64",,"-99","NA","YES","50.5",,"990","1","-99",
"1715009-BS1","SW844, 9370D","BES","1715009-BS1","ESAI","FSAI","FSAI","FSAI","FSAI","FSAI","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","990","1","-99","NA","YES","1","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","-99","NA","-99","-99","NA","-99","-99","NA","-99","NA","-99","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA","-99","NA"
 "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "50-32-8", "Benzo (a) pyrene", "34.3", "�g/l", "0.568", "MDL", "TARGET", "68", "5.05", "RDL", "YES", "50.5", "990", "1", "1715009-BS1", "ESAI", "53-70-3", "Dibenzo (a,h)
 anthracene","30.4","�g/l",,"0.541","MDL",,"TARGET","60",,"5.05","RDL","YES","50.5",,"990","1","1.01", "1715009-BS1","SW846 8270D","RES","1715009-BS1","ESAI","83-32-
 9","Acenaphthene","24.6","

g/I",,"0.698","MDL",,"TARGET","49",,"5.05","RDL","YES","50.5",,"990","1","1.01
  "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "85-01-
 8","Phenanthrene","26.6","

g/I","QC2","0.592","MDL",,"TARGET","53",,"5.05","RDL","YES","50.5",,"990","1"
  ."1.01",
  "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "86-73-
 7","Fluorene","27.1","�g/l",,"0.618","MDL",,"TARGET","54",,"5.05","RDL","YES","50.5",,"990","1","1.01",
 "1715009-BS1", "SW846 8270D", "RES", "1715009-BS1", "ESAI", "90-12-0", "1-
 Methylnaphthalene","22.7","

g/I",,"0.740","MDL",,"TARGET","45",,"5.05","RDL","YES","50.5",,"990","1","1.0
  1",
 "1715009-BS1","SW846 8270D","RES","1715009-BS1","ESAI","91-20-
3","Naphthalene","21.5","�g/l",,"0.692","MDL",,"TARGET","43",,"5.05","RDL","YES","50.5",,"990","1","1.01",
 "1715009-BS1", "$W846 8270D", "RES", "1715009-BS1", "ESAI", "91-57-6", "2-
 1",
 "1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "1146-65-2", "Naphthalened8", "40.0", "�g/ml", "-99", "NA", "ISTD", "146", "-99", "NA", "YES", "40.0", "990", "1", "-99",
 "1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "120-12-
  7","Anthracene","30.4","�g/l",,"0.614","MDL",,"TARGET","60","12","5.05","RDL","YES","50.5",,"990","1","1.0
 "1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","129-00-0","Pyrene","29.6","�g/l",,"0.616","MDL",,"TARGET","59","3","5.05","RDL","YES","50.5",,"990","1","1.01",
  "1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "15067-26-2", "Acenaphthene-
 d10","40.0","\rightarrowg/ml",,"-99","NA",,"ISTD","141",,"-99","NA","YES","40.0",,"990","1","-99",
 "1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "1517-22-2", "Phenanthrene-
```

```
d10","40.0","�g/ml",,"-99","NA",,"ISTD","123",,"-99","NA","YES","40.0",,"990","1","-99", "1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","1520-96-3","Perylene-d12","40.0","�g/ml",,"-99","NA",,"ISTD","94",,"-99","NA","YES","40.0",,"990","1","-99", "1715009-BSD1","ESAI","1718-51-0","Terphenyl-
"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","1719-03-5","Chrysene-d12","40.0","

"g/ml",,"-99","NA",,"ISTD","132",,"-99","NA","YES","40.0",,"990","1","-99",

"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","191-24-2","Benzo (g,h,i)

perylene","25.5","

"g/l",,"0.535","MDL",,"TARGET","50","5","5.05","RDL","YES","50.5",,"990","1","1.01",

"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","193-39-5","Indeno (1,2,3-cd)
pyrene","29.0","

g/l",,"0.586","MDL",,"TARGET","57","8","5.05","RDL","YES","50.5",,"990","1","1.01",
"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","205-99-2","Benzo (b)
"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","206-44-
0","Fluoranthene","29.1","�g/l",,"0.644","MDL",,"TARGET","58","2","5.05","RDL","YES","50.5",,"990","1","1.01",
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "207-08-9", "Benzo (k)
fluoranthene","45.6","

g/I","QR2","0.485","MDL",,"TARGET","90","30","5.05","RDL","YES","50.5",,"990","1",
"1.01",
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "208-96-
8","Acenaphthylene","28.2","�g/l",,"0.690","MDL",,"TARGET","56","11","5.05","RDL","YES","50.5",,"990","1"
 ."1.01",
"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","218-01-
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "321-60-8", "2-
Fluorobiphenyl", "33.5", "�g/l",,"-99", "NA", "SUR", "66",,"-99", "NA", "YES", "50.5", "990", "1", "-99",
"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","4165-60-0","Nitrobenzene-d5","35.1","�g/l",,"-99","NA",,"SUR","70",,"-99","NA","YES","50.5",,"990","1","-99",
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "50-32-8", "Benzo (a)
"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","50-32-8","Benzo (a)
pyrene","37.4","�g/l",,"0.568","MDL",,"TARGET","74","9","5.05","RDL","YES","50.5",,"990","1","1.01",
"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","53-70-3","Dibenzo (a,h)
anthracene","29.9","�g/l",,"0.455","MDL",,"TARGET","59","4","5.05","RDL","YES","50.5",,"990","1","1.01",
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "56-55-3", "Benzo (a)
"1715009-BSD1","SW846 8270D","RES","1715009-BSD1","ESAI","83-32-9","Acenaphthene","25.3","�g/I",,"0.698","MDL",,"TARGET","50","3","5.05","RDL","YES","50.5",,"990","1","1
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "85-01-
"1","1.01",
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "86-73-
7","Fluorene","28.7","�g/l",,"0.618","MDL",,"TARGET","57","5","5.05","RDL","YES","50.5",,"990","1","1.01",
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "90-12-0", "1-
Methylnaphthalene","24.9","

g/I",,"0.740","MDL",,"TARGET","49","9","5.05","RDL","YES","50.5",,"990","1","
1.01",
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "91-20-
3","Naphthalene","22.7","�g/l",,"0.692","MDL",,"TARGET","45","5","5.05","RDL","YES","50.5",,"990","1","1.0
"1715009-BSD1", "SW846 8270D", "RES", "1715009-BSD1", "ESAI", "91-57-6", "2-
Methylnaphthalene","29.9","

g/I",,"0.580","MDL",,"TARGET","59","0.7","5.05","RDL","YES","50.5",,"990","1"
 ,"1.01",
"1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "1024-57-3", "Heptachlor epoxide", "0.020", "�g/I", "U", "0.015", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "1024-57-3", "Heptachlor epoxide [2C]", "0.020", "�g/I", "U", "0.015", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "990", "10", "0.020",
```

```
**Int15010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "1031-07-8", "Endosulfan sulfate", "0.020", *\[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\] \[
\]
       "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "1031-07-8", "Endosulfan
    "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "50-29-3", "4,4'-DDT (p,p')", "0.030", @g/l", "U", "0.018", "MDL", "TARGET", "0.040", "RDL", "YES", "-99", "990", "10", "0.030", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "50-29-3", "4,4'-DDT (p,p') [2C]", "0.030", @g/l", "U", "0.022", "MDL", "TARGET", "0.040", "RDL", "YES", "-99", "990", "10", "0.030", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "5103-71-9", "alpha-Chlordane", "0.020", @g/l", "U", "0.016", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "5103-71-9", "alpha-Chlordane [2C]", "0.020", @g/l", "U", "0.017", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "5103-74-2", "Chlordane (gamma) (traps)", "0.020", "Ag/l", "II", "0.016", "MDL", "TARGET", "0.020", "PDL", "YES", "-99", "990", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020"
     ketone","0.020","

g/l","U","0.017","MDL",,"TARGET",,,"0.040","RDL","YES","-99",,"990","10","0.020",

"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","53494-70-5","Endrin ketone

[2C]","0.020","

g/l","U","0.018","MDL",,"TARGET",,,"0.040","RDL","YES","-99",,"990","10","0.020",

"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","57-74-
      9","Chlordane","0.066","�g/I","U","0.052","MDL",,"TARGET",,,"0.066","RDL","YES","-99",,"990","10","0.066"
      "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "57-74-9", "Chlordane
     [2C]","0.066","

g/I","U","0.062","MDL",,"TARGET",,,"0.066","RDL","YES","-99",,"990","10","0.066",
```

```
"1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "58-89-9", "gamma-BHC (Lindane)", "0.020", "�g/l", "U", "0.017", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "58-89-9", "gamma-BHC (Lindane) [2C]", "0.020", "�g/l", "U", "0.018", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "60-57-1", "Dieldrin", "0.020", "�g/l", "U", "0.017", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "60-57-1", "Dieldrin [2C]", "0.020", "�g/l", "U", "0.019", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "72-20-8", "Endrin "0.020", "�g/l", "U", "0.019", "MDL", "TARGET", "0.040", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "72-20-8", "Endrin [2C]", "0.020", "�g/l", "U", "0.020", "MDL", "TARGET", "0.040", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "72-43-5", "Methoxychlor", "0.020", "�g/l", "U", "0.018", "MDL", "TARGET", "0.040", "RDL", "YES", "-99", "990", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020", "0.020",
 5","Methoxychlor","0.020","�g/l","U","0.018","MDL",,"TARGET",,,"0.040","RDL","YES","-99",,"990","10","0.0
  20",
  "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "72-43-5", "Methoxychlor
[2C]","0.020","

g/I","U","0.018","MDL",,"TARGET",,,"0.040","RDL","YES","-99",,"990","10","0.020",

"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","72-54-8","4,4'-DDD

(p,p')","0.020","

g/I","U","0.019","MDL",,"TARGET",,,"0.040","RDL","YES","-99",,"990","10","0.020",

"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","72-54-8","4,4'-DDD (p,p')

[2C]","0.020","

g/I","U","0.018","MDL",,"TARGET",,,"0.040","RDL","YES","-99",,"990","10","0.020",

"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","72-55-9","4,4'-DDE
"1/15010-BLK1","SW846 8081B","RES","1/15010-BLK1","ESAI","/2-55-9","4,4'-DDE (p,p')","0.020","  
$\phigs\sqrt{1}\text{","U","0.018","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"990","10","0.020",

"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","72-55-9","4,4'-DDE (p,p')

[2C]","0.020","  
$\phigs\sqrt{9}\text{g}\text{\colored}\text{","U","0.018","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"990","10","0.020",

"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","7421-93-4","Endrin aldehyde

[2C]","0.020","  
$\phigs\sqrt{9}\text{\colored}\text{\colored}\text{","TARGET",,,"0.040","RDL","YES","-99",,"990","10","0.020",

"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","76-44-

8" "Heptachlor" "0.020"  
$\phigs\sqrt{1}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\colored}\text{\
 8","Heptachlor","0.020","

g/I","U","0.020","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"990","10","0.020
 "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "76-44-8", "Heptachlor [2C]", "0.020", "�g/l", "U", "0.020", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "990", "10", "0.020", "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "8001-35-
 2","Toxaphene","0.505","

g/I","U","0.331","MDL",,"TARGET",,,"0.505","RDL","YES","-99",,"990","10","0.505"
 "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "8001-35-2", "Toxaphene [2C]", "0.505", "�g/I", "U", "0.290", "MDL", "TARGET", "0.505", "RDL", "YES", "-99", "990", "10", "0.505",
  "1715010-BLK1", "SW846 8081B", "RES", "1715010-BLK1", "ESAI", "877-09-8", "2,4,5,6-TC-M-Xylene
  (IS)","0.020","�g/ml",,"-99","NA",,"ISTD","113",,"-99","NA","YES","10.0",,"990","10","-99",
"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","877-09-8","2,4,5,6-TC-M-Xylene (IS)
 [2C]","0.020","

g/ml",,"-99","NA",,"ISTD","109",,"-99","NA","YES","10.0",,"990","10","-99",

"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","959-98-8","Endosulfan
 I","0.020","

g/I","U","0.016","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"990","10","0.020",
"1715010-BLK1","SW846 8081B","RES","1715010-BLK1","ESAI","959-98-8","Endosulfan I
[2C]","0.020","

g/l","U","0.016","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"990","10","0.020",

"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","1024-57-3","Heptachlor

epoxide","0.388","

g/l","0.016","MDL",,"TARGET","76",,"0.020","RDL","YES","0.510",,"980","10","0.020",

"1715010-BS1","SW846 8081B","BES","1715010-BS1","ESAI","1024-57-3","Heptachlor
"1715010-BS1", "$W846 8081B", "RES", "1715010-BS1", "ESAI", "1024-57-3", "Heptachlor epoxide
[2C]", "0.383", "$\delta g/l", "0.015", "MDL", "TARGET", "75", "0.020", "RDL", "YES", "0.510", "980", "10", "0.020",
"1715010-BS1", "$W846 8081B", "RES", "1715010-BS1", "ESAI", "1031-07-8", "Endosulfan
sulfate", "0.415", "$\delta g/l", "0.020", "MDL", "TARGET", "81", "0.041", "RDL", "YES", "0.510", "980", "10", "0.020",
"1715010-BS1", "$W846 8081B", "RES", "1715010-BS1", "ESAI", "1031-07-8", "Endosulfan sulfate
[2C]", "0.367", "$\delta g/l", "0.017", "MDL", "TARGET", "72", "0.041", "RDL", "YES", "0.510", "980", "10", "0.020",
"1715010-BS1", "$W846 8081B", "RES", "1715010-BS1", "ESAI", "10386-84-2", "4,4-DB-Octafluorobiphenyl
 (Sr)","0.205","

g/I",,"-99","NA",,"SUR","101",,"-99","NA","YES","0.204",,"980","10","-99",
```

```
"1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "10386-84-2", "4,4-DB-Octafluorobiphenyl (Sr)
  [2C]","0.206","�g/l",,"-99","NA",,"SUR","101",,"-99","NA","YES","0.204",,"980","10","-99",
"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","15972-60-
8","Alachlor","0.468","�g/l",,"0.019","MDL",,"TARGET","92",,"0.020","RDL","YES","0.510",,"980","10","0.020
  "1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","15972-60-8","Alachlor [2C]","0.387","

g/l",,"0.018","MDL",,"TARGET","76",,"0.020","RDL","YES","0.510",,"980","10","0.020",

"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","2051-24-3","Decachlorobiphenyl (Sr)","0.180","

g/l","-99","NA",,"SUR","88",,"-99","NA","YES","0.204",,"980","10","-99",

"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","2051-24-3","Decachlorobiphenyl (Sr)
 "1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","33213-65-9","Endosulfan II

[2C]","0.371","

g/I",,"0.016","MDL",,"TARGET","73",,"0.041","RDL","YES","0.510",,"980","10","0.020",

"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","50-29-3","4,4'-DDT

(p,p')","0.398","

g/I",,"0.018","MDL",,"TARGET","78",,"0.041","RDL","YES","0.510",,"980","10","0.031",

"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","50-29-3","4,4'-DDT (p,p')

[2C]","0.334","

g/I",,"0.022","MDL",,"TARGET","65",,"0.041","RDL","YES","0.510",,"980","10","0.031",

"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","5103-71-9","alpha-

Chlordage" "0.393" "

G/I" "0.016" "MDI" "TARGET" "77" "0.020" "RDI" "YES" "0.510" "980" "10" "0.00"
| 1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "5103-71-9", "alpha-Chlordane", "0.393", "\phigogyl", "0.016", "MDL", "TARGET", "77", "0.020", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "5103-71-9", "alpha-Chlordane [2C]", "0.390", "\phigogyl", "0.017", "MDL", "TARGET", "76", "0.020", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "5103-74-2", "Chlordane (gamma) (trans)", "0.385", "\phigogyl", "0.016", "MDL", "TARGET", "75", "0.020", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "5103-74-2", "Chlordane (gamma) (trans) [2C]", "0.381", "\phigolygel", "0.014", "MDL", "TARGET", "75", "0.020", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "53494-70-5", "Endrin ketone", "0.407", "\phigolygel", "0.018", "MDL", "TARGET", "80", "0.041", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "53494-70-5", "Endrin ketone [2C]", "0.343", "\phigolygel", "0.018", "MDL", "TARGET", "67", "0.041", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "58-89-9", "gamma-BHC (Lindane)", "0.390", "\phigolygel", "0.018", "MDL", "TARGET", "76", "0.020", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "58-89-9", "gamma-BHC (Lindane) "0.390", "\phigolygel", "0.018", "MDL", "TARGET", "76", "0.020", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "58-89-9", "gamma-BHC (Lindane) "0.390", "\phigolygel", "0.018", "MDL", "TARGET", "76", "0.020", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "58-89-9", "gamma-BHC (Lindane) "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "0.020", "10", "
   "1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "60-57-1", "Dieldrin
  [2C]","0.376","�g/l",,"0.019","MDL",,"TARGET","74",,"0.020","RDL","YES","0.510",,"980","10","0.020", "1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","72-20-
```

```
8","Endrin","0.436","�g/l",,"0.020","MDL",,"TARGET","85",,"0.041","RDL","YES","0.510",,"980","10","0.020", "1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","72-20-8","Endrin [2C]","0.423","�g/l",,"0.020","MDL",,"TARGET","83",,"0.041","RDL","YES","0.510",,"980","10","0.020", "1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","72-43-
 5","Methoxychlor","0.447","

g/l",,"0.019","MDL",,"TARGET","88",,"0.041","RDL","YES","0.510",,"980","10","
aldehyde","0.445","�g/l",,"0.020","MDL",,"TARGET","87",,"0.041","RDL","YES","0.510",,"980","10","0.020", "1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","7421-93-4","Endrin aldehyde [2C]","0.400","�g/l",,"0.018","MDL",,"TARGET","78",,"0.041","RDL","YES","0.510",,"980","10","0.020", "1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","76-44-8","Heptachlor","0.376","�g/l",,"0.020","MDL",,"TARGET","74",,"0.020","RDL","YES","0.510",,"980","10","0.020","0.020",""
"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","76-44-8","Heptachlor
[2C]","0.376","
g/l",,"0.020","MDL",,"TARGET","74",,"0.020","RDL","YES","0.510",,"980","10","0.020",
"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","877-09-8","2,4,5,6-TC-M-Xylene
(IS)","0.020","
g/ml",,"-99","NA",,"ISTD","112",,"-99","NA","YES","10.0",,"980","10","-99",
"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","877-09-8","2,4,5,6-TC-M-Xylene
(IS)
[2C]","0.020","
g/ml",,"-99","NA",,"ISTD","109",,"-99","NA","YES","10.0",,"980","10","-99",
"1715010-BS1","SW846 8081B","RES","1715010-BS1","ESAI","959-98-8","Endosulfan
I" "0.396" "Ag/l" "0.017" "MDI" "TAPGET" "78" "0.020" "PDI" "YES" "0.510" "980" "10" "0.020"
 I","0.396","

g/I",,"0.017","MDL",,"TARGET","78",,"0.020","RDL","YES","0.510",,"980","10","0.020",
"1715010-BS1", "SW846 8081B", "RES", "1715010-BS1", "ESAI", "959-98-8", "Endosulfan I [2C]", "0.396", "�g/I", "0.016", "MDL", "TARGET", "78", "0.020", "RDL", "YES", "0.510", "980", "10", "0.020", "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "1024-57-3", "Heptachlor epoxide", "0.384", "�g/I", "0.015", "MDL", "TARGET", "76", "1", "0.020", "RDL", "YES", "0.505", "990", "10", "0.020"
  "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "1024-57-3", "Heptachlor epoxide"
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "1024-57-3", "Heptachior epoxide [2C]", "0.378", og/l", "0.015", "MDL", "TARGET", "75", "1", "0.020", "RDL", "YES", "0.505", "990", "10", "0.020", "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "1031-07-8", "Endosulfan sulfate", "0.401", og/l", "0.020", "MDL", "TARGET", "79", "3", "0.040", "RDL", "YES", "0.505", "990", "10", "0.020", "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "1031-07-8", "Endosulfan sulfate [2C]", "0.357", og/l", "0.017", "MDL", "TARGET", "71", "3", "0.040", "RDL", "YES", "0.505", "990", "10", "0.020", "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "10386-84-2", "4,4-DB-Octafluorobiphenyl (Sr)", "0.204", og/l", "-99", "NA", "SUR", "101", "-99", "NA", "YES", "0.202", "990", "10", "-99", "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "10386-84-2", "4,4-DB-Octafluorobiphenyl (Sr) [2C]" "0.205", "990", "10", "-99", "NA", "YES", "0.202", "990", "10", "-99", "10", "-99", "10", "-99", "NA", "YES", "0.202", "990", "10", "-99", "10", "-99", "NA", "YES", "0.202", "990", "10", "-99", "10", "-99", "10", "-99", "NA", "YES", "0.202", "990", "10", "-99", "10", "-99", "10", "-99", "NA", "YES", "0.202", "990", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "NA", "YES", "0.202", "990", "10", "-99", "10", "-99", "10", "-99", "NA", "YES", "0.202", "990", "10", "-99", "10", "-99", "10", "-99", "NA", "YES", "0.202", "990", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "10", "-99", "1
  (Sr) [2C]","0.205","�g/l",,"-99","NA",,"SUR","101",,"-99","NA","YES","0.202",,"990","10","-99",
  "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "15972-60-
 8","Alachlor","0.460","

g/I",,"0.019","MDL",,"TARGET","91","2","0.020","RDL","YES","0.505",,"990","10","0.
  "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "15972-60-8", "Alachlor
  [2C]","0.387","�g/I",,"0.018","MDL",,"TARGET","77","0.1","0.020","RDL","YES","0.505",,"990","10","0.020",
 "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "2051-24-3", "Decachlorobiphenyl (Sr)", "0.172", "og/l", "-99", "NA", "SUR", "85", "-99", "NA", "YES", "0.202", "990", "10", "-99", "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "2051-24-3", "Decachlorobiphenyl (Sr) [2C]", "0.144", "og/l", "-99", "NA", "SUR", "71", "-99", "NA", "YES", "0.202", "990", "10", "-99", "1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "309-00-
 2","Aldrin","0.369","

g/I",,"0.016","MDL",,"TARGET","73","0.7","0.020","RDL","YES","0.505",,"990","10","0.0
```

```
20",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "309-00-2", "Aldrin
[2C]","0.390"," og/l",,"0.019","MDL",,"TARGET","77","0.6","0.020","RDL","YES","0.505",,"990","10","0.020", "1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","319-84-6","alpha-
BHC","0.376","

g/I",,"0.012","MDL",,"TARGET","74","0.3","0.020","RDL","YES","0.505",,"990","10","0.020",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "319-84-6", "alpha-BHC"
[2C]","0.351","�g/l",,"0.018","MDL",,"TARGET","69","0.5","0.020","RDL","YES","0.505",,"990","10","0.020", "1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","319-85-7","beta-
BHC","0.385"," og/l",,"0.015","MDL",,"TARGET","76","0.8","0.020","RDL","YES","0.505",,"990","10","0.020", "1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","319-85-7","beta-BHC
[2C]","0.386","�g/I",,"0.019","MDL",,"TARGET","76","2","0.020","RDL","YES","0.505",,"990","10","0.020",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "319-86-8", "delta-
II","0.397","

9g/l",,"0.020","MDL",,"TARGET","79","3","0.040","RDL","YES","0.505",,"990","10","0.020",

"1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","33213-65-9","Endosulfan II
[2C]","0.363"," og/l",,"0.016","MDL",,"TARGET","72","2","0.040","RDL","YES","0.505",,"990","10","0.020", "1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","50-29-3","4,4'-DDT
(p,p')","0.390","�g/l",,"0.018","MDL",,"TARGET","77","2","0.040","RDL","YES","0.505",,"990","10","0.030", "1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","50-29-3","4,4'-DDT (p,p')
[2C]","0.330"," g/l",,"0.022","MDL",,"TARGET","65","1","0.040","RDL","YES","0.505",,"990","10","0.030", "1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","5103-71-9","alpha-
Chlordane","0.391","  g/l",,"0.016","MDL",,"TARGET","77","0.4","0.020","RDL","YES","0.505",,"990","10","0.
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "5103-71-9", "alpha-Chlordane
[2C]","0.387","�g/l",,"0.017","MDL",,"TARGET","77","0.9","0.020","RDL","YES","0.505",,"990","10","0.020",
"1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","5103-74-2","Chlordane (gamma) (trans)","0.381","�g/l",,"0.016","MDL",,"TARGET","75","1","0.020","RDL","YES","0.505",,"990","10","0.020", "1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","5103-74-2","Chlordane (gamma) (trans) [2C]","0.377","�g/l",,"0.014","MDL",,"TARGET","75","1","0.020","RDL","YES","0.505",,"990","10","0.020", "1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","53494-70-5","Endrin ketone","0.400","�g/l",,"0.017","MDL",,"TARGET","79","2","0.040","RDL","YES","0.505",,"990","10","0.020", "1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","53494-70-5","Endrin ketone
[2C]","0.336","�g/l",,"0.018","MDL",,"TARGET","66","2","0.040","RDL","YES", 0.505",,"990","10","0.020",
"1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","58-89-9","gamma-BHC
(Lindane)","0.388","♦g/l",,"0.017","MDL",,"TARGET","77","0.5","0.020","RDL","YES","0.505",,"990","10","0.
020",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "58-89-9", "gamma-BHC (Lindane)
[2C]","0.397","�g/I",,"0.018","MDL",,"TARGET","79","0.6","0.020","RDL","YĔS","0.505",,"990","10","0.020",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "60-57-
1","Dieldrin","0.383","�g/l",,"0.017","MDL",,"TARGET","76","2","0.020","RDL","YES","0.505",,"990","10","0.0 20",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "60-57-1", "Dieldrin
[2C]","0.375","�g/I",,"0.019","MDL",,"TARGET","74","0.3","0.020","RDL","YES","0.505",,"990","10","0.020",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "72-20-
8","Endrin","0.418","�g/l",,"0.019","MDL",,"TARGET","83","4","0.040","RDL","YES","0.505",,"990","10","0.02
0",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "72-20-8", "Endrin
[2C]","0.422","�g/I",,"0.020","MDL",,"TARGET","84","0.2","0.040","RDL","YES","0.505",,"990","10","0.020",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "72-43-
5","Methoxychlor","0.421","�g/l",,"0.018","MDL",,"TARGET","83","6","0.040","RDL","YES","0.505",,"990","10
","0.020",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "72-43-5", "Methoxychlor
"1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","72-54-8","4,4'-DDD
```

```
(p,p')","0.384","

g/l",,"0.019","MDL",,"TARGET","76","3","0.040","RDL","YES","0.505",,"990","10","0.020",

"1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","72-54-8","4,4'-DDD (p,p')
[2C]","0.382","�g/l",,"0.018","MDL",,"TARGET","76","0.7","0.020","RDL","YES","0.505",,"990","10","0.020",
"1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","7421-93-4","Endrin
aldehyde","0.435","

g/l",,"0.019","MDL",,"TARGET","86","2","0.040","RDL","YES","0.505",,"990","10","0.02
0",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "7421-93-4", "Endrin aldehyde
[2C]","0.392","�g/l",,"0.018","MDL",,"TARGET","78","2","0.040","RDL","YES","0.505",,"990","10","0.020",
"1715010-BSD1","SW846 8081B","RES","1715010-BSD1","ESAI","76-44-
8","Heptachlor","0.374","�g/l",,"0.020","MDL",,"TARGET","74","0.7","0.020","RDL","YES","0.505",,"990","10
","0.020",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "76-44-8", "Heptachlor
[2C]","0.376","

g/I",,"0.020","MDL",,"TARGET","75","0.05","0.020","RDL","YES","0.505",,"990","10","0.020"
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "877-09-8", "2,4,5,6-TC-M-Xylene (IS)", "0.020", "�g/ml", "-99", "NA", "ISTD", "113", "-99", "NA", "YES", "10.0", "990", "10", "-99", "1715010-BSD1", "ESAI", "877-09-8", "2,4,5,6-TC-M-Xylene (IS)
[2C]","0.020","  g/ml",,"-99","NA",,"ISTD","109",,"-99","NA","YES","10.0",,"990","10","-99",
"1715010-BSD1", "SW846 8081B", "RES", "1715010-BSD1", "ESAI", "959-98-8", "Endosulfan I", "0.392", "�g/I", "0.016", "MDL", "TARGET", "78", "1", "0.020", "RDL", "YES", "0.505", "990", "10", "0.020", "1715010-BSD1", "ESAI", "959-98-8", "Endosulfan I
[2C]","0.389","�g/l",,"0.016","MDL",,"TARGET","77","2","0.020","RDL","YES","0.505",,"990","10","0.020", "1715125-BLK1","SW846 6010C","RES","1715125-BLK1","ESAI","7429-90-5","Aluminum","0.0500","mg/l","U","0.0206","MDL",,"TARGET",,,"0.0500","RDL","YES","-99",,"50","50","0.05
"1715125-BLK1", "SW846 6010C", "RES", "1715125-BLK1", "ESAI", "7439-95-
4","Magnesium","0.0100","mg/l","U","0.0088","MDL",,"TARGET",,,"0.0200","RDL","YES","-99",,"50","50","0.0
100",
"1715125-BLK1", "SW846 6010C", "RES", "1715125-BLK1", "ESAI", "7440-09-
7","Potassium","0.250","mg/l","U","0.120","MDL",,"TARGET",,,"1.00","RDL","YES","-99",,"50","50","0.250",
"1715125-BLK1", "SW846 6010C", "RES", "1715125-BLK1", "ESAI", "7440-23-
5","Sodium","0.250","mg/l","U","0.0785","MDL",,"TARGET",,,"0.500","RDL","YES","-99",,"50","50","0.250",
"1715125-BLK1", "SW846 6010C", "RES", "1715125-BLK1", "ESAI", "7440-70-
2","Calcium","0.0500","mg/l","U","0.0142","MDL",,"TARGET",,,"0.200","RDL","YES","-99",,"50","50","0.0500"
"1715125-BS1","SW846 6010C","RES","1715125-BS1","ESAI","7429-90-
5","Aluminum","2.44","mg/l",,"0.0206","MDL",,"TARGET","97",,"0.0500","RDL","YES","2.50",,"50","50","0.0500",
"1715125-BS1", "SW846 6010C", "RES", "1715125-BS1", "ESAI", "7439-95-
4","Magnesium","2.57","mg/l",,"0.0088","MDL",,"TARGET","103",,"0.0200","RDL","YES","2.50",,"50","50","0.
0100",
"1715125-BS1", "SW846 6010C", "RES", "1715125-BS1", "ESAI", "7440-09-
7","Potassium","24.1","mg/l",,"0.120","MDL",,"TARGET","96",,"1.00","RDL","YES","25.0",,"50","50","0.250",
"1715125-BS1","SW846 6010C","RES","1715125-BS1","ESAI","7440-23-
5","Sodium","11.9","mg/l",,"0.0785","MDL",,"TARGET","95",,"0.500","RDL","YES","12.5",,"50","50","0.250",
"1715125-BS1", "SW846 6010C", "RES", "1715125-BS1", "ESAI", "7440-70-
2","Calcium","13.0","mg/l",,"0.0142","MDL",,"TARGET","104",,"0.200","RDL","YES","12.5",,"50","50","0.0500
"1715125-BSD1","SW846 6010C","RES","1715125-BSD1","ESAI","7429-90-
5","Aluminum","2.42","mg/l",,"0.0206","MDL",,"TARGET","97","0.9","0.0500","RDL","YES","2.50",,"50","50","
0.0500"
"1715125-BSD1", "SW846 6010C", "RES", "1715125-BSD1", "ESAI", "7439-95-
4","Magnesium","2.54","mg/l",,"0.0088","MDL",,"TARGET","102","1","0.0200","RDL","YES","2.50",,"50","50",
```

```
"0.0100",
 "1715125-BSD1", "SW846 6010C", "RES", "1715125-BSD1", "ESAI", "7440-09-
 7","Potassium","23.6","mg/l",,"0.120","MDL",,"TARGET","94","2","1.00","RDL","YES","25.0",,"50","50","0.250
 "1715125-BSD1", "SW846 6010C", "RES", "1715125-BSD1", "ESAI", "7440-23-
 5","Sodium","11.7","mg/l",,"0.0785","MDL",,"TARGET","94","2","0.500","RDL","YES","12.5",,"50","50","0.250
 "1715125-BSD1", "SW846 6010C", "RES", "1715125-BSD1", "ESAI", "7440-70-
 2","Calcium","12.8","mg/l",,"0.0142","MDL",,"TARGET","102","2","0.200","RDL","YES","12.5",,"50","50","0.05
 "1715127-BLK1", "EPA 245.1/7470A", "RES", "1715127-BLK1", "ESAI", "7439-97-
 6","Mercury","0.00020","mg/I","U","0.00013","MDL",,"TARGET",,,"0.00020","RDL","YES","-99",,"20","20","0.0
 "1715127-BS1", "EPA 245.1/7470A", "RES", "1715127-BS1", "ESAI", "7439-97-
 6","Mercury","0.00467","mg/I",,"0.00013","MDL",,"TARGET","93",,"0.00020","RDL","YES","0.00500",,"20","20
 ","0.00020"
 "1715197-BLK1", "SW846 8260C", "RES", "1715197-BLK1", "ESAI", "100-41-
 4","Ethylbenzene","0.5","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",
"1715197-BLK1", "SW846 8260C", "RES", "1715197-BLK1", "ESAI", "100-42-
 5","Styrene","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
 "1715197-BLK1", "SW846 8260C", "RES", "1715197-BLK1", "ESAI", "10061-01-5", "cis-1,3-
Dichloropropene","0.5","�g/l","U","0.4","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","10061-02-6","trans-1,3-
Dichloropropene","0.5","

g/l","U","0.3","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","106-46-7","1,4-
Dichlorobenzene","0.5","

g/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","0.5",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","106-93-4","1,2-Dibromoethane
"1715197-BLK1", "SW846 8260C", "RES", "1715197-BLK1", "ESAI", "108-88-
3","Toluene","1.0","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","108-90-
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","120-82-1","1,2,4-
Trichlorobenzene","1.0","

"9/I","U","0.4","MDL","TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","124-48-
1","Dibromochloromethane","0.5","

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","127-18-
4","Tetrachloroethene","1.0","

"9/I","U","0.6","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","156-59-2","cis-1,2-

Dichloroethene","0.5","

"9/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","156-60-5","trans-1,2-

Dichloroethene","1.0","

"9/I","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","1634-04-4","Methyl tert-butyl ether","0.5","

"0.5","

"0.5","

"0.5","

"0.5","

"0.5","

"0.5","

"0.5","

"0.5","

"0.5","

"0.5","

"0.5","

"1715197-BLK1","

"17151
ether","0.5","�g/l","U","0.2","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","17060-07-0","1,2-Dichloroethane-d4","51.0","�g/l",,"-99","NA",,"SUR","102",,"-99","NA","YES","50.0",,"5","5","-99",
 "1715197-BLK1", "SW846 8260C", "RES", "1715197-BLK1", "ESAI", "179601-23-1", "m, p-
Xylene","1.0","

g/l","U","0.4","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","1.0",
 "1715197-BLK1", "SW846 8260C", "RES", "1715197-BLK1", "ESAI", "1868-53-
```

```
7","Dibromofluoromethane","51.2","�g/l",,"-99","NA",,"SUR","102",,"-99","NA","YES","50.0",,"5","5","-99", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","2037-26-5","Toluene-d8","52.1","�g/l",,"-99","NA",,"SUR","104",,"-99","NA","YES","50.0",,"5","5","-99", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","3114-55-4","Chlorobenzene-
 d5","50.0","�g/l",,"-99","NA",,"ISTD","97",,"-99","NA","YES","50.0",,"5","5","-99",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","3855-82-1","1,4-Dichlorobenzene-
  d4","50.0","�g/l",,"-99","NA",,"ISTD","101",,"-99","NA","YES","50.0",,"5","5","-99",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","460-00-4","4-
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-00-3","Chloroethane","2.0","�g/l","U","0.6","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-01-4","Vinyl chloride","1.0","�g/l","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-09-2","Methylene chloride","2.0", �g/l","U","0.7","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-15-0","Carbon disulfide","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","1.0", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-25-2","Bromoform","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-27-4","Bromodichloromethane","0.5","�g/l","U","0.4","MDI",,"TARGET","0.5","RDI","YES","-99","5","5","1.0", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-27-4","Bromodichloromethane","0.5","�g/l","U","0.4","MDI","TARGET","0.5","RDI","YES","-99","5","5","5","1.0","1.0","RDI","YES","-99","5","5","5","1.0","1.0","RDI","YES","-99","5","5","5","1.0","1.0","RDI","YES","-99","5","5","5","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1.0","1
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-27-
4","Bromodichloromethane","0.5","  

g/l","U","0.4","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-34-3","1,1-
Dichloroethane","1.0","  

g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-35-4","1,1-
Dichloroethene","1.0","  

g/l","U","0.7","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-69-4","Trichlorofluoromethane (Freon 11)","1.0","  

g/l","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","75-1-8","Dichlorodifluoromethane (Freon 113)","1.0","  

g/l","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","76-13-1","1,1,2-Trichlorotrifluoroethane (Freon 113)","1.0","  

g/l","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","78-87-5","1,2-
Dichloropropane","1.0","  

g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","5","1.0",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","78-87-5","1,2-
Dichloropropane","1.0","  

g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","5","1.0",
 Dichloropropane","1.0","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","78-93-3","2-Butanone
 (MEK)","2.0","

g/I","U","1.1","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0",
```

```
"1715197-BLK1", "SW846 8260C", "RES", "1715197-BLK1", "ESAI", "79-00-5", "1,1,2-
   "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","79-00-5","1,1,2-
Trichloroethane","0.5","

g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","79-01-
6","Trichloroethene","1.0","

g/l","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","79-20-9","Methyl

acetate","2.0","

g/l","U","0.6","MDL",,"TARGET",,,"5.0","RDL","YES","-99",,"5","5","2.0",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","79-34-5","1,1,2,2-

Tetrachloroethane","0.5","

g/l","U","0.3","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","87-61-6","1,2,3-

Trichlorobenzene","1.0","

g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",

"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","FSAI","95-47-6","0-
    "1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","95-47-6","o-
Xylene","1.0","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"1715197-BLK1","SW846 8260C","RES","1715197-BLK1","ESAI","95-50-1","1,2-
xylene","I.U", *\sqrt,"\0","\0.3","MDL=","TARGET","1.U", *RDL=","YES","-99",","5","5","1.U", *\text{"1715197-BLK1"},"SW846 8260C","RES","1715197-BLK1","ESAI","95-50-1","1,2-Diblorobenzene","0.5", *\sqrt,"\0.5", *\sq
    "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "108-87-2", "Methylcyclohexane", "22.2", "\oldot g/l", "-99", "NA", "TARGET", "111", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "108-88-3", "Toluene", "22.7", \oldot g/l", "-99", "NA", "TARGET", "114", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "108-90-7", "Chlorobonzono", "20.5", "5", "64/", "200", "NA", "TARGET", "103", "200", "NA", "YES", "20.0", "5", "5", "5", "69", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "67", "
     7","Chlorobenzene","20.5","�g/l",,"-99","NA",,"TARGET","103",,"-99","NA","YES","20.0",,"5","5","-99",
"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","110-82-
7","Cyclohexane","22.4","�g/l",,"-99","NA",,"TARGET","112",,"-99","NA","YES","20.0",,"5","5","-99",
"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","120-82-1","1,2,4-
Trichlorobenzene","19.8","�g/l",,"-99","NA",,"TARGET","99",,"-99","NA","YES","20.0",,"5","5","-99",
"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","120-82-1","1,2,4-
Trichlorobenzene","19.8","�g/l",,"-99","NA",,"TARGET","99","-99","NA","YES","20.0",,"5","5","-99",
      "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "124-48-
       1","Dibromochloromethane","21.8","�g/l",,"-99","NA",,"TARGET","109",,"-99","NA","YES","20.0",,"5","5","-9
     "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "127-18-4", "Tetrachloroethene", "22.3", " g/l", "-99", "NA", "TARGET", "112", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "156-59-2", "cis-1, 2-
   "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "156-59-2", "cis-1,2-Dichloroethene", "21.7", " g/|", "-99", "NA", "TARGET", "108", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "156-60-5", "trans-1,2-Dichloroethene", "23.4", " g/|", "-99", "NA", "TARGET", "117", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "1634-04-4", "Methyl tert-butyl ether", "22.7", " g/|", "-99", "NA", "TARGET", "113", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "17060-07-0", "1,2-Dichloroethane-d4", "40.4", " Gov. "NA", "SUR", "200", "NA", "YES", "F0.0", "F", "F", "F", "90", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100
     d4","49.4","

g/I",,"-99","NA",,"SUR","99",,"-99","NA","YES","50.0",,"5","5","-99",
```

```
"1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "179601-23-1", "m,p-
"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","462-06-6","Fluorobenzene","50.0","

"99","NA","ISTD","99","NA","541-73-1","1,3-Dichlorobenzene","21.0","

"99","NA","TARGET","105","

"1715197-BS1","SW846 8260C","RES","1715197-BS1","

"1715197-BS1","SW846 8260C","RES","1715197-BS1","

"1715197-BS1","SW846 8260C","RES","1715197-BS1","

"1715197-BS1","SW846 8260C","RES","1715197-BS1","

"1715197-BS1","SW846 8260C","RES","1715197-BS1","

"1715197-BS1","SW846 8260C","RES","1715197-BS1","

"1715197-BS1","

"17
   9","Bromomethane","20.0","�g/l",,"-99","NA",,"TARGET","100",,"-99","NA","YES","20.0",,"5","5","-99",
"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","74-87-
3","Chloromethane","21.0","�g/l",,"-99","NA",,"TARGET","105",,"-99","NA","YES","20.0",,"5","5","-99",
"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","74-97-
5","Bromochloromethane","22.4","�g/l",,"-99","NA",,"TARGET","112",,"-99","NA","YES","20.0",,"5","5","-99"
 9",
"1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "75-34-3", "1,1-Dichloroethane", "22.1", " g/l", "-99", "NA", "TARGET", "111", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "75-35-4", "1,1-Dichloroethene", "21.9", " g/l", "-99", "NA", "TARGET", "110", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "75-69-4", "Trichlorofluoromethane (Freon 11)", "22.6", " g/l", "-99", "NA", "TARGET", "113", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "75-71-8", "Dichlorodifluoromethane (Freon 12)", "20.7", g/l", "-99", "NA", "TARGET", "104", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "76-13-1", "1,1,2-Trichlorotrifluoroethane
```

```
(Freon 113)","21.5","�g/l",,"-99","NA",,"TARGET","107",,"-99","NA","YES","20.0",,"5","5","-99",
"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","78-87-5","1,2-
Dichloropropane","20.9","�g/l",,"-99","NA",,"TARGET","105",,"-99","NA","YES","20.0",,"5","5","-99",
"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","78-93-3","2-Butanone
(MEK)","23.2","�g/l",,"-99","NA",,"TARGET","116",,"-99","NA","YES","20.0",,"5","5","-99",
"1715197-BS1","SW846 8260C","BES","1715197-BS1","ESAI","78-93-3","2-Butanone
 "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "79-00-5", "1,1,2-
Trichloroethane", "23.0", "�g/I",,"-99", "NA",,"TARGET", "115",,"-99", "NA", "YES", "20.0",,"5","5","-99", "1715197-BS1", "SW846 8260C", "RES", "1715197-BS1", "ESAI", "79-01-
 "1/15197-BS1","SW846 8260C","RES","1/15197-BS1","ESAI","/9-01-6","Trichloroethene","21.8","

g/l",,"-99","NA",,"TARGET","109",,"-99","NA","YES","20.0",,"5","5","-99",

"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","79-20-9","Methyl
acetate","19.9","

g/l",,"-99","NA",,"TARGET","100",,"-99","NA","YES","20.0",,"5","5","-99",

"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","79-34-5","1,1,2,2-

Tetrachloroethane","21.2","

g/l",,"-99","NA",,"TARGET","106",,"-99","NA","YES","20.0",,"5","5","-99",

"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","87-61-6","1,2,3-

Trichlorobenzene","20.3","

g/l",,"-99","NA",,"TARGET","102",,"-99","NA","YES","20.0",,"5","5","-99",

"1715197-BS1","SW846 8260C","RES","1715197-BS1","ESAI","95-47-6","0-

Yylene","20.9","

"20.9","NA","TARGET","104","-99","NA","YES","20.0","5","5","-99",
"1715197-BSD1", "SW846 8260C", "RES", "1715197-BSD1", "ESAI", "108-87-2", "Methylcyclohexane", "21.0", "�g/l",,"-99", "NA",,"TARGET", "105", "5", "-99", "NA", "YES", "20.0",, "5", "5", "-99"
1","Dibromochloromethane","21.3","�g/l",,"-99","NA",,"TARGET","107","2","-99","NA","YES","20.0",,"5","5",
  "-99",
  "1715197-BSD1", "SW846 8260C", "RES", "1715197-BSD1", "ESAI", "127-18-
  4","Tetrachloroethene","21.0","�g/l",,"-99","NA",,"TARGET","105","6","-99","NA","YES","20.0",,"5","5","-99", "1715197-BSD1","ESAI","156-59-2","cis-1,2-
 Dichloroethene","21.9","

g/I",,"-99","NA",,"TARGET","109","0.8","-99","NA","YES","20.0",,"5","5","-99",
```

```
"1715197-BSD1", "SW846 8260C", "RES", "1715197-BSD1", "ESAI", "156-60-5", "trans-1,2-
  "1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","179601-23-1","m,p-
Xylene","20.7","

"9g/l",,"-99","NA",,"TARGET","103","3","-99","NA","YES","20.0",,"5","5","-99",

"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","1868-53-

7","Dibromofluoromethane","50.3","

"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","SUR","101",,"-99","NA","YES","50.0",,"5","5","-99",

"1715197-BSD1","SW846 8260C","BES","1715197-BSD1","ESAI","2027-26-5","Toluono
   "1715197-BSD1", "SW846 8260C", "RES", "1715197-BSD1", "ESAI", "2037-26-5", "Toluene-
   G4", '5.0.0", '9.9|", '1.51D", '1.01", '1.99", 'NA", 'YES', '5.0.0", '5", '5", '1.99", '1.715197-BSD1", 'SW846 8260C", 'RES", '1.715197-BSD1", "ESAI", '460-00-4", '4-Bromofluorobenzene", '52.3", '9.9|", "1.99", "NA", "SUR", '1.05", ".99", "NA", "YES", '50.0", "5", '5", "-99", "1.715197-BSD1", "SW846 8260C", "RES", '1.715197-BSD1", "ESAI", '462-06-6", "Fluorobenzene", '50.0", '9.9|", 'NA", "ISTD", '1.01", ".99", "NA", "YES", "50.0", "5", "5", "-99", "1.715197-BSD1", "SW846 8260C", "RES", '1.715197-BSD1", "ESAI", "541-73-1", "1,3-Dichlorobenzene", '20.8", '9.9|", "-99", "NA", "TARGET", '1.04", "1", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "56-23-5", "Carbon tetrachloride", "20.6", '9.9|", ".99", "NA", "TARGET", "1.03", "5", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "591-78-6", "2-Hexanone (MBK), "23.2", "9.9|", "NA", "TARGET", "1.16", "6", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "67-64-1", "Acetone", "21.8", "9.9|", "NA", "TARGET", "1.10", "6", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "67-64-1", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "67-64-2", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "71-43-2", "99", "NA", "YES", "20.0", "5", "5", "-99", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "71-43-2", "99", "NA", "YES", "20.0", "5", "5", "-99", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "71-48-3-9", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "71-55-6", "1.1,1-1715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "71-55-6", "1.1,1-1715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "71-55-6", "1.71,1-1715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "ESAI", "74-87-8", "1.715197-BSD1", "SW846 8260C", "RES", "1.715197-BSD1", "E
  "1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","75-00-3","Chloroethane","19.9","�g/l",,"-99","NA",,"TARGET","100","2","-99","NA","YES","20.0",,"5","5","-99", "1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","75-01-4","Vinyl chloride","20.8","�g/l",,"-99","NA",,"TARGET","104","3","-99","NA","YES","20.0",,"5","5","-99",
   "1715197-BSD1", "$W846 8260C", "RES", "1715197-BSD1", "ESAI", "75-09-2", "Methylene chloride", "20.8", "�g/l", "-99", "NA", "TARGET", "104", "7", "-99", "NA", "YES", "20.0", "5", "5", "-99", "1715197-BSD1", "SW846 8260C", "RES", "1715197-BSD1", "ESAI", "75-15-0", "Carbon "1715197-BSD1", "BARILLING "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "1818", "18
   disulfide","21.1","♦g/l",,"-99","NA",,"TARGET","105","3","-99","NA","YES","20.0",,"5","5","-99",
   "1715197-BSD1", "SW846 8260C", "RES", "1715197-BSD1", "ESAI", "75-25-
   2","Bromoform","21.4","�g/l",,"-99","NA",,"TARGET","107","1","-99","NA","YES","20.0",,"5","5","-99",
"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","75-27-
   "1715197-BSD1", "SW846 8260C", "RES", "1715197-BSD1", "ESAI", "75-34-3", "1,1-
   Dichloroethane","21.6","49/l",,"-99","NA",,"TARGET","108","2","-99","NA","YES","20.0",,"5","5","-99",
   "1715197-BSD1", "SW846 8260C", "RES", "1715197-BSD1", "ESAI", "75-35-4", "1,1-
```

```
"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","79-20-9","Methyl acetate","19.8","

"99","NA","TARGET","99","0.5","-99","NA","YES","20.0","5","5","-99",

"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","79-34-5","1,1,2,2-

Tetrachloroethane","21.1","

"90,","-99","NA",,"TARGET","105","0.6","-99","NA","YES","20.0",,"5","5","-99",

"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","87-61-6","1,2,3-

Trichlorobenzene","20.8","

"90,","-99","NA",,"TARGET","104","2","-99","NA","YES","20.0",,"5","5","-99",

"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","95-47-6","0-

Xylene","21.4","

"90,","-99","NA",,"TARGET","107","2","-99","NA","YES","20.0",,"5","5","-99",

"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","96-12-8","1,2-Dibromo-3-

chloropropane","22.1","

"90,","-99","NA",,"TARGET","11","11","-99","NA","YES","20.0","5","5","-99",

"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","98-82-

8","Isopropylbenzene","20.2","

"90,","-99","NA","TARGET","101","1","-99","NA","YES","20.0",,"5","5","-99",

"1715197-BSD1","SW846 8260C","RES","1715197-BSD1","ESAI","98-82-

8","Isopropylbenzene","20.2","

"90,","-99","NA","TARGET","101","1","-99","NA","YES","20.0",,"5","5","-99","17","-99","NA","YES","20.0",,"5","5","-99","17","-99","NA","YES","20.0",,"5","5","-99","17","-99","NA","YES","20.0",,"5","5","-99","17","-99","NA","YES","20.0",,"5","5","-99","17","-99","NA","YES","20.0",,"5","5","-99","17","-99","NA","YES","20.0",,"5","5","-99","17","-99","NA","YES","20.0",,"5","5","-99","17","-99","NA","TARGET","101","1","-99","NA","YES","20.0",,"5","5","-99","17","-99","NA","TARGET","101","1","-99","NA","YES","20.0",,"5","5","-99","-99","-99","-99","NA","TARGET","101","1","-99","NA","YES","20.0",,"5","5","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99","-99
   8","Isopropylbenzene","20.2","�g/l",,"-99","NA",,"TARGET","101","1","-99","NA","YES","20.0",,"5","5","-99",
"1715303-BLK1","SM5310B (00, 11)","RES","1715303-BLK1","ESAI","NA","Total Organic
Carbon","0.500","mg/l","U","0.238","MDL",,"TARGET",,,"1.00","RDL","YES","-99",,"40","40","40","0.500",
"1715303-BS1","SM5310B (00, 11)","RES","1715303-BS1","ESAI","NA","Total Organic
   Carbon","14.1","mg/l",,"0.238","MDL",,"TARGET","94",,"1.00","RDL","YES","15.0",,"40","40","0.500", "1715303-CCB1","SM5310B (00, 11)","RES","1715303-CCB1","ESAI","NA","Total Organic Carbon","0.103","mg/l",,"-99","NA",,"TARGET",,,"-99","NA","YES","-99",,"40","40","-99",
   "1715303-CCB2","SM5310B (00, 11)","RES","1715303-CCB2","ESAI","NA","Total Organic Carbon","0.256","mg/l","J","-99","NA",,"TARGET",,,"-99","NA","YES","-99","40","40","-99", "1715303-CCB3","SM5310B (00, 11)","RES","1715303-CCB3","ESAI","NA","Total Organic Carbon","0.211","mg/l",,"-99","NA",,"TARGET",,,"-99","NA","YES","-99",,"40","40","-99",
 Carbon", "0.211", "mg/l", "-99", "NA", "TARGET", "99", "NA", "YES", "-99", "40", "40", "-99", "1715303-CCV1", "SM5310B (00, 11)", "RES", "1715303-CCV1", "ESAI", "NA", "Total Organic Carbon", "14.3", "mg/l", "0.238", "MDL", "TARGET", "95", "1.00", "RDL", "YES", "15.0", "40", "40", "0.500", "1715303-CCV2", "SM5310B (00, 11)", "RES", "1715303-CCV2", "ESAI", "NA", "Total Organic Carbon", "14.3", "mg/l", "0.238", "MDL", "TARGET", "95", "1.00", "RDL", "YES", "15.0", "40", "40", "0.500", "1715303-CCV3", "SM5310B (00, 11)", "RES", "1715303-CCV3", "ESAI", "NA", "Total Organic Carbon", "14.1", "mg/l", "0.238", "MDL", "TARGET", "94", "1.00", "RDL", "YES", "15.0", "40", "40", "0.500", "1715303-SRM1", "SM5310B (00, 11)", "RES", "1715303-SRM1", "ESAI", "NA", "Total Organic Carbon", "14.0", "mg/l", "0.238", "MDL", "TARGET", "96", "1.00", "RDL", "YES", "14.6", "40", "40", "0.500", "1715310-RLK1" "Mod EPA 3C/SOP RSK-175" "RES" "1715310-RLK1" "FSAI" "74-82-
  "1715310-BLK1", "Mod EPA 3C/SOP RSK-175", "RES", "1715310-BLK1", "ESAI", "74-82-8", "Methane", "2.20", "\oldots g/l", "U", "2.16", "MDL", "TARGET", "2.20", "RDL", "YES", "-99", "10", "10", "10", "2.20", "1715310-BLK1", "Mod EPA 3C/SOP RSK-175", "RES", "1715310-BLK1", "ESAI", "74-84-0", "Ethane", "5.00", "\oldots g/l", "U", "3.48", "MDL", "TARGET", "5.00", "RDL", "YES", "-99", "10", "10", "10", "5.00", "1715310-BS1", "Mod EPA 3C/SOP RSK-175", "RES", "1715310-BS1", "ESAI", "74-82-8", "Mod EPA 3C/SOP RSK-175", "RES", "1715310-BS1", "ESAI", "74-82-8", "Mod EPA 3C/SOP RSK-175", "RES", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "
   8","Methane","527","mg/l",,"-99","NA",,"TARGET","105",,"-99","NA","YES","500",,"10","10","-99", "1715310-BS1","Mod EPA 3C/SOP RSK-175","RES","1715310-BS1","ESAI","74-84-
    0","Ethane","596","mg/l",,"-99","NA",,"TARGET","119",,"-99","NA","YES","500",,"10","10","-99",
   "1715591-BLK1","SW846 6010C","RES","1715591-BLK1","ESAI","7439-89-
   6","Iron","0.0159","mg/l","J","0.0089","MDL",,"TARGET",,,"0.0800","RDL","YES","-99",,"50","50","0.0300",
```

```
"1715591-BS1", "SW846 6010C", "RES", "1715591-BS1", "ESAI", "7439-89-
6","Iron","2.83","mg/l",,"0.0089","MDL",,"TARGET","113",,"0.0800","RDL","YES","2.50",,"50","50","0.0300", "1715591-BSD1","SW846 6010C","RES","1715591-BSD1","ESAI","7439-89-6","Iron","2.74","mg/l",,"0.0089","MDL",,"TARGET","109","4","0.0800","RDL","YES","2.50",,"50","50","0.0300
"TF1-EBP-GZ101R-082817", "EPA 200/6000 methods", "RES", "SC38627-
02", "ESAI", "NA", "Preservation", "0", "N/A", ,"-99", "NA", ,"TARGET", ,, "-99", "NA", "YES", "-99", "1", "1", "1", "-99", "Field
Preserved; pH<2 confirmed"
"TF1-EBP-GZ101R-082817", "EPA 245.1/7470A", "RES", "SC38627-02", "ESAI", "7439-97-
6","Mercury","0.00020","mg/I","U","0.00013","MDL",,"TARGET",,,"0.00020","RDL","YES","-99",,"20","20","0.0
"TF1-EBP-GZ101R-082817", "EPA 300.0", "RES", "SC38627-02", "ESAI", "14797-55-8", "Nitrate as N", "0.096", "mg/I", "J", "0.009", "MDL", , "TARGET", , , "0.100", "RDL", "YES", "-99", , "5", "5", "0.100",
"TF1-EBP-GZ101R-082817", "EPA 300.0", "RES", "SC38627-02", "ESAI", "14808-79-8", "Sulfate as SO4", "13.5", "mg/l", , "0.307", "MDL", , "TARGET", , , "1.00", "RDL", "YES", "-99", , "5", "5", "1.00",
"TF1-EBP-GZ101R-082817", "EPA 300.0", "RES", "SC38627-02", "ESAI", "16887-00-
6","Chloride","9.43","mg/l",,"0.0897","MDL",,"TARGET",,,"1.00","RDL","YES","-99",,"5","5","0.100",
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "1763-23-1", "Perfluoro-
octanesulfonate","11","ng/l",,"2","MDL",,"TARGET",,,"6","RDL","YES","-99",,,,"-99", "TF1-EBP-GZ101R-082817","EPA 537 Modified","RES","SC38627-02","ESAI","1763-23-1L","13C8-
PFOS","44","ng/l",,"-99","NA",,"SUR","92",,"-99","NA","YES","48",,,,
                                                                             ,"-99"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "2058-94-
8","Perfluoroundecanoic acid","0","ng/l",,"1","MDL",,"TARGET",,,"3","RDL","YES","-99",","-99","<"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "2058-94-8L", "13C7-
PFUnDA","44","ng/I",,"-99","NA",,"SUR","88",,"-99","NA","YES","50",,,
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "2706-90-3", "Perfluoropentanoic
Acid","26","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "2706-90-3L", "13C5-
PFPeA","49","ng/I",,"-99","NA",,"SUR","99",,"-99","NA","YES","50",,,,
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "307-24-4", "Perfluorohexanoic"
acid","28","ng/l",,"0.6","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99",
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "307-24-4L", "13C5-
PFHxA", "47", "ng/l",, "-99", "NA",, "SUR", "94",, "-99", "NA", "YES", "50",,,,
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "307-55-1", "Perfluorododecanoic
acid","0","ng/I",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "307-55-1L", "13C2-
PFDoDA","45","ng/l",,"-99","NA",,"SUR","91",,"-99","NA","YES","50",,,,"-99"
"TF1-EBP-GZ101Ř-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "335-67-1", "Perfluorooctanoic
acid","29","ng/l",,"0.6","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99",
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "335-67-1L", "13C8-
PFOA", "44", "ng/l", "-99", "NA", "SUR", "88", "-99", "NA", "YES", "50", ", "-99", "TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "335-76-2", "Perfluorodecanoic
acid","2","ng/l","Ja","0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "335-76-2L", "13C6-
PFDA", "50", "ng/l", ,"-99", "NA", ,"SUR", "99", ,"-99", "NA", "YES", "50", ,,,
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "335-77-
3","Perfluorodecanesulfonate","0","ng/l",,"2","MDL",,"TARGET",,,"6","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "355-46-4", "Perfluorohexanesulfonate", "56", "ng/l", "1", "MDL", "TARGET", "3", "RDL", "YES", "-99",
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "355-46-4L", "13C3-
PFHxS","42","ng/l",,"-99","NA",,"SUR","88",,"-99","NA","YES","47",,,,
                                                                               "-99"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "375-22-4", "Perfluorobutanoic
Acid","12","ng/I",,"3","MDL",,"TARGET",,,"10","RDL","YES","-99",,,,"-99",
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "375-22-4L", "13C4-
PFBA","46","ng/I",,"-99","NA",,"SUR","92",,"-99","NA","YES","50",,,,"-99"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "375-73-
5","Perfluorobutanesulfonate","8","ng/l",,"0.8","MDL",,"TARGET",,,"3","RDL","YES","-99",,,,"-99",
```

```
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "375-73-5L", "13C3-
PFBS","41","ng/l",,"-99","NA",,"SUR","89",,"-99","NA","YES","46",,,,"-99"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "375-85-9", "Perfluoroheptanoic
acid","16","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99",
"TF1-EBP-GZ101R-082817","EPA 537 Modified","RES","SC38627-02","ESAI","375-85-9L","13C4-
PFHpA","49","ng/l",,"-99","NA",,"SUR","99",,"-99","NA","YES","50",,,,"-99",
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "375-95-1L", "13C9-
PFNA", "45", "ng/l",,"-99", "NA",,"SUR", "91",,"-99", "NA", "YES", "50",,,,"-99", "TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "376-06-
7","Perfluorotetradecanoic acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817","EPA 537 Modified","RES","SC38627-02","ESAI","376-06-7L","13C2-
PFTeDA","44","ng/I",,"-99","NA",,"SUR","88",,"-99","NA","YES","50",,,,"-99"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "72629-94-8", "Perfluorotridecanoic acid", "0", "ng/l", "0.5", "MDL", "TARGET", "2", "RDL", "YES", "-99", "<"
"TF1-EBP-GZ101R-082817","EPA 537 Modified","RES","SC38627-02","ESAI","754-91-6","PFOSA","0","ng/l",,"3","MDL",,"TARGET",,,"9","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817", "EPA 537 Modified", "RES", "SC38627-02", "ESAI", "754-91-6L", "13C8-
PFOSA", "25", "ng/l",, "-99", "NA",, "SUR", "49",, "-99", "NA", "YES", "50",,,, "-99",
"TF1-EBP-GZ101R-082817", "Mod EPA 3C/SOP RSK-175", "RES", "SC38627-02", "ESAI", "74-82-8", "Methane", "2.20", "\overline{\sigma} (I", "U", "2.16", "MDL", "TARGET", "2.20", "RDL", "YES", "-99", "10", "10", "10", "2.20", "TF1-EBP-GZ101R-082817", "Mod EPA 3C/SOP RSK-175", "RES", "SC38627-02", "ESAI", "74-84-0", "Ethane", "5.00", "\overline{\sigma} (J", "U", "3.48", "MDL", "TARGET", ","5.00", "RDL", "YES", "-99", "10", "10", "10", "5.00", "TF1-EPP GZ101R-082817", "SM18, 23 F310P", "PF5", "SC38627-02", "F5AL", "NAM " "Picchemical Original Ori
"TF1-EBP-GZ101R-082817", "SM18-22 5210B", "RES", "SC38627-02", "ESAI", "NA", "Biochemical Oxygen
Demand (5-day)","2.97","mg/l","BOD4,
U","2.74","MDL",,"TARGET",,,"3.00","RDL","YES","-99",,"300","300","2.97"
"TF1-EBP-GZ101R-082817", "SM2320B (97, 11)", "RES", "SC38627-02", "ESAI", "NA", "Total Alkalinity", "4.14", "mg/l CaCO3", "0.524", "MDL", "TARGET", "2.00", "RDL", "YES", "-99", "100", "50", "1.50", "TF1-EBP-GZ101R-082817", "SM5310B (00, 11)", "RES", "SC38627-02", "ESAI", "NA", "Total Organic Carbon", "0.816", "mg/l", "J", "0.238", "MDL", "TARGET", "1.00", "RDL", "YES", "-99", "40", "40", "0.500", "TF1-EBP-GZ101R-082817", "0.238", "MDL", "TARGET", "1.00", "RDL", "YES", "-99", "40", "40", "0.500", "TF1-EBP-GZ101R-082817", "SM238", "MDL", "TARGET", "1.00", "RDL", "YES", "-99", "40", "40", "0.500", "TF1-EBP-GZ101R-082817", "1.00", "RDL", "TARGET", "1.00", "RDL", "YES", "-99", "40", "40", "0.500", "TF1-EBP-GZ101R-082817", "1.00", "RDL", "TARGET", "1.00", "RDL", "YES", "-99", "40", "40", "0.500", "TF1-EBP-GZ101R-082817", "1.00", "RDL", "TARGET", "1.00", "RDL", "YES", "-99", "40", "40", "0.500", "TF1-EBP-GZ101R-082817", "1.00", "RDL", "TARGET", "1.00", "RDL", "YES", "-99", "40", "40", "0.500", "TF1-EBP-GZ101R-082817", "1.00", "RDL", "TARGET", "1.00", "RDL", "1.00", "1.00", "RDL", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "
"TF1-EBP-GZ101R-082817", "SW846 6010C", "RES", "SC38627-02", "ESAI", "7429-90-
5","Aluminum","0.132","mg/l",,"0.0206","MDL",,"TARGET",,,"0.0500","RDL","YES","-99",,"50","50","0.0500",
 "TF1-EBP-GZ101R-082817", "SW846 6010C", "RES", "SC38627-02", "ESAI", "7439-89-
6","Iron","0.0601","mg/l","R06,
J","0.0089","MDL",,"TĂRGET",,,"0.0800","RDL","YES","-99",,"50","50","0.0300",
"TF1-EBP-GZ101R-082817", "SW846 6010C", "RES", "SC38627-02", "ESAI", "7439-95-
 4","Magnesium","2.04","mg/l",,"0.0088","MDL",,"TARGET",,,"0.0200","RDL","YES","-99",,"50","50","0.0100",
"TF1-EBP-GZ101R-082817", "SW846 6010C", "RES", "SC38627-02", "ESAI", "7440-09-7", "Potassium", "0.851", "mg/l", "J", "0.120", "MDL", "TARGET", "1.00", "RDL", "YES", "-99", "50", "50", "0.250",
"TF1-EBP-GZ101R-082817", "SW846 6010C", "RES", "SC38627-02", "ESAI", "7440-23-5", "Sodium", "5.46", "mg/l", "0.0785", "MDL", "TARGET", "0.500", "RDL", "YES", "-99", "50", "50", "0.250", "TF1-EBP-GZ101R-082817", "SW846 6010C", "RES", "SC38627-02", "ESAI", "7440-70-2", "Calcium", "4.52", "mg/l", "0.0142", "MDL", "TARGET", "0.200", "RDL", "YES", "-99", "50", "50", "0.0500", "TF1-EBP-GZ101R-082817", "0.0142", "MDL", "TARGET", "0.200", "RDL", "YES", "-99", "50", "50", "0.0500", "TF1-EBP-GZ101R-082817", "0.0142", "MDL", "TARGET", "0.200", "RDL", "YES", "-99", "50", "50", "0.0500", "TF1-EBP-GZ101R-082817", "0.0142", "MDL", "TARGET", "0.200", "RDL", "YES", "-99", "50", "50", "0.0500", "TF1-EBP-GZ101R-082817", "0.0142", "MDL", "TARGET", "0.0200", "RDL", "YES", "-99", "50", "50", "0.0500", "TF1-EBP-GZ101R-082817", "0.00142", "MDL", "TARGET", "0.0200", "RDL", "YES", "-99", "50", "50", "0.0500", "TF1-EBP-GZ101R-082817", "0.0142", "MDL", "TARGET", "0.0200", "RDL", "YES", "-99", "50", "50", "0.0500", "TF1-EBP-GZ101R-082817", "0.0142", "MDL", "TARGET", "0.0200", "RDL", "YES", "-99", "50", "50", "0.0500", "TF1-EBP-GZ101R-082817", "0.0014", "DESTINATION "DESTINATION", "TARGET", "0.0200", "RDL", "TF1-EBP-GZ101R-082817", "50", "50", "0.0500", "TF1-EBP-GZ101R-082817", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50", "50
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7439-98-
7","Molybdenum","0","mg/l",,"0.00025","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-02-0", "Nickel", "0", "mg/l", , "0.0010", "MDL", , "TARGET", , , "0.0040", "RDL", "YES", "-99", , , , "<" "TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-22-
4","Silver","0","mg/l",,"0.00015","MDL",,"TARGET",,,"0.0010","RDL","YES","-99","<"
 "TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-28-
```

```
0","Thallium","0","mg/l",,"0.00012","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-36-0", "Antimony", "0", "mg/l",, "0.00045", "MDL",, "TARGET",,, "0.0020", "RDL", "YES", "-99",,,, "-99", "<"
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-38-2", "Arsenic", "0", "mg/I", , "0.00072", "MDL", "TARGET", , "0.0040", "RDL", "YES", "-99", "<"
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-39-
3","Barium","0","mg/l",,"0.00072","MDL",,"TARGET",,,"0.0040","RDL","YES","-99",","-99","<"
"TF1-EBP-GZ101R-082817","SW-846 6020A","RES","SC38627-02","ESAI","7440-41-
7","Beryllium","0","mg/l",,"0.000071","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817","SW-846 6020A","RES","SC38627-02","ESAI","7440-43-
9","Cadmium","0","mg/l",,"0.00015","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-47-3", "Chromium", "0", "mg/I", , "0.00087", "MDL", , "TARGET", , , "0.0040", "RDL", "YES", "-99", ", < "
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-48-4", "Cobalt", "0", "mg/l", , "0.00016", "MDL", , "TARGET", , , "0.00010", "RDL", "YES", "-99", "<"
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-50-
8","Copper","0","mg/I",,"0.00054","MDL",,"TARGET",,,"0.0040","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-62-2", "Vanadium", "0", "mg/I", "0.00021", "MDL", "TARGET", "0.0010", "RDL", "YES", "-99", ", " "TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7440-66-
6","Zinc","0","mg/I",,"0.0039","MDL",,"TARGET",,,"0.0300","RDL","YES","-99",,,,"-99","<"
"TF1-EBP-GZ101R-082817", "SW-846 6020A", "RES", "SC38627-02", "ESAI", "7782-49-2", "Selenium", "0", "mg/I", , "0.00050", "MDL", , "TARGET", , , "0.0040", "RDL", "YES", "-99", "<"
"TF1-EBP-GZ101R-082817","SW-846 8015B","RES","SC38627-02","ESAI","108-90-7","Chlorobenzene","0.016","mg/I",,"-99","NA",,"SUR","126",,"-99","NA","YES","0.013",,,,"-99",
 "TF1-EBP-GZ101R-082817","SW-846 8015B","RES","SC38627-02","ESAI","84-15-
 1","Orthoterphenyl","0.012","mg/l",,"-99","NA",,"SUR","95",,"-99","NA","YES","0.013",,,,"-99",
T","Orthoterpnenyl","0.012","mg/l","-99","NA","SUR","95","-99","NA","YES","0.013",,,,"-99",
"TF1-EBP-GZ101R-082817","SW-846 8015B","RES","SC38627-02","ESAI","PHCC8C44","C8-
C44","0.079","mg/l","Ja","0.052","MDL",,"TARGET",,,"0.21","RDL","YES","-99",,,,"-99",
"TF1-EBP-GZ101R-082817","SW-846 8015B","RES","SC38627-02","ESAI","PHCE","Total
TPH","0.079","mg/l","Ja","0.052","MDL",,"TARGET",,,"0.21","RDL","YES","-99",,,"-99",
"TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","1024-57-3","Heptachlor
epoxide","0.019","
g/l","U","0.015","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019",
"TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","1031-07-8","Endosulfan
sulfate","0.019","
g/l","U","0.019","MDL",,"TARGET",,,"0.038","RDL","YES","-99",,"1040","10","0.019",
"TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","10386-84-2","4,4-DB-
 "TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "10386-84-2", "4,4-DB-
 Octafluorobiphenyl
(Sr)","0.216","�g/l",,"-99","NA",,"SUR","112",,"-99","NA","YES","0.192",,"1040","10","-99", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","15972-60-
8","Alachlor","0.019","

g/l","U","0.018","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019",
"TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "2051-24-3", "Decachlorobiphenyl (Sr)", "0.203", "�g/l",,"-99", "NA",,"SUR", "106",,"-99", "NA", "YES", "0.192",,"1040","10","-99", "TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "309-00-2", "Aldrin", "0.019", "�g/l", "U", "0.015", "MDL", "TARGET",,,"0.019", "RDL", "YES", "-99", "1040", "10", "0.019",
2","Aldrin","0.019","�g/l","U","0.015","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.01","TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","319-84-6","alpha-BHC","0.019","�g/l","U","0.011","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","319-85-7","beta-BHC","0.019","�g/l","U","0.014","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","319-86-8","delta-BHC","0.019","�g/l","U","0.015","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","33213-65-9","Endosulfan II","0.019","�g/l","U","0.019","MDL",,"TARGET",,,"0.038","RDL","YES","-99",,"1040","10","0.019", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","50-29-3","4,4'-DDT (p,p'),"0.029","�g/l","U","0.017","MDL",,"TARGET",,,"0.038","RDL","YES","-99",,"1040","10","0.029", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","5103-71-9","1040","10","0.029", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","5103-71-9","alpha-
"TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "5103-71-9", "alpha-
Chlordane","0.019","

g/l","U","0.015","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019",
"TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "5103-74-2", "Chlordane (gamma)
```

```
(trans)","0.019","oldsymbol{\phi}g/l","U","0.015","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","53494-70-5","Endrin
ketone","0.019","�g/I","U","0.017","MDL",,"TARGET",,,"0.038","RDL","YES","-99",,"1040","10","0.019", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","57-74-
"TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "58-89-9", "gamma-BHC (Lindane)", "0.019", "�g/l", "U", "0.017", "MDL", "TARGET", "0.019", "RDL", "YES", "-99", "1040", "10", "0.019", "TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "60-57-
1","Dieldrin","0.019","

g/I","U","0.016","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019",
"TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "72-20-
8","Endrin","0.019","�g/l","U","0.018","MDL",,"TARGET",,,"0.038","RDL","YES","-99",,"1040","10","0.019", "TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","72-43-
5","Methoxychlor","0.019","�g/l","U","0.018","MDL",,"TARGET",,,"0.038","RDL","YES","-99",,"1040","10","0.
019",
"TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","72-54-8","4,4'-DDD
(p,p')","0.019","�g/I","U","0.018","MDL",,"TARGET",,,"0.038","RDL","YES","-99",,"1040","10","0.019",
 `TF1-ÉBP-GZ1Ó1Ř-082817","SW846 8081B","RES","ŚĆ38627-Ó2","EŚAI","72-55-9","4,4'-DDE
(p,p')","0.019","�g/l","U","0.017","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019",
"TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","7421-93-4","Endrin
aldehyde","0.019","�g/l","U","0.018","MDL",,"TARGET",,,"0.038","RDL","YES","-99",,"1040","10","0.019",
"TF1-EBP-GZ101R-082817","SW846 8081B","RES","SC38627-02","ESAI","76-44-
8","Heptachlor","0.019","�g/l","U","0.019","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.01
"TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "8001-35-
2","Toxaphene","0.481","  g/l","U","0.315","MDL",,"TARGET",,,"0.481","RDL","YES","-99",,"1040","10","0.48
"TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "877-09-8", "2,4,5,6-TC-M-Xylene (IS)", "0.020", "�g/ml", "-99", "NA", "ISTD", "98", "-99", "NA", "YES", "10.0", "1040", "10", "-99", "TF1-EBP-GZ101R-082817", "SW846 8081B", "RES", "SC38627-02", "ESAI", "959-98-8", "Endosulfan
I","0.019","�g/I","U","0.016","MDL",,"TARGET",,,"0.019","RDL","YES","-99",,"1040","10","0.019", "TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","100-41-
4","Ethylbenzene","0.5","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",
"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","100-42-
5","Styrene","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-ÉBP-GZ101R-082817", "ŚW846 8260C", "RES", "SC38627-02", "ÉSAI", "10061-01-5", "cis-1,3-
Dichloropropene", "0.5", "�g/I", "U", "0.4", "MDL", "TARGET",, "0.5", "RDL", "YES", "-99", "5", "5", "0.5", "TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "10061-02-6", "trans-1,3-
Dichloropropene", "0.5", "�g/I", "U", "0.3", "MDL", "TARGET", "0.5", "RDL", "YES", "-99", "5", "5", "0.5",
"TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "106-46-7", "1,4-
Dichlorobenzene","0.5","

g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","106-93-4","1,2-Dibromoethane

(EDB)","0.5","

g/l","U","0.2","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","107-06-2","1,2-Dichloroethane","1.0","

pichloroethane","1.0","

g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",

"TF1-EBP-GZ101R-082817","SW846 8260C","TRES","SC38627-02","ESAI","107-06-2","1,2-Dichloroethane","1.0","

g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "108-10-1", "4-Methyl-2-pentanone (MIBK)", "2.0", "�g/I", "U", "0.5", "MDL", "TARGET",,, "2.0", "RDL", "YES", "-99",, "5", "5", "2.0",
"TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "108-87-2", "Methylcyclohexane", "2.0", "�g/I", "U", "0.7", "MDL", "TARGET", ", "5.0", "RDL", "YES", "-99", "5", "5", "2.0",
"TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "108-88-
3","Toluene","1.0","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","108-90-
7","Chlorobenzene","0.5","�g/l","U","0.2","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",
"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","110-82-
7","Cyclohexane","2.0","�g/l","U","0.8","MDL",,"TARGET",,,"5.0","RDL","YES","-99",,"5","5","2.0",
"TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "120-82-1", "1,2,4-
Trichlorobenzene","1.0","

g/I","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
```

```
"TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "124-48-1", "Dibromochloromethane", "0.5", "$\infty g/l\", "U", "0.3\", "MDL\", "TARGET\", "0.5\", "RDL\", "YES\", "-99\", "5\", "5\", "0.5\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "127-18-4\", "Tetrachloroethene\", "1.0\", "\infty g/l\", "U\", "0.6\", "MDL\", "TARGET\", "1.0\", "RDL\", "YES\", "-99\", "5\", "5\", "1.0\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "156-60-5\", 2\", "cis-1,2-Dichloroethene\", "0.5\", "\infty 1.0\", "MDL\", "TARGET\", "1.0\", "RDL\", "YES\", "-99\", "5\", "5\", "0.5\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "156-60-5\", "$\", "1.0\", "$\", "5\", "5\", "0.5\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "156-60-5\", "$\", "1.0\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "1634-04-4\", "Methyl tert-butyl ether\", "0.5\", \infty 3/\", "U\\", "0.2\", "MDL\", "TARGET\", "1.0\", "RDL\", "YES\", "-99\", "5\", "5\", "0.5\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "17060-07-0\", "1,2-Dichloroethane-d4\", "50.5\", \infty 3/\", "-99\", "NA\", "YES\", "50.0\", "5\", "5\", "-99\", "5\", "5\", "0.5\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "179601-23-1\", "m,p-Xylene\", "1.0\", "RDL\", "YES\", "599\", "5\", "5\", "1.0\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "179601-23-1\", "m,p-Xylene\", "1.0\", "Syl\", "99\", "NA\", "YES\", "599\", "5\", "5\", "5\", "1.0\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "1868-53-7\", "Dibromofluoromethane\", "50.7\", \infty g/l\", "-99\", "NA\", "YES\", "50.0\", "5\", "5\", "-99\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "RES\", "SC38627-02\", "ESAI\", "1868-53-7\", "Toluene-d8\", "51.5\", \infty g/l\", "-99\", "NA\", "YES\", "50.0\", "5\", "5\", "-99\", "TF1-EBP-GZ101R-082817\", "SW846 8260C\", "R
      "TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "124-48-
   d4","50.0","

g/l",,"-99","NA",,"ISTD","99","-99","NA","YES","50.0",,"5","5","-99",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","460-00-4","4-

Bromofluorobenzene","50.6","

g/l",,"-99","NA",,"SUR","101",,"-99","NA","YES","50.0",,"5","5","-99",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","462-06-
    6","Fluorobenzene","50.0","�g/l",,"-99","NA",,"ISTD","102",,"-99","NA","YES","50.0",,"5","5","-99",
"TF1-EBP-GZ101R-082817","$W846 8260C","RES","$C38627-02","E$AI","541-73-1","1,3-
Dichlorobenzene","0.5","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",
 "TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "56-23-5", "Carbon tetrachloride", "1.0", "\odot g/l", "U", "0.4", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "591-78-6", "2-Hexanone (MBK)", "2.0", "\odot g/l", "U", "0.5", "MDL", "TARGET", "2.0", "RDL", "YES", "-99", "5", "5", "2.0", "TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "67-64-1", "Acetone", "1.4", "\odot g/l", "J", "0.8", "MDL", "TARGET", "10.0", "RDL", "YES", "-99", "5", "5", "2.0", "TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "67-66-3", "Chloroform", "1.0", "\odot g/l", "II", "0.3", "MDI", "TARGET", "1.0", "PDI", "YES", "00", "EF, "FF, "1.0", "SG38, "Chloroform", "1.0", "\odot g/l", "II", "0.3", "MDI", "TARGET", "1.0", "PDI", "YES", "00", "FF, "FF, "1.0", "DODI", "YES", "00", "FF, "FF, "1.0", "DDI", "YES", "00", "DDI", "TARGET", "1.0", "D
  "TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","74-97-5","Bromochloromethane","1.0","

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-00-3","Chloroethane","2.0","

"Gy/l","U","0.6","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-01-4","Vinyl chloride","1.0","

"Gy/l","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-09-2","Methylene chloride","2.0","

"Gy/l","U","0.7","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-15-0","Carbon disulfide","1.0","

"Gy/l","U","0.4","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","1.0",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-25-2","Bromoform","1.0","

"Gy/l","U","0.4","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","1.0",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-25-2","Bromoform","1.0","

"Gy/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
     2","Bromoform","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
     "TF1-EBP-GZ101R-082817", "SW846 8260C", "RES", "SC38627-02", "ESAI", "75-27-
```

```
4","Bromodichloromethane","0.5","�g/l","U","0.4","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5", "TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-34-3","1,1-Dichloroethane","1.0","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-35-4","1,1-
  Dichloroethene","1.0","♠g/l","U","0.7","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-69-4","Trichlorofluoromethane
  (Freon 11)","1.0","�g/l","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","75-71-8","Dichlorodifluoromethane
(Freon12)","2.0","�g/l","U","0.6","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0",
"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","76-13-1","1,1,2-
    Trichlorotrifluoroethane (Freon
   113)","1.0","

g/I","U","

5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",

"TF1-EBP-GZ101R-082817","SW846 8260C","RES","SC38627-02","ESAI","78-87-5","1,2-
"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "129-00-
 "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "129-00-0", "Pyrene", "0.943", "$\phigog|\text{","U","0.575", "MDL", "TARGET", "4.72", "RDL", "YES", "-99", "1060", "1", "0.943", "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "15067-26-2", "Acenaphthened10", "40.0", "$\phigog|\text{ml","-99", "NA", "YES", "40.0", "1060", "1", "-99", "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "1517-22-2", "Phenanthrened10", "40.0", "$\phigog|\text{ml","-99", "NA", "ISTD", "123", "-99", "NA", "YES", "40.0", "1060", "1", "-99", "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "1520-96-3", "Perylened12", "40.0", "$\phigog|\text{ml","-99", "NA", "YES", "40.0", "1060", "1", "-99", "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "1718-51-0", "Terphenyldl4", "31.2", "$\phigor|\text{g}/\text{l","-99", "NA", "YES", "47.2", "1060", "1", "-99", "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "1719-03-5", "Chrysene-"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "1719-03-5", "Chrysene-"TF1-
  "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "1719-03-5", "Chrysene-d12", "40.0", " g/ml", "-99", "NA", "ISTD", "130", "-99", "NA", "YES", "40.0", "1060", "1", "-99", "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "191-24-2", "Benzo (g,h,i) perylene", "0.943", " g/l", "U", "0.500", "MDL", "TARGET", "4.72", "RDL", "YES", "-99", "1060", "1", "0.943", "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "193-39-5", "Indeno (1,2,3-cd) " 
  pyrene","0.943","♠g/I","U","0.547","MDL",,"TARGET",,,"4.72","RDL","YES","-99",,"1060","1","0.943",
"TF1-EBP-GZ101R-082817","SW846 8270D","RES","SC38627-02","ESAI","205-99-2","Benzo (b)
```

```
"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "206-44-
 0","Fluoranthene","0.943","�g/l","U","0.602","MDL",,"TARGET",,,"4.72","RDL","YES","-99",,"1060","1","0.94
"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "207-08-9", "Benzo (k)
fluoranthene","0.943","�g/l","U","0.453","MDL",,"TARGET",,,"4.72","RDL","YES","-99",,"1060","1","0.943", "TF1-EBP-GZ101R-082817","SW846 8270D","RES","SC38627-02","ESAI","208-96-
8","Acenaphthylene","0.943","

g/I","U","0.644","MDL",,"TARGET",,,"4.72","RDL","YES","-99",,"1060","1","0.
943",
"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "218-01-
9","Chrysene","0.943","�g/l","U","0.502","MDL",,"TARGET",,,"4.72","RDL","YES","-99",,"1060","1","0.943", "TF1-EBP-GZ101R-082817","SW846 8270D","RES","SC38627-02","ESAI","321-60-8","2-
Fluorobiphenyl","19.3","�g/l","SGC","-99","NA",,"SUR","41",,"-99","NA","YES","47.2",,"1060","1","-99", "TF1-EBP-GZ101R-082817","SW846 8270D","RES","SC38627-02","ESAI","4165-60-0","Nitrobenzene-
d5","25.2","�g/l",,"-99","NA",,"SUR","53",,"-99","NA","YES","47.2",,"1060","1","-99",
"TF1-EBP-GZ101R-082817","SW846 8270D","RES","SC38627-02","ESAI","50-32-8","Benzo (a)
pyrene","0.943","�g/l","U","0.530","MDL",,"TARGET",,,"4.72","RDL","YES","-99",,"1060","1","0.943",
"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "53-70-3", "Dibenzo (a,h) anthracene", "0.943", "�g/l", "U", "0.425", "MDL", "TARGET", "4.72", "RDL", "YES", "-99", "1060", "1", "0.943", "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "56-55-3", "Benzo (a) anthracene", "0.943", "�g/l", "U", "0.506", "MDL", "TARGET", "4.72", "RDL", "YES", "-99", "1060", "1", "0.943", "$7.72", "RDL", "YES", "-99", "1060", "1", "0.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "10.943", "1
"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "83-32-9", "Acenaphthene", "0.943", "�g/l", "U", "0.652", "MDL", "TARGET", "4.72", "RDL", "YES", "-99", "1060", "1", "0.9
"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "85-01-8", "Phenanthrene", "0.943", "�g/I", "U", "0.553", "MDL", "TARGET", ", "4.72", "RDL", "YES", "-99", "1060", "1", "0.94", "0.94", "1060", "1", "0.94", "1060", "1", "0.94", "1060", "1", "0.94", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1060", "1
 "TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "86-73-
7","Fluorene","0.943","�g/l","U","0.577","MDL",,"TARGET",,,"4.72","RDL","YES","-99",,"1060","1","0.943", "TF1-EBP-GZ101R-082817","SW846 8270D","RES","SC38627-02","ESAI","90-12-0","1-
Methylnaphthalene","0.943","♦g/l","U","0.692","MDL",,"TARGET",,,"4.72","RDL","YES","-99",,"1060","1","0.9
"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "91-20-
"TF1-EBP-GZ101R-082817", "SW846 8270D", "RES", "SC38627-02", "ESAI", "91-57-6", "2-
Methylnaphthalene","0.943","♦g/l","U","0.542","MDL",,"TARGET",,,"4.72","RDL","YES","-99",,"1060","1","0.9
 43",
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "1763-23-1", "Perfluoro-
octanesulfonate","0","ng/I",,"2","MDL",,"TARGET",,,"6","RDL","YES","-99",,,,"-99","<"
 "TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "1763-23-1L", "13C8-
PFOS","37","ng/l",,"-99","NA",,"SUR","77",,"-99","NA","YES","48",,,
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "2058-94-8", "Perfluoroundecanoic
acid","0","ng/l",,"1","MDL",,"TARGET",,,"3","RDL","YES","-99",,,,"-99","<"
"TF1-FRB-082817","EPA 537 Modified","RES","SC38627-05","ESAI","2058-94-8L","13C7-
PFUnDA","36","ng/l",,"-99","NA",,"SUR","73",,"-99","NA","YES","50",,,,"-99",
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "2706-90-3", "Perfluoropentanoic
Acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99","<"
"TF1-FRB-082817","EPA 537 Modified","RES","SC38627-05","ESAI","2706-90-3L","13C5-PFPeA","45","ng/I",,"-99","NA",,"SUR","91",,"-99","NA","YES","50",,,,"-99",
 "TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "307-24-4", "Perfluorohexanoic
acid","0","ng/l",,"0.6","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99","<"
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "307-24-4L", "13C5-PFHxA", "48", "ng/l", "-99", "NA", "SUR", "95", "-99", "NA", "YES", "50", , , , "-99", "TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "307-55-1", "Perfluorododecanoic
 acid","0","ng/I",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "307-55-1L", "13C2-
PFDoDA","34","ng/I",,"-99","NA",,"SUR","68",,"-99","NA","YES","50",,,,"-99",
```

```
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "335-67-1", "Perfluorooctanoic
acid","0","ng/l",,"0.6","MDL",,"TARGET",,,"2","RDL","YES","-99",","-99","<"
"TF1-FRB-082817","EPA 537 Modified","RES","SC38627-05","ESAI","335-67-1L","13C8-
PFOA","46","ng/I",
                                            ,"-99","NA",,"SUR","92",,"-99","NA","YES","50",,,
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "335-76-2", "Perfluorodecanoic
acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",","-99","<"
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "335-76-2L", "13C6-PFDA", "45", "ng/l", "-99", "NA", "SUR", "90", "-99", "NA", "YES", "50", , , , "-99",
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "335-77-3", "Perfluorodecanesulfonate", "0", "ng/l", "2", "MDL", "TARGET", "6", "RDL", "YES", "-99", "<"
 "TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "355-46-
4","Perfluorohexanesulfonate","0","ng/l",,"1","MDL",,"TARGET",,,"3","RDL","YES","-99",,,"-99","<"
"TF1-FRB-082817","EPA 537 Modified","RES","SC38627-05","ESAI","355-46-4L","13C3-
PFHxS","42","ng/l",,"-99","NA",,"SUR","89",,"-99","NA","YES","47",,,,"-99",
"TF1-FRB-082817","EPA 537 Modified","RES","SC38627-05","ESAI","375-22-4","Perfluorobutanoic
Acid","0","ng/l",,"3","MDL",,"TARGET",,,"10","RDL","YES","-99",,,,"-99","<"
"TF1-FRB-082817","EPA 537 Modified","RES","SC38627-05","ESAI","375-22-4L","13C4-
PFBA","44","ng/l",,"-99","NA",,"SUR","87",,"-99","NA","YES","50",,,,"-99",
"TF1-FPB 082817","EPA 537 Modified","PFS","SC38627 05","ESAI","375-73
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "375-73-5", "Perfluorobutanesulfonate", "0", "ng/l", "0.8", "MDL", "TARGET", "3", "RDL", "YES", "-99", ", "-99", "<"
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "375-73-5L", "13C3-
PFBS","38","ng/l",,"-99","NA",,"SUR","83",,"-99","NA","YES","46",,,,
 "TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "375-85-9", "Perfluoroheptanoic"
acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",","-99","<"
"TF1-FRB-082817","EPA 537 Modified","RES","SC38627-05","ESAI","375-85-9L","13C4-
PFHpA", "44", "ng/l",,"-99", "NA",, "SUR", "89",,"-99", "NA", "YES", "50",,,,"-99", "TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "375-92-
8","Perfluoroheptanesulfonate","0","ng/l",,"2","MDL",,"TARGET",,,"6","RDL","YES","-99",",-"-99","<"
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "375-95-1", "Perfluorononanoic acid", "0", "ng/l", "0.6", "MDL", "TARGET", "2", "RDL", "YES", "-99", ", "-99", "<"
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "375-95-1L", "13C9-
PFNA", "38", "ng/l", ,"-99", "NA", ,"SUR", "76", ,"-99", "NA", "YES", "50", ,,,,
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "376-06-7", "Perfluorotetradecanoic acid", "0", "ng/l", "0.5", "MDL", "TARGET", "2", "RDL", "YES", "-99", ", "-99", "<"
"TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "376-06-7L", "13C2-PFTeDA", "35", "ng/l", "-99", "NA", "SUR", "70", "-99", "NA", "YES", "50", ", "-99", "TF1-FRB-082817", "EPA 537 Modified", "RES", "SC38627-05", "ESAI", "72629-94-8", "Perfluorotridecanoic acid", "1881", "1881", "1881", "1881", "TARGET", "BOLT", 
acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99","<"
"TF1-FRB-082817","EPA 537 Modified","RES","SC38627-05","ESAI","754-91-6","PFOSA","0","ng/l",,"3","MDL",,"TARGET",,,"9","RDL","YES","-99",,,,"-99","<"
"TF1-FRB-082817","EPA 537 Modified","RES","SC38627-05","ESAI","754-91-6L","13C8-PFOSA","28","ng/l",,"-99","NA",,"SUR","55",,"-99","NA","YES","50",,,,"-99",
 "TF1-GT-106-082817", "EPA 200/6000 methods", "RES", "SC38627-
03", "ESAI", "NA", "Preservation", "0", "N/A", ,"-99", "NA", ,"TARGET", ,, "-99", "NA", "YES", "-99", "1", "1", "1", "-99", "Field
Preserved; pH<2 confirmed"
"TF1-GT-106-082817", "EPA 245.1/7470A", "RES", "SC38627-03", "ESAI", "7439-97-
 6","Mercury","0.00020","mg/I","U","0.00013","MDL",,"TARGET",,,"0.00020","RDL","YES","-99",,"20","20","0.0
0020"
 "TF1-GT-106-082817", "EPA 300.0", "RES", "SC38627-03", "ESAI", "14797-55-8", "Nitrate as
N","0.100","mg/I","U","0.009","MDL",,"TARGET",,,,"0.100","RDL","YES","-99",,"5","5","0.100",
"TF1-GT-106-082817", "EPA 300.0", "RES", "SC38627-03", "ESAI", "14808-79-8", "Sulfate as SO4", "27.0", "mg/l",, "0.307", "MDL",, "TARGET",,, "1.00", "RDL", "YES", "-99",, "5", "5", "1.00",
"TF1-GT-106-082817","EPA 300.0","RES","SC38627-03","ESAI","16887-00-6","Chloride","11.9","mg/l",,"0.0897","MDL",,"TARGET",,,"1.00","RDL","YES","-99",,"5","5","0.100",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "1763-23-1", "Perfluoro-octanesulfonate", "0", "ng/l", "2", "MDL", "TARGET", "6", "RDL", "YES", "-99", ", "-99", "<"
 "TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "1763-23-1L", "13C8-
```

```
PFOS","46","ng/I",,"-99","NA",,"SUR","95",,"-99","NA","YES","48",,,,"-99"
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "2058-94-8", "Perfluoroundecanoic acid", "0", "ng/I", "1", "MDL", "TARGET", "3", "RDL", "YES", "-99", ", "99", "<"
acid","0","ng/l",,"1","MDL",," I ARGE I ,,, 3 , RDL , I LS , - // ,,,, - // , "TF1-GT-106-082817","EPA 537 Modified","RES","SC38627-03","ESAI","2058-94-8L","13C7-
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "2706-90-3", "Perfluoropentanoic
Acid","4","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "2706-90-3L", "13C5-
PFPeA","49","ng/l",,"-99","NA",,"SUR","98",,"-99","NA","YES","50",,,,"-99",
"TF1-GT-106-082817","EPA 537 Modified","RES","SC38627-03","ESAI","307-24-4","Perfluorohexanoic
acid","3","ng/l",,"0.6","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "307-24-4L", "13C5-
PFHxA","41","ng/I",,"-99","NA",,"SUR","81",,"-99","NA","YES","50",,,,"-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "307-55-1", "Perfluorododecanoic acid", "0", "ng/I", "0.5", "MDL", "TARGET", "2", "RDL", "YES", "-99", ", "-99", "<"
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "307-55-1L", "13C2-
PFDoDA","35","ng/I",,"-99","NA",,"SUR","69",,"-99","NA","YES","50",,,,
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "335-67-1", "Perfluorooctanoic acid", "2", "ng/l", "0.6", "MDL", "TARGET", "2", "RDL", "YES", "-99", ", "-99", "TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "335-67-1L", "13C8-PF0A", "44", "ng/l", "-99", "NA", "SUR", "87", "-99", "NA", "YES", "50", ", "-99", "
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "335-76-2", "Perfluorodecanoic
acid","2","ng/l","Ja","0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817","EPA 537 Modified","RES","SC38627-03","ESAI","335-76-2L","13C6-
PFDA","42","ng/l",,"-99","NA",,"SUR","84",,"-99","NA","YES","50",,,,"-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "335-77-
3","Perfluorodecanesulfonate","0","ng/l",,"2","MDL",,"TARGET",,,"6","RDL","YES","-99",,,,"-99","<"
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "355-46-
4","Perfluorohexanesulfonate","1","ng/l","Ja","1","MDL",,"TARGET",,,"3","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "355-46-4L", "13C3-
PFHxS","37","ng/l",,"-99","NA",,"SUR","78",,"-99","NA","YES","47",,,,"-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "375-22-4", "Perfluorobutanoic
Acid","5","ng/l","Ja","3","MDL",,"TARGET",,,"10","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817","EPA 537 Modified","RES","SC38627-03","ESAI","375-22-4L","13C4-
PFBA","45","ng/l",,"-99","NA",,"SUR","91",,"-99","NA","YES","50",,,,"-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "375-73-
5","Perfluorobutanesulfonate","0","ng/l",,"0.8","MDL",,"TARGET",,,"3","RDL","YES","-99",
"TF1-GT-106-082817","EPA 537 Modified","RES","SC38627-03","ESAI","375-73-5L","13C3-PFBS","48","ng/I",,"-99","NA",,"SUR","102",,"-99","NA","YES","47",,,,"-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "375-85-9", "Perfluoroheptanoic"
acid","1","ng/l","Ja","0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817","EPA 537 Modified","RES","SC38627-03","ESAI","375-85-9L","13C4-
PFHpA", "41", "ng/l", ,"-99", "NA", ,"SUR", "81", ,"-99", "NA", "YES", "50", ,,,, "-99", "TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "375-92-8", "Perfluoroheptanesulfonate", "0", "ng/l", ,"2", "MDL", ,"TARGET", ,, "6", "RDL", "YES", "-99", ,, , "-99", "<"
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "375-95-1", "Perfluorononanoic acid", "0", "ng/I", "0.6", "MDL", "TARGET", "2", "RDL", "YES", "-99", ", "-99", "<"
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "375-95-1L", "13C9-PFNA", "47", "ng/l", "-99", "NA", "SUR", "94", "-99", "NA", "YES", "50", , , , "-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "376-06-7", "Perfluorotetradecanoic
acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99","<"
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "376-06-7L", "13C2-
PFTeDA","40","ng/I",,"-99","NA",,"SUR","81",,"-99","NA","YES","50",,,,"-99",
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "72629-94-8", "Perfluorotridecanoic"
acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99","<"
"TF1-GT-106-082817","EPA 537 Modified","RES","SC38627-03","ESAI","754-91-
6","PFOSA","0","ng/I",,"3","MDL",,"TARGET",,,"9","RDL","YES","-99",,,,"-99","<"
```

```
"TF1-GT-106-082817", "EPA 537 Modified", "RES", "SC38627-03", "ESAI", "754-91-6L", "13C8-
"TF1-GT-106-082817", "SM18-22 5210B", "RES", "SC38627-03", "ESAI", "NA", "Biochemical Oxygen Demand (5-day)", "4.00", "mg/l", "BOD4", "2.74", "MDL", "TARGET", ", "3.00", "RDL", "YES", "-99", "300", "300", "2.97",
"TF1-GT-106-082817", "SM2320B (97, 11)", "RES", "SC38627-03", "ESAI", "NA", "Total Alkalinity", "258", "mg/l CaCO3", "1.05", "MDL", "TARGET", "4.00", "RDL", "YES", "-99", "50", "50", "3.00",
"TF1-GT-106-082817", "SM5310B (00, 11)", "RES", "SC38627-03", "ESAI", "NA", "Total Organic Carbon", "1.73", "mg/l", "0.238", "MDL", "TARGET", "1.00", "RDL", "YES", "-99", "40", "40", "0.500", "TF1-GT-106-082817", "SW846 6010C", "RES", "SC38627-03", "ESAI", "7429-90-
5","Aluminum","0.0500","mg/l","U","0.0206","MDL",,"TARGET",,,"0.0500","RDL","YES","-99",,"50","50","0.05
00"
"TF1-GT-106-082817", "SW846 6010C", "RES", "SC38627-03", "ESAI", "7439-89-
6","Iron","3.42","mg/l","R06","0.0089","MDL",,"TARGET",,,"0.0800","RDL","YES","-99",,"50","50","0.0300",
"TF1-GT-106-082817", "SW846 6010C", "RES", "SC38627-03", "ESAI", "7439-95-4", "Magnesium", "15.3", "mg/l", "0.0088", "MDL", "TARGET", "0.0200", "RDL", "YES", "-99", "50", "50", "0.0100",
"TF1-GT-106-082817", "SW846 6010C", "RES", "SC38627-03", "ESAI", "7440-09-7", "Potassium", "1.74", "mg/l", "0.120", "MDL", "TARGET", "1.00", "RDL", "YES", "-99", "50", "50", "0.250",
"TF1-GT-106-082817", "SW846 6010C", "RES", "SC38627-03", "ESAI", "7440-23-
5","Sodium","14.1","mg/l",,"0.0785","MDL",,"TARGET",,,"0.500","RDL","YES","-99",,"50","50","0.250",
"TF1-GT-106-082817", "SW846 6010C", "RES", "SC38627-03", "ESAI", "7440-70-2", "Calcium", "82.9", "mg/I", ,"0.0142", "MDL", ,"TARGET", ,, "0.200", "RDL", "YES", "-99", ,"50", "50", "0.0500",
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7439-92-1", "Lead", "0", "mg/I", "0.00011", "MDL", "TARGET", , , "0.0020", "RDL", "YES", "-99", , , , "<"
"TF1-GT-106-082817","SW-846 6020A","RES","SC38627-03","ESAI","7439-96-
5","Manganese","1.19","mg/l",,"0.00090","MDL",,"TARGET",,
                                                                                         ,"0.0040","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7439-98-
7","Molybdenum","0.0011","mg/l",,"0.00025","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817","SW-846 6020A","RES","SC38627-03","ESAI","7440-02-
0","Nickel","0.0067","mg/l",,"0.0010","MDL",,"TARGET",,,"0.0040","RDL","YES","-99",,,,"-99",
"TE1 GT 106 082817","SW-846 6020A", "PES", "SC32627 02", "ESAI", "7440-02-
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7440-22-4", "Silver", "0", "mg/l", , "0.00015", "MDL", "TARGET", , "0.0010", "RDL", "YES", "-99", "<"
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7440-28-
0","Thallium","0","mg/l",,"0.00012","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",,,,"-99","<"
"TF1-GT-106-082817","SW-846 6020A","RES","SC38627-03","ESAI","7440-36-0","Antimony","0","mg/I",,"0.00045","MDL",,"TARGET",,,"0.0020","RDL","YES","-99",,,,"-99","<"
"TF1-GT-106-082817","SW-846 6020A","RES","SC38627-03","ESAI","7440-38-
2","Arsenic","0.0279","mg/l",,"0.00072","MDL",,"TARGET",,,"0.0040","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817","SW-846 6020A","RES","SC38627-03","ESAI","7440-39-
3","Barium","0.0071","mg/l",,"0.00072","MDL",,"TARGET",,,"0.0040","RDL","YES","-99",,,,"-99",
"TF1-GT-106-082817","SW-846 6020A","RES","SC38627-03","ESAI","7440-41-
7","Beryllium","0","mg/l",,"0.000071","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",","-99","<"
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7440-43-
9","Cadmium","0","mg/l",,"0.00015","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",",-99","<"
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7440-47-3", "Chromium", "0", "mg/I", , "0.00087", "MDL", , "TARGET", , , "0.0040", "RDL", "YES", "-99", , , , "-99", "<"
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7440-48-4", "Cobalt", "0.0226", "mg/l", ,"0.00016", "MDL", "TARGET", ,, "0.00010", "RDL", "YES", "-99", ,,, "-99",
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7440-50-8", "Copper", "0", "mg/I", "0.00054", "MDL", "TARGET", "0.0040", "RDL", "YES", "-99", ", <"
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7440-62-
2","Vanadium","0.0011","mg/l",,"0.00021","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",,,,"-99", "TF1-GT-106-082817","SW-846 6020A","RES","SC38627-03","ESAI","7440-66-
6","Zinc","0","mg/l",,"0.0039","MDL",,"TARGET",,,"0.0300","RDL","YES","-99",,,,"-99","<"
```

```
"TF1-GT-106-082817", "SW-846 6020A", "RES", "SC38627-03", "ESAI", "7782-49-
 2","Selenium","0","mg/l",,"0.00050","MDL",,"TARGET",,,"0.0040","RDL","YES","-99",,,,"-99","<"
 "TF1-GT-106-082817","SW-846 8015B","RES","SC38627-03","ESAI","108-90-7","Chlorobenzene","0.015","mg/I",,"-99","NA",,"SUR","119",,"-99","NA","YES","0.013",,,,"-99",
 "TF1-GT-106-082817", "SW-846 8015B", "RES", "SC38627-03", "ESAI", "84-15-1", "Orthoterphenyl", "0.011", "mg/l",,"-99", "NA",,"SUR", "89",,"-99", "NA", "YES", "0.013",,,,"-99",
 "TF1-GT-106-082817", "SW-846 8015B", "RES", "SC38627-03", "ESAI", "PHCC8C44", "C8-
 C44","0","mg/I",,"0.052","MDL",,"TARGET",,,"0.21","RDL","YES","-99",,,,"-99","<"
 "TF1-GT-106-082817", "SW-846 8015B", "RES", "SC38627-03", "ESAI", "PHCE", "Total TPH", "0", "mg/l", "0.052", "MDL", "TARGET", "0.21", "RDL", "YES", "-99", ", "-99", "<"
"TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "1024-57-3", "Heptachlor
 epoxide","0.020","�g/l","U","0.015","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"1020","10","0.020",
"TF1-GT-106-082817","SW846 8081B","RES","SC38627-03","ESAI","1031-07-8","Endosulfan
"IF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "1031-07-8", "Endosulfan sulfate", "0.020", @g/l", "U", "0.019", "MDL", "TARGET", "0.039", "RDL", "YES", "-99", "1020", "10", "0.020", "TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "10386-84-2", "4,4-DB-Octafluorobiphenyl (Sr)", "0.219", @g/l", "-99", "NA", "SUR", "112", "-99", "NA", "YES", "0.196", "1020", "10", "-99", "TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "15972-60-8", "Alachlor", "0.020", @g/l", "U", "0.019", "MDL", "TARGET", "0.020", "RDL", "YES", "-99", "1020", "10", "0.020", "TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "2051-24-3", "Decachlorobiphenyl (Sr)", "0.176", @g/l", "-99", "NA", "SUR", "90", "-99", "NA", "YES", "0.196", "1020", "10", "-99", "TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "309-00-2" "Aldrin" "0.020", "Ag/l" "II" "0.015" "MDI" "TARGET" "0.020" "PDI" "VES" "-00" "1020" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102" "102
 2","Aldrin","0.020","�g/l","U","0.015","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"1020","10","0.020",
"TF1-GT-106-082817","SW846 8081B","RES","SC38627-03","ESAI","319-84-6","alpha-
 BHC","0.020","

g/|","U","0.015","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"1020","10","0.020",

"TF1-GT-106-082817","SW846 8081B","RES","SC38627-03","ESAI","33213-65-9","Endosulfan

II","0.020","

g/|","U","0.020","MDL",,"TARGET",,,"0.039","RDL","YES","-99",,"1020","10","0.020",

"TF1-GT-106-082817","SW846 8081B","RES","SC38627-03","ESAI","50-29-3","4,4'-DDT

(p,p')","0.029","

g/|","U","0.017","MDL",,"TARGET",,,"0.039","RDL","YES","-99",,"1020","10","0.029",

"TF1-GT-106-082817","SW846 8081B","RES","SC38627-03","ESAI","5103-71-9","alpha-
Chlordane","0.020","

g/|","U","0.015","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"1020","10","0.020",

"TF1-GT-106-082817","SW846 8081B","RES","SC38627-03","ESAI","5103-71-9","alpha-
Chlordane","0.020","

g/|","U","0.015","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"1020","10","0.020",

"TF1-GT-106-082817","SW846 8081B","PES","SC38627-03","ESAI","5103-74-2","Chlordane, (gamma)
 "TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "5103-74-2", "Chlordane (gamma)
 (trans)","0.020","�g/l","U","0.016","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"1020","10","0.020",
"TF1-GT-106-082817","SW846 8081B","RES","SC38627-03","ESAI","53494-70-5","Endrin
 ketone","0.020","�g/l","U","0.017","MDL",,"TARGET",,,"0.039","RDL","YES","-99",,"1020","10","0.020", "TF1-GT-106-082817","SW846 8081B","RES","SC38627-03","ESAI","57-74-
 9","Chlordane","0.064","

g/I","U","0.050","MDL",,"TARGET",,,"0.064","RDL","YES","-99",,"1020","10","0.064"
5","Methoxychlor","0.020","

g/I","U","0.018","MDL",,"TARGET",,,"0.039","RDL","YES","-99",,"1020","10","0.
 020",
 "TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "72-54-8", "4,4'-DDD
 (p,p')","0.020","

g/l","U","0.018","MDL",,"TARGET",,,"0.039","RDL","YES","-99",,"1020","10","0.020",
"TF1-GT-106-082817","SW846 8081B","RES","SC38627-03","ESAI","72-55-9","4,4'-DDE
 (p,p')","0.020","♦g/l","U","0.017","MDL",,"TARGET",,,"0.020","RDL","YES","-99",,"1020","10","0.020",
"TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "7421-93-4", "Endrin aldehyde", "0.020", "$\\ g/\!", "U", "0.019", "MDL", "TARGET", "0.039", "RDL", "YES", "-99", "1020", "10", "0.020", "TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "76-44-
```

```
8","Heptachlor","0.020","\mathbf{\Phi}g/I","U","0.019","MDL",,"TARGET",,,"0.020","RDL","YES","-99","1020","10","0.020",
  "TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "8001-35-
  "TF1-GT-106-082817", "SW846 8081B", "RES", "SC38627-03", "ESAI", "877-09-8", "2,4,5,6-TC-M-Xylene
  "TF1-GT-106-082817","SW846 8081B","RÉS","SC38627-03","ESAI","959-98-8","Endosulfan I","0.020","

"G/I","U","0.016","MDL","TARGET",,,"0.020","RDL","YES","-99",,"1020","10","0.020",

"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","100-41-

4","Ethylbenzene","0.5","

"G/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",

"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","100-42-

5","Styrene","1.0","

"G/I","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",

"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","10061-01-5","cis-1,3-

Dichloropropene","0.5","

"G/I","U","0.4","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",

"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","10061-02-6","trans-1,3-

Dichloropropene","0.5","

"G/I","U","0.3","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",

"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","106-46-7","1,4-

Dichlorobenzene","0.5","

"G/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",

"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","106-93-4","1,2-Dibromoethane

(EDB)","0.5","

"G/I","U","0.2","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",

"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","106-93-4","1,2-Dibromoethane

(EDB)","0.5","

"G/I","U","0.2","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",
 3","Toluene","1.0","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","108-90-
"TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "1868-53-7", "Dibromofluoromethane", "50.8", "�g/l",,"-99", "NA", "SUR", "102",,"-99", "NA", "YES", "50.0", "5", "5", "-99", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "2037-26-5", "Toluene-d8", "52.0", "�g/l",,"-99", "NA", "SUR", "104",,"-99", "NA", "YES", "50.0", "5", "5", "-99", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "3114-55-4", "Chlorobenzene-d5", "50.0", "�g/l", "-99", "NA", "ISTD", "97", "-99", "NA", "YES", "50.0", "5", "5", "-99", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "3855-82-1", "1,4-Dichlorobenzene-d4", "F0.0", "6,2", "1,4-Dichlorobenzene-d4", "F0.0", "1,4-Dichlorobenzene-d4", "1,4-Dichlorobenzene-d5", "1,4-Dichloro
```

```
"TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "460-00-4", "4-
1","Acetone","2.0","�g/I","U","0.8","MDL",,"TARGET",,,"10.0","RDL","YES","-99",,"5","5","2.0",
 1","Acetone","2.0","�g/I","U","0.8","MDL",,"TARGET",,,"10.0","RDL","YES","-99",,"5 , 5 , 2.0 , "TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","67-66-3","Chloroform","1.0","�g/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","71-43-2","Benzene","0.5","�g/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5", "TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","71-55-6","1,1,1-Trichloroethane","1.0","�g/I","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","74-83-9","Bromomethane","2.0","�g/I","U","0.9","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","5","2.0","TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","74-87-
   "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "74-87-
    3","Chloromethane","1.0"," g/|","U","0.4","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","1.0",
"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","74-97-
5","Bromochloromethane","1.0"," g/|","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","75-00-
3","Chloroethane","2.0"," g/|","U","0.6","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","5","2.0",
"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","75-01-4","Vinyl
chloride","1.0"," g/|","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","75-09-2","Methylene
chloride","2.0"," g/|","U","0.7","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0",
"TF1-GT-106-082817","SW846 8260C","RES","SC38627-03","ESAI","75-15-0","Carbon
disulfide","1.0"," g/|","U","0.4","MDL","TARGET",,,"2.0","RDL","YES","-99",,"5","5","1.0",
TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "75-35-4", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "75-35-4", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "75-25-2", "Bromoform", "1.0", "$\delta \text{9}\], "U", "0.4", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "75-27-4", "Bromodichloromethane", "0.5", "$\delta \text{9}\], "U", "0.4", "MDL", "TARGET", "0.5", "RDL", "YES", "-99", "5", "5", "0.5", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "75-34-3", "1.1-Dichloroethane", "1.0", "$\delta \text{9}\], "U", "0.3", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "75-35-4", "1.1-Dichloroethene", "1.0", "$\delta \text{9}\], "U", "0.7", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "75-69-4", "Trichlorofluoromethane (Freon 11)", "1.0", "$\delta \text{9}\], "U", "0.5", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "75-71-8", "Dichlorodifluoromethane (Freon 12)", "2.0", "$\delta \text{9}\], "U", "0.6", "MDL", "TARGET", "2.0", "RDL", "YES", "-99", "5", "5", "5", "2.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "75-71-8", "Dichlorodifluoromethane (Freon 12)", "2.0", "$\delta \text{9}\], "U", "0.6", "MDL", "TARGET", "2.0", "RDL", "YES", "-99", "5", "5", "5", "2.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "76-13-1", "1,1,2-Trichlorotrifluoroethane (Freon 113)", "1.0", "$\delta \text{9}\], "U", "0.5", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "5", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "76-13-1", "1,1,2-Trichlorotrifluoroethane (Freon 113)", "1.0", "$\delta \text{9}\], "U", "0.5", "MDL", "TARGET", "1.0", "RDL", "YES", "-
 "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "76-13-1", "1,1,2-Trichlorotrifluoroe (Freon 113)", "1.0", " g/l", "U", "0.5", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "78-87-5", "1,2-Dichloropropane", "1.0", "g/l", "U", "0.3", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "5", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "78-93-3", "2-Butanone (MEK)", "2.0", "g/l", "U", "1.1", "MDL", "TARGET", "2.0", "RDL", "YES", "-99", "5", "5", "2.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "79-00-5", "1,1,2-Trichloroethane", "0.5", "g/l", "U", "0.3", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "0.5", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "79-01-6", "Trichloroethene", "1.0", "g/l", "U", "0.5", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "5", "1.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "79-20-9", "Methyl
   "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "79-20-9", "Methyl acetate", "2.0", *\phigar g/l", "U", "0.6", "MDL", "TARGET", "5.0", "RDL", "YES", "-99", "5", "5", "2.0", "TF1-GT-106-082817", "SW846 8260C", "RES", "SC38627-03", "ESAI", "79-34-5", "1,1,2,2-
```

```
8","Isopropylbenzene","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-GT-106-082817","SW846 8270D","RES","SC38627-03","ESAI","1146-65-2","Naphthalene-
d8","40.0","�g/ml",,"-99","NA",,"ISTD","184",,"-99","NA","YES","40.0",,"1030","1","-99",
"TF1-GT-106-082817","SW846 8270D","RES","SC38627-03","ESAI","120-12-
 "TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "129-00-0", "Pyrene", "0.971", @g/l", "U", "0.592", "MDL", "TARGET", "4.85", "RDL", "YES", "-99", "1030", "1", "0.971", "TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "15067-26-2", "Acenaphthened10", "40.0", @g/ml", "-99", "NA", "ISTD", "197", "-99", "NA", "YES", "40.0", "1030", "1", "-99", "T51-07-104-082817", "SW846 8270D", "BF51", "5039477", "SW846 8270D", "BF51", "15039477", "SW846 8270D", "BF51", "15039477", "SW846 8270D", "BF51", "SW846 8270D", "SW846 8270D", "BF51", "SW846 8270D", "SW84
 "TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "1517-22-2", "Phenanthrene-
 "TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "1520-96-3", "Perylene-
 d12","40.0","

g/ml",,"-99","NA",,"ISTD","114",,"-99","NA","YES","40.0",,"1030","1","-99",
"TF1-GT-106-082817","SW846 8270D","RES","SC38627-03","ESAI","1718-51-0","Terphenyl-
"TF1-GT-106-082817", "ŠŴ846 8270D", "RES", "SC38627-03", "ESAI", "206-44-
 0","Fluoranthene","0.971","�g/l","U","0.619","MDL",,"TARGET",,,"4.85","RDL","YES","-99",,"1030","1","0.971",
 "TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "207-08-9", "Benzo (k) fluoranthene", "0.971", "�g/l", "U", "0.466", "MDL", "TARGET", "4.85", "RDL", "YES", "-99", "1030", "1", "0.971", "TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "208-96-
 8","Acenaphthylene","0.971","

g/I","U","0.663","MDL",,"TARGET",,,"4.85","RDL","YES","-99",,"1030","1","0.
  971",
 "TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "218-01-9", "Chrysene", "0.971", "�g/l", "U", "0.517", "MDL", "TARGET", "4.85", "RDL", "YES", "-99", "1030", "1", "0.971", "TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "321-60-8", "2-
 Fluorobiphenyl","21.8","�g/l",,"-99","NA",,"SUR","45",,"-99","NA","YES","48.5",,"1030","1","-99",
"TF1-GT-106-082817","SW846 8270D", "RES","SC38627-03","ESAI","4165-60-0","Nitrobenzene-
d5","27.4","�g/l",,"-99","NA",,"SUR","56",,"-99","NA","YES","48.5",,"1030","1","-99",
"TF1-GT-106-082817","SW846 8270D","RES","SC38627-03","ESAI","50-32-8","Benzo (a)
 pyrene","0.971","�g/l","U","0.546","MDL",,"TARGET",,,"4.85","RDL","YES","-99",,"1030","1","0.971",
 "TF1-GT-106-082817", "$W846 8270D", "RES", "$C38627-03", "ESAI", "53-70-3", "Dibenzo (a,h) anthracene", "0.971", "$\displays g/l", "U", "0.437", "MDL", "TARGET", "4.85", "RDL", "YES", "-99", "1030", "1", "0.971", "TF1-GT-106-082817", "$W846 8270D", "RES", "$C38627-03", "ESAI", "56-55-3", "Benzo (a) anthracene", "0.971", "$\displays g/l", "U", "0.520", "MDL", "TARGET", "4.85", "RDL", "YES", "-99", "1030", "1", "0.971", "TF1-GT-106-082817", "$W846 8270D", "RES", "$C38627-03", "ESAI", "83-32-
 9","Acenaphthene","0.971","

g/I","U","0.671","MDL",,"TARGET",,,"4.85","RDL","YES","-99",,"1030","1","0.9
  71",
```

```
"TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "85-01-
8","Phenanthrene","0.971","

g/I","U","0.569","MDL",,"TARGET",,,"4.85","RDL","YES","-99",,"1030","1","0.97
"TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "86-73-
7","Fluorene","0.971","�g/l","U","0.594","MDL",,"TARGET",,,"4.85","RDL","YES","-99",,"1030","1","0.971",
"TF1-GT-106-082817","$W846 8270D","RES","$C38627-03","ESAI","90-12-0","1-
Methylpaphthalene" "0.971" "♠g/l" "LII" "0.713" "MARCH", "TAGGET", "0.971","1-
"TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "91-20-
"TF1-GT-106-082817", "SW846 8270D", "RES", "SC38627-03", "ESAI", "91-57-6", "2-Methylnaphthalene", "0.971", "�g/l", "U", "0.557", "MDL", "TARGET", "4.85", "RDL", "YES", "-99", "1030", "1", "0.9
71",
"TF1-GT-106-082817DUP","EPA 245.1/7470A","RES","1715127-DUP1","ESAI","7439-97-6","Mercury","0.00020","mg/I","U","0.00013","MDL",,"TARGET",,,"0.00020","RDL","YES","-99","TF1-GT-106-
082817","20","20","0.00020"
"TF1-GT-106-082817MS", "EPA 245.1/7470A", "RES", "1715127-MS1", "ESAI", "7439-97-
6","Mercury","0.00494","mg/I",,"0.00013","MDL",,"SPIKE","99",,"0.00020","RDL","YES","0.00500","TF1-GT-
106-082817","20","20","0.00020",
"TF1-GT-106-082817MSD", "EPA 245.1/7470A", "RES", "1715127-MSD1", "ESAI", "7439-97-
6","Mercury","0.00477","mg/l",,"0.00013","MDL",,"SPIKE","95","4","0.00020","RDL","YES","0.00500","TF1-
GT-106-082817","20","20","0.00020",
"TF1-GT-106-082817PS", "EPA 245.1/7470A", "RES", "1715127-PS1", "ESAI", "7439-97-
6","Mercury","0.00020","mg/I","QM9, U","0.00013","MDL",,"SPIKE",,,"0.00020","RDL","YES","0.00500","TF1-
GT-106-082817","20","20","0.00020",
"TF1-MW-1003-082817", "EPA 200/6000 methods", "RES", "SC38627-
01", "ESAI", "NA", "Preservation", "0", "N/A", "-99", "NA", "TARGET", ,, "-99", "NA", "YES", "-99", "1", "1", "1", "-99", "Field
Preserved; pH<2 confirmed"
"TF1-MW-1003-082817", "EPA 245.1/7470A", "RES", "SC38627-01", "ESAI", "7439-97-
6","Mercury","0.00020","mg/I","U","0.00013","MDL",,"TARGET",,,"0.00020","RDL","YES","-99",,"20","20","0.0
0020",
"TF1-MW-1003-082817","EPA 300.0","RES","SC38627-01","ESAI","14797-55-8","Nitrate as N","0.100","mg/l","U","0.009","MDL",,"TARGET",,,"0.100","RDL","YES","-99",,"5","5","0.100",
"TF1-MW-1003-082817", "EPA 300.0", "RES", "SC38627-01", "ESAI", "14808-79-8", "Sulfate as
SO4","1.00","mg/l","U","0.307","MDL",,"TARGET",,,"1.00","RDL","YES","-99",,"5","5","1.00",
"TF1-MW-1003-082817", "EPA 300.0", "RES", "SC38627-01", "ESAI", "16887-00-6", "Chloride", "7.45", "mg/l", "0.0897", "MDL", "TARGET", "1.00", "RDL", "YES", "-99", "5", "5", "0.100", "TF1-MW-1003-082817", "EPA 537 Modified", "DL10", "SC38627-01", "ESAI", "1763-23-1", "Perfluoro-octanesulfonate", "2100", "mg/l", "20", "MDL", "TARGET", "60", "RDL", "YES", "-99", "-99", "99", "99", "1.00", "RDL", "YES", "-99", "1.00", "99", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00", "1.00",
"TF1-MW-1003-082817", "EPA 537 Modified", "DL10", "SC38627-01", "ESAI", "355-46-4", "Perfluorohexanesulfonate", "2000", "ng/I", "10", "MDL", "TARGET", ", "30", "RDL", "YES", "-99", ", "-99",
"TF1-MW-1003-082817","EPA 537 Modified","RES","SC38627-01","ESAI","1763-23-1L","13C8-PFOS","44","ng/l",,"-99","NA","SUR","92",,"-99","NA","YES","48",,,,"-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "2058-94-8", "Perfluoroundecanoic
acid","0","ng/l",,"1","MDL",,"TARGET",,,"3","RDL","YES","-99",,,,"-99","<"
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "2058-94-8L", "13C7-
PFUnDA","33","ng/l",,"-99","NA",,"SUR","66",,"-99","NA","YES","50",,,,"-99",
"TF1-MW-1003-082817","EPA 537 Modified","RES","SC38627-01","ESAI","2706-90-3","Perfluoropentanoic
Acid","120","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99"
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "2706-90-3L", "13C5-PFPeA", "61", "ng/l", , "-99", "NA", , "SUR", "122", , "-99", "NA", "YES", "50", , , , "-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "307-24-4", "Perfluorohexanoic acid", "540", "ng/l", "0.6", "MDL", "TARGET", "2", "RDL", "YES", "-99", ".,,"-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "307-24-4L", "13C5-
PFHxA", "34", "ng/l",,"-99", "NA",,"SUR", "67",,"-99", "NA", "YES", "50",,,,"-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "307-55-1", "Perfluorododecanoic
```

```
acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "307-55-1L", "13C2-PFDoDA", "31", "ng/l", "-99", "NA", "SUR", "61", "-99", "NA", "YES", "50", , , , "-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "335-67-1", "Perfluorooctanoic acid", "150", "ng/l", "0.6", "MDL", "TARGET", "2", "RDL", "YES", "-99", "., "-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "335-67-1L", "13C8-
PFOA","45","ng/l",,"-99","NA",,"SUR","89",,"-99","NA","YES","50",,,,"-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "335-76-2", "Perfluorodecanoic
acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99","<"
"TF1-MW-1003-082817","EPA 537 Modified","RES","SC38627-01","ESAI","335-76-2L","13C6-
PFDA","40","ng/I",,"-99","NA",,"SUR","80",,"-99","NA","YES","50",,,,"-99"
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "335-77-3", "Perfluorodecanesulfonate", "0", "ng/l", "2", "MDL", "TARGET", "6", "RDL", "YES", "-99", ", " < "
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "355-46-4L", "13C3-PFHxS", "26", "ng/I",, "-99", "NA", "SUR", "56", "-99", "NA", "YES", "47", , , , "-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "375-22-4", "Perfluorobutanoic
Acid","75","ng/I",,"3","MDL",,"TARGET",,,"10","RDL","YES","-99",,,,"-99"
 "TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "375-22-4L", "13C4-
PFBA","45","ng/I",,"-99","NA",,"SUR","90",,"-99","NA","YES","50",,
 "TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "375-73-
5","Perfluorobutanesulfonate","280","ng/l",,"0.8","MDL",,"TARGET",,,"3","RDL","YES","-99",,,,"-99",
"TF1-MW-1003-082817","EPA 537 Modified","RES","SC38627-01","ESAI","375-73-5L","13C3-PFBS","59","ng/l",,"-99","NA",,"SUR","126",,"-99","NA","YES","47",,,,"-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "375-85-9", "Perfluoroheptanoic acid", "70", "ng/l", "0.5", "MDL", "TARGET", ", "2", "RDL", "YES", "-99", ", "-99",
"TF1-MW-1003-082817","EPA 537 Modified","RES","SC38627-01","ESAI","375-85-9L","13C4-PFHpA","33","ng/l",,"-99","NA",,"SUR","65",,"-99","NA","YES","50",,,,"-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "375-92-8", "Perfluoroheptanesulfonate", "130", "ng/l", "2", "MDL", "TARGET", "6", "RDL", "YES", "-99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99",
 "TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "375-95-1", "Perfluorononanoic
acid","0.7","ng/l","Ja","0.6","MDL",,"TARGET",,,"2","RDL","YES","-99",,,"-99",
"TF1-MW-1003-082817","EPA 537 Modified","RES","SC38627-01","ESAI","375-95-1L","13C9-
PFNA","63","ng/l",,"-99","NA",,"SUR","127",,"-99","NA","YES","50",,,,"-99",
"TF1-MW-1003-082817","EPA 537 Modified","RES","SC38627-01","ESAI","376-06-7","Perfluorotetradecanoic acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,,,"-99","<"
"TF1-MW-1003-082817","EPA 537 Modified","RES","SC38627-01","ESAI","376-06-7L","13C2-PFTeDA","28","ng/l",,"-99","NA",,"SUR","55",,"-99","NA","YES","50",,,,"-99",
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "72629-94-8", "Perfluorotridecanoic acid". "0", "ng/I", "0.5", "MDL", "TARGET", "2", "RDL", "YES", "-99", ", "99", "<"
acid","0","ng/l",,"0.5","MDL",,"TARGET",,,"2","RDL","YES","-99",,
"TF1-MW-1003-082817", "EPA 537 Modified", "RES", "SC38627-01", "ESAI", "754-91-
6","PFOSA","0","ng/l",,"3","MDL",,"TARGET",,,"9","RDL","YES","-99",,,,"-99","<"
"TF1-MW-1003-082817","EPA 537 Modified","RES","SC38627-01","ESAI","754-91-6L","13C8-PFOSA","20","ng/l",,"-99","NA",,"SUR","40",,"-99","NA","YES","50",,,,"-99",
"TF1-MW-1003-082817", "Mod EPA 3C/SOP RSK-175", "RES", "SC38627-01", "ESAI", "74-82-8", "Methane", "14.0", "�g/l", "2.16", "MDL", "TARGET", "2.20", "RDL", "YES", "-99", "10", "10", "10", "2.20", "TF1-MW-1003-082817", "Mod EPA 3C/SOP RSK-175", "RES", "SC38627-01", "ESAI", "74-84-0", "Ethane", "5.00", "�g/l", "U", "3.48", "MDL", "TARGET", "5.00", "RDL", "YES", "-99", "10", "10", "10", "5.00", "TF1-MW-1003-082817", "SM18-22 5210B", "RES", "SC38627-01", "ESAI", "NA", "Biochemical Oxygen Demand (5-day)", "5.00", "mg/l", "BOD4", "2.74", "MDL", "TARGET", "3.00", "RDL", "YES", "-99", "300", "300", "2.97", "TF1-MW-1003-082817", "BOD4", "2.74", "MDL", "TARGET", "3.00", "RDL", "YES", "-99", "300", "300", "2.97", "TF1-MW-1003-082817", "SM2320P (97-11)", "BF5", "SC326427-01", "F544", "NA", "Biochemical Oxygen Demand (5-day)", "5.00", "BDL", "BF5", "SC326427-01", "F544", "NA", "Biochemical Oxygen Demand (5-day)", "5.00", "BDL", "BF5", "SC326427-01", "F544", "NA", "Biochemical Oxygen Demand (5-day)", "5.00", "BDL", "BF5", "SC326427-01", "BC41", "BV41", "BF5", "SC326427-01", "BV41", "BF5", "SC326427-01", "BV41", "BV41", "BF5", "SC326427-01", "BV41", "BV41", "BF5", "SC326427-01", "BV41", 
"TF1-MW-1003-082817", "SM2320B (97, 11)", "RES", "SC38627-01", "ESAI", "NA", "Total Alkalinity", "120", "mg/l
CaCO3",,"1.05","MDL",,"TARGET",,,"4.00","RDL","YES","-99",,"50","50","3.00"
"TF1-MW-1003-082817", "SM5310B (00, 11)", "RES", "SC38627-01", "ESAI", "NA", "Total Organic Carbon", "6.06", "mg/l", "0.238", "MDL", "TARGET", ,, "1.00", "RDL", "YES", "-99", ,"40", "40", "0.500",
 "TF1-MW-1003-082817", "SW846 6010C", "RES", "SC38627-01", "ESAI", "7429-90-
5","Aluminum","0.0871","mg/l",,"0.0206","MDL",,"TARGET",,,"0.0500","RDL","YES","-99",,"50","50","0.0500"
 "TF1-MW-1003-082817", "SW846 6010C", "RES", "SC38627-01", "ESAI", "7439-89-
```

```
6","Iron","59.8","mg/l","R06","0.0089","MDL",,"TARGET",,,"0.0800","RDL","YES","-99",,"50","50","0.0300",
"TF1-MW-1003-082817","SW846 6010C","RES","SC38627-01","ESAI","7439-95-4","Magnesium","3.97","mg/I",,"0.0088","MDL",,"TARGET",,,"0.0200","RDL","YES","-99",,"50","50","0.0100",
"TF1-MW-1003-082817", "SW846 6010C", "RES", "SC38627-01", "ESAI", "7440-09-
7","Potassium","1.14","mg/l",,"0.120","MDL",,"TARGET",,,"1.00","RDL","YES","-99",,"50","50","0.250",
 "TF1-MW-1003-082817", "SW846 6010C", "RES", "SC38627-01", "ESAI", "7440-23-
5","Sodium","6.62","mg/I",,"0.0785","MDL",,"TARGET",,,"0.500","RDL","YES","-99",,"50","50","0.250",
"TF1-MW-1003-082817", "SW846 6010C", "RES", "SC38627-01", "ESAI", "7440-70-
2","Calcium","30.0","mg/I",,"0.0142","MDL",,"TARGET",,,"0.200","RDL","YES","-99",,"50","50","0.0500",
"TF1-MW-1003-082817", "SW-846 6020A", "DL5", "SC38627-01", "ESAI", "7439-96-5", "Manganese", "5.55", "mg/l", "0.0045", "MDL", "TARGET", "0.0200", "RDL", "YES", "-99", "99",
"TF1-MW-1003-082817", "SW-846 6020A", "DL5", "SC38627-01", "ESAI", "7440-39-
 3","Barium","0","mg/l",,"0.0036","MDL",,"TARGET",,,"0.0200","RDL","YES","-99",,,,"-99","<"
"TF1-MW-1003-082817","SW-846 6020A","RES","SC38627-01","ESAI","7439-92-1","Lead","0","mg/l",,"0.00011","MDL",,"TARGET",,,"0.0020","RDL","YES","-99",,,,"-99","<"
 "TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7439-98-
7","Molybdenum","0.0044","mg/l",,"0.00025","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",,,,"-99",
 "TF1-MW-1003-082817","SW-846 6020A","RES","SC38627-01","ESAI","7440-02-
0","Nickel","0","mg/I",,"0.0010","MDL",,"TARGET",,,"0.0040","RDL","YES","-99",,,,"-99","<"
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-22-
4","Silver","0","mg/l",,"0.00015","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",","-99","<"
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-28-0", "Thallium", "0", "mg/l", , "0.00012", "MDL", "TARGET", , , "0.0010", "RDL", "YES", "-99", , , , "<"
"TF1-MW-1003-082817","SW-846 6020A","RES","SC38627-01","ESAI","7440-36-0","Antimony","0","mg/l",,"0.00045","MDL",,"TARGET",,,"0.0020","RDL","YES","-99",,,,"-99","<"
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-38-2", "Arsenic", "0.0691", "mg/l", "0.00072", "MDL", "TARGET", "0.0040", "RDL", "YES", "-99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", "99", 
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-41-7", "Beryllium", "0", "mg/l",, "0.000071", "MDL",, "TARGET",,, "0.0010", "RDL", "YES", "-99", "<"
 "TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-43-
9","Cadmium","0","mg/l",,"0.00015","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",","-99","<"
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-47-
3","Chromium","0","mg/I",,"0.00087","MDL",,"TARGET",,,"0.0040","RDL","YES","-99",,,,"-99","<"
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-48-
4","Cobalt","0.0244","mg/l",,"0.00016","MDL",,"TARGET",,,"0.0010","RDL","YES","-99",,,,"-99",
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-50-8", "Copper", "0", "mg/l", , "0.00054", "MDL", , "TARGET", , , "0.0040", "RDL", "YES", "-99", , , , "<"
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-62-2", "Vanadium", "0", "mg/l", "0.00021", "MDL", "TARGET", , , "0.0010", "RDL", "YES", "-99", , ,
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7440-66-6", "Zinc", "0", "mg/l", "0.0039", "MDL", "TARGET", "0.0300", "RDL", "YES", "-99", ", "-99", "<"
"TF1-MW-1003-082817", "SW-846 6020A", "RES", "SC38627-01", "ESAI", "7782-49-
2", "Selenium", "0", "mg/l", "0.00050", "MDL", "TARGET", "0.0040", "RDL", "YES", "-99", ", "-99", "<"
"TF1-MW-1003-082817", "SW-846 8015B", "RES", "SC38627-01", "ESAI", "108-90-7", "Chlorobenzene", "0.017", "mg/l", "-99", "NA", "SUR", "126", "-99", "NA", "YES", "0.013", ", "-99", "TF1-MW-1003-082817", "BO3017", "BO
"TF1-MW-1003-082817", "SW-846 8015B", "RES", "SC38627-01", "ESAI", "84-15-1", "Orthoterphenyl", "0.012", "mg/l",,"-99", "NA",, "SUR", "90",,"-99", "NA", "YES", "0.013",,,,"-99",
"TF1-MW-1003-082817", "SW-846 8015B", "RES", "SC38627-01", "ESAI", "PHCC8C44", "C8-C44", "0.80", "mg/I", , "0.055", "MDL", , "TARGET", , , "0.22", "RDL", "YES", "-99", , , , "-99",
"TF1-MW-1003-082817", "SW-846 8015B", "RES", "SC38627-01", "ESAI", "PHCE", "Total TPH", "0.80", "mg/l", "0.055", "MDL", "TARGET", "0.22", "RDL", "YES", "-99", "-99", "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "1024-57-3", "Heptachlor
epoxide","0.021","�g/l","U","0.016","MDL",,"TARGET",,,"0.021","RDL","YES","-99",,"950","10","0.021", "TF1-MW-1003-082817","SW846 8081B","RES","SC38627-01","ESAI","1031-07-8","Endosulfan
sulfate","0.021","

g/I","U","0.021","MDL",,"TARGET",,,"0.042","RDL","YES","-99",,"950","10","0.021",
"TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "10386-84-2", "4,4-DB-
Octafluorobiphenyl
```

```
(Sr)","0.217","♦g/l",,"-99","NA",,"SUR","103",,"-99","NA","YES","0.211",,"950","10","-99", "TF1-MW-1003-082817","SW846 8081B","RES","SC38627-01","ESAI","15972-60-
 8","Alachlor","0.021","�g/l","U","0.020","MDL",,"TARGET",,,"0.021","RDL","YES","-99",,"950","10","0.021",
"TF1-MW-1003-082817","SW846 8081B","RES","SC38627-01","ESAI","2051-24-3","Decachlorobiphenyl
(Sr)","0.185","�g/l",,"-99","NA",,"SUR","88",,"-99","NA","YES","0.211",,"950","10","-99",
"TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "50-29-3", "4,4'-DDT (p,p')", "0.032", "�g/l", "U", "0.019", "MDL", "TARGET", "0.042", "RDL", "YES", "-99", "950", "10", "0.032", "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "5103-71-9", "alpha-Chlordane", "0.021", "�g/l", "U", "0.016", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "5103-74-2", "Chlordane (gamma) (trans)", "0.021", "$g/l", "U", "0.017", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "53494-70-5", "Endrin "F1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "53494-70-5", "Endrin "P1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "53494-70-5", "Endrin "P1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "53494-70-5", "Endrin "P1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "53494-70-5", "Endrin "Setone", "0.021", "P1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "53494-70-5", "Endrin "Setone", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "RDL", "Setone", "0.042", "PDL", "YES", "-99", "950", "10", "0.021", "RDL", "Setone", "0.042", "PDL", "YES", "-99", "950", "10", "0.021", "RDL", "Setone", "0.042", "PDL", "YES", "-99", "950", "10", "0.021", "RDL", "0.021", "RDL", "Setone", "0.042", "PDL", "YES", "-99", "950", "10", "0.021", "RDL", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021", "0.021",
 ketone","0.021","�g/I","U","0.018","MDL",,"TARGET",,,"0.042","RDL","YES","-99",,"950","10","0.021",
"TF1-MW-1003-082817","SW846 8081B","RES","SC38627-01","ESAI","57-74-
9","Chlordane","0.068","�g/I","U","0.054","MDL",,"TARGET",,,"0.068","RDL","YES","-99",,"950","10","0.068"
 "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "58-89-9", "gamma-BHC (Lindane)", "0.021", "�g/l", "U", "0.018", "MDL", "TARGET", ,, "0.021", "RDL", "YES", "-99", "950", "10", "0.021",
 (Lindane)", "0.021", "$\\ 9\\", "0.018", "MDL", "TARGET",,, "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "60-57-1", "Dieldrin", "0.021", "$\\ 9\\", "U", "0.018", "MDL", "TARGET", ", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "72-20-8", "Endrin", "0.021", "$\\ 9\\", "U", "0.020", "MDL", "TARGET", "0.042", "RDL", "YES", "-99", "950", "10", "0.021", "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "72-43-
  5","Methoxychlor","0.021","

g/I","U","0.019","MDL",,"TARGET",,,"0.042","RDL","YES","-99",,"950","10","0.0
   21",
 "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "72-54-8", "4,4'-DDD (p,p')", "0.021", "\phigg| g/l", "U", "0.020", "MDL", "TARGET", "0.042", "RDL", "YES", "-99", "950", "10", "0.021", "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "72-55-9", "4,4'-DDE (p,p')", "0.021", "\phigg| g/l", "U", "0.019", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "\phigg| g/l", "U", "0.019", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "\phigg| g/l", "U", "0.019", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "\phigg| g/l", "U", "0.019", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "\phigg| g/l", "U", "0.019", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "\phigg| g/l", "U", "0.019", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "\phigg| g/l", "U", "0.019", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "\phigg| g/l", "U", "0.019", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "\phigg| g/l", "U", "0.019", "MDL", "TARGET", "0.021", "RDL", "YES", "-99", "950", "10", "0.021", "\phigg| g/l", "U", "0.021", "\phigg| g/l", 
   "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "7421-93-4", "Endrin
  aldehyde","0.021","

g/l","U","0.020","MDL",,"TARGET",,,"0.042","RDL","YES","-99",,"950","10","0.021",
  "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "76-44-
  8","Heptachlor","0.021","�g/l","U","0.021","MDL",,"TARGET",,,"0.021","RDL","YES","-99",,"950","10","0.021
  "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "8001-35-
   2","Toxaphene","0.526"," •g/l","U","0.345","MDL",,"TARGET",,,"0.526","RDL","YES","-99",,"950","10","0.526
  "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "877-09-8", "2,4,5,6-TC-M-Xylene (IS)", "0.020", "�g/ml", ", "-99", "NA", "ISTD", "106", "-99", "NA", "YES", "10.0", "950", "10", "-99", "NA", "YES", "10.0", "950", "10", "-99", "NA", "YES", "10.0", "950", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10"
   "TF1-MW-1003-082817", "SW846 8081B", "RES", "SC38627-01", "ESAI", "959-98-8", "Endosulfan
 I","0.021","

g/I","U","0.017","MDL",,"TARGET",,,"0.021","RDL","YES","-99",,"950","10","0.021",

"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","100-41-

4","Ethylbenzene","0.5","

g/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",

"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","100-42-
 5","Styrene","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","10061-01-5","cis-1,3-
Dichloropropene","0.5","�g/l","U","0.4","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",
```

```
"TF1-MW-1003-082817" "SW846 8260C", "RES" "SC38627-01" "ESAI", "10061-02-6", "Irans-1,3-Dichloropropene", "0.5", "\pg/l", "U", "0.3", "MDL", "TARGET", "0.5", "PDL", "YES", "99", "5", "5", "0.5", "TF1-MW-1003-082817" "SW846 8260C", "RES", "SC38627-01", "ESAI", "106-46-77", "1.4-Dichlorobenzene", "0.5", "\pg/l", "U", "0.3", "MDL", "TARGET", "1.0", "RDL", "YES", "99", "S", "5", "0.5", "TF1-MW-1003-082817" "SW846 8260C", "RES", "SC38627-01", "ESAI", "106-93-41", 1.2-Dibromoethane (EDB)", "0.5", "\pg/l", "U", "0.3", "MDL", "TARGET", "1.0", "RDL", "YES", "99", "S", ""5", "1.0", "TF1-MW-1003-082817" "SW846 8260C", "RES", "SC38627-01", "ESAI", "107-06-22", 1.2. Dichlorocthane, "1.0", "\pg/l", "U", "0.3", "MDL", "TARGET", "1.0", "RUI", "YES", "99", "S", "S", "1.0", "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "108-108-22", "99", "S", "5", "2.0", "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-83-3", "108-8
        tetrachloride","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","591-78-6","2-Hexanone
(MBK)","2.0","�g/l","U","0.5","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","67-64-
1","Acetone","2.0","�g/l","U","0.8","MDL",,"TARGET",,,"10.0","RDL","YES","-99",,"5","5","2.0",
          "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "67-66-3", "Chloroform", "1.0", "�g/I", "U", "0.3", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0",
           "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "71-43-
```

```
2","Benzene","0.5","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","71-55-6","1,1,1-
Trichloroethane","1.0","�g/l","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","74-83-
9","Bromomethane","2.0","�g/l","U","0.9","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","74-87-
3","Chloromethane","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","1.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","74-97-
5","Bromochloromethane","1.0","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","75-00-
3","Chloroethane","2.0","�g/l","U","0.6","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","75-01-4","Vinyl
chloride","1.0","�g/l","U","0.5","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","1.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","75-09-2","Methylene
chloride","2.0","�g/l","U","0.7","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","5.","2.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","75-01-4","Methylene
chloride","2.0","�g/l","U","0.7","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","5","5","1.0",
"TF1-MW-1003-082817","SW846 8260C","RES","SC38627-01","ESAI","75-15-0","Carbon
disulfide","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","5","1.0",
 "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "75-15-0", "Carbon disulfide", "1.0", $\displaystyle{q}\], "U", "0.4", "MDL", "TARGET",,,"2.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "75-25-2", "Bromoform", "1.0", $\displaystyle{q}\], "U", "0.4", "MDL", "TARGET",,,"1.0", "RDL", "YES", "-99",,"5", "5", "1.0", "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "75-27-4", "Bromodichloromethane", "0.5", $\displaystyle{q}\], "U", "0.4", "MDL", "TARGET",,,"0.5", "RDL", "YES", "-99", "5", "5", "5", "0.5", "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "75-34-3", "1,1-Dichloroethane", "1.0", $\displaystyle{q}\], "U", "0.3", "MDL", "TARGET",,,"1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "75-69-4", "Trichlorofluoromethane (Freon 11)", "1.0", $\displaystyle{q}\], "U", "0.5", "MDL", "TARGET",,,"1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "75-71-8", "Dichlorodifluoromethane (Freon12)", "2.0", $\displaystyle{q}\], "U", "0.6", "MDL", "TARGET",,,"2.0", "RDL", "YES", "-99", "5", "5", "5", "2.0", "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "75-71-8", "Dichlorodifluoromethane (Freon12)", "2.0", $\displaystyle{q}\], "U", "0.6", "MDL", "TARGET",,,"2.0", "RDL", "YES", "-99", "5", "5", "5", "2.0", "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "76-13-1", "1,1,2-"
         "TF1-MW-1003-082817", "SW846 8260C", "RES", "SC38627-01", "ESAI", "76-13-1", "1,1,2-
Trichlorotrifluoroethane (Freon 113)","1.0","$\phightarrow\text{9}\text{","1.0","$\phightarrow\text{9}\text{","1.0","$\phightarrow\text{9}\text{","5","5","1.0","$\text{TF1-MW-1003-082817","$\text{SW846} 8260C","RES","$\text{C38627-01","ESAI","78-87-5","1.2-Dichloropropane","1.0","$\phightarrow\text{9}\text{\gamma}\text{","1.0","RDL","YES","-99","5","5","1.0","$\text{TF1-MW-1003-082817","$\text{SW846} 8260C","RES","$\text{C38627-01","ESAI","78-93-3","2-Butanone (MEK)","2.0","$\phightarrow\text{\gamma}\text{\gamma}\text{","1.0","RDL","YES","-99","5","5","2.0","$\text{TF1-MW-1003-082817","$\text{SW846} 8260C","RES","$\text{C38627-01","ESAI","79-00-5","1,1,2-Trichloroethane","0.5","$\phightarrow\text{\gamma}\text{\gamma}\text{","1.0","RDL","YES","-99",,"5","5","0.5","$\text{TF1-MW-1003-082817","$\text{SW846} 8260C","RES","$\text{C38627-01","ESAI","79-01-6","TF1-MW-1003-082817","$\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\text{\gamma}\
        Trichlorotrifluoroethane (Freon
```

```
7","Anthracene","1.05","�g/l","U","0.640","MDL",,"TARGET",,,"5.26","RDL","YES","-99",,"950","1","1.05", "TF1-MW-1003-082817","SW846 8270D","RES","SC38627-01","ESAI","129-00-
"IF I-MW-1003-08281/", "SW846 8270D", "RES", "SC38627-01", "ESAI", "129-00-0", "Pyrene", "1.05", "\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\
8","Acenaphthylene","1.05","�g/l","U","0.719","MDL",,"TARGET",,,"5.26","RDL","YES","-99",,"950","1","1.05
 "TF1-MW-1003-082817", "SW846 8270D", "RES", "SC38627-01", "ESAI", "218-01-9", "Chrysene", "1.05", "�g/l", "U", "0.560", "MDL", "TARGET", ", "5.26", "RDL", "YES", "-99", "950", "1", "1.05", "TF1-MW-1003-082817", "SW846 8270D", "RES", "SC38627-01", "ESAI", "321-60-8", "2-Fluorobiphenyl", "29.7", �g/l", "-99", "NA", "SUR", "56", "-99", "NA", "YES", "52.6", "950", "1", "-99", "TF1-MW-1003-082817", "SW846 8270D", "RES", "SC38627-01", "ESAI", "4165-60-0", "Nitrobenzene-15", "327-7", $4.00", "NA", "YES", "52.6", "950", "1", "-99", "NA", "YES", "52.6", "950", "1", "99", "NA", "YES", "52.6", "950", "1", "99", "NA", "YES", "52.6", "950", "1", "99", "NA", "YES", "950", "1", "99", "NA", "YES", "52.6", "950", "1", "99", "NA", "YES", "950", "1", "99", "NA", "YES", "950", "1", "99", "NA", "YES", "950", "1", "99", "NA", "950", "1", "99", "950", "1", "99", "950", "1", "99", "950", "1", "99", "950", "1", "99", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950", "950"
  "TF1-MW-1003-082817", "SW846 8270D", "RES", "SC38627-01", "ESAI", "53-70-3", "Dibenzo (a,h) anthracene", "1.05", "�g/I", "U", "0.474", "MDL", "TARGET", "5.26", "RDL", "YES", "-99", "950", "1", "1.05", "TF1-MW-1003-082817", "SW846 8270D", "RES", "SC38627-01", "ESAI", "56-55-3", "Benzo (a) anthracene", "1.05", "�g/I", "U", "0.564", "MDL", "TARGET", "5.26", "RDL", "YES", "-99", "950", "1", "1.05", "TF1-MW-1003-082817", "SW846 8270D", "RES", "SC38627-01", "ESAI", "83-32-
   9","Acenaphthene","1.05","�g/l","U","0.727","MDL",,"TARGET",,,"5.26","RDL","YES","-99",,"950","1","1.05",
  "TF1-MW-1003-082817", "SW846 8270D", "RES", "SC38627-01", "ESAI", "85-01-8", "Phenanthrene", "1.05", "�g/l", "U", "0.617", "MDL", "TARGET", ", "5.26", "RDL", "YES", "-99", "950", "1", "1.05",
 8","Phenanthrene","1.05"," $\delta g/l","\0","\0.617","\mbl","\TARGET",,,"\5.26",\RDL",\YES","\99",,"\950",\"1","\1.05",\"\7",\"Fluorene",\"1.05",\"\delta g/l",\"\"\\0.644",\"\mbl",\"\TARGET\",,,\"\5.26",\"\RDL\",\"\YES\",\"\99\",\"\950\",\"\1",\"\1.05",\"\TF1\\0.5\",\"\90\\0.12\\0.0\",\"\1.05\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72\\0.72
  "TF1-MW-1003-082817DUP", "Mod EPA 3C/SOP RSK-175", "RES", "1715310-DUP1", "ESAI", "74-82-
  8","Methane","17.0","�g/l",,"2.16","MDL",,"TARGET",,"19","2.20","RDL","YES","-99","TF1-MW-1003-
   082817","10","10","2.20",
   "TF1-MW-1003-082817DUP", "Mod EPA 3C/SOP RSK-175", "RES", "1715310-DUP1", "ESAI", "74-84-
   082817","10","10","5.00",
```

```
"TF1-MW-1003-082817DUP", "SM5310B (00, 11)", "RES", "1715303-DUP1", "ESAI", "NA", "Total Organic
Carbon","6.06","mg/l",,"0.238","MDL",,"TARGET",,"0","1.00","RDL","YES","-99","TF1-MW-1003-082817","40","40","0.500",
"TF1-MW-1003-082817DUP", "SW846 6010C", "RES", "1715125-DUP1", "ESAI", "7429-90-
5","Aluminum","0.0851","mg/l",,"0.0206","MDL",,"TARGET",,"2","0.0500","RDL","YES","-99","TF1-MW-1003-
082817","50","50","0.0500",
"TF1-MW-1003-082817DUP", "SW846 6010C", "RES", "1715125-DUP1", "ESAI", "7439-95-
4","Magnesium","3.72","mg/l",,"0.0088","MDL",,"TARGET",,"6","0.0200","RDL","YES","-99","TF1-MW-1003-
082817","50","50","0.0100<sup>®</sup>
"TF1-MW-1003-082817DUP", "SW846 6010C", "RES", "1715125-DUP1", "ESAI", "7440-09-7", "Potassium", "1.07", "mg/I", "0.120", "MDL", "TARGET", "7", "1.00", "RDL", "YES", "-99", "TF1-MW-1003-
082817","50","50","0.250",
"TF1-MW-1003-082817DUP", "SW846 6010C", "RES", "1715125-DUP1", "ESAI", "7440-23-
5","Sodium","6.28","mg/l",,"0.0785","MDL",,"TARGET",,"5","0.500","RDL","YES","-99","TF1-MW-1003-
082817","50","50","0.250"
"TF1-MW-1003-082817DUP", "SW846 6010C", "RES", "1715125-DUP1", "ESAI", "7440-70-
2","Calcium","27.8","mg/l",,"0.0142","MDL",,"TARGET",,"8","0.200","RDL","YES","-99","TF1-MW-1003-
082817","50","50","0.0500",
"TF1-MW-1003-082817DUP","SW846 6010C","RES","1715591-DUP1","ESAI","7439-89-6","Iron","57.3","mg/I","R06","0.0089","MDL",,"TARGET",,"4","0.0800","RDL","YES","-99","TF1-MW-1003-
082817","50","50","0.0300",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "1146-65-2", "Naphthalene-
082817","930","1","-99",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "120-12-
7","Anthracene","1.08","�g/l","U","0.654","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "129-00-
082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "15067-26-2", "Acenaphthene-
d10","40.0","\rightarrowg/ml",,"-99","NA",,"ISTD","168",,"-99","NA","YES","40.0","TF1-MW-1003-
082817","930","1","-99",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "1517-22-2", "Phenanthrene-
d10","40.0","\d10","-99","NA",,"ISTD","129",,"-99","NA","YES","40.0","TF1-MW-1003-
082817","930","1","-99",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "1520-96-3", "Perylene-
082817","930","1","-99",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "1718-51-0", "Terphenyl-
dl4","42.5","

g/I",,"-99","NA",,"SUR","79",,"-99","NA","YES","53.8","TF1-MW-1003-082817","930","1","-99",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "1719-03-5", "Chrysene-
d12","40.0","\rightarrowg/ml",,"-99","NA",,"ISTD","134",,"-99","NA","YES","40.0","TF1-MW-1003-
082817","930","1","-99",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "191-24-2", "Benzo (q,h,i)
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "193-39-5", "Indeno (1,2,3-cd)
pyrene","1.08","�g/l","U","0.624","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-
.
082817","930","1<sup>*</sup>",<sup>**</sup>1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "205-99-2", "Benzo (b)
fluoranthene","1.08","

g/I","U","0.470","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-
082817","930","1","1.08
"TF1-MW-1003-082817DUP","SW846 8270D","RES","1715009-DUP1","ESAI","206-44-
0","Fluoranthene","1.08","�g/l","U","0.686","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "207-08-9", "Benzo (k)
```

```
fluoranthene","1.08","

g/I","U","0.516","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-
082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "208-96-
082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "218-01-
9","Chrysene","1.08","�g/l","U","0.572","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "321-60-8", "2-
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "50-32-8", "Benzo (a) pyrene", "1.08", "�g/I", "U", "0.604", "MDL", "TARGET", "5.38", "RDL", "YES", "-99", "TF1-MW-1003-
082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "53-70-3", "Dibenzo (a,h) anthracene", "1.08", "�g/I", "U", "0.484", "MDL", "TARGET", ", "5.38", "RDL", "YES", "-99", "TF1-MW-1003-
082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "56-55-3", "Benzo (a)
anthracene","1.08","�g/l","U","0.576","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "83-32-
9","Acenaphthene","1.08","�g/I","U","0.743","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-
082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "85-01-
8","Phenanthrene","1.08","�g/l","U","0.630","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-
082817","930","1","1.08",
"TF1-MW-1003-082817DUP","SW846 8270D","RES","1715009-DUP1","ESAI","86-73-
7","Fluorene","1.08","

g/I","U","0.658","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-
082817","930","1","1.08"
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "90-12-0", "1-
Methylnaphthalene","1.18","

g/I","J","0.788","MDL",,"TARGET",,"0.3","5.38","RDL","YES","-99","TF1-MW-
1003-082817","930","1","1.08"
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "91-20-
3","Naphthalene","1.08","�g/l","U","0.737","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-082817","930","1","1.08",
"TF1-MW-1003-082817DUP", "SW846 8270D", "RES", "1715009-DUP1", "ESAI", "91-57-6", "2-
Methylnaphthalene","1.08","♦g/I","U","0.617","MDL",,"TARGET",,,"5.38","RDL","YES","-99","TF1-MW-1003-
082817", "930", "1", "1.08",
"TF1-MW-1003-082817MS", "SM5310B (00, 11)", "RES", "1715303-MS1", "ESAI", "NA", "Total Organic
Carbon","10.8","mg/l",,"0.238","MDL",,"SPIKE","95",,"1.00","RDL","YES","5.00","TF1-MW-1003-
082817","40","40","0.500",
"TF1-MW-1003-082817MS", "SW846 6010C", "RES", "1715125-MS1", "ESAI", "7429-90-
5","Aluminum","2.60","mg/l",,"0.0206","MDL",,"SPIKE","100",,"0.0500","RDL","YES","2.50","TF1-MW-1003-
082817","50","50","0.0500",
"TF1-MW-1003-082817MS", "SW846 6010C", "RES", "1715125-MS1", "ESAI", "7439-95-
4","Magnesium","6.44","mg/l",,"0.0088","MDL",,"SPIKE","99",,"0.0200","RDL","YES","2.50","TF1-MW-1003-
082817","50","50","0.0100"
"TF1-MW-1003-082817MS", "SW846 6010C", "RES", "1715125-MS1", "ESAI", "7440-09-
7","Potassium","25.1","mg/l",,"0.120","MDL",,"SPIKE","96",,"1.00","RDL","YES","25.0","TF1-MW-1003-
082817","50","50","0.250",
"TF1-MW-1003-082817MS", "SW846 6010C", "RES", "1715125-MS1", "ESAI", "7440-23-
5","Sodium","18.5","mg/l",, "0.0785","MDL",, "SPIKE", "95",, "0.500", "RDL", "YES", "12.5", "TF1-MW-1003-
082817","50","50","0.250"
"TF1-MW-1003-082817MS","SW846 6010C","RES","1715125-MS1","ESAI","7440-70-2","Calcium","41.9","mg/I",,"0.0142","MDL",,"SPIKE","95",,"0.200","RDL","YES","12.5","TF1-MW-1003-
```

```
082817","50","50","0.0500"
"TF1-MW-1003-082817MS", "SW846 6010C", "RES", "1715591-MS1", "ESAI", "7439-89-
6","Iron","61.2","mg/I","QM2","0.0089","MDL",,"SPIKE","56",,"0.0800","RDL","YES","2.50","TF1-MW-1003-
082817", "50", "50", "0.0300",
"TF1-MW-1003-082817MSD", "SM5310B (00, 11)", "RES", "1715303-MSD1", "ESAI", "NA", "Total Organic
Carbon", "10.8", "mg/l",, "0.238", "MDL",, "SPIKE", "94", "0.2", "1.00", "RDL", "YES", "5.00", "TF1-MW-1003-
082817","40","40","0.500",
"TF1-MW-1003-082817MSD","SW846 6010C","RES","1715125-MSD1","ESAI","7429-90-5","Aluminum","2.58","mg/l",,"0.0206","MDL",,"SPIKE","100","0.5","0.0500","RDL","YES","2.50","TF1-MW-
1003-082817","50","50","0.0500"
"TF1-MW-1003-082817MSD", "SW846 6010C", "RES", "1715125-MSD1", "ESAI", "7439-95-
4","Magnesium","6.36","mg/l",,"0.0088","MDL",,"SPIKE","96","1","0.0200","RDL","YES","2.50","TF1-MW-
1003-082817", "50", "50", "0.0100",
"TF1-MW-1003-082817MSD","SW846 6010C","RES","1715125-MSD1","ESAI","7440-09-
7","Potassium","24.6","mg/l",,"0.120","MDL",,"SPIKE","94","2","1.00","RDL","YES","25.0","TF1-MW-1003-
082817", "50", "50", "0.250",
"TF1-MW-1003-082817MSD", "SW846 6010C", "RES", "1715125-MSD1", "ESAI", "7440-23-
5","Sodium","18.0","mg/l",,"0.0785","MDL",,"SPIKE","91","2","0.500","RDL","YES","12.5","TF1-MW-1003-
082817","50","50","0.250"
"TF1-MW-1003-082817MSD", "SW846 6010C", "RES", "1715125-MSD1", "ESAI", "7440-70-
2","Calcium","41.7","mg/l",,"0.0142","MDL",,"SPIKE","93","0.4","0.200","RDL","YES","12.5","TF1-MW-1003-
082817","50","50","0.0500"
"TF1-MW-1003-082817MSD", "SW846 6010C", "RES", "1715591-MSD1", "ESAI", "7439-89-
6","Iron","60.8","mg/I","QM2","0.0089","MDL",,"SPIKE","39","0.7","0.0800","RDL","YES","2.50","TF1-MW-
1003-082817", "50", "50", "0.0300",
"TF1-MW-1003-082817PS", "SW846 6010C", "RES", "1715125-PS1", "ESAI", "7429-90-
5","Aluminum","2.60","mg/l",,"0.0206","MDL",,"SPIKE","100",,"0.0500","RDL","YES","2.50","TF1-MW-1003-
082817","50","50","0.0500"
"TF1-MW-1003-082817PS", "SW846 6010C", "RES", "1715125-PS1", "ESAI", "7439-95-
4","Magnesium","6.47","mg/l",,"0.0088","MDL",,"SPIKE","100",,"0.0200","RDL","YES","2.50","TF1-MW-1003-
082817","50","50","0.0100"
"TF1-MW-1003-082817PS", "SW846 6010C", "RES", "1715125-PS1", "ESAI", "7440-09-
7","Potassium","25.6","mg/l",,"0.120","MDL",,"SPIKE","98",,"1.00","RDL","YES","25.0","TF1-MW-1003-
082817","50","50","0.250"
"TF1-MW-1003-082817PS", "SW846 6010C", "RES", "1715125-PS1", "ESAI", "7440-23-
5","Sodium","18.7","mg/l",,"0.0785","MDL",,"SPIKE","97",,"0.500","RDL","YES","12.5","TF1-MW-1003-082817","50","50","0.250",
"TF1-MW-1003-082817PS", "SW846 6010C", "RES", "1715125-PS1", "ESAI", "7440-70-2", "Calcium", "41.7", "mg/l", "0.0142", "MDL", "SPIKE", "93", "0.200", "RDL", "YES", "12.5", "TF1-MW-1003-
082817","50","50","0.0500"
"TF1-MW-1003-082817PS", "SW846 6010C", "RES", "1715591-PS1", "ESAI", "7439-89-
6","Iron","59.5","mg/I","QM2","0.0089","MDL",,"SPIKE","-13",,"0.0800","RDL","YES","2.50","TF1-MW-1003-
082817","50","50","0.0300",
"TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "100-41-
4","Ethylbenzene","0.5","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",
"TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "100-42-5", "Styrene", "1.0", "$\delta g/l", "U", "0.4", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "10061-01-5", "cis-1,3-Dichloropropene", "0.5", "$\delta g/l", "U", "0.4", "MDL", "TARGET", "0.5", "RDL", "YES", "-99", "5", "5", "0.5", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "10061-02-6", "trans-1,3-
Dichloropropene","0.5","�g/l","U","0.3","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5", "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","106-46-7","1,4-
Dichlorobenzene","0.5","�g/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",
"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","106-93-4","1,2-Dibromoethane
(EDB)","0.5","�g/l","U","0.2","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",
"TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "107-06-2", "1,2-
Dichloroethane","1.0","

g/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
```

```
"TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "108-10-1", "4-Methyl-2-pentanone"
     (MIBK)","2.0","�g/l","U","0.5","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0", "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","108-87-
   "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","108-87-2","Methylcyclohexane","2.0","

g/l","U","0.7","MDL",,"TARGET",,,"5.0","RDL","YES","-99",,"5","5","2.0",

"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","108-88-3","Toluene","1.0","

"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","108-90-7","Chlorobenzene","0.5","

"G/l","U","0.2","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",

"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","110-82-7","Cyclohexane","2.0","

"G/l","U","0.8","MDL",,"TARGET",,,"5.0","RDL","YES","-99",,"5","5","2.0",

"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","120-82-1","1,2,4-

Trichlorobenzene" "1.0" "Ag/l" "II" "0.4" "MDI" "TARGET" "1.0" "RDI" "YES" "-99", "5" "5" "1.0"
     Trichlorobenzene","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","124-48-
1","Dibromochloromethane","0.5","�g/l","U","0.3","MDL",,"TARGET",,,"0.5","RDL","YES","-99",,"5","5","0.5",
"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","127-18-
    4","Tetrachloroethene","1.0","�g/l","U","0.6","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","156-59-2","cis-1,2-
Dichloroethene","0.5","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5",
"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","156-60-5","trans-1,2-
Dichloroethene","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
"TF1-TB-082817","SW846 8260C","PESS","SC38627-04","ESAI","1624,044,""Motbut tort but to
     "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "1634-04-4", "Methyl tert-butyl ether", "0.5", " g/l", "U", "0.2", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "0.5", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "17060-07-0", "1,2-Dichloroethane-d4", "51.4", g/l", "-99", "NA", "SUR", "103", "-99", "NA", "YES", "50.0", "5", "5", "-99", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "179601-23-1", "m,p-
"TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "179601-23-1", "m,p-
Xylene", "1.0", "\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{\oldsymbol{
   "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","67-66-3","Chloroform","1.0","�g/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","71-43-2","Benzene","0.5","�g/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5", "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","71-55-6","1,1,1-Trichloroethane","1.0","�g/I","U","0.5","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","74-83-9","Bromomethane","2.0","�g/I","U","0.9","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0", "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","74-87-3","Chloromethane","1.0","�g/I","U","0.4","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","1.0", "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","74-97-
```

```
5","Bromochloromethane","1.0","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0", "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","75-00-
"TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-00-3", "Chloroethane", "2.0", @g/l", "U", "0.6", "MDL", "TARGET", "2.0", "RDL", "YES", "-99", "5", "5", "2.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-01-4", "Vinyl chloride", "1.0", @g/l", "U", "0.5", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-09-2", "Methylene chloride", "2.0", "@g/l", "U", "0.7", "MDL", "TARGET", "2.0", "RDL", "YES", "-99", "5", "5", "2.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-15-0", "Carbon disulfide", "1.0", @g/l", "U", "0.4", "MDL", "TARGET", "2.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-25-2", "Bromoform" "1.0", "Ag/l", "IJ", "0.4", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "1.0", "RDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "1.0", "RDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.0", "1.
 2","Bromoform","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
 "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-27-4", "Bromodichloromethane", "0.5", "\@g/l", "U", "0.4", "MDL", "TARGET", "0.5", "RDL", "YES", "-99", "5", "5", "0.5", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-34-3", "1,1-Dichloroethane", "1.0", "\@g/l", "U", "0.3", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-35-4", "1,1-
"TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-35-4", "1,1-Dichloroethene", "1.0", "$\phightarrow g/l", "U", "0.7", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-69-4", "Trichlorofluoromethane (Freon 11)", "1.0", "$\phightarrow g/l", "U", "0.5", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "75-71-8", "Dichlorodifluoromethane (Freon 12)", "2.0", "$\phightarrow g/l", "U", "0.6", "MDL", "TARGET", "2.0", "RDL", "YES", "-99", "5", "5", "2.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "76-13-1", "1,1,2-Trichlorotrifluoroethane (Freon 113)", "1.0", "$\phightarrow g/l", "U", "0.5", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "78-87-5", "1,2-Dichloropropane", "1.0", "$\phightarrow g/l", "U", "0.3", "MDL", "TARGET", "1.0", "RDL", "YES", "-99", "5", "5", "1.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "78-93-3", "2-Butanone
 "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "78-93-3", "2-Butanone (MEK)", "2.0", "�g/l", "U", "1.1", "MDL", "TARGET", "2.0", "RDL", "YES", "-99", "5", "5", "2.0", "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "79-00-5", "1,1,2-
Xylene","1.0","�g/l","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
 "TF1-TB-082817", "SW846 8260C", "RES", "SC38627-04", "ESAI", "95-50-1", "1,2-
Dichlorobenzene","0.5","�g/I","U","0.3","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","0.5", "TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","96-12-8","1,2-Dibromo-3-
 chloropropane","2.0","�g/l","U","0.9","MDL",,"TARGET",,,"2.0","RDL","YES","-99",,"5","5","2.0",
"TF1-TB-082817","SW846 8260C","RES","SC38627-04","ESAI","98-82-
8","Isopropylbenzene","1.0","�g/l","U","0.4","MDL",,"TARGET",,,"1.0","RDL","YES","-99",,"5","5","1.0",
 "112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","1714824-BLK1",,"Aqueous","1714824-BLK1","Method Bla",,"-99","EPA 300.0","Gen Prep","RES","08/29/2017 17:19","08/30/2017
 00:59", "ESAI", "COA", "NA", "T", "1", "NA", ,, ,"100", "1714824", "1714824", "1714824", "1714824", "SC38627", "08/2
  9/2017 17:23","10/13/2017 15:55",
 "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714824-BS1", , "Aqueous", "1714824-
 BS1", "LCS", , "-99", "EPA 300.0", "Gen Prep", "RES", "08/29/2017 17:19", "08/30/2017
 01:47", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714824", "1714824", "1714824", "1714824", "SC38627", "08/2
 9/2017 17:23", "10/13/2017 15:55",
  "112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","1714824-SRM1",,"Aqueous","1714824-
 SRM1","Reference",,"-99","EPA 300.0","Gen Prep","RES","08/29/2017 17:19","08/30/2017 02:18","ESAI","COA","NA","T","1","NA",,,"100","1714824","1714824","1714824","1714824","8C38627","08/2
 9/2017 17:23","10/13/2017 15:55",
```

```
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714921-BLK1", "Aqueous", "1714921-
BLK1","Method Bla",,"-99","SM18-22 5210B","Gen Prep","RES","08/30/2017 13:00","09/06/2017 12:36","ESAI","COA","NA","T","1","NA",,,"100","1714921","1714921","1714921","1714921","8C38627","08/2
9/2017 17:23","10/13/2017 15:55"
"112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","1714921-BLK2",,"Aqueous","1714921-BLK2","Method Bla",,"-99","SM18-22 5210B","Gen Prep","RES","08/30/2017 13:00","09/06/2017
12:36", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714921", "1714921", "1714921", "1714921", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714921-BS1", , "Aqueous", "1714921-
BS1","LCS",,"-99","SM18-22 5210B","Gen Prep","RES","08/30/2017 13:00","09/06/2017
12:36", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714921", "1714921", "1714921", "1714921", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714921-SRM1", , "Aqueous", "1714921-
SRM1", "Reference", "-99", "SM18-22 5210B", "Gen Prep", "RES", "08/30/2017 13:00", "09/06/2017 12:36", "ESAI", "COA", "NA", "T", "1", "NA", ", "100", "1714921", "1714921", "1714921", "1714921", "8C38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714921-SRM2", "Aqueous", "1714921-SRM2", "Reference", "-99", "SM18-22 5210B", "Gen Prep", "RES", "08/30/2017 13:00", "09/06/2017
12:36", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714921", "1714921", "1714921", "1714921", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","1714942-BLK1",,"Aqueous","1714942-BLK1","Method Bla",,"-99","SM2320B (97, 11)","Gen Prep","RES","08/31/2017 09:56","08/31/2017
19:01", "ESAI", "COA", "NA", "T", "1", "NA", ,, , "100", "1714942", "1714942", "1714942", "1714942", "1714942", "8C38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714942-BLK2", , "Aqueous", "1714942-
BLK2","Method Bla",,"-99","SM2320B (97, 11)","Gen Prep","RES","08/31/2017 09:56","08/31/2017 19:58","ESAI","COA","NA","T","1","NA",,,"100","1714942","1714942","1714942","1714942","08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714942-BLK3", "Aqueous", "1714942-BLK3", "Method Bla", "-99", "SM2320B (97, 11)", "Gen Prep", "RES", "08/31/2017 09:56", "08/31/2017
20:38","ESAI","COA","NA","T","1","NA",,,"100","1714942","1714942","1714942","1714942","1714942","1714942","08/2 9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714942-BLK4", "Aqueous", "1714942-BLK4", "Method Bla", ,"-99", "SM2320B (97, 11)", "Gen Prep", "RES", "08/31/2017 09:56", "08/31/2017
21:07", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714942", "1714942", "1714942", "1714942", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714942-BS1", , "Aqueous", "1714942-
BS1","LCS",,"-99","SM2320B (97, 11)","Gen Prep","RES","08/31/2017 09:56","08/31/2017 19:03","ESAI","COA","NA","T","1","NA",,,"100","1714942","1714942","1714942","1714942","8C38627","08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714942-BS2", , "Aqueous", "1714942-
BS2", "LCS", ,"-99", "SM2320B (97, 11)", "Gen Prep", "RES", "08/31/2017 09:56", "08/31/2017
20:00","ESAI","COA","NA","T","1","NA",,,,"100","1714942","1714942","1714942","1714942","1714942","08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714942-BS3", , "Aqueous", "1714942-
BS3", "LCS", ,"-99", "SM2320B (97, 11)", "Gen Prep", "RES", "08/31/2017 09:56", "08/31/2017
20:40","ESAI","COA","NA","T","1","NA",,,"100","1714942","1714942","1714942","1714942","1714942","SC38627","08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714942-BS4", , "Aqueous", "1714942-
BS4","LCS",,"-99","SM2320B (97, 11)","Gen Prep","RES","08/31/2017 09:56","08/31/2017 21:08","ESAI","COA","NA","T","1","NA",,,"100","1714942","1714942","1714942","1714942","8C38627","08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1714942-SRM1", "Aqueous", "1714942-SRM1", "Reference", "-99", "SM2320B (97, 11)", "Gen Prep", "RES", "08/31/2017 09:56", "08/31/2017
19:08", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714942", "1714942", "1714942", "1714942", "1714942", "08/2
9/2017 17:23","10/13/2017 15:55",
```

"112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","1715009-BLK1",,"Aqueous","1715009-

```
BLK1", "Method Bla", ,"-99", "SW846 8270D", "SW846 3510C", "RES", "09/01/2017 08:00", "09/13/2017
16:12","ESAI","COA","NA","NA","NA","1","NA",,,"100","1715009","1715009","1715009","1715009","1715009","1715009
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715009-BS1", "Aqueous", "1715009-
BS1","LCS",,"-99","SW846 8270D","SW846 3510C","RES","09/01/2017 08:00","09/13/2017
17:09", "ESAI", "COA", "NA", "NA", "1", "NA", ,,, "100", "1715009", "1715009", "1715009", "1715009", "SC38627", "08/
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715009-BSD1", , "Aqueous", "1715009-
BSD1","LCS Dup",,"-99","SW846 8270D","SW846 3510C","RES","09/01/2017 08:00","09/13/2017 17:37","ESAI","COA","NA","NA","NA",","100","1715009","1715009","1715009","1715009","1715009","08/
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715010-BLK1", "Aqueous", "1715010-BLK1", "Method Bla", "-99", "SW846 8081B", "SW846 3510C", "RES", "09/01/2017 08:00", "09/07/2017 23:04", "ESAI", "COA", "NA", "NA", "1", "NA", "100", "1715010", "1715010", "1715010", "1715010", "1715010", "08/
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715010-BS1", , "Aqueous", "1715010-
BS1","LCS",,"-99","SW846 8081B","SW846 3510C","RES","09/01/2017 08:00","09/07/2017 23:21","ESAI","COA","NA","NA","NA",","100","1715010","1715010","1715010","1715010","1715010","09/07/2017
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715010-BSD1", "Aqueous", "1715010-
BSD1","LCS Dup",,"-99","SW846 8081B","SW846 3510C","RES","09/01/2017 08:00","09/07/2017 23:39","ESAI","COA","NA","NA","NA",","100","1715010","1715010","1715010","1715010","1715010","08/
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715125-BLK1", "Aqueous", "1715125-BLK1", "Method Bla", ,"-99", "SW846 6010C", "SW846 3005A", "RES", "09/07/2017 15:00", "09/09/2017
00:42", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715125", "1715125", "1715125", "1715125", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715125-BS1", , "Aqueous", "1715125-
BS1","LCS",,"-99","SW846 6010C","SW846 3005A","RES","09/07/2017 15:00","09/09/2017 00:47","ESAI","COA","NA","T","1","NA",,,"100","1715125","1715125","1715125","1715125","1715125","08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715125-BSD1", , "Aqueous", "1715125-
BSD1","LCS Dup",,"-99","SW846 6010C","SW846 3005A","RES","09/07/2017 15:00","09/09/2017 00:52","ESAI","COA","NA","T","1","NA",,,"100","1715125","1715125","1715125","1715125","8C38627","08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715127-BLK1", "Aqueous", "1715127-BLK1", "Method Bla", ,"-99", "EPA 245.1/7470A", "EPA200/SW7000 Series", "RES", "09/12/2017
19:00","09/15/2017
13:49","ESAI","COA","NA","T","1","NA",,,"100","1715127","1715127","1715127","1715127","SC38627","08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715127-BS1", , "Aqueous", "1715127-
BS1", "LCS", , "-99", "EPA 245.1/7470A", "EPA200/SW7000 Series", "RES", "09/12/2017 19:00", "09/15/2017
13:51","ESAI","COA","NA","T","1","NA",,,"100","1715127","1715127","1715127","1715127","SC38627","08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715197-BLK1", , "Aqueous", "1715197-
BLK1", "Method Bla", "-99", "SW846 8260C", "SW846 5030 Water MS", "RES", "09/06/2017 09:15", "ESAI", "COA", "NA", "NA", "NA", "100", "1715197", "1715197", "1715197", "1715197", "SC38627", "08/
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715197-BS1", , "Aqueous", "1715197-
BS1","LCS",,"-99","SW846 8260C","SW846 5030 Water MS","RES","09/06/2017 06:00","09/06/2017
10:13", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "100", "1715197", "1715197", "1715197", "1715197", "SC38627", "08/
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715197-BSD1", , "Aqueous", "1715197-
```

BSD1", "LCS Dup", ,"-99", "SW846 8260C", "SW846 5030 Water MS", "RES", "09/06/2017 06:00", "09/06/2017 10:42", "ESAI", "COA", "NA", "NA", "1", "NA", ," 100", "1715197", "1715197", "1715197", "1715197", "SC38627", "08/

"112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","1715303-BLK1",,"Aqueous","1715303-

29/2017 17:23","10/13/2017 15:55",

```
BLK1", "Method Bla", "-99", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09", "09/07/2017
13:44","ESAI","COA","NA","T","1","NA",,,"100","1715303","1715303","1715303","1715303","1715303","SC38627","08/2
9/2017 17:23", "10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715303-BS1", , "Aqueous", "1715303-
BS1","LCS",,"-99","SM5310B (00, 11)","Gen Prep","RES","09/07/2017 12:09","09/07/2017
13:58", "ESAI", "COA", "NA", "T", "1", "NA", , , "100", "1715303", "1715303", "1715303", "1715303", "SC38627", "08/2
9/2017 17:23", "10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715303-CCB1", , "Aqueous", "1715303-
CCB1", "Calibratio", "-99", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09", "09/07/2017 13:27", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "1715303", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715303-CCB2", "Aqueous", "1715303-CCB2", "Calibratio", "-99", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09", "09/07/2017
16:35", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715303-CCB3", "Aqueous", "1715303-CCB3", "Calibratio", "-99", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09", "09/07/2017
17:39", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "SC38627", "08/2
9/2017 17:23", "10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715303-CCV1", , "Aqueous", "1715303-
CCV1", "Calibratio", ,"-99", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09", "09/07/2017
13:11", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715303-CCV2", "Aqueous", "1715303-CCV2", "Calibratio", ,"-99", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09", "09/07/2017
16:18", "ESAI", "COA", "NA", "T", "1", "NA", , , , "100", "1715303", "1715303", "1715303", "1715303", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715303-CCV3", , "Aqueous", "1715303-
CCV3", "Calibratio", ,"-99", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09", "09/07/2017
17:22", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "SC38627", "08/2
9/2017 17:23", "10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715303-SRM1", "Aqueous", "1715303-SRM1", "Reference", "-99", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09", "09/07/2017
14:13", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715310-BLK1", "Aqueous", "1715310-BLK1", "Method Bla", ,"-99", "Mod EPA 3C/SOP RSK-175", "Gen Prep", "RES", "09/07/2017 06:00", "09/07/2017
10:14", "ESAI", "COA", "NA", "NA", "NA", "1", "NA", ,,, "100", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "1715310", "171500", "171500", "171500", "171500", "171500", "171500"
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715310-BS1", , "Aqueous", "1715310-
BS1","LCS",,"-99","Mod EPA 3C/SOP RSK-175","Gen Prep","RES","09/07/2017 06:00","09/07/2017
09:39", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "100", "1715310", "1715310", "1715310", "1715310", "SC38627", "08/
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715591-BLK1", "Aqueous", "1715591-BLK1", "Method Bla", "-99", "SW846 6010C", "SW846 3005A", "RES", "09/07/2017 15:00", "09/13/2017
20:53", "ESAI", "COA", "NA", "T", "1", "NA", ,,, "100", "1715591", "1715591", "1715591", "1715591", "8C38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715591-BS1", , "Aqueous", "1715591-
BS1","LCS",,"-99","SW846 6010C","SW846 3005A","RES","09/07/2017 15:00","09/13/2017
20:58", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715591", "1715591", "1715591", "1715591", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "1715591-BSD1", , "Agueous", "1715591-
BSD1","LCS Dup",,"-99","SW846 6010C","SW846 3005A","RES","09/07/2017 15:00","09/13/2017 21:03","ESAI","COA","NA","T","1","NA",,,"100","1715591","1715591","1715591","1715591","SC38627","08/2
9/2017 17:23","10/13/2017 15:55",
```

"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017

15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "EPA 200/6000 methods", "Gen

```
Prep", "RES", "08/29/2017 18:00", "08/29/2017
```

- 18:00", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714841", "1714841", "1714841", "1714841", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "EPA 245.1/7470A", "EPA200/SW7000
- Series", "RES", "09/12/2017 19:00", "09/15/2017
- 13:55", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715127", "1715127", "1715127", "1715127", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","TF1-EBP-GZ101R-082817","08/28/2017
- 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "EPA 300.0", "Gen Prep", "RES", "08/29/2017 17:19","08/29/2017
- 21:31", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714824", "1714824", "1714824", "1714824", "1714824", "8C38627", "08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017
- 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "Mod EPA 3C/SOP RSK-175", "Gen
- Prep", "RES", "09/07/2017 06:00", "09/07/2017
- 11:59", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "100", "1715310", "1715310", "1715310", "1715310", "SC38627", "08/ 29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017
- 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "SM18-22 5210B", "Gen Prep", "RES", "08/30/2017 13:00","09/06/2017
- 12:36","ESAI","COA","NA","T","1","NA",,,"100","1714921","1714921","1714921","1714921","SC38627","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017
- 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "SM2320B (97, 11)", "Gen Prep", "RES", "08/31/2017 09:56","08/31/2017
- 19:43","ESAI","COA","NA","T","1","NA",,,"100","1714942","1714942","1714942","1714942","1714942","8C38627","08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017
- 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09","09/07/2017
- 15:45", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017
- 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "SW846 6010C", "SW846 3005A", "RES", "09/07/2017 15:00","09/09/2017
- 01:27","ESAI","COA","NA","T","1","NA",,,"100","1715125","1715125","1715125","1715125","SC38627","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017
- 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "SW846 6010C", "SW846 3005A", "RES", "09/07/2017
- 15:00","09/13/2017 21:39","ESAI","COA","NA","T","1","NA",,,"100","1715591","1715591","1715591","1715591","1715591","SC38627","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017
- 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "SW846 8081B", "SW846 3510C", "RES", "09/01/2017 08:00","09/08/2017
- 01:06", "ESAI", "COA", "NA", "NA", "NA", "1", "NA", ", "100", "1715010", "1715010", "1715010", "1715010", "SC38627", "08/ 29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "SW846 8260C", "SW846 5030 Water
- MS", "RES", "09/06/2017 09:20", "09/06/2017
- 12:08","ESAI","COA","NA","NA","1","NA",,,"100","1715197","1715197","1715197","1715197","SC38627","08/ 29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017
- 15:16", "Aqueous", "SC38627-02", "NM", "SC38627", "0.5", "SW846 8270D", "SW846 3510C", "RES", "09/01/2017 08:00","09/13/2017
- 19:02", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "100", "1715009", "1715009", "1715009", "1715009", "SC38627", "08/

```
29/2017 17:23","10/13/2017 15:55",
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017
15:16","H2O","SC38627-02","NM","SC38627","0.5","EPA 537 Modified","METHOD","RES","09/05/2017
08:25","09/08/2017
10:05","ESAI","COA","NA","NA","1","NA",,,"-99","17246002","17246002","17246002","17246002","17246002","SC38627",
"08/29/2017 17:23","10/13/2017 15:55"
```

- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017 15:16","H2O","SC38627-02","NM","SC38627","0.5","SW-846 6020A","SW-846 3020A","RES","10/05/2017 06:47","10/09/2017
- 18:54", "ESAI", "COA", "NA", "NA", "1", "NA", ,,, "-99", "172771063901", "172771063901", "172771063901", "172771 063901", "SC38627", "08/29/2017 17:23", "10/13/2017 15:55"
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-EBP-GZ101R-082817", "08/28/2017 15:16","H2O","SC38627-02","NM","SC38627","0.5","SW-846 8015B","SW-846 3510C","RES","09/02/2017

18:30", "09/06/2017

- 02:35","ESAI","COA","NA","NA","1","NA",,,"-99","172440039A","172440039A","172440039A","172440039A"," SC38627", "08/29/2017 17:23", "10/13/2017 15:55"
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-FRB-082817", "08/28/2017
- 15:25","H2O","SC38627-05","NM","SC38627","0.5","EPA 537 Modified","METHOD","RES","09/05/2017 08:25","09/08/2017
- 10:46", "ESAI", "COA", "NA", "NA", "1", "NA", ", "-99", "17246002", "172460002", "172460000", "172460000", "1724600000", "1724600000", "172460000", "172460000", "172460000", "08/29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25","Aqueous","SC38627-03","NM","SC38627","0.5","EPA 200/6000 methods","Gen Prep","RES","08/29/2017 18:00","08/29/2017 18:00","ESAI","COA","NA","T","1","NA",,,"100","1714841","1714841","1714841","1714841","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017 15:25", "Aqueous", "SC38627-03", "NM", "SC38627", "0.5", "EPA 245.1/7470A", "EPA200/SW7000 Series", "RES", "09/12/2017 19:00", "09/15/2017
- 13:57", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715127", "1715127", "1715127", "1715127", "SC38627", "08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017 15:25", "Aqueous", "SC38627-03", "NM", "SC38627", "0.5", "EPA 300.0", "Gen Prep", "RES", "08/29/2017 17:19","08/29/2017
- 21:47", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714824", "1714824", "1714824", "1714824", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25","Aqueous","SC38627-03","NM","SC38627","0.5","Mod EPA 3C/SOP RSK-175","Gen Prep","RES","09/07/2017 06:00","09/07/2017
- 12:21", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "100", "1715310", "1715310", "1715310", "1715310", "SC38627", "08/ 29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25", "Aqueous", "SC38627-03", "NM", "SC38627", "0.5", "SM18-22 5210B", "Gen Prep", "RES", "08/30/2017 13:00", "09/06/2017
- 12:36", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714921", "1714921", "1714921", "1714921", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25","Aqueous","SC38627-03","NM","SC38627","0.5","SM2320B (97, 11)","Gen Prep","RES","08/31/2017
- 19:45", "ESAI", "COA", "NA", "T", "1", "NA", , , , "100", "1714942", "1714942", "1714942", "1714942", "1714942", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25", "Aqueous", "SC38627-03", "NM", "SC38627", "0.5", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09","09/07/2017
- 16:01", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","TF1-GT-106-082817","08/28/2017

```
15:25", "Aqueous", "SC38627-03", "NM", "SC38627", "0.5", "SW846 6010C", "SW846 3005A", "RES", "09/07/2017
15:00","09/09/2017
```

- 01:43","ESAI","COA","NA","T","1","NA",,,"100","1715125","1715125","1715125","1715125","SC38627","08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25", "Aqueous", "SC38627-03", "NM", "SC38627", "0.5", "SW846 6010C", "SW846 3005A", "RES", "09/07/2017
- 15:00","09/13/2017 21:54","ESAI","COA","NA","T","1","NA",,,"100","1715591","1715591","1715591","1715591","1715591","08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25", "Aqueous", "SC38627-03", "NM", "SC38627", "0.5", "SW846 8081B", "SW846 3510C", "RES", "09/01/2017 08:00","09/08/2017
- 01:23", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "100", "1715010", "1715010", "1715010", "1715010", "SC38627", "08/ 29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25", "Aqueous", "SC38627-03", "NM", "SC38627", "0.5", "SW846 8260C", "SW846 5030 Water MS", "RES", "09/06/2017 09:20", "09/06/2017
- 12:37", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "100", "1715197", "1715197", "1715197", "1715197", "SC38627", "08/ 29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25", "Aqueous", "SC38627-03", "NM", "SC38627", "0.5", "SW846 8270D", "SW846 3510C", "RES", "09/01/2017 08:00","09/13/2017
- 19:31", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "100", "1715009", "1715009", "1715009", "1715009", "SC38627", "08/ 29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","TF1-GT-106-082817","08/28/2017
- 15:25","H2O","SC38627-03","NM","SC38627","0.5","EPA 537 Modified","METHOD","RES","09/05/2017 08:25","09/08/2017
- 10:26", "ESAI", "COA", "NA", "NA", "1", "NA", ", "-99", "17246002", "172460002", "1724600000", "1724600000", "17246000000", "172460000000", "172460000000", "1724600000", "172460000000", "17246000000 "08/29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25","H2O","SC38627-03","NM","SC38627","0.5","SW-846 6020A","SW-846 3020A","RES","10/05/2017 06:47","10/09/2017
- 18:57", "ESAI", "COA", "NA", "NA", "1", "NA", ,,, "-99", "172771063901", "172771063901", "172771063901", "172771 063901", "SC38627", "08/29/2017 17:23", "10/13/2017 15:55"
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817", "08/28/2017
- 15:25","H2O","SC38627-03","NM","SC38627","0.5","SW-846 8015B","SW-846 3510C","RES","09/02/2017 18:30","09/06/2017
- 02:57", "ESAI", "COA", "NA", "NA", "1", "NA", ,,,"-99", "172440039A", "172440039A", "172440039A", "172440039A", " SC38627", "08/29/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817DUP", "08/28/2017 15:25", "Aqueous", "1715127-DUP1", "Duplicate", "SC38627", "0.5", "EPA 245.1/7470A", "EPA200/SW7000 Series", "RES", "09/12/2017 19:00", "09/15/2017
- 13:59", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715127", "1715127", "1715127", "1715127", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817MS", "08/28/2017 15:25","Aqueous","1715127-MS1","MS","SC38627","0.5","EPA 245.1/7470A","EPA200/SW7000
- Series", "RES", "09/12/2017 19:00", "09/15/2017 14:01", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715127", "1715127", "1715127", "1715127", "SC38627", "08/2
- 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817MSD", "08/28/2017 15:25", "Aqueous", "1715127-MSD1", "MSD", "SC38627", "0.5", "EPA 245.1/7470A", "EPA200/SW7000
- Series", "RES", "09/12/2017 19:00", "09/15/2017
- 14:03","ESAI","COA","NA","T","1","NA",,,"100","1715127","1715127","1715127","1715127","SC38627","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-GT-106-082817PS", "08/28/2017
- 15:25","Aqueous","1715127-PS1","Post Spike","SC38627","0.5","EPA 245.1/7470A","EPA200/SW7000 Series", "RES", "09/12/2017 19:00", "09/15/2017

```
14:05", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715127", "1715127", "1715127", "1715127", "SC38627", "08/2
9/2017 17:23","10/13/2017 15:55",
```

- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30","Aqueous","SC38627-01","NM","SC38627","0.5","EPA 200/6000 methods","Gen Prep","RES","08/29/2017 18:00","08/29/2017
- 18:00","ESAI","COA","NA","T","1","NA",,,"100","1714841","1714841","1714841","1714841","SC38627","08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30","Aqueous","SC38627-01","NM","SC38627","0.5¹,"EPA 245.1/7470A","EPA200/SW7000 Series","RES","09/12/2017 19:00","09/15/2017
- 13:53", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715127", "1715127", "1715127", "1715127", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30", "Aqueous", "SC38627-01", "NM", "SC38627", "0.5", "EPA 300.0", "Gen Prep", "RES", "08/29/2017 17:19","08/29/2017
- 22:35", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714824", "1714824", "1714824", "1714824", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30","Aqueous","SC38627-01","NM","SC38627","0.5","Mod EPA 3C/SOP RSK-175","Gen Prep","RES","09/07/2017 06:00","09/07/2017
- 11:10", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "100", "1715310", "1715310", "1715310", "1715310", "SC38627", "08/ 29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30", "Aqueous", "SC38627-01", "NM", "SC38627", "0.5", "SM18-22 5210B", "Gen Prep", "RES", "08/30/2017 13:00","09/06/2017
- 12:36", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714921", "1714921", "1714921", "1714921", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30", "Aqueous", "SC38627-01", "NM", "SC38627", "0.5", "SM2320B (97, 11)", "Gen Prep", "RES", "08/31/2017 09:56", "08/31/2017
- 19:38", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1714942", "1714942", "1714942", "1714942", "1714942", "08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30", "Aqueous", "SC38627-01", "NM", "SC38627", "0.5", "SM5310B (00, 11)", "Gen Prep", "RES", "09/07/2017 12:09","09/07/2017
- 14:46", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "1715303", "8C38627", "08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30", "Aqueous", "SC38627-01", "NM", "SC38627", "0.5", "SW846 6010C", "SW846 3005A", "RES", "09/07/2017 15:00", "09/09/2017
- 01:02", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715125", "1715125", "1715125", "1715125", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30", "Aqueous", "SC38627-01", "NM", "SC38627", "0.5", "SW846 6010C", "SW846 3005A", "RES", "09/07/2017 15:00","09/13/2017
- 21:13", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715591", "1715591", "1715591", "1715591", "SC38627", "08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30", "Aqueous", "SC38627-01", "NM", "SC38627", "0.5", "SW846 8081B", "SW846 3510C", "RES", "09/01/2017 08:00","09/08/2017
- 00:48", "ESAI", "COA", "NA", "NA", "NA", "1", "NA", ", "100", "1715010", "171500", "171500", "171500", "171500", "171500", "171500", "171500", "171500", "171500", "171500", "171500", "171500", "171500", "171500", "171500", "171500" 29/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","TF1-MW-1003-082817","08/28/2017
- 15:30", "Aqueous", "SC38627-01", "NM", "SC38627", "0.5", "SW846 8260C", "SW846 5030 Water MS", "RES", "09/06/2017 09:20", "09/06/2017
- 11:39","ESAI","COA","NA","NA","1","NA",,,,"100","1715197","1715197","1715197","1715197","SC38627","08/ 29/2017 17:23","10/13/2017 15:55",

```
"112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
```

- 15:30","Aqueous","SC38627-01","NM","SC38627","0.5[†],"SW846 8270D","SW846 3510C","RES","09/01/2017 08:00","09/13/2017
- 18:06","ESAI","COA","NA","NA","1","NA",,,"100","1715009","1715009","1715009","1715009","SC38627","08/29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30","H2O","SC38627-01","NM","SC38627","0.5","EPA 537 Modified","METHOD","DL10","09/05/2017 08:25","09/11/2017
- 17:47", "ESAI", "COA", "NA", "NA", "10", "NA",,,"-99", "17246002",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30","H2O","SC38627-01","NM","SC38627","0.5","EPA 537 Modified","METHOD","RES","09/05/2017 08:25","09/08/2017
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30","H2O","SC38627-01","NM","SC38627","0.5","SW-846 6020A","SW-846 3020A","DL5","10/05/2017 06:47","10/09/2017
- 18:51", "ESAI", "COA", "NA", "NA", "5", "NA", ,, "-99", "172771063901", "172771063900", "172771063900", "172771063900", "1727710600", "172771000", "17277100", "17277100", "172777100", "17277700", "17277700", "1727700", "1727700", "1727700
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30","H2O","SC38627-01","NM","SC38627","0.5","SW-846 6020A","SW-846 3020A","RES","10/05/2017 06:47","10/09/2017
- 18:51", "ESAI", "COA", "NA", "NA", "1", "NA", ", "-99", "172771063901", "1727771063901", "172771063901", "172771063901", "172771063901", "1727771063901", "172771063900", "172771063900", "1727771063900", "17277710600", "17277700", "17277700", "17277700", "17277700", "17277700", "17277700", "17277700", "1727700", "1727
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817", "08/28/2017
- 15:30","H2O","SC38627-01","NM","SC38627","0.5","SW-846 8015B","SW-846 3510C","RES","09/02/2017 18:30","09/06/2017
- 02:14", "ESAI", "COA", "NA", "NA", "1", "NA", ,, "-99", "172440039A", "172440039A", "172440039A", "172440039A", "SC38627", "08/29/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817DUP", "08/28/2017
- 15:30", "Aqueous", "1715009-DUP1", "Duplicate", "SC38627", "0.5", "SW846 8270D", "SW846 3510C", "RES", "09/01/2017 08:00", "09/13/2017
- 18:34","ESAI","COA","NA","NA","1","NA",,,"100","1715009","1715009","1715009","1715009","1715009","SC38627","08/29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817DUP", "08/28/2017
- 15:30","Aqueous","1715125-DUP1","Duplicate","SC38627","0.5","SW846 6010C","SW846 3005A","RES","09/07/2017 15:00","09/09/2017
- 01:07","ESAI","COA","NA","T","1","NA",,,"100","1715125","1715125","1715125","1715125","SC38627","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817DUP", "08/28/2017
- 15:30", "Aqueous", "1715303-DUP1", "Duplicate", "SC38627", "0.5", "SM5310B (00, 11)", "Gen
- Prep", "RES", "09/07/2017 12:09", "09/07/2017
- 14:59","ESAI","COA","NA","T","1","NA",,,"100","1715303","1715303","1715303","1715303","1715303","1715303","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817DUP", "08/28/2017
- 15:30","Aqueous","1715310-DUP1","Duplicate","SC38627","0.5","Mod EPA 3C/SOP RSK-175","Gen Prep","RES","09/07/2017 06:00","09/07/2017
- 11:32","ESAI","COA","NA","NA","1","NA",,,"100","1715310","1715310","1715310","1715310","SC38627","08/29/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817DUP", "08/28/2017
- 15:30","Aqueous","1715591-DUP1","Duplicate","SC38627","0.5","SW846 6010C","SW846 3005A","RES","09/07/2017 15:00","09/13/2017
- 21:18","ESAI","COA","NA","T","1","NA",,,"100","1715591","1715591","1715591","1715591","1715591","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817MS", "08/28/2017
- 15:30", "Aqueous", "1715125-MS1", "MS", "SC38627", "0.5", "SW846 6010C", "SW846 3005A", "RES", "09/07/2017

- 15:00","09/09/2017
- 01:12","ESAI","COA","NA","T","1","NA",,,"100","1715125","1715125","1715125","1715125","SC38627","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817MS", "08/28/2017
- 15:30","Aqueous","1715303-MS1","MS","SC38627","0.5","SM5310B (00, 11)","Gen Prep","RES","09/07/2017 12:09","09/07/2017
- 15:16", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715303", "1715303", "1715303", "1715303", "1715303", "8C38627", "08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","TF1-MW-1003-082817MS","08/28/2017
- 15:30","Aqueous","1715591-MS1","MS","SC38627","0.5","SW846 6010C","SW846 3005A","RES","09/07/2017 15:00","09/13/2017
- 21:24", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715591", "1715591", "1715591", "1715591", "1715591", "8C38627", "08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817MSD", "08/28/2017
- 15:30","Aqueous","1715125-MSD1","MSD","SC38627", 0.5", SW846 6010C", SW846
- 3005A", "RÉS", "09/07/2017 15:00", "09/09/2017
- 01:17", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715125", "1715125", "1715125", "1715125", "SC38627", "08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15","WE15 Tank Farm 1 NAVSTA Newport","TF1-MW-1003-082817MSD","08/28/2017
- 15:30", "Aqueous", "1715303-MSD1", "MSD", "SC38627", "0.5", "SM5310B (00, 11)", "Gen
- Prep", "RES", "09/07/2017 12:09", "09/07/2017
- 15:29","ESAI","COA","NA","T","1","NA",,,"100","1715303","1715303","1715303","1715303","1715303","8C38627","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817MSD", "08/28/2017
- 15:30", "Aqueous", "1715591-MSD1", "MSD", "SC38627", "0.5", "SW846 6010C", "SW846
- 3005A", "RES", "09/07/2017 15:00", "09/13/2017
- 21:29", "ESAI", "COA", "NA", "T", "1", "NA",,,"100", "1715591", "1715591", "1715591", "1715591", "SC38627", "08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817PS", "08/28/2017
- 15:30", "Aqueous", "1715125-PS1", "Post Spike", "SC38627", "0.5", "SW846 6010C", "SW846
- 3005A", "RES", "09/07/2017 15:00", "09/09/2017
- 01:22", "ESAI", "COA", "NA", "T", "1", "NA", ,, "100", "1715125", "1715125", "1715125", "1715125", "SC38627", "08/2 9/2017 17:23", "10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-MW-1003-082817PS", "08/28/2017
- 15:30", "Aqueous", "1715591-PS1", "Post Spike", "SC38627", "0.5", "SW846 6010C", "SW846
- 3005A", "RES", "09/07/2017 15:00", "09/13/2017
- 21:34","ESAI","COA","NA","T","1","NA",,,"100","1715591","1715591","1715591","1715591","1715591","SC38627","08/2 9/2017 17:23","10/13/2017 15:55",
- "112608005-WE15", "WE15 Tank Farm 1 NAVSTA Newport", "TF1-TB-082817", "08/28/2017
- 08:00","Aqueous","SC38627-04","NM","SC38627","0.5","SW846 8260C","SW846 5030 Water
- MS", "RES", "09/06/2017 09:20", "09/06/2017
- 13:06","ESAI","COA","NA","NA","1","NA",,,"100","1715197","1715197","1715197","1715197","SC38627","08/29/2017 17:23","10/13/2017 15:55",

INTERNAL CORRESPONDENCE

TO: S. PARKER DATE: DECEMBER 11, 2017

FROM: TERRI L. SOLOMON COPIES: DV FILE

SUBJECT: ORGANIC & INORGANIC DATA VALIDATION - VOC/ PAH/ PESTICIDE/ OVG/ TPH/

PFAS/ METALS/ MISCELLANEOUS

NAVAL STATION (NAVSTA) NEWPORT, PORTSMOUTH, RHODE ISLAND

WE15 TANK FARM 1

SAMPLE DELIVERY GROUP (SDG) SC38627

SAMPLES: 3/Aqueous/

VOC, PAH, Pesticide, OVG, TPH, PFAS, Metals, Miscellaneous

TF1-EBP-GZ101R-082817 TF1-GT-106-0828117

TF1-MW-1003-082817

1/Trip Blank/

VOC

TF1-TB-082817

1/Field Reagent Blank (FRB)

PFAS

TF1-FRB-082817

Overview

The sample set for NAVSTA Newport, SDG SC38627 consisted of three (3) aqueous environmental samples, one (1) trip blank and one (1) FRB sample. Three (3) aqueous environmental samples were analyzed for volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), pesticides, organic volatile gasses (OVG) including ethane and methane, total petroleum hydrocarbons (TPH), perfluorinated alkyl acids (PFAS), target analyte list (TAL) metals, and miscellaneous parameters (alkalinity, chloride, sulfate, nitrate, total organic carbon (TOC) and biological oxygen demand (BOD)). The trip blank was analyzed for VOCs only. The FRB sample was analyzed for PFAS only. No field duplicate pairs were included in this SDG.

The samples were collected by Tetra Tech, Inc. on August 28, 2017 and analyzed by Eurofins – Spectrum Analytical. All analyses were conducted in accordance with SW846 methods 8260C, 8270D, 8015B, 8081B, 6010C, 6020A, 7470A, EPA methods RSK-175, 300.0, 537 modified and Standard Methods 5310B, 5210B and 2320B analytical and reporting protocols.

An EPA level 2A validation was performed. The data was evaluated with regard to the following parameters:

- Data Completeness
 - Holding Times/Sample Preservation
 - Laboratory Method/Preparation and Trip Blank Results
- ICP Interference Recoveries
 - Surrogate Spike Recoveries
 - Laboratory Control Sample/Laboratory Control Sample Duplicate Results
- Matrix Spike/Matrix Spike Duplicate Results
- Laboratory Duplicate Precision

TO: S. PARKER PAGE 2

SDG: SC38627

ICP Serial Dilution Results

- Internal Standard Areas
- Detection Limits

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A, results as reported by the laboratory are presented in Appendix B, and documentation supporting these findings is presented in Appendix C. The text of this report has been formulated to address only those areas affecting data quality.

LABORATORY METHOD/PREPARATION BLANKS

The following analytes were detected in the laboratory method blanks at the following maximum concentrations:

Maximum	Reporting Limit
<u>Concentration</u>	(RL) > or <
0.0159 mg/L	< RL
0.0900 mg/L	< RL
1.87 mg/L	< RL
	0.0159 mg/L 0.0900 mg/L

The detected results reported below the RL for iron were qualified as non-detected, (U).

SURROGATE SPIKE RECOVERIES

In the PAH fraction, the percent recoveries (%Rs) for the base/neutral surrogate spike compound, 2-fluorobiphenyl, was below the quality control limit in sample TFI-EBP-GZ101R-082817. The non-detected results reported for the affected compounds were qualified as estimated (UJ).

In the PFAS fraction, the %R for surrogate 13C8-PFOSA was below the quality control limit in all samples. The non-detected results reported for perfluorooctane sulfonamide were qualified as estimated (UJ).

LABORATORY CONTROL SAMPLE / LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

The PAH laboratory control sample and/or laboratory control sample duplicate (LCS/LCSD) (1715009-BS1) %Rs were below the quality control limit for anthracene, benzo(g,h,i)perylene and phenanthrene. All samples were affected. The nondetected results reported for the aforementioned compounds were qualified as estimated (UJ).

NOTES

Sample TF1-MW-1003-082817 for perfluorohexane sulfonate and perfluorooctane sulfonic acid was analyzed at a 10X dilution for the PFAS analyses. Sample TF1-MW-1003-082817 for barium and manganese was analyzed at a 5X dilution for the metals analyses. The detection limits of the non-detected results were elevated.

The PAH (1715009-BS1) LCS/LCSD relative percent difference (RPD) for benzo(k)fluoranthene was outside the quality control limits. All samples were affected. No validation action was required as the LCS and LCSD %Rs were acceptable.

No detected results were present the FRB sample.

TO: S. PARKER PAGE 3

SDG: SC38627

Detected results reported below the LOQ but above the Method Detection Limit (MDL) were qualified as estimated, (J). Non-detected results are reported to the Limit of Detection (LOD).

EXECUTIVE SUMMARY

Laboratory Performance: Several contaminants were detected in the laboratory method blanks. Surrogate recoveries were noncompliant in the PAH and PFAS fraction. LCS/LCSD recoveries were noncompliant in the PAH fraction.

Other Factors Affecting Data Quality: Results below the LOQ were estimated.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Superfund Methods Data Review" (January 2017), the "National Functional Guidelines for Inorganic Superfund Methods Data Review" (January 2017) and the Environmental Protection Agency document EPA/600/R-08/092, Method 537, "Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)", (September 2009). The text of this report has been formulated to address only those areas affecting data quality.

Tetra Tech, Inc. Terri L. Solomon

Tetra Tech, Inc. Joseph A. Samchuck Data Validation Manager

Environmental Chemist

Vari L Solemen

Attachments:

Appendix A - Qualified Analytical Results

Appendix B - Results as reported by the Laboratory

Appendix C - Support Documentation

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
J	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
UJ	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
R	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
UR	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC

Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE15	NSAMPLE	TF1-EBP-GZ1	01R-08	2817	TF1-GT-106-0	82817		TF1-MW-100	3-08281	7	TF1-TB-08281	7	
SDG: SC38627	LAB_ID	SC38627-02			SC38627-03			SC38627-01			SC38627-04		
FRACTION: OV	SAMP_DATE	8/28/2017			8/28/2017			8/28/2017			8/28/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHANE	Ī	1	U		1	J			1 U		1	U	
1,1,2,2-TETRACHLOROET	HANE	0.5	U		0.5	U		0.	5 U		0.5	U	
1,1,2-TRICHLOROETHANE		0.5	U		0.5			0.	5 U		0.5	U	
1,1,2-TRICHLOROTRIFLUO	OROETHANE	1	U		1	U			1 U		1	U	
1,1-DICHLOROETHANE		1	U			U			1 U		1	U	
1,1-DICHLOROETHENE		1	U			U			1 U		1	U	
1,2,3-TRICHLOROBENZEN	NE	1	U		<u> </u>	U			1 U			U	
1,2,4-TRICHLOROBENZEN	NE .		U			U			1 U			U	
1,2-DIBROMO-3-CHLORO	PROPANE	2	U			U			2 U		2	U	
1,2-DIBROMOETHANE		0.5	U		0.5	U		0.	5 U		0.5	U	
1,2-DICHLOROBENZENE		0.5	U		0.5			0.	5 U		0.5	U	
1,2-DICHLOROETHANE		1	U		1	U			1 U		1	U	
1,2-DICHLOROPROPANE		1	U		1	U			1 U		1	U	
1,3-DICHLOROBENZENE		0.5	U		0.5	U		0.	5 U		0.5	U	
1,4-DICHLOROBENZENE		0.5	U		0.5			0.	5 U		0.5	U	
2-BUTANONE			U			U			2 U			U	
2-HEXANONE			U			U			2 U			U	
4-METHYL-2-PENTANONE		2	U			U			2 U			U	
ACETONE		1.4	J	Р		U			2 U		2	U	
BENZENE		0.5			0.5			0.	5 U		0.5	U	
BROMOCHLOROMETHAN	E	1	U		1	U			1 U			U	
BROMODICHLOROMETH/	ANE	0.5			0.5				5 U		0.5	+	
BROMOFORM			U			U			1 U			U	
BROMOMETHANE			U			U			2 U		_	U	
CARBON DISULFIDE			U		<u> </u>	U			1 U			U	
CARBON TETRACHLORID	E	+	U			U			1 U			U	
CHLOROBENZENE		0.5	U		0.5				5 U		0.5	+	
CHLORODIBROMOMETH.	ANE	0.5			0.5				5 U		0.5		
CHLOROETHANE		2	U			U			2 U		2	U	
CHLOROFORM			U			U		_	1 U	1		U	
CHLOROMETHANE			U			U			1 U	1		U	
CIS-1,2-DICHLOROETHEN		0.5			0.5				5 U		0.5		
CIS-1,3-DICHLOROPROPE	ENE	0.5			0.5				5 U		0.5		
CYCLOHEXANE			U			U		5.				U	
DICHLORODIFLUOROMET	THANE	2	U		2	U			2 U		2	U	

1 of 2

PROJ_NO: 08005-WE15	NSAMPLE	TF1-EBP-GZ	101R-08	2817	TF1-GT-106-0	82817		TF1-MW-1003	-08281	7	TF1-TB-082817			
SDG: SC38627	LAB_ID	SC38627-02			SC38627-03			SC38627-01			SC38627-04			
FRACTION: OV	SAMP_DATE	8/28/2017			8/28/2017			8/28/2017			8/28/2017			
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM			
	UNITS	UG/L			UG/L			UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0			0.0			0.0			
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
ETHYLBENZENE	<u> </u>	0.5	5 U		0.5	U		0.5	U		0.5	U		
ISOPROPYLBENZENE	<u> </u>		ΙU		1	U		6			1	U		
M+P-XYLENES			U		1	U		1	U		1	U		
METHYL ACETATE		2	2 U		2	U		2	U		2	U		
METHYL CYCLOHEXANE		2	2 U		2	U		6.3			2	U		
METHYL TERT-BUTYL ET	HER	0.5	5 U		0.5	U		0.5	U		0.5	U		
METHYLENE CHLORIDE		2	2 U		2	U		2	U		2	U		
O-XYLENE			ιU		1	U		1	U		1	U		
STYRENE			ιU		1	U		1	U		1	U		
TETRACHLOROETHENE			ιU		1	U		1	U		1	U		
TOLUENE			ιU		1	U		1	U		1	U		
TRANS-1,2-DICHLOROET	HENE		U		1	U		1	U		1	U		
TRANS-1,3-DICHLOROPR	OPENE	0.5	5 U		0.5	U		0.5	U		0.5	U		
TRICHLOROETHENE	·		U		1	U		1	U		1	U		
TRICHLOROFLUOROMET	HANE		U		1	U		1	U		1	U		
VINYL CHLORIDE			ΙU		1	U		1	U		1	U		

2 of 2

PROJ NO: 08005-WE15	NSAMPLE	TF1-EBP-GZ1	01R-082	2817	TF1-GT-106-0	82817		TF1-MW-1003-082817			
SDG: SC38627	LAB ID	SC38627-02	0111 002	.017	SC38627-03	02017		SC38627-01	002017		
FRACTION: PAH	SAMP_DATE	8/28/2017			8/28/2017			8/28/2017			
MEDIA: WATER	QC_TYPE	NM			NM			NM			
	UNITS	UG/L			UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0			0.0			
	DUP_OF										
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
1-METHYLNAPHTHALENE		0.943	UJ	R	0.971	U		1.18	J	Р	
2-METHYLNAPHTHALENE		0.943	UJ	R	0.971	U		1.05	U		
ACENAPHTHENE		0.943	UJ	R	0.971	U		1.05	U		
ACENAPHTHYLENE		0.943	UJ	R	0.971	U		1.05	U		
ANTHRACENE		0.943	UJ	ER	0.971	UJ	E	1.05	UJ	E	
BENZO(A)ANTHRACENE		0.943	UJ	R	0.971	U		1.05	U		
BENZO(A)PYRENE		0.943	UJ	R	0.971	U		1.05	U		
BENZO(B)FLUORANTHEN	E	0.943	UJ	R	0.971	U		1.05	U		
BENZO(G,H,I)PERYLENE		0.943	UJ	ER	0.971	UJ	E	1.05	UJ	E	
BENZO(K)FLUORANTHEN	E	0.943	UJ	R	0.971	U		1.05	U		
CHRYSENE		0.943	UJ	R	0.971	U		1.05	U		
DIBENZO(A,H)ANTHRACE	NE	0.943	UJ	R	0.971			1.05	U		
FLUORANTHENE		0.943	UJ	R	0.971	U		1.05	U		
FLUORENE		0.943	UJ	R	0.971	U		1.05	U		
INDENO(1,2,3-CD)PYRENE	Ī	0.943	UJ	R	0.971	U		1.05	U		
NAPHTHALENE		0.943	UJ	R	0.971	U		1.05	U		
PHENANTHRENE		0.943	UJ	ER	0.971	UJ	E	1.05	UJ	E	
PYRENE		0.943	UJ	R	0.971	U		1.05	U		

1 of 1 12/7/2017

PROJ_NO: 08005-WE15	NSAMPLE	TF1-EBP-GZ1	01R-082	2817	TF1-GT-106-0	82817		TF1-MW-1003	-082817	,		
SDG: SC38627	LAB_ID	SC38627-02			SC38627-03			SC38627-01				
FRACTION: PEST	SAMP_DATE	8/28/2017			8/28/2017			8/28/2017				
MEDIA: WATER	QC_TYPE	NM			NM			NM				
	UNITS	UG/L			UG/L			UG/L				
	PCT_SOLIDS	0.0			0.0			0.0				
	DUP_OF											
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD		
4,4'-DDD		0.019	U		0.02	U		0.021	U			
4,4'-DDE		0.019	U		0.02	U		0.021	U			
4,4'-DDT		0.029	U		0.029	U		0.032	U			
ALACHLOR		0.019	U		0.02	U		0.021	U			
ALDRIN		0.019	U		0.02	U		0.021	U			
ALPHA-BHC		0.019	U		0.02	U		0.021	U			
ALPHA-CHLORDANE		0.019	U		0.02	U		0.021	U			
BETA-BHC		0.019	U		0.02	U		0.021	U			
CHLORDANE		0.063	U		0.064	U		0.068	U			
DELTA-BHC		0.019	U		0.02	U		0.021	U			
DIELDRIN		0.019	U		0.02	U		0.021	U			
ENDOSULFAN I		0.019	U		0.02	U		0.021	U			
ENDOSULFAN II		0.019	U		0.02	U		0.021	U			
ENDOSULFAN SULFATE		0.019	U		0.02	U		0.021	U			
ENDRIN		0.019	U		0.02	U		0.021	U			
ENDRIN ALDEHYDE		0.019	U		0.02			0.021	U			
ENDRIN KETONE		0.019	U		0.02	U		0.021	U			
GAMMA-BHC (LINDANE)		0.019	U		0.02			0.021	_			
GAMMA-CHLORDANE		0.019	U		0.02	U		0.021	U			
HEPTACHLOR		0.019	U		0.02	U		0.021	U			
HEPTACHLOR EPOXIDE		0.019	U		0.02	U		0.021	U			
METHOXYCHLOR		0.019	U		0.02	U		0.021	U			
TOXAPHENE		0.481	U		0.49	U		0.526	U			

PROJ_NO: 08005-WE15	NSAMPLE	TF1-EBP-GZ10	01R-082	817	TF1-GT-106-0	82817		TF1-MW-1003-082817			
SDG: SC38627	LAB_ID	SC38627-02			SC38627-03			SC38627-01			
FRACTION: OVG	SAMP_DATE	8/28/2017			8/28/2017			8/28/2017			
MEDIA: WATER	QC_TYPE	NM			NM			NM			
	UNITS	UG/L			UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0			0.0			
	DUP_OF										
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
ETHANE		5	U		5	U		5	U		
METHANE		2.2	2.2 U			U		14			

PROJ_NO: 08005-WE15	NSAMPLE	TF1-EBP-GZ1	01R-082	2817	TF1-GT-106-0	82817		TF1-MW-1003-082817			
SDG: SC38627	LAB_ID	SC38627-02			SC38627-03			SC38627-01			
FRACTION: PET	SAMP_DATE	8/28/2017			8/28/2017			8/28/2017			
MEDIA: WATER	QC_TYPE	NM			NM			NM			
	UNITS	MG/L			MG/L			MG/L			
	PCT_SOLIDS	0.0			0.0			0.0			
	DUP_OF										
PARAMETER		RESULT VQL QLCD			RESULT	VQL	QLCD	RESULT	VQL	QLCD	
TPH (C08-C44)		0.079 J P			0.1	U		0.8			

PROJ_NO: 08005-WE15	NSAMPLE	TF1-EBP-GZ1	01R-08	2817	TF1-FRB-082	2817		TF1-GT-10	6-082817		TF1-MW-1003	3-082817	7
SDG: SC38627	LAB_ID	SC38627-02			SC38627-05			SC38627-0	3		SC38627-01		
FRACTION: PFAS	SAMP_DATE	8/28/2017			8/28/2017			8/28/2017			8/28/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
PENTADECAFLUOROOCT	ANOIC ACID	29			:	2 U			2		150		
PERFLUOROBUTANE SUL	FONATE	8			;	3 U			3 U		280		
PERFLUOROBUTANOIC A	CID	12			10) U			5 J	Р	75		
PERFLUORODECANE SUI	LFONATE	6	U			6 U			6 U			U	
PERFLUORODECANOIC A	ACID	2	J	Р		2 U			2 J	Р		U	
PERFLUORODODECANOI	C ACID		U		+	2 U			2 U		+	U	
PERFLUOROHEPTANESU	LFONIC ACID		U		+	6 U			6 U		130		
PERFLUOROHEPTANOIC	ACID	16			_	2 U			1 J	Р	70		
PERFLUOROHEXANE SUI		56				3 U			1 J	Р	2000		
PERFLUOROHEXANOIC A		28			+	2 U			3		540	+	
PERFLUORONONANOIC A			U		+	2 U			2 U		0.7	1	Р
PERFLUOROOCTANE SUI			UJ	R	<u> </u>	9 UJ	R		9 UJ	R		UJ	R
PERFLUOROOCTANE SUI		11			+	6 U			6 U		2100	-	
PERFLUOROPENTANOIC		26			_	2 U			4		120		
PERFLUOROTETRADECA			U		+	2 U			2 U			U	
PERFLUOROTRIDECANO			U		_	2 U			2 U			U	
PERFLUOROUNDECANOI	C ACID	3	U		;	3 U			3 U		3	U	

PROJ_NO: 08005-WE15	NSAMPLE	TF1-EBP-GZ1	01R-08	32817				TF1-GT-106-0	82817					
SDG: SC38627	LAB_ID	SC38627-02						SC38627-03						
FRACTION: M	SAMP_DATE	8/28/2017						8/28/2017						
MEDIA: WATER	QC_TYPE	NM						NM						
	UNITS	MG/L						MG/L						
	PCT_SOLIDS	0.0			199.0			0.0	0.0			199.0		
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
ALUMINUM		0.132						0.05	U					
ANTIMONY					0.001	U					0.0005	J	Р	
ARSENIC					0.002	U					0.0279			
BARIUM					0.0024	J	Р				0.0071			
BERYLLIUM					0.00025	U					0.00025	U		
CADMIUM					0.0005	U					0.0005	U		
CALCIUM		4.52						82.9)					
CHROMIUM					0.0012	J	Р				0.002	U		
COBALT					0.00086	J	Р				0.0226			
COPPER					0.00056	J	Р				0.001	U		
IRON		0.0601	U	Α				3.42	:					
LEAD					0.00025	U					0.00034	J	Р	
MAGNESIUM		2.04						15.3	1					
MANGANESE					0.0206						1.19			
MERCURY		0.0002	U					0.0002	U					
MOLYBDENUM					0.0005	U					0.0011			
NICKEL					0.0021	J	Р				0.0067			
POTASSIUM		0.851	J	Р				1.74						
SELENIUM					0.001						0.001			
SILVER					0.00025	U					0.00025	U		
SODIUM		5.46						14.1						
THALLIUM					0.00025						0.00025	U		
VANADIUM					0.0005						0.0011			
ZINC					0.0042	J	Р				0.0061	J	Р	

PROJ_NO: 08005-WE15	NSAMPLE	TF1-MW-1003	-08281	7			
SDG: SC38627	LAB_ID	SC38627-01					
FRACTION: M	SAMP_DATE	8/28/2017					
MEDIA: WATER	QC_TYPE	NM					
	UNITS	MG/L					
	PCT_SOLIDS	0.0			199.0		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
ALUMINUM		0.0871					
ANTIMONY					0.001	U	
ARSENIC					0.0691		
BARIUM					0.0142	J	Р
BERYLLIUM					0.00025	U	
CADMIUM					0.0005	U	
CALCIUM		30					
CHROMIUM					0.00093	J	Р
COBALT					0.0244		
COPPER					0.001	U	
IRON		59.8					
LEAD					0.00012	J	Р
MAGNESIUM		3.97					
MANGANESE					5.55		
MERCURY		0.0002	U				
MOLYBDENUM					0.0044		
NICKEL					0.0018	J	Р
POTASSIUM		1.14					
SELENIUM					0.001	U	
SILVER					0.00025	U	
SODIUM		6.62					
THALLIUM					0.00025	U	
VANADIUM					0.00024	J	Р
ZINC					0.0075	U	

PROJ_NO: 08005-WE15	NSAMPLE	TF1-EBP-GZ1	01R-082	2817	TF1-GT-106-0	82817		TF1-MW-1003-082817				
SDG: SC38627	LAB_ID	SC38627-02			SC38627-03			SC38627-01				
FRACTION: MISC	SAMP_DATE	8/28/2017			8/28/2017			8/28/2017				
MEDIA: WATER	QC_TYPE	NM			NM			NM				
	UNITS	MG/L			MG/L			MG/L				
	PCT_SOLIDS	0.0			0.0			0.0				
	DUP_OF											
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD		
ALKALINITY		4.14			258			120				
BIOCHEMICAL OXYGEN D	EMAND	2.97	U		4			5				
CHLORIDE		9.43			11.9			7.45				
NITRATE-N		0.096 J P			0.1	U		0.1	U			
SULFATE		13.5			27			1	U			
TOTAL ORGANIC CARBO	N	0.816	J	Р	1.73			6.06				

Appendix B

Results as Reported by the Laboratory

TF1-MW-1003-082817

FORM I - ORGANIC ANALYSIS DATA SHEET SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-01</u> File ID: <u>3862701.D</u>

Sampled: <u>08/28/17 15:30</u> Prepared: <u>09/06/17 09:20</u> Analyzed: <u>09/06/17 11:39</u>

% Solids: Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u> Instrument: <u>HPV3</u>

Reported to: LOD

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	1	1.0	U	0.5	1.0	1.0
67-64-1	Acetone	1	2.0	U	0.8	2.0	10.0
71-43-2	Benzene	1	0.5	U	0.3	0.5	1.0
74-97-5	Bromochloromethane	1	1.0	U	0.3	1.0	1.0
75-27-4	Bromodichloromethane	1	0.5	U	0.4	0.5	0.5
75-25-2	Bromoform	1	1.0	U	0.4	1.0	1.0
74-83-9	Bromomethane	1	2.0	U	0.9	2.0	2.0
78-93-3	2-Butanone (MEK)	1	2.0	U	1.1	2.0	2.0
75-15-0	Carbon disulfide	1	1.0	U	0.4	1.0	2.0
56-23-5	Carbon tetrachloride	1	1.0	U	0.4	1.0	1.0
108-90-7	Chlorobenzene	1	0.5	U	0.2	0.5	1.0
75-00-3	Chloroethane	1	2.0	U	0.6	2.0	2.0
67-66-3	Chloroform	1	1.0	U	0.3	1.0	1.0
74-87-3	Chloromethane	1	1.0	U	0.4	1.0	2.0
96-12-8	1,2-Dibromo-3-chloropropane	1	2.0	U	0.9	2.0	2.0
124-48-1	Dibromochloromethane	1	0.5	U	0.3	0.5	0.5
106-93-4	1,2-Dibromoethane (EDB)	1	0.5	U	0.2	0.5	0.5
95-50-1	1,2-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
541-73-1	1,3-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
106-46-7	1,4-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
75-71-8	Dichlorodifluoromethane (Freon12)	1	2.0	U	0.6	2.0	2.0
75-34-3	1,1-Dichloroethane	1	1.0	U	0.3	1.0	1.0
107-06-2	1,2-Dichloroethane	1	1.0	U	0.3	1.0	1.0
75-35-4	1,1-Dichloroethene	1	1.0	U	0.7	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1	0.5	U	0.3	0.5	1.0
156-60-5	trans-1,2-Dichloroethene	1	1.0	U	0.4	1.0	1.0
78-87-5	1,2-Dichloropropane	1	1.0	U	0.3	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1	0.5	U	0.4	0.5	0.5
10061-02-6	trans-1,3-Dichloropropene	1	0.5	U	0.3	0.5	0.5
100-41-4	Ethylbenzene	1	0.5	U	0.3	0.5	1.0
591-78-6	2-Hexanone (MBK)	1	2.0	U	0.5	2.0	2.0
98-82-8	Isopropylbenzene	1	6.0		0.4	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1	0.5	U	0.2	0.5	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	1	2.0	U	0.5	2.0	2.0
75-09-2	Methylene chloride	1	2.0	U	0.7	2.0	2.0
100-42-5	Styrene	1	1.0	U	0.4	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1	0.5	U	0.3	0.5	0.5
127-18-4	Tetrachloroethene	1	1.0	U	0.6	1.0	1.0
	Toluene 7 Page 18 / 1574	1	1.0	U	0.3	1.0	1.0

FORM I - ORGANIC ANALYSIS DATA SHEET

SW846 8260C

TF1-MW-1003-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-01</u> File ID: <u>3862701.D</u>

Sampled: <u>08/28/17 15:30</u> Prepared: <u>09/06/17 09:20</u> Analyzed: <u>09/06/17 11:39</u>

% Solids: Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u> Instrument: <u>HPV3</u>

Reported to: LOD

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
87-61-6	1,2,3-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1	1.0	U	0.5	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1	0.5	U	0.3	0.5	1.0
79-01-6	Trichloroethene	1	1.0	U	0.5	1.0	1.0
75-69-4	Trichlorofluoromethane (Freon 11)	1	1.0	U	0.5	1.0	1.0
75-01-4	Vinyl chloride	1	1.0	U	0.5	1.0	1.0
179601-23-1	m,p-Xylene	1	1.0	U	0.4	1.0	2.0
95-47-6	o-Xylene	1	1.0	U	0.3	1.0	1.0
110-82-7	Cyclohexane	1	5.2		0.8	2.0	5.0
79-20-9	Methyl acetate	1	2.0	U	0.6	2.0	5.0
108-87-2	Methylcyclohexane	1	6.3		0.7	2.0	5.0

FORM I - ORGANIC ANALYSIS DATA SHEET

SW846 8260C

TF1-EBP-GZ101R-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-02</u> File ID: <u>3862702.D</u>

Sampled: <u>08/28/17 15:16</u> Prepared: <u>09/06/17 09:20</u> Analyzed: <u>09/06/17 12:08</u>

% Solids: Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u> Instrument: <u>HPV3</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOC
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	1	1.0	U	0.5	1.0	1.0
67-64-1	Acetone	1	1.4	J	0.8	2.0	10.0
71-43-2	Benzene	1	0.5	U	0.3	0.5	1.0
74-97-5	Bromochloromethane	1	1.0	U	0.3	1.0	1.0
75-27-4	Bromodichloromethane	1	0.5	U	0.4	0.5	0.5
75-25-2	Bromoform	1	1.0	U	0.4	1.0	1.0
74-83-9	Bromomethane	1	2.0	U	0.9	2.0	2.0
78-93-3	2-Butanone (MEK)	1	2.0	U	1.1	2.0	2.0
75-15-0	Carbon disulfide	1	1.0	U	0.4	1.0	2.0
56-23-5	Carbon tetrachloride	1	1.0	U	0.4	1.0	1.0
108-90-7	Chlorobenzene	1	0.5	U	0.2	0.5	1.0
75-00-3	Chloroethane	1	2.0	U	0.6	2.0	2.0
67-66-3	Chloroform	1	1.0	U	0.3	1.0	1.0
74-87-3	Chloromethane	1	1.0	U	0.4	1.0	2.0
96-12-8	1,2-Dibromo-3-chloropropane	1	2.0	U	0.9	2.0	2.0
124-48-1	Dibromochloromethane	1	0.5	U	0.3	0.5	0.5
106-93-4	1,2-Dibromoethane (EDB)	1	0.5	U	0.2	0.5	0.5
95-50-1	1,2-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
541-73-1	1,3-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
106-46-7	1,4-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
75-71-8	Dichlorodifluoromethane (Freon12)	1	2.0	U	0.6	2.0	2.0
75-34-3	1,1-Dichloroethane	1	1.0	U	0.3	1.0	1.0
107-06-2	1,2-Dichloroethane	1	1.0	U	0.3	1.0	1.0
75-35-4	1,1-Dichloroethene	1	1.0	U	0.7	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1	0.5	U	0.3	0.5	1.0
156-60-5	trans-1,2-Dichloroethene	1	1.0	U	0.4	1.0	1.0
78-87-5	1,2-Dichloropropane	1	1.0	U	0.3	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1	0.5	U	0.4	0.5	0.5
10061-02-6	trans-1,3-Dichloropropene	1	0.5	U	0.3	0.5	0.5
100-41-4	Ethylbenzene	1	0.5	U	0.3	0.5	1.0
591-78-6	2-Hexanone (MBK)	1	2.0	U	0.5	2.0	2.0
98-82-8	Isopropylbenzene	1	1.0	U	0.4	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1	0.5	U	0.2	0.5	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	1	2.0	U	0.5	2.0	2.0
75-09-2	Methylene chloride	1	2.0	U	0.7	2.0	2.0
100-42-5	Styrene	1	1.0	U	0.4	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1	0.5	U	0.3	0.5	0.5
127-18-4	Tetrachloroethene	1	1.0	U	0.6	1.0	1.0
	Toluene 7 Page 20 / 1574	1	1.0	U	0.3	1.0	1.0

FORM I - ORGANIC ANALYSIS DATA SHEET

SW846 8260C

TF1-EBP-GZ101R-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-02</u> File ID: <u>3862702.D</u>

Sampled: <u>08/28/17 15:16</u> Prepared: <u>09/06/17 09:20</u> Analyzed: <u>09/06/17 12:08</u>

% Solids: Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u> Instrument: <u>HPV3</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
87-61-6	1,2,3-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1	1.0	U	0.5	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1	0.5	U	0.3	0.5	1.0
79-01-6	Trichloroethene	1	1.0	U	0.5	1.0	1.0
75-69-4	Trichlorofluoromethane (Freon 11)	1	1.0	U	0.5	1.0	1.0
75-01-4	Vinyl chloride	1	1.0	U	0.5	1.0	1.0
179601-23-1	m,p-Xylene	1	1.0	U	0.4	1.0	2.0
95-47-6	o-Xylene	1	1.0	U	0.3	1.0	1.0
110-82-7	Cyclohexane	1	2.0	U	0.8	2.0	5.0
79-20-9	Methyl acetate	1	2.0	U	0.6	2.0	5.0
108-87-2	Methylcyclohexane	1	2.0	U	0.7	2.0	5.0

TF1-GT-106-082817

FORM I - ORGANIC ANALYSIS DATA SHEET SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-03</u> File ID: <u>3862703.D</u>

Sampled: <u>08/28/17 15:25</u> Prepared: <u>09/06/17 09:20</u> Analyzed: <u>09/06/17 12:37</u>

% Solids: Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u> Instrument: <u>HPV3</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOÇ
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	1	1.0	U	0.5	1.0	1.0
67-64-1	Acetone	1	2.0	U	0.8	2.0	10.0
71-43-2	Benzene	1	0.5	U	0.3	0.5	1.0
74-97-5	Bromochloromethane	1	1.0	U	0.3	1.0	1.0
75-27-4	Bromodichloromethane	1	0.5	U	0.4	0.5	0.5
75-25-2	Bromoform	1	1.0	U	0.4	1.0	1.0
74-83-9	Bromomethane	1	2.0	U	0.9	2.0	2.0
78-93-3	2-Butanone (MEK)	1	2.0	U	1.1	2.0	2.0
75-15-0	Carbon disulfide	1	1.0	U	0.4	1.0	2.0
56-23-5	Carbon tetrachloride	1	1.0	U	0.4	1.0	1.0
108-90-7	Chlorobenzene	1	0.5	U	0.2	0.5	1.0
75-00-3	Chloroethane	1	2.0	U	0.6	2.0	2.0
67-66-3	Chloroform	1	1.0	U	0.3	1.0	1.0
74-87-3	Chloromethane	1	1.0	U	0.4	1.0	2.0
96-12-8	1,2-Dibromo-3-chloropropane	1	2.0	U	0.9	2.0	2.0
124-48-1	Dibromochloromethane	1	0.5	U	0.3	0.5	0.5
106-93-4	1,2-Dibromoethane (EDB)	1	0.5	U	0.2	0.5	0.5
95-50-1	1,2-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
541-73-1	1,3-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
106-46-7	1,4-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
75-71-8	Dichlorodifluoromethane (Freon12)	1	2.0	U	0.6	2.0	2.0
75-34-3	1,1-Dichloroethane	1	1.0	U	0.3	1.0	1.0
107-06-2	1,2-Dichloroethane	1	1.0	U	0.3	1.0	1.0
75-35-4	1,1-Dichloroethene	1	1.0	U	0.7	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1	0.5	U	0.3	0.5	1.0
156-60-5	trans-1,2-Dichloroethene	1	1.0	U	0.4	1.0	1.0
78-87-5	1,2-Dichloropropane	1	1.0	U	0.3	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1	0.5	U	0.4	0.5	0.5
10061-02-6	trans-1,3-Dichloropropene	1	0.5	U	0.3	0.5	0.5
100-41-4	Ethylbenzene	1	0.5	U	0.3	0.5	1.0
591-78-6	2-Hexanone (MBK)	1	2.0	U	0.5	2.0	2.0
98-82-8	Isopropylbenzene	1	1.0	U	0.4	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1	0.5	U	0.2	0.5	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	1	2.0	U	0.5	2.0	2.0
75-09-2	Methylene chloride	1	2.0	U	0.7	2.0	2.0
100-42-5	Styrene	1	1.0	U	0.4	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1	0.5	U	0.3	0.5	0.5
127-18-4	Tetrachloroethene	1	1.0	U	0.6	1.0	1.0
	Toluene 7 Page 22 / 1574	1	1.0	U	0.3	1.0	1.0

FORM I - ORGANIC ANALYSIS DATA SHEET

SW846 8260C

TF1-GT-106-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-03</u> File ID: <u>3862703.D</u>

Sampled: <u>08/28/17 15:25</u> Prepared: <u>09/06/17 09:20</u> Analyzed: <u>09/06/17 12:37</u>

% Solids: Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u> Instrument: <u>HPV3</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
87-61-6	1,2,3-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1	1.0	U	0.5	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1	0.5	U	0.3	0.5	1.0
79-01-6	Trichloroethene	1	1.0	U	0.5	1.0	1.0
75-69-4	Trichlorofluoromethane (Freon 11)	1	1.0	U	0.5	1.0	1.0
75-01-4	Vinyl chloride	1	1.0	U	0.5	1.0	1.0
179601-23-1	m,p-Xylene	1	1.0	U	0.4	1.0	2.0
95-47-6	o-Xylene	1	1.0	U	0.3	1.0	1.0
110-82-7	Cyclohexane	1	2.0	U	0.8	2.0	5.0
79-20-9	Methyl acetate	1	2.0	U	0.6	2.0	5.0
108-87-2	Methylcyclohexane	1	2.0	U	0.7	2.0	5.0

TF1-TB-082817

FORM I - ORGANIC ANALYSIS DATA SHEET SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Trip Blank</u> Laboratory ID: <u>SC38627-04</u> File ID: <u>3862704.D</u>

Sampled: <u>08/28/17 08:00</u> Prepared: <u>09/06/17 09:20</u> Analyzed: <u>09/06/17 13:06</u>

% Solids: Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u> Instrument: <u>HPV3</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOC
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	1	1.0	U	0.5	1.0	1.0
67-64-1	Acetone	1	2.0	U	0.8	2.0	10.0
71-43-2	Benzene	1	0.5	U	0.3	0.5	1.0
74-97-5	Bromochloromethane	1	1.0	U	0.3	1.0	1.0
75-27-4	Bromodichloromethane	1	0.5	U	0.4	0.5	0.5
75-25-2	Bromoform	1	1.0	U	0.4	1.0	1.0
74-83-9	Bromomethane	1	2.0	U	0.9	2.0	2.0
78-93-3	2-Butanone (MEK)	1	2.0	U	1.1	2.0	2.0
75-15-0	Carbon disulfide	1	1.0	U	0.4	1.0	2.0
56-23-5	Carbon tetrachloride	1	1.0	U	0.4	1.0	1.0
108-90-7	Chlorobenzene	1	0.5	U	0.2	0.5	1.0
75-00-3	Chloroethane	1	2.0	U	0.6	2.0	2.0
67-66-3	Chloroform	1	1.0	U	0.3	1.0	1.0
74-87-3	Chloromethane	1	1.0	U	0.4	1.0	2.0
96-12-8	1,2-Dibromo-3-chloropropane	1	2.0	U	0.9	2.0	2.0
124-48-1	Dibromochloromethane	1	0.5	U	0.3	0.5	0.5
106-93-4	1,2-Dibromoethane (EDB)	1	0.5	U	0.2	0.5	0.5
95-50-1	1,2-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
541-73-1	1,3-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
106-46-7	1,4-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
75-71-8	Dichlorodifluoromethane (Freon12)	1	2.0	U	0.6	2.0	2.0
75-34-3	1,1-Dichloroethane	1	1.0	U	0.3	1.0	1.0
107-06-2	1,2-Dichloroethane	1	1.0	U	0.3	1.0	1.0
75-35-4	1,1-Dichloroethene	1	1.0	U	0.7	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1	0.5	U	0.3	0.5	1.0
156-60-5	trans-1,2-Dichloroethene	1	1.0	U	0.4	1.0	1.0
78-87-5	1,2-Dichloropropane	1	1.0	U	0.3	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1	0.5	U	0.4	0.5	0.5
10061-02-6	trans-1,3-Dichloropropene	1	0.5	U	0.3	0.5	0.5
100-41-4	Ethylbenzene	1	0.5	U	0.3	0.5	1.0
591-78-6	2-Hexanone (MBK)	1	2.0	U	0.5	2.0	2.0
98-82-8	Isopropylbenzene	1	1.0	U	0.4	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1	0.5	U	0.2	0.5	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	1	2.0	U	0.5	2.0	2.0
75-09-2	Methylene chloride	1	2.0	U	0.7	2.0	2.0
100-42-5	Styrene	1	1.0	U	0.4	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1	0.5	U	0.3	0.5	0.5
127-18-4	Tetrachloroethene	1	1.0	U	0.6	1.0	1.0
	Toluene 7 Page 24 / 1574	1	1.0	U	0.3	1.0	1.0

FORM I - ORGANIC ANALYSIS DATA SHEET

SW846 8260C

TF1-TB-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Trip Blank</u> Laboratory ID: <u>SC38627-04</u> File ID: <u>3862704.D</u>

Sampled: <u>08/28/17 08:00</u> Prepared: <u>09/06/17 09:20</u> Analyzed: <u>09/06/17 13:06</u>

% Solids: Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u> Instrument: <u>HPV3</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
87-61-6	1,2,3-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1	1.0	U	0.5	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1	0.5	U	0.3	0.5	1.0
79-01-6	Trichloroethene	1	1.0	U	0.5	1.0	1.0
75-69-4	Trichlorofluoromethane (Freon 11)	1	1.0	U	0.5	1.0	1.0
75-01-4	Vinyl chloride	1	1.0	U	0.5	1.0	1.0
179601-23-1	m,p-Xylene	1	1.0	U	0.4	1.0	2.0
95-47-6	o-Xylene	1	1.0	U	0.3	1.0	1.0
110-82-7	Cyclohexane	1	2.0	U	0.8	2.0	5.0
79-20-9	Methyl acetate	1	2.0	U	0.6	2.0	5.0
108-87-2	Methylcyclohexane	1	2.0	U	0.7	2.0	5.0

FORM I - ORGANIC ANALYSIS DATA SHEET SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-01</u> File ID: <u>C3862701.D</u>

Sampled: <u>08/28/17 15:30</u> Prepared: <u>09/01/17 08:00</u> Analyzed: <u>09/13/17 18:06</u>

% Solids: Preparation: <u>SW846 3510C</u> Initial/Final: <u>950 ml / 1 ml</u>

Batch: 1715009 Sequence: S708168 Calibration: 1708113 Instrument: HPS4

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
83-32-9	Acenaphthene	1	1.05	U	0.727	1.05	5.26
208-96-8	Acenaphthylene	1	1.05	U	0.719	1.05	5.26
120-12-7	Anthracene	1	1.05	U	0.640	1.05	5.26
56-55-3	Benzo (a) anthracene	1	1.05	U	0.564	1.05	5.26
50-32-8	Benzo (a) pyrene	1	1.05	U	0.592	1.05	5.26
205-99-2	Benzo (b) fluoranthene	1	1.05	U	0.460	1.05	5.26
191-24-2	Benzo (g,h,i) perylene	1	1.05	U	0.558	1.05	5.26
207-08-9	Benzo (k) fluoranthene	1	1.05	U	0.505	1.05	5.26
218-01-9	Chrysene	1	1.05	U	0.560	1.05	5.26
53-70-3	Dibenzo (a,h) anthracene	1	1.05	U	0.474	1.05	5.26
206-44-0	Fluoranthene	1	1.05	U	0.672	1.05	5.26
86-73-7	Fluorene	1	1.05	U	0.644	1.05	5.26
193-39-5	Indeno (1,2,3-cd) pyrene	1	1.05	U	0.611	1.05	5.26
90-12-0	1-Methylnaphthalene	1	1.18	J	0.772	1.05	5.26
91-57-6	2-Methylnaphthalene	1	1.05	U	0.604	1.05	5.26
91-20-3	Naphthalene	1	1.05	U	0.721	1.05	5.26
85-01-8	Phenanthrene	1	1.05	U	0.617	1.05	5.26
129-00-0	Pyrene	1	1.05	U	0.642	1.05	5.26

FORM I - ORGANIC ANALYSIS DATA SHEET TF1-EBP-GZ101R-082817

SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-02</u> File ID: <u>C3862702.D</u>

Sampled: <u>08/28/17 15:16</u> Prepared: <u>09/01/17 08:00</u> Analyzed: <u>09/13/17 19:02</u>

% Solids: Preparation: $\underline{SW846\ 3510C}$ Initial/Final: $\underline{1060\ ml\ /\ 1\ ml}$

Batch: 1715009 Sequence: S708168 Calibration: 1708113 Instrument: HPS4

CAS NO.	COMPOUND	DILUTION	CONC. (μg/l)	Q	MDL	LOD	LOQ
83-32-9	Acenaphthene	1	0.943	U	0.652	0.943	4.72
208-96-8	Acenaphthylene	1	0.943	U	0.644	0.943	4.72
120-12-7	Anthracene	1	0.943	U	0.574	0.943	4.72
56-55-3	Benzo (a) anthracene	1	0.943	U	0.506	0.943	4.72
50-32-8	Benzo (a) pyrene	1	0.943	U	0.530	0.943	4.72
205-99-2	Benzo (b) fluoranthene	1	0.943	U	0.412	0.943	4.72
191-24-2	Benzo (g,h,i) perylene	1	0.943	U	0.500	0.943	4.72
207-08-9	Benzo (k) fluoranthene	1	0.943	U	0.453	0.943	4.72
218-01-9	Chrysene	1	0.943	U	0.502	0.943	4.72
53-70-3	Dibenzo (a,h) anthracene	1	0.943	U	0.425	0.943	4.72
206-44-0	Fluoranthene	1	0.943	U	0.602	0.943	4.72
86-73-7	Fluorene	1	0.943	U	0.577	0.943	4.72
193-39-5	Indeno (1,2,3-cd) pyrene	1	0.943	U	0.547	0.943	4.72
90-12-0	1-Methylnaphthalene	1	0.943	U	0.692	0.943	4.72
91-57-6	2-Methylnaphthalene	1	0.943	U	0.542	0.943	4.72
91-20-3	Naphthalene	1	0.943	U	0.646	0.943	4.72
85-01-8	Phenanthrene	1	0.943	U	0.553	0.943	4.72
129-00-0	Pyrene	1	0.943	U	0.575	0.943	4.72

FORM I - ORGANIC ANALYSIS DATA SHEET SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

 Matrix:
 Ground Water
 Laboratory ID:
 SC38627-03
 File ID:
 C3862703.D

 Sampled:
 08/28/17 15:25
 Prepared:
 09/01/17 08:00
 Analyzed:
 09/13/17 19:31

% Solids: Preparation: <u>SW846 3510C</u> Initial/Final: <u>1030 ml / 1 ml</u>

Batch: <u>1715009</u> Sequence: <u>S708168</u> Calibration: <u>1708113</u> Instrument: <u>HPS4</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
83-32-9	Acenaphthene	1	0.971	U	0.671	0.971	4.85
208-96-8	Acenaphthylene	1	0.971	U	0.663	0.971	4.85
120-12-7	Anthracene	1	0.971	U	0.590	0.971	4.85
56-55-3	Benzo (a) anthracene	1	0.971	U	0.520	0.971	4.85
50-32-8	Benzo (a) pyrene	1	0.971	U	0.546	0.971	4.85
205-99-2	Benzo (b) fluoranthene	1	0.971	U	0.424	0.971	4.85
191-24-2	Benzo (g,h,i) perylene	1	0.971	U	0.515	0.971	4.85
207-08-9	Benzo (k) fluoranthene	1	0.971	U	0.466	0.971	4.85
218-01-9	Chrysene	1	0.971	U	0.517	0.971	4.85
53-70-3	Dibenzo (a,h) anthracene	1	0.971	U	0.437	0.971	4.85
206-44-0	Fluoranthene	1	0.971	U	0.619	0.971	4.85
86-73-7	Fluorene	1	0.971	U	0.594	0.971	4.85
193-39-5	Indeno (1,2,3-cd) pyrene	1	0.971	U	0.563	0.971	4.85
90-12-0	1-Methylnaphthalene	1	0.971	U	0.712	0.971	4.85
91-57-6	2-Methylnaphthalene	1	0.971	U	0.557	0.971	4.85
91-20-3	Naphthalene	1	0.971	U	0.665	0.971	4.85
85-01-8	Phenanthrene	1	0.971	U	0.569	0.971	4.85
129-00-0	Pyrene	1	0.971	U	0.592	0.971	4.85

FORM I - ANALYSIS DATA SHEET SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-01</u> File ID: <u>3862701.D</u>

Sampled: <u>08/28/17 15:30</u> Prepared: <u>09/01/17 08:00</u> Analyzed: <u>09/08/17 00:48</u>

% Solids: Preparation: <u>SW846 3510C</u> Initial/Final: <u>950 ml / 10 ml</u>

Batch: $\underline{1715010}$ Sequence: $\underline{S708006}$ Calibration: $\underline{1709015}$ Instrument: $\underline{HPS14}$

Injection Volume (uL): 2.00

CAS NO.	COMPOUND	DILUTION	CONC. (μg/l)	Q	MDL	LOD	LOQ
319-84-6	alpha-BHC	1	0.021	U	0.012	0.021	0.021
319-85-7	beta-BHC	1	0.021	U	0.015	0.021	0.021
319-86-8	delta-BHC	1	0.021	U	0.016	0.021	0.021
58-89-9	gamma-BHC (Lindane)	1	0.021	U	0.018	0.021	0.021
76-44-8	Heptachlor	1	0.021	U	0.021	0.021	0.021
309-00-2	Aldrin	1	0.021	U	0.017	0.021	0.021
1024-57-3	Heptachlor epoxide	1	0.021	U	0.016	0.021	0.021
959-98-8	Endosulfan I	1	0.021	U	0.017	0.021	0.021
60-57-1	Dieldrin	1	0.021	U	0.018	0.021	0.021
72-55-9	4,4'-DDE (p,p')	1	0.021	U	0.019	0.021	0.021
72-20-8	Endrin	1	0.021	U	0.020	0.021	0.042
33213-65-9	Endosulfan II	1	0.021	U	0.021	0.021	0.042
72-54-8	4,4'-DDD (p,p')	1	0.021	U	0.020	0.021	0.042
1031-07-8	Endosulfan sulfate	1	0.021	U	0.021	0.021	0.042
50-29-3	4,4'-DDT (p,p')	1	0.032	U	0.019	0.032	0.042
72-43-5	Methoxychlor	1	0.021	U	0.019	0.021	0.042
53494-70-5	Endrin ketone	1	0.021	U	0.018	0.021	0.042
7421-93-4	Endrin aldehyde	1	0.021	U	0.020	0.021	0.042
5103-71-9	alpha-Chlordane	1	0.021	U	0.016	0.021	0.021
5103-74-2	Chlordane (gamma)(trans)	1	0.021	U	0.017	0.021	0.021
8001-35-2	Toxaphene	1	0.526	U	0.345	0.526	0.526
57-74-9	Chlordane	1	0.068	U	0.054	0.068	0.068
15972-60-8	Alachlor	1	0.021	U	0.020	0.021	0.021

FORM I - ANALYSIS DATA SHEET SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-02</u> File ID: <u>3862702.D</u>

Sampled: $08/28/17 \ 15:16$ Prepared: $09/01/17 \ 08:00$ Analyzed: $09/08/17 \ 01:06$

% Solids: Preparation: <u>SW846 3510C</u> Initial/Final: <u>1040 ml / 10 ml</u>

Batch: $\underline{1715010}$ Sequence: $\underline{S708006}$ Calibration: $\underline{1709015}$ Instrument: $\underline{HPS14}$

Injection Volume (uL): 2.00

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
319-84-6	alpha-BHC	1	0.019	U	0.011	0.019	0.019
319-85-7	beta-BHC	1	0.019	U	0.014	0.019	0.019
319-86-8	delta-BHC	1	0.019	U	0.015	0.019	0.019
58-89-9	gamma-BHC (Lindane)	1	0.019	U	0.017	0.019	0.019
76-44-8	Heptachlor	1	0.019	U	0.019	0.019	0.019
309-00-2	Aldrin	1	0.019	U	0.015	0.019	0.019
1024-57-3	Heptachlor epoxide	1	0.019	U	0.015	0.019	0.019
959-98-8	Endosulfan I	1	0.019	U	0.016	0.019	0.019
60-57-1	Dieldrin	1	0.019	U	0.016	0.019	0.019
72-55-9	4,4'-DDE (p,p')	1	0.019	U	0.017	0.019	0.019
72-20-8	Endrin	1	0.019	U	0.018	0.019	0.038
33213-65-9	Endosulfan II	1	0.019	U	0.019	0.019	0.038
72-54-8	4,4'-DDD (p,p')	1	0.019	U	0.018	0.019	0.038
1031-07-8	Endosulfan sulfate	1	0.019	U	0.019	0.019	0.038
50-29-3	4,4'-DDT (p,p')	1	0.029	U	0.017	0.029	0.038
72-43-5	Methoxychlor	1	0.019	U	0.018	0.019	0.038
53494-70-5	Endrin ketone	1	0.019	U	0.017	0.019	0.038
7421-93-4	Endrin aldehyde	1	0.019	U	0.018	0.019	0.038
5103-71-9	alpha-Chlordane	1	0.019	U	0.015	0.019	0.019
5103-74-2	Chlordane (gamma)(trans)	1	0.019	U	0.015	0.019	0.019
8001-35-2	Toxaphene	1	0.481	U	0.315	0.481	0.481
57-74-9	Chlordane	1	0.063	U	0.049	0.063	0.063
15972-60-8	Alachlor	1	0.019	U	0.018	0.019	0.019

FORM I - ANALYSIS DATA SHEET SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-03</u> File ID: <u>3862703.D</u>

Sampled: <u>08/28/17 15:25</u> Prepared: <u>09/01/17 08:00</u> Analyzed: <u>09/08/17 01:23</u>

% Solids: Preparation: <u>SW846 3510C</u> Initial/Final: <u>1020 ml / 10 ml</u>

Batch: <u>1715010</u> Sequence: <u>S708006</u> Calibration: <u>1709015</u> Instrument: <u>HPS14</u>

Injection Volume (uL): 2.00

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
319-84-6	alpha-BHC	1	0.020	U	0.011	0.020	0.020
319-85-7	beta-BHC	1	0.020	U	0.014	0.020	0.020
319-86-8	delta-BHC	1	0.020	U	0.015	0.020	0.020
58-89-9	gamma-BHC (Lindane)	1	0.020	U	0.017	0.020	0.020
76-44-8	Heptachlor	1	0.020	U	0.019	0.020	0.020
309-00-2	Aldrin	1	0.020	U	0.015	0.020	0.020
1024-57-3	Heptachlor epoxide	1	0.020	U	0.015	0.020	0.020
959-98-8	Endosulfan I	1	0.020	U	0.016	0.020	0.020
60-57-1	Dieldrin	1	0.020	U	0.017	0.020	0.020
72-55-9	4,4'-DDE (p,p')	1	0.020	U	0.017	0.020	0.020
72-20-8	Endrin	1	0.020	U	0.019	0.020	0.039
33213-65-9	Endosulfan II	1	0.020	U	0.020	0.020	0.039
72-54-8	4,4'-DDD (p,p')	1	0.020	U	0.018	0.020	0.039
1031-07-8	Endosulfan sulfate	1	0.020	U	0.019	0.020	0.039
50-29-3	4,4'-DDT (p,p')	1	0.029	U	0.017	0.029	0.039
72-43-5	Methoxychlor	1	0.020	U	0.018	0.020	0.039
53494-70-5	Endrin ketone	1	0.020	U	0.017	0.020	0.039
7421-93-4	Endrin aldehyde	1	0.020	U	0.019	0.020	0.039
5103-71-9	alpha-Chlordane	1	0.020	U	0.015	0.020	0.020
5103-74-2	Chlordane (gamma)(trans)	1	0.020	U	0.016	0.020	0.020
8001-35-2	Toxaphene	1	0.490	U	0.322	0.490	0.490
57-74-9	Chlordane	1	0.064	U	0.050	0.064	0.064
15972-60-8	Alachlor	1	0.020	U	0.019	0.020	0.020

FORM I - ORGANIC ANALYSIS DATA SHEET Mod EPA 3C/SOP RSK-175

TF1-MW-1003-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-01 File ID: 090717-chanb-005-0

Sampled: <u>08/28/17 15:30</u> Prepared: <u>09/07/17 06:00</u> Analyzed: <u>09/07/17 11:10</u>

% Solids: Preparation: General Air Prep Initial/Final: $\underline{10~\mu g}/10~\mu g$

Batch: <u>1715310</u> Sequence: <u>S707962</u> Calibration: <u>1707028</u> Instrument: <u>Air5</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
74-82-8	Methane	1	14.0		2.16	2.20	2.20
74-84-0	Ethane	1	5.00	U	3.48	5.00	5.00

FORM I - ORGANIC ANALYSIS DATA SHEET Mod EPA 3C/SOP RSK-175

TF1-EBP-GZ101R-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-02</u> File ID: <u>090717-chanb-007-0</u>

Sampled: <u>08/28/17 15:16</u> Prepared: <u>09/07/17 06:00</u> Analyzed: <u>09/07/17 11:59</u>

% Solids: Preparation: <u>General Air Prep</u> Initial/Final: <u>10 μg / 10 μg</u>

Batch: <u>1715310</u> Sequence: <u>S707962</u> Calibration: <u>1707028</u> Instrument: <u>Air5</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
74-82-8	Methane	1	2.20	U	2.16	2.20	2.20
74-84-0	Ethane	1	5.00	U	3.48	5.00	5.00

FORM I - ORGANIC ANALYSIS DATA SHEET Mod EPA 3C/SOP RSK-175

TF1-GT-106-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-03 File ID: 090717-chanb-008-0

Sampled: <u>08/28/17 15:25</u> Prepared: <u>09/07/17 06:00</u> Analyzed: <u>09/07/17 12:21</u>

% Solids: Preparation: <u>General Air Prep</u> Initial/Final: <u>10 μg / 10 μg</u>

Batch: <u>1715310</u> Sequence: <u>S707962</u> Calibration: <u>1707028</u> Instrument: <u>Air5</u>

CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
74-82-8	Methane	1	2.20	U	2.16	2.20	2.20
74-84-0	Ethane	1	5.00	U	3.48	5.00	5.00

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SC38627-01 Grab Groundwater

ELLE Sample # GW 9185281 ELLE Group # 1844810 Account # 30891

Project Name: WE15 Tank Farm 1 NAVSTA Newport

Eurofins Spectrum Analytical

646 Camp Ave

North Kingstown RI 02582

Submitted: 08/31/2017 09:40

Collected: 08/28/2017 15:30

Reported: 09/14/2017 17:19

O3501 SDG#: TNO35-01

CAT No.	Analysis Name		CAS Number	As Rec Result		As Received Detection Limit*	As Received Limit of Detection	As Received Limit of Quantitation	DF
GC Pe	troleum	SW-846 8	3015B	mg/l		mg/l	mg/l	mg/l	
Hydro	carbons								
02740	C8-C44		n.a.	0.80		0.055	0.11	0.22	1
02740	Total TPH		n.a.	0.80		0.055	0.11	0.22	1
Misc.	Organics	EPA 537	Version	ng/l		ng/l	ng/l	ng/l	
	•	1.1 Mod:	ified						
10954	Perfluorobutanesul	lfonate	375-73-5	280		0.8	3	3	1
10954	Perfluorobutanoic	Acid	375-22-4	75		3	10	10	1
10954	Perfluorodecanesul	lfonate	335-77-3	6	U	2	6	6	1
10954	Perfluorodecanoic	acid	335-76-2	2	U	0.5	2	2	1
10954	Perfluorododecanoi	ic acid	307-55-1	2	U	0.5	2	2	1
10954	Perfluoroheptanesu	ılfonate	375-92-8	130		2	6	6	1
10954	Perfluoroheptanoio	c acid	375-85-9	70		0.5	2	2	1
10954	Perfluorohexanesul	lfonate	355-46-4	2,000		10	30	30	10
10954	Perfluorohexanoic	acid	307-24-4	540		0.6	2	2	1
10954	Perfluorononanoic	acid	375-95-1	0.7	J	0.6	2	2	1
10954	Perfluoro-octanesu		1763-23-1	2,100		20	60	60	10
10954	Perfluorooctanoic		335-67-1	150		0.6	2	2	1
10954	Perfluoropentanoio		2706-90-3	120		0.5	2	2	1
10954	Perfluorotetradeca		376-06-7	2	U	0.5	2	2	1
10954	Perfluorotridecand		72629-94-8	2	U	0.5	2	2	1
10954	Perfluoroundecanoi	ic acid	2058-94-8	3	U	1	3	3	1
10954	PFOSA		754-91-6	9	U	3	9	9	1
	stated QC limits ar be obtained to calc				t data po	oints			

Sample Comments

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laborat	ory Sa	mple Analysi	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02740	Custom TPH with Ranges (Water)	SW-846 8015B	1	172440039A	09/06/2017 02:14	Timothy M Emrick	1
11181	Custom TPH w/ Ranges Water Ext	SW-846 3510C	1	172440039A	09/02/2017 18:30	Karen L Beyer	1
10954	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	17246002	09/08/2017 09:44	Devon M Whooley	1
10954	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	17246002	09/11/2017 17:4	Devon M Whooley	10
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	17246002	09/05/2017 08:29	Pamela Rothharpt	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SC38627-02 Grab Groundwater

ELLE Sample # GW 9185282 ELLE Group # 1844810 Account # 30891

Project Name: WE15 Tank Farm 1 NAVSTA Newport

Eurofins Spectrum Analytical

646 Camp Ave

North Kingstown RI 02582

Collected: 08/28/2017 15:16

Submitted: 08/31/2017 09:40 Reported: 09/14/2017 17:19

03502 SDG#: TNO35-02

CAT No.	Analysis Name		CAS Number	As Rec Result		As Received Detection Limit*	As Received Limit of Detection	As Received Limit of Quantitation	DF
GC Pe	troleum	SW-846 8	015B	mg/l		mg/l	mg/l	mg/l	
Hvdro	carbons								
02740	C8-C44		n.a.	0.079	J	0.052	0.10	0.21	1
02740	Total TPH		n.a.	0.079	J	0.052	0.10	0.21	1
Misc.	Organics	EPA 537 '	Version	ng/l		ng/l	ng/l	ng/l	
	_	1.1 Modi	fied						
10954	Perfluorobutanesulf	onate	375-73-5	8		0.8	3	3	1
10954	Perfluorobutanoic A	cid	375-22-4	12		3	10	10	1
10954	Perfluorodecanesulf	onate	335-77-3	6	U	2	6	6	1
10954	Perfluorodecanoic a	cid	335-76-2	2	J	0.5	2	2	1
10954	Perfluorododecanoio	acid	307-55-1	2	U	0.5	2	2	1
10954	Perfluoroheptanesul	fonate	375-92-8	6	U	2	6	6	1
10954	Perfluoroheptanoic	acid	375-85-9	16		0.5	2	2	1
10954	Perfluorohexanesulf	onate	355-46-4	56		1	3	3	1
10954	Perfluorohexanoic a	cid	307-24-4	28		0.6	2	2	1
10954	Perfluorononanoic a	cid	375-95-1	2	U	0.6	2	2	1
10954	Perfluoro-octanesul	.fonate	1763-23-1	11		2	6	6	1
10954	Perfluorooctanoic a	cid	335-67-1	29		0.6	2	2	1
10954	Perfluoropentanoic		2706-90-3	26		0.5	2	2	1
10954	Perfluorotetradecan	oic acid	376-06-7	2	U	0.5	2	2	1
10954	Perfluorotridecanoi	c acid	72629-94-8	2	U	0.5	2	2	1
10954	Perfluoroundecanoio	acid	2058-94-8	3	U	1	3	3	1
10954	PFOSA		754-91-6	9	U	3	9	9	1
	stated QC limits are be obtained to calcu				data po	ints			

Sample Comments

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Labora	tory Sa	mple Analys	sis Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02740	Custom TPH with Ranges (Water)	SW-846 8015B	1	172440039A	09/06/2017 02:35	Timothy M Emrick	1
11181	Custom TPH w/ Ranges Water Ext	SW-846 3510C	1	172440039A	09/02/2017 18:30	Karen L Beyer	1
10954	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	17246002	09/08/2017 10:05	Devon M Whooley	1
14091	PFAS Water Prep	EPA 537 Version	1	17246002	09/05/2017 08:25	Pamela Rothharpt	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SC38627-03 Grab Groundwater

ELLE Sample # GW 9185283 ELLE Group # 1844810 Account # 30891

Project Name: WE15 Tank Farm 1 NAVSTA Newport

Eurofins Spectrum Analytical

646 Camp Ave

North Kingstown RI 02582

Submitted: 08/31/2017 09:40 Reported: 09/14/2017 17:19

Collected: 08/28/2017 15:25

O3503 SDG#: TNO35-03

CAT No.	Analysis Name		CAS Number	As Rec Result		As Received Detection Limit*	As Received Limit of Detection	As Received Limit of Quantitation	DF
GC Pe	troleum	SW-846 8	015B	mg/l		mg/l	mg/l	mg/l	
Hydro	carbons								
02740	C8-C44		n.a.	0.10	U	0.052	0.10	0.21	1
02740	Total TPH		n.a.	0.10	U	0.052	0.10	0.21	1
Misc.	Organics 1	EPA 537	Version	ng/l		ng/l	ng/l	ng/l	
	:	1.1 Modi	fied						
10954	Perfluorobutanesulf	onate	375-73-5	3	U	0.8	3	3	1
10954	Perfluorobutanoic A	cid	375-22-4	5	J	3	10	10	1
10954	Perfluorodecanesulf	onate	335-77-3	6	U	2	6	6	1
10954	Perfluorodecanoic a	cid	335-76-2	2	J	0.5	2	2	1
10954	Perfluorododecanoic	acid	307-55-1	2	U	0.5	2	2	1
10954	Perfluoroheptanesul	fonate	375-92-8	6	U	2	6	6	1
10954	Perfluoroheptanoic	acid	375-85-9	1	J	0.5	2	2	1
10954	Perfluorohexanesulf	onate	355-46-4	1	J	1	3	3	1
10954	Perfluorohexanoic a	cid	307-24-4	3		0.6	2	2	1
10954	Perfluorononanoic a	cid	375-95-1	2	U	0.6	2	2	1
10954	Perfluoro-octanesul	fonate	1763-23-1	6	U	2	6	6	1
10954	Perfluorooctanoic a	cid	335-67-1	2		0.6	2	2	1
10954	Perfluoropentanoic	Acid	2706-90-3	4		0.5	2	2	1
10954	Perfluorotetradecan	oic acid	376-06-7	2	U	0.5	2	2	1
10954	Perfluorotridecanoi	c acid	72629-94-8	2	U	0.5	2	2	1
10954	Perfluoroundecanoic	acid	2058-94-8	3	U	1	3	3	1
10954	PFOSA		754-91-6	9	U	3	9	9	1
The	stated QC limits are	advisory o	only until suf	ficien	t data po	ints			
can	be obtained to calcul	late stati:	stical limits						

Sample Comments

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Labora	tory Sa	ample Analys	sis Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02740	Custom TPH with Ranges (Water)	SW-846 8015B	1	172440039A	09/06/2017 02:57	Timothy M Emrick	1
11181	Custom TPH w/ Ranges Water Ext	SW-846 3510C	1	172440039A	09/02/2017 18:30	Karen L Beyer	1
10954	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	17246002	09/08/2017 10:26	Devon M Whooley	1
14091	PFAS Water Prep	EPA 537 Version	1	17246002	09/05/2017 08:25	Pamela Rothharpt	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SC38627-05 Grab Groundwater

ELLE Sample # GW 9185284 ELLE Group # 1844810 Account # 30891

Project Name: WE15 Tank Farm 1 NAVSTA Newport

Eurofins Spectrum Analytical

646 Camp Ave

North Kingstown RI 02582

Submitted: 08/31/2017 09:40 Reported: 09/14/2017 17:19

Collected: 08/28/2017 15:25

03504 SDG#: TNO35-04

CAT No.	Analysis Name	CAS Number	As Rec Result		As Received Detection Limit*	As Received Limit of Detection	As Received Limit of Quantitation	DF
Misc.	Organics EPA 537	Version	ng/l		ng/l	ng/l	ng/l	
	1.1 Modi	.fied						
10954	Perfluorobutanesulfonate	375-73-5	3	U	0.8	3	3	1
10954	Perfluorobutanoic Acid	375-22-4	10	U	3	10	10	1
10954	Perfluorodecanesulfonate	335-77-3	6	U	2	6	6	1
10954	Perfluorodecanoic acid	335-76-2	2	U	0.5	2	2	1
10954	Perfluorododecanoic acid	307-55-1	2	U	0.5	2	2	1
10954	Perfluoroheptanesulfonate	375-92-8	6	U	2	6	6	1
10954	Perfluoroheptanoic acid	375-85-9	2	U	0.5	2	2	1
10954	Perfluorohexanesulfonate	355-46-4	3	U	1	3	3	1
10954	Perfluorohexanoic acid	307-24-4	2	U	0.6	2	2	1
10954	Perfluorononanoic acid	375-95-1	2	U	0.6	2	2	1
10954	Perfluoro-octanesulfonate	1763-23-1	6	U	2	6	6	1
10954	Perfluorooctanoic acid	335-67-1	2	U	0.6	2	2	1
10954	Perfluoropentanoic Acid	2706-90-3	2	U	0.5	2	2	1
10954	Perfluorotetradecanoic acid	376-06-7	2	U	0.5	2	2	1
10954	Perfluorotridecanoic acid	72629-94-8	2	U	0.5	2	2	1
10954	Perfluoroundecanoic acid	2058-94-8	3	U	1	3	3	1
10954	PFOSA	754-91-6	9	U	3	9	9	1
	stated QC limits are advisory be obtained to calculate stati			t data p	oints			

Sample Comments

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10954	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	17246002	09/08/2017 10:46	Devon M Whooley	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	17246002	09/05/2017 08:25	Pamela Rothharpt	1

FORM I - INORGANIC ANALYSIS DATA SHEET SW846 6010C

TF1-MW-1003-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-01 File ID: 20170908-169

Sampled: <u>08/28/17 15:30</u> Prepared: <u>09/07/17 15:00</u>

% Solids: Preparation: <u>SW846 3005A</u> Initial/Final: <u>50 ml / 50 ml</u>

Batch: <u>1715125</u> Sequence: <u>S710147</u> Calibration: <u>1711034</u>

Instrument: <u>ICAP5</u>

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
7440-09-7	Potassium	1.14		1	0.120	0.250	1.00
7440-23-5	Sodium	6.62		1	0.0785	0.250	0.500
7429-90-5	Aluminum	0.0871		1	0.0206	0.0500	0.0500
7440-70-2	Calcium	30.0		1	0.0142	0.0500	0.200
7439-89-6	Iron	59.8		1	0.0089	0.0300	0.0800
7439-95-4	Magnesium	3.97		1	0.0088	0.0100	0.0200

FORM I - INORGANIC ANALYSIS DATA SHEET SW846 6010C

TF1-EBP-GZ101R-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-02 File ID: 20170908-174

Sampled: <u>08/28/17 15:16</u> Prepared: <u>09/07/17 15:00</u>

% Solids: Preparation: <u>SW846 3005A</u> Initial/Final: <u>50 ml / 50 ml</u>

Batch: <u>1715125</u> Sequence: <u>S710147</u> Calibration: <u>1711034</u>

Instrument: <u>ICAP5</u>

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
7440-09-7	Potassium	0.851	J	1	0.120	0.250	1.00
7440-23-5	Sodium	5.46		1	0.0785	0.250	0.500
7429-90-5	Aluminum	0.132		1	0.0206	0.0500	0.0500
7440-70-2	Calcium	4.52		1	0.0142	0.0500	0.200
7439-89-6	Iron	0.0601	J	1	0.0089	0.0300	0.0800
7439-95-4	Magnesium	2.04		1	0.0088	0.0100	0.0200

FORM I - INORGANIC ANALYSIS DATA SHEET SW846 6010C

TF1-GT-106-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-03 File ID: 20170908-177

Sampled: <u>08/28/17 15:25</u> Prepared: <u>09/07/17 15:00</u>

% Solids: Preparation: <u>SW846 3005A</u> Initial/Final: <u>50 ml / 50 ml</u>

Batch: <u>1715125</u> Sequence: <u>S710147</u> Calibration: <u>1711034</u>

Instrument: <u>ICAP5</u>

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
7440-09-7	Potassium	1.74		1	0.120	0.250	1.00
7440-23-5	Sodium	14.1		1	0.0785	0.250	0.500
7429-90-5	Aluminum	0.0500	U	1	0.0206	0.0500	0.0500
7440-70-2	Calcium	82.9		1	0.0142	0.0500	0.200
7439-89-6	Iron	3.42		1	0.0089	0.0300	0.0800
7439-95-4	Magnesium	15.3		1	0.0088	0.0100	0.0200

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SC38627-01 Groundwater

ELLE Sample # WW 9240361 ELLE Group # 1857428

Account # 30891

Project Name: SC38627

Eurofins Spectrum Analytical

11 Almgren Drive Agawan MA 01001

Submitted: 09/30/2017 09:55 Reported: 10/12/2017 16:21

Collected: 08/28/2017 15:30

62701 SDG#: SAI25-01

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	DF
Metals	5	SW-846 6020A	mg/l	mg/l	mg/l	mg/l	
06024	Antimony	7440-36-0	0.0010 U	0.00045	0.0010	0.0020	1
06025	Arsenic	7440-38-2	0.0691	0.00072	0.0020	0.0040	1
06026	Barium	7440-39-3	0.0142 J	0.0036	0.0100	0.0200	5
06027	Beryllium	7440-41-7	0.00025 U	0.000071	0.00025	0.0010	1
06028	Cadmium	7440-43-9	0.00050 U	0.00015	0.00050	0.0010	1
06031	Chromium	7440-47-3	0.00093 J	0.00087	0.0020	0.0040	1
06032	Cobalt	7440-48-4	0.0244	0.00016	0.00050	0.0010	1
06033	Copper	7440-50-8	0.0010 U	0.00054	0.0010	0.0040	1
06035	Lead	7439-92-1	0.00012 J	0.00011	0.00025	0.0020	1
06037	Manganese	7439-96-5	5.55	0.0045	0.0100	0.0200	5
06038	Molybdenum	7439-98-7	0.0044	0.00025	0.00050	0.0010	1
06039	Nickel	7440-02-0	0.0018 J	0.0010	0.0020	0.0040	1
06041	Selenium	7782-49-2	0.0010 U	0.00050	0.0010	0.0040	1
06042	Silver	7440-22-4	0.00025 U	0.00015	0.00025	0.0010	1
06045	Thallium	7440-28-0	0.00025 U	0.00012	0.00025	0.0010	1
06048	Vanadium	7440-62-2	0.00024 J	0.00021	0.00050	0.0010	1
06049	Zinc	7440-66-6	0.0075 U	0.0039	0.0075	0.0300	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
06024	Antimony	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06025	Arsenic	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06026	Barium	SW-846 6020A	1	172771063901D	10/12/2017	06:43	Sarah L Burt	5
06027	Beryllium	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06028	Cadmium	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06031	Chromium	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06032	Cobalt	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06033	Copper	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06035	Lead	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06037	Manganese	SW-846 6020A	1	172771063901A	10/12/2017	06:43	Sarah L Burt	5
06038	Molybdenum	SW-846 6020A	1	172771063901C	10/09/2017	18:51	Bradley M Berlot	1
06039	Nickel	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06041	Selenium	SW-846 6020A	1	172771063901B	10/09/2017	18:51	Bradley M Berlot	1
06042	Silver	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06045	Thallium	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06048	Vanadium	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
06049	Zinc	SW-846 6020A	1	172771063901A	10/09/2017	18:51	Bradley M Berlot	1
10639	ICPMS - Water, 3020A - U4	SW-846 3020A	1	172771063901	10/05/2017	06:47	James L Mertz	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SC38627-02 Groundwater

ELLE Sample # WW 9240362 ELLE Group # 1857428

Account # 30891

Project Name: SC38627

Eurofins Spectrum Analytical

11 Almgren Drive Agawan MA 01001

Submitted: 09/30/2017 09:55 Reported: 10/12/2017 16:21

Collected: 08/28/2017 15:16

62702 SDG#: SAI25-02

CAT No.	Analysis Name		CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	DF
Metals	5	SW-846	6020A	mg/l	mg/l	mg/l	mg/l	
06024	Antimony		7440-36-0	0.0010 U	0.00045	0.0010	0.0020	1
06025	Arsenic		7440-38-2	0.0020 U	0.00072	0.0020	0.0040	1
06026	Barium		7440-39-3	0.0024 J	0.00072	0.0020	0.0040	1
06027	Beryllium		7440-41-7	0.00025 U	0.000071	0.00025	0.0010	1
06028	Cadmium		7440-43-9	0.00050 U	0.00015	0.00050	0.0010	1
06031	Chromium		7440-47-3	0.0012 J	0.00087	0.0020	0.0040	1
06032	Cobalt		7440-48-4	0.00086 J	0.00016	0.00050	0.0010	1
06033	Copper		7440-50-8	0.00056 J	0.00054	0.0010	0.0040	1
06035	Lead		7439-92-1	0.00025 U	0.00011	0.00025	0.0020	1
06037	Manganese		7439-96-5	0.0206	0.00090	0.0020	0.0040	1
06038	Molybdenum		7439-98-7	0.00050 U	0.00025	0.00050	0.0010	1
06039	Nickel		7440-02-0	0.0021 J	0.0010	0.0020	0.0040	1
06041	Selenium		7782-49-2	0.0010 U	0.00050	0.0010	0.0040	1
06042	Silver		7440-22-4	0.00025 U	0.00015	0.00025	0.0010	1
06045	Thallium		7440-28-0	0.00025 U	0.00012	0.00025	0.0010	1
06048	Vanadium		7440-62-2	0.00050 U	0.00021	0.00050	0.0010	1
06049	Zinc		7440-66-6	0.0042 J	0.0039	0.0075	0.0300	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Tir	me		Factor
06024	Antimony	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06025	Arsenic	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06026	Barium	SW-846 6020A	1	172771063901D	10/12/2017	06:45	Sarah L Burt	1
06027	Beryllium	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06028	Cadmium	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06031	Chromium	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06032	Cobalt	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06033	Copper	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06035	Lead	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06037	Manganese	SW-846 6020A	1	172771063901A	10/12/2017	06:45	Sarah L Burt	1
06038	Molybdenum	SW-846 6020A	1	172771063901C	10/09/2017	18:54	Bradley M Berlot	1
06039	Nickel	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06041	Selenium	SW-846 6020A	1	172771063901B	10/09/2017	18:54	Bradley M Berlot	1
06042	Silver	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06045	Thallium	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06048	Vanadium	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
06049	Zinc	SW-846 6020A	1	172771063901A	10/09/2017	18:54	Bradley M Berlot	1
10639	ICPMS - Water, 3020A - U4	SW-846 3020A	1	172771063901	10/05/2017	06:47	James L Mertz	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SC38627-03 Groundwater

ELLE Sample # WW 9240363 ELLE Group # 1857428

Account # 30891

Collected: 08/28/2017 15:25

Eurofins Spectrum Analytical

11 Almgren Drive

Submitted: 09/30/2017 09:55

Agawan MA 01001

Reported: 10/12/2017 16:21

62703 SDG#: SAI25-03

Project Name: SC38627

CAT No.	Analysis Name		CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	DF
Metals	5	SW-846	6020A	mg/l	mg/l	mg/l	mg/l	
06024	Antimony		7440-36-0	0.00050 J	0.00045	0.0010	0.0020	1
06025	Arsenic		7440-38-2	0.0279	0.00072	0.0020	0.0040	1
06026	Barium		7440-39-3	0.0071	0.00072	0.0020	0.0040	1
06027	Beryllium		7440-41-7	0.00025 U	0.000071	0.00025	0.0010	1
06028	Cadmium		7440-43-9	0.00050 U	0.00015	0.00050	0.0010	1
06031	Chromium		7440-47-3	0.0020 U	0.00087	0.0020	0.0040	1
06032	Cobalt		7440-48-4	0.0226	0.00016	0.00050	0.0010	1
06033	Copper		7440-50-8	0.0010 U	0.00054	0.0010	0.0040	1
06035	Lead		7439-92-1	0.00034 J	0.00011	0.00025	0.0020	1
06037	Manganese		7439-96-5	1.19	0.00090	0.0020	0.0040	1
06038	Molybdenum		7439-98-7	0.0011	0.00025	0.00050	0.0010	1
06039	Nickel		7440-02-0	0.0067	0.0010	0.0020	0.0040	1
06041	Selenium		7782-49-2	0.0010 U	0.00050	0.0010	0.0040	1
06042	Silver		7440-22-4	0.00025 U	0.00015	0.00025	0.0010	1
06045	Thallium		7440-28-0	0.00025 U	0.00012	0.00025	0.0010	1
06048	Vanadium		7440-62-2	0.0011	0.00021	0.00050	0.0010	1
06049	Zinc		7440-66-6	0.0061 J	0.0039	0.0075	0.0300	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
06024	Antimony	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06025	Arsenic	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06026	Barium	SW-846 6020A	1	172771063901D	10/12/2017	06:46	Sarah L Burt	1
06027	Beryllium	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06028	Cadmium	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06031	Chromium	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06032	Cobalt	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06033	Copper	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06035	Lead	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06037	Manganese	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06038	Molybdenum	SW-846 6020A	1	172771063901C	10/09/2017	18:57	Bradley M Berlot	1
06039	Nickel	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06041	Selenium	SW-846 6020A	1	172771063901B	10/09/2017	18:57	Bradley M Berlot	1
06042	Silver	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06045	Thallium	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06048	Vanadium	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
06049	Zinc	SW-846 6020A	1	172771063901A	10/09/2017	18:57	Bradley M Berlot	1
10639	ICPMS - Water, 3020A - U4	SW-846 3020A	1	172771063901	10/05/2017	06:47	James L Mertz	1

FORM I - INORGANIC ANALYSIS DATA SHEET EPA 245.1/7470A

TF1-MW-1003-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-01 File ID: 091517-051

Sampled: <u>08/28/17 15:30</u> Prepared: <u>09/12/17 19:00</u>

% Solids: Preparation: <u>EPA200/SW7000 Series</u> Initial/Final: <u>20 ml / 20 ml</u>

Batch: <u>1715127</u> Sequence: <u>S710160</u> Calibration: <u>1711036</u>

Instrument: Mercury4

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
7439-97-6	Mercury	0.00020	U	1	0.00013	0.00020	0.00020

FORM I - INORGANIC ANALYSIS DATA SHEET EPA 245.1/7470A

TF1-EBP-GZ101R-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-02 File ID: 091517-052

Sampled: <u>08/28/17 15:16</u> Prepared: <u>09/12/17 19:00</u>

% Solids: Preparation: <u>EPA200/SW7000 Series</u> Initial/Final: <u>20 ml / 20 ml</u>

Batch: <u>1715127</u> Sequence: <u>S710160</u> Calibration: <u>1711036</u>

Instrument: Mercury4

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
7439-97-6	Mercury	0.00020	U	1	0.00013	0.00020	0.00020

FORM I - INORGANIC ANALYSIS DATA SHEET EPA 245.1/7470A

TF1-GT-106-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-03 File ID: 091517-053

Sampled: <u>08/28/17 15:25</u> Prepared: <u>09/12/17 19:00</u>

% Solids: Preparation: <u>EPA200/SW7000 Series</u> Initial/Final: <u>20 ml / 20 ml</u>

Batch: <u>1715127</u> Sequence: <u>S710160</u> Calibration: <u>1711036</u>

Instrument: Mercury4

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
7439-97-6	Mercury	0.00020	U	1	0.00013	0.00020	0.00020

FORM I - INORGANIC ANALYSIS DATA SHEET EPA 300.0

TF1-MW-1003-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

 Matrix:
 Ground Water
 Laboratory ID:
 SC38627-01
 File ID:
 082917-033

 Sampled:
 08/28/17 15:30
 Prepared:
 08/29/17 17:19
 Analyzed:
 08/29/17 22:35

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>5 ml / 5 ml</u>

Batch: <u>1714824</u> Sequence: <u>S709453</u> Calibration: <u>1710011</u>

Instrument: <u>IC3</u>

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
16887-00-6	Chloride	7.45		1	0.0897	0.100	1.00
14808-79-8	Sulfate as SO4	1.00	U	1	0.307	1.00	1.00
14797-55-8	Nitrate as N	0.100	U	1	0.009	0.100	0.100

FORM I - INORGANIC ANALYSIS DATA SHEET EPA 300.0

TF1-EBP-GZ101R-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: <u>Tetra Tech, Inc. - Salem, NH</u> Project: <u>WE15 Tank Farm 1 NAVSTA Newport</u>

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-02 File ID: 082917-029

 Sampled:
 08/28/17 15:16
 Prepared:
 08/29/17 17:19
 Analyzed:
 08/29/17 21:31

 % Solids:
 Preparation:
 General Preparation
 Initial/Final:
 5 ml / 5 ml

Batch: <u>1714824</u> Sequence: <u>S709453</u> Calibration: <u>1710011</u>

Instrument: <u>IC3</u>
Reported to: <u>LOD</u>

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
16887-00-6	Chloride	9.43		1	0.0897	0.100	1.00
14808-79-8	Sulfate as SO4	13.5		1	0.307	1.00	1.00
14797-55-8	Nitrate as N	0.096	J	1	0.009	0.100	0.100

FORM I - INORGANIC ANALYSIS DATA SHEET EPA 300.0

TF1-GT-106-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE 15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-03 File ID: 082917-030

 Sampled:
 08/28/17 15:25
 Prepared:
 08/29/17 17:19
 Analyzed:
 08/29/17 21:47

 % Solids:
 Preparation:
 General Preparation
 Initial/Final:
 5 ml / 5 ml

Batch: <u>1714824</u> Sequence: <u>S709453</u> Calibration: <u>1710011</u>

Instrument: $\underline{IC3}$ Reported to: \underline{LOD}

Dilution Result CAS NO. Q MDL LOD LOQ Analyte (mg/l)**Factor** 16887-00-6 Chloride 11.9 1 0.0897 0.100 1.00 14808-79-8 Sulfate as SO4 27.0 1 0.307 1.00 1.00 14797-55-8 Nitrate as N 0.100 U 1 0.009 0.100 0.100

FORM I - INORGANIC ANALYSIS DATA SHEET SM5310B (00, 11)

TF1-MW-1003-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

 Matrix:
 Ground Water
 Laboratory ID:
 SC38627-01
 File ID:
 1715303-007

 Sampled:
 08/28/17 15:30
 Prepared:
 09/07/17 12:09
 Analyzed:
 09/07/17 14:46

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>40 ml / 40 ml</u>

Batch: <u>1715303</u> Sequence: <u>S707960</u> Calibration: <u>1706085</u>

Instrument: TOC4

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
NA	Total Organic Carbon	6.06		1	0.238	0.500	1.00

FORM I - INORGANIC ANALYSIS DATA SHEET SM5310B (00, 11)

TF1-EBP-GZ101R-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

 Matrix:
 Ground Water
 Laboratory ID:
 SC38627-02
 File ID:
 1715303-011

 Sampled:
 08/28/17 15:16
 Prepared:
 09/07/17 12:09
 Analyzed:
 09/07/17 15:45

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>40 ml / 40 ml</u>

Batch: <u>1715303</u> Sequence: <u>S707960</u> Calibration: <u>1706085</u>

Instrument: $\underline{TOC4}$ Reported to: \underline{LOD}

Result Dilution CAS NO. Q MDL LOD LOQ Analyte (mg/l)**Factor** NA Total Organic Carbon 0.816 J 0.238 0.500 1.00

FORM I - INORGANIC ANALYSIS DATA SHEET SM5310B (00, 11)

TF1-GT-106-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

 Matrix:
 Ground Water
 Laboratory ID:
 SC38627-03
 File ID:
 1715303-012

 Sampled:
 08/28/17 15:25
 Prepared:
 09/07/17 12:09
 Analyzed:
 09/07/17 16:01

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>40 ml / 40 ml</u>

Batch: <u>1715303</u> Sequence: <u>S707960</u> Calibration: <u>1706085</u>

Instrument: $\underline{TOC4}$ Reported to: \underline{LOD}

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
NA	Total Organic Carbon	1.73		1	0.238	0.500	1.00

FORM I - INORGANIC ANALYSIS DATA SHEET SM18-22 5210B

TF1-MW-1003-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-01</u> File ID:

Sampled: <u>08/28/17 15:30</u> Prepared: <u>08/30/17 13:00</u> Analyzed: <u>09/06/17 12:36</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>300 ml / 300 ml</u>

Batch: <u>1714921</u> Sequence: <u>S707898</u> Calibration: <u>1707032</u>

Instrument: Spec 1

Reported to: LOD

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
	Biochemical Oxygen Demand (5-day)	5.00		1	2.74	2.97	3.00

FORM I - INORGANIC ANALYSIS DATA SHEET SM18-22 5210B

TF1-EBP-GZ101R-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-02</u> File ID:

Sampled: <u>08/28/17 15:16</u> Prepared: <u>08/30/17 13:00</u> Analyzed: <u>09/06/17 12:36</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>300 ml / 300 ml</u>

Batch: <u>1714921</u> Sequence: <u>S707898</u> Calibration: <u>1707032</u>

Instrument: Spec 1

Reported to: LOD

CAS NO.	Analyte	Result (mg/l)	Q	Dilution Factor	MDL	LOD	LOQ
	Biochemical Oxygen Demand (5-day)	2.97	U	1	2.74	2.97	3.00

FORM I - INORGANIC ANALYSIS DATA SHEET SM18-22 5210B

TF1-GT-106-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: <u>Ground Water</u> Laboratory ID: <u>SC38627-03</u> File ID:

 Sampled:
 08/28/17 15:25
 Prepared:
 08/30/17 13:00
 Analyzed:
 09/06/17 12:36

 % Solids:
 Preparation:
 General Preparation
 Initial/Final:
 300 ml / 300 ml

Batch: <u>1714921</u> Sequence: <u>S707898</u> Calibration: <u>1707032</u>

Instrument: Spec 1

Reported to: <u>LOD</u>

CAS NO.	Analyte	Result (mg/l)			MDL	LOD	LOQ
	Biochemical Oxygen Demand (5-day)	4.00		1	2.74	2.97	3.00

FORM I - INORGANIC ANALYSIS DATA SHEET SM2320B (97, 11)

TF1-MW-1003-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-01 File ID: DTOOL Alk 2017-08-31 1901-00.

Sampled: <u>08/28/17 15:30</u> Prepared: <u>08/31/17 09:56</u> Analyzed: <u>08/31/17 19:38</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>50 ml / 50 ml</u>

Batch: 1714942 Sequence: Calibration:

Instrument: <u>Titrator</u>

Reported to: <u>LOD</u>

CAS NO.	Analyte	Result (mg/l CaCO3)	Q	Dilution Factor	MDL	LOD	LOQ
	Total Alkalinity	120		1	1.05	3.00	4.00

FORM I - INORGANIC ANALYSIS DATA SHEET SM2320B (97, 11)

TF1-EBP-GZ101R-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-02 File ID: DTOOL Alk 2017-08-31 1901-008

Sampled: <u>08/28/17 15:16</u> Prepared: <u>08/31/17 09:56</u> Analyzed: <u>08/31/17 19:43</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>100 ml / 50 ml</u>

Batch: 1714942 Sequence: Calibration:

Instrument: <u>Titrator</u>

Reported to: <u>LOD</u>

CAS NO.	Analyte	Result (mg/l CaCO3)	Q	Dilution Factor	MDL	LOD	LOQ
	Total Alkalinity	4.14		1	0.524	1.50	2.00

FORM I - INORGANIC ANALYSIS DATA SHEET SM2320B (97, 11)

TF1-GT-106-082817

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u> Received: <u>08/29/17 17:23</u>

Matrix: Ground Water Laboratory ID: SC38627-03 File ID: DTOOL Alk 2017-08-31 1901-009

Sampled: <u>08/28/17 15:25</u> Prepared: <u>08/31/17 09:56</u> Analyzed: <u>08/31/17 19:45</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>50 ml / 50 ml</u>

Batch: 1714942 Sequence: Calibration:

Instrument: <u>Titrator</u>

Reported to: <u>LOD</u>

CAS NO.	Analyte	Result (mg/l CaCO3)	Q	Dilution Factor	MDL	LOD	LOQ
	Total Alkalinity	258		1	1.05	3.00	4.00

Appendix C

Support Documentation

0 . 1	TT TI-
Special	Handling
Decimi	THE STATE OF THE STATE OF

Kandard TAT - 7 to 10 business days

			C 10		
	PI	Irc	TI	n	6
00	LU		PEB	11 15	J

CHAIN OF CUSTODY RECORD

Spectrum Analytical

Page 1 of 2

		Rush TAT - Date Needed:
		All TATs subject to laboratory approval
		Min. 24-hr notification needed for rushes
		Samples disposed after 30 days unless otherwise instructed.
0:	112	G08005-WEIS

												- Cur	ipies die	posed	after 30 days unless other	The Historian
Invoice T	o: M	IKE	DR	EYC	DEN				F	roject l	No:	112G	0800	5-	WEIS .	
-									c	ita Nor	na: 7	Malik	FAR	11 1	ALAUSTA AL	EWANIZT
											15.1					
	LA	SVE	GAS	N	U 8	79123					n:	POKI:	SMO	CATA	4 PRVAR	State: iSI
B-327-1469 EVE PARKER P.O.NO					Quote #:		3			ampiei	(8):	K.L	AM	DUT.	46NE	
								T	at Dung							
11=	12=				_			L								
				-	'autain		12		4	NAME OF TAXABLE PARTY.		10		•		Пу. Пу.
WW=Waste Wa	ater			·	Untain	ers		Γ	3	Allai	तु क्रि	1.5	Τ,		MA DEP MCP CAM Rep CT DPH RCP Report?	ort? Yes No
SG=Soil Gas				εχ		1 3	0		3		3 8 J	8 8		ated.	Standard	No QC
X3=			'ials	Glas	ilass		515	五分	47	99	多名	500	12	Norin 1	ASP A*	ASP B*
ompsite	d)		V AC	nber	ear G	astic	(X)	18	Se Ke	316	300	5 3	5 N	S3	NJ Reduced*	NJ Full* Tier IV*
•	Typ.	Matri	of V	of Aı	ofCl		Id	200	43	37	53/6	3 13	3	heck	Other:	
	G	-	-	#	#		-		7	A	, 0	1	17	7	State-specific repor	ting standards:
			1				V	/		9	/	/				
3		1	1				1	V	,	V .	-					
	_		1	6		9	-		V	V	/	2 /2	//			
	6	TB	1							V			-			
1525	C	GW				1			i e	1, 1			(V	F		
			1 17 1				- 6			54						
								100	8 1						15 127 Burne 24 -	
				H		3 5										
											Ţ.	24				
					1 5				5							
teceived by:			Date:			Time:	Ten	ıp °C	图	EDD fo	ormat:					
Pa(Da-		0	29	17	11	107	200000000000000000000000000000000000000		×	E-mail	to:	stept	en.	peur	her @ tetrate	ch.com
N O		1		Corecctio	n Factor			7	3.01	A1 1-						
Ju		191	29	10	1	723	Corrector				-					
							\$100 CONTROL STREET		Condit	on upo	on receip	t: Cus	tody Se	als:	☐ Present ☐ Inta	ct 🗌 Broken
							IR ID#		□ A	nbient	A Ice	1 🗆	Refriger	ated	☐ DI VOA Frozen	Soil Jar Frozer
		5 5					0									
	P.O N O ₃	P.O No.: P.O No.: P.O No.: 12= WW=Waste Water SG=Soil Gas X3= Compsite 15 16 G 15 25 G 0 800 G 15 25 G 0 800 G 15 25 G 0 800 G 15 25 G	P.O No.: P.O No	## P.O No.: P.O No.: P.O No.	## FARTH TOXICS ### FAR	## FARTH TOXECS IN TOXECS	LAS VEGAS NU 89123 P.O No.:	## PONO.: PONO.: Quote #: Quote #: Quot	EARTH TOXICS ENC 8275 5. EASTERN AVE LAS VEGAS NV 89123 P.O No.: Quote #: O3 5=NaOH 6=Ascorbic Acid 11= 12=	EARTH TOXICS INC 2775 5. EASTERN AVE LAS VECAS NV 89123 I S S S S S S S S S	EARTH TOXICS EN(2375 3. EASTERN AVE Location Sampler List Preservative List	EARTH TOXICS ENC 2375 5. EASTERN AVE Location: Sampler(s):	EARTH TOXICS ENC 2375 3. EASTERN AVE Location: PORTS Sampler(s): PORTS P	FARTH TOXICS INC FARTH NAVE Location: PORTSMO PO	FARTH TOXICS INC \$375 5. EASTERN AVE LAS VEGAS NU \$9123 Location: Sampler(s): PONO.: Quote #: List Preservative Code below: 12	Site Name: TANK FARM NAVSTA N.

				Ment .	105			
0	20000	District of the last	rn	+	-	n	C	

Report To: TETRATECH

Telephone #:

Project Mgr:

Lab ID:

SUITE 2B

G= Grab

56270 TFI-MW-1003-082817

Relinquished by:

5 INDUSTRIAL WAY

SALEY NH 03079 603-328-1469

7=CH3OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄

STEVE PARKER

Sample ID:

CLTF1-EBP-621018-082817

03 TF1-GT-106-082817 - A4 TFI-TB-082817

CHAIN OF CUSTODY RECORD

EARTH TOXECS INC.

LAS UEGAS NU 89123

8275 S. EASTERN AVE.

Containers

List 1

Spectrum Analytical

F=Field Filtered 1=Na₂S2O₃ 2=HCl 3=H₂SO₄ 4=HNO₃ 5=NaOH 6=Ascorbic Acid

C=Compsite

Date:

8-28-17

Time:

1530 1516

1525

0080

Received by:

DW=Drinking Water GW=Groundwater SW=Surface Water WW=Waste Water

O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas

Page 2 of 2

Invoice To: MIKE DREYDEN

GW

GW

TB

Date:

8/29/17

SC	38627 8	n
P	Special Handling:	1
And.		

	Min. 24- Samples	hr notifica disposed a	o laboratory approval tion needed for rushes ofter 30 days unless otherwise instructed.
Project No:	1126080		
Site Name:	TANKFA	PM1	, NAUSTA NEWPORT
Location:	PORTSMOU	ATH	State: RI
Sampler(s):	P. WHALE		W. PRYOR
	KICANIC	7/0/7	640B.
servative C	ode below:		QA/QC Reporting Notes: * additional charges may appply
Analysis			MA DEP MCP CAM Report? Yes No
		Check if chlorinated	CT DPH RCP Report?
EDD forma E-mail to:		porks	ar@tetratech.com

Time:

Temp °C

SDGSC38627

SC38627 General Narrative

Eurofins Spectrum Analytical, Inc. submits the enclosed data package for the site characterization of WE15 Tank Farm 1 NAVSTA Newport. Samples submitted for analysis by Tetra Tech, Inc. - Salem, NH. Under this deliverable, analysis results are presented for one Trip Blank sample and four Ground Water samples submitted on August 29th, 2017.

The analyses were performed according to USEPA SW846 method analytical guidelines and other methods. In addition the analyses were performed according to criteria dictated by National Environmental Laboratory Accreditation Conference (NELAC) and in accordance with project contract requirements and chain of custody forms.

Observations and/or deviations observed for specific analyses can be found in the analysis narrative:

1. Overall Observations:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual Integrations are coded to provide the data reviewer justification for such action. The codes are labeled on corresponding raw data for GC/MS and GC analysis as follows:

- · M1 peak tailing or fronting
- · M2 peak co-elution
- · M3 rising or failing baseline
- · M4 retention time shift
- · M5 miscellaneous under this category, the justification is explained
- M6 software did not integrate peak
- · M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Scanned copies of logbook pages are included, with the originals are archived within the laboratory.

The pages in this report have been numbered consecutively, starting with the general narrative and ending with the page labeled as "Last Page of data Report".

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this electronic data package, has been authorized by the laboratory director as verified by the following signature.

Date:

11/30/2017

Christina A. White

anstina a. White

Laboratory Director

SDG SC38627 Page 2 / 1574

Sample Identification and Analytical Requirements Summary

Project Name: WE15 Tank Farm 1 NAVSTA Newport SDG: SC38627

G t	T. 1		A	nalytical Requiren	nents	
Customer Sample ID	Laboratory Sample ID	VOC Method #	SVOC Method #	GC Method #	Metals	Other
TF1-MW-1003-082817	SC38627-01	SW846 8260C	8015DM SW846 8270D	SW846 8081B	EPA 245.1/7470A SW846 6010C SW846 6020A	EPA 300.0 EPA 537 Rev. 1.1 modified Mod EPA 3C/SOP RSK-175 SM18-22 5210B SM2320B (97, 11) SM5310B (00, 11)
TF1-EBP-GZ101R-08281	SC38627-02	SW846 8260C	8015DM SW846 8270D	SW846 8081B	EPA 245.1/7470A SW846 6010C SW846 6020A	EPA 300.0 EPA 537 Rev. 1.1 modified Mod EPA 3C/SOP RSK-175 SM18-22 5210B SM2320B (97, 11) SM5310B (00, 11)
TF1-GT-106-082817	SC38627-03	SW846 8260C	8015DM SW846 8270D	SW846 8081B	EPA 245.1/7470A SW846 6010C SW846 6020A	EPA 300.0 EPA 537 Rev. 1.1 modified Mod EPA 3C/SOP RSK-175 SM18-22 5210B SM2320B (97, 11) SM5310B (00, 11)
TF1-TB-082817	SC38627-04	SW846 8260C				
TF1-FRB-082817	SC38627-05					EPA 537 Rev. 1.1 modified

CROSS REFERENCE TABLE

SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

 TF1-TB-082817
 SC38627-04

CASE NARRATIVE

Spectrum Analytical, Inc. Lab Reference No. SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport / 112608005-WE15

SDG #: SC38627

I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

III. METHODS

Analyses were performed according to SW846 8260C.

IV. PREPARATION

Aqueous samples were prepared according to SW846 5030 Water MS.

V. INSTRUMENTATION

The following equipment was used to analyze SW846 8260C:

HPV3 details: GC/MS EST Centurion Autosampler EST Evolution Sample Concentrator Supelco vocarb 3000 (K) trap and conditions used Agilent 7890A series Gas Chromatograph Agilent 5975C Mass Selective Detector Column - DB-VRX, 20 meters, 0.18mm diameter, 1.0um film

VI. ANALYSIS

A. Calibration:

All quality control samples were within the acceptance criteria with the following exceptions:

In calibration 1709004:

Analyte quantified by quadratic type calibration: 1,2,3-Trichlorobenzene, 2-Hexanone (MBK), Bromoform, cis-1,3-Dichloropropene, Dibromochloromethane, trans-1,3-Dichloropropene

This affected the following samples:

TF1-TB-082817, TF1-MW-1003-082817, TF1-GT-106-082817, TF1-EBP-GZ101R-082817, S707890-CCV2, S707890-CCV1, S707839-ICV1, 1715197-BSD1, 1715197-BS1, 1715197-BLK1

B. Blanks:

All blanks were within the acceptance criteria.

C. Surrogates:

All method criteria were met.

D. Spikes:

1. Laboratory Control Samples (LCS):

All method criteria were met.

2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

No matrix spike or matrix spike duplicates were analyzed.

E. Duplicates:

No client requested duplicate. However, the method criteria may have been fulfilled with non-SDG source samples.

F. Internal Standards:

Internal standards were within the acceptance criteria.

G. Samples:

All method criteria were met.

FORM II - SURROGATE STANDARD RECOVERY SUMMARY

SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Client ID	S1 #	S2 #	S3 #	S4 #	S5 #	S6 #	Total Out
Blank (1715197-BLK1)	102	104	102	104			0
LCS (1715197-BS1)	99	101	101	104			0
LCS Dup (1715197-BSD1)	101	105	101	104			0
TF1-MW-1003-082817 (SC38627-01)	101	105	101	104			0
TF1-EBP-GZ101R-082817 (SC38627-02)	101	101	101	103			0
TF1-GT-106-082817 (SC38627-03)	102	103	102	104			0
TF1-TB-082817 (SC38627-04)	103	103	101	103			0

Control Limits

S1 = 1,2-Dichloroethane-d4 81 - 118 S2 = 4-Bromofluorobenzene 85 - 114 S3 = Dibromofluoromethane <math>80 - 119S4 = Toluene-d8 89 - 112

[#] Column to be used to flag recovery values

^{*} Values outside of QC limits

SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPV3

Batch: <u>1715197</u> Laboratory ID: <u>1715197-BS1</u>

Preparation: SW846 5030 Water MS Initial/Final: 5 ml / 5 ml

Analyzed: 09/06/17 10:13 Spike ID: 17I0077

File ID: <u>LCS0906A.D</u>

gal party 5	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS
COMPOUND	(μg/l)	(µg/l)	REC. #	REC.
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.0	21.5	107	70 - 136
Acetone	20.0	22.9	115	39 - 160
Benzene	20.0	22.7	114	79 - 120
Bromochloromethane	20.0	22.4	112	78 - 123
Bromodichloromethane	20.0	21.9	110	79 - 125
Bromoform	20.0	21.1	106	66 - 130
Bromomethane	20.0	20.0	100	53 - 141
2-Butanone (MEK)	20.0	23.2	116	56 - 143
Carbon disulfide	20.0	21.8	109	64 - 133
Carbon tetrachloride	20.0	21.7	108	72 - 136
Chlorobenzene	20.0	20.5	103	82 - 118
Chloroethane	20.0	20.4	102	60 - 138
Chloroform	20.0	21.9	110	79 - 124
Chloromethane	20.0	21.0	105	50 - 139
1,2-Dibromo-3-chloropropane	20.0	19.8	99	62 - 128
Dibromochloromethane	20.0	21.8	109	74 - 126
1,2-Dibromoethane (EDB)	20.0	23.2	116	77 - 121
1,2-Dichlorobenzene	20.0	20.0	100	80 - 119
1,3-Dichlorobenzene	20.0	21.0	105	80 - 119
1,4-Dichlorobenzene	20.0	19.1	95	79 - 118
Dichlorodifluoromethane (Freon12)	20.0	20.7	104	32 - 152
1,1-Dichloroethane	20.0	22.1	111	77 - 125
1,2-Dichloroethane	20.0	21.7	109	73 - 128
1,1-Dichloroethene	20.0	21.9	110	71 - 131
cis-1,2-Dichloroethene	20.0	21.7	108	78 - 123
trans-1,2-Dichloroethene	20.0	23.4	117	75 - 124
1,2-Dichloropropane	20.0	20.9	105	78 - 128
cis-1,3-Dichloropropene	20.0	20.7	103	75 - 124
trans-1,3-Dichloropropene	20.0	21.6	108	73 - 127
Ethylbenzene	20.0	21.0	105	79 - 121

SW846 8260C

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPV3

Preparation:

Batch: <u>1715197</u> Laboratory ID: 1715197-BS1

SW846 5030 Water MS 5 ml / 5 ml

Analyzed: 09/06/17 10:13 Spike ID: 17I0077

> File ID: LCS0906A.D

Initial/Final:

		•	_	
COMPOUND	SPIKE ADDED (µg/l)	LCS CONCENTRATION (µg/l)	LCS % REC. #	QC LIMITS REC.
2-Hexanone (MBK)	20.0	21.8	109	57 - 139
Isopropylbenzene	20.0	20.4	102	72 - 131
Methyl tert-butyl ether	20.0	22.7	113	71 - 124
4-Methyl-2-pentanone (MIBK)	20.0	22.1	111	67 - 130
Methylene chloride	20.0	22.3	112	74 - 124
Styrene	20.0	21.5	108	78 - 123
1,1,2,2-Tetrachloroethane	20.0	21.2	106	71 - 121
Tetrachloroethene	20.0	22.3	112	74 - 129
Toluene	20.0	22.7	114	80 - 121
1,2,3-Trichlorobenzene	20.0	20.3	102	69 - 129
1,2,4-Trichlorobenzene	20.0	19.8	99	69 - 130
1,1,1-Trichloroethane	20.0	22.5	112	74 - 131
1,1,2-Trichloroethane	20.0	23.0	115	80 - 119
Trichloroethene	20.0	21.8	109	79 - 123
Trichlorofluoromethane (Freon 11)	20.0	22.6	113	64 - 141
Vinyl chloride	20.0	21.5	108	58 - 137
m,p-Xylene	20.0	21.3	106	80 - 121
o-Xylene	20.0	20.9	104	78 - 122
Cyclohexane	20.0	22.4	112	71 - 130
Methyl acetate	20.0	19.9	100	56 - 136
Methylcyclohexane	20.0	22.2	111	72 - 132
			_	•

File ID: LCS0906B.D

	SPIKE	LCSD	LCSD	0./	QC	LIMITS
COMPOUND	ADDED (μg/l)	CONCENTRATION (µg/l)	% REC. #	% RPD#	RPD	REC.
1,1,2-Trichlorotrifluoroethane (Freon	20.0	20.5	102	5	25	70 - 136
Acetone	20.0	21.8	109	5	50	39 - 160
Benzene	20.0	21.8	109	4	25	79 - 120
Bromochloromethane	20.0	22.1	110	1	25	78 - 123
Bromodichloromethane	20.0	22.4	112	2	25	79 - 125

SDG SC38627 Page 60 / 1574

SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPV3

Batch: <u>1715197</u> Laboratory ID: <u>1715197-BSD1</u>

Preparation: $\underline{SW846\ 5030\ Water\ MS}$ Initial/Final: $\underline{5\ ml\ /\ 5\ ml}$

Analyzed: <u>09/06/17 10:42</u> Spike ID: 17I0077

File ID: <u>LCS0906B.D</u>

	SPIKE	LCSD	LCSD		QC	LIMITS
COMPOUND	ADDED (μg/l)	CONCENTRATION (μg/l)	% REC. #	% RPD #	RPD	REC.
Bromoform	20.0	21.4	107	1	25	66 - 130
Bromomethane	20.0	20.6	103	3	50	53 - 141
2-Butanone (MEK)	20.0	19.8	99	16	50	56 - 143
Carbon disulfide	20.0	21.1	105	3	25	64 - 133
Carbon tetrachloride	20.0	20.6	103	5	25	72 - 136
Chlorobenzene	20.0	20.2	101	2	25	82 - 118
Chloroethane	20.0	19.9	100	2	50	60 - 138
Chloroform	20.0	21.6	108	2	25	79 - 124
Chloromethane	20.0	20.7	103	2	25	50 - 139
1,2-Dibromo-3-chloropropane	20.0	22.1	111	11	25	62 - 128
Dibromochloromethane	20.0	21.3	107	2	50	74 - 126
1,2-Dibromoethane (EDB)	20.0	23.0	115	0.8	25	77 - 121
1,2-Dichlorobenzene	20.0	19.7	99	1	25	80 - 119
1,3-Dichlorobenzene	20.0	20.8	104	1	25	80 - 119
1,4-Dichlorobenzene	20.0	18.7	93	2	25	79 - 118
Dichlorodifluoromethane (Freon12)	20.0	19.6	98	6	50	32 - 152
1,1-Dichloroethane	20.0	21.6	108	2	25	77 - 125
1,2-Dichloroethane	20.0	21.6	108	0.6	25	73 - 128
1,1-Dichloroethene	20.0	21.2	106	3	25	71 - 131
cis-1,2-Dichloroethene	20.0	21.9	109	0.8	25	78 - 123
trans-1,2-Dichloroethene	20.0	22.5	113	4	25	75 - 124
1,2-Dichloropropane	20.0	21.6	108	3	25	78 - 128
cis-1,3-Dichloropropene	20.0	20.8	104	0.4	25	75 - 124
trans-1,3-Dichloropropene	20.0	20.5	102	5	25	73 - 127
Ethylbenzene	20.0	20.9	105	0.4	25	79 - 121
2-Hexanone (MBK)	20.0	23.2	116	6	25	57 - 139
Isopropylbenzene	20.0	20.2	101	1	25	72 - 131
Methyl tert-butyl ether	20.0	22.8	114	0.6	25	71 - 124
4-Methyl-2-pentanone (MIBK)	20.0	21.8	109	2	50	67 - 130
Methylene chloride SDG SC38627 Page 61 / 157	20.0	20.8	104	7	25	74 - 124

SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPV3

Batch: <u>1715197</u> Laboratory ID: <u>1715197-BSD1</u>

 Preparation:
 SW846 5030 Water MS
 Initial/Final:
 5 ml / 5 ml

 Analyzed:
 09/06/17 10:42
 Spike ID:
 1710077

File ID: <u>LCS0906B.D</u>

	SPIKE	LCSD	LCSD		QC	LIMITS
COMPOUND	ADDED (μg/l)	CONCENTRATION (µg/l)	% REC. #	% RPD #	RPD	REC.
Styrene	20.0	21.5	107	0.2	25	78 - 123
1,1,2,2-Tetrachloroethane	20.0	21.1	105	0.6	25	71 - 121
Tetrachloroethene	20.0	21.0	105	6	25	74 - 129
Toluene	20.0	21.4	107	6	25	80 - 121
1,2,3-Trichlorobenzene	20.0	20.8	104	2	25	69 - 129
1,2,4-Trichlorobenzene	20.0	18.8	94	5	25	69 - 130
1,1,1-Trichloroethane	20.0	21.5	107	5	25	74 - 131
1,1,2-Trichloroethane	20.0	22.3	111	3	25	80 - 119
Trichloroethene	20.0	21.0	105	4	25	79 - 123
Trichlorofluoromethane (Freon 11)	20.0	21.4	107	5	50	64 - 141
Vinyl chloride	20.0	20.8	104	3	25	58 - 137
m,p-Xylene	20.0	20.7	103	3	25	80 - 121
o-Xylene	20.0	21.4	107	2	25	78 - 122
Cyclohexane	20.0	21.2	106	5	30	71 - 130
Methyl acetate	20.0	19.8	99	0.5	30	56 - 136
Methylcyclohexane	20.0	21.0	105	5	30	72 - 132

[#] Column to be used to flag recovery and RPD values with an asterisk

Individual peaks for multi-component analytes are indicated by a number in parentheses

^{*} Values outside of QC limits

FORM IV - METHOD BLANK SUMMARY SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: <u>1715197-BLK1</u> File ID: <u>BK30906A.D</u>

Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Analyzed: <u>09/06/17 09:15</u> Instrument: <u>HPV3</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u>

This method blank applies to the following sample analyses:

SAMPLE NO.	LAB SAMPLE ID	FILE ID	DATE ANALYZED	TIME ANALYZED
LCS	1715197-BS1	LCS0906A.D	09/06/17	10:13
LCS Dup	1715197-BSD1	LCS0906B.D	09/06/17	10:42
TF1-MW-1003-082817	SC38627-01	3862701.D	09/06/17	11:39
TF1-EBP-GZ101R-082817	SC38627-02	3862702.D	09/06/17	12:08
TF1-GT-106-082817	SC38627-03	3862703.D	09/06/17	12:37
TF1-TB-082817	SC38627-04	3862704.D	09/06/17	13:06

FORM I - ORGANIC ANALYSIS DATA SHEET SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: <u>Tetra Tech, Inc. - Salem, NH</u> Project: <u>WE15 Tank Farm 1 NAVSTA Newport</u>

Matrix: <u>Aqueous</u> Laboratory ID: <u>1715197-BLK1</u> File ID: <u>BK30906A.D</u>

Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Analyzed: <u>09/06/17 09:15</u> Instrument: <u>HPV3</u>

Batch: 1715197 Sequence: S707890 Calibration: 1709004

Batch:	<u>1715197</u> Sequence:	<u>S707890</u>	Calib	oration:	<u>1709004</u>		
CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113	1	1.0	U	0.5	1.0	1.0
67-64-1	Acetone	1	2.0	U	0.8	2.0	10.0
71-43-2	Benzene	1	0.5	U	0.3	0.5	1.0
74-97-5	Bromochloromethane	1	1.0	U	0.3	1.0	1.0
75-27-4	Bromodichloromethane	1	0.5	U	0.4	0.5	0.5
75-25-2	Bromoform	1	1.0	U	0.4	1.0	1.0
74-83-9	Bromomethane	1	2.0	U	0.9	2.0	2.0
78-93-3	2-Butanone (MEK)	1	2.0	U	1.1	2.0	2.0
75-15-0	Carbon disulfide	1	1.0	U	0.4	1.0	2.0
56-23-5	Carbon tetrachloride	1	1.0	U	0.4	1.0	1.0
108-90-7	Chlorobenzene	1	0.5	U	0.2	0.5	1.0
75-00-3	Chloroethane	1	2.0	U	0.6	2.0	2.0
67-66-3	Chloroform	1	1.0	U	0.3	1.0	1.0
74-87-3	Chloromethane	1	1.0	U	0.4	1.0	2.0
96-12-8	1,2-Dibromo-3-chloropropane	1	2.0	U	0.9	2.0	2.0
124-48-1	Dibromochloromethane	1	0.5	U	0.3	0.5	0.5
106-93-4	1,2-Dibromoethane (EDB)	1	0.5	U	0.2	0.5	0.5
95-50-1	1,2-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
541-73-1	1,3-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
106-46-7	1,4-Dichlorobenzene	1	0.5	U	0.3	0.5	1.0
75-71-8	Dichlorodifluoromethane (Freon12)	1	2.0	U	0.6	2.0	2.0
75-34-3	1,1-Dichloroethane	1	1.0	U	0.3	1.0	1.0
107-06-2	1,2-Dichloroethane	1	1.0	U	0.3	1.0	1.0
75-35-4	1,1-Dichloroethene	1	1.0	U	0.7	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1	0.5	U	0.3	0.5	1.0
156-60-5	trans-1,2-Dichloroethene	1	1.0	U	0.4	1.0	1.0
78-87-5	1,2-Dichloropropane	1	1.0	U	0.3	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1	0.5	U	0.4	0.5	0.5
10061-02-6	trans-1,3-Dichloropropene	1	0.5	U	0.3	0.5	0.5
100-41-4	Ethylbenzene	1	0.5	U	0.3	0.5	1.0
591-78-6	2-Hexanone (MBK)	1	2.0	U	0.5	2.0	2.0
98-82-8	Isopropylbenzene	1	1.0	U	0.4	1.0	1.0

FORM I - ORGANIC ANALYSIS DATA SHEET SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: <u>1715197-BLK1</u> File ID: <u>BK30906A.D</u>

Preparation: <u>SW846 5030 Water MS</u> Initial/Final: <u>5 ml / 5 ml</u>

Analyzed: <u>09/06/17 09:15</u> Instrument: <u>HPV3</u>

Batch: <u>1715197</u> Sequence: <u>S707890</u> Calibration: <u>1709004</u>

Daten.	<u>1713197</u> Sequence.	3707890	Canor	ation.	1703004		
CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
1634-04-4	Methyl tert-butyl ether	1	0.5	U	0.2	0.5	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	1	2.0	U	0.5	2.0	2.0
75-09-2	Methylene chloride	1	2.0	U	0.7	2.0	2.0
100-42-5	Styrene	1	1.0	U	0.4	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1	0.5	U	0.3	0.5	0.5
127-18-4	Tetrachloroethene	1	1.0	U	0.6	1.0	1.0
108-88-3	Toluene	1	1.0	U	0.3	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U	0.4	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1	1.0	U	0.5	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1	0.5	U	0.3	0.5	1.0
79-01-6	Trichloroethene	1	1.0	U	0.5	1.0	1.0
75-69-4	Trichlorofluoromethane (Freon 11)	1	1.0	U	0.5	1.0	1.0
75-01-4	Vinyl chloride	1	1.0	U	0.5	1.0	1.0
179601-23-1	m,p-Xylene	1	1.0	U	0.4	1.0	2.0
95-47-6	o-Xylene	1	1.0	U	0.3	1.0	1.0
110-82-7	Cyclohexane	1	2.0	U	0.8	2.0	5.0
79-20-9	Methyl acetate	1	2.0	U	0.6	2.0	5.0
108-87-2	Methylcyclohexane	1	2.0	U	0.7	2.0	5.0

FORM VIIIa - INTERNAL STANDARD AREA AND RT SUMMARY

SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

 Sequence:
 \$\overline{90}\$
 Instrument:
 \$\overline{HPV3}\$

 Matrix:
 \$\overline{Aqueous}\$
 Calibration:
 \$\overline{1709004}\$

Analyzed: 09/06/17 10:13 File ID: <u>LCS0906A.D</u>

	IS1 Area #	RT#	IS2 Area #	RT#	IS3 Area #	RT #	IS4 Area #	RT #	IS5 Area #	RT #	IS6 Area #	RT#
12-Hour Standard	456491	11.15	457250	8.80	930651	5.48						
Upper Limit	912982	11.65	914500	9.30	1861302	5.98						
Lower Limit	228246	10.65	228625	8.30	465326	4.98						
Sample ID												
Calibration Check (S707890-CCV2)	461160	11.146	463545	8.799	950842	5.477						
Blank (1715197-BLK1)	429688	11.146	431580	8.803	915572	5.477						
LCS (1715197-BS1)	456491	11.146	457250	8.803	930651	5.481						
LCS Dup (1715197-BSD1)	459415	11.146	450999	8.799	939534	5.477						
TF1-MW-1003-082817 (SC38627-01)	450702	11.146	441191	8.799	924413	5.477						
TF1-EBP-GZ101R-082817 (SC38627-02)	451015	11.142	452611	8.799	949017	5.477						
TF1-GT-106-082817 (SC38627-03)	442105	11.142	443771	8.799	923750	5.477						
TF1-TB-082817 (SC38627-04)	440622	11.146	448470	8.798	931608	5.477						

IS1 = 1,4-Dichlorobenzene-d4

IS2 = Chlorobenzene-d5

IS3 = Fluorobenzene

Column to be used to flag internal standard area values

* Values outside of QC limits

Area Upper Limit = 200% of internal standard area Area Lower Limit = 50% of internal standard area RT Limit = \pm -0.50

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SW846 8260C

Laboratory:Eurofins Spectrum Analytical, Inc. - MASDG:SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
	0.5	1.0	.ug/1
1,1,2-Trichlorotrifluoroethane (Freon 11 Acetone	0.8	10.0	μg/l
Benzene	0.8	1.0	μg/l
Bromochloromethane	0.3	1.0	μg/l
Bromodichloromethane	0.3	0.5	μg/l
Bromoform	0.4	1.0	μg/l
Bromomethane	0.4	2.0	μg/l
	1.1	2.0	μg/l
2-Butanone (MEK) Carbon disulfide	0.4	2.0	μg/l
			μg/l
Carbon tetrachloride Chlorobonzone	0.4	1.0	μg/l
Chlorosthana		1.0	μg/l
Chloroform	0.6	2.0	μg/l
Chloroform	0.3	1.0	μg/l
Chloromethane	0.4	2.0	μg/l
1,2-Dibromo-3-chloropropane	0.9	2.0	μg/l
Dibromochloromethane (FRR)	0.3	0.5	μg/l
1,2-Dibromoethane (EDB)	0.2	0.5	μg/l
1,2-Dichlorobenzene	0.3	1.0	μg/l
1,3-Dichlorobenzene	0.3	1.0	μg/l
1,4-Dichlorobenzene	0.3	1.0	μg/l
Dichlorodifluoromethane (Freon12)	0.6	2.0	μg/l
1,1-Dichloroethane	0.3	1.0	μg/l
1,2-Dichloroethane	0.3	1.0	μg/l
1,1-Dichloroethene	0.7	1.0	μg/l
cis-1,2-Dichloroethene	0.3	1.0	μg/l
trans-1,2-Dichloroethene	0.4	1.0	μg/l
1,2-Dichloropropane	0.3	1.0	μg/l
cis-1,3-Dichloropropene	0.4	0.5	μg/l
trans-1,3-Dichloropropene	0.3	0.5	μg/l
Ethylbenzene	0.3	1.0	μg/l
2-Hexanone (MBK)	0.5	2.0	μg/l
Isopropylbenzene	0.4	1.0	μg/l
Methyl tert-butyl ether	0.2	1.0	μg/l
4-Methyl-2-pentanone (MIBK)	0.5	2.0	μg/l
Methylene chloride	0.7	2.0	μg/l
Styrene	0.4	1.0	μg/l
1,1,2,2-Tetrachloroethane	0.3	0.5	μg/l
Tetrachloroethene	0.6	1.0	μg/l
Toluene	0.3	1.0	μg/l

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SW846 8260C

 Laboratory:
 Eurofins Spectrum Analytical, Inc. - MA
 SDG:
 SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
1,2,3-Trichlorobenzene	0.4	1.0	μg/l
1,2,4-Trichlorobenzene	0.4	1.0	μg/l
1,1,1-Trichloroethane	0.5	1.0	μg/l
1,1,2-Trichloroethane	0.3	1.0	μg/l
Trichloroethene	0.5	1.0	μg/l
Trichlorofluoromethane (Freon 11)	0.5	1.0	μg/l
Vinyl chloride	0.5	1.0	μg/l
m,p-Xylene	0.4	2.0	μg/l
o-Xylene	0.3	1.0	μg/l
Cyclohexane	0.8	5.0	μg/l
Methyl acetate	0.6	5.0	μg/l
Methylcyclohexane	0.7	5.0	μg/l

PREPARATION BENCH SHEET

Method No.: V 3083 11700D, M Sequence No.: \$707890

Matrix: Aqueous

Prepared using: VOC - SW846 5030 Water MS

(No Surrogate)

					T usin	g. 100	3 11 040 3030	Water Wis		(No	Surrogat
Lab Number	Client ID	ID	Analysis	Initial (ml)	Final (ml)	Spike ID	Source ID	Due Date	Collection Date	Sample Comments	RE
1715197-BLK1	Blank		QC	5	5				06-Sep-17 06:00	1	
1715197-BS1	LCS		QC	5	5	1710077			06-Sep-17 06:00		
1715197-BSD1	LCS Dup		QC	5	5	1710077			06-Sep-17 06:00		
1715197-MS1	Matrix Spike		QC	1	5	17H0200	SC38733-04		30-Aug-17 10:10		
1715197-MSD1	Matrix Spike Dup		QC	1	5	17H0200	SC38733-04		30-Aug-17 10:10		
SC38627-01	TF1-MW-1003-082817	A	8260 DoD Full	5	5			08-Sep-17 16:00	28-Aug-17 15:30	DoD Level IV / @VTCL NJ Compounds.	
SC38627-02	TF1-EBP-GZ101R-082817	A	8260 DoD Full	5	5			08-Sep-17 16:00	28-Aug-17 15:16	DoD Level IV / @VTCL NJ Compounds.	
SC38627-03	TF1-GT-106-082817	A	8260 DoD Full	5	5			08-Sep-17 16:00	28-Aug-17 15:25	DoD Level IV / @VTCL NJ Compounds.	
SC38627-04	TF1-TB-082817	A	8260 DoD Full	5	5			08-Sep-17 16:00	28-Aug-17 08:00	DoD Level IV / @VTCL NJ Compounds.	
SC38678-01	TF1-EBP-MW1001-082917	A	8260 DoD Full	5	5			11-Sep-17 16:00	29-Aug-17 10:44	DoD Level IV / @VTCL NJ Compounds.	
SC38678-02	TF1-EBP-MW1000-082917	A	8260 DoD Full	5	5			11-Sep-17 16:00	29-Aug-17 14:52	DoD Level IV / @VTCL NJ Compounds.	
SC38678-03	TF1-MW1006-082917	A	8260 DoD Full	5	5			11-Sep-17 16:00	29-Aug-17 10:25	DoD Level IV / @VTCL NJ Compounds.	
SC38678-04	TF1-MW1002-082917	A	8260 DoD Full	5	5			11-Sep-17 16:00	29-Aug-17 11:05	DoD Level IV / @VTCL NJ Compounds.	
SC38678-05	TF1-GT-109-082917	A	8260 DoD Full	5	5			11-Sep-17 16:00	29-Aug-17 16:05	DoD Level IV / @VTCL NJ Compounds.	
SC38678-06	TF1-DUP-01-082917	A	8260 DoD Full	5	5			11-Sep-17 16:00	29-Aug-17 12:00	DoD Level IV / @VTCL NJ Compounds.	
SC38678-07	TF1-TB-082917	A	8260 DoD Full	5	5			11-Sep-17 16:00	29-Aug-17 08:00	DoD Level IV / @VTCL NJ Compounds.	
SC38733-01	TF1-MW-1007-083017	A	8260 DoD Full	5	5			12-Sep-17 16:00	30-Aug-17 10:52	DoD Level IV / @VTCL NJ Compounds.	
SC38733-02	TF1-MW-1007D-083017	A	8260 DoD Full	5	5			12-Sep-17 16:00	30-Aug-17 14:55	DoD Level IV / @VTCL NJ Compounds.	

Analyst Reviewed

Date /

Manager Reviewed

Date

equence Reviewed By

Date

GA

PREPARATION BENCH SHEET

1715197

Method No.: <u>V3083117D0D.</u>m Sequence No.: _ \$707890

Matrix: Aqueous

Prepared using: VOC - SW846 5030 Water MS

(No Surrogate)

				Initial	Final						Ĭ
Lab Number	Client ID	ID	Analysis	(ml)	(ml)	Spike ID	Source ID	Due Date	Collection Date	Sample Comments	RE
SC38733-03	TF1-GZ-112-083017 SAO	A	8260 DoD Full	5	5			12-Sep-17 16:00	30-Aug-17 14:20	DoD Level IV / @VTCL NJ Compounds.	/
SC38733-04	TF1-MW-1005-083017	A	8260 DoD Full	5	5			12-Sep-17 16:00	30-Aug-17 10:10	Run MS/MSD/DoD Level IV / @VTCL NJ Compounds.	
SC38733-05	TF1-GZ-118-083017	A	8260 DoD Full	5	5			12-Sep-17 16:00	30-Aug-17 15:05	DoD Level IV / @VTCL NJ Compounds.	
SC38733-07	TF1-TB-083017	A	8260 DoD Full	5	5			12-Sep-17 16:00	30-Aug-17 08:00	DoD Level IV / @VTCL NJ Compounds.	

HPV3 9/06/17a

Manager Reviewed

Date

Sequence Reviewed By

Date

Printed: 9/7/2017 1:14:05PM

SDG SC38627 Page 509 / 1574

Page 2 of 2

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S707839</u> Instrument: <u>HPV3</u>

Calibration: <u>1709004</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
MS Tune	S707839-TUN1	VCAL000.D	08/31/17 11:41
Cal Standard	S707839-CAL1	DAPRTMTH-001	08/31/17 11:41
Low Cal Check	S707839-LCV1	VCAL000.D	08/31/17 11:41
Cal Standard	S707839-CAL2	DAPRTMTH-002	08/31/17 12:10
Low Cal Check	S707839-LCV2	VCAL001.D	08/31/17 12:10
Cal Standard	S707839-CAL3	DAPRTMTH-003	08/31/17 12:39
Cal Standard	S707839-CAL4	DAPRTMTH-004	08/31/17 13:08
Cal Standard	S707839-CAL5	DAPRTMTH-005	08/31/17 13:37
Cal Standard	S707839-CAL6	DAPRTMTH-006	08/31/17 14:06
Cal Standard	S707839-CAL7	DAPRTMTH-007	08/31/17 14:34
Cal Standard	S707839-CAL8	DAPRTMTH-008	08/31/17 15:03
Cal Standard	S707839-CAL9	DAPRTMTH-009	08/31/17 15:32
Cal Standard	S707839-CALA	DAPRTMTH-010	08/31/17 16:01
Cal Standard	S707839-CALB	DAPRTMTH-011	08/31/17 16:58
Initial Cal Check	S707839-ICV1	ICV0831A.D	08/31/17 17:56

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SW846 8260C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S707890</u> Instrument: <u>HPV3</u>

Calibration: <u>1709004</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
MS Tune	S707890-TUN1	BK30906A.D	09/06/17 09:15
Blank	1715197-BLK1	BK30906A.D	09/06/17 09:15
Calibration Check	S707890-CCV1	LCS0906A.D	09/06/17 10:13
LCS	1715197-BS1	LCS0906A.D	09/06/17 10:13
LCS Dup	1715197-BSD1	LCS0906B.D	09/06/17 10:42
TF1-MW-1003-082817	SC38627-01	3862701.D	09/06/17 11:39
TF1-EBP-GZ101R-082817	SC38627-02	3862702.D	09/06/17 12:08
TF1-GT-106-082817	SC38627-03	3862703.D	09/06/17 12:37
TF1-TB-082817	SC38627-04	3862704.D	09/06/17 13:06
Calibration Check	S707890-CCV2	CCC0906B.D	09/06/17 20:49

CROSS REFERENCE TABLE

SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

CASE NARRATIVE

Spectrum Analytical, Inc. Lab Reference No. SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport / 112608005-WE15

SDG #: SC38627

I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

III. METHODS

Analyses were performed according to SW846 8270D.

IV. PREPARATION

Aqueous samples were prepared according to SW846 3510C.

V. INSTRUMENTATION

The following equipment was used to analyze SW846 8270D:

HPS4 details: Agilent 6890 with 5973 MS: Phenomenex ZB-Semivolatiles (30M, 0.25mm, 0.25um)

VI. ANALYSIS

A. Calibration:

All quality control samples were within the acceptance criteria.

B. Blanks:

All blanks were within the acceptance criteria.

C. Surrogates:

All method criteria were met with the following exceptions:

2-Fluorobiphenyl in batch 1715009, samples 1715009-BLK1, TF1-EBP-GZ101R-082817 (SC38627-02): Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

D. Spikes:

1. Laboratory Control Samples (LCS):

All method criteria were met with the following exceptions:

Anthracene, Benzo (g,h,i) perylene, Phenanthrene in batch 1715009, samples 1715009-BS1, 1715009-BSD1: Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

Benzo (k) fluoranthene in batch 1715009, sample 1715009-BSD1: The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

In batch 1715009 BS/BSD:

Anthracene percent recoveries (53/60) are outside individual acceptance criteria (57-123), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

TF1-EBP-GZ101R-082817, TF1-GT-106-082817, TF1-MW-1003-082817

Benzo (g,h,i) perylene percent recoveries (48/50) are outside individual acceptance criteria (50-134), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

TF1-EBP-GZ101R-082817, TF1-GT-106-082817, TF1-MW-1003-082817

Phenanthrene percent recoveries (53/56) are outside individual acceptance criteria (59-120), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

TF1-EBP-GZ101R-082817, TF1-GT-106-082817, TF1-MW-1003-082817

In batch 1715009 BSD:

Benzo (k) fluoranthene RPD 30% (20%) is outside individual acceptance criteria.

2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

No matrix spike or matrix spike duplicates were analyzed.

E. Duplicates:

A duplicate was analyzed.

In batch 1715009 from source sample TF1-MW-1003-082817 (SC38627-01).

All method criteria were met.

F. Internal Standards:

Internal standards were within the acceptance criteria.

G. Samples:

All method criteria were met.

FORM II - SURROGATE STANDARD RECOVERY SUMMARY

SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Spike ID: <u>17H0260</u>

Client ID	S1	#	S2 #	‡	S3 #	S4 #	S5 #	S6 #	Total Out
Blank (1715009-BLK1)	39	*	43	Ì	62				1
LCS (1715009-BS1)	61		64		82				0
LCS Dup (1715009-BSD1)	66		70		93				0
Duplicate (1715009-DUP1)	51		67		79				0
TF1-MW-1003-082817 (SC38627-01)	56		55		72				0
TF1-EBP-GZ101R-082817 (SC38627-02)	41	*	53		66				1
TF1-GT-106-082817 (SC38627-03)	45		56		86				0

Control Limits

S1 = 2-Fluorobiphenyl 44 - 119 S2 = Nitrobenzene-d5 40 - 110S3 = Terphenyl-dl4 50 - 134

[#] Column to be used to flag recovery values

^{*} Values outside of QC limits

FORM IIIa - LCS / LCS DUPLICATE RECOVERY SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPS4

Batch: <u>1715009</u> Laboratory ID: <u>1715009-BS1</u>

Preparation: <u>SW846 3510C</u> <u>Initial/Final</u>: <u>990 ml / 1 ml</u>

Analyzed: <u>09/13/17 17:09</u> Spike ID: 17H0927

File ID: <u>BSR15009.D</u>

COMPOUND	SPIKE ADDED (µg/l)	LCS CONCENTRATION (µg/l)	LCS % REC.#	QC LIMITS REC.
Acenaphthene	50.5	24.6	49	47 - 122
Acenaphthylene	50.5	25.2	50	41 - 130
Anthracene	50.5	27.0	53 *	57 - 123
Benzo (a) anthracene	50.5	30.4	60	58 - 125
Benzo (a) pyrene	50.5	34.3	68	54 - 128
Benzo (b) fluoranthene	50.5	41.3	82	53 - 131
Benzo (g,h,i) perylene	50.5	24.3	48 *	50 - 134
Benzo (k) fluoranthene	50.5	33.8	67	57 - 129
Chrysene	50.5	30.3	60	59 - 123
Dibenzo (a,h) anthracene	50.5	28.8	57	51 - 134
Fluoranthene	50.5	28.6	57	57 - 128
Fluorene	50.5	27.1	54	52 - 124
Indeno (1,2,3-cd) pyrene	50.5	26.7	53	52 - 134
1-Methylnaphthalene	50.5	22.7	45	41 - 119
2-Methylnaphthalene	50.5	29.7	59	40 - 121
Naphthalene	50.5	21.5	43	40 - 121
Phenanthrene	50.5	26.6	53 *	59 - 120
Pyrene	50.5	28.8	57	57 - 126

File ID: BSDR5009.D

	SPIKE LCSD ADDED CONCENTRATION		LCSD	0/	QC LIMITS		
COMPOUND	ADDED (µg/l)	CONCENTRATION (µg/l)	% REC. #	% RPD #	RPD	REC.	
Acenaphthene	50.5	25.3	50	3	20	47 - 122	
Acenaphthylene	50.5	28.2	56	11	20	41 - 130	
Anthracene	50.5	30.4	60	12	20	57 - 123	
Benzo (a) anthracene	50.5	32.4	64	6	20	58 - 125	
Benzo (a) pyrene	50.5	37.4	74	9	20	54 - 128	
Benzo (b) fluoranthene	50.5	46.5	92	12	20	53 - 131	
Benzo (g,h,i) perylene	50.5	25.5	50	5	20	50 - 134	
Benzo (k) fluoranthene SDG SC38627 Page 520 / 15	50.5	45.6	90	30 *	20	57 - 129	

SDG SC38627 Page 520 / 1574

FORM IIIa - LCS / LCS DUPLICATE RECOVERY SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPS4

Batch: <u>1715009</u> Laboratory ID: <u>1715009-BSD1</u>

Preparation: SW846 3510C Initial/Final: 990 ml / 1 ml

Analyzed: 09/13/17 17:37 Spike ID: 17H0927

File ID: BSDR5009.D

	SPIKE	LCSD	LCSD	0/	QC LIMITS			
COMPOUND	ADDED (μg/l)	CONCENTRATION (µg/l)	% REC. #	% RPD#	RPD	REC.		
Chrysene	50.5	33.8	67	11	20	59 - 123		
Dibenzo (a,h) anthracene	50.5	29.9	59	4	20	51 - 134		
Fluoranthene	50.5	29.1	58	2	20	57 - 128		
Fluorene	50.5	28.7	57	5	20	52 - 124		
Indeno (1,2,3-cd) pyrene	50.5	29.0	57	8	20	52 - 134		
1-Methylnaphthalene	50.5	24.9	49	9	20	41 - 119		
2-Methylnaphthalene	50.5	29.9	59	0.7	20	40 - 121		
Naphthalene	50.5	22.7	45	5	20	40 - 121		
Phenanthrene	50.5	28.3	56 *	6	20	59 - 120		
Pyrene	50.5	29.6	59	3	20	57 - 126		

[#] Column to be used to flag recovery and RPD values with an asterisk

Individual peaks for multi-component analytes are indicated by a number in parentheses

^{*} Values outside of QC limits

FORM IIIc - DUPLICATES

SW846 8270D

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: 1715009-DUP1

Batch: <u>1715009</u> Lab Source ID: <u>SC38627-01</u>

Preparation: SW846 3510C Initial/Final: 930 ml / 1 ml

Source Sample Name: TF1-MW-1003-082817 % Solids:

File ID: <u>3862701D.D</u>

ANALYTE	CONTROL LIMIT	SAMPLE CONCENTRATION (µg/l)	С	DUPLICATE CONCENTRATION (µg/l)	С	RPD %	Q	метнор
Acenaphthene	20	BRL		BDL				SW846 8270D
Acenaphthylene	20	BRL		BDL				SW846 8270D
Anthracene	20	BRL		BDL				SW846 8270D
Benzo (a) anthracene	20	BRL		BDL				SW846 8270D
Benzo (a) pyrene	20	BRL		BDL				SW846 8270D
Benzo (b) fluoranthene	20	BRL		BDL				SW846 8270D
Benzo (g,h,i) perylene	20	BRL		BDL				SW846 8270D
Benzo (k) fluoranthene	20	BRL		BDL				SW846 8270D
Chrysene	20	BRL		BDL				SW846 8270D
Dibenzo (a,h) anthracene	20	BRL		BDL				SW846 8270D
Fluoranthene	20	BRL		BDL				SW846 8270D
Fluorene	20	BRL		BDL				SW846 8270D
Indeno (1,2,3-cd) pyrene	20	BRL		BDL				SW846 8270D
1-Methylnaphthalene	20	1.18		1.18		0.3		SW846 8270D
2-Methylnaphthalene	20	BRL		BDL				SW846 8270D
Naphthalene	20	BRL		BDL				SW846 8270D
Phenanthrene	20	BRL		BDL				SW846 8270D
Pyrene	20	BRL		BDL				SW846 8270D

^{*} Values outside of QC limits

Individual peaks for multi-component analytes are indicated by a number in parentheses

FORM IV - METHOD BLANK SUMMARY SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: <u>1715009-BLK1</u> File ID: <u>BKR15009.D</u>

Preparation: <u>SW846 3510C</u> Initial/Final: <u>980 ml / 1 ml</u>

Analyzed: <u>09/13/17 16:12</u> Instrument: <u>HPS4</u>

Batch: <u>1715009</u> Sequence: <u>S708168</u> Calibration: <u>1708113</u>

This method blank applies to the following sample analyses:

SAMPLE NO.	LAB SAMPLE ID	FILE ID	DATE ANALYZED	TIME ANALYZED
LCS	1715009-BS1	BSR15009.D	09/13/17	17:09
LCS Dup	1715009-BSD1	BSDR5009.D	09/13/17	17:37
TF1-MW-1003-082817	SC38627-01	C3862701.D	09/13/17	18:06
Duplicate	1715009-DUP1	3862701D.D	09/13/17	18:34
TF1-EBP-GZ101R-082817	SC38627-02	C3862702.D	09/13/17	19:02
TF1-GT-106-082817	SC38627-03	C3862703.D	09/13/17	19:31

FORM I - ORGANIC ANALYSIS DATA SHEET SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: <u>Aqueous</u> Laboratory ID: <u>1715009-BLK1</u> File ID: <u>BKR15009.D</u>

Preparation: SW846 3510C Initial/Final: 980 ml / 1 ml

Analyzed: <u>09/13/17 16:12</u> Instrument: <u>HPS4</u>

Batch: <u>1715009</u> Sequence: <u>S708168</u> Calibration: <u>1708113</u>

Duteii.	<u>1110005</u>	<u> </u>			1700110		
CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
83-32-9	Acenaphthene	1	1.02	U	0.705	1.02	5.10
208-96-8	Acenaphthylene	1	1.02	U	0.697	1.02	5.10
120-12-7	Anthracene	1	1.02	U	0.620	1.02	5.10
56-55-3	Benzo (a) anthracene	1	1.02	U	0.547	1.02	5.10
50-32-8	Benzo (a) pyrene	1	1.02	U	0.573	1.02	5.10
205-99-2	Benzo (b) fluoranthene	1	1.02	U	0.446	1.02	5.10
191-24-2	Benzo (g,h,i) perylene	1	1.02	U	0.541	1.02	5.10
207-08-9	Benzo (k) fluoranthene	1	1.02	U	0.490	1.02	5.10
218-01-9	Chrysene	1	1.02	U	0.543	1.02	5.10
53-70-3	Dibenzo (a,h) anthracene	1	1.02	U	0.459	1.02	5.10
206-44-0	Fluoranthene	1	1.02	U	0.651	1.02	5.10
86-73-7	Fluorene	1	1.02	U	0.624	1.02	5.10
193-39-5	Indeno (1,2,3-cd) pyrene	1	1.02	U	0.592	1.02	5.10
90-12-0	1-Methylnaphthalene	1	1.02	U	0.748	1.02	5.10
91-57-6	2-Methylnaphthalene	1	1.02	U	0.586	1.02	5.10
91-20-3	Naphthalene	1	1.02	U	0.699	1.02	5.10
85-01-8	Phenanthrene	1	1.02	U	0.598	1.02	5.10
129-00-0	Pyrene	1	1.02	U	0.622	1.02	5.10

FORM VIIIa - INTERNAL STANDARD AREA AND RT SUMMARY

SW846 8270D

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: S708168 Instrument: HPS4 Calibration: Matrix: 1708113

File ID: Analyzed: 09/13/17 09:39 SCT40913.D

	IS1 Area #	RT#	IS2 Area #	RT #	IS3 Area #	RT #	IS4 Area #	RT #	IS5 Area #	RT #	IS6 Area #	RT#
12-Hour Standard	347180	7.69	1134382	12.92	825091	5.50	1282129	15.33	1169836	9.46		
Upper Limit	694360	8.19	2268764	13.42	1650182	6.00	2564258	15.83	2339672	9.96		
Lower Limit	173590	7.19	567191	12.42	412546	5.00	641065	14.83	584918	8.96		
Sample ID												
Calibration Check (S708168-CCV2)	479811	7.675	1552143	12.898	1201317	5.486	1606007	15.304	1436101	9.445		
Blank (1715009-BLK1)	539973	7.685	1543138	12.914	1428554	5.491	1681011	15.326	1667590	9.456		
LCS (1715009-BS1)	613716	7.691	1937367	12.926	1351726	5.497	1814928	15.338	1781931	9.462		
LCS Dup (1715009-BSD1)	490309	7.691	1495020	12.926	1204383	5.497	1212034	15.332	1444492	9.462		
Duplicate (1715009-DUP1)	581614	7.685	1515915	12.915	1219823	5.491	1490902	15.326	1510247	9.456		
TF1-MW-1003-082817 (SC38627-01)	590648	7.685	1843911	12.92	1483035	5.497	1881664	15.332	1620855	9.456		
TF1-EBP-GZ101R-082817 (SC38627-02)	506101	7.685	1477589	12.908	1041267	5.491	1445388	15.32	1442414	9.456		
TF1-GT-106-082817 (SC38627-03)	685358	7.685	1540126	12.92	1519916	5.491	1466175	15.326	1567619	9.456		

IS1 = Acenaphthene-d10

IS2 = Chrysene-d12

IS3 = Naphthalene-d8

IS4 = Perylene-d12

IS5 = Phenanthrene-d10

Column to be used to flag internal standard area values

Aqueous

* Values outside of QC limits

Area Upper Limit = 200% of internal standard area Area Lower Limit = 50% of internal standard area RT Limit = $\pm - 0.50$

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SW846 8270D

Laboratory:Eurofins Spectrum Analytical, Inc. - MASDG:SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Acenaphthene	0.691	5.00	μg/l
Acenaphthylene	0.683	5.00	μg/l
Anthracene	0.608	5.00	μg/l
Benzo (a) anthracene	0.536	5.00	μg/l
Benzo (a) pyrene	0.562	5.00	μg/l
Benzo (b) fluoranthene	0.437	5.00	μg/l
Benzo (g,h,i) perylene	0.530	5.00	μg/l
Benzo (k) fluoranthene	0.480	5.00	μg/l
Chrysene	0.532	5.00	μg/l
Dibenzo (a,h) anthracene	0.450	5.00	μg/l
Fluoranthene	0.638	5.00	μg/l
Fluorene	0.612	5.00	μg/l
Indeno (1,2,3-cd) pyrene	0.580	5.00	μg/l
1-Methylnaphthalene	0.733	5.00	μg/l
2-Methylnaphthalene	0.574	5.00	μg/l
Naphthalene	0.685	5.00	μg/l
Phenanthrene	0.586	5.00	μg/l
Pyrene	0.610	5.00	μg/l

PREPARATION BENCH SHEET

1715009

Eurofins Spectrum Analytical, Inc. - MA

☐ Sodium Chloride (NaCl)	17G0504	☐ Florisil	17G0149	Methylene Chloride (CH2Cl2)	17H1033	☐ Ethyl Acetate (C4H8O2)	14K0438
☐ Ottawa Sand	17H0732	☐ Silica gel (EPH)	17H0666	☐ Hexane (C6H14)	17G0939	Aqueous Filter Paper	17H0640
□ HCL	17H0221	☐ Silica gel (TPH)	17H0665	☐ Acetone (CH3COCH3)	17G0906	☐ Soil Filter Paper	17H0545
☐ Copper	17G0316	☐ Sulfuric Acid (H2SO4)	17H0891	☐ Methanol (CH3OH)	17E0681	-	
Sodium Sulfate (Na2SO4)	17H1005			☐ Ether (C2H5OC2H5)	17H0567	☐ Gauze Wipe	17A0428
☐ PCB Transformer Oil	10H0132	□ мтве	1610388	☐ Acjdified Sodium Sulfate	17G0918	☐ 1:1 HCl Mix	17G0111
1:1 H2SO4 Mix	17G1000	Acidified Methanol	17G0302	Sodium Hydroxide (NaOH)	17G0775	☐ Glass Wool	17H0734
☐ Iso-octane	17B0969	□ 37% KOH	17C0273	☐ Sodium Bicarbonate	14K0424	☐ Cupric Sulfate Pentahydrate	
☐ 1ml Syringe I	15A0480	☐ 1ml Syringe II	15A0481	☐ 1ml Syringe III	15A0482	□ 500ul Syringe	15C0951
☐ 250ul Syringe	15A0484	☐ 100ul Syringe	15A0485	□ 25ul Syringe I	15A0486	☐ 25ul Syringe II	15A0487
☐ 25ul Syringe III	15A0488	☐ 25ul Syringe IV	15A0489	☐ 25ul Syringe V	15A0490	□ 10ul Syringe I	15A0491
☐ 1:1 DCM-Acetone	17H0945	pH paper	16A0780	☐ Chlorine Chk Strips	17D0909	Balance ID	

Matrix: Aqueous

Prepared using: SVOC - SW846 3510C

1260 MS/MSD AU RED AU RED Client Initial Final A * W * ul ul ul Prepared Lab Number Analysis (ml) Spike ID Source ID Init CL Sample ID (ml) Init Init | Spike Surr Surr 2 Due Collected 1715009-BLK1 oc 980 01-Sep-17 08:00 1000 LCS QC 990 1715009-BS1 1 17H0927 1000 1000 01-Sep-17 08:00 01-Sep-17 990 LCS Dup 01-Sep-17 08:00 1715009-BSD1 1 17H0927 1000 1000 01-Sep-17 Duplicate QC 930 28-Aug-17 15:30 SC38627-01 Cloudy orange Cont: K 1715009-DUP1 1 1000 01-Sep-17 Matrix Spike oc 1000 1715009-MS1 1 17H0927 SC38733-04 30-Aug-17 10:10 01-Sep-17 Cont. AF 1000 1000 Matrix Spike Dup 1000 Cont. AL SC38733-04 30-Aug-17 10:10 01-Sep-17 1715009-MSD1 1 17H0927 1000 1000 TF1-MW-1003-0828 8270 PAH DoD 950 08-Sep-17 16 28-Aug-17 15:30 01-Sep-17 DoD Level IV/Extra Liter Cloudy L SC38627-01 1 1000 TF1-EBP-GZ101R-0 8270 PAH DoD SC38627-02 08-Sep-17 16 28-Aug-17 15:16 01-Sep-17 DoD Level IV/Extra Liter 1 1000 M SC38627-03 TF1-GT-106-08281 | 8270 PAH DoD 1030 1 08-Sep-17 16 28-Aug-17 15:25 01-Sep-17 DoD Level IV/Extra Liter М 1000 8270 PAH DoD DoD Level IV/Extra Liter |Clear M SC38678-01 TF1-EBP-MW1001-1060 1 11-Sep-17 16 29-Aug-17 10:44 01-Sep-17 1000 TF1-EBP-MW1000-8270 PAH DoD 1060 11-Sep-17 16 29-Aug-17 14:52 SC38678-02 1 1000 01-Sep-17 DoD Level IV/Extra Liter Clear TF1-MW1006-0829 8270 PAH DoD 1040 11-Sep-17 16 29-Aug-17 10:25 SC38678-03 1 1000 01-Sep-17 DoD Level IV/Extra Liter L TF1-MW1002-0829 8270 PAH DoD 11-Sep-17 16 29-Aug-17 11:05 01-Sep-17 DoD Level IV/Extra Liter Clear M SC38678-04 1000

Printed: 9/6/2017 8:06:24PM

SDG SC38627 Page 840 / 1574

Extracts Prepared By Date

Outhous Series 91017

PREPARATION BENCH SHEET

1715009

Eurofins Spectrum Analytical, Inc. - MA

Matrix: Aqueous

Prepared using: SVOC - SW846 3510C

Surrogate used: 17H0260

Lab Number	Client Sample ID	Analysis	Initial (ml)	Final (ml)	Spike ID	Source ID	A * Init	1	ul Spike	ul Surr	ul Surr 2	Due	Collected	Prepared	Extraction Comm	ents C	pl BASIC	H AÇID	pH Init	CL
SC38678-05	TF1-GT-109-08291	8270 PAH DoD	950	1						1000		11-Sep-17 16	29-Aug-17 16:05	01-Sep-17	DoD Level IV/Extra Liter	L				
SC38678-06	TF1-DUP-01-08291	8270 PAH DoD	980	1						1000		11-Sep-17 16	29-Aug-17 12:00	01-Sep-17	DoD Level IV/Extra Liter yellow	Clear J				
SC38733-01	TF1-MW-1007-0830	8270 PAH DoD	1040	1						1000		12-Sep-17 16	30-Aug-17 10:52	01-Sep-17	DoD Level IV/Extra Liter	K				
SC38733-02	TF1-MW-1007D-08 3017	8270 PAH DoD	1030	1						1000		12-Sep-17 16	30-Aug-17 14:55	01-Sep-17	DoD Level IV/Extra Liter	K				
SC38733-03	TF1-GZ-112-083017	8270 PAH DoD	940	1						1000		12-Sep-17 16	30-Aug-17 14:20	01-Sep-17	DoD Level IV/Extra Liter	L				
SC38733-04	TF1-MW-1005-0830	8270 PAH DoD	1050	1						1000		12-Sep-17 16	30-Aug-17 10:10	01-Sep-17	Run MS/MSD/DoD Level IV/Extra Liter	٩M				
SC38733-05	TF1-GZ-118-083017	8270 PAH DoD	1050	1						1000		12-Sep-17 16	30-Aug-17 15:05	01-Sep-17	DoD Level IV/Extra Liter	L				

Extracts Prepared By

Printed: 9/6/2017 8:06:24PM SDG SC38627 Page 841 / 1574 arthony Den 9/1/2

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: $\underline{S707710}$ Instrument: $\underline{HPS4}$

Calibration: <u>1708113</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
MS Tune	S707710-TUN1	DFT40828.D	08/28/17 10:13
Cal Standard	S707710-CAL1	40828CAL1.D	08/28/17 10:41
Low Cal Check	S707710-LCV2	40828CAL1.D	08/28/17 10:41
Cal Standard	S707710-CAL2	40828CAL2.D	08/28/17 11:09
Cal Standard	S707710-CAL3	40828CAL3.D	08/28/17 11:38
Low Cal Check	S707710-LCV1	40828CAL3.D	08/28/17 11:38
Cal Standard	S707710-CAL6	40828CAL6.D	08/28/17 13:02
Cal Standard	S707710-CAL7	40828CAL7.D	08/28/17 13:30
Cal Standard	S707710-CAL8	40828CAL8.D	08/28/17 13:58
Cal Standard	S707710-CAL9	40828CAL9.D	08/28/17 14:27
Cal Standard	S707710-CALA	40828CALA.D	08/28/17 14:55
Cal Standard	S707710-CAL4	40828CAL4.D	08/29/17 14:47
Cal Standard	S707710-CAL5	40828CAL5.D	08/29/17 15:15
Initial Cal Check	S707710-ICV1	40829ICV1.D	08/29/17 15:44

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SW846 8270D

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Calibration: <u>1708113</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
MS Tune	S708168-TUN1	DFT40913.D	09/13/17 09:10
Calibration Check	S708168-CCV1	SCT40913.D	09/13/17 09:39
Blank	1715009-BLK1	BKR15009.D	09/13/17 16:12
LCS	1715009-BS1	BSR15009.D	09/13/17 17:09
LCS Dup	1715009-BSD1	BSDR5009.D	09/13/17 17:37
TF1-MW-1003-082817	SC38627-01	C3862701.D	09/13/17 18:06
TF1-MW-1003-082817	1715009-DUP1	3862701D.D	09/13/17 18:34
TF1-EBP-GZ101R-082817	SC38627-02	C3862702.D	09/13/17 19:02
TF1-GT-106-082817	SC38627-03	C3862703.D	09/13/17 19:31
Calibration Check	S708168-CCV2	SCG40913.D	09/13/17 21:33

CROSS REFERENCE TABLE

SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

CASE NARRATIVE

Spectrum Analytical, Inc. Lab Reference No. SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport / 112608005-WE15

SDG #: SC38627

I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

III. METHODS

Analyses were performed according to SW846 8081B.

IV. PREPARATION

Aqueous samples were prepared according to SW846 3510C.

V. INSTRUMENTATION

The following equipment was used to analyze SW846 8081B:

<u>HPS14 details:</u> Agilent 6890 RTX-CLPesticides 2 column (30m, 0.53mmID, 0.42um) RTX-CLP confirmation column (30m, 0.53mmID, 0.5um)

VI. ANALYSIS

A. Calibration:

All quality control samples were within the acceptance criteria.

B. Blanks:

All blanks were within the acceptance criteria.

C. Surrogates:

All method criteria were met.

D. Spikes:

1. Laboratory Control Samples (LCS):

All method criteria were met.

2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

No matrix spike or matrix spike duplicates were analyzed.

E. Duplicates:

No client requested duplicate. However, the method criteria may have been fulfilled with non-SDG source samples.

F. Internal Standards:

Internal standards were within the acceptance criteria.

G. Samples:

All method criteria were met.

FORM II - SURROGATE STANDARD RECOVERY SUMMARY

SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Spike ID: <u>17H0222</u>

Client ID	S1 #	S2 #	S3 #	S4 #	S5 #	S6 #	Total Out
Blank (1715010-BLK1)	105	106	78	71			0
LCS (1715010-BS1)	101	101	88	71			0
LCS Dup (1715010-BSD1)	101	101	85	71			0
Instrument Blank (S708006-IBL1)	93	94	107	90			0
Instrument Blank (S708006-IBL2)	94	96	107	101			0
TF1-MW-1003-082817 (SC38627-01)	103	106	88	88			0
TF1-EBP-GZ101R-082817 (SC38627-02)	112	115	106	104			0
TF1-GT-106-082817 (SC38627-03)	112	98	90	71			0

Control Limits

S1 = 4,4-DB-Octafluorobiphenyl (Sr) 30 - 150 S2 = 4,4-DB-Octafluorobiphenyl (Sr) [2C] 30 - 150 S3 = Decachlorobiphenyl (Sr) 30 - 135S4 = Decachlorobiphenyl (Sr) [2C] 30 - 135

[#] Column to be used to flag recovery values

^{*} Values outside of QC limits

SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPS14

Batch: <u>1715010</u> Laboratory ID: <u>1715010-BS1</u>

Preparation: SW846 3510C Initial/Final: 980 ml / 10 ml

Analyzed: <u>09/07/17 23:21</u> Spike ID: 17G0198

Column 1: RTX-CLPesticidesII; 0.42um df 0.53mmID 30m

Column [2C]: RTX-CLPesticides; 0.5um df 0.53mmID 30m

File ID: <u>L3140907.D</u>

COMPOUND	SPIKE ADDED (µg/l)	LCS CONCENTRATION (µg/l)	LCS % REC.#	QC LIMITS REC.
alpha-BHC	0.510	0.377	74	54 - 138
alpha-BHC [2C]	0.510	0.352	69	54 - 138
beta-BHC	0.510	0.388	76	56 - 136
beta-BHC [2C]	0.510	0.510 0.392		56 - 136
delta-BHC	0.510	0.381	75	52 - 142
delta-BHC [2C]	0.510	0.360	71	52 - 142
gamma-BHC (Lindane)	0.510	0.390	76	59 - 134
gamma-BHC (Lindane) [2C]	0.510	0.400	78	59 - 134
Heptachlor	0.510	0.376	74	54 - 130
Heptachlor [2C]	0.510	0.376	74	54 - 130
Aldrin	0.510	0.372	73	45 - 134
Aldrin [2C]	0.510	0.392	77	45 - 134
Heptachlor epoxide	0.510	0.388	76	61 - 133
Heptachlor epoxide [2C]	0.510	0.383	75	61 - 133
Endosulfan I	0.510	0.396	78	62 - 126
Endosulfan I [2C]	0.510	0.396	78	62 - 126
Dieldrin	0.510	0.389	76	60 - 136
Dieldrin [2C]	0.510	0.376	74	60 - 136
4,4'-DDE (p,p')	0.510	0.385	75	57 - 135
4,4'-DDE (p,p') [2C]	0.510	0.385	75	57 - 135
Endrin	0.510	0.436	85	60 - 138
Endrin [2C]	0.510	0.423	83	60 - 138
Endosulfan II	0.510	0.410	80	52 - 135
Endosulfan II [2C]	0.510	0.371	73	52 - 135
4,4'-DDD (p,p')	0.510	0.394	77	56 - 143
4,4'-DDD (p,p') [2C]	0.510	0.379	74	56 - 143
Endosulfan sulfate	0.510	0.415	81	62 - 133
Endosulfan sulfate [2C] SDG SC38627 Page 857 / 1574	0.510	0.367	72	62 - 133

SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPS14

Batch: <u>1715010</u> Laboratory ID: <u>1715010-BS1</u>

Preparation: <u>SW846 3510C</u> <u>Initial/Final</u>: <u>980 ml / 10 ml</u>

Analyzed: 09/07/17 23:21 Spike ID: 17G0198

Column 1: RTX-CLPesticidesII; 0.42um df 0.53mmID 30m

Column [2C]: RTX-CLPesticides; 0.5um df 0.53mmID 30m

File ID: <u>L3140907.D</u>

COMPOUND	SPIKE ADDED (µg/l)	LCS CONCENTRATION (µg/l)	LCS % REC.#	QC LIMITS REC.
4,4'-DDT (p,p')	0.510	0.398	78	51 - 143
4,4'-DDT (p,p') [2C]	0.510	0.334	65	51 - 143
Methoxychlor	0.510	0.447	88	54 - 145
Methoxychlor [2C]	0.510	0.355	70	54 - 145
Endrin ketone	0.510	0.407	80	58 - 134
Endrin ketone [2C]	0.510	0.343	67	58 - 134
Endrin aldehyde	0.510	0.445	87	51 - 132
Endrin aldehyde [2C]	0.510	0.400	78	51 - 132
alpha-Chlordane	0.510	0.393	77	60 - 129
alpha-Chlordane [2C]	0.510	0.390	76	60 - 129
Chlordane (gamma)(trans)	0.510	0.385	75	56 - 136
Chlordane (gamma)(trans) [2C]	0.510	0.381	75	56 - 136
Alachlor	0.510	0.468	92	40 - 140
Alachlor [2C]	0.510	0.387	76	40 - 140

File ID: <u>L4140907.D</u>

	SPIKE	LCSD	LCSD	0/	QC LIMITS		
COMPOUND	ADDED (μg/l)	CONCENTRATION (μg/l)	% REC. #	% RPD #	RPD	REC.	
alpha-BHC	0.505	0.376	74	0.3	20	54 - 138	
alpha-BHC [2C]	0.505	0.351	69	0.5	20	54 - 138	
beta-BHC	0.505	0.385	76	0.8	20	56 - 136	
beta-BHC [2C]	0.505	0.386	76	2	20	56 - 136	
delta-BHC	0.505	0.380	75	0.3	20	52 - 142	
delta-BHC [2C]	0.505	0.356	70	1	20	52 - 142	
gamma-BHC (Lindane)	0.505	0.388	77	0.5	20	59 - 134	
gamma-BHC (Lindane) [2C]	0.505	0.397	79	0.6	20	59 - 134	
Heptachlor	0.505	0.374	74	0.7	20	54 - 130	
Heptachlor [2C]	0.505	0.376	75	0.05	20	54 - 130	

SDG SC38627 Page 858 / 1574

SW846 8081B

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPS14

Batch: <u>1715010</u> Laboratory ID: 1715010-BSD1

Initial/Final: Preparation: SW846 3510C 990 ml / 10 ml

Analyzed: 09/07/17 23:39 Spike ID: 17G0198

Column 1: RTX-CLPesticidesII; 0.42um df 0.53mmID 30m Column [2C]: RTX-CLPesticides; 0.5um df 0.53mmID 30m

> File ID: L4140907.D

	SPIKE	LCSD	LCSD	0/	QC	LIMITS
COMPOUND	ADDED (μg/l)	CONCENTRATION (µg/l)	% REC. #	% RPD#	RPD	REC.
Aldrin	0.505	0.369	73	0.7	20	45 - 134
Aldrin [2C]	0.505	0.390	77	0.6	20	45 - 134
Heptachlor epoxide	0.505	0.384	76	1	20	61 - 133
Heptachlor epoxide [2C]	0.505	0.378	75	1	20	61 - 133
Endosulfan I	0.505	0.392	78	1	20	62 - 126
Endosulfan I [2C]	0.505	0.389	77	2	20	62 - 126
Dieldrin	0.505	0.383	76	2	20	60 - 136
Dieldrin [2C]	0.505	0.375	74	0.3	20	60 - 136
4,4'-DDE (p,p')	0.505	0.381	75	1	20	57 - 135
4,4'-DDE (p,p') [2C]	0.505	0.382	76	0.7	20	57 - 135
Endrin	0.505	0.418	83	4	20	60 - 138
Endrin [2C]	0.505	0.422	84	0.2	20	60 - 138
Endosulfan II	0.505	0.397	79	3	20	52 - 135
Endosulfan II [2C]	0.505	0.363	72	2	20	52 - 135
4,4'-DDD (p,p')	0.505	0.384	76	3	20	56 - 143
4,4'-DDD (p,p') [2C]	0.505	0.368	73	3	20	56 - 143
Endosulfan sulfate	0.505	0.401	79	3	20	62 - 133
Endosulfan sulfate [2C]	0.505	0.357	71	3	20	62 - 133
4,4'-DDT (p,p')	0.505	0.390	77	2	20	51 - 143
4,4'-DDT (p,p') [2C]	0.505	0.330	65	1	20	51 - 143
Methoxychlor	0.505	0.421	83	6	20	54 - 145
Methoxychlor [2C]	0.505	0.350	69	2	20	54 - 145
Endrin ketone	0.505	0.400	79	2	20	58 - 134
Endrin ketone [2C]	0.505	0.336	66	2	20	58 - 134
Endrin aldehyde	0.505	0.435	86	2	20	51 - 132
Endrin aldehyde [2C]	0.505	0.392	78	2	20	51 - 132
alpha-Chlordane	0.505	0.391	77	0.4	20	60 - 129
alpha-Chlordane [2C] SDG SC38627 Page 859	0.505	0.387	77	0.9	20	60 - 129

SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: HPS14

Batch: <u>1715010</u> Laboratory ID: <u>1715010-BSD1</u>

Preparation: <u>SW846 3510C</u> Initial/Final: <u>990 ml / 10 ml</u>

Analyzed: 09/07/17 23:39 Spike ID: 17G0198

Column 1: RTX-CLPesticidesII; 0.42um df 0.53mmID 30m

Column [2C]: RTX-CLPesticides; 0.5um df 0.53mmID 30m

File ID: <u>L4140907.D</u>

COMBOUND	SPIKE ADDED	LCSD CONCENTRATION	LCSD % REC.#	% RPD#		LIMITS
COMPOUND	(µg/l)	(µg/l)	KEC.#	KPD#	RPD	REC.
Chlordane (gamma)(trans)	0.505	0.381	75	1	20	56 - 136
Chlordane (gamma)(trans) [2C]	0.505	0.377	75	1	20	56 - 136
Alachlor	0.505	0.460	91	2	20	40 - 140
Alachlor [2C]	0.505	0.387	77	0.1	20	40 - 140

[#] Column to be used to flag recovery and RPD values with an asterisk

Individual peaks for multi-component analytes are indicated by a number in parentheses

^{*} Values outside of QC limits

1715010-BLK1

FORM IV - METHOD BLANK SUMMARY SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: <u>Tetra Tech, Inc. - Salem, NH</u> Project: <u>WE15 Tank Farm 1 NAVSTA Newport</u>

Matrix: Aqueous Laboratory ID: <u>1715010-BLK1</u> File ID: <u>B2140907.D</u>

Preparation: SW846 3510C Initial/Final: 990 ml / 10 ml

Analyzed: <u>09/07/17 23:04</u> Instrument: <u>HPS14</u>

Batch: <u>1715010</u> Sequence: <u>S708006</u> Calibration: <u>1709015</u>

Column 1: RTX-CLPesticidesII; 0.42um df 0.53mmID 30m

Column [2C]: RTX-CLPesticides; 0.5um df 0.53mmID 30m

This method blank applies to the following sample analyses:

SAMPLE NO.	LAB SAMPLE ID	FILE ID	DATE ANALYZED	TIME ANALYZED
LCS	1715010-BS1	L3140907.D	09/07/17	23:21
LCS Dup	1715010-BSD1	L4140907.D	09/07/17	23:39
TF1-MW-1003-082817	SC38627-01	3862701.D	09/08/17	0:48
TF1-EBP-GZ101R-082817	SC38627-02	3862702.D	09/08/17	1:06
TF1-GT-106-082817	SC38627-03	3862703.D	09/08/17	1:23

FORM I - ANALYSIS DATA SHEET SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: <u>Tetra Tech, Inc. - Salem, NH</u> Project: <u>WE15 Tank Farm 1 NAVSTA Newport</u>

Matrix: Aqueous Laboratory ID: <u>1715010-BLK1</u> File ID: <u>B2140907.D</u>

Preparation: SW846 3510C Initial/Final: 990 ml / 10 ml

Analyzed: <u>09/07/17 23:04</u> Instrument: <u>HPS14</u>

Batch: 1715010 Sequence: S708006 Calibration: 1709015

Batch:	<u>1715010</u> Seque	ence: <u>S7080</u>	<u>006</u>	Calibration:	<u>1709015</u>		
CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
319-84-6	alpha-BHC	1	0.020	U	0.012	0.020	0.020
319-84-6	alpha-BHC [2C]	1	0.020	U	0.018	0.020	0.020
319-85-7	beta-BHC	1	0.020	U	0.015	0.020	0.020
319-85-7	beta-BHC [2C]	1	0.020	U	0.019	0.020	0.020
319-86-8	delta-BHC	1	0.020	U	0.016	0.020	0.020
319-86-8	delta-BHC [2C]	1	0.020	U	0.019	0.020	0.020
58-89-9	gamma-BHC (Lindane)	1	0.020	U	0.017	0.020	0.020
58-89-9	gamma-BHC (Lindane) [2C]	1	0.020	U	0.018	0.020	0.020
76-44-8	Heptachlor	1	0.020	U	0.020	0.020	0.020
76-44-8	Heptachlor [2C]	1	0.020	U	0.020	0.020	0.020
309-00-2	Aldrin	1	0.020	U	0.016	0.020	0.020
309-00-2	Aldrin [2C]	1	0.020	U	0.019	0.020	0.020
1024-57-3	Heptachlor epoxide	1	0.020	U	0.015	0.020	0.020
1024-57-3	Heptachlor epoxide [2C]	1	0.020	U	0.015	0.020	0.020
959-98-8	Endosulfan I	1	0.020	U	0.016	0.020	0.020
959-98-8	Endosulfan I [2C]	1	0.020	U	0.016	0.020	0.020
60-57-1	Dieldrin	1	0.020	U	0.017	0.020	0.020
60-57-1	Dieldrin [2C]	1	0.020	U	0.019	0.020	0.020
72-55-9	4,4'-DDE (p,p')	1	0.020	U	0.018	0.020	0.020
72-55-9	4,4'-DDE (p,p') [2C]	1	0.020	U	0.018	0.020	0.020
72-20-8	Endrin	1	0.020	U	0.019	0.020	0.040
72-20-8	Endrin [2C]	1	0.020	U	0.020	0.020	0.040
33213-65-9	Endosulfan II	1	0.020	U	0.020	0.020	0.040
33213-65-9	Endosulfan II [2C]	1	0.020	U	0.016	0.020	0.040
72-54-8	4,4'-DDD (p,p')	1	0.020	U	0.019	0.020	0.040
72-54-8	4,4'-DDD (p,p') [2C]	1	0.020	U	0.018	0.020	0.040
1031-07-8	Endosulfan sulfate	1	0.020	U	0.020	0.020	0.040
1031-07-8	Endosulfan sulfate [2C]	1	0.020	U	0.017	0.020	0.040
50-29-3	4,4'-DDT (p,p')	1	0.030	U	0.018	0.030	0.040
50-29-3	4,4'-DDT (p,p') [2C]	1	0.030	U	0.022	0.030	0.040
72-43-5	Methoxychlor	1	0.020	U	0.018	0.020	0.040
72-43-5	Methoxychlor [2C]	1	0.020	U	0.018	0.020	0.040

FORM I - ANALYSIS DATA SHEET SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: <u>1715010-BLK1</u> File ID: <u>B2140907.D</u>

Preparation: SW846 3510C Initial/Final: 990 ml / 10 ml

Analyzed: <u>09/07/17 23:04</u> Instrument: <u>HPS14</u>

Batch: <u>1715010</u> Sequence: <u>S708006</u> Calibration: <u>1709015</u>

							_
CAS NO.	COMPOUND	DILUTION	CONC. (µg/l)	Q	MDL	LOD	LOQ
53494-70-5	Endrin ketone	1	0.020	U	0.017	0.020	0.040
53494-70-5	Endrin ketone [2C]	1	0.020	U	0.018	0.020	0.040
7421-93-4	Endrin aldehyde	1	0.020	U	0.019	0.020	0.040
7421-93-4	Endrin aldehyde [2C]	1	0.020	U	0.018	0.020	0.040
5103-71-9	alpha-Chlordane	1	0.020	U	0.016	0.020	0.020
5103-71-9	alpha-Chlordane [2C]	1	0.020	U	0.017	0.020	0.020
5103-74-2	Chlordane (gamma)(trans)	1	0.020	U	0.016	0.020	0.020
5103-74-2	Chlordane (gamma)(trans) [2C]	1	0.020	U	0.014	0.020	0.020
8001-35-2	Toxaphene	1	0.505	U	0.331	0.505	0.505
8001-35-2	Toxaphene [2C]	1	0.505	U	0.290	0.505	0.505
57-74-9	Chlordane	1	0.066	U	0.052	0.066	0.066
57-74-9	Chlordane [2C]	1	0.066	U	0.062	0.066	0.066
15972-60-8	Alachlor	1	0.020	U	0.019	0.020	0.020
15972-60-8	Alachlor [2C]	1	0.020	U	0.018	0.020	0.020

FORM VIIIa - INTERNAL STANDARD AREA AND RT SUMMARY

SW846 8081B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: <u>Tetra Tech, Inc. - Salem, NH</u> Project: <u>WE15 Tank Farm 1 NAVSTA Newport</u>

Sequence:S708006Instrument:HPS14Matrix:AqueousCalibration:1709015

Analyzed: 09/07/17 22:11 File ID: <u>C3140907.D</u>

	IS1 Area #	RT#	IS2 Area #	RT#	IS3 Area #	RT#	IS4 Area #	RT #	IS5 Area #	RT #	IS6 Area #	RT#
12-Hour Standard	81166410	2.65	80437760	2.37								
Upper Limit	162332820	3.15	160875520	2.87								
Lower Limit	40583205	2.15	40218880	1.87								
Sample ID												
Calibration Check (S708006-CCV2)	76713720	2.65	74141700	2.38								
Calibration Check (S708006-CCV3)	75889220	2.65	72407130	2.38								
Calibration Check (S708006-CCV4)	84498780	2.65	77053920	2.37								
Calibration Check (S708006-CCV5)	77662810	2.65	74061870	2.38								
Calibration Check (S708006-CCV6)	77592990	2.65	74578450	2.38								
Blank (1715010-BLK1)	85573700	2.65	78935570	2.38								
LCS (1715010-BS1)	84731020	2.65	79211060	2.38								
LCS Dup (1715010-BSD1)	85832340	2.65	78682690	2.39								
Instrument Blank (S708006-IBL1)	94605500	2.66	96739030	2.37								
Instrument Blank (S708006-IBL2)	75007010	2.66	73442400	2.36								
Performance Mix (S708006-PEM1)	73945500	2.65	70583520	2.37								
Performance Mix (S708006-PEM2)	75469660	2.66	69773980	2.36								
TF1-MW-1003-082817 (SC38627-01)	80748870	2.65	65713540	2.36								
TF1-EBP-GZ101R-082817 (SC38627-02)	74612220	2.65	65415860	2.36								
TF1-GT-106-082817 (SC38627-03)	79977430	2.65	92069440	2.38								

IS1 = 2,4,5,6-TC-M-Xylene (IS)

IS2 = 2,4,5,6-TC-M-Xylene (IS) [2C]

Area Upper Limit = 200% of internal standard area Area Lower Limit = 50% of internal standard area RT Limit = +/-0.50

[#] Column to be used to flag internal standard area values

^{*} Values outside of QC limits

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SW846 8081B

Laboratory:Eurofins Spectrum Analytical, Inc. - MASDG:SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
alpha-BHC	0.012	0.020	μg/l
alpha-BHC [2C]	0.018	0.020	μg/l
beta-BHC	0.015	0.020	μg/l
beta-BHC [2C]	0.019	0.020	μg/l
delta-BHC	0.015	0.020	μg/l
delta-BHC [2C]	0.019	0.020	μg/l
gamma-BHC (Lindane)	0.017	0.020	μg/l
gamma-BHC (Lindane) [2C]	0.018	0.020	μg/l
Heptachlor	0.020	0.020	μg/l
Heptachlor [2C]	0.020	0.020	μg/l
Aldrin	0.016	0.020	μg/l
Aldrin [2C]	0.019	0.020	μg/l
Heptachlor epoxide	0.015	0.020	μg/l
Heptachlor epoxide [2C]	0.015	0.020	μg/l
Endosulfan I	0.016	0.020	μg/l
Endosulfan I [2C]	0.016	0.020	μg/l
Dieldrin	0.017	0.020	μg/l
Dieldrin [2C]	0.019	0.020	μg/l
4,4'-DDE (p,p')	0.018	0.020	μg/l
4,4'-DDE (p,p') [2C]	0.018	0.020	μg/l
Endrin	0.019	0.040	μg/l
Endrin [2C]	0.019	0.040	μg/l
Endosulfan II	0.020	0.040	μg/l
Endosulfan II [2C]	0.016	0.040	μg/l
4,4'-DDD (p,p')	0.019	0.040	μg/l
4,4'-DDD (p,p') [2C]	0.017	0.040	μg/l
Endosulfan sulfate	0.020	0.040	μg/l
Endosulfan sulfate [2C]	0.017	0.040	μg/l
4,4'-DDT (p,p')	0.018	0.040	μg/l
4,4'-DDT (p,p') [2C]	0.022	0.040	μg/l
Methoxychlor	0.018	0.040	$\mu g/l$
Methoxychlor [2C]	0.018	0.040	μg/l
Endrin ketone	0.017	0.040	μg/l
Endrin ketone [2C]	0.018	0.040	μg/l
Endrin aldehyde	0.019	0.040	μg/l
Endrin aldehyde [2C]	0.018	0.040	μg/l
alpha-Chlordane	0.015	0.020	μg/l
alpha-Chlordane [2C]	0.017	0.020	μg/l
Chlordane (gamma)(trans)	0.016	0.020	μg/l

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SW846 8081B

 Laboratory:
 Eurofins Spectrum Analytical, Inc. - MA
 SDG:
 SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Chlordane (gamma)(trans) [2C]	0.014	0.020	μg/l
Toxaphene	0.328	0.500	μg/l
Toxaphene [2C]	0.287	0.500	μg/l
Toxaphene (1)	0.328	0.500	μg/l
Toxaphene (1) [2C]	0.287	0.500	μg/l
Toxaphene (2)	0.328	0.500	μg/l
Toxaphene (2) [2C]	0.287	0.500	μg/l
Toxaphene (3)	0.328	0.500	μg/l
Toxaphene (3) [2C]	0.287	0.500	μg/l
Toxaphene (4)	0.328	0.500	μg/l
Toxaphene (4) [2C]	0.287	0.500	μg/l
Toxaphene (5)	0.328	0.500	μg/l
Toxaphene (5) [2C]	0.287	0.500	μg/l
Chlordane	0.051	0.065	μg/l
Chlordane [2C]	0.061	0.065	μg/l
Chlordane (1)	0.051	0.065	μg/l
Chlordane (1) [2C]	0.061	0.065	μg/l
Chlordane (2)	0.051	0.065	μg/l
Chlordane (2) [2C]	0.061	0.065	μg/l
Chlordane (3)	0.051	0.065	μg/l
Chlordane (3) [2C]	0.061	0.065	μg/l
Chlordane (4)	0.051	0.065	μg/l
Chlordane (4) [2C]	0.061	0.065	μg/l
Chlordane (5)	0.051	0.065	μg/l
Chlordane (5) [2C]	0.061	0.065	μg/l
Alachlor	0.019	0.020	μg/l
Alachlor [2C]	0.018	0.020	μg/l

CROSS REFERENCE TABLE

Mod EPA 3C/SOP RSK-175

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

CASE NARRATIVE

Spectrum Analytical, Inc. Lab Reference No. SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport / 112608005-WE15

SDG #: SC38627

I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

III. METHODS

Analyses were performed according to Mod EPA 3C/SOP RSK-175.

IV. PREPARATION

Aqueous samples were prepared according to General Air Prep.

V. INSTRUMENTATION

The following equipment was used to analyze Mod EPA 3C/SOP RSK-175:

Air5 details: Perkin-Elmer / Arnel Clarus 500 GC TCD detector 7' HayeSep N 60/80, 1/8" SF column 9' Molecular Sieve 13x45/60, 1/8" SF column

VI. ANALYSIS

A. Calibration:

All quality control samples were within the acceptance criteria.

B. Blanks:

All blanks were within the acceptance criteria.

C. Spikes:

1. Laboratory Control Samples (LCS):

All method criteria were met.

2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

No matrix spike or matrix spike duplicates were analyzed.

D. Duplicates:

A duplicate was analyzed.

In batch 1715310 from source sample TF1-MW-1003-082817 (SC38627-01).

All method criteria were met.

E. Samples:

All method criteria were met.

FORM IIIa - LCS / LCS DUPLICATE RECOVERY Mod EPA 3C/SOP RSK-175

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: Air5

Batch: <u>1715310</u> Laboratory ID: <u>1715310-BS1</u>

Preparation: General Air Prep Initial/Final: $\underline{10~\mu g}/\underline{10~\mu g}$

Analyzed: <u>09/07/17 09:39</u> Spike ID: 17F0404

File ID: <u>090717-chanb-003-0</u>

COMPOUND	SPIKE ADDED (mg/l)	LCS CONCENTRATION (mg/l)	LCS % REC.#	QC LIMITS REC.
Methane	500	527	105	73 - 125
Ethane	500	596	119	74 - 131

[#] Column to be used to flag recovery and RPD values with an asterisk

Individual peaks for multi-component analytes are indicated by a number in parentheses

^{*} Values outside of QC limits

FORM IIIc - DUPLICATES Mod EPA 3C/SOP RSK-175

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: 1715310-DUP1

Batch: <u>1715310</u> Lab Source ID: <u>SC38627-01</u>

Preparation: General Air Prep Initial/Final: 10 μg / 10 μg

Source Sample Name: TF1-MW-1003-082817 % Solids:

File ID: <u>090717-chanb-006-0</u>

ANALYTE	CONTROL LIMIT	SAMPLE CONCENTRATION (µg/l)	C	DUPLICATE CONCENTRATION (µg/l)	С	RPD %	Q	METHOD
Methane	30	14.0		17.0		19		Mod EPA 3C/SOP RSK-175
Ethane	30	BRL		BDL				Mod EPA 3C/SOP RSK-175

^{*} Values outside of QC limits

Individual peaks for multi-component analytes are indicated by a number in parentheses

1715310-BLK1

FORM IV - METHOD BLANK SUMMARY Mod EPA 3C/SOP RSK-175

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: <u>Tetra Tech, Inc. - Salem, NH</u> <u>Project: <u>WE15 Tank Farm 1 NAVSTA Newport</u></u>

Matrix: Aqueous Laboratory ID: <u>1715310-BLK1</u> File ID: <u>090717-chanb-004-0</u>

Preparation: General Air Prep Initial/Final: 10 µg / 10 µg

Analyzed: 09/07/17 10:14 Instrument: Air5

Batch: <u>1715310</u> Sequence: <u>S707962</u> Calibration: <u>1707028</u>

This method blank applies to the following sample analyses:

SAMPLE NO.	LAB SAMPLE ID	FILE ID	DATE ANALYZED	TIME ANALYZED
LCS	1715310-BS1	090717-chanb-003-0	09/07/17	9:39
TF1-MW-1003-082817	SC38627-01	090717-chanb-005-0	09/07/17	11:10
Duplicate	1715310-DUP1	090717-chanb-006-0	09/07/17	11:32
TF1-EBP-GZ101R-082817	SC38627-02	090717-chanb-007-0	09/07/17	11:59
TF1-GT-106-082817	SC38627-03	090717-chanb-008-0	09/07/17	12:21

FORM I - AIR ANALYSIS DATA SHEET Mod EPA 3C/SOP RSK-175

1715310-BLK1

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: <u>Tetra Tech, Inc. - Salem, NH</u> <u>Project: <u>WE15 Tank Farm 1 NAVSTA Newport</u></u>

Matrix: Aqueous Laboratory ID: <u>1715310-BLK1</u> File ID: <u>090717-chanb-004-0</u>

Preparation: General Air Prep Initial/Final: 10 µg / 10 µg

Analyzed: 09/07/17 10:14 Instrument: Air5

Batch: <u>1715310</u> Sequence: <u>S707962</u> Calibration: <u>1707028</u>

Units: $\mu g/l$

CAS NO.	COMPOUND	RESULT	Q	MDL	LOD	LOQ
74-82-8	Methane	2.20	U	2.16	2.20	2.20
74-84-0	Ethane	5.00	U	3.48	5.00	5.00

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS Mod EPA 3C/SOP RSK-175

Laboratory:Eurofins Spectrum Analytical, Inc. - MASDG:SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Methane	2.16	2.20	μg/l
Ethane	3.48	5.00	μg/l

PREPARATION BENCH SHEET

-	7 1	53	-1	^
	' /	- 1		1
	/	7 7		

Method No.: 1707078 Sequence No.:

Matrix: Aqueous

Prepared using: Air - General Air Prep

Surrogate used: 17D0155

									-		8	
Lab Number	Client Sample ID	Collected	Initial (µg)	Final (µg)	Spike ID	Source ID	Analysis	Due	Pres.	RPD	Comments	
1715310-BLK1	Blank	07-Sep-17 06:00	10	10			QC					
1715310-BS1	LCS	07-Sep-17 06:00	10	10	17F0404		QC					
1715310-DUP1	Duplicate	28-Aug-17 15:30	10	10		SC38627-01	QC					
SC38627-01	TF1-MW-1003-082817	28-Aug-17 15:30	10	10			Dissolved Gases	08-Sep-17 16:00			DoD Level IV / Methane & Ethane	
SC38627-02	TF1-EBP-GZ101R-082817	28-Aug-17 15:16	10	10			Dissolved Gases	08-Sep-17 16:00			DoD Level IV / Methane & Ethane	
SC38627-03	TF1-GT-106-082817	28-Aug-17 15:25	10	10			Dissolved Gases	08-Sep-17 16:00			DoD Level IV / Methane & Ethane	
SC38678-01	TF1-EBP-MW1001-082917	29-Aug-17 10:44	10	10			Dissolved Gases	11-Sep-17 16:00			DoD Level IV / Methane & Ethane	
SC38678-02	TF1-EBP-MW1000-082917	29-Aug-17 14:52	10	10			Dissolved Gases	11-Sep-17 16:00			DoD Level IV / Methane & Ethane	
SC38678-03	TF1-MW1006-082917	29-Aug-17 10:25	10	10			Dissolved Gases	11-Sep-17 16:00			DoD Level IV / Methane & Ethane	
SC38678-04	TF1-MW1002-082917	29-Aug-17 11:05	10	10			Dissolved Gases	11-Sep-17 16:00			DoD Level IV / Methane & Ethane	
SC38678-05	TF1-GT-109-082917	29-Aug-17 16:05	10	10			Dissolved Gases	11-Sep-17 16:00			DoD Level IV / Methane & Ethane	
SC38678-06	TF1-DUP-01-082917	29-Aug-17 12:00	10	10			Dissolved Gases	11-Sep-17 16:00			DoD Level IV / Methane & Ethane	

Air5 9/7/17 diss gas SAD

Manager Reviewed

Sequence Reviewed By

Date

Analyst Reviewed

Printed: 9/8/2017 9:22:35AM

Date

Printed: 9/8/2017 9:22:35AM

SDG SC38627 Page 1157 / 1574

Page 1 of 1

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY

Mod EPA 3C/SOP RSK-175

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S706268</u> Instrument: <u>Air5</u>

Calibration: <u>1707028</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Cal Standard	S706268-CAL1	071117-chanB-002-0	07/11/17 08:55
Cal Standard	S706268-CAL2	071117-chanB-003-0	07/11/17 09:27
Cal Standard	S706268-CAL3	071117-chanB-004-0	07/11/17 10:24
Cal Standard	S706268-CAL4	071117-chanB-005-0	07/11/17 10:49
Cal Standard	S706268-CAL5	071117-chanB-006-0	07/11/17 11:19
Cal Standard	S706268-CAL6	071117-chanB-009-0	07/11/17 13:34
Cal Standard	S706268-CAL7	071117-chanB-010-0	07/11/17 14:03
Low Cal Check	S706268-LCV1	071117-chanB-012-0	07/11/17 15:51
Initial Cal Check	S706268-ICV1	071117-chanB-014-0	07/11/17 16:44

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY

Mod EPA 3C/SOP RSK-175

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S707962</u> Instrument: <u>Air5</u>

Calibration: <u>1707028</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed	
Calibration Check	S707962-CCV1	090717-chanb-001-0	09/07/17 08:30	
LCS	1715310-BS1	090717-chanb-003-0	09/07/17 09:39	
Blank	1715310-BLK1	090717-chanb-004-0	09/07/17 10:14	
TF1-MW-1003-082817	SC38627-01	090717-chanb-005-0	09/07/17 11:10	
TF1-MW-1003-082817	1715310-DUP1	090717-chanb-006-0	09/07/17 11:32	
TF1-EBP-GZ101R-082817	SC38627-02	090717-chanb-007-0	09/07/17 11:59	
TF1-GT-106-082817	SC38627-03	090717-chanb-008-0	09/07/17 12:21	
Calibration Check	S707962-CCV2	090717-chanb-015-0	09/07/17 16:01	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

SAMPLE INFORMATION

Client Sample Description	Collection Information	ELLE#
SC38627-01 Grab Groundwater MW-1003	08/28/2017 15:30	9185281
SC38627-02 Grab Groundwater GZ101R	08/28/2017 15:16	9185282
SC38627-03 Grab Groundwater GT-106	08/28/2017 15:25	9185283
SC38627-05 Grab Groundwater FRB	08/28/2017 15:25	9185284

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Case Narrative/Conformance Summary

CLIENT: Eurofins Spectrum Analytical SDG: TNO35

EPH/Miscellaneous GC

Fraction: Custom TPH by GC with Ranges

		Matrix			
Sample #	Client ID	Liquid	Solid	DF	Comments
9185281	SC38627-01	X		1	
9185282	SC38627-02	X		1	
9185283	SC38627-03	X		1	

All analyses have been performed in accordance with DOD QSM Version 5.0 unless otherwise noted below. See QC Reference List for Associated Batch QC Samples

SAMPLE RECEIPT:

Samples were received in good condition and within temperature requirements.

HOLDING TIME:

All holding times were met.

PREPARATION/EXTRACTION/DIGESTION:

No problems were encountered.

CALIBRATION/STANDARDIZATION:

All criteria were met.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

MS/MSD

Matrix QC may not be included if site-specific QC were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, laboratory spike data (LCS) are provided.

SAMPLE ANALYSIS:

No problems were encountered with the analysis of the samples.

Case Narrative/Conformance Summary

CLIENT: Eurofins Spectrum Analytical SDG: TNO35

EPH/Miscellaneous GC

Fraction: Custom TPH by GC with Ranges

Abbreviation Key

UNSPK = Unspiked (for MS/MSD)	LOQ = Limit of Quantitation
+MS = Matrix Spike	MDL = Method Detection Limit
MSD = Matrix Spike Duplicate	ND = Not Detected
BKG = Background (for Duplicate)	J = Estimated Value
D = Duplicate (DUP)	E= out of calibration range
LCS = Lab Control Sample	RE = Repreparation/Reanalysis
LCSD = Lab Control Sample Duplicate	* = Out of Specification

Quality Control Reference List EPH/Miscellaneous GC

CLIENT: Eurofins Spectrum Analytical

SDG: TNO35

Fraction: Custom TPH by GC with Ranges

Analysis	Batch Number	Sample Number	Analysis Date
Custom TPH with Ranges (Water)	172440039A	PBLK39244	09/06/2017 01:08:00
		LCS39244	09/06/2017 01:30:00
		LCSD39244	09/06/2017 01:52:00
		9185281	09/06/2017 02:14:00
		9185282	09/06/2017 02:35:00
		9185283	09/06/2017 02:57:00

Quality Control Summary Method Blank EPH/Miscellaneous GC

SDG: TNO35 Matrix: LIQUID

Fraction: Custom TPH by GC with Ranges

172440039A / PBLK39244						
Analyte	Analysis Date	Blank Results	Units	DL	LOD	LOQ
Total TPH	09/06/17	N.D.	mg/l	0.050	0.10	0.20
C8-C44	09/06/17	N.D.	mg/l	0.050	0.10	0.20

Quality Control Summary Surrogates EPH/Miscellaneous GC

SDG: TNO35 Matrix: LIQUID

Fraction: Custom TPH by GC with Ranges

172440039A	Chloro	benzene	Orthoterphenyl			
	Spike Added	0.0121 mg/l	Spike Added	0.0121 mg/l		
Sample	% Recovery	Limits	% Recovery	Limits		
PBLK39244	116	35 - 135	91	56 - 125		
LCS39244	123	35 - 135	93	56 - 125		
LCSD39244	100	35 - 135	81	56 - 125		
9185281	126	35 - 135	90	56 - 125		
9185282	126	35 - 135	95	56 - 125		
9185283	119	35 - 135	89	56 - 125		

Quality Control Summary Laboratory Control Standard (LCS) Laboratory Control Standard Duplicate(LCSD)

SDG: TNO35 Matrix: LIQUID

EPH/Miscellaneous GC

Fraction: Custom TPH by GC with Ranges

LCS: LCS39244	Batch: 172440039A (Sample number(s): 9185281-9185283)								
LCSD: LCSD39244	Spike	LCS	LCSD						
	Added Conc Conc LCS LCSD %Rec							%RPD	
Analyte	mg/l	mg/l	mg/l	%Rec	%Rec	Limits	%RPD	Limits	
Total TPH	0.800	0.650	0.577	81	72	36-132	12	30	

LOQ/MDL Summary EPH/Miscellaneous GC

SDG: TNO35

Fraction: Custom TPH by GC with Ranges

02740: Custom TPH with Ranges (Water) Analyte Name	Default DL	Default LOD	Default LOQ	Units
Total TPH	.05	.1	0.20	mg/l
C8-C44	.05	.1	0.20	mg/l

Dept. 32 Prep Analysis; 11181 Custom TPH w/ Ranges Water Ext. Custom TPH with Ranges (Water)	1724	raction Batch 40039A	log ^A	ssigned to: 701	Karen	Beyer		Reviewed				art Date: 9 ech 2:	12/17	Start	time:	<u>8: 32</u>	
OC	Dept: 32	Prep Analysis:	11181	Custom TPH w	Range	s Water	Ext	Cus	om TPF	with Rand	es (W	ater)	Solver	nt Used		Lot No.	
C					Amt	<u> </u>			T .	T	T	1	1:1 HCI			1=274-	26
BLANKA PELK 99244		Code	(A)	19.7		MSS	Sol.	(mL) (mL)	pН	рН	 	Comments	Methylen	e Chloride	-	<u> </u>	
MS1722232A MS1		1				140470	00004	1.0		-						1722	2.12
Discording Dis		1	1/						_			ļ				1	
Sample # Code (N) SS/IS Sol. (III.) (<u> </u>	,			L	9/2/	17 -	18 KI		MS17222	232A DI	RO WATE	R SPIKE	GATE
19185281	Sample #			SS/IS Sol.			рН	рН	вс		112	Comments	1132B		1		Prio
287185282 03502 9 2 351244929 0 1 1 2 24604 09/13/2017 N 387185283 03503 9 8 551244929 0 1 1 2 2 24604 09/13/2017 N 387185283 03503 9 8 551244929 0 1 1 2 2 24604 09/13/2017 N 387185283 03503 9 8 551244929 0 1 1 2 2 24604 09/13/2017 N 387185283 03503 9 8 551244929 0 1 1 2 2 24604 09/13/2017 N 387185283 03503 9 8 551244929 0 1 1 2 2 24604 09/13/2017 N 387185283 03503 9 8 551244929 0 1 1 2 2 24604 09/13/2017 N 387185283 03503 9 8 551244929 0 1 1 2 2 24604 09/13/2017 N 387185283 03503 9 8 551244929 0 1 1 2 2 24604 09/13/2017 N 387185283 03503 9 8 551244929 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				L 0.0.476.40000	_	1.				Cha						09/13/2017	N
3 9185283 O3503 qug SSIZ243925	- 1			(8		-										i	1
## Bench# Bench# Bench# Section Work Station Work Station Subdition Section Section				SS1724332D	1 1~ '	_				-				 	24604	09/13/2017	N
ack ID: Balance# Sench# Bench# R-VAP ID C R-														Maca	201		
Balance# 2 Sec.)																	
		Bench#	╄				Temp							С		1794	10030

Project Name: WE15 Tank Farm 1 NAVSTA Newport LL Group #: 1844810

General Comments:

All analyses have been performed in accordance with DOD QSM Version 5.0 unless otherwise noted below.

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below. Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

For dual column analyses, the surrogate (for multi-surrogate tests, at least one surrogate) must be within the acceptance limits on at least one of the two columns.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

EPA 537 Version 1.1 Modified, Misc. Organics

Sample #s: 9185281, 9185282, 9185283, 9185284

The stated QC limits are advisory only until sufficient data points can be obtained to calculate statistical limits.

Batch #: 17246002 (Sample number(s): 9185281-9185284 UNSPK: 9185281)

The recovery(ies) for the following analyte(s) in the MS exceeded the acceptance window indicating a positive bias: Perfluorohexanoic acid, Perfluorohexanesulfonate, Perfluoro-octanesulfonate

The recovery(ies) for the following analyte(s) in the MS were below the acceptance window: Perfluorobutanesulfonate

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 9185281, 9185282, 9185283, 9185284, Blank, LCS, LCSD, MS

Case Narrative/Conformance Summary

CLIENT: Eurofins Spectrum Analytical SDG: TNO35

PFAS Group

Fraction: PFAS by LC/MS/MS

		ix		
Sample #	Client ID	Liquid	Solid DF	Comments
9185281	SC38627-01	X	1; 10	
9185282	SC38627-02	X	1	
9185283	SC38627-03	X	1	
9185284	SC38627-05	X	1	

All analyses have been performed in accordance with DOD QSM Version 5.0 unless otherwise noted below. See QC Reference List for Associated Batch QC Samples

SAMPLE RECEIPT:

Samples were received in good condition and within temperature requirements.

HOLDING TIME:

All holding times were met.

PREPARATION/EXTRACTION/DIGESTION:

No problems were encountered.

CALIBRATION/STANDARDIZATION:

All criteria were met.

OUALITY CONTROL AND NONCONFORMANCE SUMMARY:

MS/MSD

Please note that US EPA Methods for organic compounds do not require action by the laboratory based on out-of-specification MS/MSD results.

Batch#: 17246002 (Sample number(s): 9185281-9185284, UNSPK: 9185281)

The recovery(ies) for the following analyte(s) in the MS were below the acceptance

window: Perfluorobutanesulfonate

The recovery(ies) for the following analyte(s) in the MS exceeded the acceptance window indicating a positive bias: Perfluorohexanesulfonate, Perfluorohexanoic acid, Perfluoroctanesulfonate

Case Narrative/Conformance Summary

CLIENT: Eurofins Spectrum Analytical SDG: TNO35

PFAS Group

Fraction: PFAS by LC/MS/MS

Surrogate

Surrogate recoveries that are noncompliant are confirmed unless attributed to a dilution or otherwise noted.

(Sample number(s): 9185281-9185284: Analysis: 10954)
The stated QC limits are advisory only until sufficient data points can be obtained to calculate statistical limits.

SAMPLE ANALYSIS:

No problems were encountered with the analysis of the samples.

Abbreviation Kev

ADDICVIATION IXCY	
UNSPK = Unspiked (for MS/MSD)	LOQ = Limit of Quantitation
+MS = Matrix Spike	MDL = Method Detection Limit
MSD = Matrix Spike Duplicate	ND = Not Detected
BKG = Background (for Duplicate)	J = Estimated Value
D = Duplicate (DUP)	E= out of calibration range
LCS = Lab Control Sample	RE = Repreparation/Reanalysis
LCSD = Lab Control Sample Duplicate	* = Out of Specification

Quality Control Reference List PFAS Group

CLIENT: Eurofins Spectrum Analytical

SDG: TNO35

Fraction: PFAS by LC/MS/MS

Analysis	Batch Number	Sample Number	Analysis Date
PFAS in Water by LC/MS/MS	17246002	BLK246002B	09/08/2017 09:24:00
		LCS246002Q	09/08/2017 08:02:00
		LCSDAY	09/08/2017 08:22:00
		9185281 MS	09/08/2017 08:43:00
		9185281 UNSPK	09/08/2017 09:44:00
		9185281 UNSPK	09/11/2017 17:47:00
		9185282	09/08/2017 10:05:00
		9185283	09/08/2017 10:26:00
		9185284	09/08/2017 10:46:00

Quality Control Summary Method Blank PFAS Group SDG: TNO35

Matrix: LIQUID

Fraction: PFAS by LC/MS/MS

17246002 / BLK246002B						
Analyte	Analysis Date	Blank Results	Units	DL	LOD	LOQ
Perfluorooctanoic acid	09/08/17	N.D.	ng/l	0.6	2	2
Perfluorononanoic acid	09/08/17	N.D.	ng/l	0.6	2	2
Perfluorodecanoic acid	09/08/17	N.D.	ng/l	0.5	2	2
Perfluoroundecanoic acid	09/08/17	N.D.	ng/l	1	3	3
Perfluorododecanoic acid	09/08/17	N.D.	ng/l	0.5	2	2
Perfluorotridecanoic acid	09/08/17	N.D.	ng/l	0.5	2	2
Perfluorotetradecanoic acid	09/08/17	N.D.	ng/l	0.5	2	2
Perfluorohexanoic acid	09/08/17	N.D.	ng/l	0.6	2	2
Perfluoroheptanoic acid	09/08/17	N.D.	ng/l	0.5	2	2
Perfluorobutanesulfonate	09/08/17	N.D.	ng/l	0.8	3	3
Perfluorohexanesulfonate	09/08/17	N.D.	ng/l	1	3	3
Perfluoro-octanesulfonate	09/08/17	N.D.	ng/l	2	6	6
Perfluorobutanoic Acid	09/08/17	N.D.	ng/l	3	10	10
Perfluoropentanoic Acid	09/08/17	N.D.	ng/l	0.5	2	2
Perfluoroheptanesulfonate	09/08/17	N.D.	ng/l	2	6	6
Perfluorodecanesulfonate	09/08/17	N.D.	ng/l	2	6	6
PFOSA	09/08/17	N.D.	ng/l	3	9	9

FORM 02A SURROGATES LC/MS/MS

SDG No.: TNO35
Matrix: WATER

17046000			13C2-PFDODA	13C2-PFTEDA	13C3-PFBS	13C3-PFHXS	13C4-PFBA
17246002		Limits	28-127	26-119	26-148	34-126	33-123
LAB SAMPLE ID	DATE/T	IME	% Recovery	% Recovery	% Recovery	% Recovery	% Recovery
LCS246002	09/08/1	7 08:02	87	99	79	87	89
LCSDA	09/08/1	7 08:22	80	88	80	88	89
9185281MS	09/08/1	7 08:43	56	58	120	53	82
BLK246002	09/08/1	7 09:24	81	89	76	79	86
9185281	09/08/1	7 09:44	61	55	126	56	90
9185282	09/08/1	7 10:05	91	88	89	88	92
9185283	09/08/1	7 10:26	69	81	102	78	91
9185284	09/08/1	7 10:46	68	70	83	89	87
9185281DL	09/11/1	7 17:47	77	74	96	70	84

^{*} Outside QC Limits

FORM 02A SURROGATES LC/MS/MS

SDG No.: TNO35
Matrix: WATER

17046000			13C4-PFHPA	13C5-PFHXA	13C5-PFPEA	13C6-PFDA	13C7-PFUNDA
17246002		Limits	35-126	31-128	39-135	40-115	30-128
LAB SAMPLE ID	DATE/T	IME	% Recovery				
LCS246002	09/08/1	7 08:02	91	89	88	93	83
LCSDA	09/08/1	7 08:22	90	85	93	85	79
9185281MS	09/08/1	.7 08:43	59	56	107	70	63
BLK246002	09/08/1	7 09:24	80	79	86	84	80
9185281	09/08/1	7 09:44	65	67	122	80	66
9185282	09/08/1	7 10:05	99	94	99	99	88
9185283	09/08/1	7 10:26	81	81	98	84	83
9185284	09/08/1	7 10:46	89	95	91	90	73
9185281DL	09/11/1	7 17:47	80	77	98	84	79

^{*} Outside QC Limits

FORM 02A SURROGATES LC/MS/MS

SDG No.: TNO35
Matrix: WATER

17046000		13C8-PFOA	13C8-PFOS	13C8-PFOSA	13C9-PFNA
17246002	Limits	43-112	43-115	70-130	32-134
LAB SAMPLE ID	DATE/TIME	% Recovery	% Recovery	% Recovery	% Recovery
LCS246002	09/08/17 08:02	83	87	55 *	77
LCSDA	09/08/17 08:22	91	91	41 *	92
9185281MS	09/08/17 08:43	72	78	29 *	108
BLK246002	09/08/17 09:24	83	86	55 *	80
9185281	09/08/17 09:44	89	92	40 *	127
9185282	09/08/17 10:05	88	92	49 *	91
9185283	09/08/17 10:26	87	95	31 *	94
9185284	09/08/17 10:46	92	77	55 *	76
9185281DL	09/11/17 17:47	86	90	78	103

^{*} Outside QC Limits

Quality Control Summary Matrix Spike/Matrix Spike Duplicate

SDG: TNO35 Matrix: LIQUID

PFAS Group

Fraction: PFAS by LC/MS/MS

UNSPK: 9185281	Batch: 17246	002 (Sample n	umber(s): 918	5281-918528	34)				
MS: 9185281	Spike	Unspiked	MS	MSD					
	Added	Conc	Conc	Conc	MS	MSD	%Rec		%RPD
Analyte	ng/l	ng/l	ng/l	ng/l	%Rec	%Rec	Limits	%RPD	Limits
Perfluorooctanoic acid	13.6	154.26	169.73	NA	114 (2)	NA	70-130	NA	NA
Perfluorononanoic acid	13.6	0.669	14.71	NA	103	NA	70-130	NA	NA
Perfluorodecanoic acid	13.6	N.D.	13.49	NA	99	NA	70-130	NA	NA
Perfluoroundecanoic acid	13.6	N.D.	13.72	NA	101	NA	70-130	NA	NA
Perfluorododecanoic acid	13.6	N.D.	13.77	NA	101	NA	70-130	NA	NA
Perfluorotridecanoic acid	13.6	N.D.	14.83	NA	109	NA	70-130	NA	NA
Perfluorotetradecanoic acid	13.6	N.D.	13.42	NA	99	NA	70-130	NA	NA
Perfluorohexanoic acid	13.6	544.21	640.68	NA	709 (2)	NA	70-130	NA	NA
Perfluoroheptanoic acid	13.6	69.53	80.45	NA	80 (2)	NA	70-130	NA	NA
Perfluorobutanesulfonate	12	283.23	262.03	NA	-176 (2)	NA	70-130	NA	NA
Perfluorohexanesulfonate	12.85	1960.94	1981.54	NA	160 (2)	NA	70-130	NA	NA
Perfluoro-octanesulfonate	13	2072.69	2138.16	NA	503 (2)	NA	70-130	NA	NA
Perfluorobutanoic Acid	13.6	75.29	91.34	NA	118 (2)	NA	70-130	NA	NA
Perfluoropentanoic Acid	13.6	120.36	133.38	NA	96 (2)	NA	70-130	NA	NA
Perfluoroheptanesulfonate	12.49	133.3	142.55	NA	74 (2)	NA	70-130	NA	NA
Perfluorodecanesulfonate	13.09	N.D.	13.17	NA	101	NA	70-130	NA	NA
PFOSA	13.6	N.D.	11.9	NA	87	NA	70-130	NA	NA

Comments

(2) The unspiked sample result is greater than four times the spike added.

Results are being reported on an as received basis.

10/11/2017 8:51:09 AM Page 1 of 1

^{* =} Out of Specification

Quality Control Summary Laboratory Control Standard (LCS) Laboratory Control Standard Duplicate(LCSD)

SDG: TNO35 Matrix: LIQUID

PFAS Group

Fraction: PFAS by LC/MS/MS

LCS: LCS246002Q	Batch: 1724600	2 (Sample numb	er(s): 9185281-	9185284)				
LCSD: LCSDAY	Spike	LCS	LCSD					
	Added	Conc	Conc	LCS	LCSD	%Rec		%RPD
Analyte	ng/l	ng/l	ng/l	%Rec	%Rec	Limits	%RPD	Limits
Perfluorooctanoic acid	13.6	14.27	13.11	105	96	70-130	9	30
Perfluorononanoic acid	13.6	14.05	14.57	103	107	70-130	4	30
Perfluorodecanoic acid	13.6	14.33	13.56	105	100	70-130	6	30
Perfluoroundecanoic acid	13.6	12.82	13.79	94	101	70-130	7	30
Perfluorododecanoic acid	13.6	12.55	13.28	92	98	70-130	6	30
Perfluorotridecanoic acid	13.6	16.35	15.67	120	115	70-130	4	30
Perfluorotetradecanoic acid	13.6	13.14	13.41	97	99	70-130	2	30
Perfluorohexanoic acid	13.6	12.73	12.83	94	94	70-130	1	30
Perfluoroheptanoic acid	13.6	13.08	13.42	96	99	70-130	3	30
Perfluorobutanesulfonate	12	10.86	12.2	90	102	70-130	12	30
Perfluorohexanesulfonate	12.85	12.76	10.6	99	82	70-130	19	30
Perfluoro-octanesulfonate	13	12.48	11.43	96	88	70-130	9	30
Perfluorobutanoic Acid	13.6	13.67	13.61	100	100	70-130	0	30
Perfluoropentanoic Acid	13.6	12.08	12.19	89	90	70-130	1	30
Perfluoroheptanesulfonate	12.49	11.38	12.19	91	98	70-130	7	30
Perfluorodecanesulfonate	13.09	10.1	11.18	77	85	70-130	10	30
PFOSA	13.6	13.57	12.79	100	94	70-130	6	30

Organic Extraction Batchlog

Assigned to: 9213 Pamela Rothharpt

Reviewed by: ON 10262 Start Date: 9 5 17

17246002

Tech 1: PJR9213

Tech 2:

Analyses on Batch: PFAS in Water by LC/MS/MS

Dept: 3	3 Prep Ana	lysis: 14091 PF	AS Wate	er Prep							
Port#	QC	Sample Code	Amt (9)	SS/IS Sol.	Amt (mL)	MS Sol.	Amt (mL)	FV (uL)	IS amt (uL)	вс	Comments
2	9185281MS	O3501MS	99.97	SSMODX1733W	.075	MSMODX1733S	.04	Inl	16	2019	
10	BLANKA	BLK246002	100	SSMODX1733W	.025			1	1	7	
ון	LCSA	LCS246002	00	SSMODX1733W	.05	MSMODX1733S	w.				
12	LCSDA	LCSD246002	100	SSMODX1733W	-075	MSMODX1733S	Z	4	7	_	

Spike Solutions:

Witness:

JWK9524

Instrument: LUZY966

MSMODX1733S SSMODX1733W PFAS 537 Native Spike

PFAS 537 Modified Extraction/Surrogate Spik

SPE Manifold

Sequence: NAUCISMOD- NSEPOT/MSEPIL

P <u>pr</u> t#	Sample#	Sample Code	Amt	SS/IS Sol.	Amt (mL)	FV (uL)	IS Amt (uL)	ВС	Comments	Analyses	Due Date	Prio
351	1 9185281	O350	99.91	SSMODX1733W	.025	Inl	iG	201a	CENTriflyord: Cloudy wi	10954	09/13/2017	N
PS	2 9185282	O350	100.03	SSMODX1733W	.025	١	1	201a		10954	09/13/2017	N
g)	3 9185283	O350	99.71	SSMODX1733W	.025			201a	CENTRIFLARED CLOUDY	10954	09/13/2017	N
*	4 9185284	O350	100.15	SSMODX1733W	.015			201a		10954	09/13/2017	N
8	5 9188306	O360	100.001	SSMODX1733W	.075			201a	centrifugea cloudy	10954	09/14/2017	N
72	6 9188307	O360	99.79	SSMODX1733W	.025		,	201a		10954	09/14/2017	N
8	7 9188308	O360	99.61	SSMODX1733W	.025			201a		10954	09/14/2017	N
9	8 9188309	O360	10031	SSMODX1733W	025			201a		10954	09/14/2017	N
10	9 9188310	O360	99.60	SSMODX1733W	.025			201a	Centrifued; Stoudy with	10954	09/14/2017	N
11	10 9188311	O360	100.15	SSMODX1733W	.025			201a	antifund Sloudy wi	10954	09/14/2017	N
12	119188312	O360	99.73	SSMODX1733W	.075	V	7	201a		10954	09/14/2017	N

9/5/17 DDM25478 N-evap

DF = Dilution Factor FV = Final Volume

Balance #

B629764122

Documented temps are NIST corrected.

17246002

Reagents used During Extraction

Reagent/Material/Equip	Lot No./ID No.
96% MeOH:H2O	
Acetate Buffer	2707948
Acetonitrile	
Auto-pipette (dilutions)	
Auto-pipette (extract vialin-	J-0001
Internal Standard	151724933A
Methanol	DS094-VS
Milli-Q H2O	house A223
NH4OH:H2O	921309011733A
NH4OH:MeOH	921309011733B
SPE Cartridge #1	W370231-03
SPE Cartridge #2	
∰dium Thiosulfate	
Syringe (IS)	IS I
Syringe (MS)	PFAS 10
ringe (SS)	PFKS 9
Trizma	SLBT 4699
1 2 ·	

DIG-877 M MOON (DIGGIG-US) added to 100 M sample 127.5 Ml scrogate SS MOD 4173372 - 200 M this sola added to 10 M internal 151725133A DW alicha

CROSS REFERENCE TABLE

SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-MW-1003-082817
 SC38627-01RE1

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

CASE NARRATIVE

Spectrum Analytical, Inc. Lab Reference No. SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport / 112608005-WE15

SDG #: SC38627

I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

III. METHODS

Analyses were performed according to SW846 6010C.

IV. PREPARATION

Aqueous samples were prepared according to SW846 3005A.

V. INSTRUMENTATION

The following equipment was used to analyze SW846 6010C:

ICAP details: Thermo ICAP 6000 series CETAC Autosampler

ICAP5 details: Thermo ICAP 6000 series CETAC Autosampler

All sample data within this SDG was generated after ICP-AES interelement corrections and background corrections were applied.

Samples are diluted when concentrations exceed the highest calibration standard in the associated curve, therefore Linear Ranges are not performed.

VI. ANALYSIS

A. Calibration:

All quality control samples were within the acceptance criteria.

B. Blanks:

All blanks were within the acceptance criteria.

C. Spikes:

1. Laboratory Control Samples (LCS):

All method criteria were met.

2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

A matrix spike and a matrix spike duplicate were analyzed:

In batch 1715125 from source sample TF1-MW-1003-082817 (SC38627-01).

In batch 1715591 from source sample TF1-MW-1003-082817 (SC38627-01).

All method criteria were met with the following exceptions:

Iron in batch 1715591, lab sample 1715591-MS1 from source sample TF1-MW-1003-082817 (SC38627-01): The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron in batch 1715591, lab sample 1715591-MSD1 from source sample TF1-MW-1003-082817 (SC38627-01): The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

3. Post Spike Samples (PS):

A post spike was analyzed.

In batch 1715125 from source sample TF1-MW-1003-082817 (SC38627-01).

In batch 1715591 from source sample TF1-MW-1003-082817 (SC38627-01).

All method criteria were met with the following exceptions:

Iron in batch 1715591, lab sample 1715591-PS1 from source sample TF1-MW-1003-082817 (SC38627-01): The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

D. Duplicates:

A duplicate was analyzed.

In batch 1715125 from source sample TF1-MW-1003-082817 (SC38627-01).

In batch 1715591 from source sample TF1-MW-1003-082817 (SC38627-01).

All method criteria were met with the following exceptions:

Iron in batch 1715591, sample 1715591-DUP1 from source sample TF1-MW-1003-082817 (SC38627-01): MRL raised to correlate to batch QC reporting limits.

E. Serial Dilutions:

All quality control criteria were met.

F. Samples:

All method criteria were met with the following exceptions:

Iron in batch 1715591, samples TF1-EBP-GZ101R-082817 (SC38627-02), TF1-GT-106-082817 (SC38627-03), TF1-MW-1003-082817 (SC38627-01): MRL raised to correlate to batch QC reporting limits.

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: <u>ICAP5</u> Calibration: <u>1711034</u>

Sequence: <u>S710146</u>

Lab Sample ID	Analyte	Found	MRL	Units	C	Method
S710146-ICB1	Potassium	BRL	1.00	mg/l	U	SW846 6010C
	Sodium	BRL	0.500	mg/l	U	SW846 6010C
	Aluminum	BRL	0.0500	mg/l	U	SW846 6010C
	Calcium	BRL	0.200	mg/l	U	SW846 6010C
	Magnesium	BRL	0.0200	mg/l	U	SW846 6010C
S710146-CCB1	Potassium	BRL	1.00	mg/l	U	SW846 6010C
	Sodium	BRL	0.500	mg/l	U	SW846 6010C
	Aluminum	BRL	0.0500	mg/l	U	SW846 6010C
	Calcium	BRL	0.200	mg/l	U	SW846 6010C
	Magnesium	BRL	0.0200	mg/l	U	SW846 6010C

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: <u>ICAP5</u> Calibration: <u>1711034</u>

Sequence: <u>S710147</u>

Lab Sample ID	Analyte	Found	MRL	Units	С	Method
S710147-CCB1	Potassium	BRL	1.00	mg/l	U	SW846 6010C
	Sodium	BRL	0.500	mg/l	U	SW846 6010C
	Aluminum	BRL	0.0500	mg/l	U	SW846 6010C
	Calcium	BRL	0.200	mg/l	U	SW846 6010C
	Magnesium	BRL	0.0200	mg/l	U	SW846 6010C
1715125-BLK1	Potassium	BRL	1.00	mg/l	U	SW846 6010C
	Sodium	BRL	0.500	mg/l	U	SW846 6010C
	Aluminum	BRL	0.0500	mg/l	U	SW846 6010C
	Calcium	BRL	0.200	mg/l	U	SW846 6010C
	Magnesium	BRL	0.0200	mg/l	U	SW846 6010C
S710147-CCB2	Potassium	BRL	1.00	mg/l	U	SW846 6010C
	Sodium	BRL	0.500	mg/l	U	SW846 6010C
	Aluminum	BRL	0.0500	mg/l	U	SW846 6010C
	Calcium	BRL	0.200	mg/l	U	SW846 6010C
	Magnesium	BRL	0.0200	mg/l	U	SW846 6010C
S710147-CCB3	Potassium	BRL	1.00	mg/l	U	SW846 6010C
	Sodium	BRL	0.500	mg/l	U	SW846 6010C
	Aluminum	BRL	0.0500	mg/l	U	SW846 6010C
	Calcium	BRL	0.200	mg/l	U	SW846 6010C
	Magnesium	BRL	0.0200	mg/l	U	SW846 6010C

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: <u>ICAP</u> Calibration: <u>1711035</u>

Sequence: <u>S710151</u>

Lab Sample ID	Analyte	Found	MRL	Units	C	Method
S710151-ICB1	Iron	BRL	0.0300	mg/l	U	SW846 6010C
S710151-CCB1	Iron	BRL	0.0300	mg/l	U	SW846 6010C

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: <u>ICAP</u> Calibration: <u>1711035</u>

Sequence: <u>S710153</u>

Lab Sample ID	Analyte	Found	MRL	Units	С	Method
S710153-CCB1	Iron	BRL	0.0300	mg/l	U	SW846 6010C
1715591-BLK1	Iron	0.0159	0.0800	mg/l	J	SW846 6010C
S710153-CCB2	Iron	0.0101	0.0300	mg/l	J	SW846 6010C
S710153-CCB3	Iron	BRL	0.0300	mg/l	U	SW846 6010C

FORM IV - ICP INTERFERENCE CHECK SAMPLE

SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: <u>ICAP5</u> Calibration: <u>1711034</u>

Sequence: S710147 Units: mg/l

Lab Sample ID	Analyte	True	Found	%R
S710147-IFA1	Iron	100	98.93000	99
	Potassium		0.00810	
	Sodium		0.01070	
	Aluminum	250	238.80000	96
	Calcium	250	250.50000	100
	Magnesium	250	232.10000	93
S710147-IFB1	Iron	100	97.48000	97
	Potassium		0.00460	
	Sodium		0.00680	
	Aluminum	250	242.10000	97
	Calcium	250	248.50000	99
	Magnesium	250	234.30000	94
S710147-IFA2	Iron	100	97.22000	97
	Potassium		0.00320	
	Sodium		0.00440	
	Aluminum	250	237.20000	95
	Calcium	250	246.70000	99
	Magnesium	250	229.60000	92
S710147-IFB2	Iron	100	99.08000	99
	Potassium		0.00500	
	Sodium		0.00500	
	Aluminum	250	244.30000	98
	Calcium	250	252.40000	101
	Magnesium	250	236.00000	94

^{*} Values outside of QC limits (Acceptance Limits: +/- 20% of the true value or +/- 2xMRL)

FORM IV - ICP INTERFERENCE CHECK SAMPLE

SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: <u>ICAP</u> Calibration: <u>1711035</u>

Sequence: <u>S710153</u> Units: <u>mg/l</u>

Lab Sample ID	Analyte	True	Found	%R
S710153-IFA1	Magnesium	250	235.40000	94
	Aluminum	250	259.90000	104
	Calcium	250	252.80000	101
	Iron	100	93.96000	94
S710153-IFB1	Magnesium	250	236.00000	94
	Aluminum	250	258.20000	103
	Calcium	250	255.70000	102
	Iron	100	94.32000	94

^{*} Values outside of QC limits (Acceptance Limits: +/- 20% of the true value or +/- 2xMRL)

FORM Vb - POST DIGEST SPIKE SAMPLE RECOVERY

TF1-MW-1003-082817

SW846 6010C

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

 Matrix:
 Aqueous
 Laboratory ID:
 1715125-PS1

 Batch:
 1715125
 Lab Source ID:
 \$C38627-01

 Preparation:
 \$SW846 3005A
 Initial/Final:
 \$50 ml / 50 ml

Source Sample Name: TF1-MW-1003-082817 % Solids:

Analyte	Control Limit %R	Spike Sample Result (SSR) (mg/l)	Sample Result (SR) (mg/l)	Spike Added (SA) (mg/l)	%R	Method
Potassium	80 - 120	25.6	1.14	25.0	98	SW846 6010C
Sodium	80 - 120	18.7	6.62	12.5	97	SW846 6010C
Aluminum	80 - 120	2.60	0.0871	2.50	100	SW846 6010C
Calcium	80 - 120	41.7	30.0	12.5	93	SW846 6010C
Magnesium	80 - 120	6.47	3.97	2.50	100	SW846 6010C

^{*} Values outside of QC limits

FORM Vb - POST DIGEST SPIKE SAMPLE RECOVERY

SW846 6010C

TF1-MW-1003-082817

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

 Matrix:
 Aqueous
 Laboratory ID:
 1715591-PS1

 Batch:
 1715591
 Lab Source ID:
 SC38627-01

 Preparation:
 SW846 3005A
 Initial/Final:
 50 ml / 50 ml

Source Sample Name: TF1-MW-1003-082817 % Solids:

Analyte	Control Limit %R	Spike Sample Result (SSR) (mg/l)	Sample Result (SR) (mg/l)	Spike Added (SA) (mg/l)	%R	Method
Iron	80 - 120	59.5	59.8	2.50	-13 *	SW846 6010C

^{*} Values outside of QC limits

FORM IIIc - DUPLICATES

SW846 6010C

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: 1715125-DUP1

Batch: <u>1715125</u> Lab Source ID: <u>SC38627-01</u>

Preparation: SW846 3005A Initial/Final: 50 ml / 50 ml

Source Sample Name: TF1-MW-1003-082817 % Solids:

File ID: 20170908-170

ANALYTE	CONTROL LIMIT	SAMPLE CONCENTRATION (mg/l)	С	DUPLICATE CONCENTRATION (mg/l)	С	RPD %	Q	метнор
Potassium	20	1.14		1.07		7		SW846 6010C
Sodium	20	6.62		6.28		5		SW846 6010C
Aluminum	20	0.0871		0.0851		2		SW846 6010C
Calcium	20	30.0		27.8		8		SW846 6010C
Magnesium	20	3.97		3.72		6		SW846 6010C

^{*} Values outside of QC limits

FORM IIIc - DUPLICATES

SW846 6010C

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: 1715591-DUP1

Batch: <u>1715591</u> Lab Source ID: <u>SC38627-01</u>

Preparation: SW846 3005A Initial/Final: 50 ml / 50 ml

Source Sample Name: TF1-MW-1003-082817 % Solids:

File ID: 20170913-142

ANALYTE	CONTROL LIMIT	SAMPLE CONCENTRATION (mg/l)	С	DUPLICATE CONCENTRATION (mg/l)	С	RPD %	Q	метнор
Iron	20	59.8		57.3		4		SW846 6010C

^{*} Values outside of QC limits

FORM IIIa - LCS / LCS DUPLICATE RECOVERY

SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: ICAP5

Batch: <u>1715125</u> Laboratory ID: <u>1715125-BS1</u>

 Preparation:
 SW846 3005A
 Initial/Final:
 50 ml / 50 ml

Analyzed: <u>09/09/17 00:47</u> Spike ID: 17H0290

File ID: <u>20170908-166</u>

COMPOUND	SPIKE ADDED (mg/l)	LCS CONCENTRATION (mg/l)	LCS % REC.#	QC LIMITS REC.
Potassium	25.0	24.1	96	86 - 114
Sodium	12.5	11.9	95	87 - 115
Aluminum	2.50	2.44	97	86 - 115
Calcium	12.5	13.0	104	87 - 113
Magnesium	2.50	2.57	103	85 - 113

File ID: <u>20170908-167</u>

	SPIKE	LCSD	LCSD		QC	LIMITS	
COMPOUND	ADDED (mg/l)	CONCENTRATION (mg/l)	% REC. #	% RPD#	RPD	REC.	
Potassium	25.0	23.6	94	2	20	86 - 114	
Sodium	12.5	11.7	94	2	20	87 - 115	
Aluminum	2.50	2.42	97	0.9	20	86 - 115	
Calcium	12.5	12.8	102	2	20	87 - 113	
Magnesium	2.50	2.54	102	1	20	85 - 113	

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM IIIa - LCS / LCS DUPLICATE RECOVERY

SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: ICAP

Batch: <u>1715591</u> Laboratory ID: <u>1715591-BS1</u>

Preparation: $\underline{SW846\ 3005A}$ Initial/Final: $\underline{50\ ml\ /\ 50\ ml}$

Analyzed: <u>09/13/17 20:58</u> Spike ID: 17H0290

File ID: <u>20170913-138</u>

	SPIKE	LCS	LCS	QC
COMPOUND	ADDED (mg/l)	CONCENTRATION (mg/l)	% REC. #	LIMITS REC.
Iron	2.50	2.83	113	87 - 115

File ID: 20170913-139

	SPIKE	LCSD	LCSD		QC	LIMITS	
COMPOUND	ADDED (mg/l)	CONCENTRATION (mg/l)	% REC. #	% RPD #	RPD	REC.	
Iron	2.50	2.74	109	4	20	87 - 115	ĺ

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM IIIb (Organic) / FORM V (Inorganic) MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

TF1-MW-1003-082817

SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: ICAP5

 Batch:
 1715125
 Laboratory ID:
 1715125-MS1

 Preparation:
 SW846 3005A
 Initial/Final:
 50 ml / 50 ml

Source Sample Name: <u>TF1-MW-1003-082817</u> % Solids:

Spike ID: 17H0290

File ID: <u>20170908-171</u>

COMPOUND	SPIKE ADDED (mg/l)	SAMPLE CONCENTRATION (mg/l)	MS CONCENTRATION (mg/l)	MS % REC.#	QC LIMITS REC.
Potassium	25.0	1.14	25.1	96	86 - 114
Sodium	12.5	6.62	18.5	95	87 - 115
Aluminum	2.50	0.0871	2.60	100	86 - 115
Calcium	12.5	30.0	41.9	95	87 - 113
Magnesium	2.50	3.97	6.44	99	85 - 113

File ID: <u>20170908-172</u>

COMPOUND	SPIKE ADDED (mg/l)	MSD CONCENTRATION (mg/l)	MSD % REC. #	% RPD#	QC RPD	LIMITS REC.
Potassium	25.0	24.6	94	2	20	86 - 114
Sodium	12.5	18.0	91	2	20	87 - 115
Aluminum	2.50	2.58	100	0.5	20	86 - 115
Calcium	12.5	41.7	93	0.4	20	87 - 113
Magnesium	2.50	6.36	96	1	20	85 - 113

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM IIIb (Organic) / FORM V (Inorganic) MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

TF1-MW-1003-082817

SW846 6010C

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: ICAP

Batch: <u>1715591</u> Laboratory ID: <u>1715591-MS1</u>

Preparation: <u>SW846 3005A</u> <u>Initial/Final</u>: <u>50 ml / 50 ml</u>

Source Sample Name: <u>TF1-MW-1003-082817</u> % Solids:

Spike ID: 17H0290

File ID: <u>20170913-143</u>

Sample concentration greater than 4X spike added. No qualification.

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS
COMPOUND	(mg/l)	(mg/l)			REC.
Iron	2.50	59.8	61.2	56 *	87 - 115

File ID: <u>20170913-144</u>

	SPIKE	MSD	MSD		QC	LIMITS
	ADDED	CONCENTRATION	%	%		
COMPOUND	(mg/l)	(mg/l)	REC. #	RPD#	RPD	REC.
Iron	2.50	60.8	39 *	0.7	20	87 - 115

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

TF1-MW-1003-082817

FORM VIII - SERIAL DILUTION

SW846 6010C

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Laboratory ID: <u>S710147-SRD1</u>

Sequence: <u>S710147</u> Lab Source ID: <u>SC38627-01</u>

Preparation: <u>1715125</u> Initial/Final: <u>50 / 50</u>

Source Sample Name: <u>TF1-MW-1003-082817</u> % Solids:

Units: mg/l

Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Difference	Q	Method	QC Limits % Difference
Potassium	1.14		1.36				SW846 6010C	10
Sodium	6.62		6.96		5		SW846 6010C	10
Aluminum	BRL		BRL				SW846 6010C	10
Calcium	30.0		32.0		6		SW846 6010C	10
Magnesium	3.97		4.19		6		SW846 6010C	10

^{*} Values outside of QC limits

FORM VIII - SERIAL DILUTION

SW846 6010C

TF1-MW-1003-082817

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Laboratory ID: S710153-SRD1

Sequence: <u>S710153</u> Lab Source ID: <u>SC38627-01</u>

Preparation: <u>1715591</u> Initial/Final: <u>50 / 50</u>

Source Sample Name: <u>TF1-MW-1003-082817</u> % Solids:

Units: mg/l

Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Difference	Q	Method	QC Limits % Difference
Iron	59.8		64.1		7		SW846 6010C	10

^{*} Values outside of QC limits

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SW846 6010C

 Laboratory:
 Eurofins Spectrum Analytical, Inc. - MA
 SDG:
 SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Iron	0.0089	0.0300	mg/l
Magnesium	0.0088	0.0200	mg/l
Aluminum	0.0206	0.0500	mg/l
Calcium	0.0142	0.200	mg/l

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SW846 6010C

 Laboratory:
 Eurofins Spectrum Analytical, Inc. - MA
 SDG:
 SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Iron	0.0089	0.0300	mg/l
Potassium	0.120	1.00	mg/l
Sodium	0.0785	0.500	mg/l
Aluminum	0.0206	0.0500	mg/l
Calcium	0.0142	0.200	mg/l
Magnesium	0.0088	0.0200	mg/l

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S710146</u> Instrument: <u>ICAP5</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Cal Standard	S710146-CAL1	20170908-001	09/08/17 10:14
Cal Standard	S710146-CAL2	20170908-002	09/08/17 10:18
Cal Standard	S710146-CAL3	20170908-003	09/08/17 10:22
Cal Standard	S710146-CAL4	20170908-004	09/08/17 10:26
Cal Standard	S710146-CAL5	20170908-005	09/08/17 10:30
Cal Standard	S710146-CAL6	20170908-006	09/08/17 10:34
Cal Standard	S710146-CAL7	20170908-007	09/08/17 10:38
Cal Standard	S710146-CAL8	20170908-008	09/08/17 10:43
Cal Standard	S710146-CAL9	20170908-009	09/08/17 10:47
Initial Cal Check	S710146-ICV1	20170908-011	09/08/17 11:22
Initial Cal Blank	S710146-ICB1	20170908-012	09/08/17 11:27
Instrument RL Check	S710146-CRL1	20170908-013	09/08/17 11:32
Instrument RL Check	S710146-CRL2	20170908-014	09/08/17 11:37
Calibration Check	S710146-CCV1	20170908-017	09/08/17 11:53
Calibration Blank	S710146-CCB1	20170908-018	09/08/17 11:58

METALS ANALYSIS RUN LOG SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S710146</u> Instrument: <u>ICAP5</u>

														1	Ana	ytes	S									
Sample Name	Lab ID	D/F	Time	A L	S B	A S	B A	B E	C D	C A	C O	C R	C U	F E	P B		M N	H G	N I	K	S E	A G	N A	S U	T L	 Z N
Cal Standard	S710146-CAL1	1	09/08/17 10:14	X						Х						X				X			X			
Cal Standard	S710146-CAL2	1	09/08/17 10:18	X						X						X				X			X			
Cal Standard	S710146-CAL3	1	09/08/17 10:22	X						X						X				X			X			
Cal Standard	S710146-CAL4	1	09/08/17 10:26	X						X						X				X			X			
Cal Standard	S710146-CAL5	1	09/08/17 10:30	X						X						X				X			X			$\overline{\Box}$
Cal Standard	S710146-CAL6	1	09/08/17 10:34	X						X						X				X			X			
Cal Standard	S710146-CAL7	1	09/08/17 10:38	X						X						X				X			X			
Cal Standard	S710146-CAL8	1	09/08/17 10:43	X						X						X				X			X			
Cal Standard	S710146-CAL9	1	09/08/17 10:47	X						X										X			X			
Initial Cal Check	S710146-ICV1	1	09/08/17 11:22	X						X						X				X			X			
Initial Cal Blank	S710146-ICB1	1	09/08/17 11:27	X						X						X				X			X			
Instrument RL Check	S710146-CRL1	1	09/08/17 11:32	X						X						X				X			X			
Instrument RL Check	S710146-CRL2	1	09/08/17 11:37	X						X						X				X			X			
Calibration Check	S710146-CCV1	1	09/08/17 11:53	X						X						X				X			X			
Calibration Blank	S710146-CCB1	1	09/08/17 11:58	X						X						X				X			X			

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S710147</u> Instrument: <u>ICAP5</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Instrument RL Check	S710147-CRL1	20170908-160	09/09/17 00:16
Interference Check A	S710147-IFA1	20170908-161	09/09/17 00:21
Interference Check B	S710147-IFB1	20170908-162	09/09/17 00:26
Calibration Check	S710147-CCV1	20170908-163	09/09/17 00:32
Calibration Blank	S710147-CCB1	20170908-164	09/09/17 00:37
Blank	1715125-BLK1	20170908-165	09/09/17 00:42
LCS	1715125-BS1	20170908-166	09/09/17 00:47
LCS Dup	1715125-BSD1	20170908-167	09/09/17 00:52
TF1-MW-1003-082817	S710147-SRD1	20170908-168	09/09/17 00:57
TF1-MW-1003-082817	SC38627-01	20170908-169	09/09/17 01:02
TF1-MW-1003-082817	1715125-DUP1	20170908-170	09/09/17 01:07
TF1-MW-1003-082817	1715125-MS1	20170908-171	09/09/17 01:12
TF1-MW-1003-082817	1715125-MSD1	20170908-172	09/09/17 01:17
TF1-MW-1003-082817	1715125-PS1	20170908-173	09/09/17 01:22
TF1-EBP-GZ101R-082817	SC38627-02	20170908-174	09/09/17 01:27
Calibration Check	S710147-CCV2	20170908-175	09/09/17 01:32
Calibration Blank	S710147-CCB2	20170908-176	09/09/17 01:37
TF1-GT-106-082817	SC38627-03	20170908-177	09/09/17 01:43
Instrument RL Check	S710147-CRL2	20170908-178	09/09/17 01:48
Interference Check A	S710147-IFA2	20170908-179	09/09/17 01:53
Interference Check B	S710147-IFB2	20170908-180	09/09/17 01:58
Calibration Check	S710147-CCV3	20170908-181	09/09/17 02:03
Calibration Blank	S710147-CCB3	20170908-182	09/09/17 02:08

METALS ANALYSIS RUN LOG SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S710147</u> Instrument: <u>ICAP5</u>

														1	Anal	ytes	3										
Sample Name	Lab ID	D/F	Time	A	S	A	В	В	С	C	C	C	С	F			M		N	K	S	A	N	S	T	V	Z
	1			L	В	S	A	Е	D	A	О	R	U	Е	В	G	N	G	I		Е	G	A	U	L	Ш	N
Instrument RL Check	S710147-CRL1	1	09/09/17 00:16	X						X						X				X			X				
Interference Check A	S710147-IFA1	1	09/09/17 00:21	X						X				X		X				X			X				
Interference Check B	S710147-IFB1	1	09/09/17 00:26	X						X				X		X				X			X				
Calibration Check	S710147-CCV1	1	09/09/17 00:32	X						X						X				X			X				
Calibration Blank	S710147-CCB1	1	09/09/17 00:37	X						X						X				X			X				
Blank	1715125-BLK1	1	09/09/17 00:42	X						X						X				X			X				
LCS	1715125-BS1	1	09/09/17 00:47	X						X						X				X			X				
LCS Dup	1715125-BSD1	1	09/09/17 00:52	X						X						X				X			X				
TF1-MW-1003-08281	S710147-SRD1	5	09/09/17 00:57	X						X				X		X				X			X				
TF1-MW-1003-08281	SC38627-01	1	09/09/17 01:02	X						X						X				X			X				
TF1-MW-1003-08281	1715125-DUP1	1	09/09/17 01:07	X						X						X				X			X				
TF1-MW-1003-08281	1715125-MS1	1	09/09/17 01:12	X						X						X				X			X				
TF1-MW-1003-08281	1715125-MSD1	1	09/09/17 01:17	X						X						X				X			X				
TF1-MW-1003-08281	1715125-PS1	1	09/09/17 01:22	X						X						X				X			X				
TF1-EBP-GZ101R-08	SC38627-02	1	09/09/17 01:27	X						X						X				X			X				
Calibration Check	S710147-CCV2	1	09/09/17 01:32	X						X						X				X			X				
Calibration Blank	S710147-CCB2	1	09/09/17 01:37	X						X						X				X			X				
TF1-GT-106-082817	SC38627-03	1	09/09/17 01:43	X						X						X				X			X				
Instrument RL Check	S710147-CRL2	1	09/09/17 01:48	X						X						X				X			X				
Interference Check A	S710147-IFA2	1	09/09/17 01:53	X						X				X		X				X			X				
Interference Check B	S710147-IFB2	1	09/09/17 01:58	X						X				X		X				X			X				
Calibration Check	S710147-CCV3	1	09/09/17 02:03	X						X						X				X			X				
Calibration Blank	S710147-CCB3	1	09/09/17 02:08	X						X						X				X			X				

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: <u>Tetra Tech, Inc. - Salem, NH</u> Project: <u>WE15 Tank Farm 1 NAVSTA Newport</u>

Sequence: $\underline{S710151}$ Instrument: \underline{ICAP}

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Cal Standard	S710151-CAL1	20170913-001	09/13/17 09:05
Cal Standard	S710151-CAL2	20170913-002	09/13/17 09:09
Cal Standard	S710151-CAL3	20170913-003	09/13/17 09:13
Cal Standard	S710151-CAL4	20170913-004	09/13/17 09:17
Cal Standard	S710151-CAL5	20170913-005	09/13/17 09:21
Cal Standard	S710151-CAL6	20170913-006	09/13/17 09:25
Cal Standard	S710151-CAL7	20170913-007	09/13/17 09:29
Cal Standard	S710151-CAL8	20170913-008	09/13/17 09:33
Cal Standard	S710151-CAL9	20170913-010	09/13/17 09:45
Initial Cal Check	S710151-ICV1	20170913-011	09/13/17 10:04
Initial Cal Blank	S710151-ICB1	20170913-012	09/13/17 10:09
Instrument RL Check	S710151-CRL1	20170913-013	09/13/17 10:14
Instrument RL Check	S710151-CRL2	20170913-014	09/13/17 10:19
Calibration Check	S710151-CCV1	20170913-017	09/13/17 10:35
Calibration Blank	S710151-CCB1	20170913-018	09/13/17 10:40

METALS ANALYSIS RUN LOG SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: $\underline{S710151}$ Instrument: \underline{ICAP}

														A	Anal	ytes	S										
Sample Name	Lab ID	D/F	Time	A L	S B	A S	B A	B E	C D	C	C	C R	С	F E			M N	Н	N I	K	S E	A G	N A	S U	T L	V	Z N
				Ь	ь	3	А	E	ע	A		K	U	E	ь	u	IN	G	1		E	G	А	U	L		IN
Cal Standard	S710151-CAL1	1	09/13/17 09:05											X													
Cal Standard	S710151-CAL2	1	09/13/17 09:09											X													
Cal Standard	S710151-CAL3	1	09/13/17 09:13											X													
Cal Standard	S710151-CAL4	1	09/13/17 09:17											X													
Cal Standard	S710151-CAL5	1	09/13/17 09:21											X													
Cal Standard	S710151-CAL6	1	09/13/17 09:25											X													
Cal Standard	S710151-CAL7	1	09/13/17 09:29											X													
Cal Standard	S710151-CAL8	1	09/13/17 09:33											X													
Cal Standard	S710151-CAL9	1	09/13/17 09:45											X													
Initial Cal Check	S710151-ICV1	1	09/13/17 10:04											X													
Initial Cal Blank	S710151-ICB1	1	09/13/17 10:09											X													
Instrument RL Check	S710151-CRL1	1	09/13/17 10:14											X													
Instrument RL Check	S710151-CRL2	1	09/13/17 10:19											X													
Calibration Check	S710151-CCV1	1	09/13/17 10:35											X													
Calibration Blank	S710151-CCB1	1	09/13/17 10:40											X													

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: $\underline{S710153}$ Instrument: \underline{ICAP}

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Instrument RL Check	S710153-CRL1	20170913-112	09/13/17 18:47
Instrument RL Check	S710153-CRL2	20170913-113	09/13/17 18:52
Calibration Check	S710153-CCV1	20170913-135	09/13/17 20:43
Calibration Blank	S710153-CCB1	20170913-136	09/13/17 20:48
Blank	1715591-BLK1	20170913-137	09/13/17 20:53
LCS	1715591-BS1	20170913-138	09/13/17 20:58
LCS Dup	1715591-BSD1	20170913-139	09/13/17 21:03
TF1-MW-1003-082817	S710153-SRD1	20170913-140	09/13/17 21:08
TF1-MW-1003-082817	SC38627-01	20170913-141	09/13/17 21:13
TF1-MW-1003-082817	1715591-DUP1	20170913-142	09/13/17 21:18
TF1-MW-1003-082817	1715591-MS1	20170913-143	09/13/17 21:24
TF1-MW-1003-082817	1715591-MSD1	20170913-144	09/13/17 21:29
TF1-MW-1003-082817	1715591-PS1	20170913-145	09/13/17 21:34
TF1-EBP-GZ101R-082817	SC38627-02	20170913-146	09/13/17 21:39
Calibration Check	S710153-CCV2	20170913-147	09/13/17 21:44
Calibration Blank	S710153-CCB2	20170913-148	09/13/17 21:49
TF1-GT-106-082817	SC38627-03	20170913-149	09/13/17 21:54
Instrument RL Check	S710153-CRL3	20170913-150	09/13/17 21:59
Instrument RL Check	S710153-CRL4	20170913-151	09/13/17 22:04
Interference Check A	S710153-IFA1	20170913-152	09/13/17 22:09
Interference Check B	S710153-IFB1	20170913-153	09/13/17 22:14
Calibration Check	S710153-CCV3	20170913-154	09/13/17 22:19
Calibration Blank	S710153-CCB3	20170913-155	09/13/17 22:24

METALS ANALYSIS RUN LOG SW846 6010C

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S710153</u> Instrument: <u>ICAP</u>

														I	Anal	ytes	5										
Sample Name	Lab ID	D/F	Time	A L	S B	A S	B A	B E	C D	C A	C O	C R	C U	F E		M G		H G	N I	K	S E	A G	N A	S U	T L	V	Z N
Instrument RL Check	S710153-CRL1	1	09/13/17 18:47											X													
Instrument RL Check	S710153-CRL2	1	09/13/17 18:52											X													
Calibration Check	S710153-CCV1	1	09/13/17 20:43											X													
Calibration Blank	S710153-CCB1	1	09/13/17 20:48											X													
Blank	1715591-BLK1	1	09/13/17 20:53											X													
LCS	1715591-BS1	1	09/13/17 20:58											X													
LCS Dup	1715591-BSD1	1	09/13/17 21:03											X													
TF1-MW-1003-0828	S710153-SRD1	5	09/13/17 21:08											X													
TF1-MW-1003-0828	SC38627-01	1	09/13/17 21:13											X													
TF1-MW-1003-0828	1715591-DUP1	1	09/13/17 21:18											X													
TF1-MW-1003-0828	1715591-MS1	1	09/13/17 21:24											X													
TF1-MW-1003-0828	1715591-MSD1	1	09/13/17 21:29											X													
TF1-MW-1003-0828	1715591-PS1	1	09/13/17 21:34											X													
TF1-EBP-GZ101R-0	SC38627-02	1	09/13/17 21:39											X													
Calibration Check	S710153-CCV2	1	09/13/17 21:44											X													
Calibration Blank	S710153-CCB2	1	09/13/17 21:49											X													
TF1-GT-106-082817	SC38627-03	1	09/13/17 21:54											X													
Instrument RL Check	S710153-CRL3	1	09/13/17 21:59											X													
Instrument RL Check	S710153-CRL4	1	09/13/17 22:04											X													
Interference Check A	S710153-IFA1	1	09/13/17 22:09	X						X				X		X											
Interference Check B	S710153-IFB1	1	09/13/17 22:14	X						X				X		Χ											
Calibration Check	S710153-CCV3	1	09/13/17 22:19											X													
Calibration Blank	S710153-CCB3	1	09/13/17 22:24											X													

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

SAMPLE INFORMATION

Client Sample Description	Collection Information	ELLE#
SC38627-01 Groundwater	08/28/2017 15:30	9240361
SC38627-02 Groundwater	08/28/2017 15:16	9240362
SC38627-03 Groundwater	08/28/2017 15:25	9240363

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Project Name: SC38627 LL Group #: 1857428

General Comments:

All analyses have been performed in accordance with DOD QSM Version 5.0 unless otherwise noted below.

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below. Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

For dual column analyses, the surrogate (for multi-surrogate tests, at least one surrogate) must be within the acceptance limits on at least one of the two columns.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

SW-846 6020A, Metals

<u>Batch #: 172771063901A (sample number(s): 9240361-9240363 UNSPK: P240335 BKG: P240335)</u>

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Antimony

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Manganese

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Chromium

Case Narrative/Conformance Summary

CLIENT: Eurofins Spectrum Analytical SDG: SAI25

ICP Metals

Fraction: Metals in Liquid

		Matrix	
Sample #	Client ID	Liquid Solid Comments	
9240361	SC38627-01	X	
9240362	SC38627-02	X	
9240363	SC38627-03	X	

All analyses have been performed in accordance with DOD QSM Version 5.0 unless otherwise noted below. See QC Reference List for Associated Batch QC Samples

SAMPLE RECEIPT:

Samples were received in good condition and within temperature requirements.

HOLDING TIME:

All holding times were met.

PREPARATION/EXTRACTION/DIGESTION:

No problems were encountered.

CALIBRATION/STANDARDIZATION:

All criteria were met.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

MS/MSD

Matrix QC may not be included if site-specific QC were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, laboratory spike data (LCS) are provided.

SAMPLE ANALYSIS:

No problems were encountered with the analysis of the samples.

Refer to analysis run log for samples requiring dilutions.

QUALITY CONTROL REFERENCE LIST

SDG No.: SAI25
Matrix: WATER

Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Molybdenum Nickel Selenium Silver Thallium Vanadium

Zinc

P27763AQ

LEGEND:

BKG = Background

DUP = Duplicate

MS = Matrix Spike

B = Blank

Q = Laboratory Control Sample

Y = Laboratory Control Sample Duplicate

MSD = Matrix Spike Duplicat SAI25 Page 34 of 151

FORM 3 BLANKS

SDG No.: SAI25

Method: MS

Run Name: 1728207E05

Calibration Date(s): 10/09/2017 Preparation Blank Matrix: WATER

		Initial									
		Calibration	Conti	inuing Calib	ra	ation			Pre	ра	aration
		Blank (ug/L)		Blank (ug/L)				Blar	nk	(UG/L)
Analyte	Mass	С	1 C	2 (С	3	C I	Mass		С	Batch Number
Antimony	121	0.35U	0.35 U	0.35	U	0.35	U	121	0.450	U	172771063901A
Arsenic	75	0.60 U	0.60 U	0.60	U	0.60	U	75	0.720	U	172771063901A
Barium	137	0.43 U	0.43 U	0.43	U			137	0.720	U	172771063901A
Beryllium	9	0.054U	0.054 U	0.054	U	0.054	U	9	0.071	U	172771063901A
Cadmium	111	0.15 U	0.15 U	0.15	U	0.15	U	111	0.150	U	172771063901A
Chromium	52	0.50 U	0.50 U	0.50	U	0.50	U	52	0.870	U	172771063901A
Cobalt	59	0.17U	0.17 U	0.17	U	0.17	U	59	0.160	U	172771063901A
Copper	63	0.40 U	0.40 U	0.40	U	0.40	U	63	0.540	U	172771063901A
Lead	208	0.088U	0.088	0.088	U	0.088	U	208	0.110	U	172771063901A
Manganese	55	0.90U	0.90 U	0.90	U	0.90	U	55	0.900	U	172771063901A
Molybdenum	98	0.25 U	0.25 U	0.25	U	0.25	U	98	0.250	U	172771063901A
Nickel	60	0.61 U	0.61 U	0.61	U	0.61	U	60	1.000	U	172771063901A
Selenium	78	0.50U	0.50 U	0.50	U	0.50	U	78	0.500	U	172771063901A
Silver	107	0.12 U	0.12 U	0.12	U	0.12	U	107	0.150	U	172771063901A
Thallium	203	0.12 U	0.12 U	0.12	U	0.12	U	203	0.120	U	172771063901A
Vanadium	51	0.17U	0.17 U	0.17	U	0.17	U	51	0.210	U	172771063901A
Zinc	66	2.6U	2.6	2.6	U	2.6	U	66	3.900	U	172771063901A

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

CV = Cold Vapor Atomic Fluorescence

SAI25 Page 41 of 151

CONCENTRATION QUALIFIERS:

U= Below IDL/MDL

B= Below LOQ

FORM 3 BLANKS

SDG No.: SAI25

Method: MS

Run Name: 1728504E05

Calibration Date(s): 10/12/2017

		Initial Calibration	Continuing Calibration							Preparation									
		Blank (ug/L)		Ε	3lank (ug/I	١)				Blar	ık	(UG/L)							
Analyte	Mass		1	С	2	С	3	С	Mass		С	Batch Number							
Antimony																			
Arsenic																			
Barium	137	0.43	0.43	U	0.43	U	0.43	U											
Beryllium																			
Cadmium	111	0.15	0.15	U	0.15	U													
Chromium																			
Cobalt																			
Copper																			
Lead																			
Manganese	55	0.90	0.90	U	0.90	U	0.90	U											
Molybdenum																			
Nickel																			
Selenium																			
Silver																			
Thallium																			
Vanadium																			
Zinc																			

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

CV = Cold Vapor Atomic Fluorescence

SAI25 Page 42 of 151

CONCENTRATION QUALIFIERS:

U= Below IDL/MDL

B= Below LOQ

FORM 4B

ICP-MS INTERFERENCE CHECK SAMPLE

SDG No.: SAI25

Instrument ID: 19204
Run Name: 1728207E05
Concentration Units: ug/L

Concentrati			rue	Found									
Analyte	Mass	Sol. A	Sol. AB	Sol. A	%R	Sol. AB	%R						
Aluminum	27	100000	100000	105749	105.7	108600.4	108.6						
Antimony	121	0	0	1		1.1							
Arsenic	75	0	100	0		109.1	109.1						
Barium	137	0	0	2		2.0							
Beryllium	9	0	0	0		0.0							
Cadmium	111	0	100	0		101.1							
Calcium	44	300000	300000	302497	100.8	309883.4	103.3						
Carbon	13	20000	20000	NA		NA							
Chloride	37	100000	100000	NA		NA							
Chromium	52	0	200	2		216.2	108.1						
Cobalt	59	0	205	1			101.4						
Copper	63	0	200	1		206.6	103.3						
Iron	57	250000	250000	236237	94.5	239360.5	95.7						
Lead	208	0	0	0		0.2							
Magnesium	24	100000	100000	99270	99.3	100733.1	100.7						
Manganese	55	0	200	4			111.4						
Molybdenum	98	2000	2000	2062	103.1	2170.3	108.5						
Nickel	60	0	200	1		211.5	105.8						
Phosphorus	31	10000	10000	NA		NA							
Potassium	39	100000	100000	106561	106.6	105612.4							
Selenium	78	0	100	0		97.4							
Silver	107	0	50	0		53.6							
Sodium	23	250000	250000	251678	100.7	256452.7	102.6						
Sulfur	34	10000	10000	NA		NA							
Thallium	203	0	0	0		0.1							
Titanium	47	2000	2000	2105	105.3	2137.7							
Vanadium	51	0	200	0			112.3						
Zinc	66	0	100	2		102.4	102.4						

Control Limits: All Metals 80%-120%

FORM 4B

ICP-MS INTERFERENCE CHECK SAMPLE

SDG No.: SAI25

Instrument ID: 19204
Run Name: 1728504E05
Concentration Units: ug/L

Concentrati			ue	Found										
Analyte	Mass	Sol. A	Sol. AB	Sol. A	%R	Sol. AB	%R							
Aluminum	27	100000	100000	102246	102.2	101869.2	101.9							
Antimony														
Arsenic														
Barium	137	0	0	1		1.0								
Beryllium														
Cadmium	111	0	100	0		95.5								
Calcium	44	300000	300000	287377	95.8	287052.8	95.7							
Carbon	13	20000	20000	NA		NA								
Chloride	37	100000	100000	NA		NA								
Chromium														
Cobalt														
Copper														
Iron	57	250000	250000	238925	95.6	235969.4	94.4							
Lead														
Magnesium	24	100000	100000	100189	100.2	99625.8	99.6							
Manganese	55	0	200	3			101.9							
Molybdenum	98	2000	2000	2002	100.1	2053.8	102.7							
Nickel														
Phosphorus	31	10000	10000	NA		NA								
Potassium	39	100000	100000	102101	102.1	101400.2	101.4							
Selenium														
Silver														
Sodium	23	250000	250000	251979	100.8	250859.2	100.3							
Sulfur	34	10000	10000	NA		NA								
Thallium														
Titanium	47	2000	2000	2053	102.7	2015.8	100.8							
Vanadium														
Zinc														

Control Limits: All Metals 80%-120%

LABORATORY CONTROL SAMPLE

SDG No.: SAI25 Matrix: WATER

Analyte	Mass	Batch Number	Units	True	Found	С	Control Limits (%)	%R	М	In Spec
Antimony	121	172771063901	UG/L	6.000	6.104		85 - 117	102	MS	Yes
Arsenic	75	172771063901	UG/L	10.000	9.387		84 - 116	94	MS	Yes
Barium	137	172771063901	UG/L	50.000	52.047		86 - 114	104	MS	Yes
Beryllium	9	172771063901	UG/L	4.000	4.191		83 - 121	105	MS	Yes
Cadmium	111	172771063901	UG/L	5.000	5.028		87 - 115	101	MS	Yes
Chromium	52	172771063901	UG/L	50.000	49.752		85 - 116	100	MS	Yes
Cobalt	59	172771063901	UG/L	250.000	257.194		86 - 115	103	MS	Yes
Copper	63	172771063901	UG/L	50.000	51.505		85 - 118	103	MS	Yes
Lead	208	172771063901	UG/L	15.000	15.836		88 - 115	106	MS	Yes
Manganese	55	172771063901	UG/L	50.000	51.457		87 - 115	103	MS	Yes
Molybdenum	98	172771063901	UG/L	50.000	51.309		83 - 115	103	MS	Yes
Nickel	60	172771063901	UG/L	50.000	52.996		85 - 117	106	MS	Yes
Selenium	78	172771063901	UG/L	10.000	10.415		80 - 120	104	MS	Yes
Silver	107	172771063901	UG/L	50.000	52.686		85 - 116	105	MS	Yes
Thallium	203	172771063901	UG/L	2.000	2.150		82 - 116	108	MS	Yes
Vanadium	51	172771063901	UG/L	50.000	51.042		86 - 115	102	MS	Yes
Zinc	66	172771063901	UG/L	500.000	530.839		83 - 119	106	MS	Yes

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescenc Al25 Page 45 of 151

CONCENTRATION QUALIFIERS:

U= Below MDL

B= Below LOQ

FORM 9

SERIAL DILUTIONS SDG No.: SAI25

Matrix: WATER Level (low/med): LOW

Batch Number(s): 172771063901 Concentration Units: UG/L

Background Lab Sample ID: *40335BKG Serial Dilution Lab Sample ID: *40335L

		Initial Sample		Serial Dilution				
Analyte	Mass	Result (I)	С	Result (S)	С	% Diff.	Q	М
Antimony	121	0.4510	U	2.2550	U			MS
Arsenic	75	6.9600		6.6200	В	5		MS
Barium	137	82.6290		75.5600		9		MS
Beryllium	9	0.0713	U	0.3565	U			MS
Cadmium	111	0.1520	U	0.7600	U			MS
Chromium	52	2.4170	В	4.3500	U	100		MS
Cobalt	59	38.1710		38.0550		0		MS
Copper	63	0.5360	U	2.6800	U			MS
Lead	208	0.1110	U	0.5550	U			MS
Manganese	55	2449.3220		2457.7800		0		MS
Molybdenum	98	0.7960	В	1.2500	U	100		MS
Nickel	60	14.3850		14.5900	В	1		MS
Selenium	78	0.5000	U	2.5000	U			MS
Silver	107	0.1460	U	0.7300	U			MS
Thallium	203	0.1170	U	0.5850	U			MS
Vanadium	51	0.2130	U	1.0650	U			MS
Zinc	66	10.4820	В	19.6000	U	100		MS

NOTE: An E in column Q indicates the presence of a chemical or physical interference in the matrix when the % difference is greater than 10%. This applies only when (I) is greater than or equal to 50x MDL for ICP, 100x MDL for ICP-MS (6020), 50x MDL for ICP-MS (200.8), or 25x MDL for GFAA.

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CONCENTRATION QUALIFIERS:

U= Below MDL

B= Below LOQ

FLAGS:

E = Matrix Effects exist as proven by

SAI25 Page 46 of 15 rial Dilution or Spiked Dilution

FORM 10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

SDG No.: SAI25

Method: MS

Instrument ID: 19204

Date: 07/2017

Analyte	MASS (amu)	Background	IDL	(UG/L)
Antimony	121			0.35
Arsenic	75			0.60
Barium	137			0.43
Beryllium	9			0.054
Cadmium	111			0.15
Chromium	52			0.50
Cobalt	59			0.17
Copper	63			0.40
Lead	208			0.088
Manganese	55			0.90
Molybdenum	98			0.25
Nickel	60			0.61
Selenium	78			0.50
Silver	107			0.12
Thallium	203			0.12
Vanadium	51			0.17
Zinc	66			2.6

Comments:		

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescent Page 47 of 151

FORM 10 MDL

METHOD DETECTION LIMITS (ANNUALLY)

SDG No.: SAI25 Matrix: WATER

Method: MS
Date: 06/2017

Analyte	Mass	Background	LOQ	(UG/L)	MDL	(UG/L)
Antimony	121			2.0		0.45
Arsenic	75			4.0		0.72
Barium	137			4.0		0.72
Beryllium	9			1.0		0.071
Cadmium	111			1.0		0.15
Chromium	52			4.0		0.87
Cobalt	59			1.0		0.16
Copper	63			4.0		0.54
Lead	208			2.0		0.11
Manganese	55			4.0		0.90
Molybdenum	98			1.0		0.25
Nickel	60			4.0		1.0
Selenium	78			4.0		0.50
Silver	107			1.0		0.15
Thallium	203			1.0		0.12
Vanadium	51			1.0		0.21
Zinc	66			30.0		3.9

The LOQ/MDL must be adjusted for % Solids and Sample Weight for samples reporting in mg/kg and ug/L.

Comments:		

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

FORM 13

PREPARATION LOG SDG No.: SAI25

Method: MS

Batch Number: 172771063901

Lab Sample ID	Date	Initial Volume(ml)	Final Volume(ml)
9240361	10/05/2017	50.00	50
9240362	10/05/2017	50.00	50
9240363	10/05/2017	50.00	50
*40335BKG	10/05/2017	50.00	50
P27763AB	10/05/2017	50.00	50
P27763AQ	10/05/2017	1.00	1

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

MSD = Matrix Spike

MSD = Matrix Spike Duplicate

B = Blank

Q = Laboratory Control Sample

Y = Laboratory Control Sample Duplicate

FORM 14

ANALYSIS RUN LOG SDG No.: SAI25

Method: MS Instrument ID: 19204

Run Name: 1728207E05

Run Start Date: 10/09/2017 Run End Date: 10/09/2017

	/2820/EU5															7\	na	ly	+ 0	0									\neg
Lab Sample			G	Δ	В	B	С	С	С	С	Р	М	М	N	S	A		V	Z	<u> </u>			l				- 1	$\overline{}$	
ID ID	D/F	Time					D	R		U	B	N						V	N									ŀ	l
S0	1.00	17:15			Х			Х			Х							Χ								H	-	\dashv	
S	1.00	17:13		Х	Х		Х	Х			Х		Х			Х		Х								\vdash	\dashv		
CCS	1.00	17:18	Х	Х	Х						Х		Х					Х	Х							\vdash	\dashv		
CCS	1.00	17:21	Х	Х	Х		Х	Х	Х		Х		Х			Х		Х								\vdash	\dashv		
ICV	1.00	17:24	Х	Х	Х		Х	Х	Х		Х							Х								\vdash	\dashv		
ICB	1.00	17:30			Х		Х	Х			Х		Х					Х								H			
		17:30			Х		Х		Х		Х		Х					Х								H			
LLC ICSA	1.00	17:33	X		Х			Х				X						Х								\vdash	\dashv		
	1.00				Х																					${oldsymbol{arphi}}$	\dashv		\vdash
ICSAB		17:40	X	X	Χ	Χ	Χ	Λ	Λ	Λ	X	Χ	X	X	Χ	X	Λ	Χ	Χ							${oldsymbol{arphi}}$	\dashv		\vdash
ZZZZZZ	1.00	17:43		7.7		7.7								7.7	7.7	7.7										${f H}$	_		<u> </u>
CCV	1.00	17:46			Χ			Χ		Х								X						<u> </u>		\vdash	\dashv	_	
CCB	1.00	17:49	Х	Х			Χ		Χ		Х					Χ		Χ						<u> </u>		Н	_		\vdash
P27763AB	1.00	17:52	Χ	Χ	Χ		Χ	Χ			Χ	Χ						Χ					<u> </u>			Щ	_		ऻ—
P27763AQ	1.00	17:55		Χ	Χ			Χ			Χ		Χ			Χ		Χ								Ш	_		$ldsymbol{\sqcup}$
*40335BKG	1.00	17:58	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Χ	Х	Х	Χ	Χ	Х	Χ	Х							Щ	_		Ш
ZZZZZZ	1.00	18:01																								Щ	_		Ш
ZZZZZZ	1.00	18:04																								Ш	_		Ш
ZZZZZZ	1.00	18:07																								Ш	_		<u> </u>
ZZZZZZ	1.00	18:10																								Ш			L_
*40335L	5.00	18:14	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ							Ш			L_
ZZZZZZ	1.00	18:17																								Ш			
ZZZZZZ	1.00	18:20																								Ш			
CCV	1.00	18:23	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ										
CCB	1.00	18:26	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ										
ZZZZZZ	1.00	18:29																											
ZZZZZZ	1.00	18:32																											
ZZZZZZ	1.00	18:35																											
ZZZZZZ	1.00	18:38																											
ZZZZZZ	1.00	18:41																											
ZZZZZZ	1.00	18:45																											
ZZZZZZ	1.00	18:48																											
9240361	1.00	18:51	Х	Χ		Χ	Χ	Χ	Χ	Х	Χ		Χ	Х	Χ	Х	Χ	Χ	Х										
9240362	1.00	18:54	Х	Χ		Χ	Χ	Χ	Χ	Х	Χ		Χ			Х	Χ	Χ	Х								T		
9240363	1.00	18:57	Х	Х		Χ	Χ	Χ		Х	Χ	Х	Χ					Χ	Х								T		
CCV	1.00	19:00	Х	Χ		Χ	Χ	Χ	Χ		Χ							Χ	Х								T		
CCB	1.00	19:03	Х	Х		Χ	Χ	Χ	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Х								T		

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

LEGEND:

BKG = Background
DUP = Duplicate

MS = Matrix Spike

MSD = Matrix Spike Duplicate

A = Post Digest Spike L = Serial Dilution

B = Blank

Q = Laboratory Control Sample

Y = Laboratory Control Sample Duplicate

FORM 14

ANALYSIS RUN LOG SDG No.: SAI25

Method: MS Run Start Date: 10/12/2017 Instrument ID: 19204 Run End Date: 10/12/2017 Run Name: 1728504E05

Analytes C C P M M N S A T V Z Lab Sample SABB S ΑE OUBNOIEGL D R D/F Time Ν ΙD S0 1.00 05:53 Χ Χ Χ S 1.00 05:55 Χ Χ Χ 1.00 05:57 Χ CCS Χ Χ 05:59 Χ CCS 1.00 Χ Χ Χ ICV 1.00 06:00 Χ Χ 1.00 06:02 Χ ICB Χ Χ 1.00 06:04 Χ Χ Χ LLC Χ ICSA 1.00 06:06 Χ Χ Χ ICSAB 1.00 06:08 Χ Χ ZZZZZZ 1.00 06:10 CCV 1.00 06:11 Χ Χ Χ 1.00 06:13 Χ Χ CCB Χ 1.00 06:15 P27763AQ Χ Χ 1.00 06:17 ZZZZZZ ZZZZZZ1.00 06:19 ZZZZZZ 1.00 06:21 ZZZZZZ 5.00 06:22 ZZZZZZ 1.00 06:24 5.00 06:26 ZZZZZZ ZZZZZZ 1.00 06:28 1.00 06:30 ZZZZZZZZZZZZ1.00 06:32 $C\overline{CV}$ 1.00 06:34 Χ Χ Χ Χ Χ Χ CCB 1.00 06:35 ZZZZZZ 1.00 06:37 ZZZZZZ 1.00 06:39 ZZZZZZ 1.00 06:41 9240361 5.00 06:43 Χ Χ 9240362 1.00 06:45 Χ Χ 1.00 06:46 9240363 Χ ZZZZZZ 1.00 06:48

METHODS:

ZZZZZZ

ZZZZZZ ZZZZZZ

CCV

CCB

P = ICP Atomic Emission Spectrometer

1.0006:501.0006:52

1.00 06:54

06:56

06:57

Χ

Χ

1.00

1.00

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

LEGEND:

Χ

Χ

BKG = Background

DUP = Duplicate

MS = Matrix Spike

MSD = Matrix Spike Duplicate

A = Post Digest Spike

L = Serial Dilution

B = Blank

Q = Laboratory Control Sample

Y = Laboratory Control Sample Duplicate

SAI25 Page 51 of 151

Lancaster Laboratories
Environmental

Instrument ID: 19204 Start Date: 10/09/2017 Run Name: 1728207E05 End Date: 10/09/2017

Standard	Elements Applies to	Standard	Elements Applies to
BI-2-209	PB,TL	IN-1-115	SE
IN-2-115	AG, AS, BA, CD, CO, CU, MO, NI, SB, ZN	SC-2-45	CR,MN,V
SC-3-45	BE		

Lab						Intern	nal	Standard	ds	%RI For:					
Sample		Element		Element		Element		Element		Element		Element		Element	
ID	Time	SC-2-45	Q	SC-3-45	Q	IN-1-115	Q	IN-2-115	Q	BI-2-209	Q		Q		Q
S0	17:15	100		100		100		100		100					
S	17:18	103		99		99		101		101					
CCS	17:21	98		98		97		97		99					
CCS	17:24	103		96		99		98		100					
ICV	17:27	101		99		98		102		99					
ICB	17:30	97		98		98		98		99					
LLC	17:33	103		98		100		100		101					
ICSA	17:36	90		88		90		91		87					
ICSAB	17:40	88		88		90		87		86					
ZZZZZZ	17:43														
CCV	17:46	97		97		98		96		97					
CCB	17:49	95		97		98		96		98					
P27763AB	17:52	98		99		101		97		101					
P27763AQ	17:55	105		99		101		101		99					
*40335BKG	17:58	101		99		99		99		101					
ZZZZZZ	18:01														
ZZZZZZ	18:04														
ZZZZZZ	18:07														
ZZZZZZ	18:10														
*40335L	18:14	102		103		101		102		103					
ZZZZZZ	18:17														
ZZZZZZ	18:20														
CCV	18:23	98		98		102		101		101					
CCB	18:26	94		97		98		98		99					
ZZZZZZ	18:29													-	
ZZZZZZ	18:32														
ZZZZZZ	18:35														
ZZZZZZ	18:38													-	
ZZZZZZ	18:41													-	
ZZZZZZ	18:45														
ZZZZZZ	18:48														

LEGEND:		INTERNAL STANDARD E	LEMENTS:
BKG = Background	MS = Matrix Spike	BE = Beryllium	LI = Lithium
DUP = Duplicate	MSD = Matrix Spike Duplicate	BI = Bismuth	SC = Scandium
L = Serial Dilution	A = Post Digest Spike	GE = Germanium	TB = Terbium
B = Blank		HO = Holmium	Y = Yttrium
Q = Laboratory Contro	l Sample	IN = Indium	
Y = Laboratory Contro	l Sample Duplicate		
FLAG:			
R = Internal Standard	Relative Intensity OOS		

Environmental SDG No.: SAI25

QUALITY ASSURANCE SUMMARY

Lancaster Laboratories FORM 16
ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Instrument ID: 19204 Start Date: 10/09/2017 Run Name: 1728207E05 End Date: 10/09/2017

Standard	Elements Applies to	Standard	Elements Applies to
BI-2-209	PB,TL	IN-1-115	SE
IN-2-115	AG, AS, BA, CD, CO, CU, MO, NI, SB, ZN	SC-2-45	CR,MN,V
SC-3-45	BE		

Lab			Internal Standards %RI For:												
Sample		Element		Element		Element		Element		Element		Element		Element	
ID	Time	SC-2-45	Q	SC-3-45	Q	IN-1-115	Q	IN-2-115	Q	BI-2-209	Q		Q		Q
9240361	18:51	104		100		100		95		101					
9240362	18:54	99		100		100		96		101					
9240363	18:57	103		100		101		97		100					
CCV	19:00	100		100		102		97		104					
ССВ	19:03	101		100		99		101		100					

LEGEND:	INTERNAL STANDARD	ELEMENTS:
BKG = Background MS = Matrix Spike	BE = Beryllium	LI = Lithium
DUP = Duplicate MSD = Matrix Spike Duplicate	BI = Bismuth	SC = Scandium
L = Serial Dilution A = Post Digest Spike	GE = Germanium	TB = Terbium
B = Blank	HO = Holmium	Y = Yttrium
Q = Laboratory Control Sample	IN = Indium	
Y = Laboratory Control Sample Duplicate		
FLAG:		
R = Internal Standard Relative Intensity OOS		
CAICE Day 50	(4 = 4	

LEGEND:

Environmental SDG No.: SAI25

QUALITY ASSURANCE SUMMARY

Lancaster Laboratories FORM 16
ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Instrument ID: 19204 Start Date: 10/12/2017 Run Name: 1728504E05 End Date: 10/12/2017

Standard	Elements Applies to	Standard	Elements Applies to
IN-1-115	BA,CD	SC-1-45	MN

Lab						Inter	nal	Standard	ds	%RI For:					
Sample		Element		Element		Element		Element		Element		Element		Element	
ID	Time	SC-1-45	Q	IN-1-115	Q		Q		Q		Q		Q		Q
S0	05:53	100		100											
S	05:55	98		94											
CCS	05:57	101		99											
CCS	05:59	100		96											
ICV	06:00	99		97											
ICB	06:02	103		99											
LLC	06:04	101		101											
ICSA	06:06	89		85											
ICSAB	06:08	91		85											
ZZZZZZ	06:10														
CCV	06:11	100		97											
CCB	06:13	99		97											
P27763AQ	06:15	104		100											
ZZZZZZ	06:17														
ZZZZZZ	06:19														
ZZZZZZ	06:21														
ZZZZZZ	06:22														
ZZZZZZ	06:24														
ZZZZZZ	06:26														
ZZZZZZ	06:28														
ZZZZZZ	06:30														
ZZZZZZ	06:32														
CCV	06:34	102		103											
CCB	06:35	101		102											
ZZZZZZ	06:37														
ZZZZZZ	06:39														
ZZZZZZ	06:41														
9240361	06:43	106		102											
9240362	06:45	102		101											
9240363	06:46			100											
ZZZZZZ	06:48													<u> </u>	

BKG = Background MS = Matrix Spike	BE = Beryllium	LI = Lithium	
DUP = Duplicate MSD = Matrix Spike Duplicate	BI = Bismuth	SC = Scandium	
L = Serial Dilution A = Post Digest Spike	GE = Germanium	TB = Terbium	
B = Blank	HO = Holmium	Y = Yttrium	
Q = Laboratory Control Sample	IN = Indium		
Y = Laboratory Control Sample Duplicate			
FLAG:			
R = Internal Standard Relative Intensity OOS			

INTERNAL STANDARD ELEMENTS:

Environmental SDG No.: SAI25

QUALITY ASSURANCE SUMMARY

Lancaster Laboratories FORM 16
ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Instrument ID: 19204 Start Date: 10/12/2017 Run Name: 1728504E05 End Date: 10/12/2017

Standard	Elements Applies to	Standard	Elements Applies to
IN-1-115	BA,CD	SC-1-45	MN

Lab			Internal Standards %RI For:												
Sample		Element		Element		Element		Element		Element		Element		Element	
ID	Time	SC-1-45	Q	IN-1-115	Q		Q		Q		Q		Q		Q
ZZZZZZ	06:50														
ZZZZZZ	06:52														
ZZZZZZ	06:54														
CCV	06:56	104		101											
ССВ	06:57	101		103											

LEGEND:	INTERNAL STANDARD	ELEMENTS:
BKG = Background MS = Matrix Spike	BE = Beryllium	LI = Lithium
DUP = Duplicate MSD = Matrix Spike Duplicate	BI = Bismuth	SC = Scandium
L = Serial Dilution A = Post Digest Spike	GE = Germanium	TB = Terbium
B = Blank	HO = Holmium	Y = Yttrium
Q = Laboratory Control Sample	IN = Indium	
Y = Laboratory Control Sample Duplicate		
FLAG:		
R = Internal Standard Relative Intensity OOS		
OAIOE Day EE	(4 = 4	

CROSS REFERENCE TABLE

EPA 245.1/7470A

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

CASE NARRATIVE

Spectrum Analytical, Inc. Lab Reference No. SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport / 112608005-WE15

SDG #: SC38627

I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

III. METHODS

Analyses were performed according to EPA 245.1/7470A.

IV. PREPARATION

Aqueous samples were prepared according to EPA200/SW7000 Series.

V. INSTRUMENTATION

The following equipment was used to analyze EPA 245.1/7470A:

Mercury4 details: Leeman Labs Hydra IIAA Mercury Analyzer

VI. ANALYSIS

A. Calibration:

All quality control samples were within the acceptance criteria.

B. Blanks:

All blanks were within the acceptance criteria.

C. Spikes:

1. Laboratory Control Samples (LCS):

All method criteria were met.

2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

A matrix spike and a matrix spike duplicate were analyzed:

In batch 1715127 from source sample TF1-GT-106-082817 (SC38627-03).

All method criteria were met.

3. Post Spike Samples (PS):

A post spike was analyzed.

In batch 1715127 from source sample TF1-GT-106-082817 (SC38627-03).

All method criteria were met with the following exceptions:

Mercury in batch 1715127, lab sample 1715127-PS1 from source sample TF1-GT-106-082817 (SC38627-03): The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

D. Duplicates:

A duplicate was analyzed.

In batch 1715127 from source sample TF1-GT-106-082817 (SC38627-03).

All method criteria were met.

E. Samples:

All method criteria were met.

FORM III - BLANKS EPA 245.1/7470A

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: Mercury4 Calibration: 1711036

Sequence: <u>S710159</u>

Lab Sample ID	Analyte	Found	MRL	Units	C	Method
S710159-ICB1	Mercury	BRL	0.200	μg/l	U	EPA 245.1/7470A
S710159-CCB1	Mercury	BRL	0.200	μg/l	U	EPA 245.1/7470A

FORM III - BLANKS EPA 245.1/7470A

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: Mercury4 Calibration: 1711036

Sequence: <u>S710160</u>

Lab Sample ID	Analyte	Found	MRL	Units	C	Method
S710160-CCB1	Mercury	BRL	0.200	μg/l	U	EPA 245.1/7470A
1715127-BLK1	Mercury	BRL	0.00020	mg/l	U	EPA 245.1/7470A
S710160-CCB2	Mercury	BRL	0.200	μg/l	U	EPA 245.1/7470A

FORM Vb - POST DIGEST SPIKE SAMPLE RECOVERY

EPA 245.1/7470A

TF1-GT-106-082817

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

 Matrix:
 Aqueous
 Laboratory ID:
 1715127-PS1

 Batch:
 1715127
 Lab Source ID:
 SC38627-03

 Preparation:
 EPA200/SW7000 Series
 Initial/Final:
 20 ml / 20 ml

Source Sample Name: TF1-GT-106-082817 % Solids:

Analyte	Control Limit %R	Spike Sample Result (SSR) (mg/l)	Sample Result (SR) (mg/l)	Spike Added (SA) (mg/l)	%R	Method
Mercury	85 - 115	BRL	BRL	0.00500	*	EPA 245.1/7470A

^{*} Values outside of QC limits

FORM IIIc - DUPLICATES

EPA 245.1/7470A

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: 1715127-DUP1

Batch: <u>1715127</u> Lab Source ID: <u>SC38627-03</u>

Preparation: EPA200/SW7000 Series Initial/Final: 20 ml / 20 ml

Source Sample Name: TF1-GT-106-082817 % Solids:

File ID: <u>091517-054</u>

	ANALYTE	CONTROL LIMIT	SAMPLE CONCENTRATION (mg/l)	С	DUPLICATE CONCENTRATION (mg/l)	С	RPD %	Q	метнор
N	Mercury	20	BRL		BDL				EPA 245.1/7470A

^{*} Values outside of QC limits

Individual peaks for multi-component analytes are indicated by a number in parentheses

FORM IIIa - LCS / LCS DUPLICATE RECOVERY

EPA 245.1/7470A

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: Mercury4

Batch: <u>1715127</u> Laboratory ID: <u>1715127-BS1</u>

Preparation: EPA200/SW7000 Series Initial/Final: 20 ml / 20 ml

<u>09/15/17 13:51</u> Spike ID: 17I0192

File ID: <u>091517-050</u>

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS
COMPOUND	(mg/l)	(mg/l)	REC.#	REC.
Mercury	0.00500	0.00467	93	82 - 119

[#] Column to be used to flag recovery and RPD values with an asterisk

Analyzed:

Individual peaks for multi-component analytes are indicated by a number in parentheses

^{*} Values outside of QC limits

FORM IIIb (Organic) / FORM V (Inorganic) MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

TF1-GT-106-082817

EPA 245.1/7470A

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: Mercury4

Batch: <u>1715127</u> Laboratory ID: <u>1715127-MS1</u>

Preparation: EPA200/SW7000 Series Initial/Final: 20 ml / 20 ml

Source Sample Name: TF1-GT-106-082817 % Solids:

Spike ID: 17I0192

File ID: <u>091517-055</u>

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(mg/l)	(mg/l)	(mg/l)	REC. #	REC.
Mercury	0.00500	BRL	0.00494	99	82 - 119

File ID: <u>091517-056</u>

	SPIKE	MSD	MSD		QC LIMITS	
	ADDED	CONCENTRATION	%	%		
COMPOUND	(mg/l)	(mg/l)	REC. #	RPD#	RPD REC.	
Mercury	0.00500	0.00477	95	4	20	82 - 119

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS

EPA 245.1/7470A

Laboratory:Eurofins Spectrum Analytical, Inc. - MASDG:SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Mercury	0.00013	0.00020	mg/l

CROSS REFERENCE TABLE

EPA 300.0

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

CASE NARRATIVE

Spectrum Analytical, Inc. Lab Reference No. SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport / 112608005-WE15

SDG #: SC38627

I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

III. METHODS

Analyses were performed according to EPA 300.0.

IV. PREPARATION

Aqueous samples were prepared according to General Preparation.

V. INSTRUMENTATION

The following equipment was used to analyze EPA 300.0:

IC3 details: Metrohm model 881 Compact Pro Ion Chromatograph

VI. ANALYSIS

A. Calibration:

All quality control samples were within the acceptance criteria.

B. Blanks:

All blanks were within the acceptance criteria.

C. Spikes:

1. Laboratory Control Samples (LCS):

All method criteria were met.

2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

No matrix spike or matrix spike duplicates were analyzed.

3. Reference:

All method criteria were met.

D. Duplicates:

No client requested duplicate. However, the method criteria may have been fulfilled with non-SDG source samples.

E. Samples:

All method criteria were met.

FORM III - BLANKS EPA 300.0

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: <u>IC3</u> Calibration: <u>1710011</u>

Sequence: S708848 Matrix: Drinking Water

Lab Sample ID	Analyte	Found	MRL	Units	С	Method
S708848-ICB1	Chloride	BRL	1.00	mg/l	U	EPA 300.0
	Sulfate as SO4	BRL	1.00	mg/l	U	EPA 300.0
	Nitrate as N	BRL	0.010	mg/l	U	EPA 300.0

FORM III - BLANKS EPA 300.0

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: <u>IC3</u> Calibration: <u>1710011</u>
Sequence: <u>8709453</u> Matrix: Aqueous

Lab Sample ID	Analyte	Found	MRL	Units	C	Method
1714824-CCB1	Chloride	BRL	1.00	mg/l	U	EPA 300.0
	Sulfate as SO4	BRL	1.00	mg/l	U	EPA 300.0
	Nitrate as N	BRL	0.100	mg/l	U	EPA 300.0
1714824-CCB2	Chloride	BRL	1.00	mg/l	U	EPA 300.0
	Sulfate as SO4	BRL	1.00	mg/l	U	EPA 300.0
	Nitrate as N	BRL	0.100	mg/l	U	EPA 300.0
1714824-BLK1	Chloride	0.0900	1.00	mg/l	J	EPA 300.0
	Sulfate as SO4	BRL	1.00	mg/l	U	EPA 300.0
	Nitrate as N	BRL	0.100	mg/l	U	EPA 300.0
1714824-CCB3	Chloride	BRL	1.00	mg/l	U	EPA 300.0
	Sulfate as SO4	BRL	1.00	mg/l	U	EPA 300.0
	Nitrate as N	BRL	0.100	mg/l	U	EPA 300.0
1714824-CCB4	Chloride	BRL	1.00	mg/l	U	EPA 300.0
	Sulfate as SO4	BRL	1.00	mg/l	U	EPA 300.0
	Nitrate as N	BRL	0.100	mg/l	U	EPA 300.0
1714824-CCB5	Chloride	BRL	1.00	mg/l	U	EPA 300.0
	Sulfate as SO4	BRL	1.00	mg/l	U	EPA 300.0
	Nitrate as N	BRL	0.100	mg/l	U	EPA 300.0
1714824-CCB6	Chloride	BRL	1.00	mg/l	U	EPA 300.0
	Sulfate as SO4	BRL	1.00	mg/l	U	EPA 300.0
	Nitrate as N	BRL	0.100	mg/l	U	EPA 300.0
1714824-CCB7	Chloride	BRL	1.00	mg/l	U	EPA 300.0
	Sulfate as SO4	BRL	1.00	mg/l	U	EPA 300.0
	Nitrate as N	BRL	0.100	mg/l	U	EPA 300.0

EPA 300.0

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: IC3

Batch: <u>1714824</u> Laboratory ID: <u>1714824-BS1</u>

Preparation:General PreparationInitial/Final:5 ml / 5 mlAnalyzed:08/30/17 01:47Spike ID:17H1027

File ID: <u>082917-045</u>

COMPOUND	SPIKE ADDED (mg/l)	LCS CONCENTRATION (mg/l)	LCS % REC. #	QC LIMITS REC.
Chloride	20.0	20.7	104	90 - 110
Sulfate as SO4	20.0	21.0	105	90 - 110
Nitrate as N	2.00	2.12	106	90 - 110

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM VIIb(Inorganics) - STANDARD REFERENCE MATERIAL RECOVERY

EPA 300.0

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Spike ID: 17H1028

Batch: <u>1714824</u> Laboratory ID: <u>1714824-SRM1</u>

Preparation: General Preparation Initial/Final: 5 ml / 5 ml

ANALYTE	TRUE (mg/l)	FOUND (mg/l)	SRM % REC.	QC LIMITS REC.
Chloride	25.0	25.7	103	90 - 110
Sulfate as SO4	25.0	26.8	107	90 - 110
Nitrate as N	2.50	2.71	108	90 - 110

^{*} Values outside of QC limits

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS EPA 300.0

 Laboratory:
 Eurofins Spectrum Analytical, Inc. - MA
 SDG:
 SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Chloride	0.0994	1.00	mg/l
	0.0994	1.00	mg/l
Nitrate as N	0.007	0.010	mg/l
Sulfate as SO4	0.798	1.00	mg/l
	0.798	1.00	mg/l
Nitrate as N	0.007	0.100	mg/l

PREPARATION BENCH SHEET

1714824	
 1711021	

Balance ID	 NI	17

Matrix:	Aq	ueo	us
Mauia.	Ay	uco	us

Prenared using: Wet Chem - General Prenaration

Matrix: Aqueous		Prepared using: Wet Chem - General Preparation						(No Surrogate		
Lab Number	Client ID	ID	Analysis	Initial (ml)	Final (ml)	Spike ID	Source ID	Due Date	Pipet ID	Sample Comments
1714824-BLK1	Blank		QC	5	5					
1714824-BS1	LCS		QC	5	5	17H1027				
1714824-CCB1	Calibration Blank		QC	5	5					
1714824-CCB2	Calibration Blank		QC	5	5					
1714824-CCB3	Calibration Blank		QC	5	5					
1714824-CCB4	Calibration Blank		QC	5	5					
1714824-CCB5	Calibration Blank		QC	5	5					
1714824-CCB6	Calibration Blank		QC	5	5					
1714824-CCB7	Calibration Blank		QC	5	5					
1714824-CCV1	Calibration Check		QC	5	5	17H1027				
1714824-CCV2	Calibration Check		QC	5	5	17H1027				
1714824-CCV3	Calibration Check		QC	5	5	17H1027				
1714824-CCV4	Calibration Check		QC	5	5	17H1027				
1714824-CCV5	Calibration Check		QC	5	5	17H1027				
1714824-CCV6	Calibration Check		QC	5	5	17H1027				
1714824-CCV7	Calibration Check		QC	5	5	17H1027				
1714824-DUP1	Duplicate		QC	5	5		SC38587-02			
1714824-MS1	Matrix Spike		QC	1	5	17F0999	SC38587-02		ICH1, 416	
1714824-MSD1	Matrix Spike Dup		QC	1	5	17F0999	SC38587-02		TCHI HIS	
1714824-SRM1	Reference		QC	5	5	17H1028			Nor () P	
SC38587-01	WW-Start	A	wc-Sulfate - 30	5	5	-		07-Sep-17 16:00		
SC38587-02	WW-End	A	wc-Chloride-30	5	5	<		-		BatchQC

	•	1	6	
Analy	st I	e'	viev	ved

Extracts Received By

Date

Printed: 9/5/2017 10:08:33AM

PREPARATION BENCH SHEET

1714824
1/14024

Balance 1	D	
Balance 1	W	

Matrix: Aqueous

Prepared using: Wet Chem - General Preparation

(No Surrogate)

										(No Surrogate
Lab Number	Client ID	ID	Analysis	Initial (ml)	Final (ml)	Spike ID	Source ID	Due Date	Pipet ID	Sample Comments
SC38587-02	WW-End	A	wc-Nitrate 300.	5	5				-	BatchQC
SC38587-02	WW-End	Α	wc-Nitrite 300.0	5	5					BatchQC
SC38587-02	WW-End	A	wc-Sulfate - 30	5	5			07-Sep-17 16:00		
SC38624-02	Effluent	D	wc-Nitrate 300.	5	5			08-Sep-17 16:00		
SC38624-02	Effluent	D	wc-Nitrite 300.	5	5			08-Sep-17 16:00		
SC38627-01	TF1-MW-1003-082817	N	wc-Chloride-30	5	5			08-Sep-17 16:00		DoD Level IV
SC38627-01	TF1-MW-1003-082817	N	wc-Nitrate 300.	5	5			08-Sep-17 16:00		DoD Level IV
SC38627-01	TF1-MW-1003-082817	N	wc-Sulfate - 30	5	5			08-Sep-17 16:00		DoD Level IV
SC38627-02	TF1-EBP-GZ101R-082817	N	wc-Chloride-30	5	5			08-Sep-17 16:00		DoD Level IV
SC38627-02	TF1-EBP-GZ101R-082817	N	wc-Nitrate 300.	5	5			08-Sep-17 16:00		DoD Level IV
SC38627-02	TF1-EBP-GZ101R-082817	N	wc-Sulfate - 30	5	5			08-Sep-17 16:00		DoD Level IV
SC38627-03	TF1-GT-106-082817	N	wc-Chloride-30	5	5			08-Sep-17 16:00		DoD Level IV
SC38627-03	TF1-GT-106-082817	N	wc-Nitrate 300.	5	5			08-Sep-17 16:00		DoD Level IV
SC38627-03	TF1-GT-106-082817	N	wc-Sulfate - 30	5	5			08-Sep-17 16:00		DoD Level IV

8/29/17 Aq ANIONS LNB

D 4 -	TT1
Reagents	Usea:

17A0456

IC3 column

17H0856

IC3 Eluent 082417

Analyst Reviewed Date Manager Reviewed Date Extracts Received By Date

Printed: 9/5/2017 10:08:33AM

Page 2 of 2

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY EPA 300.0

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S708848</u> Instrument: <u>IC3</u>

Calibration: <u>1710011</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Cal Standard	S708848-CAL3	081717-012	08/17/17 14:13
Cal Standard	S708848-CAL2	081717-013	08/17/17 14:29
Cal Standard	S708848-CAL4	081717-014	08/17/17 14:45
Cal Standard	S708848-CAL5	081717-015	08/17/17 15:01
Cal Standard	S708848-CAL6	081717-016	08/17/17 15:16
Cal Standard	S708848-CAL7	081717-017	08/17/17 15:32
Cal Standard	S708848-CAL8	081717-018	08/17/17 15:48
Cal Standard	S708848-CAL1	081717-025	08/17/17 17:39
Initial Cal Check	S708848-ICV1	081717-026	08/17/17 17:55
Initial Cal Blank	S708848-ICB1	081717-027	08/17/17 18:11

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY EPA 300.0

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S709453</u> Instrument: <u>IC3</u>

Calibration: <u>1710011</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Calibration Check	1714824-CCV1	082917-023	08/29/17 19:55
Calibration Blank	1714824-CCB1	082917-024	08/29/17 20:11
TF1-EBP-GZ101R-082817	SC38627-02	082917-029	08/29/17 21:31
TF1-GT-106-082817	SC38627-03	082917-030	08/29/17 21:47
Calibration Check	1714824-CCV2	082917-031	08/29/17 22:03
Calibration Blank	1714824-CCB2	082917-032	08/29/17 22:19
TF1-MW-1003-082817	SC38627-01	082917-033	08/29/17 22:35
Blank	1714824-BLK1	082917-042	08/30/17 00:59
Calibration Check	1714824-CCV3	082917-043	08/30/17 01:15
Calibration Blank	1714824-CCB3	082917-044	08/30/17 01:31
LCS	1714824-BS1	082917-045	08/30/17 01:47
Reference	1714824-SRM1	082917-047	08/30/17 02:18
Calibration Check	1714824-CCV4	082917-055	08/30/17 04:24
Calibration Blank	1714824-CCB4	082917-056	08/30/17 04:40
Calibration Check	1714824-CCV5	082917-062	08/30/17 06:14
Calibration Blank	1714824-CCB5	082917-063	08/30/17 06:30
Calibration Check	1714824-CCV6	083017-004	08/30/17 10:32
Calibration Blank	1714824-CCB6	083017-005	08/30/17 10:48
Calibration Check	1714824-CCV7	083017-016	08/30/17 13:48
Calibration Blank	1714824-CCB7	083017-017	08/30/17 14:04

CROSS REFERENCE TABLE

SM5310B (00, 11)

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

CASE NARRATIVE

Spectrum Analytical, Inc. Lab Reference No. SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport / 112608005-WE15

SDG #: SC38627

I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

III. METHODS

Analyses were performed according to SM5310B (00, 11).

IV. PREPARATION

Aqueous samples were prepared according to General Preparation.

V. INSTRUMENTATION

The following equipment was used to analyze SM5310B (00, 11):

TOC4 details: Shimadzu TOC-L

VI. ANALYSIS

A. Calibration:

All quality control samples were within the acceptance criteria.

B. Blanks:

All blanks were within the acceptance criteria.

C. Spikes:

1. Laboratory Control Samples (LCS):

All method criteria were met.

2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

A matrix spike and a matrix spike duplicate were analyzed:

In batch 1715303 from source sample TF1-MW-1003-082817 (SC38627-01).

All method criteria were met.

3. Reference:

All method criteria were met.

D. Duplicates:

A duplicate was analyzed.

In batch 1715303 from source sample TF1-MW-1003-082817 (SC38627-01).

All method criteria were met.

E. Samples:

All method criteria were met.

FORM III - BLANKS SM5310B (00, 11)

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: TOC4 Calibration: 1706085
Sequence: S705799 Matrix: Aqueous

Lab Sample ID	Analyte	Found	MRL	Units	С	Method
S705799-ICB1	Total Organic Carbon	0.3281	1.00	mg/l	J	SM5310B (00, 11)

Samples not affected.

FORM III - BLANKS SM5310B (00, 11)

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: TOC4 Calibration: 1706085
Sequence: S707960 Matrix: Aqueous

Lab Sample ID	Analyte	Found	MRL	Units	C	Method
1715303-CCB1	Total Organic Carbon	BRL	1.00	mg/l	U	SM5310B (00, 11)
1715303-BLK1	Total Organic Carbon	BRL	1.00	mg/l	U	SM5310B (00, 11)
1715303-CCB2	Total Organic Carbon	0.2555	1.00	mg/l	J	SM5310B (00, 11)
1715303-CCB3	Total Organic Carbon	BRL	1.00	mg/l	U	SM5310B (00, 11)

No validation. Instrument blank.

FORM IIIc - DUPLICATES

SM5310B (00, 11)

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Laboratory ID: 1715303-DUP1

Batch: <u>1715303</u> Lab Source ID: <u>SC38627-01</u>

Preparation: General Preparation Initial/Final: 40 ml / 40 ml

Source Sample Name: TF1-MW-1003-082817 % Solids:

File ID: <u>1715303-008</u>

ANALYTE	CONTROL LIMIT	SAMPLE CONCENTRATION (mg/l)	С	DUPLICATE CONCENTRATION (mg/l)	С	RPD %	Q	METHOD
Total Organic Carbon	20	6.06		6.06		0		SM5310B (00, 11)

^{*} Values outside of QC limits

FORM IIIa - LCS / LCS DUPLICATE RECOVERY SM5310B (00, 11)

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: TOC4

Batch: 1715303 Laboratory ID: 1715303-BS1
Preparation: General Preparation Initial/Final: 40 ml / 40 ml

Analyzed: 09/07/17 13:58 Spike ID: 17I0208

File ID: <u>1715303-004</u>

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS
COMPOUND	(mg/l)	(mg/l)	REC.#	REC.
Total Organic Carbon	15.0	14.1	94	85 - 115

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM IIIb (Organic) / FORM V (Inorganic) MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

TF1-MW-1003-082817

SM5310B (00, 11)

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: TOC4

 Batch:
 1715303
 Laboratory ID:
 1715303-MS1

 Preparation:
 General Preparation
 Initial/Final:
 40 ml / 40 ml

Source Sample Name: TF1-MW-1003-082817 % Solids:

Spike ID: 16E0251

File ID: <u>1715303-009</u>

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(mg/l)	(mg/l)	(mg/l)	REC. #	REC.
Total Organic Carbon	5.00	6.06	10.8	95	70 - 130

File ID: <u>1715303-010</u>

	SPIKE	MSD	MSD		QC	LIMITS
	ADDED	CONCENTRATION	%	%		
COMPOUND	(mg/l)	(mg/l)	REC. #	RPD#	RPD	REC.
Total Organic Carbon	5.00	10.8	94	0.2	30	70 - 130

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM VIIb(Inorganics) - STANDARD REFERENCE MATERIAL RECOVERY

SM5310B (00, 11)

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Spike ID: 17H0608

Batch: <u>1715303</u> **Laboratory ID:** <u>1715303-SRM1</u>

Preparation: General Preparation Initial/Final: 40 ml / 40 ml

ANALYTE	TRUE (mg/l)	FOUND (mg/l)	SRM % REC.	QC LIMITS REC.
Total Organic Carbon	14.6	14.0	96	88 - 112

^{*} Values outside of QC limits

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SM5310B (00, 11)

 Laboratory:
 Eurofins Spectrum Analytical, Inc. - MA
 SDG:
 SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Total Organic Carbon	0.238	1.00	mg/l

CROSS REFERENCE TABLE

SM18-22 5210B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

FORM III - BLANKS SM18-22 5210B

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: Spec 1 Calibration: 1707032

Sequence: S707898 Matrix: Aqueous

Lab Sample ID	Analyte	Found	MRL	Units	C	Method
1714921-BLK1	Biochemical Oxygen Demand (5-day	BRL	3.00	mg/l	U	SM18-22 5210B
1714921-BLK2	Biochemical Oxygen Demand (5-day	BRL	3.00	mg/l	U	SM18-22 5210B

FORM IIIa - LCS / LCS DUPLICATE RECOVERY SM18-22 5210B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: Spec 1

Batch: <u>1714921</u> Laboratory ID: <u>1714921-BS1</u>

Preparation: General Preparation Initial/Final: 300 ml / 300 ml

Analyzed: 09/06/17 12:36 Spike ID: 17G0236

File ID:

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS
COMPOUND	(mg/l)	(mg/l)	REC.#	REC.
Biochemical Oxygen Demand (5-day)	198	179	90	85 - 115

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM VIIb(Inorganics) - STANDARD REFERENCE MATERIAL RECOVERY

SM18-22 5210B

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Spike ID: 17H0609

Batch: <u>1714921</u> **Laboratory ID:** <u>1714921-SRM1</u>

Preparation: General Preparation Initial/Final: 300 ml / 300 ml

ANALYTE	TRUE (mg/l)	FOUND (mg/l)	SRM % REC.	QC LIMITS REC.
Biochemical Oxygen Demand (5-day)	64.5	55.0	85	67 - 133

^{*} Values outside of QC limits

FORM VIIb(Inorganics) - STANDARD REFERENCE MATERIAL RECOVERY

SM18-22 5210B

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Spike ID: 17H0609

Batch: <u>1714921</u> Laboratory ID: <u>1714921-SRM2</u>

Preparation: General Preparation Initial/Final: 300 ml / 300 ml

ANALYTE	TRUE (mg/l)	FOUND (mg/l)	SRM % REC.	QC LIMITS REC.
Biochemical Oxygen Demand (5-day)	64.5	47.0	73	67 - 133

^{*} Values outside of QC limits

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SM18-22 5210B

Laboratory:Eurofins Spectrum Analytical, Inc. - MASDG:SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Biochemical Oxygen Demand (5-day)	2.74	3.00	mg/l

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SM18-22 5210B

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: <u>S707898</u> Instrument: <u>Spec 1</u>

Calibration: <u>1707032</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Blank	1714921-BLK1		09/06/17 12:36
LCS	1714921-BS1		09/06/17 12:36
Reference	1714921-SRM1		09/06/17 12:36
TF1-MW-1003-082817	SC38627-01		09/06/17 12:36
TF1-EBP-GZ101R-082817	SC38627-02		09/06/17 12:36
TF1-GT-106-082817	SC38627-03		09/06/17 12:36
Reference	1714921-SRM2		09/06/17 12:36
Blank	1714921-BLK2		09/06/17 12:36

CROSS REFERENCE TABLE

SM2320B (97, 11)

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Project Number: <u>112608005-WE15</u>

Client Sample ID: Lab Sample ID:

 TF1-MW-1003-082817
 SC38627-01

 TF1-EBP-GZ101R-082817
 SC38627-02

 TF1-GT-106-082817
 SC38627-03

FORM III - BLANKS SM2320B (97, 11)

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Instrument ID: <u>Titrator</u> Calibration:

Sequence: Matrix: Aqueous

Lab Sample ID	Analyte	Found	MRL	Units	С	Method
1714942-BLK1	Total Alkalinity	1.87	4.00	mg/l CaCO3	J	SM2320B (97, 11)
1714942-BLK2	Total Alkalinity	BRL	4.00	mg/l CaCO3	U	SM2320B (97, 11)
1714942-BLK3	Total Alkalinity	BRL	4.00	mg/l CaCO3	U	SM2320B (97, 11)
1714942-BLK4	Total Alkalinity	BRL	4.00	mg/l CaCO3	U	SM2320B (97, 11)

SM2320B (97, 11)

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: Titrator

Batch: <u>1714942</u> Laboratory ID: <u>1714942-BS1</u>

Preparation: <u>General Preparation</u> <u>Initial/Final</u>: <u>50 ml / 50 ml</u>

Analyzed: 08/31/17 19:03 Spike ID: 17E0587

File ID: <u>DTOOL Alk 2017-08-31 1901-002</u>

COMPOUND	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	%	LIMITS
	(mg/l CaCO3)	(mg/l CaCO3)	REC.#	REC.
Total Alkalinity	50.0	50.9	102	90 - 110

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

SM2320B (97, 11)

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: Titrator

 Batch:
 1714942
 Laboratory ID:
 1714942-BS2

 Preparation:
 General Preparation
 Initial/Final:
 50 ml / 50 ml

Analyzed: 08/31/17 20:00 Spike ID: 17E0587

File ID: <u>DTOOL Alk 2017-08-31 1901-012</u>

COMPOUND	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	%	LIMITS
	(mg/l CaCO3)	(mg/l CaCO3)	REC.#	REC.
Total Alkalinity	50.0	50.9	102	90 - 110

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

SM2320B (97, 11)

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: Titrator

Batch: 1714942 Laboratory ID: 1714942-BS3

Preparation: General Preparation Initial/Final: 50 ml / 50 ml

Analyzed: 08/31/17 20:40 Spike ID: 17E0587

File ID: <u>DTOOL Alk 2017-08-31 1901-024</u>

COMPOUND	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	%	LIMITS
	(mg/l CaCO3)	(mg/l CaCO3)	REC.#	REC.
Total Alkalinity	50.0	51.3	103	90 - 110

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

SM2320B (97, 11)

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Instrument: Titrator

Batch: <u>1714942</u> Laboratory ID: <u>1714942-BS4</u>

Analyzed: 08/31/17 21:08 Spike ID: 17E0587

File ID: <u>DTOOL Alk 2017-08-31 1901-031</u>

50 ml / 50 ml

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS
COMPOUND	(mg/l CaCO3)	(mg/l CaCO3)	REC. #	REC.
Total Alkalinity	50.0	50.8	102	90 - 110

Initial/Final:

General Preparation

Preparation:

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM VIIb(Inorganics) - STANDARD REFERENCE MATERIAL RECOVERY

SM2320B (97, 11)

Laboratory: Eurofins Spectrum Analytical, Inc. - MA SDG: SC38627

Client: Tetra Tech, Inc. - Salem, NH

Project: WE15 Tank Farm 1 NAVSTA Newport

Matrix: Aqueous Spike ID: 17H0359

Batch: <u>1714942</u> Laboratory ID: <u>1714942-SRM1</u>

Preparation: General Preparation Initial/Final: 20 ml / 50 ml

ANALYTE	TRUE FOUND (mg/l CaCO3)		SRM % REC.	QC LIMITS REC.	
Total Alkalinity	124	132	107	92 - 111	

^{*} Values outside of QC limits

Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS SM2320B (97, 11)

 Laboratory:
 Eurofins Spectrum Analytical, Inc. - MA
 SDG:
 SC38627

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Analyte	MDL	MRL	Units
Total Alkalinity	1.05	4.00	mg/l CaCO3

FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY SM2320B (97, 11)

Laboratory: <u>Eurofins Spectrum Analytical, Inc. - MA</u> SDG: <u>SC38627</u>

Client: Tetra Tech, Inc. - Salem, NH Project: WE15 Tank Farm 1 NAVSTA Newport

Sequence: Instrument:

Calibration:

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Blank	1714942-BLK1	TOOL Alk 2017-08-31 1901-00	08/31/17 19:01
LCS	1714942-BS1	TOOL Alk 2017-08-31 1901-00	08/31/17 19:03
Reference	1714942-SRM1	TOOL Alk 2017-08-31 1901-00	08/31/17 19:08
Blank	1714942-BLK2	TOOL Alk 2017-08-31 1901-0	08/31/17 19:58
LCS	1714942-BS2	TOOL Alk 2017-08-31 1901-03	08/31/17 20:00
Blank	1714942-BLK3	TOOL Alk 2017-08-31 1901-02	08/31/17 20:38
LCS	1714942-BS3	TOOL Alk 2017-08-31 1901-02	08/31/17 20:40
Blank	1714942-BLK4	TOOL Alk 2017-08-31 1901-03	08/31/17 21:07
LCS	1714942-BS4	TOOL Alk 2017-08-31 1901-03	08/31/17 21:08

DODCMD_ID INSTALLATIO	I_ID SDG SITE_NAME NO	ORM_SITE_NAME LOC	CATION_NAME	LOCATION_TYPE_DESC	COORD_X	COORD_Y	CONTRACT_ID DO_CTO_	_NUMBER CON	NTR_NAME	SAMPLE_NAME	SAMPLE_MATRIX_DESC	SAMPLE_TYPE_DESC	COLLECT_DATE	ANALYTICAL_METHOD	ANALYTICAL_METHOD_GRP_DESC
MID_ATLANTIC NEWPORT_N	SC38627 SITE 00007 SIT	ΓΕ 00007 TF1	1-MW-1003	Monitoring well	387763	184292.13	N6247016D9008 WE15	TET	TRA TECH, INC.	TF1-MW-1003-082817	Ground water	Normal (Regular)	28-Aug-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC NEWPORT_N	SC38627 SITE 00007 SIT	ΓΕ 00007 TF1	1-EBP-GZ101R	Monitoring well	388406.1667	183897.4697	N6247016D9008 WE15	TET	TRA TECH, INC.	TF1-EBP-GZ101R-082817	Ground water	Normal (Regular)	28-Aug-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC NEWPORT_N	SC38627 SITE 00007 SIT	ΓΕ 00007 TF1	1-GT-106	Monitoring well	389113.2	184390.74	N6247016D9008 WE15	TET	TRA TECH, INC.	TF1-GT-106-082817	Ground water	Normal (Regular)	28-Aug-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC NEWPORT_N	SC38627						N6247016D9008 WE15	TET	TRA TECH, INC.	TF1-FRB-082817	Water for QC samples	Field Reagent Blank	28-Aug-17	537	Perfluoroalkyl Compounds