

Groundwater Sample Results, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG TK1925

Naval Station Newport Newport, Rhode Island

August 2019

```
"LCSWKL20IMW1","6020A","RES","LCSWKL20IMW1","KAS","7440-38-2","ARSENIC","99.4","ug/L","","2.3","MDL","","SPK","99.4","","5.0","PQL","YES","100","LCSWKL20IMW1","","","4.0",""
"LCSWKL20IMW1","6020A","RES","LCSWKL20IMW1","KAS","7440-43-9","CADMIUM","248","ug/L","","0.030","MDL","","SPK","99.2","","1.0","PQL","YES","250","LCSWKL20IMW1","","","0.20",""
"LCSWKL20IMW1","6020A","RES","LCSWKL20IMW1","KAS","7439-92-1","LEAD","98.6","ug/L","","0.074","MDL","","SPK","98.6","","1.0","PQL","YES","100","LCSWKL20IMW1","","","0.50",""
"LCSWKL20IMW1","6020A","RES","LCSWKL20IMW1","KAS","7439-96-5","MANGANESE","500","ug/L","","0.35","MDL","","SPK","100.0","","2.0","PQL","YES","500","LCSWKL20IMW
```

"PBWKL20IMW1","6020A","RES","PBWKL20IMW1","KAS","7440-38-

1","","","1.0",""

- 2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","PBWKL20IMW1","","","4.0",
- "PBWKL20IMW1","6020A","RES","PBWKL20IMW1","KAS","7440-43-9","CADMIUM","0.20","ug/L","U","0.030","MDL","","TRG","","1.0","PQL","YES","0","PBWKL20IMW1","","","0.20",""
- "PBWKL20IMW1","6020A","RES","PBWKL20IMW1","KAS","7439-92-1","LEAD","0.50","ug/L","U","0.074","MDL","","TRG","","1.0","PQL","YES","0","PBWKL20IMW1","","","0.50",
- "PBWKL20IMW1","6020A","RES","PBWKL20IMW1","KAS","7439-96-5","MANGANESE","1.0","ug/L","U","0.35","MDL","","TRG","","","2.0","PQL","YES","0","PBWKL20IMW1","","","1.0",""
- "G32-MW306BR-121817","6020A","RES","TK1925-001","KAS","7440-38-
- 2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW306BR-121817","","","4.0",""
- "G32-MW306BR-121817","6020A","RES","TK1925-001","KAS","7440-43-
- 9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","1.0","PQL","YES","0","G32-MW306BR-121817","","","0.20",""
- "G32-MW306BR-121817","6020A","RES","TK1925-001","KAS","7439-92-
- 1","LEAD","0.61","ug/L","J","0.075","MDL","","TRG","","1.0","PQL","YES","0","G32-MW306BR-121817","","0.50",""
- "G32-MW306BR-121817","6020A","RES","TK1925-001","KAS","7439-96-
- 5","MANGANESE","140","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW306BR-121817","","1.0",""
- "G32-MW306BR-121817", "6020A", "RES", "TK1925-002", "KAS", "7440-38-
- 2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW306BR-121817","","","4.0",""
- "G32-MW306BR-121817", "6020A", "RES", "TK1925-002", "KAS", "7440-43-
- 9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","1.0","PQL","YES","0","G32-MW306BR-121817","","","0.20",""
- "G32-MW306BR-121817", "6020A", "RES", "TK1925-002", "KAS", "7439-92-
- 1","LEAD","0.12","ug/L","J","0.075","MDL","","TRG","","1.0","PQL","YES","0","G32-MW306BR-121817","","","0.50",""
- "G32-MW306BR-121817", "6020A", "RES", "TK1925-002", "KAS", "7439-96-
- 5", "MANGANESE", "37.8", "ug/L", "", "0.35", "MDL", "", "TRG", "", "", "2.0", "PQL", "YES", "0", "G32-MW306BR-121817", "", "1.0", ""
- "DUP-121817","6020A","RES","TK1925-003","KAS","7440-38-
- 2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","DUP-121817","","","4.0","" "DUP-121817","6020A","RES","TK1925-003","KAS","7440-43-
- 9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","1.0","PQL","YES","0","DUP-121817","","","0.20",""

```
"DUP-121817","6020A","RES","TK1925-003","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","DUP-121817","","","0.50",""
"DUP-121817", "6020A", "RES", "TK1925-003", "KAS", "7439-96-
5","MANGANESE","235","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","DUP-
121817","","","1.0",""
"DUP-121817","6020A","RES","TK1925-004","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","DUP-121817","","","4.0",""
"DUP-121817", "6020A", "RES", "TK1925-004", "KAS", "7440-43-
121817","","","0.20",""
"DUP-121817","6020A","RES","TK1925-004","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","1.0","PQL","YES","0","DUP-121817","","","0.50",""
"DUP-121817","6020A","RES","TK1925-004","KAS","7439-96-
5", "MANGANESE", "235", "ug/L", "", "0.35", "MDL", "", "TRG", "", "", "2.0", "PQL", "YES", "0", "DUP-1000, "Color of the color of the
121817","","","1.0",""
"GI-MW400-121817", "6020A", "RES", "TK1925-006", "KAS", "7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW400-
121817","","","4.0",""
"GI-MW400-121817", "6020A", "RES", "TK1925-006", "KAS", "7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.20",""
"GI-MW400-121817","6020A","RES","TK1925-006","KAS","7439-92-
1","LEAD","0.089","ug/L","J","0.075","MDL","","TRG","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.50",""
"GI-MW400-121817", "6020A", "RES", "TK1925-006", "KAS", "7439-96-
5","MANGANESE","229","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW400-
121817","","","1.0",""
"GI-MW400-121817", "6020A", "RES", "TK1925-007", "KAS", "7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW400-
121817","","","4.0",""
"GI-MW400-121817","6020A","RES","TK1925-007","KAS","7440-43-
9","CADMIUM","0.031","ug/L","J","0.029","MDL","","TRG","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.20",""
"GI-MW400-121817", "6020A", "RES", "TK1925-007", "KAS", "7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.50",""
"GI-MW400-121817", "6020A", "RES", "TK1925-007", "KAS", "7439-96-
5","MANGANESE","235","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW400-
121817","","","1.0",""
"G44S-MW202RR-121817","6020A","RES","TK1925-008","KAS","7440-38-
2","ARSENIC","4.9","ug/L","J","2.3","MDL","","TRG","","5.0","PQL","YES","0","G44S-MW202RR-
121817","","","4.0",""
"G44S-MW202RR-121817","6020A","RES","TK1925-008","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","1.0","PQL","YES","0","G44S-MW202RR-
121817","","","0.20",""
"G44S-MW202RR-121817","6020A","RES","TK1925-008","KAS","7439-92-
1","LEAD","1.53","ug/L","","0.075","MDL","","TRG","","1.0","PQL","YES","0","G44S-MW202RR-
121817","","","0.50",""
"G44S-MW202RR-121817","6020A","RES","TK1925-008","KAS","7439-96-
5","MANGANESE","2910","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G44S-MW202RR-
121817","","","1.0",""
"G44S-MW202RR-121817","6020A","RES","TK1925-009","KAS","7440-38-
2","ARSENIC","6.6","ug/L","","2.3","MDL","","TRG","","5.0","PQL","YES","0","G44S-MW202RR-
121817","","","4.0",""
```

```
"G44S-MW202RR-121817","6020A","RES","TK1925-009","KAS","7440-43-9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW202RR-121817","","","0.20",""

"G44S-MW202RR-121817","6020A","RES","TK1925-009","KAS","7439-92-1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW202RR-121817","","","0.50",""

"G44S-MW202RR-121817","6020A","RES","TK1925-009","KAS","7439-96-
```

- 5","MANGANESE","2960","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G44S-MW202RR-121817","","1.0",""
- "G32-MW304SR-121817","6020A","RES","TK1925-010","KAS","7440-38-
- 2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW304SR-121817","","","4.0",""
- "G32-MW304SR-121817","6020A","RES","TK1925-010","KAS","7440-43-
- 9","CADMIUM","0.079","ug/L","J","0.029","MDL","","TRG","","1.0","PQL","YES","0","G32-MW304SR-121817","","","0.20",""
- "G32-MW304SR-121817","6020A","RES","TK1925-010","KAS","7439-92-
- 1","LEAD","0.084","ug/L","J","0.075","MDL","","TRG","","1.0","PQL","YES","0","G32-MW304SR-121817","","","0.50",""
- "G32-MW304SR-121817","6020A","RES","TK1925-010","KAS","7439-96-
- 5","MANGANESE","1950","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW304SR-121817","","1.0",""
- "G32-MW304SR-121817", "6020A", "RES", "TK1925-011", "KAS", "7440-38-
- 2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW304SR-121817","","","4.0",""
- "G32-MW304SR-121817","6020A","RES","TK1925-011","KAS","7440-43-
- 9", "CADMIUM", "0.053", "ug/L", "J", "0.029", "MDL", "", "TRG", "", "", "1.0", "PQL", "YES", "0", "G32-MW304SR-121817", "", "", "0.20", ""
- "G32-MW304SR-121817", "6020A", "RES", "TK1925-011", "KAS", "7439-92-
- 1","LEAD","0.28","ug/L","J","0.075","MDL","","TRG","","1.0","PQL","YES","0","G32-MW304SR-121817","","0.50",""
- "G32-MW304SR-121817","6020A","RES","TK1925-011","KAS","7439-96-
- 5","MANGANESE","1720","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW304SR-121817","","","1.0",""
- "G32-MW306BR-121817","2320B","RES","TK1925-1","KAS","11-43-8","ALKALINITY AS
- CACO3","75.","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW306BR-121817","","4.0",""
- "G32-MW306BR-121817","300.0","RES","TK1925-1","KAS","14797-55-8","NITRATE AS
- N","0.042","mg/L","J",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","G32-MW306BR-121817","","","0.025",""
- "G32-MW306BR-121817", "300.0", "RES", "TK1925-1", "KAS", "14808-79-
- 8","SULFATE","16","mg/L","","0.064","MDL","","TRG","","1.0","PQL","YES","3.75","G32-MW306BR-121817","","","0.50",""
- "G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "877-09-8", "2,4,5,6-Tetrachloro-meta-xylene", "97.2", "%", "", "0", "MDL", "", "SURR", "97.2", "", "0", "PQL", "YES", "0.943", "G32-MW306BR-
- 121817"."".""."0"."'
- "G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "12674-11-2", "AROCLOR
- 1016","0.24","ug/L","U","0.15","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-121817","","","0.24",""
- "G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "11104-28-2", "AROCLOR
- 1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-121817","","","0.24",""
- "G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "11141-16-5", "AROCLOR
- 1232","0.24","ug/L","U","0.089","MDL","","TRG","","0.47","PQL","YES","0","G32-MW306BR-121817","","","0.24",""

```
"G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "53469-21-9", "AROCLOR
1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-
121817","","","0.24",""
"G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "12672-29-6", "AROCLOR
1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-
121817","","","0.24",""
"G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "11097-69-1", "AROCLOR
1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-
121817","","","0.24",""
"G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "11096-82-5", "AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-
121817","","","0.24",""
"G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "37324-23-5", "Aroclor-1262
"G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "11100-14-4", "Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-121817","","","0.24",""
"G32-MW306BR-121817", "8082A", "RES", "TK1925-1", "KAS", "2051-24-
3","DECACHLOROBIPHENYL","74.5","%","","0","MDL","","SURR","74.5","","0","PQL","YES","0.943","G32-
MW306BR-121817","","","0",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","1336-36-3","TOTAL
PCB","2.1","ug/L","U","0.062","MDL","","TRG","","4.2","PQL","YES","0","G32-MW306BR-
121817","","","2.1",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "17060-07-0", "1,2-DICHLOROETHANE-
D4","108.","%","","0","MDL","","SURR","108.","","0","PQL","YES","50.0","G32-MW306BR-121817","","","0",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "540-59-0", "1,2-
DICHLOROETHYLENE", "2.0", "ug/L", "U", "0.21", "MDL", "", "TRG", "", "", "1.0", "PQL", "YES", "0", "G32-MW306BR-
121817","","","2.0",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "460-00-4", "4-
MW306BR-121817","","","0",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "71-43-
121817","","","0.50",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "156-59-2", "CIS-1,2-
DICHLOROETHENE", "1.0", "ug/L", "U", "0.21", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "G32-MW306BR-
121817","","","1.0",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "1868-53-
7","DIBROMOFLUOROMETHANE","102.","%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","G32-
MW306BR-121817","","","0",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","G32-
MW306BR-121817","","","0.50",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "2037-26-5", "TOLUENE-
D8","101.","%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","G32-MW306BR-121817","","","0",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "156-60-5", "TRANS-1,2-
DICHLOROETHENE", "1.0", "ug/L", "U", "0.25", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "G32-MW306BR-
121817","","","1.0",""
"G32-MW306BR-121817", "8260C", "RES", "TK1925-1", "KAS", "79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","G32-
MW306BR-121817","","","0.50",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","1.0","PQL","YES","0","G32-MW306BR-
121817","","","2.0",""
```

"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "615-58-7", "2,4-Dibromophenol

```
","26.5","%","","0","MDL","","SURR","26.5","","0","PQL","YES","4.00","G32-MW306BR-121817","","","0",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "91-57-6", "2-
METHYLNAPHTHALENE", "0.094", "ug/L", "U", "0.073", "MDL", "", "TRG", "", "", "0.19", "PQL", "YES", "0", "G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "7297-45-2", "2-Methylnaphthalene-
d10","77.2","%","","0","MDL","","SURR","77.2","","0","PQL","YES","2.00","G32-MW306BR-121817","","","0",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.12","ug/L","J","0.043","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "50-32-
8","BENZO(A)PYRENE","0.084","ug/L","J","0.062","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "205-99-
2","BENZO(B)FLUORANTHENE","0.11","ug/L","J","0.084","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "191-24-
2","BENZO(G,H,I)PERYLENE","0.094","ug/L","U","0.061","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "207-08-
9","BENZO(K)FLUORANTHENE","0.094","ug/L","U","0.046","MDL","","TRG","","","0.19","PQL","YES","0","G32
-MW306BR-121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "218-01-
9","CHRYSENE","0.094","ug/L","U","0.034","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW306BR-
121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "53-70-
3","DIBENZO(A,H)ANTHRACENE","0.094","ug/L","U","0.066","MDL","","TRG","","","0.19","PQL","YES","0","G
32-MW306BR-121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "206-44-
0","FLUORANTHENE","0.094","ug/L","U","0.069","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "81103-79-9", "Fluorene-
d10","82.2","%","","0","MDL","","SURR","82.2","","0","PQL","YES","2.00","G32-MW306BR-121817","","","0",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "193-39-5", "INDENO(1,2,3-
121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "91-20-
3","NAPHTHALENE","0.094","ug/L","U","0.060","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW306BR-
121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "87-86-
5","PENTACHLOROPHENOL","0.47","ug/L","U","0.31","MDL","","TRG","","","0.94","PQL","YES","0","G32-
MW306BR-121817","","","0.47",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","85-01-
8","PHENANTHRENE","0.094","ug/L","U","0.048","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","129-00-
0","PYRENE","0.094","ug/L","U","0.056","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW306BR-
121817","","","0.094",""
"G32-MW306BR-121817", "8270D-SIM", "RES", "TK1925-1", "KAS", "1718-52-1", "Pyrene-
d10","109.","%","","0","MDL","","SURR","109.","","0","PQL","YES","2.00","G32-MW306BR-121817","","","0",""
"G32-MW304SR-121817", "2320B", "RES", "TK1925-10", "KAS", "11-43-8", "ALKALINITY AS
CACO3", "160", "mg/L", "", "0.23", "MDL", "", "TRG", "", "", "5.0", "PQL", "YES", "0", "G32-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW304SR-MW305SR-MW305-MW305-MW305-MW305-MW305-MW305-MW305-MW305-MW305-MW305-MW305-MW305-MW305-MW305-MW30
121817","","","4.0",""
```

"G32-MW304SR-121817","300.0","RES","TK1925-10","KAS","14797-55-8","NITRATE AS N","1.3","mg/L","",".0174","MDL","","TRG","","0.050","PQL","YES","0.845","G32-MW304SR-

```
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "877-09-8", "2,4,5,6-Tetrachloro-meta-
xylene","73.8","%","","0","MDL","","SURR","73.8","","0","PQL","YES","0.952","G32-MW304SR-
121817","","","0",""
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "12674-11-2", "AROCLOR
1016","0.24","ug/L","U","0.14","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-
121817","","","0.24",""
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "11104-28-2", "AROCLOR
1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-
121817","","","0.24",""
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "11141-16-5", "AROCLOR
1232","0.24","ug/L","U","0.088","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-
121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","53469-21-9","AROCLOR
1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-
121817","","","0.24",""
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "12672-29-6", "AROCLOR
1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-
121817","","","0.24",""
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "11097-69-1", "AROCLOR
1254","0.24","ug/L","U","0.081","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-
121817","","","0.24",""
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "11096-82-5", "AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-
121817","","","0.24",""
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "37324-23-5", "Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-121817","","","0.24",""
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "11100-14-4", "Aroclor-1268
","0.24","ug/L","U","0.071","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","2051-24-
3","DECACHLOROBIPHENYL","80.6","%","","0","MDL","","SURR","80.6","","0","PQL","YES","0.952","G32-
MW304SR-121817","","","0",""
"G32-MW304SR-121817", "8082A", "RES", "TK1925-10", "KAS", "1336-36-3", "TOTAL
PCB","2.1","ug/L","U","0.063","MDL","","TRG","","4.3","PQL","YES","0","G32-MW304SR-
121817","","","2.1",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","110.","%","","0","MDL","","SURR","110.","","0","PQL","YES","50.0","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817", "8260C", "RES", "TK1925-10", "KAS", "540-59-0", "1,2-
DICHLOROETHYLENE","2.2","ug/L","","0.21","MDL","","TRG","","1.0","PQL","YES","0","G32-MW304SR-
121817","","","2.0",""
"G32-MW304SR-121817", "8260C", "RES", "TK1925-10", "KAS", "460-00-4", "4-
BROMOFLUOROBENZENE","106.","%","","0","MDL","","SURR","106.","","0","PQL","YES","50.0","G32-
MW304SR-121817","","","0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","1.0","PQL","YES","0","G32-MW304SR-
121817","","","0.50",""
"G32-MW304SR-121817", "8260C", "RES", "TK1925-10", "KAS", "156-59-2", "CIS-1,2-
DICHLOROETHENE", "2.2", "ug/L", "", "0.21", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "G32-MW304SR-
121817","","","1.0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","103.","%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","G32-
```

121817","","","0.025",""

MW304SR-121817","","","0",""

"G32-MW304SR-121817", "8260C", "RES", "TK1925-10", "KAS", "127-18-

4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","G32-

```
MW304SR-121817","","","0.50",""
"G32-MW304SR-121817", "8260C", "RES", "TK1925-10", "KAS", "2037-26-5", "TOLUENE-
D8","99.2","%","","0","MDL","","SURR","99.2","","0","PQL","YES","50.0","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","G32-MW304SR-
121817","","","1.0",""
"G32-MW304SR-121817", "8260C", "RES", "TK1925-10", "KAS", "79-01-
6","TRICHLOROETHENE","1.8","ug/L","","0.28","MDL","","TRG","","1.0","PQL","YES","0","G32-MW304SR-
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","75-01-4","VINYL
CHLORIDE", "0.66", "ug/L", "J", "0.25", "MDL", "", "TRG", "", "", "1.0", "PQL", "YES", "0", "G32-MW304SR-
121817","","","2.0",""
"G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "615-58-7", "2,4-Dibromophenol
","23.9","%","","0","MDL","","SURR","23.9","","0","PQL","YES","4.00","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "91-57-6", "2-
METHYLNAPHTHALENE","0.095","ug/L","U","0.073","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW304SR-121817","","","0.095",""
"G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "7297-45-2", "2-Methylnaphthalene-
d10","64.3","%","","0","MDL","","SURR","64.3","","0","PQL","YES","2.00","G32-MW304SR-121817","","","","","",""
"G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "56-55-
3","BENZO(A)ANTHRACENE","0.058","ug/L","J","0.044","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW304SR-121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","50-32-
8","BENZO(A)PYRENE","0.095","ug/L","U","0.063","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW304SR-121817","","","0.095",""
"G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "205-99-
2","BENZO(B)FLUORANTHENE","0.095","ug/L","U","0.085","MDL","","TRG","","","0.19","PQL","YES","0","G32
-MW304SR-121817","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","191-24-
```

MW304SR-121817","","","0.095","" "G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","207-08-

2","BENZO(G,H,I)PERYLENE","0.095","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","G32-

- -MW304SR-121817","","","0.095","" "G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","218-01-
- 9","CHRYSENE","0.095","ug/L","U","0.034","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW304SR-121817","","","0.095",""
- "G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","53-70-
- 3","DIBENZO(A,H)ANTHRACENE","0.095","ug/L","U","0.067","MDL","","TRG","","","0.19","PQL","YES","0","G 32-MW304SR-121817","","","0.095",""
- "G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "206-44-
- 0","FLUORANTHENE","0.095","ug/L","U","0.070","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW304SR-121817","","","0.095",""
- "G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "81103-79-9", "Fluorene-
- d10","63.8","%","","0","MDL","","SURR","63.8","","0","PQL","YES","2.00","G32-MW304SR-121817","","","0","" "G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "193-39-5", "INDENO(1,2,3-
- CD)PYRENE","0.095","ug/L","U","0.050","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW304SR-121817","","","0.095",""
- "G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","91-20-
- 3","NAPHTHALENE","0.095","ug/L","U","0.061","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW304SR-121817","","","0.095",""
- "G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "87-86-
- 5","PENTACHLOROPHENOL","0.48","ug/L","U","0.31","MDL","","TRG","","","0.95","PQL","YES","0","G32-MW304SR-121817","","","0.48",""

```
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","85-01-
8","PHENANTHRENE","0.095","ug/L","U","0.048","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW304SR-121817","","","0.095",""
"G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "129-00-
0","PYRENE","0.095","ug/L","U","0.056","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW304SR-
121817","","","0.095",""
"G32-MW304SR-121817", "8270D-SIM", "RES", "TK1925-10", "KAS", "1718-52-1", "Pyrene-
d10","93.8","%","","0","MDL","","SURR","93.8","","0","PQL","YES","2.00","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817", "300.0", "RES", "TK1925-10DL", "KAS", "14808-79-
8","SULFATE","26","mg/L","","0.13","MDL","","TRG","","","2.0","PQL","YES","3.75","G32-MW304SR-
121817","","","1.0",""
"G32-MW304SR-121817", "300.0", "RES", "TK1925-10DLB", "KAS", "16887-00-
6","CHLORIDE","58","mg/L","","0.99","MDL","","TRG","","","20.","PQL","YES","3.75","G32-MW304SR-
"G32-MW306BR-121817","300.0","RES","TK1925-1DL","KAS","16887-00-
6","CHLORIDE","190","mg/L","","2.0","MDL","","TRG","","40.","PQL","YES","3.75","G32-MW306BR-
121817","","","20.",""
"DUP-121817","2320B","RES","TK1925-3","KAS","11-43-8","ALKALINITY AS
CACO3","360","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","DUP-121817","","","4.0",""
"DUP-121817", "8082A", "RES", "TK1925-3", "KAS", "877-09-8", "2,4,5,6-Tetrachloro-meta-
xylene", "98.8", "%", "", "0", "MDL", "", "SURR", "98.8", "", "0", "PQL", "YES", "0.962", "DUP-121817", "", "", "0", ""
"DUP-121817","8082A","RES","TK1925-3","KAS","12674-11-2","AROCLOR
1016","0.24","ug/L","U","0.14","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24",""
"DUP-121817", "8082A", "RES", "TK1925-3", "KAS", "11104-28-2", "AROCLOR
1221", "0.24", "ug/L", "U", "0.2", "MDL", "", "TRG", "", "", "0.48", "PQL", "YES", "0", "DUP-121817", "", "0.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "10.24", "", "1
"DUP-121817","8082A","RES","TK1925-3","KAS","11141-16-5","AROCLOR
1232","0.24","ug/L","U","0.09","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24",""
"DUP-121817", "8082A", "RES", "TK1925-3", "KAS", "53469-21-9", "AROCLOR
1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24",""
"DUP-121817", "8082A", "RES", "TK1925-3", "KAS", "12672-29-6", "AROCLOR
1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24",""
"DUP-121817","8082A","RES","TK1925-3","KAS","11097-69-1","AROCLOR
1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24",""
"DUP-121817", "8082A", "RES", "TK1925-3", "KAS", "11096-82-5", "AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24",""
"DUP-121817", "8082A", "RES", "TK1925-3", "KAS", "37324-23-5", "Aroclor-1262"
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24",""
"DUP-121817", "8082A", "RES", "TK1925-3", "KAS", "11100-14-4", "Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24",""
"DUP-121817", "8082A", "RES", "TK1925-3", "KAS", "2051-24-
3","DECACHLOROBIPHENYL","105.","%","","0","MDL","","SURR","105.","","0","PQL","YES","0.962","DUP-
121817","","","0",""
"DUP-121817", "8082A", "RES", "TK1925-3", "KAS", "1336-36-3", "TOTAL
PCB","2.2","ug/L","U","0.063","MDL","","TRG","","4.3","PQL","YES","0","DUP-121817","","","2.2",""
"DUP-121817", "8260C", "RES", "TK1925-3", "KAS", "17060-07-0", "1,2-DICHLOROETHANE-
D4","109.","%","","0","MDL","","SURR","109.","","0","PQL","YES","50.0","DUP-121817","","","0",""
"DUP-121817", "8260C", "RES", "TK1925-3", "KAS", "540-59-0", "1,2-
DICHLOROETHYLENE", "2.0", "ug/L", "U", "0.21", "MDL", "", "TRG", "", "", "1.0", "PQL", "YES", "0", "DUP-
121817","","","2.0",""
"DUP-121817","8260C","RES","TK1925-3","KAS","460-00-4","4-
BROMOFLUOROBENZENE","99.9","%","","0","MDL","","SURR","99.9","","0","PQL","YES","50.0","DUP-
121817","","","0",""
"DUP-121817", "8260C", "RES", "TK1925-3", "KAS", "71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","1.0","PQL","YES","0","DUP-
```

```
121817","","","0.50",""
"DUP-121817", "8260C", "RES", "TK1925-3", "KAS", "156-59-2", "CIS-1,2-
DICHLOROETHENE", "1.0", "ug/L", "U", "0.21", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "DUP-
121817","","","1.0",""
"DUP-121817", "8260C", "RES", "TK1925-3", "KAS", "1868-53-
7","DIBROMOFLUOROMETHANE","100.","%","","0","MDL","","SURR","100.","","0","PQL","YES","50.0","DUP-
121817","","","0",""
"DUP-121817", "8260C", "RES", "TK1925-3", "KAS", "127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","DUP-
121817","","","0.50",""
"DUP-121817", "8260C", "RES", "TK1925-3", "KAS", "2037-26-5", "TOLUENE-
D8","103.","%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","DUP-121817","","","0",""
"DUP-121817", "8260C", "RES", "TK1925-3", "KAS", "156-60-5", "TRANS-1,2-
DICHLOROETHENE", "1.0", "ug/L", "U", "0.25", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "DUP-
121817","","","1.0",""
"DUP-121817", "8260C", "RES", "TK1925-3", "KAS", "79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","DUP-
121817","","","0.50",""
"DUP-121817","8260C","RES","TK1925-3","KAS","75-01-4","VINYL
CHLORIDE", "2.0", "ug/L", "U", "0.25", "MDL", "", "TRG", "", "1.0", "PQL", "YES", "0", "DUP-121817", "", "2.0", ""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "615-58-7", "2,4-Dibromophenol
","24.5","%","","0","MDL","","SURR","24.5","","0","PQL","YES","4.00","DUP-121817","","","0",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "91-57-6", "2-
METHYLNAPHTHALENE", "0.096", "ug/L", "U", "0.074", "MDL", "", "TRG", "", "", "0.19", "PQL", "YES", "0", "DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "7297-45-2", "2-Methylnaphthalene-
d10","65.7","%","","0","MDL","","SURR","65.7","","0","PQL","YES","2.00","DUP-121817","","","0",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "56-55-
3","BENZO(A)ANTHRACENE","0.054","ug/L","J","0.044","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "50-32-
8","BENZO(A)PYRENE","0.096","ug/L","U","0.063","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "205-99-
2","BENZO(B)FLUORANTHENE","0.096","ug/L","U","0.086","MDL","","TRG","","","0.19","PQL","YES","0","DU
P-121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "191-24-
2","BENZO(G,H,I)PERYLENE","0.096","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "207-08-
P-121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "218-01-
9","CHRYSENE","0.096","ug/L","U","0.035","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "53-70-
3","DIBENZO(A,H)ANTHRACENE","0.096","ug/L","U","0.067","MDL","","TRG","","","0.19","PQL","YES","0","D
UP-121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "206-44-
0","FLUORANTHENE","0.096","ug/L","U","0.070","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "81103-79-9", "Fluorene-
d10","69.5","%","","0","MDL","","SURR","69.5","","0","PQL","YES","2.00","DUP-121817","","","0",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "193-39-5", "INDENO(1,2,3-
```

```
CD)PYRENE","0.096","ug/L","U","0.050","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "91-20-
3","NAPHTHALENE","0.096","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "87-86-
121817","","","0.48",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "85-01-
8","PHENANTHRENE","0.096","ug/L","U","0.049","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "129-00-
0","PYRENE","0.096","ug/L","U","0.057","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817", "8270D-SIM", "RES", "TK1925-3", "KAS", "1718-52-1", "Pyrene-
d10","99.7","%","","0","MDL","","SURR","99.7","","0","PQL","YES","2.00","DUP-121817","","","0",""
"DUP-121817", "300.0", "RES", "TK1925-3DL", "KAS", "16887-00-
6", "CHLORIDE", "19", "mg/L", "", "0.20", "MDL", "", "TRG", "", "4.0", "PQL", "YES", "3.75", "DUP-1000, "MDL", "", "TRG", "", "MDL", "MDL", "", "MDL", "MDL", "MDL", "", "MDL", "MDL",
121817","","","2.0",""
"DUP-121817", "300.0", "RES", "TK1925-3DL", "KAS", "14808-79-
8","SULFATE","28","mg/L","","0.13","MDL","","TRG","","","2.0","PQL","YES","3.75","DUP-121817","","","1.0",""
"DUP-121817", "300.0", "RES", "TK1925-3DLB", "KAS", "14797-55-8", "NITRATE AS
N","9.9","mg/L","","0.087","MDL","","TRG","","","0.25","PQL","YES","0.845","DUP-121817","","","0.12",""
"GI-MW400-121817","2320B","RES","TK1925-6","KAS","11-43-8","ALKALINITY AS
CACO3","350","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW400-121817","","","4.0",""
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "877-09-8", "2,4,5,6-Tetrachloro-meta-
xylene","83.8","%","","0","MDL","","SURR","83.8","","0","PQL","YES","0.952","GI-MW400-121817","","","0",""
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "12674-11-2", "AROCLOR
1016", "0.24", "ug/L", "U", "0.14", "MDL", "", "TRG", "", "", "0.48", "PQL", "YES", "0", "GI-MW400-121817", "", "", "0.24", "", "10.24", "", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.24", "10.
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "11104-28-2", "AROCLOR
1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","11141-16-5","AROCLOR
1232","0.24","ug/L","U","0.088","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "53469-21-9", "AROCLOR
1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","12672-29-6","AROCLOR
1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "11097-69-1", "AROCLOR
1254","0.24","ug/L","U","0.081","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "11096-82-5", "AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "37324-23-5", "Aroclor-1262
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "11100-14-4", "Aroclor-1268
","0.24","ug/L","U","0.071","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "2051-24-
3","DECACHLOROBIPHENYL","91.8","%","","0","MDL","","SURR","91.8","","0","PQL","YES","0.952","GI-
MW400-121817","","","0",""
"GI-MW400-121817", "8082A", "RES", "TK1925-6", "KAS", "1336-36-3", "TOTAL
PCB","2.1","ug/L","U","0.063","MDL","","TRG","","","4.3","PQL","YES","0","GI-MW400-121817","","","2.1","" "GI-MW400-121817","8260C","RES","TK1925-6","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","111.","%","","0","MDL","","SURR","111.","","0","PQL","YES","50.0","GI-MW400-121817","","","0",""
"GI-MW400-121817", "8260C", "RES", "TK1925-6", "KAS", "540-59-0", "1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","1.0","PQL","YES","0","GI-MW400-
```

```
121817","","","2.0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","460-00-4","4-
BROMOFLUOROBENZENE","98.7","%","","0","MDL","","SURR","98.7","","0","PQL","YES","50.0","GI-MW400-121817","","","0","
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-121817","","","0.50",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","GI-MW400-121817","","","1.0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","101.","%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","GI-MW400-121817","","","","0",""
"GI-MW400-121817","","","0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","GI-
```

- "GI-MW400-121817","8260C","RES","TK1925-6","KAS","2037-26-5","TOLUENE-D8","101.","%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","GI-MW400-121817","","","","0","""","","0",""","156-60-5","TRANS-1,2-DICHLOROETHENE" "1.0" "µg/L" "LI" "0.25" "MDL" "" "TRG" "" "" "0.50" "PQL" "YES" "0" "GLMW400-
- $\label{eq:dichloroethene} DICHLOROETHENE", "1.0", "ug/L", "U", "0.25", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "GI-MW400-121817", "", "", "1.0", ""$
- "GI-MW400-121817","8260C","RES","TK1925-6","KAS","79-01-6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-
- 121817","","","0.50",""
 "GI-MW400-121817","8260C","RES","TK1925-6","KAS","75-01-4","VINYL
- CHLORIDE", "2.0", "ug/L", "U", "0.25", "MDL", "", "TRG", "", "1.0", "PQL", "YES", "0", "GI-MW400-121817", "", "", "2.0", ""
- METHYLNAPHTHALENE","0.094","ug/L","U","0.073","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","0.094",""
- "GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","7297-45-2","2-Methylnaphthalened10","67.4","%","","0","MDL","","SURR","67.4","","0","PQL","YES","2.00","GI-MW400-121817","","","","0","""","GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","56-55-
- 3","BENZO(A)ANTHRACENE","0.057","ug/L","J","0.043","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","0.094",""
- "GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","50-32-

MW400-121817","","","0.50",""

- 8","BENZO(A)PYRENE","0.094","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","","0.094",""
- "GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "205-99-
- 2","BENZO(B)FLUORANTHENE","0.094","ug/L","U","0.084","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","","0.094",""
- "GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "191-24-
- 2","BENZO(G,H,I)PERYLENE","0.094","ug/L","U","0.061","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","","0.094",""
- "GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "207-08-
- 9","BENZO(K)FLUORANTHENE","0.094","ug/L","U","0.046","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","","0.094",""
- "GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "218-01-
- 9","CHRYSENE","0.094","ug/L","U","0.034","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","0.094",""
- "GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "53-70-
- 3","DIBENZO(A,H)ANTHRACENE","0.094","ug/L","U","0.066","MDL","","TRG","","","0.19","PQL","YES","0","G

```
I-MW400-121817","","","0.094",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","206-44-
121817","","","0.094",""
"GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "81103-79-9", "Fluorene-
d10","68.5","%","","0","MDL","","SURR","68.5","","0","PQL","YES","2.00","GI-MW400-121817","","","0",""
"GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "193-39-5", "INDENO(1,2,3-
CD)PYRENE","0.094","ug/L","U","0.049","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-
121817","","","0.094",""
"GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "91-20-
3","NAPHTHALENE","0.094","ug/L","U","0.060","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-
121817","","","0.094",""
"GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "87-86-
5","PENTACHLOROPHENOL","0.47","ug/L","U","0.31","MDL","","TRG","","","0.94","PQL","YES","0","GI-
MW400-121817","","","0.47",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","85-01-
121817","","","0.094",""
"GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "129-00-
0","PYRENE","0.094","ug/L","U","0.056","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-
121817","","","0.094",""
"GI-MW400-121817", "8270D-SIM", "RES", "TK1925-6", "KAS", "1718-52-1", "Pyrene-
d10","87.5","%","","0","MDL","","SURR","87.5","","0","PQL","YES","2.00","GI-MW400-121817","","","0",""
"GI-MW400-121817","300.0","RES","TK1925-6DL","KAS","16887-00-
6","CHLORIDE","19","mg/L","","0.20","MDL","","TRG","","4.0","PQL","YES","3.75","GI-MW400-
121817","","","2.0",""
"GI-MW400-121817","300.0","RES","TK1925-6DL","KAS","14808-79-
8","SULFATE","28","mg/L","","0.13","MDL","","TRG","","","2.0","PQL","YES","3.75","GI-MW400-
121817","","","1.0",""
"GI-MW400-121817", "300.0", "RES", "TK1925-6DLB", "KAS", "14797-55-8", "NITRATE AS
N","9.7","mg/L","","0.087","MDL","","TRG","","","0.25","PQL","YES","0.845","GI-MW400-121817","","","0.12",""
"G44S-MW202RR-121817","2320B","RES","TK1925-8","KAS","11-43-8","ALKALINITY AS
CACO3","94.","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","G44S-MW202RR-
121817","","","4.0",""
"G44S-MW202RR-121817","300.0","RES","TK1925-8","KAS","14797-55-8","NITRATE AS
N", "0.025", "mg/L", "U", ".0174", "MDL", "", "TRG", "", "", "0.050", "PQL", "YES", "0.845", "G44S-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202
121817","","0.025",""
"G44S-MW202RR-121817", "8082A", "RES", "TK1925-8", "KAS", "877-09-8", "2,4,5,6-Tetrachloro-meta-
xylene","82.4","%","","0","MDL","","SURR","82.4","","0","PQL","YES","0.962","G44S-MW202RR-
121817","","","0",""
"G44S-MW202RR-121817", "8082A", "RES", "TK1925-8", "KAS", "12674-11-2", "AROCLOR
1016","0.24","ug/L","U","0.14","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","11104-28-2","AROCLOR
1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817"."".""."0.24".""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","11141-16-5","AROCLOR
1232","0.24","ug/L","U","0.09","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
"G44S-MW202RR-121817", "8082A", "RES", "TK1925-8", "KAS", "53469-21-9", "AROCLOR
1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","12672-29-6","AROCLOR
1248", "0.24", "ug/L", "U", "0.2", "MDL", "", "TRG", "", "", "0.48", "PQL", "YES", "0", "G44S-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202
```

```
121817","","","0.24",""
 "G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","11097-69-1","AROCLOR
1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
 "G44S-MW202RR-121817", "8082A", "RES", "TK1925-8", "KAS", "11096-82-5", "AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
 121817","","","0.24",""
"G44S-MW202RR-121817", "8082A", "RES", "TK1925-8", "KAS", "37324-23-5", "Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
 "G44S-MW202RR-121817", "8082A", "RES", "TK1925-8", "KAS", "11100-14-4", "Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
 "G44S-MW202RR-121817", "8082A", "RES", "TK1925-8", "KAS", "2051-24-
3","DECACHLOROBIPHENYL","75.9","%","","0","MDL","","SURR","75.9","","0","PQL","YES","0.962","G44S-
MW202RR-121817","","","0",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","1336-36-3","TOTAL
PCB","2.2","ug/L","U","0.063","MDL","","TRG","","4.3","PQL","YES","0","G44S-MW202RR-
121817","","","2.2",""
 "G44S-MW202RR-121817", "8260C", "RES", "TK1925-8", "KAS", "17060-07-0", "1,2-DICHLOROETHANE-
D4","114.","%","","0","MDL","","SURR","114.","","0","PQL","YES","50.0","G44S-MW202RR-121817","","","0",""
 "G44S-MW202RR-121817", "8260C", "RES", "TK1925-8", "KAS", "540-59-0", "1,2-
DICHLOROETHYLENE", "2.0", "ug/L", "U", "0.21", "MDL", "", "TRG", "", "1.0", "PQL", "YES", "0", "G44S-MW202RR-
121817","","","2.0",""
 "G44S-MW202RR-121817", "8260C", "RES", "TK1925-8", "KAS", "460-00-4", "4-
BROMOFLUOROBENZENE","102.","%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","G44S-
MW202RR-121817","","","",""
 "G44S-MW202RR-121817", "8260C", "RES", "TK1925-8", "KAS", "71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","1.0","PQL","YES","0","G44S-MW202RR-
121817","","","0.50",""
 "G44S-MW202RR-121817", "8260C", "RES", "TK1925-8", "KAS", "156-59-2", "CIS-1,2-
DICHLOROETHENE", "1.0", "ug/L", "U", "0.21", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "G44S-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202
121817","","","1.0",""
 "G44S-MW202RR-121817", "8260C", "RES", "TK1925-8", "KAS", "1868-53-
7","DIBROMOFLUOROMETHANE","103.","%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","G44S
-MW202RR-121817","","",""0",""
 "G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","G44S-
MW202RR-121817","","","0.50",""
"G44S-MW202RR-121817", "8260C", "RES", "TK1925-8", "KAS", "2037-26-5", "TOLUENE-
D8","103.","%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","G44S-MW202RR-121817","","","0",""
 "G44S-MW202RR-121817", "8260C", "RES", "TK1925-8", "KAS", "156-60-5", "TRANS-1,2-
DICHLOROETHENE", "1.0", "ug/L", "U", "0.25", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "G44S-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-
 121817","","","1.0",""
 "G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","79-01-
6", "TRICHLOROETHENE", "0.50", "ug/L", "U", "0.28", "MDL", "", "TRG", "", "", "1.0", "PQL", "YES", "0", "G44S-1000, "G45S-1000, "G45S-10
MW202RR-121817","","","0.50",""
 "G44S-MW202RR-121817", "8260C", "RES", "TK1925-8", "KAS", "75-01-4", "VINYL
CHLORIDE", "2.0", "ug/L", "U", "0.25", "MDL", "", "TRG", "", "1.0", "PQL", "YES", "0", "G44S-MW202RR-
121817","","","2.0",""
 "G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "615-58-7", "2,4-Dibromophenol
","28.1","%","","0","MDL","","SURR","28.1","","0","PQL","YES","4.00","G44S-MW202RR-121817","","","0",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "91-57-6", "2-
METHYLNAPHTHALENE", "0.099", "ug/L", "U", "0.076", "MDL", "", "TRG", "", "", "0.20", "PQL", "YES", "0", "G44S-L", "U", "O.076", "MDL", "", "TRG", "", "", "O.076", "PQL", "YES", "O", "G44S-L", "O.076", "MDL", "", "O.076", "MDL", "O.076", "MDL", "O.076", "MDL", "O.076", "O.076", "MDL", "O.076", "O.07
```

```
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "7297-45-2", "2-Methylnaphthalene-
d10","59.8","%","","0","MDL","","SURR","59.8","","0","PQL","YES","2.00","G44S-MW202RR-121817","","","0",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "56-55-
3","BENZO(A)ANTHRACENE","0.058","ug/L","J","0.046","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "50-32-
8","BENZO(A)PYRENE","0.099","ug/L","U","0.065","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "205-99-
S-MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "191-24-
2","BENZO(G,H,I)PERYLENE","0.099","ug/L","U","0.064","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "207-08-
S-MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "218-01-
9", "CHRYSENE", "0.099", "ug/L", "U", "0.036", "MDL", "", "TRG", "", "", "0.20", "PQL", "YES", "0", "G44S-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202RR-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202R-MW202
121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.099","ug/L","U","0.069","MDL","","TRG","","","0.20","PQL","YES","0","G
44S-MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "206-44-
0","FLUORANTHENE","0.099","ug/L","U","0.072","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "81103-79-9", "Fluorene-
d10","71.4","%","","0","MDL","","SURR","71.4","","0","PQL","YES","2.00","G44S-MW202RR-121817","","","0",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "193-39-5", "INDENO(1,2,3-
CD)PYRENE","0.099","ug/L","U","0.051","MDL","","TRG","","","0.20","PQL","YES","0","G44S-MW202RR-
121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "91-20-
3","NAPHTHALENE","0.099","ug/L","U","0.063","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","87-86-
5","PENTACHLOROPHENOL","0.50","ug/L","U","0.33","MDL","","TRG","","","0.99","PQL","YES","0","G44S-
MW202RR-121817","","","0.50",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "85-01-
8","PHENANTHRENE","0.099","ug/L","U","0.050","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "129-00-
0","PYRENE","0.099","ug/L","U","0.058","MDL","","TRG","","","0.20","PQL","YES","0","G44S-MW202RR-
121817","","","0.099",""
"G44S-MW202RR-121817", "8270D-SIM", "RES", "TK1925-8", "KAS", "1718-52-1", "Pyrene-
d10","94.9","%","","0","MDL","","SURR","94.9","","0","PQL","YES","2.00","G44S-MW202RR-121817","","","0",""
"G44S-MW202RR-121817", "300.0", "RES", "TK1925-8DL", "KAS", "14808-79-
8","SULFATE","1600","mg/L","","6.4","MDL","","TRG","","","100","PQL","YES","3.75","G44S-MW202RR-
121817","","","50.",""
```

6", "CHLORIDE", "11000", "mg/L", "", "200", "MDL", "", "TRG", "", "", "4000", "PQL", "YES", "3.75", "G44S-MW202RR-MW202R-MW202

xylene","74.9","%","","0","MDL","","SURR","74.9","","0","PQL","YES","1.00","WG220411-1","","","0",""

"G44S-MW202RR-121817", "300.0", "RES", "TK1925-8DLB", "KAS", "16887-00-

"WG220411-1","8082A","RES","WG220411-1","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-

121817","","","2000",""

```
"WG220411-1","8082A","RES","WG220411-1","KAS","12674-11-2","AROCLOR
1016","0.25","ug/L","U","0.15","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25",""
"WG220411-1","8082A","RES","WG220411-1","KAS","11104-28-2","AROCLOR
1221","0.25","ug/L","U","0.20","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25",""
"WG220411-1","8082A","RES","WG220411-1","KAS","11141-16-5","AROCLOR
1232","0.25","ug/L","U","0.089","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25",""
"WG220411-1","8082A","RES","WG220411-1","KAS","53469-21-9","AROCLOR
1242", "0.25", "ug/L", "U", "0.18", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "WG220411-1", "", "0.25", "", "0.25", "", "0.50", "PQL", "YES", "0", "WG220411-1", "", "0.25", "", "0.25", "", "0.50", "PQL", "YES", "0", "WG220411-1", "", "0.50", "WG220411-1", "WG220411-1", "", "0.50", "WG220411-1", "WG22041-1", 
"WG220411-1", "8082A", "RES", "WG220411-1", "KAS", "12672-29-6", "AROCLOR
1248","0.25","ug/L","U","0.20","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25",""
"WG220411-1","8082A","RES","WG220411-1","KAS","11097-69-1","AROCLOR
1254", "0.25", "ug/L", "U", "0.082", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "WG220411-1", "", "", "0.25", "", "WG220411-1", "", "", "0.50", "PQL", "YES", "0", "WG220411-1", "", "0.50", "PQL", "YES", "0", "WG220411-1", "", "0.50", "WG220411-1", "WG220411-1", "", "", "0.50", "WG220411-1", "", "", "0.50", "WG220411-1", "WG220
"WG220411-1", "8082A", "RES", "WG220411-1", "KAS", "11096-82-5", "AROCLOR
1260","0.25","ug/L","U","0.17","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25",""
"WG220411-1", "8082A", "RES", "WG220411-1", "KAS", "37324-23-5", "Aroclor-1262
","0.25","ug/L","U","0.066","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25",""
"WG220411-1", "8082A", "RES", "WG220411-1", "KAS", "11100-14-4", "Aroclor-1268
","0.25","ug/L","U","0.072","MDL","","TRG","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","2051-24-
3","DECACHLOROBIPHENYL","70.4","%","","0","MDL","","SURR","70.4","","0","PQL","YES","1.00","WG22041
1-1","","","0",""
"WG220411-1","8082A","RES","WG220411-1","KAS","1336-36-3","TOTAL
PCB","2.2","ug/L","U","0.066","MDL","","TRG","","","4.5","PQL","YES","0","WG220411-1","","","2.2",""
"WG220411-2", "8082A", "RES", "WG220411-2", "KAS", "877-09-8", "2,4,5,6-Tetrachloro-meta-
xylene","98.7","%","","0","MDL","","SURR","98.7","","0","PQL","YES","1.00","WG220411-2","","","0",""
"WG220411-2", "8082A", "RES", "WG220411-2", "KAS", "12674-11-2", "AROCLOR
1016","4.90","ug/L","","0.15","MDL","","SPK","98.0","","0.50","PQL","YES","5.00","WG220411-2","","","0.25",""
"WG220411-2", "8082A", "RES", "WG220411-2", "KAS", "11096-82-5", "AROCLOR
"WG220411-2","8082A","RES","WG220411-2","KAS","2051-24-
3","DECACHLOROBIPHENYL","83.2","%","","0","MDL","","SURR","83.2","","0","PQL","YES","1.00","WG22041
1-2","","","0",""
"WG220411-3","8082A","RES","WG220411-3","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","92.8","%","","0","MDL","","SURR","92.8","","0","PQL","YES","1.00","WG220411-3","","","0",""
"WG220411-3","8082A","RES","WG220411-3","KAS","11097-69-1","AROCLOR
1254","4.34","ug/L","","0.082","MDL","","SPK","86.8","","0.50","PQL","YES","5.00","WG220411-3","","","0.25",""
"WG220411-3", "8082A", "RES", "WG220411-3", "KAS", "2051-24-
3","DECACHLOROBIPHENYL","86.6","%","","0","MDL","","SURR","86.6","","0","PQL","YES","1.00","WG22041
1-3","","","0",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","615-58-7","2,4-Dibromophenol
","26.4","%","","0","MDL","","SURR","26.4","","0","PQL","YES","4.00","WG220582-1","","","0",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","91-57-6","2-
METHYLNAPHTHALENE", "0.10", "ug/L", "U", "0.077", "MDL", "", "TRG", "", "", "0.20", "PQL", "YES", "0", "WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","7297-45-2","2-Methylnaphthalene-
d10","89.0","%","","0","MDL","","SURR","89.0","","0","PQL","YES","2.00","WG220582-1","","","0",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.078","ug/L","J","0.046","MDL","","TRG","","","0.20","PQL","YES","0","WG220
582-1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","50-32-
8","BENZO(A)PYRENE","0.10","ug/L","U","0.066","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.10","ug/L","U","0.089","MDL","","TRG","","","0.20","PQL","YES","0","WG2
```

```
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.10","ug/L","U","0.065","MDL","","TRG","","","0.20","PQL","YES","0","WG220
582-1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.10","ug/L","U","0.049","MDL","","TRG","","","0.20","PQL","YES","0","WG2
20582-1","","","0.10",""
"WG220582-1", "8270D-SIM", "RES", "WG220582-1", "KAS", "218-01-
9","CHRYSENE","0.10","ug/L","U","0.036","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.10","ug/L","U","0.070","MDL","","TRG","","","0.20","PQL","YES","0","W
G220582-1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","206-44-
0","FLUORANTHENE","0.10","ug/L","U","0.073","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","81103-79-9","Fluorene-
d10","85.6","%","","0","MDL","","SURR","85.6","","0","PQL","YES","2.00","WG220582-1","","","0",""
"WG220582-1", "8270D-SIM", "RES", "WG220582-1", "KAS", "193-39-5", "INDENO(1,2,3-
CD)PYRENE", "0.10", "ug/L", "U", "0.052", "MDL", "", "TRG", "", "", "0.20", "PQL", "YES", "0", "WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","91-20-
3","NAPHTHALENE","0.10","ug/L","U","0.064","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","87-86-
5","PENTACHLOROPHENOL","0.50","ug/L","U","0.33","MDL","","TRG","","","1.0","PQL","YES","0","WG220582
-1","","","0.50",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","85-01-
8","PHENANTHRENE","0.10","ug/L","U","0.051","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","129-00-
0","PYRENE","0.10","ug/L","U","0.059","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1", "8270D-SIM", "RES", "WG220582-1", "KAS", "1718-52-1", "Pyrene-
d10","114.","%","","0","MDL","","SURR","114.","","0","PQL","YES","2.00","WG220582-1","","","0",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","615-58-7","2,4-Dibromophenol
","26.7","%","","0","MDL","","SURR","26.7","","0","PQL","YES","4.00","WG220582-2","","","0",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","91-57-6","2-
METHYLNAPHTHALENE","1.25","ug/L","","0.077","MDL","","SPK","62.5","","0.20","PQL","YES","2.00","WG22
0582-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","7297-45-2","2-Methylnaphthalene-
d10","63.6","%","","0","MDL","","SURR","63.6","","0","PQL","YES","2.00","WG220582-2","","","0",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","56-55-
3","BENZO(A)ANTHRACENE","1.52","ug/L","","0.046","MDL","","SPK","76.0","","0.20","PQL","YES","2.00","W
G220582-2","","","0.10",""
"WG220582-2", "8270D-SIM", "RES", "WG220582-2", "KAS", "50-32-
8","BENZO(A)PYRENE","1.33","ug/L","","0.066","MDL","","SPK","66.5","","0.20","PQL","YES","2.00","WG22058
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","205-99-
2","BENZO(B)FLUORANTHENE","1.34","ug/L","","0.089","MDL","","SPK","67.0","","0.20","PQL","YES","2.00","
WG220582-2","","","0.10",""
"WG220582-2", "8270D-SIM", "RES", "WG220582-2", "KAS", "191-24-
2","BENZO(G,H,I)PERYLENE","1.42","ug/L","","0.065","MDL","","SPK","71.0","","0.20","PQL","YES","2.00","W
G220582-2","","","0.10",""
```

file:///C/...063173/Desktop/Tetra%20Tech/MID%20ATLANTIC/NEWPORT_NS/TK1925/3_EDD%20NEWPORT%20SDG%20TK1925.txt[6/7/2019 12:45:09 PM]

20582-1","","","0.10",""

```
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","207-08-
9","BENZO(K)FLUORANTHENE","1.59","ug/L","","0.049","MDL","","SPK","79.5","","0.20","PQL","YES","2.00","
WG220582-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","218-01-
9","CHRYSENE","1.62","ug/L","","0.036","MDL","","SPK","81.0","","0.20","PQL","YES","2.00","WG220582-
2","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","1.42","ug/L","","0.070","MDL","","SPK","71.0","","0.20","PQL","YES","2.00
","WG220582-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","206-44-
0","FLUORANTHENE","1.80","ug/L","","0.073","MDL","","SPK","90.0","","0.20","PQL","YES","2.00","WG220582
-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","81103-79-9","Fluorene-
d10","66.4","%","","0","MDL","","SURR","66.4","","0","PQL","YES","2.00","WG220582-2","","","0",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","1.80","ug/L","","0.052","MDL","","SPK","90.0","","0.20","PQL","YES","2.00","WG220582-
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","91-20-
3","NAPHTHALENE","1.19","ug/L","","0.064","MDL","","SPK","59.5","","0.20","PQL","YES","2.00","WG220582-
2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","87-86-
5","PENTACHLOROPHENOL","2.97","ug/L","","0.33","MDL","","SPK","74.2","","1.0","PQL","YES","4.00","WG2
20582-2","","","0.50",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","85-01-
-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","129-00-
0","PYRENE","1.55","ug/L","","0.059","MDL","","SPK","77.5","","0.20","PQL","YES","2.00","WG220582-
2","","","0.10",""
"WG220582-2", "8270D-SIM", "RES", "WG220582-2", "KAS", "1718-52-1", "Pyrene-
d10","77.3","%","","0","MDL","","SURR","77.3","","0","PQL","YES","2.00","WG220582-2","","","0",""
"WG220806-1","300.0","RES","WG220806-1","KAS","16887-00-
6","CHLORIDE","1.0","mg/L","U",".0993","MDL","","TRG","","","2.0","PQL","YES","3.75","WG220806-
1","","","1.0",""
"WG220806-1","300.0","RES","WG220806-1","KAS","14797-55-8","NITRATE AS
N","0.025","mg/L","U",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","WG220806-1","","","0.025",""
"WG220806-1", "300.0", "RES", "WG220806-1", "KAS", "14808-79-
8","SULFATE","0.50","mg/L","U","0.064","MDL","","TRG","","1.0","PQL","YES","3.75","WG220806-
1","","","0.50",""
"WG220806-2","300.0","RES","WG220806-2","KAS","16887-00-
6","CHLORIDE","3.71","mg/L","",".0993","MDL","","SPK","98.9","","2.0","PQL","YES","3.75","WG220806-
"WG220806-2","300.0","RES","WG220806-2","KAS","14797-55-8","NITRATE AS
N","0.835","mg/L","",".0174","MDL","","SPK","98.8","","0.050","PQL","YES","0.845","WG220806-
2","","","0.025",""
"WG220806-2","300.0","RES","WG220806-2","KAS","14808-79-
8","SULFATE","3.69","mg/L","","0.064","MDL","","SPK","98.4","","1.0","PQL","YES","3.75","WG220806-
2","","","0.50",""
"G32-MW304SR-121817MS","300.0","RES","WG220806-3","KAS","14797-55-8","NITRATE AS
N","2.1","mg/L","",".0174","MDL","","SPK","94.8","","0.050","PQL","YES","0.845","TK1925-10","","","0.025",""
"WG220969-1","2320B","RES","WG220969-1","KAS","11-43-8","ALKALINITY AS
CACO3","0.51","mg/L","J","0.23","MDL","","TRG","","","5.0","PQL","YES","0","WG220969-1","","","4.0",""
"WG220969-2","2320B","RES","WG220969-2","KAS","11-43-8","ALKALINITY AS
CACO3","120","mg/L","","0.23","MDL","","SPK","104","","5.0","PQL","YES","120","WG220969-2","","","4.0",""
```

```
"WG220989-1", "8260C", "RES", "WG220989-1", "KAS", "540-59-0", "1,2-
DICHLOROETHYLENE","100.","ug/L","","0.21","MDL","","SPK","100.","","1.0","PQL","YES","100.","WG220989-
1","","","2.0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","460-00-4","4-
BROMOFLUOROBENZENE","102.","%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","WG220989-
1","","","0",""
"WG220989-1", "8260C", "RES", "WG220989-1", "KAS", "71-43-
2","BENZENE","50.5","ug/L","","0.26","MDL","","SPK","101.","","1.0","PQL","YES","50.0","WG220989-
1","","","0.50",""
"WG220989-1", "8260C", "RES", "WG220989-1", "KAS", "156-59-2", "CIS-1,2-
DICHLOROETHENE", "50.8", "ug/L", "", "0.21", "MDL", "", "SPK", "102.", "", "0.50", "PQL", "YES", "50.0", "WG220989-
"WG220989-1","8260C","RES","WG220989-1","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","98.6","%","","0","MDL","","SURR","98.6","","0","PQL","YES","50.0","WG2
20989-1","","","0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","127-18-
4","TETRACHLOROETHENE","47.6","ug/L","","0.40","MDL","","SPK","95.2","","1.0","PQL","YES","50.0","WG2
20989-1","","","0.50",""
"WG220989-1", "8260C", "RES", "WG220989-1", "KAS", "2037-26-5", "TOLUENE-
D8","99.7","%","","0","MDL","","SURR","99.7","","0","PQL","YES","50.0","WG220989-1","","","0",""
"WG220989-1", "8260C", "RES", "WG220989-1", "KAS", "156-60-5", "TRANS-1,2-
DICHLOROETHENE", "49.4", "ug/L", "", "0.25", "MDL", "", "SPK", "98.8", "", "0.50", "PQL", "YES", "50.0", "WG220989-
1","","","1.0",""
"WG220989-1", "8260C", "RES", "WG220989-1", "KAS", "79-01-
6","TRICHLOROETHENE","49.8","ug/L","","0.28","MDL","","SPK","99.6","","1.0","PQL","YES","50.0","WG22098
9-1","","","0.50",""
"WG220989-1","8260C","RES","WG220989-1","KAS","75-01-4","VINYL
CHLORIDE", "48.8", "ug/L", "", "0.25", "MDL", "", "SPK", "97.6", "", "1.0", "PQL", "YES", "50.0", "WG220989-
"WG220989-2", "8260C", "RES", "WG220989-2", "KAS", "17060-07-0", "1,2-DICHLOROETHANE-
D4","102.","%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","WG220989-2","","","0",""
"WG220989-2", "8260C", "RES", "WG220989-2", "KAS", "540-59-0", "1,2-
DICHLOROETHYLENE", "2.0", "ug/L", "U", "0.21", "MDL", "", "TRG", "", "", "1.0", "PQL", "YES", "0", "WG220989-
2","","","2.0",""
"WG220989-2", "8260C", "RES", "WG220989-2", "KAS", "460-00-4", "4-
BROMOFLUOROBENZENE", "98.8", "%", "", "0", "MDL", "", "SURR", "98.8", "", "0", "PQL", "YES", "50.0", "WG220989-
"WG220989-2", "8260C", "RES", "WG220989-2", "KAS", "71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","1.0","PQL","YES","0","WG220989-
"WG220989-2", "8260C", "RES", "WG220989-2", "KAS", "156-59-2", "CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","WG220989-
"WG220989-2","8260C","RES","WG220989-2","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","100.","%","","0","MDL","","SURR","100.","","0","PQL","YES","50.0","WG2
20989-2","","","0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","WG220989
-2","","","0.50",""
"WG220989-2", "8260C", "RES", "WG220989-2", "KAS", "2037-26-5", "TOLUENE-
D8","101.","%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","WG220989-2","","","0",""
"WG220989-2", "8260C", "RES", "WG220989-2", "KAS", "156-60-5", "TRANS-1,2-
```

"WG220989-1","8260C","RES","WG220989-1","KAS","17060-07-0","1,2-DICHLOROETHANE-D4","94.0","%","","0","MDL","","SURR","94.0","","0","PQL","YES","50.0","WG220989-1","","","0",""

```
DICHLOROETHENE", "1.0", "ug/L", "U", "0.25", "MDL", "", "TRG", "", "", "0.50", "PQL", "YES", "0", "WG220989-
2","","","1.0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","1.0","PQL","YES","0","WG220989-
2","","","0.50",""
"WG220989-2","8260C","RES","WG220989-2","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","1.0","PQL","YES","0","WG220989-2","","","2.0",""
"112G08005-WE22","NEWPORT, GOULD
ISLAND","LCSWKL20IMW1","","AQ","LCSWKL20IMW1","LCS","","4.8","6020A","3010A","RES","12/20/2017
08:01","12/26/2017
20:57","KAS","COA","WET","TOT","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1","
TK1925","12/20/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD
ISLAND","PBWKL20IMW1","","AQ","PBWKL20IMW1","MB","","4.8","6020A","3010A","RES","12/20/2017
```

- 08:02","12/26/2017 20:53","KAS","COA","WET","TOT","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/20/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
- 10:50", "AQ", "TK1925-001", "NM", "", "4.8", "6020A", "3010A", "RES", "12/20/2017 08:03", "12/26/2017 21:58","KAS","COA","WET","TOT","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1","
- TK1925","12/19/2017 00:00","01/29/2018 14:06","" "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017 10:50", "AQ", "TK1925-002", "NM", "", "4.8", "6020A", "3010A", "RES", "12/20/2017 08:06", "12/26/2017
- 22:02","KAS","COA","WET","DIS","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-003","NM","","4.8","6020A","3010A","RES","12/20/2017 08:07","12/26/2017
- 22:06","KAS","COA","WET","TOT","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22", "NEWPORT, GOULD ISLAND", "DUP-121817", "12/18/2017 00:00", "AQ", "TK1925-004","NM","","4.8","6020A","3010A","RES","12/20/2017 08:08","12/26/2017
- 22:10","KAS","COA","WET","DIS","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-006","NM","","4.8","6020A","3010A","RES","12/20/2017 08:09","12/26/2017
- 22:14","KAS","COA","WET","TOT","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-007","NM","","4.8","6020A","3010A","RES","12/20/2017 08:10","12/26/2017
- 22:18","KAS","COA","WET","DIS","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
- 14:20", "AQ", "TK1925-008", "NM", "", "4.8", "6020A", "3010A", "RES", "12/20/2017 08:11", "12/26/2017
- 22:31","KAS","COA","WET","TOT","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
- 14:20", "AQ", "TK1925-009", "NM", "", "4.8", "6020A", "3010A", "RES", "12/20/2017 08:12", "12/26/2017
- 22:35","KAS","COA","WET","DIS","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-010","NM","","4.8","6020A","3010A","RES","12/20/2017 08:04","12/26/2017
- 22:39","KAS","COA","WET","TOT","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-

```
011","NM","","4.8","6020A","3010A","RES","12/20/2017 08:05","12/26/2017
```

- 22:43","KAS","COA","WET","DIS","5","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
- $10:50", "AQ", "TK1925-1", "NM", "", "4.8", "2320B", "GENPREP", "RES", "12/28/2017 \\ \ 16:01", "12/28$
- 16:08","KAS","COA","WET","","1","","","100.0","WG220969","WG220969","WG220969","WG220969","WG220969","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22", "NEWPORT, GOULD ISLAND", "G32-MW306BR-121817", "12/18/2017
- 10:50","AQ","TK1925-1","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:01","12/19/2017 16:56","KAS","COA","WET","","1","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
- 10:50","AQ","TK1925-1","NM","","4.8","8082A","3510C","RES","12/20/2017 08:01","12/25/2017 11:30","KAS","COA","WET","","1","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
- $10:50", "AQ", "TK1925-1", "NM", "", "4.8", "8260C", "5030", "RES", "12/29/2017\ 14:21", "12$
- 14:21","KAS","COA","WET","","1","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
- 10:50", "AQ", "TK1925-1", "NM", "", "4.8", "8270D-SIM", "3510C", "RES", "12/22/2017 09:01", "12/26/2017
- 21:12","KAS","COA","WET","","1","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-10","NM","","4.8","2320B","GENPREP","RES","12/28/2017 16:02","12/28/2017
- 16:29", "KAS", "COA", "WET", "", "1", "", "", "100.0", "WG220969", "WG22096", "WG2209", "WG2209", "WG2209", "WG2209", "WG220", "WG20", "WG220", "WG20", "WG20",","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-10","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:02","12/19/2017
- 17:59","KAS","COA","WET","","1","","","100.0","WG220806","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-10","NM","","4.8","8082A","3510C","RES","12/20/2017 08:02","12/25/2017
- 12:51","KAS","COA","WET","","1","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-10","NM","","4.8","8260C","5030","RES","12/29/2017 16:41","12/29/2017
- 16:41","KAS","COA","WET","","1","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-10","NM","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:02","12/26/2017
- 23:15", "KAS", "COA", "WET", "", "1", "", "", "100.0", "WG220582", "WG20582", "WG20582", "WG20582", "WG20582", "WG20582", "WG20582", "WG20582", "WG20582", "WG20","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-10DL","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:02","12/19/2017
- 23:39","KAS","COA","WET","","2","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-10DLB","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:02","12/19/2017
- 23:55","KAS","COA","WET","","10","","","100.0","WG220806","WG220806","WG220806","WG220806","WG220806","WG220806","WG20806","WG220806","WG20806","W 5","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22", "NEWPORT, GOULD ISLAND", "G32-MW306BR-121817", "12/18/2017
- 10:50", "AQ", "TK1925-1DL", "NM", "", "4.8", "300.0", "GENPREP", "RES", "12/19/2017 13:01", "12/19/2017
- 21:49","KAS","COA","WET","","20","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK192

- 5","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
- 3","NM","","4.8","2320B","GENPREP","RES","12/28/2017 16:03","12/28/2017
- 16:11","KAS","COA","WET","","1","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22", "NEWPORT, GOULD ISLAND", "DUP-121817", "12/18/2017 00:00", "AQ", "TK1925-
- 3","NM","","4.8","8082A","3510C","RES","12/20/2017 08:03","12/25/2017
- 11:50","KAS","COA","WET","","1","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
- 3","NM","","4.8","8260C","5030","RES","12/29/2017 14:56","12/29/2017
- 14:56", "KAS", "COA", "WET", "", "1", "", "100.0", "WG220989", "WG220989", "WG220989", "WG220989", "TK1925", "COA", "WET", "", "100.0", "WG220989", "WG22098", "WG220989", "WG22098", "WG2209", "WG209", "WG209" ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
- 3","NM","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:03","12/26/2017
- 21:43","KAS","COA","WET","","1","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
- 3DL","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:03","12/19/2017
- 22:05","KAS","COA","WET","","2","","","100.0","WG220806","WG220806","WG220806","WG220806","WG220806","TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
- 3DLB","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:03","12/19/2017
- 22:21","KAS","COA","WET","","5","","","100.0","WG220806","WG220806","WG220806","WG220806","WG220806","TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-6","NM","","4.8","2320B","GENPREP","RES","12/28/2017 16:04","12/28/2017
- 16:16","KAS","COA","WET","","1","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22", "NEWPORT, GOULD ISLAND", "GI-MW400-121817", "12/18/2017 10:30", "AQ", "TK1925-
- 6","NM","","4.8","8082A","3510C","RES","12/20/2017 08:04","12/25/2017 12:10","KAS","COA","WET","","1","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-6","NM","","4.8","8260C","5030","RES","12/29/2017 15:31","12/29/2017
- 15:31","KAS","COA","WET","","1","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-6","NM","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:04","12/26/2017
- 22:13","KAS","COA","WET","","1","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-6DL","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:04","12/19/2017
- 22:37","KAS","COA","WET","","2","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-6DLB","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:04","12/19/2017
- 22:52","KAS","COA","WET","","5","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22", "NEWPORT, GOULD ISLAND", "G44S-MW202RR-121817", "12/18/2017
- 14:20","AQ","TK1925-8","NM","","4.8","2320B","GENPREP","RES","12/28/2017 16:05","12/28/2017
- 16:21","KAS","COA","WET","","1","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22", "NEWPORT, GOULD ISLAND", "G44S-MW202RR-121817", "12/18/2017

```
17:43","KAS","COA","WET","","1","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
14:20","AQ","TK1925-8","NM","","4.8","8082A","3510C","RES","12/20/2017 08:05","12/25/2017
12:31","KAS","COA","WET","","1","","","100.0","WG220411","WG220411","WG220411","WG220411","WG220411","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22", "NEWPORT, GOULD ISLAND", "G44S-MW202RR-121817", "12/18/2017
```

- 14:20", "AQ", "TK1925-8", "NM", "", "4.8", "8260C", "5030", "RES", "12/29/2017 16:06", "12/29/2017
- 16:06","KAS","COA","WET","","1","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
- 14:20","AQ","TK1925-8","NM","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:05","12/26/2017 22:44","KAS","COA","WET","","1","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925

14:20","AQ","TK1925-8","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:05","12/19/2017

- ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
- $14:20", "AQ", "TK1925-8DL", "NM", "", "4.8", "300.0", "GENPREP", "RES", "12/19/2017 \ 13:05", "12/19/2017 \$
- 23:08","KAS","COA","WET","","100","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK19 25","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
- 14:20", "AQ", "TK1925-8DLB", "NM", "", "4.8", "300.0", "GENPREP", "RES", "12/19/2017 13:05", "12/19/2017
- 23:24","KAS","COA","WET","","2000","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1 925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","WG220411-1","","AQ","WG220411-
- 1", "MB", "", "4.8", "8082A", "3510C", "RES", "12/20/2017 08:06", "12/25/2017
- 04:26","KAS","COA","WET","","1","","","100.0","WG220411","WG22041","WG220411","WG220411","WG220411","WG220411","WG220411","WG22041","WG22041","WG22041","WG22041","WG22041","WG22041","WG2204","WG2204","WG2204","WG2204","WG2204","WG2204","WG2204","WG2204","WG2204","WG2204","WG220","WG220","WG220","WG220","WG220","WG220","WG220","WG220","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","W ","12/20/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","WG220411-2","","AQ","WG220411-
- 2","LCS","","4.8","8082A","3510C","RES","12/20/2017 08:07","12/25/2017
- 04:46","KAS","COA","WET","","1","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925 ","12/20/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22", "NEWPORT, GOULD ISLAND", "WG220411-3", "", "AQ", "WG220411-
- 3","LCS","","4.8","8082A","3510C","RES","12/20/2017 08:08","12/25/2017
- 05:07","KAS","COA","WET","","1","","","100.0","WG220411","WG22041","WG22041","WG22041","WG22041","WG22041","WG22041","WG22041","WG2204","WG2204","WG2204","WG2204","WG2204","WG2204","WG2204","WG2204","WG2204","WG220","WG220","WG220","WG220","WG220","WG220","WG220","WG220","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG20","WG2 ","12/20/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","WG220582-1","","AQ","WG220582-
- 1", "MB", "", "4.8", "8270D-SIM", "3510C", "RES", "12/22/2017 09:06", "12/26/2017
- 20:11","KAS","COA","WET","","1","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/22/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","WG220582-2","","AQ","WG220582-
- 2","LCS","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:07","12/26/2017
- 20:42","KAS","COA","WET","","1","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/22/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","WG220806-1","","AQ","WG220806-
- 1","MB","","4.8","300.0","GENPREP","RES","12/19/2017 10:53","12/19/2017
- 10:53","KAS","COA","WET","","1","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22", "NEWPORT, GOULD ISLAND", "WG220806-2", "", "AQ", "WG220806-
- 2","LCS","","4.8","300.0","GENPREP","RES","12/19/2017 11:40","12/19/2017
- 11:40","KAS","COA","WET","","1","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817MS","12/18/2017
- 12:50","AQ","WG220806-3","MS","","4.8","300.0","GENPREP","RES","12/19/2017 13:08","12/19/2017
- 18:15","KAS","COA","WET","","1","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925

- ","12/19/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","WG220969-1","","AQ","WG220969-
- 1","MB","","4.8","2320B","GENPREP","RES","12/28/2017 15:45","12/28/2017
- 15:45","KAS","COA","WET","","1","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925 ","12/28/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","WG220969-2","","AQ","WG220969-
- 2","LCS","","4.8","2320B","GENPREP","RES","12/28/2017 15:47","12/28/2017
- 15:47","KAS","COA","WET","","1","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925 "," $12/28/2017\ 00:00$ "," $01/29/2018\ 14:06$ ",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","WG220989-1","","AQ","WG220989-
- 1","LCS","","4.8","8260C","5030","RES","12/29/2017 09:37","12/29/2017
- 09:37","KAS","COA","WET","","1","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925 ","12/29/2017 00:00","01/29/2018 14:06",""
- "112G08005-WE22","NEWPORT, GOULD ISLAND","WG220989-2","","AQ","WG220989-
- 2","MB","","4.8","8260C","5030","RES","12/29/2017 10:48","12/29/2017
- 10:48","KAS","COA","WET","","1","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925 ","12/29/2017 00:00","01/29/2018 14:06",""

INTERNAL CORRESPONDENCE

TO: S. PARKER DATE: FEBRUARY 14, 2018

FROM: TERRI L. SOLOMON COPIES: DV FILE

SUBJECT: ORGANIC & INORGANIC DATA VALIDATION – SELECTED VOCs/ PAHs/ PCBs/ PFAS/

SELECT TOTAL AND DISSOLVED METALS/ MISCELLANEOUS

NAVAL STATION (NAVSTA) NEWPORT, PORTSMOUTH, RHODE ISLAND

WE22 GOULD ISLAND SITE 17

SAMPLE DELIVERY GROUP (SDG) TK1925

SAMPLES: 5/Aqueous/

VOC, PAH, Pesticide, PFAS, Metals, Miscellaneous

DUP-121817 G32-MW304SR-121817 G32-MW306BR-121817 G44S-MW202RR0121817

GI-MW400-121817

1/Field Reagent Blank (FRB)

PFAS FRB-121817

Overview

The sample set for NAVSTA Newport, SDG TK1925 consisted of five (5) aqueous environmental samples, and one (1) FRB sample. Five (5) aqueous environmental samples were analyzed for select volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), perfluorinated alkyl acids (PFAS), select total and dissolved target analyte list (TAL) metals and miscellaneous parameters (alkalinity, chloride, sulfate and nitrate). The FRB sample was analyzed for PFAS only. One (1) field duplicate sample pair, GI-MW400-121817 / DUP-121817, was included in this SDG.

The samples were collected by Tetra Tech, Inc. on December 18, 2017 and analyzed by Katahdin Analytical Services and Shealy Environmental Services (analyzed PFAS samples). All analyses were conducted in accordance with SW846 methods 8260C, 8270D SIM, 8082A, 6020A, EPA methods 537 version 1.1 Mod., 300.0 and Standard Method 2320B analytical and reporting protocols.

An EPA level 2A validation was performed. The data was evaluated with regard to the following parameters:

- Data Completeness
- Holding Times/Sample Preservation
- Laboratory Method/Preparation Blank Results
- ICP Interference Recoveries
- Surrogate Recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate Results
- Matrix Spike Results
- Internal Standard Areas
- Detection Limits

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A, results as reported by the laboratory are presented in

TO: S. PARKER PAGE 2

SDG: TK1925

Appendix B, and documentation supporting these findings is presented in Appendix C. The text of this report has been formulated to address only those areas affecting data quality.

DATA COMPLETENESS

The original data package did not include the compounds 1,2-dichloroethene and vinyl chloride for the VOC analyses as listed in the sampling and analysis plan. The laboratory was contacted and the data package was resubmitted with the correct VOC compound list.

LABORATORY METHOD/PREPARATION BLANKS

The following compound was detected in a PAH method blank at the maximum concentration indicated below:

CompoundConcentrationAction LevelBenzo(a)anthracene0.078 ug/L0.39 ug/L

An action level of 5X the maximum concentration was established to evaluate for blank contamination. Detected results less than the action level for benzo(a) anthracene were qualified as (U).

The following compounds were detected in a PAH method/field reagent blanks at the maximum concentration indicated below:

Compound	<u>Concentration</u>	Action Level
Pentadecafluorooctanioc acid (PFOA)(1)	0.80 ng/L	4.0 ng/L
Perfluorohexanesulfonic acid (PFHxS)(2)	1.1 ng/L	5.5 ng/L
Perfluorooctane sulfonic acid (PFOS)(2)	5.6 ng/L	28 ng/L

- (1) Maximum concentration present in a laboratory method blank.
- (2) Maximum concentration present in a FRB.

An action level of 5X the maximum concentration was established to evaluate for blank contamination. Detected results less than the action levels for the aforementioned compounds were qualified as (U).

The above PFAS compounds detected as contaminants in the FRB and in the method blank exceed one-third of the method reporting limit. For this occurrence, the project Sampling and Analysis Plan (SAP) indicated that because the samples were non-drinking water samples, the affected analytes could be qualified. The qualifications were brought to the attention of the project manager and all affected analyte concentrations were well below the 70 ng/L action level in the SAP.

NOTES

All samples were analyzed at a 5X dilution for the total and dissolved metals analyses. Detection limits of the non-detected results were elevated.

The following analyte was detected in the preparation blanks at the following maximum concentration:

 $\begin{array}{ccc} & & \text{Maximum} & \text{Reporting Limit} \\ \underline{\text{Analyte}} & & \underline{\text{Concentration}} & & (\underline{\text{RL}}) > \text{or} < \\ \\ \text{Alkalinity} & & 0.51 \text{ mg/L} & < \text{RL} \\ \end{array}$

No validation actions were required as all sample results were greater than the reporting limit.

TO: S. PARKER PAGE 3

SDG: TK1925

Detected results reported below the LOQ but above the Method Detection Limit (MDL) were qualified as estimated, (J). Non-detected results are reported to the Limit of Detection (LOD).

EXECUTIVE SUMMARY

Laboratory Performance: Contaminants were detected in the laboratory preparation and field reagent blanks.

Other Factors Affecting Data Quality: Results below the LOQ were estimated.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Superfund Methods Data Review" (January 2017), the "National Functional Guidelines for Inorganic Superfund Methods Data Review" (January 2017) and Environmental Protection Agency document EPA/600/R-08/092, Method 537, "Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)", (September 2009). The text of this report has been formulated to address only those areas affecting data quality.

Tetra Tech, Inc. Terri L. Solomon

Tetra Tech, Inc.

Environmental Chemist

Mari L Salemen

Data Validation Manager

Joseph A. Samchuck

Attachments:

Appendix A - Qualified Analytical Results

Appendix B - Results as reported by the Laboratory

Appendix C - Support Documentation

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
J	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
UJ	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
R	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
UR	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC

Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304SR-121817			G32-MW306B	R-1218′	7	G44S-MW202RR-121817		
SDG: TK1925	LAB_ID	TK1925-3			TK1925-10			TK1925-1			TK1925-8		
FRACTION: OV	SAMP_DATE	12/18/2017			12/18/2017			12/18/2017			12/18/2017		
MEDIA: WATER	QC_TYPE	NM		NM			NM			NM			
	UNITS	UG/L		UG/L			UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF	GI-MW400-121817											
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
BENZENE		0.5	U		0.5	U		0.5	U		0.5	U	
CIS-1,2-DICHLOROETHEN	IE	1	U		2.2			1	U		1	U	
TETRACHLOROETHENE		0.5	U		0.5	U		0.5	U		0.5	U	
TOTAL 1,2-DICHLOROETHENE		2	U		2.2			2	U		2	U	
TRANS-1,2-DICHLOROETHENE		1	U		1	U		1	U		1	U	
TRICHLOROETHENE		0.5	U		1.8			0.5	U		0.5	U	
VINYL CHLORIDE		2	U		0.66	J	Р	2	U		2	U	

1 of 2 2/15/2018

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-121817					
SDG: TK1925	LAB_ID	TK1925-6					
FRACTION: OV	SAMP_DATE	12/18/2017					
MEDIA: WATER	QC_TYPE	NM					
	UNITS	UG/L					
	PCT_SOLIDS	0.0					
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD			
BENZENE		0.5	U				
CIS-1,2-DICHLOROETHEN	E	1	U				
TETRACHLOROETHENE		0.5	U				
TOTAL 1,2-DICHLOROETH	ENE	2	U				
TRANS-1,2-DICHLOROETH	IENE	1	U				
TRICHLOROETHENE		0.5	U				
VINYL CHLORIDE		2	U				

2 of 2 2/15/2018

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304S	304SR-121817 G32-MW306BR-1218			17	G44S-MW202RR-121817		817		
SDG: TK1925	LAB_ID	TK1925-3	TK1925-3		TK1925-10		TK1925-1		TK1925-8					
FRACTION: PAH	SAMP_DATE	12/18/2017			12/18/2017			12/18/2017			12/18/2017			
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM			
	UNITS	UG/L			UG/L			UG/L	UG/L					
	PCT_SOLIDS	0.0			0.0			0.0	0.0		0.0			
	DUP_OF	GI-MW400-121	1817											
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
2-METHYLNAPHTHALENE		0.096	U		0.095	U		0.094	U		0.099	U		
BENZO(A)ANTHRACENE		0.054	U	А	0.058	U	А	0.12	U	А	0.058	U	Α	
BENZO(A)PYRENE		0.096	U		0.095	U		0.084	J	Р	0.099	U		
BENZO(B)FLUORANTHEN	E	0.096	U		0.095	U		0.11	J	Р	0.099	U		
BENZO(G,H,I)PERYLENE		0.096	U		0.095	U		0.094	U		0.099	U		
BENZO(K)FLUORANTHEN	E	0.096	U		0.095	U		0.094	U		0.099	U		
CHRYSENE		0.096	U		0.095	U		0.094	U		0.099	U		
DIBENZO(A,H)ANTHRACE	NE	0.096	U		0.095	U		0.094	U		0.099	U		
FLUORANTHENE		0.096	U		0.095	U		0.094	U		0.099	U		
INDENO(1,2,3-CD)PYREN	≣	0.096	U		0.095	U		0.094	U		0.099	U		
NAPHTHALENE		0.096	U		0.095	U		0.094	U		0.099	U		
PENTACHLOROPHENOL		0.48	U		0.48			0.47	U		0.5	U		
PHENANTHRENE		0.096	U		0.095	U		0.094	U		0.099	U		
PYRENE		0.096	U		0.095	U		0.094	U		0.099	U		

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-121817					
SDG: TK1925	LAB_ID	TK1925-6					
FRACTION: PAH	SAMP_DATE	12/18/2017					
MEDIA: WATER	QC_TYPE	NM					
	UNITS	UG/L					
	PCT_SOLIDS	0.0					
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD			
2-METHYLNAPHTHALENE		0.094	U				
BENZO(A)ANTHRACENE		0.057	U	Α			
BENZO(A)PYRENE		0.094	U				
BENZO(B)FLUORANTHENI	E	0.094	U				
BENZO(G,H,I)PERYLENE		0.094	U				
BENZO(K)FLUORANTHENI	E	0.094	U				
CHRYSENE		0.094	U				
DIBENZO(A,H)ANTHRACEI	NE	0.094	U				
FLUORANTHENE		0.094	U				
INDENO(1,2,3-CD)PYRENE		0.094	U				
NAPHTHALENE		0.094	U				
PENTACHLOROPHENOL		0.47	U				
PHENANTHRENE	·	0.094	U				
PYRENE		0.094	U				

PROJ_NO: 08005-WE22	NSAMPLE	IPLE DUP-121817		G32-MW304SR-121817		G32-MW306BR-121817			G44S-MW202RR-121817					
SDG: TK1925	LAB_ID	TK1925-3		TK1925-10		TK1925-1	TK1925-1			TK1925-8				
FRACTION: PCB	SAMP_DATE	12/18/2017	12/18/2017		12/18/2017	12/18/2017		12/18/2017	12/18/2017		12/18/2017			
MEDIA: WATER	QC_TYPE NM		NM	NM		NM	NM			NM				
	UNITS	UG/L			UG/L			UG/L		UG/L				
	PCT_SOLIDS	0.0			0.0		0.0	0.0		0.0				
	DUP_OF	GI-MW400-12	1817											
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
AROCLOR-1016		0.24	U		0.24	U		0.24	U		0.24	U		
AROCLOR-1221		0.24	U		0.24	U		0.24	U		0.24	U		
AROCLOR-1232		0.24	U		0.24	U		0.24	U		0.24	U		
AROCLOR-1242		0.24	U		0.24	U		0.24	U		0.24	U		
AROCLOR-1248		0.24	U		0.24	U		0.24	U		0.24	U		
AROCLOR-1254		0.24	U		0.24	U		0.24	U		0.24	U		
AROCLOR-1260		0.24	U		0.24	U		0.24	U		0.24	U		
AROCLOR-1262	·	0.24	U		0.24	U		0.24	U		0.24	U		
AROCLOR-1268	·	0.24	U		0.24	U		0.24	U		0.24	U		
TOTAL AROCLOR	·	2.2	U		2.1	U		2.1	U		2.2	U		

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-121817					
SDG: TK1925	LAB_ID	TK1925-6					
FRACTION: PCB	SAMP_DATE	12/18/2017					
MEDIA: WATER	QC_TYPE	NM					
	UNITS	UG/L					
	PCT_SOLIDS	0.0					
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD			
AROCLOR-1016		0.24	U				
AROCLOR-1221		0.24	U				
AROCLOR-1232		0.24	U				
AROCLOR-1242		0.24	U				
AROCLOR-1248		0.24	U				
AROCLOR-1254		0.24	U				
AROCLOR-1260		0.24	U				
AROCLOR-1262		0.24	U				
AROCLOR-1268		0.24	U				
TOTAL AROCLOR		2.1	U				

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304SR-121817 G32-MW306BF			G32-MW306B	R-12181	7	G44S-MW202I	RR-1218	317
SDG: TK1925	LAB_ID	TK1925-003			TK1925-010 TK1925-00		TK1925-001			TK1925-008			
FRACTION: M	SAMP_DATE	12/18/2017	2/18/2017 12/		12/18/2017		12/18/2017		12/18/2017				
MEDIA: WATER	QC_TYPE	NM	IM NM		NM NM				NM				
	UNITS	UG/L			UG/L UG/L		UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0		0.0			0.0			
	DUP_OF	GI-MW400-12	1817										
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
ARSENIC		4	U		4	U		4	U		4.9	J	Р
CADMIUM		0.2	U		0.079	J	Р	0.2	U		0.2	U	
LEAD		0.5	U		0.084	J	Р	0.61	J	Р	1.53		
MANGANESE		235			1950			140			2910		

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-121817					
SDG: TK1925	LAB_ID	TK1925-006					
FRACTION: M	SAMP_DATE	12/18/2017					
MEDIA: WATER	QC_TYPE	NM					
	UNITS	UG/L					
	PCT_SOLIDS	0.0					
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD			
ARSENIC		4	U				
CADMIUM		0.2	U				
LEAD		0.089	J	Р			
MANGANESE		229					

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304S	R-12181	7	G32-MW306B	R-12181	7	G44S-MW202I	2/18/2017 M G/L .0 ESULT VQL	
SDG: TK1925	LAB_ID	TK1925-004	(1925-004 TK		TK1925-011 TK1		TK1925-002	2		TK1925-009			
FRACTION: MF	SAMP_DATE	12/18/2017	2/18/2017 12/		12/18/2017		12/18/2017			12/18/2017			
MEDIA: WATER	QC_TYPE	NM	IM NM		NM	M NM				NM			
	UNITS	UG/L			UG/L UG/L				UG/L				
	PCT_SOLIDS	0.0			0.0		0.0			0.0			
	DUP_OF	GI-MW400-12	1817										
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
ARSENIC		4	U		4	U		4	U		6.6		
CADMIUM		0.2	U		0.053	J	Р	0.2	U		0.2	U	
LEAD		0.5	U		0.28	J	Р	0.12	J	Р	0.5	U	
MANGANESE		235			1720			37.8			2960		

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-121817					
SDG: TK1925	LAB_ID	TK1925-007					
FRACTION: MF	SAMP_DATE	12/18/2017					
MEDIA: WATER	QC_TYPE	NM					
	UNITS	UG/L					
	PCT_SOLIDS	0.0					
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD			
ARSENIC		4	U				
CADMIUM		0.031	J	Р			
LEAD		0.5	U				
MANGANESE		235					

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304SI	G32-MW304SR-121817 G32-MW306BF			R-12181	7	G44S-MW202	RR-1218	317				
SDG: TK1925	LAB_ID	TK1925-3	K1925-3			TK1925-3 TK		TK1925-10 TK1925-1			TK1925-10		TK1925-1		TK1925-8		
FRACTION: MISC	SAMP_DATE	12/18/2017	2/18/2017 12		12/18/2017		12/18/2017			12/18/2017							
MEDIA: WATER	QC_TYPE	NM	M NM		NM NM				NM								
	UNITS	MG/L	G/L MG/I		MG/L			MG/L			MG/L						
	PCT_SOLIDS	0.0			0.0		0.0			0.0							
	DUP_OF																
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD				
ALKALINITY		360			160			75			94						
CHLORIDE		19			58			190			11000						
NITRATE-N		9.9			1.3			0.042	J	Р	0.025	U					
SULFATE		28			26			16			1600						

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-121817				
SDG: TK1925	LAB_ID	TK1925-6				
FRACTION: MISC	SAMP_DATE	12/18/2017				
MEDIA: WATER	QC_TYPE	NM				
	UNITS	MG/L				
	PCT_SOLIDS	0.0				
	DUP_OF					
PARAMETER		RESULT	VQL	QLCD		
ALKALINITY		350				
CHLORIDE		19				
NITRATE-N		9.7				
SULFATE		28				

Appendix B

Results as Reported by the Laboratory

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-1

Client ID: G32-MW306BR-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: TTC/H

SDG: TK1925

Lab File ID: T3892.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 29-DEC-17

Extracted By: TTC/H0
Extraction Method: SW846 5030

Lab Prep Batch: WG220989

Analysis Date: 29-DEC-17

Analyst: TTC/HG

Analysis Method: SW846 8260C

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug/L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug/L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		99.9	%					
Toluene-d8		101.	%					
1,2-Dichloroethane-d4		108.	%					
Dibromofluoromethane		102.	%					

Client: Tetra Tech NUS, Inc. Lab ID: TK1925-3

Client ID: DUP-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: TTC/HO

SDG: TK1925

Lab File ID: T3893.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 29-DEC-17

Extraction Method: SW846 5030 Lab Prep Batch: WG220989

Analysis Date: 29-DEC-17

Analyst: TTC/HG

Analysis Method: SW846 8260C

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug/L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug/L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		99.9	%					
Toluene-d8		103.	%					
1,2-Dichloroethane-d4		109.	%					
Dibromofluoromethane		100.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-6

Client ID: GI-MW400-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: TTC/HO

SDG: TK1925

Lab File ID: T3894.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 29-DEC-17

Extraction Method: SW846 5030

Lab Prep Batch: WG220989

Analysis Date: 29-DEC-17

Analyst: TTC/HG

Analysis Method: SW846 8260C

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug/L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug/L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		98.7	%					
Toluene-d8		101.	%					
1,2-Dichloroethane-d4		111.	%					
Dibromofluoromethane		101.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-8

Client ID: G44S-MW202RR-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: TTC/HO

SDG: TK1925

Lab File ID: T3895.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 29-DEC-17

Extracted By: TTC/H0
Extraction Method: SW846 5030

Lab Prep Batch: WG220989

Analysis Date: 29-DEC-17

Analyst: TTC/HG

Analysis Method: SW846 8260C

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug/L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug/L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		102.	%					
Toluene-d8		103.	%					
1,2-Dichloroethane-d4		114.	%					
Dibromofluoromethane		103.	%					

Client: Tetra Tech NUS, Inc.

Lab ID:TK1925-10

Client ID: G32-MW304SR-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: TTC/HO

SDG: TK1925

Lab File ID: T3896.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 29-DEC-17

Extracted By: TTC/H
Extraction Method: SW846 5030

Lab Prep Batch: WG220989

Analysis Date: 29-DEC-17

Analyst: TTC/HG

Analysis Method: SW846 8260C

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	J	0.66	ug/L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene		2.2	ug/L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)		2.2	ug/L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
Trichloroethene		1.8	ug/L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		106.	%					
Toluene-d8		99.2	%					
1,2-Dichloroethane-d4		110.	%					
Dibromofluoromethane		103.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-1

Client ID: G32-MW306BR-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: JMS

SDG: TK1925

Lab File ID: U0131.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 22-DEC-17

Extract Date: 22-DEC-1

Extraction Method: SW846 3510C

Lab Prep Batch: WG220582

Analysis Date: 26-DEC-17

Analyst: JCG

Analysis Method: SW846 M8270D SIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.47	ug/L	1	1	0.94	0.31	0.47
Naphthalene	U	0.094	ug/L	1	.2	0.19	0.060	0.094
2-Methylnaphthalene	U	0.094	ug/L	1	.2	0.19	0.073	0.094
Phenanthrene	U	0.094	ug/L	1	.2	0.19	0.048	0.094
Fluoranthene	U	0.094	ug/L	1	.2	0.19	0.069	0.094
Pyrene	U	0.094	ug/L	1	.2	0.19	0.056	0.094
Benzo(a)anthracene	J	0.12	ug/L	1	.2	0.19	0.043	0.094
Chrysene	U	0.094	ug/L	1	.2	0.19	0.034	0.094
Benzo(b)Fluoranthene	J	0.11	ug/L	1	.2	0.19	0.084	0.094
Benzo(k)fluoranthene	U	0.094	ug/L	1	.2	0.19	0.046	0.094
Benzo(a)pyrene	J	0.084	ug/L	1	.2	0.19	0.062	0.094
Indeno(1,2,3-cd)pyrene	U	0.094	ug/L	1	.2	0.19	0.049	0.094
Dibenzo(a,h)anthracene	U	0.094	ug/L	1	.2	0.19	0.066	0.094
Benzo(g,h,i)perylene	U	0.094	ug/L	1	.2	0.19	0.061	0.094
2-Methylnaphthalene-D10		77.2	%					
2,4-Dibromophenol		26.5	%					
Fluorene-D10		82.2	%					
Pyrene-D10		109.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-3 **Client ID:** DUP-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: JMS

SDG: TK1925

Lab File ID: U0132.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 22-DEC-17

Extraction Method: SW846 3510C Lab Prep Batch: WG220582

Analysis Date: 26-DEC-17

Analyst: JCG

Analysis Method: SW846 M8270D SIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.48	ug/L	1	1	0.96	0.32	0.48
Naphthalene	U	0.096	ug/L	1	.2	0.19	0.062	0.096
2-Methylnaphthalene	U	0.096	ug/L	1	.2	0.19	0.074	0.096
Phenanthrene	U	0.096	ug/L	1	.2	0.19	0.049	0.096
Fluoranthene	U	0.096	ug/L	1	.2	0.19	0.070	0.096
Pyrene	U	0.096	ug/L	1	.2	0.19	0.057	0.096
Benzo(a)anthracene	J	0.054	ug/L	1	.2	0.19	0.044	0.096
Chrysene	U	0.096	ug/L	1	.2	0.19	0.035	0.096
Benzo(b)Fluoranthene	U	0.096	ug/L	1	.2	0.19	0.086	0.096
Benzo(k)fluoranthene	U	0.096	ug/L	1	.2	0.19	0.047	0.096
Benzo(a)pyrene	U	0.096	ug/L	1	.2	0.19	0.063	0.096
Indeno(1,2,3-cd)pyrene	U	0.096	ug/L	1	.2	0.19	0.050	0.096
Dibenzo(a,h)anthracene	U	0.096	ug/L	1	.2	0.19	0.067	0.096
Benzo(g,h,i)perylene	U	0.096	ug/L	1	.2	0.19	0.062	0.096
2-Methylnaphthalene-D10		65.7	%					
2,4-Dibromophenol		24.5	%					
Fluorene-D10		69.5	%					
Pyrene-D10		99.7	%					

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-6

Client ID: GI-MW400-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: JMS

SDG: TK1925

Lab File ID: U0133.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 22-DEC-17

Extraction Method: SW846 3510C

Lab Prep Batch: WG220582

Analysis Date: 26-DEC-17

Analyst: JCG

Analysis Method: SW846 M8270D SIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.47	ug/L	1	1	0.94	0.31	0.47
Naphthalene	U	0.094	ug/L	1	.2	0.19	0.060	0.094
2-Methylnaphthalene	U	0.094	ug/L	1	.2	0.19	0.073	0.094
Phenanthrene	U	0.094	ug/L	1	.2	0.19	0.048	0.094
Fluoranthene	U	0.094	ug/L	1	.2	0.19	0.069	0.094
Pyrene	U	0.094	ug/L	1	.2	0.19	0.056	0.094
Benzo(a)anthracene	J	0.057	ug/L	1	.2	0.19	0.043	0.094
Chrysene	U	0.094	ug/L	1	.2	0.19	0.034	0.094
Benzo(b)Fluoranthene	U	0.094	ug/L	1	.2	0.19	0.084	0.094
Benzo(k)fluoranthene	U	0.094	ug/L	1	.2	0.19	0.046	0.094
Benzo(a)pyrene	U	0.094	ug/L	1	.2	0.19	0.062	0.094
Indeno(1,2,3-cd)pyrene	U	0.094	ug/L	1	.2	0.19	0.049	0.094
Dibenzo(a,h)anthracene	U	0.094	ug/L	1	.2	0.19	0.066	0.094
Benzo(g,h,i)perylene	U	0.094	ug/L	1	.2	0.19	0.061	0.094
2-Methylnaphthalene-D10		67.4	%					
2,4-Dibromophenol		27.2	%					
Fluorene-D10		68.5	%					
Pyrene-D10		87.5	%					

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-8

Client ID: G44S-MW202RR-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: JMS

SDG: TK1925

Lab File ID: U0134.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 22-DEC-17

Extraction Method: SW846 3510C

Lab Prep Batch: WG220582

Analysis Date: 26-DEC-17

Analyst: JCG

Analysis Method: SW846 M8270D SIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.50	ug/L	1	1	0.99	0.33	0.50
Naphthalene	U	0.099	ug/L	1	.2	0.20	0.063	0.099
2-Methylnaphthalene	U	0.099	ug/L	1	.2	0.20	0.076	0.099
Phenanthrene	U	0.099	ug/L	1	.2	0.20	0.050	0.099
Fluoranthene	U	0.099	ug/L	1	.2	0.20	0.072	0.099
Pyrene	U	0.099	ug/L	1	.2	0.20	0.058	0.099
Benzo(a)anthracene	J	0.058	ug/L	1	.2	0.20	0.046	0.099
Chrysene	U	0.099	ug/L	1	.2	0.20	0.036	0.099
Benzo(b)Fluoranthene	U	0.099	ug/L	1	.2	0.20	0.088	0.099
Benzo(k)fluoranthene	U	0.099	ug/L	1	.2	0.20	0.048	0.099
Benzo(a)pyrene	U	0.099	ug/L	1	.2	0.20	0.065	0.099
Indeno(1,2,3-cd)pyrene	U	0.099	ug/L	1	.2	0.20	0.051	0.099
Dibenzo(a,h)anthracene	U	0.099	ug/L	1	.2	0.20	0.069	0.099
Benzo(g,h,i)perylene	U	0.099	ug/L	1	.2	0.20	0.064	0.099
2-Methylnaphthalene-D10		59.8	%					
2,4-Dibromophenol		28.1	%					
Fluorene-D10		71.4	%					
Pyrene-D10		94.9	%					

Client: Tetra Tech NUS, Inc.

Lab ID:TK1925-10

Client ID: G32-MW304SR-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: JMS

SDG: TK1925

Lab File ID: U0135.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 22-DEC-17

Extract Date: 22-DEC-1

Extraction Method: SW846 3510C

Lab Prep Batch: WG220582

Analysis Date: 26-DEC-17

Analyst: JCG

Analysis Method: SW846 M8270D SIM

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.48	ug/L	1	1	0.95	0.31	0.48
Naphthalene	U	0.095	ug/L	1	.2	0.19	0.061	0.095
2-Methylnaphthalene	U	0.095	ug/L	1	.2	0.19	0.073	0.095
Phenanthrene	U	0.095	ug/L	1	.2	0.19	0.048	0.095
Fluoranthene	U	0.095	ug/L	1	.2	0.19	0.070	0.095
Pyrene	U	0.095	ug/L	1	.2	0.19	0.056	0.095
Benzo(a)anthracene	J	0.058	ug/L	1	.2	0.19	0.044	0.095
Chrysene	U	0.095	ug/L	1	.2	0.19	0.034	0.095
Benzo(b)Fluoranthene	U	0.095	ug/L	1	.2	0.19	0.085	0.095
Benzo(k)fluoranthene	U	0.095	ug/L	1	.2	0.19	0.047	0.095
Benzo(a)pyrene	U	0.095	ug/L	1	.2	0.19	0.063	0.095
Indeno(1,2,3-cd)pyrene	U	0.095	ug/L	1	.2	0.19	0.050	0.095
Dibenzo(a,h)anthracene	U	0.095	ug/L	1	.2	0.19	0.067	0.095
Benzo(g,h,i)perylene	U	0.095	ug/L	1	.2	0.19	0.062	0.095
2-Methylnaphthalene-D10		64.3	%					
2,4-Dibromophenol		23.9	%					
Fluorene-D10		63.8	%					
Pyrene-D10		93.8	%					

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-1

Client ID: G32-MW306BR-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: KF

SDG: TK1925

Lab File ID: 8KL00566.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 20-DEC-17

Extraction Method: SW846 3510C

Lab Prep Batch: WG220411

Analysis Date: 25-DEC-17

Analyst: BF

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug/L	1	.5	0.47	0.14	0.24
Aroclor-1221	U	0.24	ug/L	1	.5	0.47	0.19	0.24
Aroclor-1232	U	0.24	ug/L	1	.5	0.47	0.084	0.24
Aroclor-1242	U	0.24	ug/L	1	.5	0.47	0.17	0.24
Aroclor-1248	U	0.24	ug/L	1	.5	0.47	0.19	0.24
Aroclor-1254	U	0.24	ug/L	1	.5	0.47	0.077	0.24
Aroclor-1260	U	0.24	ug/L	1	.5	0.47	0.16	0.24
Aroclor-1262	U	0.24	ug/L	1	.5	0.47	0.062	0.24
Aroclor-1268	U	0.24	ug/L	1	.5	0.47	0.068	0.24
Total PCBs	U	2.1	ug/L	1	4.5	4.2	0.062	2.1
Tetrachloro-M-Xylene		97.2	%					
Decachlorobiphenyl		74.5	%					

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-3 **Client ID:** DUP-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: KF

SDG: TK1925

Lab File ID: 8KL00567.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17

Extract Date: 20-DEC-17

Extraction Method: SW846 3510C

Lab Prep Batch: WG220411

Analysis Date: 25-DEC-17

Analyst: BF

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug/L	1	.5	0.48	0.14	0.24
Aroclor-1221	U	0.24	ug/L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug/L	1	.5	0.48	0.086	0.24
Aroclor-1242	U	0.24	ug/L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug/L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug/L	1	.5	0.48	0.079	0.24
Aroclor-1260	U	0.24	ug/L	1	.5	0.48	0.16	0.24
Aroclor-1262	U	0.24	ug/L	1	.5	0.48	0.063	0.24
Aroclor-1268	U	0.24	ug/L	1	.5	0.48	0.069	0.24
Total PCBs	U	2.2	ug/L	1	4.5	4.3	0.063	2.2
Tetrachloro-M-Xylene		98.8	%					
Decachlorobiphenyl		105.	%					

Client: Tetra Tech NUS, Inc.

Lab ID: TK1925-6

Client ID: GI-MW400-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: KF

SDG: TK1925

Lab File ID: 8KL00568.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 20-DEC-17

Extract Date: 20 1

Extraction Method: SW846 3510C

Lab Prep Batch: WG220411

Analysis Date: 25-DEC-17

Analyst: BF

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug/L	1	.5	0.48	0.14	0.24
Aroclor-1221	U	0.24	ug/L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug/L	1	.5	0.48	0.085	0.24
Aroclor-1242	U	0.24	ug/L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug/L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug/L	1	.5	0.48	0.078	0.24
Aroclor-1260	U	0.24	ug/L	1	.5	0.48	0.16	0.24
Aroclor-1262	U	0.24	ug/L	1	.5	0.48	0.063	0.24
Aroclor-1268	U	0.24	ug/L	1	.5	0.48	0.068	0.24
Total PCBs	U	2.1	ug/L	1	4.5	4.3	0.063	2.1
Tetrachloro-M-Xylene		83.8	%					
Decachlorobiphenyl		91.8	%					

Client: Tetra Tech NUS, Inc.

Lab ID:TK1925-8

Client ID: G44S-MW202RR-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: KF

SDG: TK1925

Lab File ID: 8KL00569.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 20 DEC 17

Extract Date: 20-DEC-17

Extraction Method: SW846 3510C

Lab Prep Batch: WG220411

Analysis Date: 25-DEC-17

Analyst: BF

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug/L	1	.5	0.48	0.14	0.24
Aroclor-1221	U	0.24	ug/L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug/L	1	.5	0.48	0.086	0.24
Aroclor-1242	U	0.24	ug/L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug/L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug/L	1	.5	0.48	0.079	0.24
Aroclor-1260	U	0.24	ug/L	1	.5	0.48	0.16	0.24
Aroclor-1262	U	0.24	ug/L	1	.5	0.48	0.063	0.24
Aroclor-1268	U	0.24	ug/L	1	.5	0.48	0.069	0.24
Total PCBs	U	2.2	ug/L	1	4.5	4.3	0.063	2.2
Tetrachloro-M-Xylene		82.4	%					
Decachlorobiphenyl		75.9	%					

Client: Tetra Tech NUS, Inc.

Lab ID:TK1925-10

Client ID: G32-MW304SR-121817

Project: NAVSTA Newport, Gould Island CTO- Extracted By: KF

SDG: TK1925

Lab File ID: 8KL00570.D

Sample Date: 18-DEC-17 Received Date: 19-DEC-17 Extract Date: 20-DEC-17

Extract Date: 20 D.

Extraction Method: SW846 3510C

Lab Prep Batch: WG220411

Analysis Date: 25-DEC-17

Analyst: BF

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug/L	1	.5	0.48	0.14	0.24
Aroclor-1221	U	0.24	ug/L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug/L	1	.5	0.48	0.085	0.24
Aroclor-1242	U	0.24	ug/L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug/L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug/L	1	.5	0.48	0.078	0.24
Aroclor-1260	U	0.24	ug/L	1	.5	0.48	0.16	0.24
Aroclor-1262	U	0.24	ug/L	1	.5	0.48	0.063	0.24
Aroclor-1268	U	0.24	ug/L	1	.5	0.48	0.068	0.24
Total PCBs	U	2.1	ug/L	1	4.5	4.3	0.063	2.1
Tetrachloro-M-Xylene		73.8	%					
Decachlorobiphenyl		80.6	%					

1 INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: G32-MW306BR-121817

Matrix: WATER TK1925 SDG Name:

Percent Solids: 0.00 Lab Sample ID: TK1925-001

 $\textbf{Concentration Units:} \ ug/L$

							ADJUSTED			
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD	
7440-38-2	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0	
7440-43-9	CADMIUM, TOTAL	0.20	U		MS	5	1.0	0.029	0.20	
7439-92-1	LEAD, TOTAL	0.61	J		MS	5	1.0	0.075	0.50	
7439-96-5	MANGANESE, TOTAL	140			MS	5	2.0	0.35	1.0	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: G32-MW306BR-121817

Matrix: WATER SDG Name: TK1925

Percent Solids: 0.00 Lab Sample ID: TK1925-002

 $\textbf{Concentration Units:} \ ug/L$

							ADJUSTED			
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD	
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0	
7440-43-9	CADMIUM, DISSOLVED	0.20	U		MS	5	1.0	0.029	0.20	
7439-92-1	LEAD, DISSOLVED	0.12	J		MS	5	1.0	0.075	0.50	
7439-96-5	MANGANESE, DISSOLVED	37.8			MS	5	2.0	0.35	1.0	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: DUP-121817

Matrix: WATER SDG Name: TK1925

Percent Solids: 0.00 Lab Sample ID: TK1925-003

 $\textbf{Concentration Units:} \ ug/L$

							ADJUSTED			
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD	
7440-38-2	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0	
7440-43-9	CADMIUM, TOTAL	0.20	U		MS	5	1.0	0.029	0.20	
7439-92-1	LEAD, TOTAL	0.50	U		MS	5	1.0	0.075	0.50	
7439-96-5	MANGANESE, TOTAL	235			MS	5	2.0	0.35	1.0	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: DUP-121817

Matrix: WATER SDG Name: TK1925

Percent Solids: 0.00 Lab Sample ID: TK1925-004

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
7440-43-9	CADMIUM, DISSOLVED	0.20	U		MS	5	1.0	0.029	0.20
7439-92-1	LEAD, DISSOLVED	0.50	U		MS	5	1.0	0.075	0.50
7439-96-5	MANGANESE, DISSOLVED	235			MS	5	2.0	0.35	1.0

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: GI-MW400-121817

Matrix: WATER SDG Name: TK1925

Percent Solids: 0.00 Lab Sample ID: TK1925-006

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7440-38-2	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0
7440-43-9	CADMIUM, TOTAL	0.20	U		MS	5	1.0	0.029	0.20
7439-92-1	LEAD, TOTAL	0.089	J		MS	5	1.0	0.075	0.50
7439-96-5	MANGANESE, TOTAL	229			MS	5	2.0	0.35	1.0

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: GI-MW400-121817

Matrix: WATER SDG Name: TK1925

Percent Solids: 0.00 Lab Sample ID: TK1925-007

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
7440-43-9	CADMIUM, DISSOLVED	0.031	J		MS	5	1.0	0.029	0.20
7439-92-1	LEAD, DISSOLVED	0.50	U		MS	5	1.0	0.075	0.50
7439-96-5	MANGANESE, DISSOLVED	235			MS	5	2.0	0.35	1.0

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: G44S-MW202RR-121817

Matrix: WATER SDG Name: TK1925

Percent Solids: 0.00 Lab Sample ID: TK1925-008

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7440-38-2	ARSENIC, TOTAL	4.9	J		MS	5	5.0	2.3	4.0
7440-43-9	CADMIUM, TOTAL	0.20	U		MS	5	1.0	0.029	0.20
7439-92-1	LEAD, TOTAL	1.53			MS	5	1.0	0.075	0.50
7439-96-5	MANGANESE, TOTAL	2910			MS	5	2.0	0.35	1.0

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: G44S-MW202RR-121817

Matrix: WATER SDG Name: TK1925

Percent Solids: 0.00 Lab Sample ID: TK1925-009

 $\textbf{Concentration Units:} \ ug/L$

							AI	DJUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7440-38-2	ARSENIC, DISSOLVED	6.6			MS	5	5.0	2.3	4.0
7440-43-9	CADMIUM, DISSOLVED	0.20	U		MS	5	1.0	0.029	0.20
7439-92-1	LEAD, DISSOLVED	0.50	U		MS	5	1.0	0.075	0.50
7439-96-5	MANGANESE, DISSOLVED	2960			MS	5	2.0	0.35	1.0

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: G32-MW304SR-121817

Matrix: WATER SDG Name: TK1925

Percent Solids: 0.00 Lab Sample ID: TK1925-010

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7440-38-2	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0
7440-43-9	CADMIUM, TOTAL	0.079	J		MS	5	1.0	0.029	0.20
7439-92-1	LEAD, TOTAL	0.084	J		MS	5	1.0	0.075	0.50
7439-96-5	MANGANESE, TOTAL	1950			MS	5	2.0	0.35	1.0

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: G32-MW304SR-121817

Matrix: WATER SDG Name: TK1925

Percent Solids: 0.00 Lab Sample ID: TK1925-011

 $\textbf{Concentration Units:} \ ug/L$

							AΓ	JUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7440-38-2	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
7440-43-9	CADMIUM, DISSOLVED	0.053	J		MS	5	1.0	0.029	0.20
7439-92-1	LEAD, DISSOLVED	0.28	J		MS	5	1.0	0.075	0.50
7439-96-5	MANGANESE, DISSOLVED	1720			MS	5	2.0	0.35	1.0

Client: Michael Horton

Tetra Tech Inc. 5 Industrial Way Salem, NH 03079 Lab Sample ID: TK1925-1

Report Date: 29-DEC-17

Client PO: PO:1132379, PN:112G0 Project: NAVSTA Newport, Goul

SDG: TK1925

Sample Description

G32-MW306BR-121817

Matrix

Date Sampled

Date Received

AQ 18-DEC-17 10:50:00 19-DEC-17

Parameter	Result	Adj LOQ	Adj MDL	Adj LOD	Anal. Method	QC.Batch	Anal. Date	Prep. Method	Prep. Date	Footnotes
Alkalinity	75. mg/L	5.0	0.23	4.0	STDM 2320B	WG220969	28-DEC-17 16:08:30	N/A	N/A	
Chloride	190 mg/L	40.	2.0	20.	EPA 300.0	WG220806	19-DEC-17 21:49:00	E300.0	N/A	
Nitrate as N	J0.042 mg/L	0.050	.0174	0.025	EPA 300.0	WG220806	19-DEC-17 16:56:00	E300.0	N/A	
Sulfate	16 mg/L	1.0	0.064	0.50	EPA 300.0	WG220806	19-DEC-17 16:56:00	E300.0	N/A	

Client: Michael Horton

Tetra Tech Inc. 5 Industrial Way Salem, NH 03079 Lab Sample ID: TK1925-3

Report Date: 29-DEC-17

Client PO: PO:1132379, PN:112G0 Project: NAVSTA Newport, Goul

SDG: TK1925

Sample Description

DUP-121817

Date Sampled **Matrix**

Date Received

AQ 18-DEC-17 00:00:00

19-DEC-17

Parameter	Result	Adj LOQ	Adj MDL	Adj LOD	Anal. Method	QC.Batch	Anal. Date	Prep. Method	Prep. Date	Footnotes
Alkalinity	360 mg/L	5.0	0.23	4.0	STDM 2320B	WG220969	28-DEC-17 16:11:17	N/A	N/A	
Chloride	19 mg/L	4.0	0.20	2.0	EPA 300.0	WG220806	19-DEC-17 22:05:00	E300.0	N/A	
Nitrate as N	9.9 mg/L	0.25	0.087	0.12	EPA 300.0	WG220806	19-DEC-17 22:21:00	E300.0	N/A	
Sulfate	28 mg/L	2.0	0.13	1.0	EPA 300.0	WG220806	19-DEC-17 22:05:00	E300.0	N/A	

Client: Michael Horton

Tetra Tech Inc. 5 Industrial Way

Salem, NH 03079

Lab Sample ID: TK1925-6

Report Date: 29-DEC-17

Client PO: PO:1132379, PN:112G0 Project: NAVSTA Newport, Goul

SDG: TK1925

Sample Description

GI-MW400-121817

Matrix

Date Sampled

Date Received

AQ

18-DEC-17 10:30:00

19-DEC-17

Parameter	Result	Adj LOQ	Adj MDL	Adj LOD	Anal. Method	QC.Batch	Anal. Date	Prep. Method	Prep. Date	Footnotes
Alkalinity	350 mg/L	5.0	0.23	4.0	STDM 2320B	WG220969	28-DEC-17 16:16:15	N/A	N/A	
Chloride	19 mg/L	4.0	0.20	2.0	EPA 300.0	WG220806	19-DEC-17 22:37:00	E300.0	N/A	
Nitrate as N	9.7 mg/L	0.25	0.087	0.12	EPA 300.0	WG220806	19-DEC-17 22:52:00	E300.0	N/A	
Sulfate	28 mg/L	2.0	0.13	1.0	EPA 300.0	WG220806	19-DEC-17 22:37:00	E300.0	N/A	

Client: Michael Horton

Tetra Tech Inc. 5 Industrial Way

Salem, NH 03079

Lab Sample ID: TK1925-8

Report Date: 29-DEC-17

Client PO: PO:1132379, PN:112G0 Project: NAVSTA Newport, Goul

SDG: TK1925

Sample Description

G44S-MW202RR-121817

Date Sampled Matrix

Date Received

AQ 18-DEC-17 14:20:00 19-DEC-17

Parameter	Result	Adj LOQ	Adj MDL	Adj LOD	Anal. Method	QC.Batch	Anal. Date	Prep. Method	Prep. Date	Footnotes
Alkalinity	94. mg/L	5.0	0.23	4.0	STDM 2320B	WG220969	28-DEC-17 16:21:07	N/A	N/A	
Chloride	11000 mg/L	4000	200	2000	EPA 300.0	WG220806	19-DEC-17 23:24:00	E300.0	N/A	
Nitrate as N	U0.025 mg/L	0.050	.0174	0.025	EPA 300.0	WG220806	19-DEC-17 17:43:00	E300.0	N/A	
Sulfate	1600 mg/L	100	6.4	50.	EPA 300.0	WG220806	19-DEC-17 23:08:00	E300.0	N/A	

Report of Analytical Results

Client: Michael Horton

Tetra Tech Inc. 5 Industrial Way

Salem, NH 03079

Lab Sample ID: TK1925-10

Report Date: 29-DEC-17

Client PO: PO:1132379, PN:112G0 Project: NAVSTA Newport, Goul

SDG: TK1925

Sample Description

G32-MW304SR-121817

Matrix

Date Sampled

Date Received

AQ 18-DEC-17 12:50:00 19-DEC-17

Parameter	Result	Adj LOQ	Adj MDL	Adj LOD	Anal. Method	QC.Batch	Anal. Date	Prep. Method	Prep. Date	Footnotes
Alkalinity	160 mg/L	5.0	0.23	4.0	STDM 2320B	WG220969	28-DEC-17 16:29:26	N/A	N/A	PACE STORES AND REPORTED AND AND AND AND AND AND AND AND AND AN
Chloride	58 mg/L	20.	0.99	10.	EPA 300.0	WG220806	19-DEC-17 23:55:00	E300.0	N/A	
Nitrate as N	1.3 mg/L	0.050	.0174	0.025	EPA 300.0	WG220806	19-DEC-17 17:59:00	E300.0	N/A	
Sulfate	26 mg/L	2.0	0.13	1.0	EPA 300.0	WG220806	19-DEC-17 23:39:00	E300.0	N/A	

Client: Katahdin Analytical Services

Description: G32-MW306BR-121817

Date Sampled:12/18/2017 1050

Laboratory ID: SL22036-001

Matrix: Aqueous

Date Received: 12/22/2017

537 MOD

Run Prep Method

Analytical Method Dilution Analysis Date Analyst 537.1 Modified-ID

12/28/2017 2329 SES

Prep Date Batch 12/28/2017 0930 60687

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.7	U	3.4	1.7	0.85	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.7	U	3.4	1.7	0.85	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	1.0	J	1.7	0.85	0.43	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.7	U	3.4	1.7	0.85	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1

			Run 1	Acceptance	
	Surrogate	Q	% Recovery	•	
-	13C2_PFDoA		91	50-150	
	13C2_PFTeDA		73	50-150	
	13C3_PFBS		99	50-150	
	13C3_PFHxS		99	50-150	
	13C4_PFHpA		96	50-150	
	13C5_PFHxA		99	50-150	
	13C6_PFDA		97	50-150	
	13C7_PFUdA		94	50-150	
	13C8_PFOA		95	50-150	
	13C8_PFOS		94	50-150	
	13C9_PFNA		96	50-150	
	d5-EtFOSAA		93	50-150	
	d3-MeFOSAA		94	50-150	

LOQ = Limit of Quantitation U = Not detected at or above the LOQ H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range $P = The \ RPD$ between two GC columns exceeds 40% LOD = Limit of Detection

DL = Detection Limit $J = Estimated result < LOQ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Shealy Environmental Services, Inc.

Client: Katahdin Analytical Services

Laboratory ID: SL22036-002

Description: DUP-121817

537 MOD

Matrix: Aqueous

Date Sampled:12/18/2017
Date Received:12/22/2017

Run Prep Method

 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 537.1 Modified-ID
 1
 12/28/2017 2343
 SES
 12/28/2017 0930
 60687

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.9	U	3.7	1.9	0.93	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.9	U	3.7	1.9	0.93	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	1.2	J	1.9	0.95	0.47	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	2.4		1.9	0.95	0.47	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537.1 Mod. ID	3.3		1.9	0.95	0.47	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	2.2		1.9	0.95	0.47	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	0.80	J	1.9	0.95	0.47	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	14		1.9	0.95	0.47	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.9	U	3.7	1.9	0.93	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	2.1		1.9	0.95	0.47	ng/L	1

			 	0.55	
Surrogate	Run 1 / Q % Recovery	Acceptance Limits			
13C2_PFDoA	94	50-150			
13C2_PFTeDA	94	50-150			
13C3_PFBS	101	50-150			
13C3_PFHxS	96	50-150			
13C4_PFHpA	99	50-150			
13C5_PFHxA	101	50-150			
13C6_PFDA	101	50-150			
13C7_PFUdA	96	50-150			
13C8_PFOA	100	50-150			
13C8_PFOS	98	50-150			
13C9_PFNA	97	50-150			
d5-EtFOSAA	98	50-150			
d3-MeFOSAA	95	50-150			

LOQ = Limit of Quantitation
U = Not detected at or above the LOQ
H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds } 40\% \\ \mbox{LOD} = \mbox{Limit of Detection}$

 $\begin{aligned} &DL = Detection \ Limit \\ &J = Estimated \ result < LOQ \ and \ge DL \end{aligned}$

Q = Surrogate failure
L = LCS/LCSD failure
S = MS/MSD failure

Shealy Environmental Services, Inc.

Client: Katahdin Analytical Services

Laboratory ID: SL22036-003

Description: FRB-121817

537 MOD

Matrix: Aqueous

Date Sampled:12/18/2017
Date Received: 12/22/2017

Run Prep Method

 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 537.1 Modified-ID
 1
 12/28/2017 2357
 SES
 12/28/2017 0930
 60687

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.8	U	3.5	1.8	0.87	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.8	U	3.5	1.8	0.87	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	1.1	J	1.7	0.85	0.44	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	0.59	J	1.7	0.85	0.44	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.8	U	3.5	1.8	0.87	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	5.6		1.7	0.85	0.44	ng/L	1

			***	 0.00	****	
Surrogate	Run 1 Q % Recovery	Acceptance y Limits				
13C2_PFDoA	90	50-150				
13C2_PFTeDA	84	50-150				
13C3_PFBS	98	50-150				
13C3_PFHxS	95	50-150				
13C4_PFHpA	97	50-150				
13C5_PFHxA	101	50-150				
13C6_PFDA	97	50-150				
13C7_PFUdA	96	50-150				
13C8_PFOA	98	50-150				
13C8_PFOS	99	50-150				
13C9_PFNA	98	50-150				
d5-EtFOSAA	97	50-150				
d3-MeFOSAA	96	50-150				

LOQ = Limit of Quantitation
U = Not detected at or above the LOQ
H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds } 40\% \\ \mbox{LOD} = \mbox{Limit of Detection}$

 $\begin{aligned} &DL = Detection \ Limit \\ &J = Estimated \ result < LOQ \ and \ge DL \end{aligned}$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Shealy Environmental Services, Inc.

Client: Katahdin Analytical Services

Description: **GI-MW400-121817**Date Sampled:**12/18/2017 1030**

Date Received: 12/22/2017

Laboratory ID: SL22036-004

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 537 MOD
 537.1 Modified-ID
 1
 12/29/2017 0010
 SES
 12/28/2017 0930
 60687

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.9	U	3.7	1.9	0.93	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.9	U	3.7	1.9	0.93	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	1.1	J	1.9	0.95	0.47	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	2.1		1.9	0.95	0.47	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537.1 Mod. ID	3.7		1.9	0.95	0.47	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	2.4		1.9	0.95	0.47	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	0.76	J	1.9	0.95	0.47	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	14		1.9	0.95	0.47	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.9	U	3.7	1.9	0.93	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	2.2		1.9	0.95	0.47	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance Limits
13C2_PFDoA	94	50-150
13C2_PFTeDA	92	50-150
13C3_PFBS	103	50-150
13C3_PFHxS	100	50-150
13C4_PFHpA	101	50-150
13C5_PFHxA	101	50-150
13C6_PFDA	98	50-150
13C7_PFUdA	96	50-150
13C8_PFOA	100	50-150
13C8_PFOS	95	50-150
13C9_PFNA	101	50-150
d5-EtFOSAA	101	50-150
d3-MeFOSAA	98	50-150

LOQ = Limit of Quantitation
U = Not detected at or above the LOQ
H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds } 40\% \\ \mbox{LOD} = \mbox{Limit of Detection}$

 $\begin{aligned} &DL = Detection \ Limit \\ &J = Estimated \ result < LOQ \ and \ge DL \end{aligned}$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Shealy Environmental Services, Inc.

Client: Katahdin Analytical Services

Description: G44S-MW202RR-121817

Laboratory ID: SL22036-005

Matrix: Aqueous

Date Sampled:12/18/2017 1420 Date Received: 12/22/2017

537 MOD

Run Prep Method

Analytical Method Dilution 537.1 Modified-ID

Analysis Date Analyst 12/29/2017 0023 SES

Prep Date Batch

12/28/2017 0930 60687

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units R	lun
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.8	U	3.5	1.8	0.89	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.8	U	3.5	1.8	0.89	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	1.0	J	1.8	0.90	0.44	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	0.92	J	1.8	0.90	0.44	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537.1 Mod. ID	1.3	J	1.8	0.90	0.44	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.90	U	1.8	0.90	0.44	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537.1 Mod. ID	2.1		1.8	0.90	0.44	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	2.4		1.8	0.90	0.44	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	1.8		1.8	0.90	0.44	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	14		1.8	0.90	0.44	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.8	U	3.5	1.8	0.89	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.90	U	1.8	0.90	0.44	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.90	U	1.8	0.90	0.44	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	11		1.8	0.90	0.44	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance y Limits
13C2_PFDoA	87	50-150
13C2_PFTeDA	87	50-150
13C3_PFBS	94	50-150
13C3_PFHxS	92	50-150
13C4_PFHpA	95	50-150
13C5_PFHxA	96	50-150
13C6_PFDA	90	50-150
13C7_PFUdA	91	50-150
13C8_PFOA	93	50-150
13C8_PFOS	93	50-150
13C9_PFNA	92	50-150
d5-EtFOSAA	90	50-150
d3-MeFOSAA	83	50-150

LOQ = Limit of Quantitation U = Not detected at or above the LOQ H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range $P = The \ RPD$ between two GC columns exceeds 40% LOD = Limit of Detection

DL = Detection Limit $J = Estimated result < LOQ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Shealy Environmental Services, Inc.

Client: Katahdin Analytical Services

Description: G32-MW304SR-121817

Date Sampled:12/18/2017 1250

Laboratory ID: SL22036-006

Matrix: Aqueous

Date Received: 12/22/2017

Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date Batch** 537 MOD 537.1 Modified-ID 12/29/2017 0050 SES 12/28/2017 0930 60687

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.8	U	3.6	1.8	0.91	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.8	U	3.6	1.8	0.91	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	1.1	J	1.8	0.90	0.46	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	1.3	J	1.8	0.90	0.46	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537.1 Mod. ID	0.90	U	1.8	0.90	0.46	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.90	U	1.8	0.90	0.46	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537.1 Mod. ID	4.7		1.8	0.90	0.46	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	3.6		1.8	0.90	0.46	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	2.7		1.8	0.90	0.46	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	15		1.8	0.90	0.46	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.8	U	3.6	1.8	0.91	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.90	U	1.8	0.90	0.46	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.90	U	1.8	0.90	0.46	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	5.5		1.8	0.90	0.46	ng/L	1

			0.00	
Surrogate	Run 1 Q % Recovery	Acceptance Limits		
13C2_PFDoA	81	50-150		
13C2_PFTeDA	82	50-150		
13C3_PFBS	86	50-150		
13C3_PFHxS	86	50-150		
13C4_PFHpA	90	50-150		
13C5_PFHxA	85	50-150		
13C6_PFDA	87	50-150		
13C7_PFUdA	89	50-150		
13C8_PFOA	94	50-150		
13C8_PFOS	89	50-150		
13C9_PFNA	93	50-150		
d5-EtFOSAA	87	50-150		
d3-MeFOSAA	89	50-150		

LOQ = Limit of Quantitation U = Not detected at or above the LOQ H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P =The RPD between two GC columns exceeds 40% LOD = Limit of Detection

DL = Detection Limit $J = Estimated result < LOQ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Shealy Environmental Services, Inc.

Appendix C

Support Documentation

	ORIGINAL	DUPLICATE						
	MW-400	DUP-121817				ORIGINAL SAMPLE	DUPLICATE SAMPLE	
ANALYTE	TOTAL	TOTAL	RL	RPD	RPD > 30%	CONC >5xRL	CONC >5xRL	DIFFERENCE >2XRL
LEAD	0.089	0.5	1	139.5585739	TRUE	FALSE	FALSE	FALSE
MANGANESE	229	235	2	2.586206897	FALSE	TRUE	TRUE	TRUE

	ORIGINAL	DUPLICATE						
	MW-400	DUP-121817				ORIGINAL SAMPLE	DUPLICATE SAMPLE	
ANALYTE	FILTERED	FILTERED	RL	RPD	RPD > 30%	CONC >5xRL	CONC >5xRL	DIFFERENCE >2XRL
CADMIUM	0.031	L 0.5	1	176.6478343	TRUE	FALSE	FALSE	FALSE
MANGANESE	235	235	2	0	FALSE	TRUE	TRUE	FALSE

ANALYTE	ORIGINAL MW-400	DUPLICATE DUP-121817	RL	RPD	RPD > 30%	ORIGINAL SAMPLE CONC >5xRL	DUPLICATE SAMPLE CONC >5xRL	DIFFERENCE >2XRL
ALKALINITY	35	0 360	5	2.816901408	FALSE	TRUE	TRUE	FALSE
CHLORIDE	1	9 19	4	0	FALSE	FALSE	FALSE	FALSE
NITRATE-N	9.	7 9.9	0.25	2.040816327	FALSE	TRUE	TRUE	FALSE
SULFATE	2	8 28	2	0	FALSE	TRUE	TRUE	FALSE

							ORIGINAL		
	ORIGINAL GI-	DUPLICATE DUP-					SAMPLE CONC	DUPLICATE SAMPLE	
ANALYTE	MW400-121817	121817		RL	RPD	RPD > 50%	>2xRL	CONC >2xRL	DIFFERENCE >2XRL
Perfluoro-n-octanoic acid (PFOA)	1	4	14	1.9	0.000	FALSE	TRUE	TRUE	FALSE
Perfluoro-1-butanesulfonate (PFBS)	1.	1	1.2	1.9	8.696	FALSE	FALSE	FALSE	FALSE
Perfluoro-n-heptanoic acid (PFHpA)	3.	7	3.3	1.9	11.429	FALSE	FALSE	FALSE	FALSE
Perfluorohexanesulfonate (PFHxS)	2.	1	2.4	1.9	13.333	FALSE	FALSE	FALSE	FALSE
Perfluoro-n-hexanoic acid (PFHxA)	2.	4	2.2	1.9	8.696	FALSE	FALSE	FALSE	FALSE
Perfluoro-n-nonanoic acid (PFNA)	0.7	6	0.8	1.9	5.128	FALSE	FALSE	FALSE	FALSE
Perfluorooctanesulfonate (PFOS)	2.	2	2.1	1.9	4.651	FALSE	FALSE	FALSE	FALSE

Spectrum And TK 19 Report To: Mike Horran	alytical 125		OF CU	of	_		RECC	PD	Project N		Rush T All TA Min. 2 Sample	TAT - Dat TS subject 4-hr notifices disposed	to laboratory approval cation needed for rushes lafter 30 days unless otherwise instructed.
TETUTECH SAIRM, NH Telephone #: 603-328-1467 Project Mgr: M:Ke Harron		P.O No.:	5 ALDM,	NH	Quote #:				Site Nan Location Sampler(ne:	600	NOI	Sland Site 17 Dland State: RI Erisen, Mike Horron
F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	4=HNO ₃ 5=NaOH 11=_6 ^{6 6}	H 6=Ascorbic	Acid		_		11	Lis	t Preservativ	e Code b	elow:		QA/QC Reporting Notes: * additional charges may appply
DUP-121817 FRB-121817	C=Compsite Date: Tin 12/18 105 12/18 000 12/18 000 12/18 103	me: VI 6		SS	# of Clear Glass	ers & A A A A A A A A A A A A A A A A A A	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Anais	Sis		Check if chlorinated	MA DEP MCP CAM Report?
Relinquished by:	Received by:		Date			Time:	Tem	200					
	nat Linds		12/1	19	13	:30 45	Observed Corection		□ EDD form □ E-mail to				
Jana 4 Somhi S	Aga		12-19			18	Corrected (ondition upon				☐ Present ☐ Intact ☐ Broken ☐ DI VOA Frozen ☐ Soil Jar Frozen

								•							Spe	ecial Handling:	
	~ EV . EDI	○ ■	~T	T A'N PER	· 🗥 T	. * * * * *	. 57	~~	. E . E	•				Standard	TAT	- 7 to 10 business days	
💸 eurofins	CHAIN	OF.	CU	51	O L)Y t	K L	CU	KI)				Rush TA	T - Da	ate Needed:	
Spectrum Analytical		Page			2	<u>.</u>								Min. 24-	hr noti	ct to laboratory approval ification needed for rushes ed after 30 days unless otherwise instruct	ed.
REPORT TO: MIKE MONTON	Invoice To:	9:	An	ረ							Project					105-wc22	
TCTM TCCH SAlem, NH											Site Na	me:		c	7 7	te17	
<u> </u>						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Locatio					ISIAND State: R	_
Telephone #: 603-328-1467 Project Mgr: **Telephone #: 603-328-1467	P.O No.:			. Q	Quote #:						Sample		Dа	n, m	ike	2	
F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃	5=NaOH 6=Ascor	rbic Acid	d						Li	st Pres	ervativ	∕e Cod	le belov	v:		QA/QC Reporting Notes:	
7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11	= 6° (12=	<u></u>			-			ત		_	=1	T	3 -		-	* additional charges may appp	
DW=Drinking Water GW=Groundwater SW=Surface Water V	W=Waste Water			C	ontain	ers		161		-	Anal	SUDUSANA CE				MA DEP MCP CAM Report? Yes	∏ No
O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air SG=S			Name of the last o							MARION III.		-		***************************************		CT DPH RCP Report? Yes	□ No
X1= X2= X3			S.	Glass	ss				Ŧ		₹	STA.	15			□ □ □ □ QA*	
		ا ر	A Via	ber G	ar Gla	tic		3	5	5	N/A	11 19/1	ietA15			S ASP A* ASP B* S NJ Reduced* NJ Full*	
G= Grab C=Compsi	Ž — — —	Matrix	# of VOA Vials	of Amber	# of Clear Glass	# of Plastic		70cs	SVarpa	PCB	Anion/All	TOTAL META	3.5			☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	
Lab ID: Sample ID: Date:	3,1116.			#							<u> </u>	+	6		į.	State-specific reporting standards:	
GI-muy00-121817 12/18	1030	bw	3	4	·	#3		3	2	<u>ス</u>		•			<u></u>		
6-32-mw306BR-121817 12118	1050	6u hv	3	4		#3			2			*			L.		
G32-mw3045R-121917 12/18	1220	64	3	4	*	#3 102			2	2	1		ı		L		
6445-MW202RR-W8112/18	1420	62	3	4	-	103			2	2	1	,	,			7	
DUP-121817 12/18	0000	10.50	3	4		197 >		5	2	ス		· ·	l .			<u>-</u>	
		-															
															- -	7	
		+															***************************************
		+									\dashv					7	
Relinquished by: Receive			Date:			Time:		Temp	oC.		EDD 6			<u> </u>			
								Observed			EDD for E-mail t						
Daniel brian goorier	1	11/	2/10	{	1.	30		Correcction F	actor	<u></u>	E-IIIdII v	٠.					
land x	meh	1L	190	/7	1	345	_										
Daniel Sondi Soc		11.	19	/>	1	558		Corrected		Condit	on upo	n rece	ipt: (Sustady S	eals:	Present Intact Brok	cen
power prime				,				RID#	\exists	□ A	nbient	∐ lo	ed (Refrige	rated	DI VOA Frozen Soil Jar I	irozen

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS, INC. NAVSTA NEWPORT, GOULD ISLAND CTO-WE22 TK1925

Sample Receipt

The following samples were received on December 19, 2017 and were logged in under Katahdin Analytical Services work order number TK1925 for a hardcopy due date of December 31, 2017.

KATAHDIN	TTNUS
Sample No.	Sample Identification
TK1925-1	G32-MW306BR-121817
TK1925-2	G32-MW306BR-121817
TK1925-3	DUP-121817
TK1925-4	DUP-121817
TK1925-5	FRB-121817
TK1925-6	GI-MW400-121817
TK1925-7	GI-MW400-121817
TK1925-8	G44S-MW202RR-121817
TK1925-9	G44S-MW202RR-121817
TK1925-10	G32-MW304SR-121817
TK1925-11	G32-MW304SR-121817

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in this narrative or in the Report of Analysis.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, **Ms. Heather Manz**. This narrative is an integral part of the Report of Analysis.

Organics Analysis

The samples of work order TK1925 were analyzed in accordance with "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846, 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA, and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA, and/or for the specific methods listed below or on the Report of Analysis.

8260C Analysis

There were no protocol deviations or observations noted by the organics laboratory staff for this analysis.

8082A Analysis

The calibration verification standard (CV) (file 8KL00558) had a high response for Aroclor 1260 on channel B. The CV (file 8KL00571) had high responses for the surrogate DCB as well as the Aroclor 1016 and Aroclor 1260 on channel B. These responses resulted in %D's that were greater than the DoD QSM acceptance limit of 20%. Since a high response would indicate a high bias and there were no target analytes were detected above the MDL in the associated samples, no further action was taken.

8270D SIM Analysis

The independent check standard (file U0128) associated with the initial calibration on the U instrument on 12/26/2017 had a low concentration for the target analyte indeno(1,2,3-cd)pyrene, which exceeded the DoD QSM acceptance limit of $\pm 20\%$ of the expected value from the ICAL. The Independent Check Report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated.

Note: The Form VII has a column for %D that is set to 20%. The DoD QSM 5.0 criterion for an opening CV is 20%D and a closing CV is 50%D. All of the compounds in the CV's were evaluated to either 20% criteria for opening CVs or 50% criteria for closing CVs.

The target analyte benzo(a)anthracene was detected below ½ of the LOQ in the method blank WG220582-1. According to the DoD QSM section D.1.1.1, a method blank is considered to be contaminated if the concentration of any target analyte in the blank exceeds ½ the reporting limit and is greater than 1/10 the amount measured in any sample or 1/10 the regulatory limit (whichever is greater). Since the method blank was acceptable, no further action was taken

There were no other protocol deviations or observations noted by the organics laboratory staff.

Metals Analysis

The samples of Katahdin Work Order TK1925 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods" SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA, and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

<u>Inductively-Coupled Plasma Mass Spectrometric Analysis (ICP-MS)</u>

Aqueous-matrix Katahdin Sample Numbers TK1925-(1-4, 6-11) were digested for ICP-MS analysis on 12/20/17 (QC Batch KL20IMW1) in accordance with USEPA Method 3010A.

ICP-MS analyses of Katahdin Work Order TK1925 sample digestates were performed using an Agilent 7500 ICP-MS spectrometer in accordance with USEPA Method 6020A. Results for all standards and samples are reported using the mean of 3 replicate measurements. All sample digestates were diluted by a factor of 5 during analysis to reduce mass interferences from chlorine, which is present in the digestates from the hydrochloric acid used in digesting the samples. All samples were analyzed within holding times and all-analytical run QC criteria were met.

Internal standard recoveries for ICP-MS analyses can be found in the raw data section of the accompanying data package. The following table indicates which analytes are associated with each internal standard element.

Internal Standard Element	Associated Analytes
Lithium	Beryllium, Boron
Scandium	Sodium, Magnesium, Aluminum, Potassium, Calcium
Germanium	Vanadium, Chromium, Manganese, Iron, Cobalt,
or	Nickel, Copper, Zinc, Arsenic, Selenium,
Yttrium	Strontium, Molybdenum, Silver, Cadmium
Terbium	Tin, Antimony, Barium, Tungsten
Bismuth	Lead, Thallium, Thorium, Uranium

Instrument tuning information can also be found in the raw data section in the report labeled "6020 QC Tune Report". The relative standard deviation was determined from 4 replicate measurements. The peak width was measured at 10% of the peak height.

Reporting of Metals Results

Per client request, analytical results for client samples on Form I and preparation blanks on Form IIIP have been reported using the laboratory's limits of detection (LOD). All results were evaluated down to the laboratory's method detection limits (MDLs). Results that fall between the MDL and the LOQ are flagged with "J" in the C-qualifier column, and the measured concentration appears in the concentration column. Results that are less than the MDL are flagged with "U" in the C-qualifier column, and the LOD is listed in the concentration column. These LOQs, MDLs, and LODs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results on Forms VA, VD, VII, and IX for client samples, matrix QC samples (duplicates and matrix spikes), and laboratory control samples have been reported down to the laboratory's method detection limits (MDLs). Analytical results that are below the MDLs are flagged with "U" in the C-qualifier column, and the measured concentration is listed in the concentration column.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, LODs, MDLs, and LOQs are listed on Form 10 of the accompanying data package.

Wet Chemistry Analysis

The samples of Work Order TK1925 were analyzed in accordance with the specific methods listed on the Report of Analysis.

Analyses for chloride, nitrate, and sulfate were performed according to "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, 1979, Revised 1983, U.S. EPA.

Analyses for alkalinity were performed according to "Standard Methods for the Examination of Water and Wastewater", 15th, 16th, 17th, 18th, 19th, and 20th editions, 1980, 1985, 1989, 1992, 1995, 1999. APHA-AWWA-WPCF.

All Wet Chemistry results were evaluated to Katahdin Analytical Services' Method Detection Limits (MDL). Measured concentrations that fall between the MDL and Katahdin's Limit of Quantitation (LOQ) are flagged "J". Measured concentrations that are below the MDL are flagged "U" and reported as "U LOD", where "LOD" is the numerical value of the Limit of Detection.

All analyses were performed within analytical holding times, and all quality control criteria were met.

Subcontracted Data

Analyses for PFA's by Method 537 were performed by subcontract laboratories. Please refer to the sections of the data package titled Subcontracted Data.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Quality Assurance Officer, or their designee, as verified by the following signature.

Leslie Dimond

O1.17.18

Quality Assurance Officer

VOLATILES DATA

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: NAVSTA Newport, Gould Island CTO-WE22 Matrix: AQ

Lab Code: KAS SDG: TK1925

Client Sample ID	Lab Sample ID	Col. ID	BFB #	DBF #	DCA #	TOL #
G32-MW306BR-121817	TK1925-1		99.9	102.	108.	101.
G32-MW304SR-121817	TK1925-10		106.	103.	110.	99.2
DUP-121817	TK1925-3		99.9	100.	109.	103.
GI-MW400-121817	TK1925-6		98.7	101.	111.	101.
G44S-MW202RR-121817	TK1925-8		102.	103.	114.	103.
Laboratory Control S	WG220989-1		102.	98.6	94.0	99.7
Method Blank Sample	WG220989-2		98.8	100.	102.	101.

		QC Limits
DCA	1,2-DICHLOROETHANE-D4	81-118
TOL	TOLUENE-D8	89-112
DBF	DIBROMOFLUOROMETHANE	80-119
BFB	P-BROMOFLUOROBENZENE	85-114

^{# =} Column to be used to flag recovery limits.

^{* =} Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

Form 4 Method Blank Summary - VOA

Lab Name: Katahdin Analytical Services SDG: TK1925

Project : NAVSTA Newport, Gould Island CTO-WE2 **Lab Sample ID :** WG220989-2 **Lab File ID :** T3886.D **Date Analyzed :** 29-DEC-17

Instrument ID : GCMS-T **Time Analyzed :** 10:48

Heated Purge: No

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG220989-1	T3884.D	12/29/17	09:37
G32-MW306BR-121817	TK1925-1	T3892.D	12/29/17	14:21
DUP-121817	TK1925-3	T3893.D	12/29/17	14:56
GI-MW400-121817	TK1925-6	T3894.D	12/29/17	15:31
G44S-MW202RR-121817	TK1925-8	T3895.D	12/29/17	16:06
G32-MW304SR-121817	TK1925-10	T3896.D	12/29/17	16:41

Report of Analytical Results

Client:

Lab ID: WG220989-2

Client ID: Method Blank Sample

Project:

SDG: TK1925

Lab File ID: T3886.D

Sample Date: Received Date:

Extract Date: 29-DEC-17 Extracted By: TTC/H0

Extraction Method: SW846 5030 **Lab Prep Batch:** WG220989

Analysis Date: 29-DEC-17

Analyst: TTC/H

Analysis Method: SW846 8260C

Matrix: AQ % Solids: NA

Report Date: 25-JAN-18

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug/L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug/L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug/L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		98.8	%					
Toluene-d8		101.	%					
1,2-Dichloroethane-d4		102.	%					
Dibromofluoromethane		100.	%					

Form 8 Internal Standard Area and RT Summary

Lab Name: Katahdin Analytical Services
Project: NAVSTA Newport, Gould Island

Project :NAVSTA Newport, Gould Island
Lab ID :WG220912-4

Lab File ID :T3867.D

SDG: TK1925

Analytical Date: 12/28/17 10:48

Instrument ID: GCMS-T

		PENTAFLUOROBENZENE		1,4-DIFLUOROBENZENE		CHLOROBENZENE-D5	
		Area #	RT #_	Area #	RT #_	Area #	RT #_
	Std.	364447	6.11	618250	6.90	523953	10.91
	Upper Limit	728894	6.61	1236500	7.40	1047906	11.41
	Lower Limit	182223.5	5.61	309125	6.40	261976.5	10.41
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG220989-4	373870	6.12	631457	6.89	532563	10.91
Laboratory Control S	WG220989-1	390718	6.11	658603	6.89	556138	10.91
Method Blank Sample	WG220989-2	379019	6.11	641677	6.89	542176	10.91
G32-MW306BR-12181	TK1925-1	353830	6.12	605255	6.89	519993	10.91
DUP-121817	TK1925-3	350908	6.11	583574	6.89	498196	10.91
GI-MW400-121817	TK1925-6	340985	6.12	584582	6.89	484563	10.91
G44S-MW202RR-1218	TK1925-8	345873	6.12	579782	6.89	493920	10.91
G32-MW304SR-12181	TK1925-10	352399	6.12	600777	6.89	500940	10.91
Continuing Calibrati	WG220989-5	356485	6.11	610951	6.89	503870	10.91

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Form 8 Internal Standard Area and RT Summary

SDG: TK1925

Lab Name: Katahdin Analytical Services
Project: NAVSTA Newport, Gould Island

Lab ID :WG220912-4Analytical Date: 12/28/17 10:48Lab File ID :T3867.DInstrument ID: GCMS-T

		1,4-DICHLOROBENZENE-D			
		1,4-DICHLO	ROI	BENZE	ENE-D4
		Area	#	RT	#
	Std.	258925		13.98	
	Upper Limit	517850		14.48	
	Lower Limit	129462.5		13.48	
Client Sample ID	Lab Sample ID				
Continuing Calibrati	WG220989-4	271463		13.98	
Laboratory Control S	WG220989-1	278484		13.98	
Method Blank Sample	WG220989-2	255442		13.98	
G32-MW306BR-12181	TK1925-1	239604		13.98	
DUP-121817	TK1925-3	231858		13.98	
GI-MW400-121817	TK1925-6	226066		13.98	
G44S-MW202RR-1218	TK1925-8	242261		13.98	
G32-MW304SR-12181	TK1925-10	254013		13.98	
Continuing Calibrati	WG220989-5	261825		13.98	

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SIM SEMIVOLATILES DATA

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: NAVSTA Newport, Gould Island CTO-WE22 Matrix: AQ

Lab Code: KAS SDG: TK1925

Client Sample ID	Lab Sample ID	Col. ID	2MN #	DBP #	FLO #	PYR #
G32-MW306BR-121817	TK1925-1		77.2	26.5	82.2	109.
G32-MW304SR-121817	TK1925-10		64.3	23.9	63.8	93.8
DUP-121817	TK1925-3		65.7	24.5	69.5	99.7
GI-MW400-121817	TK1925-6		67.4	27.2	68.5	87.5
G44S-MW202RR-121817	TK1925-8		59.8	28.1	71.4	94.9
Method Blank Sample	WG220582-1		89.0	26.4	85.6	114.
Laboratory Control S	WG220582-2		63.6	26.7	66.4	77.3

		QC Limits
DBP	2,4-DIBROMOPHENOL	10-130
2MN	2-METHYLNAPHTHALENE-D10	43-92
FLO	FLUORENE-D10	29-101
PYR	PYRENE-D10	53-166

^{# =} Column to be used to flag recovery limits.

^{* =} Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

LCS Recovery Report

Client:

Lab ID: WG220582-2

Client ID: LCS

Project: SDG: TK1925

LCS File ID: U0130.D

Sample Date: Received Date:

Extract Date: 22-DEC-17

Extracted By: JMS **Extraction Method:** SW846 3510C

Lab Prep Batch: WG220582

Analysis Date: 26-DEC-17

Analyst: JCG

Analysis Method: SW846 M8270D SIM

Matrix: AQ % Solids: NA

Report Date: 02-JAN-18

Compound	Recovery (%)	Conc Added	Conc Recovere	ed Conc Units	Limits
Pentachlorophenol	74.2	4.00	2.97	ug/L	36-141
Naphthalene	59.5	2.00	1.19	ug/L	43-114
2-Methylnaphthalene	62.5	2.00	1.25	ug/L	39-114
Phenanthrene	76.5	2.00	1.53	ug/L	53-115
Fluoranthene	90.0	2.00	1.80	ug/L	58-120
Pyrene	77.5	2.00	1.55	ug/L	53-121
Benzo(a)anthracene	76.0	2.00	1.52	ug/L	59-120
Chrysene	81.0	2.00	1.62	ug/L	57-120
Benzo(b)Fluoranthene	67.0	2.00	1.34	ug/L	53-126
Benzo(k)fluoranthene	79.5	2.00	1.59	ug/L	54-125
Benzo(a)pyrene	66.5	2.00	1.33	ug/L	53-120
Indeno(1,2,3-cd)pyrene	90.0	2.00	1.80	ug/L	48-130
Dibenzo(a,h)anthracene	71.0	2.00	1.42	ug/L	44-131
Benzo(g,h,i)perylene	71.0	2.00	1.42	ug/L	44-128
2-Methylnaphthalene-D10	63.6				43-92
2,4-Dibromophenol	26.7				10-130
Fluorene-D10	66.4				29-101
Pyrene-D10	77.3				53-166

Method Blank Summary

Lab Name: Katahdin Analytical Services SDG: TK1925
Project: NAVSTA Newport, Gould Island CTO-WE2 Lab Sample ID: WG220582-1
Lab File ID: U0129.D Date Extracted: 22-DEC-17

Instrument ID : GCMS-U

Matrix : AQ

Date Analyzed : 26-DEC-17

Time Analyzed : 20:11

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG220582-2	U0130.D	12/26/17	20:42
G32-MW306BR-121817	TK1925-1	U0131.D	12/26/17	21:12
DUP-121817	TK1925-3	U0132.D	12/26/17	21:43
GI-MW400-121817	TK1925-6	U0133.D	12/26/17	22:13
G44S-MW202RR-121817	TK1925-8	U0134.D	12/26/17	22:44
G32-MW304SR-121817	TK1925-10	U0135.D	12/26/17	23:15

Report of Analytical Results

Client:

Lab ID: WG220582-1

Client ID: Method Blank Sample

Project: SDG: TK1925

Lab File ID: U0129.D

Sample Date: Received Date:

Extract Date: 22-DEC-17

Extracted By: JMS

Extraction Method: SW846 3510C

Lab Prep Batch: WG220582

Analysis Date: 26-DEC-17

Analyst: JCG

Analysis Method: SW846 M8270D SIM

Matrix: AQ % Solids: NA

Report Date: 02-JAN-18

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.50	ug/L	1	1	1.0	0.33	0.50
Naphthalene	U	0.10	ug/L	1	.2	0.20	0.064	0.10
2-Methylnaphthalene	U	0.10	ug/L	1	.2	0.20	0.077	0.10
Phenanthrene	U	0.10	ug/L	1	.2	0.20	0.051	0.10
Fluoranthene	U	0.10	ug/L	1	.2	0.20	0.073	0.10
Pyrene	U	0.10	ug/L	1	.2	0.20	0.059	0.10
Benzo(a)anthracene	\bigcup J	0.078	ug/L	\supset 1	.2	0.20	0.046	0.10
Chrysene	U	0.10	ug/L	1	.2	0.20	0.036	0.10
Benzo(b)Fluoranthene	U	0.10	ug/L	1	.2	0.20	0.089	0.10
Benzo(k)fluoranthene	U	0.10	ug/L	1	.2	0.20	0.049	0.10
Benzo(a)pyrene	U	0.10	ug/L	1	.2	0.20	0.066	0.10
Indeno(1,2,3-cd)pyrene	U	0.10	ug/L	1	.2	0.20	0.052	0.10
Dibenzo(a,h)anthracene	U	0.10	ug/L	1	.2	0.20	0.070	0.10
Benzo(g,h,i)perylene	U	0.10	ug/L	1	.2	0.20	0.065	0.10
2-Methylnaphthalene-D10		89.0	%					
2,4-Dibromophenol		26.4	%					
Fluorene-D10		85.6	%					
Pyrene-D10		114.	%					

Form 8 Internal Standard Area and RT Summary

SDG: TK1925

Lab Name : Katahdin Analytical Services **Project :** NAVSTA Newport, Gould Island

Lab ID :WG220737-4Analytical Date: 12/26/17 16:37Lab File ID :U0122.DInstrument ID: GCMS-U

		1,4-DICHLORO	BENZENE-D4	NAPHTHALENE-D8		ACENAPHTHENE-D10	
		Area #	RT #_	Area #	RT #_	Area #	RT #
	Std.	15504	6.19	52959	7.81	22914	10.13
	Upper Limit	31008	6.69	105918	8.31	45828	10.63
	Lower Limit	7752	5.69	26479.5	7.31	11457	9.63
Client Sample ID	Lab Sample ID						
Method Blank Sample	WG220582-1	20754	6.20	53855	7.81	22561	10.14
Laboratory Control S	WG220582-2	15439	6.20	53873	7.81	23064	10.13
G32-MW306BR-12181	TK1925-1	22705	6.20	61979	7.81	26640	10.14
DUP-121817	TK1925-3	21490	6.20	59332	7.81	24939	10.14
GI-MW400-121817	TK1925-6	18007	6.20	66185	7.81	27679	10.14
G44S-MW202RR-1218	TK1925-8	15586	6.20	54082	7.81	22208	10.13
G32-MW304SR-12181	TK1925-10	14739	6.20	48841	7.80	30201	10.13
Continuing Calibrati	WG220737-9	19731	6.20	51662	7.81	21599	10.14

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area RT Upper Limit = + 0.50 minutes of internal standard RT RT Lower Limit = - 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Form 8 Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services **Project :** NAVSTA Newport, Gould Island

Lab ID :WG220737-4 **Lab File ID :**U0122.D

Analytical Date: 12/26/17 16:37 **Instrument ID:** GCMS-U

SDG: TK1925

		PHENANTHRENE-D10		CHRYSENE-D12		PERYLENE-D12	
		Area #	RT #_	Area #	RT #	Area #	RT #_
	Std.	42316	12.12	31742	15.95	19345	18.99
	Upper Limit	84632	12.62	63484	16.45	38690	19.49
	Lower Limit	21158	11.62	15871	15.45	9672.5	18.49
Client Sample ID	Lab Sample ID						
Method Blank Sample	WG220582-1	33407	12.12	17590	15.96	10527	18.99
Laboratory Control S	WG220582-2	39060	12.12	24510	15.95	15937	18.99
G32-MW306BR-12181	TK1925-1	44229	12.12	22197	15.95	13522	18.99
DUP-121817	TK1925-3	42892	12.12	22421	15.95	13298	18.99
GI-MW400-121817	TK1925-6	41885	12.12	21731	15.95	13780	18.99
G44S-MW202RR-1218	TK1925-8	35439	12.12	21304	15.95	13926	18.99
G32-MW304SR-12181	TK1925-10	35776	12.12	21633	15.95	14065	18.98
Continuing Calibrati	WG220737-9	37198	12.13	19987	15.96	12308	19.01

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area RT Upper Limit = + 0.50 minutes of internal standard RT RT Lower Limit = - 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

PCB DATA

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: NAVSTA Newport, Gould Island CTO-WE22 Matrix: AQ

Lab Code: KAS SDG: TK1925

Client Sample ID	Lab Sample ID	Col. ID	DCB	#	TCX	#
G32-MW306BR-121817	TK1925-1	A	63.5		88.4	
G32-MW306BR-121817	TK1925-1	В	74.5		97.2	
G32-MW304SR-121817	TK1925-10	A	74.6		66.0	
G32-MW304SR-121817	TK1925-10	В	80.6		73.8	
DUP-121817	TK1925-3	A	95.3		93.2	
DUP-121817	TK1925-3	В	105.		98.8	
GI-MW400-121817	TK1925-6	A	85.2		75.6	
GI-MW400-121817	TK1925-6	В	91.8		83.8	
G44S-MW202RR-121817	TK1925-8	A	71.4		72.6	
G44S-MW202RR-121817	TK1925-8	В	75.9		82.4	
Method Blank Sample	WG220411-1	A	49.1		69.1	
Method Blank Sample	WG220411-1	В	70.4		74.9	
Laboratory Control S	WG220411-2	A	76.8		90.0	
Laboratory Control S	WG220411-2	В	83.2		98.7	
Laboratory Control S	WG220411-3	A	80.2		86.5	
Laboratory Control S	WG220411-3	В	86.6		92.8	

QC Limits

TCX TETRACHLORO-M-XYLENE 62-111

DCB DECACHLOROBIPHENYL 44-135

= Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

LCS Recovery Report

Client:

Lab ID: WG220411-2

Client ID: LCS

Project: SDG: TK1925

LCS File ID: 8KL00546.D

Sample Date: Analysis Date: 25-DEC-17

Received Date: Analyst: BF
Extract Date: 20-DEC-17 Analysis Method: SW846 8082A

Extracted By: KF Matrix: AQ
Extraction Method: SW846 3510C % Solids: NA

Lab Prep Batch: WG220411 **Report Date:** 29-DEC-17

Compound	Recovery (%)	Conc Added Conc Recovered Conc Units			Limits
Aroclor-1016	98.0	5.00	4.90	ug/L	46-129
Aroclor-1260	103.	5.00	5.13	ug/L	45-134
Tetrachloro-M-Xylene	98.7				62-111
Decachlorobiphenyl	83.2				44-135

LCS Recovery Report

Client:

Lab ID: WG220411-3 **Client ID:** LCS1

Project: SDG: TK1925

LCS File ID: 8KL00547.D

Sample Date: Analysis Date: 25-DEC-17

Received Date: Analyst: BF

Extract Date: 20-DEC-17 Analysis Method: SW846 8082A

Extracted By: KF **Matrix:** AQ **Extraction Method:** SW846 3510C **% Solids:** NA

Lab Prep Batch: WG220411 **Report Date:** 29-DEC-17

Compound	Recovery (%)	Conc Added	Limits		
Aroclor-1254	86.8	5.00	4.34	ug/L	34-127
Tetrachloro-M-Xylene	92.8				62-111
Decachlorobiphenyl	86.6				44-135

Form 4 Method Blank Summary

Lab Name: Katahdin Analytical Services SDG: TK1925

Project : NAVSTA Newport, Gould Island CTO-WE2 **Lab Sample ID :** WG220411-1 **Lab File ID :** 8KL00545.D **Date Extracted :** 20-DEC-17

Matrix : AQ Extraction Method : SW846 3510C

Column AColumn BInstrument ID : GC08Instrument ID : GC08Date Analyzed : 25-DEC-17Date Analyzed : 25-DEC-17Time Analyzed : 04:26Time Analyzed : 04:26

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG220411-2	8KL00546.	12/25/17	04:46
Laboratory Control S	WG220411-3	8KL00547.	12/25/17	05:07
G32-MW306BR-121817	TK1925-1	8KL00566.	12/25/17	11:30
DUP-121817	TK1925-3	8KL00567.	12/25/17	11:50
GI-MW400-121817	TK1925-6	8KL00568.	12/25/17	12:10
G44S-MW202RR-121817	TK1925-8	8KL00569.	12/25/17	12:31
G32_MW304SR_121817	TK1925-10	8KI 00570	12/25/17	12.51

Report of Analytical Results

Client:

Lab ID: WG220411-1

Client ID: Method Blank Sample

Project:

SDG: TK1925

Lab File ID: 8KL00545.D

Sample Date: Received Date:

Extract Date: 20-DEC-17

Extracted By:KF

Extraction Method: SW846 3510C

Lab Prep Batch: WG220411

Analysis Date: 25-DEC-17

Analyst: BF

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

Report Date: 29-DEC-17

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.25	ug/L	1	.5	0.50	0.15	0.25
Aroclor-1221	U	0.25	ug/L	1	.5	0.50	0.20	0.25
Aroclor-1232	U	0.25	ug/L	1	.5	0.50	0.089	0.25
Aroclor-1242	U	0.25	ug/L	1	.5	0.50	0.18	0.25
Aroclor-1248	U	0.25	ug/L	1	.5	0.50	0.20	0.25
Aroclor-1254	U	0.25	ug/L	1	.5	0.50	0.082	0.25
Aroclor-1260	U	0.25	ug/L	1	.5	0.50	0.17	0.25
Aroclor-1262	U	0.25	ug/L	1	.5	0.50	0.066	0.25
Aroclor-1268	U	0.25	ug/L	1	.5	0.50	0.072	0.25
Total PCBs	U	2.2	ug/L	1	4.5	4.5	0.066	2.2
Tetrachloro-M-Xylene		74.9	%					
Decachlorobiphenyl		70.4	%					

Form 8 GC Analytical Sequence

Lab Name : Katahdin Analytical ServicesSDG : TK1925Project : NAVSTA Newport, Gould Island CTO-WE2Column ID : A

Instrument ID: GC08

		Date	Time			
Client Sample ID	Lab Sample ID	Analyzed	Analyzed	TCX	DCB	
Initial Calibration	WG217283-1	11/07/17	23:50	3.416	10.97	
Initial Calibration	WG217283-2	11/08/17	00:10	3.42	10.98	
Initial Calibration	WG217283-3	11/08/17	00:30	3.418	10.97	
Initial Calibration	WG217283-4	11/08/17	00:51	3.421	10.97	
Initial Calibration	WG217283-5	11/08/17	01:11	3.418	10.97	
Initial Calibration	WG217283-6	11/08/17	01:31	3.419	10.97	
Independent Source	WG217283-7	11/08/17	01:52			
Independent Source	WG217283-8	11/08/17	02:12			
Initial Calibration	WG217283-9	11/08/17	02:32	•		
Initial Calibration	WG217283-10	11/08/17	02:52			
Initial Calibration	WG217283-11	11/08/17	03:13			
Initial Calibration	WG217283-12	11/08/17	03:33			
Initial Calibration	WG217283-13	11/08/17	03:53			
Initial Calibration	WG217283-14	11/08/17	04:14			
Independent Source	WG217283-15	11/08/17	04:34			
Initial Calibration	WG217283-16	11/08/17	04:54	•		
Initial Calibration	WG217283-23	11/08/17	07:16			
Initial Calibration	WG217283-24	11/08/17	07:36			
Initial Calibration	WG217283-25	11/08/17	07:57			
Initial Calibration	WG217283-26	11/08/17	08:17			
Initial Calibration	WG217283-27	11/08/17	08:37			
Continuing Calibrati	WG220715-5	12/25/17	03:05	3.302	10.83	
Continuing Calibrati	WG220715-6	12/25/17	03:25			
Method Blank Sample	WG220411-1	12/25/17	04:26	3.308	10.83	
Laboratory Control S	WG220411-2	12/25/17	04:46	3.306	10.82	
Laboratory Control S	WG220411-3	12/25/17	05:07	3.309	10.83	
Continuing Calibrati	WG220715-9	12/25/17	08:48	3.294	10.82	
Continuing Calibrati	WG220715-10	12/25/17	09:09			
G32-MW306BR-121817	TK1925-1	12/25/17	11:30	3.3	10.82	
DUP-121817	TK1925-3	12/25/17	11:50	3.299	10.82	
GI-MW400-121817	TK1925-6	12/25/17	12:10	3.302	10.82	
G44S-MW202RR-121817	TK1925-8	12/25/17	12:31	3.304	10.82	
G32-MW304SR-121817	TK1925-10	12/25/17	12:51	3.299	10.82	
Continuing Calibrati	WG220715-12	12/25/17	13:11	3.299	10.82	

Form 8 GC Analytical Sequence

Lab Name : Katahdin Analytical ServicesSDG : TK1925Project : NAVSTA Newport, Gould Island CTO-WE2Column ID : B

Instrument ID: GC08

		Date	Time			
Client Sample ID	Lab Sample ID	Analyzed	Analyzed	TCX	DCB	
Initial Calibration	WG217283-1	11/07/17	23:50	4.048	12.91	
Initial Calibration	WG217283-2	11/08/17	00:10	4.05	12.91	
Initial Calibration	WG217283-3	11/08/17	00:30	4.049	12.91	
Initial Calibration	WG217283-4	11/08/17	00:51	4.051	12.91	
Initial Calibration	WG217283-5	11/08/17	01:11	4.049	12.91	
Initial Calibration	WG217283-6	11/08/17	01:31	4.048	12.91	
Independent Source	WG217283-7	11/08/17	01:52			
Independent Source	WG217283-8	11/08/17	02:12			
Initial Calibration	WG217283-9	11/08/17	02:32			
Initial Calibration	WG217283-10	11/08/17	02:52			
Initial Calibration	WG217283-11	11/08/17	03:13			
Initial Calibration	WG217283-12	11/08/17	03:33			
Initial Calibration	WG217283-13	11/08/17	03:53			
Initial Calibration	WG217283-14	11/08/17	04:14			
Independent Source	WG217283-15	11/08/17	04:34			
Initial Calibration	WG217283-16	11/08/17	04:54		·	
Initial Calibration	WG217283-23	11/08/17	07:16			
Initial Calibration	WG217283-24	11/08/17	07:36			
Initial Calibration	WG217283-25	11/08/17	07:57			
Initial Calibration	WG217283-26	11/08/17	08:17			
Initial Calibration	WG217283-27	11/08/17	08:37			
Continuing Calibrati	WG220715-5	12/25/17	03:05	3.931	12.74	
Continuing Calibrati	WG220715-6	12/25/17	03:25			
Method Blank Sample	WG220411-1	12/25/17	04:26	3.935	12.75	
Laboratory Control S	WG220411-2	12/25/17	04:46	3.935	12.75	
Laboratory Control S	WG220411-3	12/25/17	05:06	3.937	12.75	
Continuing Calibrati	WG220715-9	12/25/17	08:48	3.923	12.74	
Continuing Calibrati	WG220715-10	12/25/17	09:09			
G32-MW306BR-121817	TK1925-1	12/25/17	11:30	3.927	12.74	
DUP-121817	TK1925-3	12/25/17	11:50	3.928	12.74	
GI-MW400-121817	TK1925-6	12/25/17	12:10	3.93	12.74	
G44S-MW202RR-121817	TK1925-8	12/25/17	12:31	3.932	12.74	
G32-MW304SR-121817	TK1925-10	12/25/17	12:51	3.928	12.74	
Continuing Calibrati	WG220715-12	12/25/17	13:11	3.926	12.74	

METALS DATA

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services Sample ID: PBWKL20IMW1

Matrix: WATER SDG Name: TK1925

QC Batch ID: KL20IMW1

 $\textbf{Concentration Units:} \ ug/L$

Analyte	RESULT	C	
ARSENIC	4.0	U	
CADMIUM	0.20	U	
LEAD	0.50	U	
MANGANESE	1.0	U	

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: TK1925

Concentration Units: ug/L

SAMPLE: ICSA SAMPLE: ICSAB

File: JKL26A	e: JKL26A Dec 26, 2017 17:11 File: JKL26A		De	17:15				
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R	
ALUMINUM	100000	94780	94.8	ALUMINUM	100000	90920	90.9	
ARSENIC	0	0		ARSENIC	20	20	100.0	
CADMIUM	0	0		CADMIUM	20	18	90.0	
CALCIUM	100000	96380	96.4	CALCIUM	100000	93600	93.6	
IRON	100000	93740	93.7	IRON	100000	91970	92.0	
LEAD	0	0		LEAD	20	20	100.0	
MAGNESIUM	100000	95270	95.3	MAGNESIUM	100000	92420	92.4	
MANGANESE	0	0		MANGANESE	20	19	95.0	
MOLYBDENUM	2000	1909	95.5	MOLYBDENUM	2000	1877	93.8	
POTASSIUM	100000	97280	97.3	POTASSIUM	100000	94960	95.0	
SODIUM	100000	97110	97.1	SODIUM	100000	95880	95.9	

7 LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services Sample ID: LCSWKL20IMW1

Matrix: WATER SDG Name: TK1925

QC Batch ID: KL20IMW1

Concentration Units: ug/L

		_			
Analyte	TRUE	FOUND	% R	LIMIT	S (%)
ARSENIC	100	99.4	99.4	84	116
CADMIUM	250	248	99.2	87	115
LEAD	100	98.6	98.6	88	115
MANGANESE	500	500	100.0	87	115

10 INSTRUMENT DETECTION LIMITS

Lab Name: Katahdin Analytical ServicesInstrument Code: JInstrument Name: AGILENT 7500 ICP-MSDate: 11/27/2017

Concentration Units: ug/L

			\mathcal{C}
Analyte	PQL/LOQ	IDL	M
ALUMINUM	20	3.0	MS
ARSENIC	1.0	0.11	MS
CADMIUM	0.20	0.011	MS
CALCIUM	20	8.7	MS
IRON	20	3.1	MS
LEAD	0.20	0.034	MS
MAGNESIUM	20	3.4	MS
MANGANESE	0.40	0.13	MS
MOLYBDENUM	1.0	0.041	MS
POTASSIUM	200	6.6	MS
SODIUM	200	5.5	MS

10 LIMITS of DETECTION

Lab Name: Katahdin Analytical ServicesInstrument Code: JInstrument Name: AGILENT 7500 ICP-MSDate: 1/25/2011

Analyte	LOD	Units	M	EPA Prep./Anal. Method
ARSENIC	0.80	ug/L	MS	SW846 3010A / SW846 6020A
CADMIUM	0.040	ug/L	MS	SW846 3010A / SW846 6020A
LEAD	0.10	ug/L	MS	SW846 3010A / SW846 6020A
MANGANESE	0.20	ug/L	MS	SW846 3010A / SW846 6020A

10 METHOD DETECTION LIMITS

Lab Name: Katahdin Analytical ServicesInstrument Code: JInstrument Name: AGILENT 7500 ICP-MSDate: 1/25/2011

Analyte	MDL	Units	M	EPA Prep./Anal. Method
ARSENIC	0.45	ug/L	MS	SW846 3010A / SW846 6020A
CADMIUM	0.0059	ug/L	MS	SW846 3010A / SW846 6020A
LEAD	0.015	ug/L	MS	SW846 3010A / SW846 6020A
MANGANESE	0.070	ug/L	MS	SW846 3010A / SW846 6020A

12 ICP LINEAR RANGES

Lab Name: Katahdin Analytical Services Instrument Code: J

Instrument Name: AGILENT 7500 ICP-MS Date: 8/4/2017

Concentration Units: ug/L

Analyte	Integration Time (sec)	Linear Range	M
ALUMINUM	0.01	200000	MS
ARSENIC	0.30	1000	MS
CADMIUM	0.10	1000	MS
CALCIUM	0.03	200000	MS
IRON	0.03	100000	MS
LEAD	0.10	2000	MS
MAGNESIUM	0.05	200000	MS
MANGANESE	0.10	2000	MS
MOLYBDENUM	0.10	1000	MS
POTASSIUM	0.01	200000	MS
SODIUM	0.01	200000	MS

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services QC Batch ID: KL20IMW1

Matrix: WATER SDG Name: TK1925

Method: MS **Prep Date:** 12/20/2017

Client ID	Lab Sample ID	Initial (L)	Final (L)	Bottle ID
LCSWKL20IMW1	LCSWKL20IMW1	0.05	0.05	
PBWKL20IMW1	PBWKL20IMW1	0.05	0.05	
G32-MW306BR-121817	TK1925-001	0.05	0.05	D
G32-MW306BR-121817	TK1925-002	0.05	0.05	A
DUP-121817	TK1925-003	0.05	0.05	D
DUP-121817	TK1925-004	0.05	0.05	A
GI-MW400-121817	TK1925-006	0.05	0.05	D
GI-MW400-121817	TK1925-007	0.05	0.05	A
G44S-MW202RR-121817	TK1925-008	0.05	0.05	D
G44S-MW202RR-121817	TK1925-009	0.05	0.05	A
G32-MW304SR-121817	TK1925-010	0.05	0.05	D
G32-MW304SR-121817	TK1925-011	0.05	0.05	A

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: TK1925

Instrument ID: AGILENT 7500 ICP-MS File Name: JKL26A

Lab Sample ID	Client ID	D.F.	Time					Elements	6			
6020 TUNE		1	15:57									
200.8 TUNE		1	16:00									
Cal Blank		1	16:50	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
Cal Std 6		1	16:53	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ICV		1	16:57	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ICB		1	17:01	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
PQL		1	17:04	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ZZZZZZ		1	17:08									
ICSA		1	17:11	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ICSAB		1	17:15	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ZZZZZZ		1	17:19									
ZZZZZZ		1	17:23									
ZZZZZZ		1	17:26									
ZZZZZZ		1	17:30									
ZZZZZZ		1	17:33									
CCV		1	17:37	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ССВ		1	17:41	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ZZZZZZ		5	17:45									
ZZZZZZ		5	17:48									
ZZZZZZ		5	17:52									
ZZZZZZ		5	17:56									
ZZZZZZ		5	17:59									
ZZZZZZ		100	18:03									
ZZZZZZ		500	18:07									
ZZZZZZ		100	18:11									
ZZZZZZ		100	18:15									
ZZZZZZ		10	18:18									

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: TK1925

Instrument ID: AGILENT 7500 ICP-MS File Name: JKL26A

Lab Sample ID	Client ID D.F.	Time					Elements	1		
CCV	1	18:22	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na
CCB	1	18:26	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na
ZZZZZZ	100	18:30								
ZZZZZZ	100	18:34								
ZZZZZZ	500	18:38								
<u> </u>	100	18:42								
<u> </u>	1	18:46								
<u> </u>	100	18:50								
<u> </u>	100	18:54								
ZZZZZZ	100	18:57								
ZZZZZZZ	100	19:01								
<u> </u>	1	19:05								
CCV	1	19:09	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na
CCB	1	19:13	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na
ZZZZZZ	5	19:17								
ZZZZZZ	5	19:21								
ZZZZZZ	5	19:25								
ZZZZZZ	5	19:29								
ZZZZZZ	5	19:33								
ZZZZZZ	5	19:37								
ZZZZZZ	5	19:41								
ZZZZZZ	25	19:45								
ZZZZZZ	5	19:49								
ZZZZZZZ	5	19:53								
CCV	1	19:57	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na
CCB	1	20:01	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na
ZZZZZZZ	5	20:05								

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: TK1925

Instrument ID: AGILENT 7500 ICP-MS File Name: JKL26A

Lab Sample ID	Client ID D.F.	Time					Elements	3			
ZZZZZZ	5	20:09									
ZZZZZZ	5	20:13									
ZZZZZZ	5	20:17									
ZZZZZZ	5	20:21									
ZZZZZZ	5	20:25									
<u> </u>	5	20:29									
<u> </u>	5	20:33									
<u> </u>	5	20:37									
ZZZZZZ	5	20:41									
CCV	1	20:45	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ССВ	1	20:49	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
PBWKL20IMW1	5	20:53		As	Cd	Pb	Mn				
LCSWKL20IMW1	5	20:57		As	Cd	Pb	Mn				
777777	5	21:01									
777777	25	21:05									
<u> </u>	5	21:09									
<u> </u>	5	21:14									
<u> </u>	5	21:18									
<u> </u>	5	21:22									
<u> </u>	5	21:26									
<u> </u>	5	21:30									
CCV	1	21:34	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ССВ	1	21:38	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ZZZZZZ	5	21:42									
ZZZZZZ	5	21:46									
ZZZZZZ	5	21:50									
ZZZZZZZ	5	21:54									_

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: TK1925

Instrument ID: AGILENT 7500 ICP-MS File Name: JKL26A

Lab Sample ID	Client ID	D.F.	Time					Elements	6			
TK1925-001	G32-MW306BR-121817	5	21:58		As	Cd	Pb	Mn				
TK1925-002	G32-MW306BR-121817	5	22:02		As	Cd	Pb	Mn				
TK1925-003	DUP-121817	5	22:06		As	Cd	Pb	Mn				
TK1925-004	DUP-121817	5	22:10		As	Cd	Pb	Mn				
TK1925-006	GI-MW400-121817	5	22:14		As	Cd	Pb	Mn				
TK1925-007	GI-MW400-121817	5	22:18		As	Cd	Pb	Mn				
CCV		1	22:22	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ССВ		1	22:26	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
TK1925-008	G44S-MW202RR-121817	5	22:31		As	Cd	Pb	Mn				
TK1925-009	G44S-MW202RR-121817	5	22:35		As	Cd	Pb	Mn				
TK1925-010	G32-MW304SR-121817	5	22:39		As	Cd	Pb	Mn				
TK1925-011	G32-MW304SR-121817	5	22:43		As	Cd	Pb	Mn				
ZZZZZZ		5	22:47									
ZZZZZZ		5	22:51									
ZZZZZZ		5	22:55									
ZZZZZZ		5	22:59									
ZZZZZZ		25	23:03									
ZZZZZZ		5	23:08									
CCV		1	23:12	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	
ССВ		1	23:16	Al	As	Cd Ca	Fe Pb	Mg Mn	Мо	K	Na	

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\096SMPL.D\096SMPL.D\#
Date Acquired: Dec 26 2017 09:58 pm
Acq. Method: 1PTCAL16.M
Operator:

JS Operator: Sample Name: TK1925-001

Misc Info:

Vial Number: 2507
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample

Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted

QC Elements

OC FIEMS						_
Element	Corr Conc	Raw Conc			High Limit	Flag
9 Be	0.025	0.005	ppb	62.06	100.	
11 B	9.89	1.978	ppb	5.50	1000.	
23 Na	28,305.	5,661.	ppb	3.43	200000.	
25 Mg	4,869.	973.8	ppb	3.05		
27 Al	1,046.	209.2	ppb	2.92		
28 Si	6,245.	1,249.	ppb		#VALUE!	
29 Si	6,345.	1,269.	ppb	8.42	10000.	
39 K	6,885.	1,377.	ppb	3.57		
43 Ca	121,450.	24,290.	ppb	2.16		
44 Ca	118,350.	23,670.	ppb	2.60	200000.	
51 V	5.08	1.016	ppb	11.85	1000.	
52 Cr	2.033	0.4066	ppb	1.08	2000.	
53 Cr	20.03	4.006	ppb	6.71		
55 Mn	140.05	28.01	ppb	1.69	2000.	
56 Fe	1,331.	266.2	ppb	3.42		
57 Fe	1,449.5	289.9	ppb	3.04	100000.	
59 Co	2.3375	0.4675	ppb	0.46	1000.	
60 Ni	3.681	0.7362	ppb	1.89	1000.	
63 Cu	4.392	0.8784	ppb	3.14		
65 Cu	2.545	0.509	ppb	8.38	2000.	
66 Zn	3.0635	0.6127	ppb	8.13	2000.	
68 Zn	3.891	0.7782	ppb	22.54	#VALUE!	
75 As	0.5535	0.1107	ppb	43.31	1000.	
82 Se	2.1005	0.4201	ppb	27.97	1000.	
88 Sr	452.2	90.44	ppb	2.70	2000.	
98 Mo	5.45	1.09	ppb	4.88	1000.	
107 Ag	-0.0014	-0.0003	ppb	2876.00	100.	
109 Ag	-0.0344	-0.0069	ppb	81.34		
111 Cd	-0.1238	-0.0248	ppb	141.25	#VALUE!	
114 Cd	0.0074	0.0015	ppb	328.84	1000.	
115 In					#VALUE!	
118 Sn	1.2115	0.2423	ppb	11.30	1000.	
120 Sn	1.249	0.2498	ppb	6.59	#VALUE!	
121 Sb	0.2921	0.0584	ppb	25.03		
123 Sb	0.314	0.0628	ppb	10.88	1000.	
135 Ba	34.325	6.865	ppb	2.40	2000.	
137 Ba	34.58	6.916	ppb	1.64		
182 W	1.53	0.306	ppb	8.54	1000.	
203 Tl	-0.026	-0.0052	ppb	54.74	1000.	
205 Tl	0.0049	0.001	ppb	83.40	#VALUE!	
208 Pb	0.6065	0.1213	ppb	3.71	2000.	
232 Th	0.3643	0.0729	ppb	6.17	1000.	
238 U	0.1994	0.0399	ppb	2.85	1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	2986144.30	0.78	2851854.00	104.7	69.5 - 120	
45 Sc	3100722.80	3.84	3051657.30	101.6	69.5 - 120	
89 Y	4686556.00	2.32	4650709.50	100.8	69.5 - 120	
159 Tb	5928096.50	0.98	5913626.00	100.2	69.5 - 120	
209 Bi	3168689.30	0.97	3217378.00	98.5	69.5 - 120	

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#

0 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

Analytes: Pass ISTD: Pass INTERNAL STANDARD RECOVERIES

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\097SMPL.D\097SMPL.D#
Date Acquired: Dec 26 2017 10:02 pm
Acq. Method: 1PTCAL16.M

JS Operator: TK1925-002

Sample Name: Misc Info:

Vial Number: 2508
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample Type: Sample

Sample Type: Sample Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted 5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	-0.0011	-0.0002	ppb	118.87	100.	
11 B	8.725	1.745	ppb	7.16	1000.	
23 Na	30,525.	6,105.	ppb	0.35		
25 Mg	4,237.	847.4	ppb	0.59	200000.	
27 Al	315.4	63.08	ppb	0.31	200000.	
28 Si	5,115.	1,023.	ppb	1.81	#VALUE!	
29 Si	5,710.	1,142.	ppb	0.78	10000.	
39 K	7,100.	1,420.	ppb	0.71	200000.	
43 Ca	128,450.	25,690.	ppb	0.59	#VALUE!	
44 Ca	124,850.	24,970.	ppb	0.46	200000.	
51 V	3.5365	0.7073	ppb	1.96	1000.	
52 Cr	1.136	0.2272	ppb	15.69	2000.	
53 Cr	21.95	4.39	ppb	4.56	#VALUE!	
55 Mn	37.785	7.557	ppb	1.42		
56 Fe	388.95	77.79	ppb	7.90	#VALUE!	
57 Fe	553.5	110.7	ppb	0.67	100000.	
59 Co	0.749	0.1498	ppb	11.80	1000.	
60 Ni	1.329	0.2658	ppb	16.33	1000.	
63 Cu	2.9695	0.5939	ppb	2.48		
65 Cu	1.1135	0.2227	ppb	9.65	2000.	
66 Zn	1.814	0.3628	ppb	4.99		
68 Zn	2.1105	0.4221	ppb	51.67	#VALUE!	
75 As	0.8275	0.1655	ppb	161.93	1000.	
82 Se	1.9785	0.3957	ppb	45.24	1000.	
88 Sr	472.55	94.51	ppb	0.87		
98 Mo	5.66	1.132	ppb	2.78	1000.	
107 Ag	0.0008	0.0002	ppb			
109 Ag	-0.0423	-0.0085	ppb	73.10	#VALUE!	
111 Cd	0.1608	0.0322	ppb	110.26	#VALUE!	
114 Cd	0.0148	0.003	ppb	117.93	1000.	
115 In					#VALUE!	
118 Sn	1.056	0.2112	ppb	4.44	1000.	
120 Sn	1.0585	0.2117	ppb	6.75		
121 Sb	0.3122	0.0624	ppb	11.38	#VALUE!	
123 Sb	0.3098	0.062	ppb	15.48	1000.	
135 Ba	33.415	6.683	ppb	3.84	2000.	
137 Ba	34.205	6.841	ppb	1.40	#VALUE!	
182 W	1.593	0.3186	ppb	4.25		
203 Tl	-0.0144	-0.0029	ppb	146.75		
205 Tl	-0.0072	-0.0014	ppb	128.69	#VALUE!	
208 Pb	0.1195	0.0239	ppb	9.67	2000.	
232 Th	0.0934	0.0187	ppb	7.52	1000.	
238 U	0.0548	0.011	ppb	4.66	1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag	
6 Li	3341025.30	1.93	2851854.00	117.2	69.5 - 120		
45 Sc	3274099.50	0.49	3051657.30	107.3	69.5 - 120		
89 Y	4825377.00	1.72	4650709.50	103.8	69.5 - 120		
159 Tb	5990358.00	1.91	5913626.00	101.3	69.5 - 120		
209 Bi	3138390.30	1.50	3217378.00	97.5	69.5 - 120		
ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#							

0 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\098SMPL.D\098SMPL.D#
Date Acquired: Dec 26 2017 10:06 pm
Acq. Method: 1PTCAL16.M

JS Operator: TK1925-003

Sample Name:

Misc Info:

Vial Number: 2509
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample Type: Sample

Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted 5.00

QC Elements

ŽC.	DIEMETIC						
Ele	ment	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9	Ве	-0.0121	-0.0024	ppb	56.50	100.	
11	В	75.35	15.07	ppb	3.12	1000.	
23	Na	34,720.	6,944.	ppb	1.81	200000.	
25	Mg	16,150.	3,230.	ppb	1.49	200000.	
27	Al	75.7	15.14	ppb	2.42	200000.	
28	Si	4,405.	881.	ppb	2.19	#VALUE!	
29	Si	4,127.5	825.5	ppb	1.41	10000.	
39	K	17,180.	3,436.	ppb	0.57	200000.	
43	Ca	123,050.	24,610.	ppb	1.35	#VALUE!	
44	Ca	119,250.	23,850.	ppb	2.07	200000.	
51	V	0.6425	0.1285	ppb	18.14	1000.	
52	Cr	0.814	0.1628	ppb	17.67	2000.	
53	Cr	18.745	3.749	ppb	3.65	#VALUE!	
55	Mn	234.8	46.96	ppb	2.77	2000.	
56	Fe	160.55	32.11	ppb	14.93	#VALUE!	
57	Fe	282.95	56.59	ppb	5.27	100000.	
59	Co	0.9955	0.1991	ppb	2.12	1000.	
60	Ni	0.5065	0.1013	ppb	11.61	1000.	
63	Cu	2.658	0.5316	ppb		#VALUE!	
65	Cu	0.843	0.1686	ppb	7.24	2000.	
66	Zn	0.6635	0.1327	ppb	38.12	2000.	
68	Zn	2.4515	0.4903	ppb	15.24	#VALUE!	
75	As	1.0155	0.2031	ppb	14.64	1000.	
82	Se	1.77	0.354	ppb	33.28	1000.	
88	Sr	509.	101.8	ppb	2.55	2000.	
98	Mo	3.8735	0.7747	ppb	2.87	1000.	
107	Ag	0.0356	0.0071	ppb	87.54	100.	
109	Ag	-0.0143	-0.0029		292.47	#VALUE!	
111	Cd	-0.2096	-0.0419	ppb	45.69	#VALUE!	
114	Cd	-0.0006	-0.0001	ppb	5366.40	1000.	
115	In					#VALUE!	
118	Sn	1.569	0.3138	ppb	1.67	1000.	
120	Sn	1.638	0.3276	ppb	4.91	#VALUE!	
121	Sb	0.1008	0.0202	ppb	23.29	#VALUE!	
123	Sb	0.1785	0.0357	ppb	8.76	1000.	
135	Ва	70.55	14.11	ppb	2.33	2000.	
137	Ва	70.35	14.07	ppb	1.09	#VALUE!	
182	W	0.2298	0.046	ppb	15.14	1000.	
203	Tl	0.0249	0.005	ppb	29.95	1000.	
	Tl	0.023	0.0046	ppb	30.95	#VALUE!	
208	Pb	0.0498	0.01	ppb	69.64	2000.	
232	Th	0.0325	0.0065	ppb			
238	U	0.8065	0.1613	ppb	5.36	1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	2852372.50	0.33	2851854.00	100.0	69.5 - 120	
45 Sc	2962112.30	0.88	3051657.30	97.1	69.5 - 120	
89 Y	4568542.00	2.30	4650709.50	98.2	69.5 - 120	
159 Tb	5945687.50	1.09	5913626.00	100.5	69.5 - 120	
209 Bi	3144314.50	1.41	3217378.00	97.7	69.5 - 120	

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#

0 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\099SMPL.D\099SMPL.D#
Date Acquired: Dec 26 2017 10:10 pm
Acq. Method: 1PTCAL16.M

Operator: JS

TK1925-004 Sample Name:

Misc Info:

Vial Number: 2510
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample Type: Sample

Sample Type: Sample Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted 5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	-0.0087	-0.0017	ppb	130.92	100.	
11 B	76.2	15.24	ppb	6.31	1000.	
23 Na	36,145.	7,229.	ppb	1.72	200000.	
25 Mg	16,385.	3,277.	ppb	2.42	200000.	
27 Al	7.735	1.547	ppb	5.77	200000.	
28 Si	3,143.5	628.7	ppb	7.42	#VALUE!	
29 Si	3,693.	738.6	ppb	6.42	10000.	
39 K	17,475.	3,495.	ppb	3.37	200000.	
43 Ca	124,550.	24,910.	ppb	2.06	#VALUE!	
44 Ca	120,550.	24,110.	ppb	2.15	200000.	
51 V	0.52	0.104	ppb	68.76	1000.	
52 Cr	0.776	0.1552	ppb	5.08	2000.	
53 Cr	25.77	5.154	ppb	9.72	#VALUE!	
55 Mn	234.75	46.95	ppb	1.44	2000.	
56 Fe	18.77	3.754	ppb	81.75	#VALUE!	
57 Fe	207.15	41.43	ppb	7.06	100000.	
59 Co	0.974	0.1948	ppb	4.79	1000.	
60 Ni	0.4964	0.0993	ppb	13.33	1000.	
63 Cu	2.6365	0.5273	ppb	2.62	#VALUE!	
65 Cu	0.9695	0.1939	ppb	15.06	2000.	
66 Zn	0.833	0.1666	ppb	50.58	2000.	
68 Zn	3.071	0.6142	ppb	5.38	#VALUE!	
75 As	0.3685	0.0737	ppb	198.13	1000.	
82 Se	1.4595	0.2919	ppb	27.71	1000.	
88 Sr	516.5	103.3	ppb	1.47	2000.	
98 Mo	3.7685	0.7537	ppb			
107 Ag	-0.0002	0.	ppb	6765.90	100.	
109 Ag	-0.018	-0.0036			#VALUE!	
111 Cd	0.1096	0.0219	ppb	47.49	#VALUE!	
114 Cd	-0.0053	-0.0011	ppb	422.96	1000.	
115 In					#VALUE!	
118 Sn	1.185	0.237	ppb		1000.	
120 Sn	1.075	0.215	ppb			
121 Sb	0.101	0.0202	ppb			
123 Sb	0.1344	0.0269	ppb			
135 Ba	70.9	14.18	ppb			
137 Ba	71.5	14.3	ppb			
182 W	0.1643	0.0329	ppb			
203 Tl	0.0214	0.0043				
205 Tl	0.0367	0.0073	ppb			
208 Pb	-0.0457		ppb			
232 Th	0.0133	0.0027	ppb			
238 U	0.854	0.1708	ppb	2.27	1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%) Flag
6 Li	3373122.00	1.75	2851854.00	118.3	69.5 - 120
45 Sc	3349054.00	0.78	3051657.30	109.7	69.5 - 120
89 Y	4924827.00	1.34	4650709.50	105.9	69.5 - 120
159 Tb	6120307.50	0.58	5913626.00	103.5	69.5 - 120
209 Bi	3168161.50	0.51	3217378.00	98.5	69.5 - 120

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#

0 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\100SMPL.D\100SMPL.D#
Date Acquired: Dec 26 2017 10:14 pm
Acq. Method: 1PTCAL16.M

JS Operator:

TK1925-006 Sample Name:

Misc Info:

Vial Number: 2511
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample Type: Sample

Sample Type: Sample Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted 5.00

QC Elements

9 Be 11 B 23 Na 25 Mg 27 Al 28 Si 39 K 44 Ca 51 V 52 Cr 55 Mn 56 Fe 57 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 114 Cd 115 In 118 Sn 120 Sn 121 Sb 123 Sb	Corr Con0.01 73.45 34,185. 15,600. 86.4 4,218. 4,100. 16,780. 118,500. 116,100. 0.332. 0.735. 19.665 229.1 193.15	-0.002 14.69 6,837. 3,120. 17.28 843.6 820. 3,356. 23,700. 23,220. 9 0.0666 5 0.1471 3.933	ppb ppb ppb ppb ppb ppb ppb ppb	35.14 2.72 1.44 2.38 2.11 6.20 4.38 2.70		Flag
11 B 23 Na 25 Mg 27 Al 28 Si 29 Si 39 K 43 Ca 44 Ca 51 V 52 Cr 53 Cr 55 Mn 56 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 115 In 118 Sn 120 Sn	73.45 34,185. 15,600. 86.4 4,218. 4,100. 16,780. 118,500. 116,100. 0.332. 0.735. 19.665 229.1	14.69 6,837. 3,120. 17.28 843.6 820. 3,356. 23,700. 23,220. 9 0.0666 5 0.1471 3.933	ppb ppb ppb ppb ppb ppb ppb ppb	2.72 1.44 2.38 2.11 6.20 4.38 2.70 2.39	1000. 200000. 200000. 200000. #VALUE! 10000. 200000.	
23 Na 25 Mg 27 Al 28 Si 29 Si 39 K 43 Ca 44 Ca 51 V 52 Cr 53 Cr 55 Mn 56 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn	34,185. 15,600. 86.4 4,218. 4,100. 16,780. 118,500. 116,100. 0.332. 0.735. 19.665 229.1	6,837. 3,120. 17.28 843.6 820. 3,356. 23,700. 23,220. 9 0.0666 0.1471 3.933	ppb ppb ppb ppb ppb ppb ppb ppb	1.44 2.38 2.11 6.20 4.38 2.70 2.39	200000. 200000. 200000. #VALUE! 10000. 200000. #VALUE!	
25 Mg 27 Al 28 Si 29 Si 39 K 43 Ca 44 Ca 51 V 52 Cr 53 Cr 55 Mn 56 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 114 Cd 115 In 118 Sn 120 Sn 121 Sb	15,600. 86.4 4,218. 4,100. 16,780. 118,500. 116,100. 0.332. 0.735. 19.665. 229.1	3,120. 17.28 843.6 820. 3,356. 23,700. 23,220. 9 0.0666 5 0.1471 3.933	ppb ppb ppb ppb ppb ppb	2.38 2.11 6.20 4.38 2.70 2.39 0.90	200000. 200000. #VALUE! 10000. 200000. #VALUE!	
27 Al 28 Si 29 Si 39 K 43 Ca 44 Ca 51 V 52 Cr 53 Cr 55 Mn 56 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 115 In 118 Sn 120 Sn 121 Sb	86.4 4,218. 4,100. 16,780. 118,500. 116,100. 0.332. 0.735. 19.665 229.1	17.28 843.6 820. 3,356. 23,700. 23,220. 9 0.0666 5 0.1471 3.933	ppb ppb ppb ppb ppb ppb	2.11 6.20 4.38 2.70 2.39 0.90	200000. #VALUE! 10000. 200000. #VALUE!	
28 Si 29 Si 39 K 43 Ca 44 Ca 51 V 52 Cr 53 Cr 55 Mn 56 Fe 57 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 111 Cd 115 In 118 Sn 120 Sn 121 Sb	4,218. 4,100. 16,780. 118,500. 116,100. 0.332. 0.735. 19.665 229.1	843.6 820. 3,356. 23,700. 23,220. 9 0.0666 5 0.1471 3.933	ppb ppb ppb ppb ppb ppb	6.20 4.38 2.70 2.39 0.90	#VALUE! 10000. 200000. #VALUE!	
29 Si 39 K 43 Ca 44 Ca 51 V 52 Cr 53 Cr 55 Mn 56 Fe 57 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn	4,100. 16,780. 118,500. 116,100. 0.332. 0.735. 19.665 229.1	820. 3,356. 23,700. 23,220. 9 0.0666 5 0.1471 3.933	ppb ppb ppb ppb ppb	4.38 2.70 2.39 0.90	10000. 200000. #VALUE!	
39 K 43 Ca 44 Ca 51 V 52 Cr 53 Cr 55 Mn 56 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	16,780. 118,500. 116,100. 0.332 0.735. 19.665 229.1	3,356. 23,700. 23,220. 9 0.0666 5 0.1471 3.933	ppb ppb ppb ppb	2.70 2.39 0.90	200000. #VALUE!	
43 Ca 44 Ca 51 V 52 Cr 53 Cr 55 Mn 56 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 68 Zn 68 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn	118,500. 116,100. 0.332 0.735 19.665 229.1	23,700. 23,220. 9 0.0666 5 0.1471 3.933	ppb ppb ppb	2.39 0.90	#VALUE!	
44 Ca 51 V 52 Cr 53 Cr 55 Mn 56 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 110 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn	116,100. 0.332 0.735 19.665 229.1	23,220. 9 0.0666 5 0.1471 3.933	ppb ppb	0.90		
51 V 52 Cr 53 Cr 55 Mn 56 Fe 57 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn	0.332 0.735 19.665 229.1	9 0.0666 5 0.1471 3.933	ppb dqq		200000.	
52 Cr 53 Cr 55 Mn 56 Fe 57 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 110 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn	0.735 19.665 229.1	5 0.1471 3.933	ppb	88.77		
53 Cr 55 Mn 56 Fe 57 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	19.665 229.1	3.933			1000.	
55 Mm 56 Fe 57 Fe 59 Co 60 Ni 63 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	229.1		,	10.76	2000.	
56 Fe 57 Fe 59 Co 60 Ni 63 Cu 65 Cu 66 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 110 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn		45.00	ppb	3.11	#VALUE!	
57 Fe 59 Co 60 Ni 63 Cu 65 Cu 66 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 110 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	193.15	45.82	ppb	1.20	2000.	
59 Co 60 Ni 63 Cu 65 Cu 66 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb		38.63	ppb	4.18	#VALUE!	
60 Ni 63 Cu 65 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	329.2	65.84	ppb	6.67	100000.	
63 Cu 65 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	1.045	0.209	ppb	7.47	1000.	
65 Cu 66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	0.416	0.0832	ppb	18.07	1000.	
66 Zn 68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	2.599	0.5198	ppb	1.61	#VALUE!	
68 Zn 75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	0.861	0.1722	ppb	11.41	2000.	
75 As 82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	0.628	0.1257	ppb	7.91	2000.	
82 Se 88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	2.936	0.5872	ppb	22.11	#VALUE!	
88 Sr 98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	0.290	1 0.058	ppb	285.12	1000.	
98 Mo 107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	0.749	0.1498	ppb	48.15	1000.	
107 Ag 109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	497.45	99.49	ppb	0.57	2000.	
109 Ag 111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	3.673	5 0.7347	ppb	0.36	1000.	
111 Cd 114 Cd 115 In 118 Sn 120 Sn 121 Sb	0.015	0.0031	ppb	64.88	100.	
114 Cd 115 In 118 Sn 120 Sn 121 Sb	0.011	7 0.0023	ppb	114.11	#VALUE!	
115 In 118 Sn 120 Sn 121 Sb	-0.214	2 -0.0428	ppb	74.46	#VALUE!	
118 Sn 120 Sn 121 Sb	0.007	7 0.0015	ppb	102.73	1000.	
120 Sn 121 Sb					#VALUE!	
121 Sb	1.126	0.2252	ppb	8.63	1000.	
	1.066	0.2132	ppb	4.01	#VALUE!	
123 Sb	0.113	4 0.0227	ppb	34.26	#VALUE!	
	0.140	1 0.028	ppb	8.93	1000.	
135 Ba		14.12	ppb	1.29	2000.	
137 Ba	70.6	14.18	ppb	1.68	#VALUE!	
182 W	70.6 70.9	9 0.0362	ppb	6.98	1000.	
203 Tl		0.0018	ppb	55.13	1000.	
205 Tl	70.9 0.180 0.008		ppb	40.59	#VALUE!	
208 Pb	70.9 0.180 0.008 0.040	0.0081	ppb	32.27	2000.	
232 Th	70.9 0.180 0.008	0.0081			1000	
238 U	70.9 0.180 0.008 0.040	3 0.0081 2 0.0178 2 0.0078	ppb	12.38 2.20	1000. 1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	2940015.30	4.46	2851854.00	103.1	69.5 - 120	
45 Sc	3021858.80	2.10	3051657.30	99.0	69.5 - 120	
89 Y	4609563.50	0.91	4650709.50	99.1	69.5 - 120	
159 Tb	5929454.50	1.54	5913626.00	100.3	69.5 - 120	
209 Bi	3130930.80	1.72	3217378.00	97.3	69.5 - 120	

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#

0 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\101SMPL.D\101SMPL.D#
Date Acquired: Dec 26 2017 10:18 pm
Acq. Method: 1PTCAL16.M

JS

Operator:

Sample Name:

TK1925-007 Misc Info:

Vial Number:

Vial Number: 2512
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample

Sample Type: Sample Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted 5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	-0.0065	-0.0013	ppb	182.89	100.	
11 B	76.05	15.21	ppb	6.60	1000.	
23 Na	36,315.	7,263.	ppb	2.11	200000.	
25 Mg	16,135.	3,227.	ppb	2.43	200000.	
27 Al	6.675	1.335	ppb	9.99	200000.	
28 Si	2,984.5	596.9	ppb	4.22	#VALUE!	
29 Si	3,603.	720.6	ppb	3.16	10000.	
39 K	17,510.	3,502.	ppb	0.51	200000.	
43 Ca	122,800.	24,560.	ppb	1.43	#VALUE!	
44 Ca	120,100.	24,020.	ppb	1.88	200000.	
51 V	0.598	0.1196	ppb	49.00	1000.	
52 Cr	1.1855	0.2371	ppb	9.27	2000.	
53 Cr	27.27	5.454	ppb	10.01	#VALUE!	
55 Mn	234.9	46.98	ppb	1.22	2000.	
56 Fe	57.3	11.46	ppb	19.90	#VALUE!	
57 Fe	248.75	49.75	ppb	6.55	100000.	
59 Co	1.041	0.2082	ppb	9.88	1000.	
60 Ni	0.623	0.1246	ppb	18.60	1000.	
63 Cu	2.827	0.5654	ppb	5.27	#VALUE!	
65 Cu	1.093	0.2186	ppb	8.18	2000.	
66 Zn	0.6435	0.1287	ppb	38.70		
68 Zn	2.7665	0.5533	ppb	13.45	#VALUE!	
75 As	-0.145	-0.029	ppb	499.14		
82 Se	1.4705	0.2941	ppb	27.65	1000.	
88 Sr	511.5	102.3	ppb	0.98		
98 Mo	3.943	0.7886	ppb	3.76		
107 Ag	-0.0198	-0.004	ppb	124.80	100.	
109 Ag	-0.0103	-0.0021	ppb		#VALUE!	
111 Cd	0.2087	0.0417	ppb	27.00		
114 Cd	0.0308	0.0062	ppb	4.16	1000.	
115 In					#VALUE!	
118 Sn	1.13	0.226	ppb	5.08		
120 Sn	1.1885	0.2377	ppb	14.28		
121 Sb	0.1049	0.021	ppb	8.78		
123 Sb	0.1535	0.0307	ppb	11.53		
135 Ba	71.25	14.25	ppb	1.46		
137 Ba	70.7	14.14	ppb	0.72		
182 W	0.1819	0.0364	ppb	8.24		
203 Tl	0.009	0.0018	ppb			
205 Tl	0.0217	0.0043	ppb			
208 Pb	-0.0049		ppb			
232 Th	0.0047	0.0009	ppb			
238 U	0.8215	0.1643	ppb	3.95	1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3419091.00	1.22	2851854.00	119.9	69.5 - 120	
45 Sc	3376134.30	0.69	3051657.30	110.6	69.5 - 120	
89 Y	4956191.00	0.31	4650709.50	106.6	69.5 - 120	
159 Tb	6136671.00	0.65	5913626.00	103.8	69.5 - 120	
209 Bi	3177982.80	0.70	3217378.00	98.8	69.5 - 120	

09 Bi 3177982.80 0.70 3217378.00 98.8 55 ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#

0 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\104SMPL.D\104SMPL.D#
Date Acquired: Dec 26 2017 10:31 pm
Acq. Method: 1PTCAL16.M

JS Operator:

TK1925-008 Sample Name:

Misc Info:

Vial Number: 3101
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample Type: Sample

Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted 5.00

QC Elements

ŽC.	TI CIII							
Ele	ement	Corr	Conc	Raw Conc	Units	RSD(%)	High Limi	t Flag
9	Ве	0	.0508	0.0102	ppb	46.94	100.	
11	В	1,767	. 5	353.5	ppb	4.15	1000.	
23	Na				ppb		200000.	>LDR
25	Mg	556,500		111,300.	ppb	1.32	200000.	
27	Al	1,704	. 5	340.9	ppb	1.04	200000.	
28	Si	5,895		1,179.	ppb	10.07	#VALUE!	
29	Si	5,875		1,175.	ppb	3.26	10000.	
39	K	212,850		42,570.	ppb		200000.	
43	Ca	456,950		91,390.	ppb	2.19	#VALUE!	
44	Ca	422,850		84,570.	ppb	1.72	200000.	
51	V	2	.7805	0.5561	ppb	10.92	1000.	
52	Cr	4	.022	0.8044	ppb	2.43	2000.	
53	Cr	40	.425	8.085	ppb	0.76	#VALUE!	
55	Mn	2,911		582.2	ppb	0.26	2000.	
56	Fe	3,743		748.6	ppb	0.81	#VALUE!	
57	Fe	4,200		840.	ppb	3.03	100000.	
59	Co	4	.1625	0.8325	ppb	2.55	1000.	
60	Ni	4	.8815	0.9763	ppb	10.09	1000.	
63	Cu	224	. 9	44.98		1.47	#VALUE!	
65	Cu	6	.67	1.334	ppb	3.87	2000.	
66	Zn	13	.02	2.604	ppb	2.13	2000.	
68	Zn	12	.685	2.537	ppb	0.04	#VALUE!	
75	As	4	.949			6.87	1000.	
82	Se	1	.4995	0.2999	ppb	66.92	1000.	
88	Sr	4,697		939.4	ppb	0.80	2000.	
98	Mo	8	.915			3.05	1000.	
10	7 Ag		.0139				100.	
109	9 Ag	-0	.0422	-0.0084	ppb	46.72	#VALUE!	
11:	1 Cd	0	.2034	0.0407	' ppb	56.75	#VALUE!	
114	4 Cd	0	.0029	0.0006	ppb	664.48	1000.	
11!	5 In						#VALUE!	
118	3 Sn	1	.5095	0.3019	ppb			
120) Sn	1	.5535		ppb	8.65	#VALUE!	
12	l Sb		.2234	0.044/	' ppb	8.60	#VALUE!	
12	3 Sb	0	.3151	0.063	ppb	29.59	1000.	
13	БВа	113	.75	22.75	ppb	1.87	2000.	
13	7 Ba	114	. 3	22.86	ppb	0.81	#VALUE!	
182	2 W	0	.7355	0.1471 0.0039	. ppb	5.33	1000.	
203	3 Tl		.0197	0.0039	ppb	72.65	1000.	
20!	5 Tl		.0058		ppb		#VALUE!	
208	B Pb	1	.5275	0.3055 0.1871	ppb	2.34	2000.	
232	2 Th	0	.9355	0.1871	ppb	3.31	1000.	
238	3 U	1	.455	0.291	ppb	3.95	1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	2756385.30	4.43	2851854.00	96.7	69.5 - 120	
45 Sc	3219100.30	2.18	3051657.30	105.5	69.5 - 120	
89 Y	4458090.00	0.92	4650709.50	95.9	69.5 - 120	
159 Tb	5224128.00	0.90	5913626.00	88.3	69.5 - 120	
209 Bi	2399839.00	0.86	3217378.00	74.6	69.5 - 120	

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#

1 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

Analytes: Fail ISTD: Pass

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\105SMPL.D\105SMPL.D#
Date Acquired: Dec 26 2017 10:35 pm
Acq. Method: 1PTCAL16.M

Dec 26 2017 10:35 pm

JS Operator:

Sample Name: TK1925-009

Misc Info:

Vial Number: 3102
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample Type: Sample

Sample Type: Sampl
Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted

QC Elements

Ele	ment	Corr	Conc	Raw	Conc	Units	RSD(%)	High Limi	t Flag
9	Ве		.0001			ppb	11452.00	100.	
11	В	1,814	.5	362	. 9	ppb	5.97	1000.	
23	Na					ppb		200000.	>LDR
25	Mg	557,500		111,500		ppb	1.66	200000.	
27	Al	40	.59	8	.118	ppb	3.42	200000.	
28	Si	4,051		810	. 2	ppb	5.91	#VALUE!	
29	Si	4,226		845	. 2	ppb	3.57	10000.	
39	K	214,100		42,820		ppb	1.57	200000.	
43	Ca	452,950		90,590	3	ppb	1.14	#VALUE!	
44	Ca	424,150		84,830	3	ppb		200000.	
51	V	0	.4316	0 .	.0863	ppb	51.07	1000.	
52	Cr	1	.9055	0 .	.3811	ppb	21.37	2000.	
53	Cr	45	.115		.023	ppb	11.36	#VALUE!	
55	Mn	2,965	.5	593	. 1	ppb	3.20	2000.	
56	Fe	1,245	. 5	249	. 1	ppb	4.30	#VALUE!	
57	Fe	1,861	. 5	372	. 3	ppb	6.93	100000.	
59	Co	3	.513	0 .	.7026	ppb	1.89	1000.	
60	Ni	3	.872	0 .	.7744	ppb	18.70	1000.	
63	Cu	220	. 7	44	.14			#VALUE!	
65	Cu	3	.7835	0 .	.7567	ppb	5.26	2000.	
66	Zn	10	.15	2	.03	ppb	9.42	2000.	
68	Zn	11	.07	2	.214	ppb	16.36	#VALUE!	
75	As	6	.605		.321	ppb	17.26	1000.	
82	Se	1	.5375		.3075	ppb			
88	Sr	4,708		941	. 6			2000.	
98	Mo		.665			ppb		1000.	
107	Ag	-0	.0103	-0.	.0021	ppb	158.96	100.	
109	Ag	-0	.0459	-0.	.0092	ppb	119.42	#VALUE!	
111	Cd	0	.3457	0 .	.0691	ppb		#VALUE!	
114	Cd	-0	.0251		.005	ppb	22.35	1000.	
115								#VALUE!	
118			.5925		.3185	ppb	8.63		
120			.516		.3032	ppb		#VALUE!	
121			.2541		.0508	ppb		#VALUE!	
123			.2625		.0525	ppb			
135		110			.16	ppb			
137		110			.01	ppb		#VALUE!	
182			.677		.1354	ppb			
203			.0083	0 .	.0017	ppb ppb	132.45		
205			.0173					#VALUE!	
208			.0471		.0094				
232			.0627		.0125	ppb			
238	U	1	.3535	0	.2707	ppb	6.79	1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	2942246.80	5.48	2851854.00	103.2	69.5 - 120	
45 Sc	3381217.00	5.74	3051657.30	110.8	69.5 - 120	
89 Y	4480622.00	2.50	4650709.50	96.3	69.5 - 120	
159 Tb	5136701.00	1.01	5913626.00	86.9	69.5 - 120	
209 Bi	2364114.80	0.23	3217378.00	73.5	69.5 - 120	

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#

1 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

Fail Analytes: ISTD: Pass

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\106SMPL.D\106SMPL.D#
Date Acquired: Dec 26 2017 10:39 pm
Acq. Method: 1PTCAL16.M

JS Operator:

Sample Name: TK1925-010

Misc Info:

Vial Number: 3103
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample Type: Sample

Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted 5.00

QC Elements

Ele	ment	Corr	Conc	Raw Conc	Units	RSD(%)	High Limit	t Flag
9	Ве	-0	.0011	-0.0002	ppb			
11	В	79	.65	15.93	ppb	5.17	1000.	
23	Na	63,250		12,650.	ppb	2.61	200000.	
25	Mg	9,055		1,811.	ppb	2.48	200000.	
27	Al	62	.35	12.47	ppb	0.73	200000.	
28	Si	6,720		1,344.	ppb	7.91	#VALUE!	
29	Si	7,550		1,510.	ppb	2.80	10000.	
39	K	8,895		1,779.	ppb	0.52	200000.	
43	Ca	46,995		9,399.	ppb	1.25	#VALUE!	
44	Ca	46,315		9,263.	ppb	2.00	200000.	
51	V	0	.894	0.1788	ppb	50.26	1000.	
52	Cr	1	.4425	0.2885	ppb	14.63	2000.	
53	Cr		.275	7.455	ppb	21.92		
55	Mn	1,951		390.2	ppb	1.60	2000.	
56	Fe	13,675		2,735.	ppb	1.76	#VALUE!	
57	Fe	13,450		2,690.	ppb	1.88		
59	Co		.1245	0.6249		2.99		
60	Ni	3	.4935	0.6987		1.72		
63	Cu		.314	0.8628		3.42		
65	Cu		.155	0.431	ppb	3.93		
66	Zn		.53	0.506	ppb	12.90		
68	Zn		.11	1.622	ppb	6.08		
75	As		.857	0.1714				
82	Se		.784	0.3568				
88	Sr	259		51.85	ppb	1.01		
	Mo		.5685	0.3137				
107	_		.0049	-0.001	ppb			
109	_		.0238	-0.0048		119.11		
111			.3219	0.0644				
114		0	.0787	0.0157		4.40		
115							#VALUE!	
118			.331	0.2662		12.80		
120			.2585	0.2517		8.78		
121			.2991	0.0598		16.24		
123			.3793	0.0759		10.62		
135			.1	15.62	ppb	2.12		
137			.15	15.63	ppb	0.81		
182			.0593	0.0119		20.84		
203			.0281	0.0056		61.67		
205			.0159	0.0032		56.98		
208			.0838	0.0168		22.14		
232			.0496	0.0099		13.29		
238	U	0	.2599	0.052	ppb	3.26	1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%) Flag
6 Li	3419201.50	8.42	2851854.00	119.9	69.5 - 120
45 Sc	3636079.50	5.40	3051657.30	119.2	69.5 - 120
89 Y	5087923.00	2.17	4650709.50	109.4	69.5 - 120
159 Tb	6005899.50	0.90	5913626.00	101.6	69.5 - 120
209 Bi	3132378.00	0.83	3217378.00	97.4	69.5 - 120

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#

0 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

Data File: C:\ICPCHEM\1\DATA\JKL26A.B\107SMPL.D\107SMPL.D#
Date Acquired: Dec 26 2017 10:43 pm
Acq. Method: 1PTCAL16.M

JS Operator:

TK1925-011 Sample Name:

Misc Info:

Vial Number: 3104
Current Method: C:\ICPCHEM\1\METHODS\1PTCAL16.M
Calibration File: C:\ICPCHEM\1\CALIB\1PTCAL16.C
Last Cal. Update: Dec 26 2017 04:56 pm
Sample Type: Sample

Sample Type: Sample Dilution Factor: 5.00
Autodil Factor: Undil
Final Dil Factor: 5.00 Undiluted 5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	0.0067	0.0013	ppb	112.54	100.	
11 B	56.	11.2	ppb	3.08	1000.	
23 Na	56,400.	11,280.	ppb	2.12	200000.	
25 Mg	8,125.	1,625.	ppb	2.27	200000.	
27 Al	46.625	9.325	ppb	1.87	200000.	
28 Si	6,930.	1,386.	ppb		#VALUE!	
29 Si	6,945.	1,389.	ppb	2.23		
39 K	8,210.	1,642.	ppb	2.08	200000.	
43 Ca	43,600.	8,720.	ppb	1.23	#VALUE!	
44 Ca	43,415.	8,683.	ppb	1.45	200000.	
51 V	0.751	0.1502	ppb	65.56	1000.	
52 Cr	0.9005	0.1801	ppb	8.37	2000.	
53 Cr	18.87	3.774	ppb	4.95	#VALUE!	
55 Mn	1,725.5	345.1	ppb	0.39	2000.	
56 Fe	13,130.	2,626.	ppb	1.26	#VALUE!	
57 Fe	12,895.	2,579.	ppb	1.14	100000.	
59 Co	2.5555	0.5111	ppb	2.76	1000.	
60 Ni	2.8815	0.5763	ppb	2.69	1000.	
63 Cu	3.7065	0.7413	ppb	0.70	#VALUE!	
65 Cu	1.3825	0.2765	ppb	10.29	2000.	
66 Zn	2.499	0.4998	ppb	6.23	2000.	
68 Zn	6.02	1.204	ppb	12.67	#VALUE!	
75 As	1.197	0.2394	ppb	35.80	1000.	
82 Se	0.996	0.1992	ppb	28.45	1000.	
88 Sr	244.35	48.87	ppb	0.96	2000.	
98 Mo	1.456	0.2912	ppb	2.77	1000.	
107 Ag	-0.0026	-0.0005	ppb	1642.80	100.	
109 Ag	-0.0347	-0.0069	ppb	62.98	#VALUE!	
111 Cd	-0.0556	-0.0111	ppb	316.02	#VALUE!	
114 Cd	0.0526	0.0105	ppb	19.83	1000.	
115 In					#VALUE!	
118 Sn	1.1425	0.2285	ppb	9.53	1000.	
120 Sn	1.1705	0.2341	ppb	4.73	#VALUE!	
121 Sb	0.2721	0.0544	ppb	7.38	#VALUE!	
123 Sb	0.3115	0.0623	ppb	9.58	1000.	
135 Ba	70.15	14.03	ppb	2.51	2000.	
137 Ba	69.6	13.92	ppb	0.11	#VALUE!	
182 W	0.0521	0.0104	ppb	41.46	1000.	
203 Tl	0.014	0.0028	ppb	58.14	1000.	
205 Tl	0.0174	0.0035	ppb	85.43	#VALUE!	
208 Pb	0.2799	0.056	ppb	11.00	2000.	
232 Th	0.0325	0.0065	ppb	22.87	1000.	
238 U	0.2428	0.0486	ppb	7.82	1000.	

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	2960931.30	0.66	2851854.00	103.8	69.5 - 120	
45 Sc	3163634.50	1.24	3051657.30	103.7	69.5 - 120	
89 Y	4684917.00	1.23	4650709.50	100.7	69.5 - 120	
159 Tb	5916710.50	0.68	5913626.00	100.1	69.5 - 120	
209 Bi	3094504.30	1.15	3217378.00	96.2	69.5 - 120	

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D#

0 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

CONVENTIONAL AND PHYSICAL ANALYTICAL DATA

Quality Control Report

Blank Sample Summary Report

Alkalinity

Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	Result	POL	LOD
MBLANK	WG220969	SM2320B	28-DEC-17	N/A	J 0.51 mg/L	5.0 mg/L	4.0
Chloride							
Samp Type	OC Batch	Anal. Method	Anal. Date	Prep. Date	<u>Result</u>	<u>PQL</u>	LOD
MBLANK	WG220806	EPA 300.0	19-DEC-17	N/A	U 1.0 mg/L	$2.0~\mathrm{mg/L}$	1.0
Nitrate As N							
Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	Result	<u>PQL</u>	LOD
MBLANK	WG220806	EPA 300.0	19-DEC-17	N/A	U 0.025 mg/L	$0.050~\mathrm{mg/L}$	0.025
Sulfate							
Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	Result	PQL	LOD
MBLANK	WG220806	EPA 300.0	19-DEC-17	N/A	U 0.50 mg/L	1.0 mg/L	0.50

Quality Control Report
Laboratory Control Sample Summary Report

Cert No E87604

Alkalinity

Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG220969-2	LCS	WG220969	28-DEC-17	N/A	mg/L	120	120	104	80-120	
Chloride										
Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG220806-2	LCS	WG220806	19-DEC-17	N/A	mg/L	3.75	3.71	98.9	90-110	
Nitrate as N										
Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG220806-2	LCS	WG220806	19-DEC-17	N/A	mg/L	0.845	0.835	98.8	90-110	
Sulfate										
Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG220806-2	LCS	WG220806	19-DEC-17	N/A	mg/L	3.75	3.69	98.4	90-110	

Matrix Spike Sample Summary Report

Nitrate as N

Matrix Spike Sample ID	Sample Type	Original Sample ID	QC Batch	Analysis Date	Result Units	Spike Amount	Sample Result	MS Result	Recovery (%)	Recovery Limit	
WG220806-3	MS	TK 1925-10	WG220806	19-DEC-17	mo/I	0.845	13	2.1	94.8	90 - 110	

SHEALY ENVIRONMENTAL SERVICES, INC.

Report of Analysis

Katahdin Analytical Services

600 Technology Way Scarborough, ME 04074 Attention: Heather Manz

Project Name: Gould Island
Project Number: TK11925
Lot Number: **SL22036**

Date Completed:01/03/2018

N. Saikaly

01/08/2018 4:06 PM Approved and released by: Project Manager: Nisreen Saikaly

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

SHEALY ENVIRONMENTAL SERVICES, INC.

Sample Summary Katahdin Analytical Services

Lot Number: SL22036

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	G32-MW306BR-121817	Aqueous	12/18/2017 1050	12/22/2017
002	DUP-121817	Aqueous	12/18/2017	12/22/2017
003	FRB-121817	Aqueous	12/18/2017	12/22/2017
004	GI-MW400-121817	Aqueous	12/18/2017 1030	12/22/2017
005	G44S-MW202RR-121817	Aqueous	12/18/2017 1420	12/22/2017
006	G32-MW304SR-121817	Aqueous	12/18/2017 1250	12/22/2017

(6 samples)

PFAS by LC/MS/MS - MB

Sample ID: SQ60687-001 Batch: 60687

Analytical Method: 537.1 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD Prep Date: 12/28/2017 930

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
EtFOSAA	2.0	U	1	4.0	2.0	1.0	ng/L	12/28/2017 1844
MeFOSAA	2.0	2.0 U		4.0	2.0	1.0	ng/L	12/28/2017 1844
PFBS	1.0	U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFHxS	1.0	U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFDA	1.0	U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFDoA	1.0	U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFHpA	1.0	U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFHxA	1.0	U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFNA	1.0	U		2.0	1.0	0.50	ng/L	12/28/2017 1844
PFOA	0.80	J	1) 2.0	1.0	0.50	ng/L	12/28/2017 1844
PFTeDA	2.0	U	1	4.0	2.0	1.0	ng/L	12/28/2017 1844
PFTrDA	1.0	U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFUdA	1.0	U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFOS	1.0	U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
Surrogate	Q % R	ec	Accept Lim					
13C2_PFDoA	102	2	50-	150				
13C2_PFTeDA	93		50-	150				
13C3_PFBS	102	2	50-	150				
13C3_PFHxS	106	3	50-	150				
13C4_PFHpA	104	4	50-	150				
13C5_PFHxA	103	3	50-	150				
13C6_PFDA	103	3	50-	150				
13C7_PFUdA	105	5	50-	150				
13C8_PFOA	103	3	50-	150				
13C8_PFOS	105	5	50-	150				
13C9_PFNA	107	7	50-	150				
d5-EtFOSAA	106	3	50-	150				
d3-MeFOSAA	103	3	50-	150				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

U = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

PFAS by LC/MS/MS - LCS

Sample ID: SQ60687-002

Batch: 60687

Analytical Method: 537.1 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD Prep Date: 12/28/2017 930

Analytical Method: 537.1 Modified-IL	Modified-ID Fieb Date: 12/26/2017 930										
Parameter	Spike Amount (ng/L)	Result (ng/L)	Q Dil	% Rec	% Rec Limit	Analysis Date					
EtFOSAA	20	20	1	99	70-130	12/28/2017 1858					
MeFOSAA	20	21	1	103	70-130	12/28/2017 1858					
PFBS	18	18	1	104	70-130	12/28/2017 1858					
PFHxS	18	19	1	103	70-130	12/28/2017 1858					
PFDA	20	22	1	110	70-130	12/28/2017 1858					
PFDoA	20	22	1	108	70-130	12/28/2017 1858					
PFHpA	20	20	1	101	70-130	12/28/2017 1858					
PFHxA	20	20	1	100	70-130	12/28/2017 1858					
PFNA	20	19	1	96	70-130	12/28/2017 1858					
PFOA	20	21	1	104	70-130	12/28/2017 1858					
PFTeDA	20	21	1	105	70-130	12/28/2017 1858					
PFTrDA	20	21	1	104	70-130	12/28/2017 1858					
PFUdA	20	19	1	96	70-130	12/28/2017 1858					
PFOS	19	20	1	108	70-130	12/28/2017 1858					
Surrogate	Q % Rec	Acceptance Limit									
13C2_PFDoA	107	50-150									
13C2_PFTeDA	80	50-150									
13C3_PFBS	109	50-150									
13C3_PFHxS	105	50-150									
13C4_PFHpA	109	50-150									
13C5_PFHxA	111	50-150									
13C6_PFDA	108	50-150									
13C7_PFUdA	110	50-150									
13C8_PFOA	111	50-150									
13C8_PFOS	108	50-150									
13C9_PFNA	114	50-150									
d5-EtFOSAA	108	50-150									

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

50-150

N = Recovery is out of criteria

DL = Detection Limit

d3-MeFOSAA

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection U = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

100

PFAS by LC/MS/MS - LCSD

Sample ID: SQ60687-003 Batch: 60687

Matrix: Aqueous Prep Method: 537 MOD Prep Date: 12/28/2017 930

Analytical Method: 537.1 Modified-ID

	Spike Amount	Result					% Rec	% RPD	
Parameter	(ng/L)	(ng/L)	Q	Dil	% Rec	% RPD	Limit	Limit	Analysis Date
EtFOSAA	20	18		1	90	9.4	70-130	30	12/28/2017 1912
MeFOSAA	20	19		1	96	6.7	70-130	30	12/28/2017 1912
PFBS	18	19		1	105	0.70	70-130	30	12/28/2017 1912
PFHxS	18	18		1	100	2.5	70-130	30	12/28/2017 1912
PFDA	20	21		1	105	4.5	70-130	30	12/28/2017 1912
PFDoA	20	22		1	112	3.6	70-130	30	12/28/2017 1912
PFHpA	20	21		1	103	2.2	70-130	30	12/28/2017 1912
PFHxA	20	22		1	109	8.5	70-130	30	12/28/2017 1912
PFNA	20	20		1	100	4.4	70-130	30	12/28/2017 1912
PFOA	20	22		1	112	7.4	70-130	30	12/28/2017 1912
PFTeDA	20	20		1	98	6.7	70-130	30	12/28/2017 1912
PFTrDA	20	22		1	111	6.1	70-130	30	12/28/2017 1912
PFUdA	20	20		1	101	4.9	70-130	30	12/28/2017 1912
PFOS	19	18		1	95	13	70-130	30	12/28/2017 1912
Surrogate	Q % Rec		eptance Limit						
13C2_PFDoA	102	į	50-150						
13C2_PFTeDA	79	į	50-150						
13C3_PFBS	103	į	50-150						
13C3_PFHxS	106	į	50-150						
13C4_PFHpA	105	į	50-150						
13C5_PFHxA	106	į	50-150						
13C6_PFDA	105	į	50-150						
13C7_PFUdA	104	į	50-150						
13C8_PFOA	103	į	50-150						
13C8_PFOS	106	ŧ	50-150						
13C9_PFNA	106	į	50-150						
d5-EtFOSAA	109	į.	50-150						
d3-MeFOSAA	106	ŧ	50-150						

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection U = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

FORM 2 ISOTOPE DILUTION STANDARD RECOVERY

Lab Name: Shealy Environmental Services, Inc. Lot No.: SL22036

Project No.: TK11925

AnalyticalMethod: 537.1 Modified-ID Matrix: Water

CLIENT SAMPLE ID	IDS1	IDS2	IDS3	IDS4	IDS5	IDS6	IDS7	IDS8	IDS9
G32-MW306BR-121	39.17	73	99	99	96	99	97	94	95
DUP-121817	94	94	101	96	99	101	101	96	100
FRB-121817	90	84	98	95	97	101	97	96	98
GI-MW400-121817		92	103	100	101	101	98	96	100
G44S-MW202RR-121817	87	87	94	92	95	96	90	91	93
G32-MW304SR-121	B 8.1 7	82	86	86	90	85	87	89	94
SQ60687-001	102	93	102	106	104	103	103	105	103
SQ60687-002	107	80	109	105	109	111	108	110	111
SQ60687-003	102	79	103	106	105	106	105	104	103
		İ							

	<u>QC LIMITS</u>
IDS1 = 13C2_PFDoA	50-150
IDS2 = 13C2_PFTeDA	50-150
IDS3 = 13C3_PFBS	50-150
IDS4 = 13C3_PFHxS	50-150
IDS5 = 13C4_PFHpA	50-150
IDS6 = 13C5_PFHxA	50-150
IDS7 = 13C6_PFDA	50-150
IDS8 = 13C7_PFUdA	50-150
IDS9 = 13C8_PFOA	50-150

^{*} Recoveries outside QC limits

D IDS Diluted Out

FORM 2 ISOTOPE DILUTION STANDARD RECOVERY

Lab Name: Shealy Environmental Services, Inc. Lot No.: SL22036

Project No.: TK11925

AnalyticalMethod: 537.1 Modified-ID Matrix: Water

CLIENT SAMPLE ID	IDS10	IDS11	IDS12	IDS13	IDS14	IDS15	IDS16	IDS17	TOT OUT
G32-MW306BR-121817	94	96	93	94					0
DUP-121817	98	97	98	95					0
FRB-121817	99	98	97	96					0
GI-MW400-121817	95	101	101	98					0
G44S-MW202RR-121817	93	92	90	83					0
G32-MW304SR-121817	89	93	87	89					0
SQ60687-001	105	107	106	103					0
SQ60687-002	108	114	108	100					0
SQ60687-003	106	106	109	106					0

	QC LIMITS
IDS10 = 13C8_PFOS	50-150
IDS11 = 13C9_PFNA	50-150
IDS12 = d5-EtFOSAA	50-150
IDS13 = d3-MeFOSAA	50-150

^{*} Recoveries outside QC limits D IDS Diluted Out

DODCMD_ID	INSTALLATION_ID	SDG SITE_NAME	NORM_SITE_NAME	LOCATION_NAME	LOCATION_TYPE_DESC	COORD_X	COORD_Y	CONTRACT_ID	DO_CTO_NUMBER	CONTR_NAME	SAMPLE_NAME	SAMPLE_MATRIX_DESC	SAMPLE_TYPE_DESC	COLLECT_DATE	ANALYTICAL_METHOD	ANALYTICAL_METHOD_GRP_DESC
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	GI-MW400	Monitoring well	370373.73	165093.22	N6247016D9008	WE22	TETRA TECH, INC.	GI-MW400-121817	Ground water	Normal (Regular)	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925						8005	WE22	TETRA TECH, INC.	FRB-121817	Water for QC samples	Field Reagent Blank	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	G44S-MW-202RR	Monitoring well	370497.6	165558.77	8005	WE22	TETRA TECH, INC.	G44S-MW-202RR-121817	Ground water	Normal (Regular)	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	G32-MW304SR	Monitoring well	370372.19	165367.49	N6247016D9008	WE22	TETRA TECH, INC.	G32-MW304SR-121817	Ground water	Normal (Regular)	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	G32-MW306BR	Monitoring well	370549.06	165571.11	8005	WE22	TETRA TECH, INC.	G32-MW306BR-121817	Ground water	Normal (Regular)	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	GI-MW400	Monitoring well	370373.73	165093.22	8005	WE22	TETRA TECH, INC.	GI-MW400-121817-D	Ground water	Field duplicate	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925						N6247016D9008	WE22	TETRA TECH, INC.	FRB-121817	Water for QC samples	Field Reagent Blank	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	G32-MW304SR	Monitoring well	370372.19	165367.49	8005	WE22	TETRA TECH, INC.	G32-MW304SR-121817	Ground water	Normal (Regular)	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	G32-MW306BR	Monitoring well	370549.06	165571.11	N6247016D9008	WE22	TETRA TECH, INC.	G32-MW306BR-121817	Ground water	Normal (Regular)	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	GI-MW400	Monitoring well	370373.73	165093.22	N6247016D9008	WE22	TETRA TECH, INC.	GI-MW400-121817-D	Ground water	Field duplicate	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	GI-MW400	Monitoring well	370373.73	165093.22	8005	WE22	TETRA TECH, INC.	GI-MW400-121817	Ground water	Normal (Regular)	18-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	TK1925 SITE 00017	SITE 00017	G44S-MW-202RR	Monitoring well	370497.6	165558.77	N6247016D9008	WE22	TETRA TECH, INC.	G44S-MW-202RR-121817	Ground water	Normal (Regular)	18-Dec-17	537	Perfluoroalkyl Compounds