

Groundwater Sample Results,
Level 2 Laboratory Report, Level 4 Laboratory Report,
Electronic Data Deliverable, and Data Validation
Report, Sample Location Report, SDG 1700804

NSWC White Oak MD

December 2020

July 20, 2017

Vista Work Order No. 1700804

Ms. Nia Nikmanesh KMEA 2423 Hoover Avenue National City, CA 91950

Dear Ms. Nikmanesh,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on June 30, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'NSWC White Oak'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier

Laboratory Director

Karing. Volpend gta for

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph; 916-673-1520 fx; 916-673-0106 www.vista-analytical.com

Work Order 1700804 Page 1 of 26

Vista Work Order No. 1700804 Case Narrative

Sample Condition on Receipt:

Eleven water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

Samples "IRPSite7-GW-07GW41-20170629", "IRPSite33-GW-11MW204D-20170629", "Bldg 110-GW-11MW205D-20170629", "Bldg 110-GW-11MW205S-20170629", "IRPSite7-GW-07GW102-20170629" and "IRPSite5-GW-04GW82-20170629" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recovery for 13C2-PFTeDA in sample "Bldg 110-GW-FRB01-20170629" was below the method acceptance criteria at 6.10%. This sample was re-extracted and showed similar recoveries.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

Work Order 1700804 Page 2 of 26

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
1700804-02	IRPSite5-GW-05GW01-20170629	Modified EPA Method 537	13C2-PFDoA	Н	37.4
1700804-04	IRPSite33-GW-FRB01-20170629	Modified EPA Method 537	13C2-PFDoA	Н	44.6
1700804-05	IRPSite33-GW-11MW204D-20170629	Modified EPA Method 537	13C2-PFDoA	Н	37.4
1700804-07	Bldg 110-GW-11MW205D-20170629	Modified EPA Method 537	13C2-PFDoA	Н	41.4
1700804-08	Bldg 110-GW-FRB01-20170629	Modified EPA Method 537	13C2-PFDoA	Н	28.2
1700804-08	Bldg 110-GW-FRB01-20170629	Modified EPA Method 537	13C2-PFTeDA	Н	6.10
1700804-11	IRPSite5-GW-04GW82-20170629	Modified EPA Method 537	13C2-PFDoA	Н	37.0

H = Recovery was outside laboratory acceptance criteria.

Work Order 1700804 Page 3 of 26

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	20
Certifications	21
Sample Receipt	24

Work Order 1700804 Page 4 of 26

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1700804-01	IRPSite7-GW-07GW41-20170629	29-Jun-17 10:02	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-02	IRPSite5-GW-05GW01-20170629	29-Jun-17 10:58	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-03	IRPSite5-GW-FD01-20170629	29-Jun-17 11:00	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-04	IRPSite33-GW-FRB01-20170629	29-Jun-17 11:35	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-05	IRPSite33-GW-11MW204D-2017062 9	29-Jun-17 12:30	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-06	IRPSite33-GW-11MW204S-2017062 9	29-Jun-17 13:05	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-07	Bldg 110-GW-11MW205D-20170629	29-Jun-17 14:51	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-08	Bldg 110-GW-FRB01-20170629	29-Jun-17 14:10	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-09	Bldg 110-GW-11MW205S-20170629	29-Jun-17 15:35	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-10	IRPSite7-GW-07GW102-20170629	29-Jun-17 16:17	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-11	IRPSite5-GW-04GW82-20170629	29-Jun-17 16:35	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

Vista Project: 1700804 Client Project: NSWC White Oak

Work Order 1700804 Page 5 of 26

ANALYTICAL RESULTS

Work Order 1700804 Page 6 of 26

Sample ID:	: Metho	od Blank			Modif	ied EPA M	ethod 537				
Matrix: Sample Size:	Aqueous 0.125 L		QC Batch: Date Extracted:	B7G0049 13-Jul-2017	9:00			b Sample: B7G0049-BI te Analyzed: 13-Jul-17 17	LK1 :10 Column: BEH	C18	
Analyte		Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS		ND	1.79	5.00	8.00		IS	13C3-PFBS	122	50 - 150	
PFHxA		ND	2.18	5.00	8.00		IS	13C2-PFHxA	107	50 - 150	
PFHpA		ND	0.591	5.00	8.00		IS	13C4-PFHpA	93.2	50 - 150	
PFHxS		ND	0.947	5.00	8.00		IS	18O2-PFHxS	118	50 - 150	
PFOA		ND	0.651	5.00	8.00		IS	13C2-PFOA	91.4	50 - 150	
PFOS		ND	0.807	5.00	8.00		IS	13C8-PFOS	97.0	50 - 150	
PFNA		ND	0.810	5.00	8.00		IS	13C5-PFNA	100	50 - 150	
PFDA		ND	1.49	5.00	8.00		IS	13C2-PFDA	96.5	50 - 150	
MeFOSAA		ND	1.65	5.00	8.00		IS	d3-MeFOSAA	96.9	50 - 150	
PFUnA		ND	1.05	5.00	8.00		IS	13C2-PFUnA	80.2	50 - 150	
EtFOSAA		ND	1.37	5.00	8.00		IS	d5-EtFOSAA	98.5	50 - 150	
PFDoA		ND	0.792	5.00	8.00		IS	13C2-PFDoA	56.7	50 - 150	
PFTrDA		ND	0.494	5.00	8.00		IS	13C2-PFTeDA	148	50 - 150	
PFTeDA		ND	0.755	5.00	8.00						

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 7 of 26

Sample ID: OPR Modified EPA Method 537

Matrix: Aqueous QC Batch: B7G0049 Lab Sample: B7G0049-BS1

Sample Size: 0.125 L Date Extracted: 13-Jul-2017 9:00 Date Analyzed: 13-Jul-17 16:38 Column: BEH C18

Analyte	Amt Found (ng/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
PFBS	65.5	80.0	81.9	70 - 130	IS	13C3-PFBS	126	50 - 150
PFHxA	72.1	80.0	90.1	70 - 130	IS	13C2-PFHxA	102	50 - 150
PFHpA	67.1	80.0	83.8	70 - 130	IS	13C4-PFHpA	88.2	50 - 150
PFHxS	76.3	80.0	95.3	70 - 130	IS	18O2-PFHxS	109	50 - 150
PFOA	67.8	80.0	84.8	70 - 130	IS	13C2-PFOA	104	50 - 150
PFOS	78.0	80.0	97.5	70 - 130	IS	13C8-PFOS	106	50 - 150
PFNA	68.2	80.0	85.2	70 - 130	IS	13C5-PFNA	101	50 - 150
PFDA	64.5	80.0	80.7	70 - 130	IS	13C2-PFDA	93.1	50 - 150
MeFOSAA	69.9	80.0	87.3	70 - 130	IS	d3-MeFOSAA	68.2	50 - 150
PFUnA	73.5	80.0	91.9	70 - 130	IS	13C2-PFUnA	65.4	50 - 150
EtFOSAA	75.6	80.0	94.5	70 - 130	IS	d5-EtFOSAA	77.0	50 - 150
PFDoA	102	80.0	127	70 - 130	IS	13C2-PFDoA	62.5	50 - 150
PFTrDA	95.0	80.0	119	60 - 130	IS	13C2-PFTeDA	77.8	50 - 150
PFTeDA	79.0	80.0	98.8	70 - 130				

LCL-UCL - Lower control limit - upper control limit

Work Order 1700804 Page 8 of 26

Sample ID:	IRPSite7-GW-07GW41-	-20170629	9					Modifie	d EPA Me	thod 537
Client Data			Sample Data		Lab	oratory	y Data			
Name:	KMEA		Matrix:	Water	La	b Samp	ole: 1700804-01	Date Received:	30-Jun-2017	9:54
Project:	NSWC White Oak		Sample Size:	0.121 L	QQ	Batch	: B7G0049	Date Extracted:	13-Jul-2017	9:00
Date Collected: Location:	29-Jun-2017 10:02		-		Da	te Anal	lyzed: 13-Jul-17 17:33 Colu	ımn: BEH C18		
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	4.16	1.86	5.17	8.29	J	IS	13C3-PFBS	144	50 - 150	
PFHxA	17.0	2.26	5.17	8.29		IS	13C2-PFHxA	109	50 - 150	
PFHpA	9.53	0.613	5.17	8.29		IS	13C4-PFHpA	95.8	50 - 150	
PFHxS	81.1	0.982	5.17	8.29		IS	18O2-PFHxS	115	50 - 150	
PFOA	30.3	0.675	5.17	8.29		IS	13C2-PFOA	84.7	50 - 150	
PFOS	262	0.837	5.17	8.29		IS	13C8-PFOS	103	50 - 150	
PFNA	3.26	0.840	5.17	8.29	J	IS	13C5-PFNA	102	50 - 150	
PFDA	ND	1.54	5.17	8.29		IS	13C2-PFDA	92.5	50 - 150	
MeFOSAA	ND	1.71	5.17	8.29		IS	d3-MeFOSAA	68.4	50 - 150	
PFUnA	ND	1.09	5.17	8.29		IS	13C2-PFUnA	75.3	50 - 150	
EtFOSAA	ND	1.42	5.17	8.29		IS	d5-EtFOSAA	79.3	50 - 150	
PFDoA	ND	0.821	5.17	8.29		IS	13C2-PFDoA	61.1	50 - 150	

8.29

8.29

DL - Detection limit

0.512

0.783

5.17

5.17

ND

ND

PFTrDA

PFTeDA

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

13C2-PFTeDA

Results reported to DL.

IS

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

83.4

50 - 150

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 9 of 26

Sample ID:	IRPSite5-GW-05GW01-20170629	Modified EPA Method 537
------------	-----------------------------	-------------------------

Water

0.115 L

Name: **KMEA** NSWC White Oak Project:

Client Data

Date Collected: Location:

29-Jun-2017 10:58

Laboratory Data

Lab Sample: 1700804-02 B7G0049 QC Batch:

Date Received: 30-Jun-2017 9:54 Date Extracted: 13-Jul-2017 9:00

Date Analyzed: 13-Jul-17 17:44 Column: BEH C18

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	ND	1.95	5.43	8.72	<u> </u>	IS	13C3-PFBS	131	50 - 150	<u></u>
PFHxA	6.98	2.38	5.43	8.72	Ţ	IS	13C2-PFHxA	107	50 - 150	
PFHpA	3.96	0.644	5.43	8.72	J	IS	13C4-PFHpA	91.5	50 - 150	
PFHxS	61.1	1.03	5.43	8.72	-	IS	18O2-PFHxS	115	50 - 150	
PFOA	48.8	0.710	5.43	8.72		IS	13C2-PFOA	91.0	50 - 150	
PFOS	205	0.880	5.43	8.72		IS	13C8-PFOS	110	50 - 150	
PFNA	3.24	0.883	5.43	8.72	J	IS	13C5-PFNA	93.8	50 - 150	
PFDA	ND	1.62	5.43	8.72		IS	13C2-PFDA	82.2	50 - 150	
MeFOSAA	ND	1.80	5.43	8.72		IS	d3-MeFOSAA	107	50 - 150	
PFUnA	ND	1.14	5.43	8.72		IS	13C2-PFUnA	79.1	50 - 150	
EtFOSAA	ND	1.49	5.43	8.72		IS	d5-EtFOSAA	87.3	50 - 150	
PFDoA	ND	0.863	5.43	8.72		IS	13C2-PFDoA	37.4	50 - 150	Н
PFTrDA	ND	0.539	5.43	8.72		IS	13C2-PFTeDA	118	50 - 150	
PFTeDA	ND	0.823	5.43	8.72						

DL - Detection limit

Sample Data

Sample Size:

Matrix:

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 10 of 26

Sample ID:	IRPSite5-GW-FD01-20170629					Modified	d EPA Method 537
Client Data		Sample Data		Laboratory Data			
Name:	KMEA	Matrix:	Water	Lab Sample:	1700804-03	Date Received:	30-Jun-2017 9:54
Project:	NSWC White Oak	Sample Size:	0.113 L	QC Batch:	B7G0049	Date Extracted:	13-Jul-2017 9:00
Date Collected: Location:	29-Jun-2017 11:00			Date Analyzed:	13-Jul-17 17:54 Column	: BEH C18	

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	2.30	1.99	5.53	8.88	J	IS	13C3-PFBS	117	50 - 150	
PFHxA	6.86	2.42	5.53	8.88	J	IS	13C2-PFHxA	102	50 - 150	
PFHpA	3.17	0.656	5.53	8.88	J	IS	13C4-PFHpA	92.8	50 - 150	
PFHxS	64.9	1.05	5.53	8.88		IS	18O2-PFHxS	108	50 - 150	
PFOA	51.3	0.723	5.53	8.88		IS	13C2-PFOA	98.0	50 - 150	
PFOS	199	0.896	5.53	8.88		IS	13C8-PFOS	99.9	50 - 150	
PFNA	2.82	0.899	5.53	8.88	J	IS	13C5-PFNA	97.7	50 - 150	
PFDA	ND	1.65	5.53	8.88		IS	13C2-PFDA	87.5	50 - 150	
MeFOSAA	ND	1.83	5.53	8.88		IS	d3-MeFOSAA	70.8	50 - 150	
PFUnA	ND	1.17	5.53	8.88		IS	13C2-PFUnA	82.8	50 - 150	
EtFOSAA	ND	1.52	5.53	8.88		IS	d5-EtFOSAA	93.6	50 - 150	
PFDoA	ND	0.879	5.53	8.88		IS	13C2-PFDoA	62.3	50 - 150	
PFTrDA	ND	0.548	5.53	8.88		IS	13C2-PFTeDA	92.3	50 - 150	
PFTeDA	ND	0.838	5.53	8.88						

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 11 of 26

Sample ID: IRPSite33-GW-FRB01-20170629 Modified EPA Method 537

Water

0.123 L

Name: KMEA
Project: NSWC White Oak

Project: NSWC White Oak Date Collected: 29-Jun-2017 11:35

Location:

Client Data

Laboratory Data

 Lab Sample:
 1700804-04
 Date Received:
 30-Jun-2017
 9:54

 QC Batch:
 B7G0049
 Date Extracted:
 13-Jul-2017
 9:00

Date Analyzed: 13-Jul-17 18:05 Column: BEH C18

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	ND	1.82	5.08	8.15		IS	13C3-PFBS	125	50 - 150	
PFHxA	ND	2.22	5.08	8.15		IS	13C2-PFHxA	103	50 - 150	
PFHpA	ND	0.602	5.08	8.15		IS	13C4-PFHpA	96.5	50 - 150	
PFHxS	ND	0.965	5.08	8.15		IS	18O2-PFHxS	108	50 - 150	
PFOA	ND	0.663	5.08	8.15		IS	13C2-PFOA	98.5	50 - 150	
PFOS	ND	0.822	5.08	8.15		IS	13C8-PFOS	90.3	50 - 150	
PFNA	ND	0.825	5.08	8.15		IS	13C5-PFNA	104	50 - 150	
PFDA	ND	1.52	5.08	8.15		IS	13C2-PFDA	91.5	50 - 150	
MeFOSAA	ND	1.68	5.08	8.15		IS	d3-MeFOSAA	71.0	50 - 150	
PFUnA	ND	1.07	5.08	8.15		IS	13C2-PFUnA	76.2	50 - 150	
EtFOSAA	ND	1.40	5.08	8.15		IS	d5-EtFOSAA	78.1	50 - 150	
PFDoA	ND	0.807	5.08	8.15		IS	13C2-PFDoA	44.6	50 - 150	Н
PFTrDA	ND	0.503	5.08	8.15		IS	13C2-PFTeDA	74.4	50 - 150	
PFTeDA	ND	0.769	5.08	8.15						

DL - Detection limit

Sample Data

Sample Size:

Matrix:

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 12 of 26

Sample ID:	IRPSite33-GW-11MW204D-2017	0629			Modified EPA Method 537		
Client Data		Sample Data		Laboratory Data			
Name:	KMEA	Matrix:	Water	Lab Sample:	1700804-05	Date Received:	30-Jun-2017 9:54

Project: NSWC White Oak
Date Collected: 29-Jun-2017 12:30

Location:

Matrix: Water Lab Sample Sample Size: 0.117 L QC Batch:

 Lab Sample:
 1700804-05
 Date Received:
 30-Jun-2017
 9:54

 QC Batch:
 B7G0049
 Date Extracted:
 13-Jul-2017
 9:00

Date Analyzed: 13-Jul-17 18:15 Column: BEH C18

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	9.95	1.91	5.34	8.53		IS	13C3-PFBS	117	50 - 150	
PFHxA	51.0	2.32	5.34	8.53		IS	13C2-PFHxA	101	50 - 150	
PFHpA	21.5	0.630	5.34	8.53		IS	13C4-PFHpA	92.5	50 - 150	
PFHxS	62.9	1.01	5.34	8.53		IS	18O2-PFHxS	105	50 - 150	
PFOA	95.8	0.694	5.34	8.53		IS	13C2-PFOA	85.9	50 - 150	
PFOS	38.3	0.860	5.34	8.53		IS	13C8-PFOS	105	50 - 150	
PFNA	1.88	0.863	5.34	8.53	J	IS	13C5-PFNA	88.7	50 - 150	
PFDA	1.94	1.59	5.34	8.53	J	IS	13C2-PFDA	85.5	50 - 150	
MeFOSAA	ND	1.76	5.34	8.53		IS	d3-MeFOSAA	73.4	50 - 150	
PFUnA	ND	1.12	5.34	8.53		IS	13C2-PFUnA	78.7	50 - 150	
EtFOSAA	ND	1.46	5.34	8.53		IS	d5-EtFOSAA	75.4	50 - 150	
PFDoA	ND	0.844	5.34	8.53		IS	13C2-PFDoA	37.4	50 - 150	Н
PFTrDA	ND	0.526	5.34	8.53		IS	13C2-PFTeDA	63.7	50 - 150	
PFTeDA	ND	0.805	5.34	8.53						

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 13 of 26

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

Sample ID:	IRPSite33-GW-11MW20	4S-2017	0629						Modifie	d EPA Me	ethod 537
Client Data			Sample Data]	Labora	tory D	ata			
Name:	KMEA		Matrix:	Water		Lab S	ample:	1700804-06	Date Received:	30-Jun-2017	9:54
Project:	NSWC White Oak		Sample Size:	0.117 L		QC B	atch:	B7G0049	Date Extracted:	13-Jul-2017	9:00
Date Collected:	29-Jun-2017 13:05					Date A	Analyz	ed: 13-Jul-17 18:26 C	olumn: BEH C18		
Location:											
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifi	ers	I	abeled Standard	%R	LCL-UCL	Qualifiers
PFBS	9.66	1.92	5.34	8.58]	S 1	3C3-PFBS	136	50 - 150	
PFHxA	52.9	2.34	5.34	8.58		_ 1	S 1	3C2-PFHxA	110	50 - 150	
PFHpA	20.5	0.634	5.34	8.58]	S 1	3C4-PFHpA	102	50 - 150	
PFHxS	53.6	1.02	5.34	8.58		_]	S 1	8O2-PFHxS	99.4	50 - 150	
PFOA	76.0	0.698	5.34	8.58]	S 1	3C2-PFOA	87.1	50 - 150	
PFOS	29.6	0.865	5.34	8.58		1	S 1	3C8-PFOS	104	50 - 150	

8.58

8.58

8.58

8.58

8.58

8.58

8.58

8.58

DL - Detection limit

5.34

5.34

5.34

5.34

5.34

5.34

5.34

5.34

0.868

1.60

1.77

1.13

1.47

0.849

0.530

0.809

1.14

ND

ND

ND

ND

ND

ND

ND

PFNA

PFDA

PFUnA

PFDoA

PFTrDA

PFTeDA

MeFOSAA

EtFOSAA

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

13C5-PFNA

13C2-PFDA

d3-MeFOSAA

13C2-PFUnA

d5-EtFOSAA

13C2-PFDoA

13C2-PFTeDA

Results reported to DL.

IS

IS

IS

IS

IS

IS

IS

J

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

99.5

93.6

81.9

90.1

80.7

54.0

90.7

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 14 of 26

Sample ID: Bldg 110-GW-11MW205D-20170	Modified EPA Method 537				
Client Data	Sample Data	Laboratory Data			

0.117 L

Name: KMEA
Project: NSWC White Oak

Date Collected: 29-Jun-2017 14:51

Location:

Water Lab Sample:

 Lab Sample:
 1700804-07
 Date Received:
 30-Jun-2017
 9:54

 QC Batch:
 B7G0049
 Date Extracted:
 13-Jul-2017
 9:00

Date Analyzed: 13-Jul-17 18:37 Column: BEH C18

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Oualifiers
PFBS	11.3	1.91	5.34	8.52	Q	IS	13C3-PFBS	134	50 - 150	Quantities
PFHxA	46.3	2.32	5.34	8.52		IS	13C2-PFHxA	113	50 - 150	
PFHpA	11.1	0.629	5.34	8.52		IS	13C4-PFHpA	92.6	50 - 150	
PFHxS	83.7	1.01	5.34	8.52		IS	18O2-PFHxS	110	50 - 150	
PFOA	49.6	0.693	5.34	8.52		IS	13C2-PFOA	95.4	50 - 150	
PFOS	20.3	0.859	5.34	8.52		IS	13C8-PFOS	99.1	50 - 150	
PFNA	ND	0.862	5.34	8.52		IS	13C5-PFNA	98.8	50 - 150	
PFDA	ND	1.59	5.34	8.52		IS	13C2-PFDA	76.4	50 - 150	
MeFOSAA	ND	1.76	5.34	8.52		IS	d3-MeFOSAA	93.4	50 - 150	
PFUnA	ND	1.12	5.34	8.52		IS	13C2-PFUnA	83.4	50 - 150	
EtFOSAA	ND	1.46	5.34	8.52		IS	d5-EtFOSAA	86.4	50 - 150	
PFDoA	ND	0.843	5.34	8.52		IS	13C2-PFDoA	41.4	50 - 150	Н
PFTrDA	ND	0.526	5.34	8.52		IS	13C2-PFTeDA	58.9	50 - 150	
PFTeDA	ND	0.804	5.34	8.52						

DL - Detection limit

Matrix:

Sample Size:

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 15 of 26

Sample ID:	Bldg 110-GW-FRB01-20170629	Modified EPA Method 537
------------	----------------------------	-------------------------

Name: KMEA
Project: NSWC White Oak

Client Data

Date Collected: 29-Jun-2017 14:10 Location:

Sample DataLaboratory DataMatrix:WaterLab Sample:

Sample Size: 0.120 L QC

Lab Sample: 1700804-08
QC Batch: B7G0049

Date Received: 30-Jun-2017 9:54 Date Extracted: 13-Jul-2017 9:00

Date Analyzed: 13-Jul-17 18:47 Column: BEH C18

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	ND	1.87	5.21	8.35	Quunitis	IS	13C3-PFBS	136	50 - 150	Q
PFHxA	ND	2.27	5.21	8.35		IS	13C2-PFHxA	109	50 - 150	
PFHpA	ND	0.617	5.21	8.35		IS	13C4-PFHpA	98.1	50 - 150	
PFHxS	ND	0.988	5.21	8.35		IS	18O2-PFHxS	111	50 - 150	
PFOA	ND	0.679	5.21	8.35		IS	13C2-PFOA	89.1	50 - 150	
PFOS	ND	0.842	5.21	8.35		IS	13C8-PFOS	103	50 - 150	
PFNA	ND	0.845	5.21	8.35		IS	13C5-PFNA	102	50 - 150	
PFDA	ND	1.55	5.21	8.35		IS	13C2-PFDA	77.2	50 - 150	
MeFOSAA	ND	1.72	5.21	8.35		IS	d3-MeFOSAA	107	50 - 150	
PFUnA	ND	1.10	5.21	8.35		IS	13C2-PFUnA	85.9	50 - 150	
EtFOSAA	ND	1.43	5.21	8.35		IS	d5-EtFOSAA	107	50 - 150	
PFDoA	ND	0.826	5.21	8.35		IS	13C2-PFDoA	28.2	50 - 150	Н
PFTrDA	ND	0.515	5.21	8.35		IS	13C2-PFTeDA	6.10	50 - 150	Н
PFTeDA	ND	0.788	5.21	8.35						

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 16 of 26

Sample ID:	Bldg 110-GW-11MW205	S-20170	629					Modifie	d EPA Me	ethod 537
Client Data			Sample Data		Lab	orator	y Data			
Name:	KMEA		Matrix:	Water	La	b Samp	ole: 1700804-09	Date Received:	30-Jun-2017	7 9:54
Project:	NSWC White Oak		Sample Size:	0.112 L	Q	Batch	: B7G0049	Date Extracted:	13-Jul-2017	9:00
Date Collected:	29-Jun-2017 15:35				Da	ite Ana	lyzed: 13-Jul-17 18:58 Colu	mn: BEH C18		
Location:										
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	6.18	2.00	5.58	8.95	J	IS	13C3-PFBS	129	50 - 150	
PFHxA	21.5	2.44	5.58	8.95		IS	13C2-PFHxA	98.6	50 - 150	
PFHpA	5.44	0.661	5.58	8.95	J	IS	13C4-PFHpA	89.9	50 - 150	
PFHxS	53.2	1.06	5.58	8.95		IS	18O2-PFHxS	109	50 - 150	
PFOA	14.7	0.729	5.58	8.95		IS	13C2-PFOA	96.2	50 - 150	
PFOS	36.8	0.903	5.58	8.95		IS	13C8-PFOS	102	50 - 150	
PFNA	ND	0.906	5.58	8.95		IS	13C5-PFNA	89.5	50 - 150	
PFDA	2.21	1.67	5.58	8.95	J	IS	13C2-PFDA	82.7	50 - 150	
MeFOSAA	ND	1.85	5.58	8.95		IS	d3-MeFOSAA	79.6	50 - 150	
PFUnA	ND	1.18	5.58	8.95		IS	13C2-PFUnA	88.6	50 - 150	
EtFOSAA	ND	1.53	5.58	8.95		IS	d5-EtFOSAA	89.9	50 - 150	

8.95

8.95

8.95

DL - Detection limit

5.58

5.58

5.58

0.886

0.553

0.845

ND

ND

ND

PFDoA

PFTrDA

PFTeDA

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

13C2-PFDoA

13C2-PFTeDA

Results reported to DL.

IS

IS

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

86.9

121

50 - 150

50 - 150

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 17 of 26

Sample ID: IRPSite7-GW-07GW102-2017062	Modified EPA Method 537				
Client Data	Sample Data	Laboratory Data			

Water

0.121 L

Name: **KMEA** NSWC White Oak Project:

Date Collected: 29-Jun-2017 16:17

Location:

Lab Sample: 1700804-10 Date Received: 30-Jun-2017 9:54 B7G0049 Date Extracted: 13-Jul-2017 9:00 QC Batch:

Date Analyzed: 13-Jul-17 19:09 Column: BEH C18

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	9.06	1.85	5.17	8.28		IS	13C3-PFBS	123	50 - 150	
PFHxA	51.7	2.26	5.17	8.28		IS	13C2-PFHxA	99.0	50 - 150	
PFHpA	30.6	0.612	5.17	8.28		IS	13C4-PFHpA	88.6	50 - 150	
PFHxS	309	0.980	5.17	8.28		IS	18O2-PFHxS	105	50 - 150	
PFOA	73.9	0.674	5.17	8.28		IS	13C2-PFOA	91.7	50 - 150	
PFOS	433	0.835	5.17	8.28		IS	13C8-PFOS	102	50 - 150	
PFNA	3.84	0.838	5.17	8.28	J	IS	13C5-PFNA	93.3	50 - 150	
PFDA	ND	1.54	5.17	8.28		IS	13C2-PFDA	95.5	50 - 150	
MeFOSAA	ND	1.71	5.17	8.28		IS	d3-MeFOSAA	69.4	50 - 150	
PFUnA	ND	1.09	5.17	8.28		IS	13C2-PFUnA	86.2	50 - 150	
EtFOSAA	ND	1.42	5.17	8.28		IS	d5-EtFOSAA	85.8	50 - 150	
PFDoA	ND	0.820	5.17	8.28		IS	13C2-PFDoA	52.3	50 - 150	
PFTrDA	ND	0.511	5.17	8.28		IS	13C2-PFTeDA	98.7	50 - 150	
PFTeDA	ND	0.781	5.17	8.28						

DL - Detection limit

Matrix:

Sample Size:

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 18 of 26

Sample ID:	IRPSite5-GW-04GW82-	-20170629	9					Modifie	d EPA Me	thod 537
Client Data			Sample Data		Lab	oratory	y Data			
Name:	KMEA		Matrix:	Water	La	b Samp	ole: 1700804-11	Date Received:	30-Jun-2017	9:54
Project:	NSWC White Oak		Sample Size:	0.117 L	QQ	Batch	: B7G0049	Date Extracted:	13-Jul-2017	9:00
Date Collected: Location:	29-Jun-2017 16:35				Da	te Anal	lyzed: 13-Jul-17 19:51 Colu	mn: BEH C18		
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	2.49	1.92	5.34	8.58	J	IS	13C3-PFBS	123	50 - 150	
PFHxA	ND	2.34	5.34	8.58		IS	13C2-PFHxA	102	50 - 150	
PFHpA	0.688	0.634	5.34	8.58	J	IS	13C4-PFHpA	90.2	50 - 150	
PFHxS	15.4	1.02	5.34	8.58		IS	18O2-PFHxS	102	50 - 150	
PFOA	2.17	0.698	5.34	8.58	J	IS	13C2-PFOA	93.9	50 - 150	
PFOS	ND	0.865	5.34	8.58		IS	13C8-PFOS	102	50 - 150	
PFNA	ND	0.868	5.34	8.58		IS	13C5-PFNA	97.0	50 - 150	
PFDA	ND	1.60	5.34	8.58		IS	13C2-PFDA	81.0	50 - 150	
MeFOSAA	ND	1.77	5.34	8.58		IS	d3-MeFOSAA	129	50 - 150	
PFUnA	ND	1.13	5.34	8.58		IS	13C2-PFUnA	85.0	50 - 150	
EtFOSAA	ND	1.47	5.34	8.58		IS	d5-EtFOSAA	91.8	50 - 150	

8.58

8.58

8.58

DL - Detection limit

5.34

5.34

5.34

0.849

0.530

0.809

ND

ND

ND

PFDoA

PFTrDA

PFTeDA

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

13C2-PFDoA

13C2-PFTeDA

Results reported to DL.

IS

IS

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

37.0

82.9

50 - 150

50 - 150

Н

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 19 of 26

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1700804 Page 20 of 26

CERTIFICATIONS

Accrediting Authority	Certificate Number		
Arkansas Department of Environmental Quality	17-015-0		
California Department of Health – ELAP	2892		
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01		
Florida Department of Health	E87777-18		
Hawaii Department of Health	N/A		
Louisiana Department of Environmental Quality	01977		
Maine Department of Health	2016026		
Minnesota Department of Health	1175673		
Nevada Division of Environmental Protection	CA004132017-1		
New Hampshire Environmental Accreditation Program	207716		
New Jersey Department of Environmental Protection	CA003		
New York Department of Health	11411		
Oregon Laboratory Accreditation Program	4042-008		
Pennsylvania Department of Environmental Protection	013		
Texas Commission on Environmental Quality	T104704189-17-8		
Virginia Department of General Services	8621		
Washington Department of Ecology	C584		
Wisconsin Department of Natural Resources	998036160		

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1700804 Page 21 of 26

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Work Order 1700804 Page 22 of 26

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1700804 Page 23 of 26

1104 Windfield Way

Vista Analytical

El Dorado Hills, CA 95762

CHAIN OF CUSTODY ECORD

TEL: 916-673-1520

1700804 0.8°C PAGE: 2 OF 3

AMEC Foster Wheeler E & I, Inc.					OEEE THE TOTAL OF THE PERSON O								1.6.116										
ADDRESS:					- NSWL White Oak							TO 008											
9210 Sky Park Court					PROJECT CONTACT:							CONTRACT NO.:											
CITY:				Medora Hackler/Marie Bevier							N62473-16-D-2405												
San	Diego, CA 92123					SAN	VPLER(5	S): (SIGNA	TURE)				1000				LAB USE ONLY						
TEL:	E-Mail		E-MAIL				P	1.1															
	39.3400 medora.hackler@amecfw.c	com	marie.bevi	er@amecfw.	com	_	1.1	Vih	~								Busse		ndiibe				=4
	SAME DAY 24 HR 48HR 72 HR		AVS [14]	10000		REQUESTED ANALYSIS																	
	AL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)		AIS X	10 DA 13		40000			Т				T					_			$\overline{}$	$\neg \tau$	\dashv
1000	(2018) - 1919		,	35																	-	- 1	
	RWQCB REPORTING ARCHIVE SAMPLE ALINSTRUCTIONS	SUNTIL	/	/			S															1	
SPECI	AL INSTRUCTIONS						PFBS	_															- 1
							and PF	. O															
							ar,	2													- 1		- 1
							OS, 2	6															
						Ş	P P	5											1 1				- 1
LAB USE	SAMPLE ID	SAME	PLING	4	*	Level	A,												1 1				- 1
ONLY	SAMPLE ID	DATE	TIME	Matrix	*Cont	ဗ္ဗ	PFO/	5															- [
	1RPS:+27- GW-07 GW41-2017 0629	6/29/17	1002	W	2	4	X																
	1RPSite5-GW-05GW01-20170629	6/29/17	1058	W	2	28	×																
		6/29/17		W	2	2B	X																
	1RPSite33-GW-FRB01-20170629	6/29/17	1135	W	2	2B	×															\perp	
	IRPSite33-GW-11MWZ04D-20170629	4/29/17	1230	N	2	28	X				1				\perp		\perp			\perp	\perp	\perp	
	1RPSite33-GW-11MW2045-20170629	6/29/17	1305	W	2	2B	×					\perp			\perp				Ш	\dashv	\dashv	\perp	\Box
	Bldg 110 - GW-11MW 2050 -20170629	4/29/17	1451	W	2	ZB	×					_			\perp	_			Ш	_	_	\dashv	$ \bot $
	Bldg110-GW-FRB01-20170629			W	2	28	X					_			_				Ш	_	\perp	\perp	\Box
	BIAGIIO - GW-11MW2055-Z0170629			W	2	283	X								_					_	_	\dashv	_
	1RPSite7-GW-07GW102-20170629	6/29/17	1617	W	2	2B																	\exists
Relinquished by: (Signature) Received by: (Signature) FedEx					: (Signa								ate:	te: Time: 1730									
					/(Sigha																		
1	Relinquished by: (Signature) Received by: (Signature)					mut.							6/31	te: 1009									
	uished by: (Signature)		7	Received by												Da	ate:	1. /	\dashv	Time:			\dashv
i veiniq	aiona o, (oignaturo)			l	(-19.10																		
																							_

Vista Analytical

1104 Windfield Way

TEL: 916-673-1520

El Dorado Hills, CA 95762

CHAIN OF CUSTODY ECORD
DATE: 6/29/17

1700804 PAGE: 3 OF 3

						CLIENT PROJECT NAME / NUMBER:							P.O.	P.O. NO.:									
AMEC Foster Wheeler E & I, Inc. ADDRESS:						4							TO 008						I				
9210 Sky Park Court					PROJECT CONTACT:							CONTRACT NO.:						1					
CITY:					1 м	ledora	Hack	ler/M	arie Be	evier					N62473-16-D-2405					١			
San Diego, CA 92123						IPLER(S):									LAB USE ONLY					1			
San Diego, CA 92123 TEL: E-Mail E-MAIL							E	2 11)									1	٦٠٢				1
503.6		nedora.hackler@amecfw.d	com	marie.bevi	er@amecfw	.com	1	2. Ni	n		-											111111111111111111111111111111111111111	
	ROUND TIME											DE	SHES	TED	ANIA	I VCI	c						
S	AME DAY 24 HR] 48HR [] 72 HR	8 🗌 5 D	AYS X	10 DAYS			REQUESTED ANALYSIS															
SPECIA	L REQUIREMENTS (ADDITIONAL CO	OSTS MAY APPLY)															T						1
	RWQCB REPORTING	ARCHIVE SAMPLE	SUNTIL	1	1																		
	L INSTRUCTIONS					-		PFBS d.)															1
								무 (:			1												١
								and PF Mod.)															ı
												1 1											ı
								-0S,															ı
							QC Level	A, PFC EPA					- 1										1
LAB USE	SAMPL	E ID	SAME	PLING	Matri+	*c	្ន	S. E															
ONLY	SAMIFL	LID	DATE	TIME	7074	#Cong	ဗ	PFOA, (U.S. E															
	IRPSite5-GW-040	W82-20170629	6/29/17	1635	W	2	2B																CHARLES COMMON
																							-
																					T		1
									\Box		1								\neg	\top	十		1
		-				 		-	\vdash				_	1		+			_	+	+	+	1
						+			\vdash	-				+		_	+-		+	+	+	+	1
						-	_				_	\vdash	_	+		+	+-		\dashv	+	+	+	1
						-							-	-		-			\dashv	\dashv	+	+	4
						<u> </u>				_				\perp					\dashv	_	\perp	+	4
	is .					_											18		\perp	\perp	\perp		
						wh																	
Relinqu	uished by: (Signature)				Received by	y: (Stgna	ture) /	Carrier T	racking	Number							ite:	,		Time:			1
P-Nihm FedEx															6	129	11-	7	17	30	i		
Relinquished by: (Signature)					ture)			- /						Da	te:/30	1.0		Time:			1		
Relinquished by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)					00	Mu	al	d						a	0/30	117		10	09	1			
Relingi	uished by: (Signature)				Received by	y: (Signa	ture)									Da							
	Control Contro				10 000 to 10 000																		
-					<u></u>		-04			-		- W. C. C.	1-4-22		- 4 2 2 2								all I

Sample Log-in Checklist

Vista Work Orde	r #:	170	080	4		TAT_	14		
Samples	Date/Time		DACIL	Initials:		Location:	WR	-7	
Arrival:	06/30/17	L	1454	CBS15		Shelf/Racl	k:/	JA	
	Date/Time		- 1	Initials:		Shelf/Rack	WR	-7	
Logged In:	06/30/17	- 15	20 4	BIB		Shelf/Racl	k:E	5	
Delivered By:	FedEx	UPS	On Tra	ac GSO	DHL	Har Delive		Oth	ier
Preservation:	lce	ノ	ВІ	ue Ice		Dry Ice		Noi	ne
Temp °C: 5	(uncorrect	ed) T	ime:	1013	/	Thermome	otor ID:	DT_3	
Temp °C: 0.6	(correcte	d) P	robe us	ed: YesŪ	No□	mermome	eter ib.	D1-3	
							N 1/2	T 110	
							YES	NO	NA
Adequate Sampl		ceived?	?				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Holding Time Ac	ceptable?						V	-	
Shipping Contain	ner(s) Intact?							4	
Shipping Custod	y Seals Intac	t?					1		
Shipping Docum	entation Pres	ent?	010	16-00 6 00	- 0				
Airbill	Trk #	80	101	10795	29	<u>+ </u>			
Sample Containe	er Intact?						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	/
Sample Custody	Seals Intact?	•							V
Chain of Custody	/ / Sample Do	cumen	tation P	resent?			V		,
COC Anomaly/Sa	ample Accep	tance F	orm con	npleted?				V	V
If Chlorinated or	Drinking Wat	er Sam	ples, Ac	ceptable Pre	eserva	tion?			
Preservation Doo	cumented:	Na	$_{2}S_{2}O_{3}$	Trizma	١	None	Yes	No	NA
Shipping Contain	ier	XV	/ista)	Client	\Re	etain (Ř	eturn	Disp	ose
Comments:		Ca	3413		BUBL	130/17			

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

July 20, 2017

Vista Work Order No. 1700804

Ms. Nia Nikmanesh KMEA 2423 Hoover Avenue National City, CA 91950

Dear Ms. Nikmanesh,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on June 30, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'NSWC White Oak'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier

Laboratory Director

Karung. Volpene geta for

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph; 916-673-1520 fx; 916-673-0106 www.vista-analytical.com

Work Order 1700804 Page 1 of 248

Vista Work Order No. 1700804 Case Narrative

Sample Condition on Receipt:

Eleven water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

Samples "IRPSite7-GW-07GW41-20170629", "IRPSite33-GW-11MW204D-20170629", "Bldg 110-GW-11MW205D-20170629", "Bldg 110-GW-11MW205S-20170629", "IRPSite7-GW-07GW102-20170629" and "IRPSite5-GW-04GW82-20170629" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recovery for 13C2-PFTeDA in sample "Bldg 110-GW-FRB01-20170629" was below the method acceptance criteria at 6.10%. This sample was re-extracted and showed similar recoveries.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

Work Order 1700804 Page 2 of 248

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
1700804-02	IRPSite5-GW-05GW01-20170629	Modified EPA Method 537	13C2-PFDoA	Н	37.4
1700804-04	IRPSite33-GW-FRB01-20170629	Modified EPA Method 537	13C2-PFDoA	Н	44.6
1700804-05	IRPSite33-GW-11MW204D-20170629	Modified EPA Method 537	13C2-PFDoA	Н	37.4
1700804-07	Bldg 110-GW-11MW205D-20170629	Modified EPA Method 537	13C2-PFDoA	Н	41.4
1700804-08	Bldg 110-GW-FRB01-20170629	Modified EPA Method 537	13C2-PFDoA	Н	28.2
1700804-08	Bldg 110-GW-FRB01-20170629	Modified EPA Method 537	13C2-PFTeDA	Н	6.10
1700804-11	IRPSite5-GW-04GW82-20170629	Modified EPA Method 537	13C2-PFDoA	Н	37.0

H = Recovery was outside laboratory acceptance criteria.

Work Order 1700804 Page 3 of 248

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	20
Certifications	21
Sample Receipt	24
Extraction Information	27
Sample Data - Modified EPA Method 537	31
Continuing Calibration	136
Initial Calibration	165

Work Order 1700804 Page 4 of 248

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1700804-01	IRPSite7-GW-07GW41-20170629	29-Jun-17 10:02	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-02	IRPSite5-GW-05GW01-20170629	29-Jun-17 10:58	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-03	IRPSite5-GW-FD01-20170629	29-Jun-17 11:00	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-04	IRPSite33-GW-FRB01-20170629	29-Jun-17 11:35	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-05	IRPSite33-GW-11MW204D-2017062 9	29-Jun-17 12:30	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-06	IRPSite33-GW-11MW204S-2017062 9	29-Jun-17 13:05	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-07	Bldg 110-GW-11MW205D-20170629	29-Jun-17 14:51	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-08	Bldg 110-GW-FRB01-20170629	29-Jun-17 14:10	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-09	Bldg 110-GW-11MW205S-20170629	29-Jun-17 15:35	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-10	IRPSite7-GW-07GW102-20170629	29-Jun-17 16:17	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700804-11	IRPSite5-GW-04GW82-20170629	29-Jun-17 16:35	30-Jun-17 09:54	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

Vista Project: 1700804 Client Project: NSWC White Oak

Work Order 1700804 Page 5 of 248

ANALYTICAL RESULTS

Work Order 1700804 Page 6 of 248

Sample ID: Method Blank Modified EPA Method 53'										ethod 537			
Matrix: Sample Size:	Aqueous 0.125 L		QC Batch: B7G0049 Date Extracted: 13-Jul-2017 9:00				Lab Sample: B7G0049-BLK1 Date Analyzed: 13-Jul-17 17:10 Column: BEH C18						
Analyte		Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers		
PFBS		ND	1.79	5.00	8.00		IS	13C3-PFBS	122	50 - 150			
PFHxA		ND	2.18	5.00	8.00		IS	13C2-PFHxA	107	50 - 150			
PFHpA		ND	0.591	5.00	8.00		IS	13C4-PFHpA	93.2	50 - 150			
PFHxS		ND	0.947	5.00	8.00		IS	18O2-PFHxS	118	50 - 150			
PFOA		ND	0.651	5.00	8.00		IS	13C2-PFOA	91.4	50 - 150			
PFOS		ND	0.807	5.00	8.00		IS	13C8-PFOS	97.0	50 - 150			
PFNA		ND	0.810	5.00	8.00		IS	13C5-PFNA	100	50 - 150			
PFDA		ND	1.49	5.00	8.00		IS	13C2-PFDA	96.5	50 - 150			
MeFOSAA		ND	1.65	5.00	8.00		IS	d3-MeFOSAA	96.9	50 - 150			
PFUnA		ND	1.05	5.00	8.00		IS	13C2-PFUnA	80.2	50 - 150			
EtFOSAA		ND	1.37	5.00	8.00		IS	d5-EtFOSAA	98.5	50 - 150			
PFDoA		ND	0.792	5.00	8.00		IS	13C2-PFDoA	56.7	50 - 150			
PFTrDA		ND	0.494	5.00	8.00		IS	13C2-PFTeDA	148	50 - 150			
PFTeDA		ND	0.755	5.00	8.00								

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 7 of 248

Sample ID: OPR Modified EPA Method 537

Matrix: Aqueous QC Batch: B7G0049 Lab Sample: B7G0049-BS1

Sample Size: 0.125 L Date Extracted: 13-Jul-2017 9:00 Date Analyzed: 13-Jul-17 16:38 Column: BEH C18

Analyte	Amt Found (ng/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
PFBS	65.5	80.0	81.9	70 - 130	IS	13C3-PFBS	126	50 - 150
PFHxA	72.1	80.0	90.1	70 - 130	IS	13C2-PFHxA	102	50 - 150
PFHpA	67.1	80.0	83.8	70 - 130	IS	13C4-PFHpA	88.2	50 - 150
PFHxS	76.3	80.0	95.3	70 - 130	IS	18O2-PFHxS	109	50 - 150
PFOA	67.8	80.0	84.8	70 - 130	IS	13C2-PFOA	104	50 - 150
PFOS	78.0	80.0	97.5	70 - 130	IS	13C8-PFOS	106	50 - 150
PFNA	68.2	80.0	85.2	70 - 130	IS	13C5-PFNA	101	50 - 150
PFDA	64.5	80.0	80.7	70 - 130	IS	13C2-PFDA	93.1	50 - 150
MeFOSAA	69.9	80.0	87.3	70 - 130	IS	d3-MeFOSAA	68.2	50 - 150
PFUnA	73.5	80.0	91.9	70 - 130	IS	13C2-PFUnA	65.4	50 - 150
EtFOSAA	75.6	80.0	94.5	70 - 130	IS	d5-EtFOSAA	77.0	50 - 150
PFDoA	102	80.0	127	70 - 130	IS	13C2-PFDoA	62.5	50 - 150
PFTrDA	95.0	80.0	119	60 - 130	IS	13C2-PFTeDA	77.8	50 - 150
PFTeDA	79.0	80.0	98.8	70 - 130				

LCL-UCL - Lower control limit - upper control limit

Work Order 1700804 Page 8 of 248

Sample ID:	IRPSite7-GW-07GW41-20170629 Modified EPA Method 5									thod 537
Client Data Name: Project: Date Collected: Location:	KMEA NSWC White Oak 29-Jun-2017 10:02		Sample Data Matrix: Sample Size:	Water 0.121 L	La Q0	oratory b Samp C Batch te Anal	ole: 1700804-01 : B7G0049	Date Received: Date Extracted: nn: BEH C18		
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	4.16	1.86	5.17	8.29	J	IS	13C3-PFBS	144	50 - 150	
PFHxA	17.0	2.26	5.17	8.29		IS	13C2-PFHxA	109	50 - 150	
PFHpA	9.53	0.613	5.17	8.29		IS	13C4-PFHpA	95.8	50 - 150	
PFHxS	81.1	0.982	5.17	8.29		IS	18O2-PFHxS	115	50 - 150	
PFOA	30.3	0.675	5.17	8.29		IS	13C2-PFOA	84.7	50 - 150	
PFOS	262	0.837	5.17	8.29		IS	13C8-PFOS	103	50 - 150	
PFNA	3.26	0.840	5.17	8.29	J	IS	13C5-PFNA	102	50 - 150	
PFDA	ND	1.54	5.17	8.29		IS	13C2-PFDA	92.5	50 - 150	
MeFOSAA	ND	1.71	5.17	8.29		IS	d3-MeFOSAA	68.4	50 - 150	
PFUnA	ND	1.09	5.17	8.29		IS	13C2-PFUnA	75.3	50 - 150	
EtFOSAA	ND	1.42	5.17	8.29		IS	d5-EtFOSAA	79.3	50 - 150	
PFDoA	ND	0.821	5.17	8.29		IS	13C2-PFDoA	61.1	50 - 150	
PFTrDA	ND	0.512	5.17	8.29		IS	13C2-PFTeDA	83.4	50 - 150	

8.29

DL - Detection limit

5.17

0.783

ND

PFTeDA

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Page 9 of 248 Work Order 1700804

Sample ID:	IRPSite5-GW-05GW01-20170629	Modified EPA Method 537
------------	-----------------------------	-------------------------

Water

0.115 L

Name: **KMEA** NSWC White Oak Project:

Client Data

Date Collected: 29-Jun-2017 10:58

Location:

Laboratory Data

Lab Sample: 1700804-02 Date Received: 30-Jun-2017 9:54 B7G0049 QC Batch: Date Extracted: 13-Jul-2017 9:00

Date Analyzed: 13-Jul-17 17:44 Column: BEH C18

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	ND	1.95	5.43	8.72		IS	13C3-PFBS	131	50 - 150	
PFHxA	6.98	2.38	5.43	8.72	J	IS	13C2-PFHxA	107	50 - 150	
PFHpA	3.96	0.644	5.43	8.72	J	IS	13C4-PFHpA	91.5	50 - 150	
PFHxS	61.1	1.03	5.43	8.72		IS	18O2-PFHxS	115	50 - 150	
PFOA	48.8	0.710	5.43	8.72		IS	13C2-PFOA	91.0	50 - 150	
PFOS	205	0.880	5.43	8.72		IS	13C8-PFOS	110	50 - 150	
PFNA	3.24	0.883	5.43	8.72	J	IS	13C5-PFNA	93.8	50 - 150	
PFDA	ND	1.62	5.43	8.72		IS	13C2-PFDA	82.2	50 - 150	
MeFOSAA	ND	1.80	5.43	8.72		IS	d3-MeFOSAA	107	50 - 150	
PFUnA	ND	1.14	5.43	8.72		IS	13C2-PFUnA	79.1	50 - 150	
EtFOSAA	ND	1.49	5.43	8.72		IS	d5-EtFOSAA	87.3	50 - 150	
PFDoA	ND	0.863	5.43	8.72		IS	13C2-PFDoA	37.4	50 - 150	Н
PFTrDA	ND	0.539	5.43	8.72		IS	13C2-PFTeDA	118	50 - 150	
PFTeDA	ND	0.823	5.43	8.72						

DL - Detection limit

Sample Data

Sample Size:

Matrix:

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 10 of 248

Sample ID:	IRPSite5-GW-FD01-20170629					Modifie	d EPA Method	1537
Client Data		Sample Data		Laboratory Data				
Name:	KMEA	Matrix:	Water	Lab Sample:	1700804-03	Date Received:	30-Jun-2017 9:54	,
Project:	NSWC White Oak	Sample Size:	0.113 L	QC Batch:	B7G0049	Date Extracted:	13-Jul-2017 9:00	
Date Collected:	29-Jun-2017 11:00			Date Analyzed:	13-Jul-17 17:54 Column	n: BEH C18		
Location:								

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	2.30	1.99	5.53	8.88	J	IS	13C3-PFBS	117	50 - 150	
PFHxA	6.86	2.42	5.53	8.88	J	IS	13C2-PFHxA	102	50 - 150	
PFHpA	3.17	0.656	5.53	8.88	J	IS	13C4-PFHpA	92.8	50 - 150	
PFHxS	64.9	1.05	5.53	8.88		IS	18O2-PFHxS	108	50 - 150	
PFOA	51.3	0.723	5.53	8.88		IS	13C2-PFOA	98.0	50 - 150	
PFOS	199	0.896	5.53	8.88		IS	13C8-PFOS	99.9	50 - 150	
PFNA	2.82	0.899	5.53	8.88	J	IS	13C5-PFNA	97.7	50 - 150	
PFDA	ND	1.65	5.53	8.88		IS	13C2-PFDA	87.5	50 - 150	
MeFOSAA	ND	1.83	5.53	8.88		IS	d3-MeFOSAA	70.8	50 - 150	
PFUnA	ND	1.17	5.53	8.88		IS	13C2-PFUnA	82.8	50 - 150	
EtFOSAA	ND	1.52	5.53	8.88		IS	d5-EtFOSAA	93.6	50 - 150	
PFDoA	ND	0.879	5.53	8.88		IS	13C2-PFDoA	62.3	50 - 150	
PFTrDA	ND	0.548	5.53	8.88		IS	13C2-PFTeDA	92.3	50 - 150	
PFTeDA	ND	0.838	5.53	8.88						

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 11 of 248

Sample ID: IRPSite33-GW-FRB01-20170629 Modified EPA Method 537

Client DataSample DataLaboratory DataName:KMEAMatrix:WaterLab Sample:

Name: KMEA Matrix: Water Lab Sample: 1700804-04 Date Received: 30-Jun-2017 9:54

Project: NSWC White Oak Sample Size: 0.123 L QC Batch: B7G0049 Date Extracted: 13-Jul-2017 9:00

Date Collected: 29-Jun-2017 11:35

Date Analyzed: 13-Jul-17 18:05 Column: BEH C18

Location:

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	ND	1.82	5.08	8.15		IS	13C3-PFBS	125	50 - 150	
PFHxA	ND	2.22	5.08	8.15		IS	13C2-PFHxA	103	50 - 150	
PFHpA	ND	0.602	5.08	8.15		IS	13C4-PFHpA	96.5	50 - 150	
PFHxS	ND	0.965	5.08	8.15		IS	18O2-PFHxS	108	50 - 150	
PFOA	ND	0.663	5.08	8.15		IS	13C2-PFOA	98.5	50 - 150	
PFOS	ND	0.822	5.08	8.15		IS	13C8-PFOS	90.3	50 - 150	
PFNA	ND	0.825	5.08	8.15		IS	13C5-PFNA	104	50 - 150	
PFDA	ND	1.52	5.08	8.15		IS	13C2-PFDA	91.5	50 - 150	
MeFOSAA	ND	1.68	5.08	8.15		IS	d3-MeFOSAA	71.0	50 - 150	
PFUnA	ND	1.07	5.08	8.15		IS	13C2-PFUnA	76.2	50 - 150	
EtFOSAA	ND	1.40	5.08	8.15		IS	d5-EtFOSAA	78.1	50 - 150	
PFDoA	ND	0.807	5.08	8.15		IS	13C2-PFDoA	44.6	50 - 150	Н
PFTrDA	ND	0.503	5.08	8.15		IS	13C2-PFTeDA	74.4	50 - 150	
PFTeDA	ND	0.769	5.08	8.15						

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 12 of 248

Sample ID:	IRPSite33-GW-11MW20	04D-2017	70629					Modifie	ed EPA Me	ethod 537
Client Data			Sample Data		La	aboratory	Data			
Name:	KMEA		Matrix:	Water	1	Lab Samp	de: 1700804-05	Date Received:	30-Jun-2017	9:54
Project:	NSWC White Oak		Sample Size:	0.117 L		QC Batch	: B7G0049	Date Extracted:	13-Jul-2017	9:00
Date Collected: Location:	29-Jun-2017 12:30				I	Date Anal	yzed: 13-Jul-17 18:15 Colu	mn: BEH C18		
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifier	:s	Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	9.95	1.91	5.34	8.53		IS	13C3-PFBS	117	50 - 150	
PFHxA	51.0	2.32	5.34	8.53		IS	13C2-PFHxA	101	50 - 150	
PFHpA	21.5	0.630	5.34	8.53		IS	13C4-PFHpA	92.5	50 - 150	
PFHxS	62.9	1.01	5.34	8.53		IS	18O2-PFHxS	105	50 - 150	
PFOA	95.8	0.694	5.34	8.53		IS	13C2-PFOA	85.9	50 - 150	
PFOS	38.3	0.860	5.34	8.53		IS	13C8-PFOS	105	50 - 150	
PFNA	1.88	0.863	5.34	8.53	J	IS	13C5-PFNA	88.7	50 - 150	
PFDA	1.94	1.59	5.34	8.53	J	IS	13C2-PFDA	85.5	50 - 150	

8.53

8.53

8.53

8.53

8.53

8.53

DL - Detection limit

5.34

5.34

5.34

5.34

5.34

5.34

1.76

1.12

1.46

0.844

0.526

0.805

ND

ND

ND

ND

ND

ND

MeFOSAA

EtFOSAA

PFUnA

PFDoA

PFTrDA

PFTeDA

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

d3-MeFOSAA

13C2-PFUnA

d5-EtFOSAA

13C2-PFDoA

13C2-PFTeDA

Results reported to DL.

IS

IS

IS

IS

IS

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

73.4

78.7

75.4

37.4

63.7

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

Η

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 13 of 248

Sample ID:	IRPSite33-GW-11MW2	204S-2017	0629				Modifie	d EPA Me	thod 537	
Client Data Name: Project: Date Collected: Location:	KMEA NSWC White Oak 29-Jun-2017 13:05		Sample Data Matrix: Sample Size:	Water 0.117 L	La Q0	oratory b Samp C Batch ate Anal	ole: 1700804-06 : B7G0049	Date Received: Date Extracted: umn: BEH C18	30-Jun-2017 13-Jul-2017	
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	9.66	1.92	5.34	8.58		IS	13C3-PFBS	136	50 - 150	
PFHxA	52.9	2.34	5.34	8.58		IS	13C2-PFHxA	110	50 - 150	
PFHpA	20.5	0.634	5.34	8.58		IS	13C4-PFHpA	102	50 - 150	
PFHxS	53.6	1.02	5.34	8.58		IS	18O2-PFHxS	99.4	50 - 150	
PFOA	76.0	0.698	5.34	8.58		IS	13C2-PFOA	87.1	50 - 150	
PFOS	29.6	0.865	5.34	8.58		IS	13C8-PFOS	104	50 - 150	
PFNA	1.14	0.868	5.34	8.58	J	IS	13C5-PFNA	99.5	50 - 150	
PFDA	ND	1.60	5.34	8.58		IS	13C2-PFDA	93.6	50 - 150	
MeFOSAA	ND	1.77	5.34	8.58		IS	d3-MeFOSAA	81.9	50 - 150	
PFUnA	ND	1.13	5.34	8.58		IS	13C2-PFUnA	90.1	50 - 150	
EtFOSAA	ND	1.47	5.34	8.58		IS	d5-EtFOSAA	80.7	50 - 150	

8.58

8.58

8.58

DL - Detection limit

5.34

5.34

5.34

RL - Reporting limit

0.849

0.530

0.809

ND

ND

ND

PFDoA

PFTrDA

PFTeDA

LCL-UCL - Lower control limit - upper control limit

13C2-PFDoA

13C2-PFTeDA

Results reported to DL.

IS

IS

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

54.0

90.7

50 - 150

50 - 150

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 14 of 248

Sample ID: Bldg 110-GW-11MW205D-2017	Modified EPA Method 537	
Client Data	Sample Data	Laboratory Data

Name: **KMEA** NSWC White Oak Project: Date Collected:

29-Jun-2017 14:51

Matrix: Water Sample Size: 0.117 L **Laboratory Data** Lab Sample:

1700804-07 B7G0049 QC Batch:

Date Received: 30-Jun-2017 9:54 Date Extracted: 13-Jul-2017 9:00

Date Analyzed: 13-Jul-17 18:37 Column: BEH C18

Location:							•			
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	11.3	1.91	5.34	8.52		IS	13C3-PFBS	134	50 - 150	
PFHxA	46.3	2.32	5.34	8.52		IS	13C2-PFHxA	113	50 - 150	
PFHpA	11.1	0.629	5.34	8.52		IS	13C4-PFHpA	92.6	50 - 150	
PFHxS	83.7	1.01	5.34	8.52		IS	18O2-PFHxS	110	50 - 150	
PFOA	49.6	0.693	5.34	8.52		IS	13C2-PFOA	95.4	50 - 150	
PFOS	20.3	0.859	5.34	8.52		IS	13C8-PFOS	99.1	50 - 150	
PFNA	ND	0.862	5.34	8.52		IS	13C5-PFNA	98.8	50 - 150	
PFDA	ND	1.59	5.34	8.52		IS	13C2-PFDA	76.4	50 - 150	
MeFOSAA	ND	1.76	5.34	8.52		IS	d3-MeFOSAA	93.4	50 - 150	
PFUnA	ND	1.12	5.34	8.52		IS	13C2-PFUnA	83.4	50 - 150	
EtFOSAA	ND	1.46	5.34	8.52		IS	d5-EtFOSAA	86.4	50 - 150	
PFDoA	ND	0.843	5.34	8.52		IS	13C2-PFDoA	41.4	50 - 150	H
PFTrDA	ND	0.526	5.34	8.52		IS	13C2-PFTeDA	58.9	50 - 150	
PFTeDA	ND	0.804	5.34	8.52						

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 15 of 248

Sample ID: Bldg 110-GW-FRB01-20170629 Modified EPA Method 537

Water

0.120 L

Name: KMEA
Project: NSWC White Oak

Date Collected: 29-Jun-2017 14:10

Location:

Client Data

Laboratory Data

 Lab Sample:
 1700804-08
 Date Received:
 30-Jun-2017
 9:54

 QC Batch:
 B7G0049
 Date Extracted:
 13-Jul-2017
 9:00

Date Analyzed: 13-Jul-17 18:47 Column: BEH C18

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	ND	1.87	5.21	8.35	Quantitative and the second	IS	13C3-PFBS	136	50 - 150	2
						IS	13C2-PFHxA	109	50 - 150	
PFHxA	ND	2.27	5.21	8.35						
PFHpA	ND	0.617	5.21	8.35		IS	13C4-PFHpA	98.1	50 - 150	
PFHxS	ND	0.988	5.21	8.35		IS	18O2-PFHxS	111	50 - 150	
PFOA	ND	0.679	5.21	8.35		IS	13C2-PFOA	89.1	50 - 150	
PFOS	ND	0.842	5.21	8.35		IS	13C8-PFOS	103	50 - 150	
PFNA	ND	0.845	5.21	8.35		IS	13C5-PFNA	102	50 - 150	
PFDA	ND	1.55	5.21	8.35		IS	13C2-PFDA	77.2	50 - 150	
MeFOSAA	ND	1.72	5.21	8.35		IS	d3-MeFOSAA	107	50 - 150	
PFUnA	ND	1.10	5.21	8.35		IS	13C2-PFUnA	85.9	50 - 150	
EtFOSAA	ND	1.43	5.21	8.35		IS	d5-EtFOSAA	107	50 - 150	
PFDoA	ND	0.826	5.21	8.35		IS	13C2-PFDoA	28.2	50 - 150	Н
PFTrDA	ND	0.515	5.21	8.35		IS	13C2-PFTeDA	6.10	50 - 150	H
PFTeDA	ND	0.788	5.21	8.35						

DL - Detection limit

Sample Data

Sample Size:

Matrix:

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 16 of 248

Sample ID:	Bldg 110-GW-11MW205	ldg 110-GW-11MW205S-20170629									
Client Data			Sample Data			Labor	ntory Data				
Name:	KMEA		Matrix:	Water		Lab	Sample:	1700804-09	Date Received:	30-Jun-2017	9:54
Project:	NSWC White Oak		Sample Size:	0.112 L		QC I	atch:	B7G0049	Date Extracted:	13-Jul-2017	9:00
Date Collected: Location:	29-Jun-2017 15:35		_			Date	Analyzed:	13-Jul-17 18:58 Colu	umn: BEH C18		
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifi	iers	Lab	eled Standard	%R	LCL-UCL	Qualifiers
PERS	6.18	2.00	5 58	8 95	ī		IS 13C	3-PFBS	129	50 - 150	

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	6.18	2.00	5.58	8.95	J	IS	13C3-PFBS	129	50 - 150	
PFHxA	21.5	2.44	5.58	8.95		IS	13C2-PFHxA	98.6	50 - 150	
PFHpA	5.44	0.661	5.58	8.95	J	IS	13C4-PFHpA	89.9	50 - 150	
PFHxS	53.2	1.06	5.58	8.95		IS	18O2-PFHxS	109	50 - 150	
PFOA	14.7	0.729	5.58	8.95		IS	13C2-PFOA	96.2	50 - 150	
PFOS	36.8	0.903	5.58	8.95		IS	13C8-PFOS	102	50 - 150	
PFNA	ND	0.906	5.58	8.95		IS	13C5-PFNA	89.5	50 - 150	
PFDA	2.21	1.67	5.58	8.95	J	IS	13C2-PFDA	82.7	50 - 150	
MeFOSAA	ND	1.85	5.58	8.95		IS	d3-MeFOSAA	79.6	50 - 150	
PFUnA	ND	1.18	5.58	8.95		IS	13C2-PFUnA	88.6	50 - 150	
EtFOSAA	ND	1.53	5.58	8.95		IS	d5-EtFOSAA	89.9	50 - 150	
PFDoA	ND	0.886	5.58	8.95		IS	13C2-PFDoA	86.9	50 - 150	
PFTrDA	ND	0.553	5.58	8.95		IS	13C2-PFTeDA	121	50 - 150	
PFTeDA	ND	0.845	5.58	8.95						

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 17 of 248

Sample ID:	IRPSite7-GW-07GW102-2017062	29			Modifie	d EPA Method 537	
Client Data		Sample Data		Laboratory Data			
Name:	KMEA	Matrix:	Water	Lab Sample:	1700804-10	Date Received:	30-Jun-2017 9:54

Project: NSWC White Oak
Date Collected: 29-Jun-2017 16:17

Location:

Matrix: Water Lab Sample: 1700804-10 Date Received: 30-Jun-2017 9:54 Sample Size: 0.121 L QC Batch: B7G0049 Date Extracted: 13-Jul-2017 9:00

Date Analyzed: 13-Jul-17 19:09 Column: BEH C18

Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFBS	9.06	1.85	5.17	8.28		IS	13C3-PFBS	123	50 - 150	
PFHxA	51.7	2.26	5.17	8.28		IS	13C2-PFHxA	99.0	50 - 150	
PFHpA	30.6	0.612	5.17	8.28		IS	13C4-PFHpA	88.6	50 - 150	
PFHxS	309	0.980	5.17	8.28		IS	18O2-PFHxS	105	50 - 150	
PFOA	73.9	0.674	5.17	8.28		IS	13C2-PFOA	91.7	50 - 150	
PFOS	433	0.835	5.17	8.28		IS	13C8-PFOS	102	50 - 150	
PFNA	3.84	0.838	5.17	8.28	J	IS	13C5-PFNA	93.3	50 - 150	
PFDA	ND	1.54	5.17	8.28		IS	13C2-PFDA	95.5	50 - 150	
MeFOSAA	ND	1.71	5.17	8.28		IS	d3-MeFOSAA	69.4	50 - 150	
PFUnA	ND	1.09	5.17	8.28		IS	13C2-PFUnA	86.2	50 - 150	
EtFOSAA	ND	1.42	5.17	8.28		IS	d5-EtFOSAA	85.8	50 - 150	
PFDoA	ND	0.820	5.17	8.28		IS	13C2-PFDoA	52.3	50 - 150	
PFTrDA	ND	0.511	5.17	8.28		IS	13C2-PFTeDA	98.7	50 - 150	
PFTeDA	ND	0.781	5.17	8.28						

DL - Detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 18 of 248

Sample ID:	IRPSite5-GW-04GW82	-20170629	9						Modifie	d EPA Me	thod 537
Client Data			Sample Data		I	aborato	ry Data				
Name:	KMEA		Matrix:	Water		Lab Sar	nple: 17	700804-11	Date Received:	30-Jun-2017	9:54
Project:	NSWC White Oak		Sample Size:	0.117 L		QC Bat	ch: B	7G0049	Date Extracted:	13-Jul-2017	9:00
Date Collected: Location:	29-Jun-2017 16:35					Date Analyzed:		3-Jul-17 19:51 Colu	mn: BEH C18		
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifie	ers	Labeled	Standard	%R	LCL-UCL	Qualifiers
PFBS	2.49	1.92	5.34	8.58	J	IS	13C3-PF	BS	123	50 - 150	
PFHxA	ND	2.34	5.34	8.58		IS	13C2-PF	ΉxA	102	50 - 150	
PFHpA	0.688	0.634	5.34	8.58	J	IS	13C4-PF	НрА	90.2	50 - 150	
PFHxS	15.4	1.02	5.34	8.58		IS	18O2-PF	HxS	102	50 - 150	
PFOA	2.17	0.698	5.34	8.58	J	IS 13C2		OA	93.9	50 - 150	
PFOS	ND	0.865	5.34	8.58		IS 13C8		OS	102	50 - 150	
PFNA	ND	0.868	5.34	8.58		IS	13C5-PF	NA	97.0	50 - 150	

8.58

8.58

8.58

8.58

8.58

8.58

8.58

8.58

DL - Detection limit

5.34

5.34

5.34

5.34

5.34

5.34

5.34

5.34

0.868

1.60

1.77

1.13

1.47

0.849

0.530

0.809

ND

ND

ND

ND

ND

ND

ND

ND

PFNA

PFDA

PFUnA

PFDoA

PFTrDA

PFTeDA

MeFOSAA

EtFOSAA

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

13C2-PFDA

d3-MeFOSAA

13C2-PFUnA

d5-EtFOSAA

13C2-PFDoA

13C2-PFTeDA

Results reported to DL.

IS

IS

IS

IS

IS IS

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

81.0

129

85.0

91.8

37.0

82.9

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

Η

Only the linear isomer is reported for all other analytes.

Work Order 1700804 Page 19 of 248

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1700804 Page 20 of 248

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	17-015-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1700804 Page 21 of 248

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Work Order 1700804 Page 22 of 248

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1700804 Page 23 of 248

1104 Windfield Way

Vista Analytical

El Dorado Hills, CA 95762

CHAIN OF CUSTODY ECORD

DATE: 6/29/17

1700804 0.8°C PAGE: 2 OF 3 TEL: 916-673-1520 LABORATORY CLIENT: AMEC Foster Wheeler E & I, Inc. NSWL White Oak TO 008 ADDRESS: PROJECT CONTACT: CONTRACT NO .: 9210 Sky Park Court N62473-16-D-2405 Medora Hackler/Marie Bevier SAMPLER(S): (SIGNATURE) LAB USE ONLY San Diego, CA 92123 E-Mail E-MAIL 503.639.3400 medora.hackler@amecfw.com marie.bevier@amecfw.com TURNAROUND TIME REQUESTED ANALYSIS SAME DAY 24 HR 48HR 72 HR 5 DAYS X 10 DAYS SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) RWQCB REPORTING ARCHIVE SAMPLES UNTIL PFOA, PFOS, and PFBS (U.S. EPA 537 Mod.) SPECIAL INSTRUCTIONS QC Level SAMPLING USE SAMPLE ID ONLY DATE 6/29/17 4 2 W 1RPSite7-GW-07GW41-20170629 1002 28 6/29/17 1058 2 X 1RPSite5-GW-05GW01-20170629 W 6/29/17 1100 2B 1RPSite5-GW-FDOL-20170629 W 2 X 6/29/17 1135 W 28 1RPSite33-GW-FRB01-20170629 X 28 1RPSite33-GW-11MWZ04D-20170629 6/29/17 1230 X W 1RPSite33-GW-11MW2045-20170629 6/29/17 1305 2 X 2B W Bldg 110 - GW-11MW 2050-20170629 429/17 W 1451 2 23 X W Bldg110-GW-FRB01-20170629 1410 28 BI dall 0 - GW-11MW2055-Z0170629 6/29/17 1535 W X 1RPSite7-GW-07GW102-20170629 6/29/17 Relinquished by: (Signature) Received by: (Signature) / Carrier Tracking Number P. Nihr 6/29/17 1730 FedEx Received by (Signature) Relinquished by: (Signature) 1009 Received by: (Signature) Relinquished by: (Signature)

Vista Analytical

1104 Windfield Way El Dorado Hills, CA 95762

TEL: 916-673-1520

CHAIN OF CUSTODY ECORD
DATE: 6/29/17 1700804 PAGE: 3 OF 3

	ATORY CLIENT:					CLIE	NT PRO	ECT NAM	NE/NUN	IBER:							P.O. NC).:				
ADDRE	C Foster Wheeler E & I, Inc.																ТО	800				
3210 Sky rark Court							PROJECT CONTACT:								\neg	CONTRACT NO.:						
CITY:						Medora Hackler/Marie Bevier									N62473-16-D-2405							
San Diego, CA 92123						SAMPLER(S): (SIGNATURE)									LAB USE ONLY							
					K	2. N	1															
	39.3400 medora.hackler@amecfw.c	com	marie.bevi	er@amecfw	.com)	- 10	n														
	ROUND TIME	<u> </u>	8	2:							PF	OHE	CTE	D AN	ΔΙΥ	212						
	AME DAY 🔲 24 HR 📗 48HR 🔲 72 HR	5 D	AYS X	10 DAYS							IXL	-QUL	-31L	D AIN	ALI	313						
SPECIA	L REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)					NEW COLUMN		T									$\neg \vdash$					
	RWQCB REPORTING ARCHIVE SAMPLE	S UNTIL	1	1																		
	AL INSTRUCTIONS	011112			-		BS															
							and PFBS Mod.)															
							A, PFOS, and PI EPA 537 Mod.)															
							37 1												1 1			
							PFOS,												1 1	.		
						QC Level	P / P								1 1							
USE	SAMPLE ID	SAME	PLING	Matri+	*C	٦	OA S. S.													.		
ONLY	OANT LE 10	DATE	TIME	10,74	*Cone	8	PFOA, (U.S. E)															
	1RPSite5-GW-04GW82-20170629	6/29/17	1635	W	2	2B																
	F																					
	is																83					
			25		wh																	
Reling	ished by: (Signature)			Received by	y: (Stgna	ture) /	Carrier	Tracking	Numbe	er	-	The state of the s	****			Date:			Time			
P	vished by: (Signature)			FedEx												6/2	91	17	11-	730)	
Reling	ished by: (Signature)		(Received by	y: (Signa	ture)										Date:	, ,	-	Time):		
Fo	dished by: (Signature)			Received by	10	1	1111	ont.	11							Date:	30/1	7	1/	00	9	
Reling	uished by: (Signature)			Received by	y: (Signa	ture)	MA									Date:	-1.		Time			
1,501114	and all tolerand				, , 3	-/																
				J							- Simbles					et al.	- 45					

Sample Log-in Checklist

Vista Work Orde	r#:	10	080	4			TAT	14			
Camples	Date/Time			In	itials:		Location:	WIR	-7		
Samples Arrival:	06/30/17	(2954	C	13815		Shelf/Rack	^	JA		
	Date/Time	2	. 1	In	itials:		Location:	WR	-7		
Logged In:	06/30/17	15	504		BSB		Shelf/Rack	:_E	5		
Delivered By:	FedEx UP	S	On Tra	ас	GSO	DHI	Hand Deliver		Oth	ıer	
Preservation:	(Ice		ВІ	ue	lce		Dry Ice		Noi	ne	
Temp °C: 1, 5 (uncorrected) Time: 10/3 Thermome											
Temp °C: O.											
Temp 6. O.O. (corrected)											
								YES	NO	NA	
Adequate Sampl	e Volume Recei	ved′	?					V/			
Holding Time Ac	ceptable?										
Shipping Contain	ner(s) Intact?							V			
Shipping Custod	y Seals Intact?							-			
Shipping Docum	entation Present	?	8 17	2. 6				V			
Airbill	Trk# &	30	BIC	10	795	29	7	اسا			
Sample Containe	er Intact?							V		1	
Sample Custody	Seals Intact?									V	
Chain of Custody	/ / Sample Docu	mer	ntation P	res	ent?			\vee			
COC Anomaly/S	ample Acceptan	ce F	orm con	nple	eted?				V	V	
If Chlorinated or Drinking Water Samples, Acceptable Preservation?											
Preservation Dod	cumented:	Na	$_{2}S_{2}O_{3}$		Trizma	ı	Vone	Yes	No	NA	
Shipping Contain	ner	XV	/ista)	1	Client	VR.	etain (Re	eturn	Disp	ose	
Comments:											

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

EXTRACTION INFORMATION

Work Order 1700804 Page 27 of 248

Process Sheet

Workorder: 1700804

Prep Expiration: 2017-Jul-13

Client: KMEA

Workorder Due: 17-Jul-17 00:00

TAT: 17

Method: 537M PFAS DOD (LOQ as mRL)

Matrix: Aqueous

Version: 537 (14 Analyte)

Prep Batch: \$760649

Prep Data Entered:

Initial Sequence:

LabSampleID	Reco	on ClientSampleID	Date Received	Location	Comments
1700804-01	<u></u>	IRPSite7-GW-07GW41-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-02	صرا	IRPSite5-GW-05GW01-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-03	Ź	IRPSite5-GW-FD01-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-04	7	IRPSite33-GW-FRB01-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-05	0	IRPSite33-GW-11MW204D-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-06	\mathbf{P}	IRPSite33-GW-11MW204S-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-07	φ	Bldg 110-GW-11MW205D-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-08	Ò	Bldg 110-GW-FRB01-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-09	4	Bldg 110-GW-11MW205S-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-10	团	IRPSite7-GW-07GW102-20170629	30-Jun-17 09:54	WR-2 E-5	
1700804-11	Y	IRPSite5-GW-04GW82-20170629	30-Jun-17 09:54	WR-2 E-5	

- samples prepped, He 7/11/17
NOT able to do MS/USD because insufficient samples the 2/11/12

Vista PM:Martha Maier

Vial Box ID: egg-Static

Sample Reconciled By: Page 1 of 1

Work Order 1700804

Page 28 of 248

Batch: B7G0049

Matrix: Aqueous

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1700804-01RE1	0.12057 🗸	, NA	VII	1000	13-Jul-17 09:00	HAC			Water	537M PFAS DOD (LOQ as
1700804-02RE1	0.11467 ✓	, 1		1000	13-Jul-17 09:00	HAC	_	_	Water	537M PFAS DOD (LOQ as
1700804-03RE1	0.11258	•	- 1	1000	13-Jul-17 09:00	HAC			Water	537M PFAS DOD (LOQ as
1700804-04RE1	0.12271		,	1000	13-Jul-17 09:00	HAC			Water	537M PFAS DOD (LOQ as
1700804-05RE1	0.1173		·	1000	13-Jul-17 09:00	HAC		-	Water	537M PFAS DOD (LOQ as
1700804-06RE1	0.1166 🗸	,	_	1000	13-Jul-17 09:00	HAC			Water	537M PFAS DOD (LOQ as
1700804-07RE1	0.11741 🗸	,		1000	13-Jul-17 09:00	HAC			Water	537M PFAS DOD (LOQ as
1700804-08RE1	0.11979 🗸		-	1000	13-Jul-17 09:00	HAC			Water	537M PFAS DOD (LOQ as
1700804-09RE1	0.1117 🗸	,	,	1000	13-Jul-17 09:00	HAC			Water	537M PFAS DOD (LOQ as
1700804-10RE1	0.12078 ~	,	•	1000	13-Jul-17 09:00	HAC			Water	537M PFAS DOD (LOQ as
1700804-11RE1	0.11659 🗸	,		1000	13-Jul-17 09:00	HAC			Water	537M PFAS DOD (LOQ as
B7G0049-BLK1	0.125 🗸	ž.	·	1000	13-Jul-17 09:00	HAC		• •		QC
B7G0049-BS1	0.125 🏑	4	S	1000	13-Jul-17 09:00	HAC	17D2705	√ 10 _√		QC

Printe W: of # 14/401 1779 980.25 AM

Page 29 of 248 Page 1 of 1

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537M PFAS DOD (LOO as mRL)

B7G0049

Prep Date/Time: 11-July 14:24

Prepared using: LCMS - SPE Extraction-LCMS

						-						$\Box C \exists$	1005			ĄC
С	VISTA Sample ID	pH Before	pH After	Chlorine (Cl)	Drops HCl Added	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)			NS 1/WIT TE	S	PE		RS CHEM/\ DATE	
129	B7G0049-BLK1	5	2	0	2	NA	NA	(0.125)	K	He	7817	the	7.13.17	BP	H	7.13.17
19	B7G0049-BS1	5	1	0	2	NA	NA	Ţ	_				1			
7	1700804-01RE1	6	2	0	3	147.56	26.79	0.12057							1	
4	1700804-02RE1	5	2	0	2	141.92	27.25	0.11467		1						
蚕	1700804-03RE1	5	Z	0	1	140.00	27.42	0.11258		1					West, I	
4	1700804-04RE1	4	レ	ව	2	150.12	27.41	0.12271	/						20,000,000	
4	1700804-05RE1 (A)	5	レ	0	7	24-31-43-14V-1	12:39	0.11+30	(and the second			
æ	1700804-06RE1	5	1	0	7	143,99	27.37	0.11660	/							
عجا	1700804-07RE1	6	z	0	3	144.84	27.43	0.11741								
4	1700804-08RE1	5	ν	0	Z	147.23	27.47	0.11979	/				70.0			
A	1700804-09RE1	7	ι	0	3	139.09	27.37	0.11170	/				£			
L.	1700804-10RE1 🕟	5	1	0	7	148.30	77.51	1.17078	/	T						1

Samples centrifuged to remove particular matter the 7/11/7 1700804-11RE1 (A)

IS Name	NS Name	RS Name	SPE Chem: Strata X Aw SSun 200-1	Check Out: Chemist/Date: 4/3/1}
17E2617, 10pc	1702705, 10pm	17-F3056, 10ph	Ele SOLV: D. 5% DHOT IN MOOT/MEDH	Check In: Chemist/Date: NA Balance ID: HRMS-8 pH Adjusted: HR 7/11/14

Comments: Assume 1 g = 1 mL

Work Order 1700804

SAMPLE DATA – MODIFIED EPA METHOD 537

Work Order 1700804 Page 31 of 248

Reviewed: WJL 7/19/2017

Dataset: U:\Q4.PRO\results\170713M1\170713M1-7.qld

Last Altered: Monday, July 17, 2017 16:11:13 Pacific Daylight Time Printed: Monday, July 17, 2017 16:11:29 Pacific Daylight Time

 $Method: U: \Q4.PRO \MethDB \PFAS_L14-7-13-17.mdb \ 14 \ Jul \ 2017 \ 08:41:09$

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_7, Date: 13-Jul-2017, Time: 17:10:36, ID: B7G0049-BLK1 Method Blank 0.125, Description: Method Blank

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7		4.04e3	0.1250		2.92				
2	2 PFHxA	313.2 > 268.9		1.30e4	0.1250		3.16				
3	3 PFHpA	363 > 318.9		2.85e4	0.1250		3.43				
4	4 PFHxS	398.9 > 79.6	1.65e1	3.24e3	0.1250		3.55	3.45	0.0638	0.682	
5	5 PFOA	413 > 368.7		3.23e4	0.1250		3.63				
6	6 PFNA	462.9 > 418.8		2.04e4	0.1250		3.82				
7	7 PFOS	499 > 79.9		2.69e3	0.1250		3.86				
8	8 PFDA	513 > 468.8		7.26e3	0.1250		4.00				
9	9 PFUnA	562.9 > 518.9		3.42e3	0.1250		4.16				
10	10 N-MeFOSAA	570.1 > 419		8.58e2	0.1250		4.00				
11	11 N-EtFOSAA	584.2 > 419		8.93e2	0.1250		4.08				
12	12 PFDoA	612.9 > 318.8		2.90e2	0.1250		4.32				
13	13 PFTrDA	662.9 > 618.9		2.90e2	0.1250		4.50				
14	14 PFTeDA	712.9 > 668.8		5.94e3	0.1250		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.66e3	1.70e3	0.1250	0.918	1.43	1.36	12.2	106	106.4
16	16 13C3-PFPeA	266 > 221.8	3.71e4	3.99e4	0.1250	0.275	2.72	2.65	4.65	135	135.3
17	17 13C3-PFBS	302 > 98.8	4.04e3	3.99e4	0.1250	0.033	2.92	2.89	0.507	122	122.3
18	18 13C2-PFHxA	315 > 269.8	1.30e4	3.99e4	0.1250	0.304	3.16	3.12	1.63	43.0	107.4
19	19 13C4-PFHpA	367.2 > 321.8	2.85e4	3.99e4	0.1250	0.306	3.43	3.38	3.56	93.2	93.2
20	20 18O2-PFHxS	403 > 102.6	3.24e3	6.29e3	0.1250	0.437	3.55	3.45	6.44	118	117.9
21	21 13C2-PFOA	414.9 > 369.7	3.23e4	2.73e4	0.1250	1.292	3.63	3.58	14.8	91.4	91.4
22	22 13C5-PFNA	468.2 > 422.9	2.04e4	2.08e4	0.1250	0.980	3.82	3.76	12.3	100	100.3
23	23 13C8-PFOS	507 > 79.9	2.69e3	2.52e3	0.1250	1.098	3.86	3.81	13.3	97.0	97.0
24	24 13C2-PFDA	515.1 > 469.9	7.26e3	8.10e3	0.1250	0.928	4.00	3.92	11.2	96.5	96.5
25	25 13C2-PFUnA	565 > 519.8	3.42e3	3.94e3	0.1250	1.083	4.16	4.08	10.8	80.2	80.2
26	26 d3-N-MeFOSAA	573.3 > 419	8.58e2	3.94e3	0.1250	0.224	4.00	3.95	2.72	96.9	96.9
27	27 d5-N-EtFOSAA	589.3 > 419	8.93e2	3.94e3	0.1250	0.230	4.08	4.02	2.83	98.5	98.5
28	28 13C2-PFDoA	615 > 569.7	2.90e2	3.94e3	0.1250	0.130	4.32	4.23	0.920	56.7	56.7
29	29 13C2-PFTeDA	714.8 > 669.6	5.94e3	3.94e3	0.1250	1.018	4.66	4.57	18.8	148	147.8
30	30 13C4-PFBA	217 > 171.8	1.70e3	1.70e3	0.1250	1.000	1.43	1.36	12.5	100	100.0
31	31 13C5-PFHxA	318 > 272.9	3.99e4	3.99e4	0.1250	1.000	3.18	3.12	5.00	40.0	100.0
32	32_13C3-PFHxS	401.9 > 79.9	6.29e3	6.29e3	0.1250	1.000	3.55	3.45	12.5	100	100.0

AC 7/17/17

Work Order 1700804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-7.qld

Last Altered: Monday, July 17, 2017 16:11:13 Pacific Daylight Time Printed: Monday, July 17, 2017 16:11:29 Pacific Daylight Time

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	2.73e4	2.73e4	0.1250	1.000	3.63	3.58	12.5	100	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.08e4	2.08e4	0.1250	1.000	3.82	3.76	12.5	100	100.0
35	35 13C4-PFOS	503 > 79.9	2.52e3	2.52e3	0.1250	1.000	3.86	3.81	12.5	100	100.0
36	36 13C6-PFDA	519.1 > 473.7	8.10e3	8.10e3	0.1250	1.000	4.00	3.93	12.5	100	100.0
37	37 13C7-PFUnA	570.1 > 524.8	3.94e3	3.94e3	0.1250	1.000	4.16	4.08	12.5	100	100.0
38	38 Total PFBS	299 > 79.7	0.00e0	4.04e3	0.1250		2.92		0.000		
39	39 Total PFHxS	398.9 > 79.6	1.65e1	3.24e3	0.1250		3.55		0.0638	0.682	
40	40 Total PFOA	413 > 368.7	0.00e0	3.23e4	0.1250		3.63		0.000		
41	41 Total PFOS	499 > 79.9	0.00e0	2.69e3	0.1250		3.86		0.000		
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	8.58e2	0.1250		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	8.93e2	0.1250		4.30		0.000		

Dataset: U:\Q4.PRO\results\170713M1\170713M1-7.qld

Last Altered: Monday, July 17, 2017 16:11:13 Pacific Daylight Time Printed: Monday, July 17, 2017 16:11:29 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_7, Date: 13-Jul-2017, Time: 17:10:36, ID: B7G0049-BLK1 Method Blank 0.125, Description: Method Blank

Total PFBS

		# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
- 1	1								

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.45	16.543	3242.886	0.064	MM	0.7

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-7.qld

Last Altered: Monday, July 17, 2017 16:11:13 Pacific Daylight Time Printed: Monday, July 17, 2017 16:11:29 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_7, Date: 13-Jul-2017, Time: 17:10:36, ID: B7G0049-BLK1 Method Blank 0.125, Description: Method Blank

AC 7/17/17

Work Order 1700804

Page 35 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-7.qld

Last Altered: Monday, July 17, 2017 16:11:13 Pacific Daylight Time Printed: Monday, July 17, 2017 16:11:29 Pacific Daylight Time

Dataset: U:\Q4.PRO\results\170713M1\170713M1-7.qld

Last Altered: Monday, July 17, 2017 16:11:13 Pacific Daylight Time Printed: Monday, July 17, 2017 16:11:29 Pacific Daylight Time

 $\label{eq:decomposition} Dataset: \qquad U:\Q4.PRO\results\170713M1\170713M1-7.qld$

Last Altered: Monday, July 17, 2017 16:11:13 Pacific Daylight Time Printed: Monday, July 17, 2017 16:11:29 Pacific Daylight Time

 $\label{eq:decomposition} Dataset: \qquad U:\Q4.PRO\results\170713M1\170713M1-7.qld$

Last Altered: Monday, July 17, 2017 16:11:13 Pacific Daylight Time Printed: Monday, July 17, 2017 16:11:29 Pacific Daylight Time

Reviewed: WJL 7/19/2017

Dataset: U:\Q4.PRO\results\170713M1\170713M1-4.qld

Last Altered: Monday, July 17, 2017 16:06:48 Pacific Daylight Time Printed: Monday, July 17, 2017 16:06:54 Pacific Daylight Time

 $Method: U: \Q4.PRO \MethDB \PFAS_L14-7-13-17.mdb \ 14 \ Jul \ 2017 \ 08:41:09$

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_4, Date: 13-Jul-2017, Time: 16:38:24, ID: B7G0049-BS1 OPR 0.125, Description: OPR

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	5.94e3	4.00e3	0.1250		2.92	2.87	18.5	65.5	81.9
2	2 PFHxA	313.2 > 268.9	3.51e4	1.18e4	0.1250		3.16	3.10	14.8	72.1	90.1
3	3 PFHpA	363 > 318.9	2.49e4	2.58e4	0.1250		3.43	3.37	12.1	67.1	83.8
4	4 PFHxS	398.9 > 79.6	3.99e3	2.85e3	0.1250		3.55	3.44	17.5	76.3	95.3
5	5 PFOA	413 > 368.7	2.36e4	3.03e4	0.1250		3.63	3.57	9.76	67.8	84.8
6	6 PFNA	462.9 > 418.8	1.64e4	1.76e4	0.1250		3.82	3.75	11.7	68.2	85.2
7	7 PFOS	499 > 79.9	3.05e3	3.48e3	0.1250		3.86	3.80	11.0	78.0	97.5
8	8 PFDA	513 > 468.8	9.81e3	1.01e4	0.1250		4.00	3.91	12.1	64.5	80.7
9	9 PFUnA	562.9 > 518.9	4.58e3	5.92e3	0.1250		4.16	4.08	9.67	73.5	91.9
10	10 N-MeFOSAA	570.1 > 419	1.67e3	1.28e3	0.1250		4.00	3.95	16.3	69.9	87.3
11	11 N-EtFOSAA	584.2 > 419	1.52e3	1.48e3	0.1250		4.08	4.01	12.8	75.6	94.5
12	12 PFDoA	612.9 > 318.8	5.78e2	6.79e2	0.1250		4.32	4.23	10.6	102	127.4
13	13 PFTrDA	662.9 > 618.9	8.67e3	6.79e2	0.1250		4.50	4.39	160	95.0	118.8
14	14 PFTeDA	712.9 > 668.8	6.62e3	6.63e3	0.1250		4.66	4.55	12.5	79.0	98.8
15	15 13C3-PFBA	216.1 > 171.8	1.54e3	1.61e3	0.1250	0.918	1.43	1.38	12.0	104	104.2
16	16 13C3-PFPeA	266 > 221.8	3.40e4	3.82e4	0.1250	0.275	2.72	2.64	4.44	129	129.3
17	17 13C3-PFBS	302 > 98.8	4.00e3	3.82e4	0.1250	0.033	2.92	2.87	0.524	126	126.4
18	18 13C2-PFHxA	315 > 269.8	1.18e4	3.82e4	0.1250	0.304	3.16	3.10	1.55	40.7	101.8
19	19 13C4-PFHpA	367.2 > 321.8	2.58e4	3.82e4	0.1250	0.306	3.43	3.37	3.37	88.2	88.2
20	20 18O2-PFHxS	403 > 102.6	2.85e3	5.96e3	0.1250	0.437	3.55	3.44	5.97	109	109.2
21	21 13C2-PFOA	414.9 > 369.7	3.03e4	2.25e4	0.1250	1.292	3.63	3.57	16.8	104	104.1
22	22 13C5-PFNA	468.2 > 422.9	1.76e4	1.78e4	0.1250	0.980	3.82	3.75	12.4	101	100.8
23	23 13C8-PFOS	507 > 79.9	3.48e3	3.00e3	0.1250	1.098	3.86	3.80	14.5	106	105.6
24	24 13C2-PFDA	515.1 > 469.9	1.01e4	1.17e4	0.1250	0.928	4.00	3.91	10.8	93.1	93.1
25	25 13C2-PFUnA	565 > 519.8	5.92e3	8.37e3	0.1250	1.083	4.16	4.08	8.84	65.4	65.4
26	26 d3-N-MeFOSAA	573.3 > 419	1.28e3	8.37e3	0.1250	0.224	4.00	3.95	1.91	68.2	68.2
27	27 d5-N-EtFOSAA	589.3 > 419	1.48e3	8.37e3	0.1250	0.230	4.08	4.01	2.21	77.0	77.0
28	28 13C2-PFDoA	615 > 569.7	6.79e2	8.37e3	0.1250	0.130	4.32	4.24	1.01	62.5	62.5
29	29 13C2-PFTeDA	714.8 > 669.6	6.63e3	8.37e3	0.1250	1.018	4.66	4.56	9.90	77.8	77.8
30	30 13C4-PFBA	217 > 171.8	1.61e3	1.61e3	0.1250	1.000	1.43	1.39	12.5	100	100.0
31	31 13C5-PFHxA	318 > 272.9	3.82e4	3.82e4	0.1250	1.000	3.18	3.10	5.00	40.0	100.0
32	32_13C3-PFHxS	401.9 > 79.9	5.96e3	5.96e3	0.1250	1.000	3.55	3.44	12.5	100	100.0

AC 7/17/17

Work Order 1700804

Reviewed: WJL 7/19/2017

Page 2 of 2

Dataset: U:\Q4.PRO\results\170713M1\170713M1-4.qld

Last Altered: Monday, July 17, 2017 16:06:48 Pacific Daylight Time Printed: Monday, July 17, 2017 16:06:54 Pacific Daylight Time

Name: 170713M1_4, Date: 13-Jul-2017, Time: 16:38:24, ID: B7G0049-BS1 OPR 0.125, Description: OPR

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	2.25e4	2.25e4	0.1250	1.000	3.63	3.57	12.5	100	100.0
34	34 13C9-PFNA	472.2 > 426.9	1.78e4	1.78e4	0.1250	1.000	3.82	3.75	12.5	100	100.0
35	35 13C4-PFOS	503 > 79.9	3.00e3	3.00e3	0.1250	1.000	3.86	3.80	12.5	100	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.17e4	1.17e4	0.1250	1.000	4.00	3.91	12.5	100	100.0
37	37 13C7-PFUnA	570.1 > 524.8	8.37e3	8.37e3	0.1250	1.000	4.16	4.08	12.5	100	100.0
38	38 Total PFBS	299 > 79.7	5.94e3	4.00e3	0.1250		2.92		18.5	65.5	
39	39 Total PFHxS	398.9 > 79.6	3.99e3	2.85e3	0.1250		3.55		17.5	76.3	
40	40 Total PFOA	413 > 368.7	2.36e4	3.03e4	0.1250		3.63		9.76	67.8	
41	41 Total PFOS	499 > 79.9	3.05e3	3.48e3	0.1250		3.86		11.0	78.0	
42	42 Total N-Me-FOSAA	570.1 > 419	1.67e3	1.28e3	0.1250		4.20		16.3	69.9	
43	43 Total N-EtFOSAA	584.2 > 419	1.52e3	1.48e3	0.1250		4.30		12.8	75.6	

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Page 1 of 1

Vista Analytical Laboratory

Reviewed: WJL 7/19/2017

Dataset: U:\Q4.PRO\results\170713M1\170713M1-4.qld

Last Altered: Monday, July 17, 2017 16:06:48 Pacific Daylight Time Printed: Monday, July 17, 2017 16:06:54 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_4, Date: 13-Jul-2017, Time: 16:38:24, ID: B7G0049-BS1 OPR 0.125, Description: OPR

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.87	5936.681	4003.364	18.537	bb	65.5

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.44	3993.775	2848.447	17.526	MM	76.3

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7	3.57	23643.381	30281.287	9.760	bb	67.8

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.80	3052.613	3476.254	10.977	MM	78.0

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	10 N-MeFOSAA	570.1 > 419	3.95	1670.274	1281.585	16.291	bb	69.9

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	11 N-EtFOSAA	584.2 > 419	4.01	1522.363	1481.698	12.843	bb	75.6

Dataset: U:\Q4.PRO\results\170713M1\170713M1-4.qld

Last Altered: Monday, July 17, 2017 16:06:48 Pacific Daylight Time Printed: Monday, July 17, 2017 16:06:54 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_4, Date: 13-Jul-2017, Time: 16:38:24, ID: B7G0049-BS1 OPR 0.125, Description: OPR

AC 7/17/17

Work Order 1700804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-4.qld

Last Altered: Monday, July 17, 2017 16:06:48 Pacific Daylight Time Printed: Monday, July 17, 2017 16:06:54 Pacific Daylight Time

Name: 170713M1_4, Date: 13-Jul-2017, Time: 16:38:24, ID: B7G0049-BS1 OPR 0.125, Description: OPR

Dataset: U:\Q4.PRO\results\170713M1\170713M1-4.qld

Last Altered: Monday, July 17, 2017 16:06:48 Pacific Daylight Time Printed: Monday, July 17, 2017 16:06:54 Pacific Daylight Time

Name: 170713M1_4, Date: 13-Jul-2017, Time: 16:38:24, ID: B7G0049-BS1 OPR 0.125, Description: OPR

Work Order 1700804

Page 45 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-4.qld

Last Altered: Monday, July 17, 2017 16:06:48 Pacific Daylight Time Printed: Monday, July 17, 2017 16:06:54 Pacific Daylight Time

Name: 170713M1_4, Date: 13-Jul-2017, Time: 16:38:24, ID: B7G0049-BS1 OPR 0.125, Description: OPR

 $\label{eq:decomposition} Dataset: \qquad U:\Q4.PRO\results\170713M1\170713M1-4.qld$

Last Altered: Monday, July 17, 2017 16:06:48 Pacific Daylight Time Printed: Monday, July 17, 2017 16:06:54 Pacific Daylight Time

Name: 170713M1_4, Date: 13-Jul-2017, Time: 16:38:24, ID: B7G0049-BS1 OPR 0.125, Description: OPR

Dataset: U:\Q4.PRO\results\170713M1\170713M1-9.qld

Last Altered: Tuesday, July 18, 2017 14:37:09 Pacific Daylight Time Tuesday, July 18, 2017 14:37:40 Pacific Daylight Time Printed:

Method: U:\Q4.PRO\MethDB\PFAS L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_9, Date: 13-Jul-2017, Time: 17:33:22, ID: 1700804-01RE1 IRPSite7-GW-07GW41-20170629 0.12511, Description: IRPSite7-GW-07GW41-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	3.49e2	4.36e3	0.121		2.92	2.89	1.00	4.16	
2	2 PFHxA	313.2 > 268.9	8.19e3	1.20e4	0.121		3.16	3.12	3.41	17.0	
2 3	3 PFHpA	363 > 318.9	3.59e3	2.67e4	0.121		3.43	3.38	1.68	9.53	
	4 PFHxS	398.9 > 79.6	4.40e3	3.06e3	0.121		3.55	3.45	18.0	81.1	
4 5 6	5 PFOA	413 > 368.7	1.12e4	3.31e4	0.121		3.63	3.58	4.21	29.8	
6	6 PFNA	462.9 > 418.8	1.12e3	2.36e4	0.121		3.82	3.76	0.595	3.26	
7	7 PFOS	499 > 79.9	1.26e4	4.30e3	0.121		3.86	3.75	36.7	262	
8	8 PFDA	513 > 468.8	1.09e2	1.39e4	0.121		4.00	3.94	0.0982	0.916	
8 9	9 PFUnA	562.9 > 518.9		8.28e3	0.121		4.16				
10	10 N-MeFOSAA	570.1 > 419		1.56e3	0.121		4.00				
11	11 N-EtFOSAA	584.2 > 419		1.85e3	0.121		4.08				
12	12 PFDoA	612.9 > 318.8		8.06e2	0.121		4.32				
13	13 PFTrDA	662.9 > 618.9		8.06e2	0.121		4.50				
14	14 PFTeDA	712.9 > 668.8		8.62e3	0.121		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.53e3	1.54e3	0.121	0.918	1.43	1.36	12.4	112	108.3
16	16 13C3-PFPeA	266 > 221.8	3.44e4	3.64e4	0.121	0.275	2.72	2.65	4.72	142	137.3
17	17 13C3-PFBS	302 > 98.8	4.36e3	3.64e4	0.121	0.033	2.92	2.88	0.598	150	144.4
18	18 13C2-PFHxA	315 > 269.8	1.20e4	3.64e4	0.121	0.304	3.16	3.12	1.65	45.0	108.5
19	19 13C4-PFHpA	367.2 > 321.8	2.67e4	3.64e4	0.121	0.306	3.43	3.38	3.66	99.3	95.8
20	20 18O2-PFHxS	403 > 102.6	3.06e3	6.08e3	0.121	0.437	3.55	3.45	6.29	119	115.0
21	21 13C2-PFOA	414.9 > 369.7	3.31e4	3.03e4	0.121	1.292	3.63	3.58	13.7	87.8	84.7
22	22 13C5-PFNA	468.2 > 422.9	2.36e4	2.37e4	0.121	0.980	3.82	3.76	12.5	105	101.7
23	23 13C8-PFOS	507 > 79.9	4.30e3	3.79e3	0.121	1.098	3.86	3.81	14.2	107	103.3
24	24 13C2-PFDA	515.1 > 469.9	1.39e4	1.62e4	0.121	0.928	4.00	3.93	10.7	95.9	92.5
23 24 25 26	25 13C2-PFUnA	565 > 519.8	8.28e3	1.02e4	0.121	1.083	4.16	4.09	10.2	78.1	75.3
26	26 d3-N-MeFOSAA	573.3 > 419	1.56e3	1.02e4	0.121	0.224	4.00	3.95	1.92	70.9	68.4
27	27 d5-N-EtFOSAA	589.3 > 419	1.85e3	1.02e4	0.121	0.230	4.08	4.02	2.28	82.2	79.3
28	28 13C2-PFDoA	615 > 569.7	8.06e2	1.02e4	0.121	0.130	4.32	4.24	0.992	63.4	61.1
29	29 13C2-PFTeDA	714.8 > 669.6	8.62e3	1.02e4	0.121	1.018	4.66	4.57	10.6	86.4	83.4
30	30 13C4-PFBA	217 > 171.8	1.54e3	1.54e3	0.121	1.000	1.43	1.36	12.5	104	100.0
31	31 13C5-PFHxA	318 > 272.9	3.64e4	3.64e4	0.121	1.000	3.18	3.12	5.00	41.5	100.0
32	32 13C3-PFHxS	401.9 > 79.9	6.08e3	6.08e3	0.121	1.000	3.55	3.45	12.5	104	100.0
	Work Order 1700804			_	_		_		-	_	

AC 7/18/17

Work Order 17/00804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-9.qld

Vista Analytical Laboratory

Last Altered: Tuesday, July 18, 2017 14:37:09 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:37:40 Pacific Daylight Time

Name: 170713M1_9, Date: 13-Jul-2017, Time: 17:33:22, ID: 1700804-01RE1 IRPSite7-GW-07GW41-20170629 0.12511, Description: IRPSite7-GW-07GW41-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	3.03e4	3.03e4	0.121	1.000	3.63	3.58	12.5	104	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.37e4	2.37e4	0.121	1.000	3.82	3.76	12.5	104	100.0
35	35 13C4-PFOS	503 > 79.9	3.79e3	3.79e3	0.121	1.000	3.86	3.81	12.5	104	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.62e4	1.62e4	0.121	1.000	4.00	3.93	12.5	104	100.0
37	37 13C7-PFUnA	570.1 > 524.8	1.02e4	1.02e4	0.121	1.000	4.16	4.09	12.5	104	100.0
38	38 Total PFBS	299 > 79.7	3.49e2	4.36e3	0.121		2.92		1.00	4.16	
39	39 Total PFHxS	398.9 > 79.6	4.40e3	3.06e3	0.121		3.55		18.0	81.1	
40	40 Total PFOA	413 > 368.7	1.16e4	3.31e4	0.121		3.63		4.39	30.3	
41	41 Total PFOS	499 > 79.9	1.26e4	4.30e3	0.121		3.86		36.7	262	
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	1.56e3	0.121		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	1.85e3	0.121		4.30		0.000		

Dataset: U:\Q4.PRO\results\170713M1\170713M1-9.qld

Last Altered: Tuesday, July 18, 2017 14:37:09 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:37:40 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_9, Date: 13-Jul-2017, Time: 17:33:22, ID: 1700804-01RE1 IRPSite7-GW-07GW41-20170629 0.12511, Description: IRPSite7-GW-07GW41-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.89	348.639	4356.175	1.000	bb	4.2

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.45	4404.005	3058.917	17.997	MM	81.1

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7	3.58	11153.563	33128.895	4.208	MM	29.8
2	40 Total PFOA	413 > 368.7	3.53	472.074	33128.895	0.178	MM	0.4

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.75	12647.016	4301.883	36.748	MM	261.8

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-9.qld

Last Altered: Tuesday, July 18, 2017 14:37:09 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:37:40 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_9, Date: 13-Jul-2017, Time: 17:33:22, ID: 1700804-01RE1 IRPSite7-GW-07GW41-20170629 0.12511, Description: IRPSite7-GW-07GW41-20170629

AC 7/18/17

Work Order 1700804

Page 51 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-9.qld

Last Altered: Tuesday, July 18, 2017 14:37:09 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:37:40 Pacific Daylight Time

Name: 170713M1_9, Date: 13-Jul-2017, Time: 17:33:22, ID: 1700804-01RE1 IRPSite7-GW-07GW41-20170629 0.12511, Description: IRPSite7-GW-07GW41-20170629

AC 7/18/17

Work Order 1700804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-9.qld

Last Altered: Tuesday, July 18, 2017 14:37:09 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:37:40 Pacific Daylight Time

Name: 170713M1_9, Date: 13-Jul-2017, Time: 17:33:22, ID: 1700804-01RE1 IRPSite7-GW-07GW41-20170629 0.12511, Description: IRPSite7-GW-07GW41-20170629

Work Order 1700804

Page 53 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-9.qld

Last Altered: Tuesday, July 18, 2017 14:37:09 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:37:40 Pacific Daylight Time

Name: 170713M1_9, Date: 13-Jul-2017, Time: 17:33:22, ID: 1700804-01RE1 IRPSite7-GW-07GW41-20170629 0.12511, Description: IRPSite7-GW-07GW41-20170629

AC 7/18/17

Work Order 1700804 Page 54 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-9.qld

Last Altered: Tuesday, July 18, 2017 14:37:09 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:37:40 Pacific Daylight Time

Name: 170713M1_9, Date: 13-Jul-2017, Time: 17:33:22, ID: 1700804-01RE1 IRPSite7-GW-07GW41-20170629 0.12511, Description: IRPSite7-GW-07GW41-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-10.qld

Last Altered: Tuesday, July 18, 2017 14:40:38 Pacific Daylight Time Tuesday, July 18, 2017 14:40:52 Pacific Daylight Time Printed:

Method: U:\Q4.PRO\MethDB\PFAS L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_10, Date: 13-Jul-2017, Time: 17:44:00, ID: 1700804-02RE1 IRPSite5-GW-05GW01-20170629 0.11699, Description: IRPSite5-GW-05GW01-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	1.26e2	4.73e3	0.115		2.92	2.89	0.334	1.83	
2	2 PFHxA	313.2 > 268.9	3.85e3	1.41e4	0.115		3.16	3.12	1.36	6.98	
2 3	3 PFHpA	363 > 318.9	1.67e3	3.05e4	0.115		3.43	3.38	0.685	3.96	
	4 PFHxS	398.9 > 79.6	3.60e3	3.51e3	0.115		3.55	3.46	12.8	61.1	
4 5 6	5 PFOA	413 > 368.7	1.88e4	3.89e4	0.115		3.63	3.58	6.03	45.4	
6	6 PFNA	462.9 > 418.8	1.06e3	2.35e4	0.115		3.82	3.76	0.566	3.24	
7	7 PFOS	499 > 79.9	7.96e3	3.69e3	0.115		3.86	3.81	27.0	205	
8 9	8 PFDA	513 > 468.8		8.57e3	0.115		4.00				
9	9 PFUnA	562.9 > 518.9		3.98e3	0.115		4.16				
10	10 N-MeFOSAA	570.1 > 419		1.12e3	0.115		4.00				
11	11 N-EtFOSAA	584.2 > 419		9.33e2	0.115		4.08				
12	12 PFDoA	612.9 > 318.8		2.26e2	0.115		4.32				
13	13 PFTrDA	662.9 > 618.9		2.26e2	0.115		4.50				
14	14 PFTeDA	712.9 > 668.8		5.58e3	0.115		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.74e3	1.77e3	0.115	0.918	1.43	1.37	12.3	117	107.2
16	16 13C3-PFPeA	266 > 221.8	3.93e4	4.36e4	0.115	0.275	2.72	2.66	4.51	143	131.2
17	17 13C3-PFBS	302 > 98.8	4.73e3	4.36e4	0.115	0.033	2.92	2.89	0.542	143	130.9
18	18 13C2-PFHxA	315 > 269.8	1.41e4	4.36e4	0.115	0.304	3.16	3.12	1.62	46.5	106.6
19	19 13C4-PFHpA	367.2 > 321.8	3.05e4	4.36e4	0.115	0.306	3.43	3.39	3.50	99.7	91.5
20	20 18O2-PFHxS	403 > 102.6	3.51e3	7.00e3	0.115	0.437	3.55	3.45	6.26	125	114.6
21	21 13C2-PFOA	414.9 > 369.7	3.89e4	3.31e4	0.115	1.292	3.63	3.59	14.7	99.1	91.0
22	22 13C5-PFNA	468.2 > 422.9	2.35e4	2.55e4	0.115	0.980	3.82	3.76	11.5	102	93.8
23	23 13C8-PFOS	507 > 79.9	3.69e3	3.04e3	0.115	1.098	3.86	3.81	15.1	120	110.3
24	24 13C2-PFDA	515.1 > 469.9	8.57e3	1.12e4	0.115	0.928	4.00	3.93	9.53	89.6	82.2
23 24 25 26	25 13C2-PFUnA	565 > 519.8	3.98e3	4.65e3	0.115	1.083	4.16	4.09	10.7	86.2	79.1
	26 d3-N-MeFOSAA	573.3 > 419	1.12e3	4.65e3	0.115	0.224	4.00	3.95	3.01	117	107.3
27	27 d5-N-EtFOSAA	589.3 > 419	9.33e2	4.65e3	0.115	0.230	4.08	4.02	2.51	95.2	87.3
28	28 13C2-PFDoA	615 > 569.7	2.26e2	4.65e3	0.115	0.130	4.32	4.24	0.607	40.8	37.4
29	29 13C2-PFTeDA	714.8 > 669.6	5.58e3	4.65e3	0.115	1.018	4.66	4.57	15.0	129	117.9
30	30 13C4-PFBA	217 > 171.8	1.77e3	1.77e3	0.115	1.000	1.43	1.37	12.5	109	100.0
31	31 13C5-PFHxA	318 > 272.9	4.36e4	4.36e4	0.115	1.000	3.18	3.12	5.00	43.6	100.0
32	32 13C3-PFHxS	401.9 > 79.9	7.00e3	7.00e3	0.115	1.000	3.55	3.45	12.5	109	100.0
	Work Order 1700804		-		-	_		_	-		

AC 7/18/17

Work Order 17/00804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-10.qld

Quantify Sample Summary Report

Vista Analytical Laboratory

Last Altered: Tuesday, July 18, 2017 14:40:38 Pacific Daylight Time Tuesday, July 18, 2017 14:40:52 Pacific Daylight Time Printed:

Name: 170713M1_10, Date: 13-Jul-2017, Time: 17:44:00, ID: 1700804-02RE1 IRPSite5-GW-05GW01-20170629 0.11699, Description: IRPSite5-GW-05GW01-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	3.31e4	3.31e4	0.115	1.000	3.63	3.59	12.5	109	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.55e4	2.55e4	0.115	1.000	3.82	3.76	12.5	109	100.0
35	35 13C4-PFOS	503 > 79.9	3.04e3	3.04e3	0.115	1.000	3.86	3.81	12.5	109	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.12e4	1.12e4	0.115	1.000	4.00	3.92	12.5	109	100.0
37	37 13C7-PFUnA	570.1 > 524.8	4.65e3	4.65e3	0.115	1.000	4.16	4.09	12.5	109	100.0
38	38 Total PFBS	299 > 79.7	1.26e2	4.73e3	0.115		2.92		0.334	1.83	
39	39 Total PFHxS	398.9 > 79.6	3.60e3	3.51e3	0.115		3.55		12.8	61.1	
40	40 Total PFOA	413 > 368.7	2.05e4	3.89e4	0.115		3.63		6.59	48.8	
41	41 Total PFOS	499 > 79.9	7.96e3	3.69e3	0.115		3.86		27.0	205	
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	1.12e3	0.115		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	9.33e2	0.115		4.30		0.000		

Dataset: U:\Q4.PRO\results\170713M1\170713M1-10.qld

Last Altered: Tuesday, July 18, 2017 14:40:38 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:40:52 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_10, Date: 13-Jul-2017, Time: 17:44:00, ID: 1700804-02RE1 IRPSite5-GW-05GW01-20170629 0.11699, Description: IRPSite5-GW-05GW01-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.89	126.444	4730.890	0.334	bb	1.8

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.46	3600.520	3509.114	12.826	MM	61.1

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7	3.58	18792.818	38947.934	6.031	db	45.4
2	40 Total PFOA	413 > 368.7	3.53	1746.103	38947.934	0.560	bd	3.4

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.81	7955.253	3687.014	26.971	MM	204.6

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

		# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
١	1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-10.qld

Last Altered: Tuesday, July 18, 2017 14:40:38 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:40:52 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_10, Date: 13-Jul-2017, Time: 17:44:00, ID: 1700804-02RE1 IRPSite5-GW-05GW01-20170629 0.11699, Description: IRPSite5-GW-05GW01-20170629

AC 7/18/17

Work Order 1700804

Page 59 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-10.qld

Last Altered: Tuesday, July 18, 2017 14:40:38 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:40:52 Pacific Daylight Time

Name: 170713M1_10, Date: 13-Jul-2017, Time: 17:44:00, ID: 1700804-02RE1 IRPSite5-GW-05GW01-20170629 0.11699, Description: IRPSite5-GW-05GW01-20170629

Work Order 1700804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-10.qld

Last Altered: Tuesday, July 18, 2017 14:40:38 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:40:52 Pacific Daylight Time

Name: 170713M1_10, Date: 13-Jul-2017, Time: 17:44:00, ID: 1700804-02RE1 IRPSite5-GW-05GW01-20170629 0.11699, Description: IRPSite5-GW-05GW01-20170629

Work Order 1700804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-10.qld

Last Altered: Tuesday, July 18, 2017 14:40:38 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:40:52 Pacific Daylight Time

Name: 170713M1_10, Date: 13-Jul-2017, Time: 17:44:00, ID: 1700804-02RE1 IRPSite5-GW-05GW01-20170629 0.11699, Description: IRPSite5-GW-05GW01-20170629

AC 7/18/17

Work Order 1700804 Page 62 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-10.qld

Last Altered: Tuesday, July 18, 2017 14:40:38 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:40:52 Pacific Daylight Time

Name: 170713M1_10, Date: 13-Jul-2017, Time: 17:44:00, ID: 1700804-02RE1 IRPSite5-GW-05GW01-20170629 0.11699, Description: IRPSite5-GW-05GW01-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-11.qld

Last Altered: Tuesday, July 18, 2017 14:42:41 Pacific Daylight Time Tuesday, July 18, 2017 14:42:55 Pacific Daylight Time Printed:

Method: U:\Q4.PRO\MethDB\PFAS L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_11, Date: 13-Jul-2017, Time: 17:54:39, ID: 1700804-03RE1 IRPSite5-GW-FD01-20170629 0.11447, Description: IRPSite5-GW-FD01-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	1.27e2	3.55e3	0.113		2.92	2.89	0.448	2.30	
2	2 PFHxA	313.2 > 268.9	2.99e3	1.13e4	0.113		3.16	3.12	1.32	6.86	
2 3	3 PFHpA	363 > 318.9	1.13e3	2.60e4	0.113		3.43	3.38	0.546	3.17	
	4 PFHxS	398.9 > 79.6	3.11e3	2.90e3	0.113		3.55	3.45	13.4	64.9	
4 5 6	5 PFOA	413 > 368.7	1.53e4	3.04e4	0.113		3.63	3.58	6.30	48.3	
6	6 PFNA	462.9 > 418.8	8.30e2	2.11e4	0.113		3.82	3.76	0.491	2.82	
7	7 PFOS	499 > 79.9	7.17e3	3.49e3	0.113		3.86	3.81	25.7	199	
8	8 PFDA	513 > 468.8		1.04e4	0.113		4.00				
8 9	9 PFUnA	562.9 > 518.9		5.62e3	0.113		4.16				
10	10 N-MeFOSAA	570.1 > 419		9.97e2	0.113		4.00				
11	11 N-EtFOSAA	584.2 > 419		1.35e3	0.113		4.08				
12	12 PFDoA	612.9 > 318.8		5.08e2	0.113		4.32				
13	13 PFTrDA	662.9 > 618.9		5.08e2	0.113		4.50				
14	14 PFTeDA	712.9 > 668.8		5.90e3	0.113		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.31e3	1.38e3	0.113	0.918	1.43	1.38	11.9	116	104.1
16	16 13C3-PFPeA	266 > 221.8	3.08e4	3.66e4	0.113	0.275	2.72	2.65	4.20	136	122.4
17	17 13C3-PFBS	302 > 98.8	3.55e3	3.66e4	0.113	0.033	2.92	2.89	0.484	130	116.9
18	18 13C2-PFHxA	315 > 269.8	1.13e4	3.66e4	0.113	0.304	3.16	3.12	1.55	45.3	102.0
19	19 13C4-PFHpA	367.2 > 321.8	2.60e4	3.66e4	0.113	0.306	3.43	3.38	3.55	103	92.8
20	20 18O2-PFHxS	403 > 102.6	2.90e3	6.12e3	0.113	0.437	3.55	3.45	5.92	120	108.4
21	21 13C2-PFOA	414.9 > 369.7	3.04e4	2.40e4	0.113	1.292	3.63	3.58	15.8	109	98.0
22	22 13C5-PFNA	468.2 > 422.9	2.11e4	2.20e4	0.113	0.980	3.82	3.76	12.0	108	97.7
23	23 13C8-PFOS	507 > 79.9	3.49e3	3.18e3	0.113	1.098	3.86	3.81	13.7	111	99.9
24	24 13C2-PFDA	515.1 > 469.9	1.04e4	1.28e4	0.113	0.928	4.00	3.93	10.2	97.2	87.5
23 24 25 26	25 13C2-PFUnA	565 > 519.8	5.62e3	6.28e3	0.113	1.083	4.16	4.09	11.2	91.9	82.8
26	26 d3-N-MeFOSAA	573.3 > 419	9.97e2	6.28e3	0.113	0.224	4.00	3.95	1.99	78.6	70.8
27	27 d5-N-EtFOSAA	589.3 > 419	1.35e3	6.28e3	0.113	0.230	4.08	4.02	2.69	104	93.6
28	28 13C2-PFDoA	615 > 569.7	5.08e2	6.28e3	0.113	0.130	4.32	4.25	1.01	69.1	62.3
29	29 13C2-PFTeDA	714.8 > 669.6	5.90e3	6.28e3	0.113	1.018	4.66	4.57	11.8	103	92.3
30	30 13C4-PFBA	217 > 171.8	1.38e3	1.38e3	0.113	1.000	1.43	1.38	12.5	111	100.0
31	31 13C5-PFHxA	318 > 272.9	3.66e4	3.66e4	0.113	1.000	3.18	3.12	5.00	44.4	100.0
32	32 13C3-PFHxS	401.9 > 79.9	6.12e3	6.12e3	0.113	1.000	3.55	3.45	12.5	111	100.0
	Work Order 1700804	-		-	-	-		_	-		

AC 7/18/17

Work Order 17/00804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-11.qld

Last Altered: Tuesday, July 18, 2017 14:42:41 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:42:55 Pacific Daylight Time

Name: 170713M1_11, Date: 13-Jul-2017, Time: 17:54:39, ID: 1700804-03RE1 IRPSite5-GW-FD01-20170629 0.11447, Description: IRPSite5-GW-FD01-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	2.40e4	2.40e4	0.113	1.000	3.63	3.58	12.5	111	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.20e4	2.20e4	0.113	1.000	3.82	3.76	12.5	111	100.0
35	35 13C4-PFOS	503 > 79.9	3.18e3	3.18e3	0.113	1.000	3.86	3.81	12.5	111	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.28e4	1.28e4	0.113	1.000	4.00	3.93	12.5	111	100.0
37	37 13C7-PFUnA	570.1 > 524.8	6.28e3	6.28e3	0.113	1.000	4.16	4.09	12.5	111	100.0
38	38 Total PFBS	299 > 79.7	1.27e2	3.55e3	0.113		2.92		0.448	2.30	
39	39 Total PFHxS	398.9 > 79.6	3.11e3	2.90e3	0.113		3.55		13.4	64.9	
40	40 Total PFOA	413 > 368.7	1.66e4	3.04e4	0.113		3.63		6.80	51.3	
41	41 Total PFOS	499 > 79.9	7.17e3	3.49e3	0.113		3.86		25.7	199	
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	9.97e2	0.113		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	1.35e3	0.113		4.30		0.000		

Dataset: U:\Q4.PRO\results\170713M1\170713M1-11.qld

Last Altered: Tuesday, July 18, 2017 14:42:41 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:42:55 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_11, Date: 13-Jul-2017, Time: 17:54:39, ID: 1700804-03RE1 IRPSite5-GW-FD01-20170629 0.11447, Description: IRPSite5-GW-FD01-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.89	127.004	3545.718	0.448	bb	2.3

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.45	3106.354	2899.493	13.392	MM	64.9

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7	3.58	15339.841	30448.734	6.297	db	48.3
2	40 Total PFOA	413 > 368.7	3.53	1224.984	30448.734	0.503	bd	3.0

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.81	7171.273	3486.604	25.710	MM	199.0

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-11.qld

Last Altered: Tuesday, July 18, 2017 14:42:41 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:42:55 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1 11, Date: 13-Jul-2017, Time: 17:54:39, ID: 1700804-03RE1 IRPSite5-GW-FD01-20170629 0.11447, Description: IRPSite5-GW-FD01-20170629

AC 7/18/17

Work Order 1700804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-11.qld

Last Altered: Tuesday, July 18, 2017 14:42:41 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:42:55 Pacific Daylight Time

Name: 170713M1_11, Date: 13-Jul-2017, Time: 17:54:39, ID: 1700804-03RE1 IRPSite5-GW-FD01-20170629 0.11447, Description: IRPSite5-GW-FD01-20170629

Work Order 1700804

Page 68 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-11.qld

Last Altered: Tuesday, July 18, 2017 14:42:41 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:42:55 Pacific Daylight Time

Name: 170713M1_11, Date: 13-Jul-2017, Time: 17:54:39, ID: 1700804-03RE1 IRPSite5-GW-FD01-20170629 0.11447, Description: IRPSite5-GW-FD01-20170629

Work Order 1700804

Page 69 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-11.qld

Last Altered: Tuesday, July 18, 2017 14:42:41 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:42:55 Pacific Daylight Time

Name: 170713M1_11, Date: 13-Jul-2017, Time: 17:54:39, ID: 1700804-03RE1 IRPSite5-GW-FD01-20170629 0.11447, Description: IRPSite5-GW-FD01-20170629

AC 7/18/17

Page 70 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-11.qld

Last Altered: Tuesday, July 18, 2017 14:42:41 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:42:55 Pacific Daylight Time

Name: 170713M1_11, Date: 13-Jul-2017, Time: 17:54:39, ID: 1700804-03RE1 IRPSite5-GW-FD01-20170629 0.11447, Description: IRPSite5-GW-FD01-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-12.qld

Last Altered: Tuesday, July 18, 2017 14:45:10 Pacific Daylight Time Tuesday, July 18, 2017 14:45:25 Pacific Daylight Time Printed:

Method: U:\Q4.PRO\MethDB\PFAS L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_12, Date: 13-Jul-2017, Time: 18:05:18, ID: 1700804-04RE1 IRPSite33-GW-FRB01-20170629 0.11778, Description: IRPSite33-GW-FRB01-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7		3.09e3	0.123		2.92				
2	2 PFHxA	313.2 > 268.9		9.32e3	0.123		3.16				
2 3	3 PFHpA	363 > 318.9		2.20e4	0.123		3.43				
4 5	4 PFHxS	398.9 > 79.6	4.91e0	2.13e3	0.123		3.55	3.46	0.0288	0.539	
5	5 PFOA	413 > 368.7		2.77e4	0.123		3.63				
6	6 PFNA	462.9 > 418.8		2.00e4	0.123		3.82				
7	7 PFOS	499 > 79.9		3.53e3	0.123		3.86				
8	8 PFDA	513 > 468.8		9.48e3	0.123		4.00				
9	9 PFUnA	562.9 > 518.9		5.95e3	0.123		4.16				
10	10 N-MeFOSAA	570.1 > 419		1.15e3	0.123		4.00				
11	11 N-EtFOSAA	584.2 > 419		1.29e3	0.123		4.08				
12	12 PFDoA	612.9 > 318.8		4.17e2	0.123		4.32				
13	13 PFTrDA	662.9 > 618.9		4.17e2	0.123		4.50				
14	14 PFTeDA	712.9 > 668.8		5.46e3	0.123		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.11e3	1.16e3	0.123	0.918	1.43	1.38	11.9	106	103.8
16	16 13C3-PFPeA	266 > 221.8	2.59e4	2.98e4	0.123	0.275	2.72	2.66	4.35	129	126.5
17	17 13C3-PFBS	302 > 98.8	3.09e3	2.98e4	0.123	0.033	2.92	2.89	0.517	127	124.9
18	18 13C2-PFHxA	315 > 269.8	9.32e3	2.98e4	0.123	0.304	3.16	3.13	1.56	41.9	102.8
19	19 13C4-PFHpA	367.2 > 321.8	2.20e4	2.98e4	0.123	0.306	3.43	3.39	3.69	98.3	96.5
20	20 18O2-PFHxS	403 > 102.6	2.13e3	4.53e3	0.123	0.437	3.55	3.46	5.88	110	107.5
21	21 13C2-PFOA	414.9 > 369.7	2.77e4	2.18e4	0.123	1.292	3.63	3.59	15.9	100	98.5
22	22 13C5-PFNA	468.2 > 422.9	2.00e4	1.96e4	0.123	0.980	3.82	3.76	12.7	106	104.0
23	23 13C8-PFOS	507 > 79.9	3.53e3	3.56e3	0.123	1.098	3.86	3.82	12.4	92.0	90.3
24	24 13C2-PFDA	515.1 > 469.9	9.48e3	1.12e4	0.123	0.928	4.00	3.93	10.6	93.2	91.5
23 24 25 26	25 13C2-PFUnA	565 > 519.8	5.95e3	7.21e3	0.123	1.083	4.16	4.09	10.3	77.6	76.2
26	26 d3-N-MeFOSAA	573.3 > 419	1.15e3	7.21e3	0.123	0.224	4.00	3.95	1.99	72.3	71.0
27	27 d5-N-EtFOSAA	589.3 > 419	1.29e3	7.21e3	0.123	0.230	4.08	4.02	2.24	79.6	78.1
28	28 13C2-PFDoA	615 > 569.7	4.17e2	7.21e3	0.123	0.130	4.32	4.25	0.723	45.4	44.6
29	29 13C2-PFTeDA	714.8 > 669.6	5.46e3	7.21e3	0.123	1.018	4.66	4.58	9.47	75.8	74.4
30	30 13C4-PFBA	217 > 171.8	1.16e3	1.16e3	0.123	1.000	1.43	1.39	12.5	102	100.0
31	31 13C5-PFHxA	318 > 272.9	2.98e4	2.98e4	0.123	1.000	3.18	3.13	5.00	40.7	100.0
32	32 13C3-PFHxS	401.9 > 79.9	4.53e3	4.53e3	0.123	1.000	3.55	3.46	12.5	102	100.0
	Work Order 1700804				-	-	-	_			

AC 7/18/17

Work Order 17/00804

Page 2 of 2

Reviewed: WJL 7/19/2017

Dataset: U:\Q4.PRO\results\170713M1\170713M1-12.qld

Last Altered: Tuesday, July 18, 2017 14:45:10 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:45:25 Pacific Daylight Time

Name: 170713M1_12, Date: 13-Jul-2017, Time: 18:05:18, ID: 1700804-04RE1 IRPSite33-GW-FRB01-20170629 0.11778, Description: IRPSite33-GW-FRB01-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	2.18e4	2.18e4	0.123	1.000	3.63	3.59	12.5	102	100.0
34	34 13C9-PFNA	472.2 > 426.9	1.96e4	1.96e4	0.123	1.000	3.82	3.76	12.5	102	100.0
35	35 13C4-PFOS	503 > 79.9	3.56e3	3.56e3	0.123	1.000	3.86	3.82	12.5	102	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.12e4	1.12e4	0.123	1.000	4.00	3.93	12.5	102	100.0
37	37 13C7-PFUnA	570.1 > 524.8	7.21e3	7.21e3	0.123	1.000	4.16	4.09	12.5	102	100.0
38	38 Total PFBS	299 > 79.7	0.00e0	3.09e3	0.123		2.92		0.000		
39	39 Total PFHxS	398.9 > 79.6	4.91e0	2.13e3	0.123		3.55		0.0288	0.539	
40	40 Total PFOA	413 > 368.7	0.00e0	2.77e4	0.123		3.63		0.000		
41	41 Total PFOS	499 > 79.9	0.00e0	3.53e3	0.123		3.86		0.000		
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	1.15e3	0.123		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	1.29e3	0.123		4.30		0.000		

Dataset: U:\Q4.PRO\results\170713M1\170713M1-12.qld

Last Altered: Tuesday, July 18, 2017 14:45:10 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:45:25 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_12, Date: 13-Jul-2017, Time: 18:05:18, ID: 1700804-04RE1 IRPSite33-GW-FRB01-20170629 0.11778, Description: IRPSite33-GW-FRB01-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.46	4.907	2130.964	0.029	MM	0.5

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7			27740.279		MM-I	

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	11 N-EtFOSAA	584.2 > 419			1294.414		MM-I	

Dataset: U:\Q4.PRO\results\170713M1\170713M1-12.qld

Last Altered: Tuesday, July 18, 2017 14:45:10 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:45:25 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_12, Date: 13-Jul-2017, Time: 18:05:18, ID: 1700804-04RE1 IRPSite33-GW-FRB01-20170629 0.11778, Description: IRPSite33-GW-FRB01-20170629

AC 7/18/17

Work Order 1700804

Page 75 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-12.qld

Last Altered: Tuesday, July 18, 2017 14:45:10 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:45:25 Pacific Daylight Time

Name: 170713M1_12, Date: 13-Jul-2017, Time: 18:05:18, ID: 1700804-04RE1 IRPSite33-GW-FRB01-20170629 0.11778, Description: IRPSite33-GW-FRB01-20170629

Work Order 1700804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-12.qld

Last Altered: Tuesday, July 18, 2017 14:45:10 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:45:25 Pacific Daylight Time

Name: 170713M1_12, Date: 13-Jul-2017, Time: 18:05:18, ID: 1700804-04RE1 IRPSite33-GW-FRB01-20170629 0.11778, Description: IRPSite33-GW-FRB01-20170629

AC 7/18/17

Work Order 1700804

Page 77 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-12.qld

Last Altered: Tuesday, July 18, 2017 14:45:10 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:45:25 Pacific Daylight Time

Name: 170713M1_12, Date: 13-Jul-2017, Time: 18:05:18, ID: 1700804-04RE1 IRPSite33-GW-FRB01-20170629 0.11778, Description: IRPSite33-GW-FRB01-20170629

AC 7/18/17

Work Order 1700804 Page 78 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-12.qld

Last Altered: Tuesday, July 18, 2017 14:45:10 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:45:25 Pacific Daylight Time

Name: 170713M1_12, Date: 13-Jul-2017, Time: 18:05:18, ID: 1700804-04RE1 IRPSite33-GW-FRB01-20170629 0.11778, Description: IRPSite33-GW-FRB01-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-13.qld

Last Altered: Tuesday, July 18, 2017 14:48:01 Pacific Daylight Time Tuesday, July 18, 2017 14:48:17 Pacific Daylight Time Printed:

Method: U:\Q4.PRO\MethDB\PFAS L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_13, Date: 13-Jul-2017, Time: 18:15:56, ID: 1700804-05RE1 IRPSite33-GW-11MW204D-20170629 0.114, Description: IRPSite33-GW-11MW204D-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	7.47e2	3.70e3	0.117		2.92	2.89	2.52	9.95	
2	2 PFHxA	313.2 > 268.9	2.30e4	1.17e4	0.117		3.16	3.13	9.86	51.0	
2 3	3 PFHpA	363 > 318.9	7.90e3	2.70e4	0.117		3.43	3.39	3.66	21.5	
	4 PFHxS	398.9 > 79.6	2.91e3	2.69e3	0.117		3.55	3.46	13.5	62.9	
4 5 6	5 PFOA	413 > 368.7	3.16e4	3.29e4	0.117		3.63	3.59	12.0	89.2	
6	6 PFNA	462.9 > 418.8	6.67e2	2.32e4	0.117		3.82	3.77	0.359	1.88	
7	7 PFOS	499 > 79.9	1.96e3	4.86e3	0.117		3.86	3.81	5.03	38.3	
8	8 PFDA	513 > 468.8	2.63e2	1.20e4	0.117		4.00	3.95	0.274	1.94	
8 9	9 PFUnA	562.9 > 518.9		8.94e3	0.117		4.16				
10	10 N-MeFOSAA	570.1 > 419		1.73e3	0.117		4.00				
11	11 N-EtFOSAA	584.2 > 419		1.82e3	0.117		4.08				
12	12 PFDoA	612.9 > 318.8		5.10e2	0.117		4.32				
13	13 PFTrDA	662.9 > 618.9		5.10e2	0.117		4.50				
14	14 PFTeDA	712.9 > 668.8		6.81e3	0.117		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.43e3	1.47e3	0.117	0.918	1.43	1.38	12.2	113	106.5
16	16 13C3-PFPeA	266 > 221.8	3.22e4	3.82e4	0.117	0.275	2.72	2.66	4.22	131	122.8
17	17 13C3-PFBS	302 > 98.8	3.70e3	3.82e4	0.117	0.033	2.92	2.89	0.485	125	117.1
18	18 13C2-PFHxA	315 > 269.8	1.17e4	3.82e4	0.117	0.304	3.16	3.13	1.53	42.9	100.6
19	19 13C4-PFHpA	367.2 > 321.8	2.70e4	3.82e4	0.117	0.306	3.43	3.39	3.54	98.5	92.5
20	20 18O2-PFHxS	403 > 102.6	2.69e3	5.83e3	0.117	0.437	3.55	3.46	5.76	112	105.4
21	21 13C2-PFOA	414.9 > 369.7	3.29e4	2.96e4	0.117	1.292	3.63	3.59	13.9	91.6	85.9
22	22 13C5-PFNA	468.2 > 422.9	2.32e4	2.67e4	0.117	0.980	3.82	3.76	10.9	94.5	88.7
23	23 13C8-PFOS	507 > 79.9	4.86e3	4.20e3	0.117	1.098	3.86	3.82	14.5	112	105.4
24	24 13C2-PFDA	515.1 > 469.9	1.20e4	1.51e4	0.117	0.928	4.00	3.93	9.91	91.1	85.5
23 24 25 26	25 13C2-PFUnA	565 > 519.8	8.94e3	1.05e4	0.117	1.083	4.16	4.09	10.6	83.9	78.7
26	26 d3-N-MeFOSAA	573.3 > 419	1.73e3	1.05e4	0.117	0.224	4.00	3.96	2.06	78.2	73.4
27	27 d5-N-EtFOSAA	589.3 > 419	1.82e3	1.05e4	0.117	0.230	4.08	4.02	2.17	80.4	75.4
28	28 13C2-PFDoA	615 > 569.7	5.10e2	1.05e4	0.117	0.130	4.32	4.25	0.608	39.9	37.4
29	29 13C2-PFTeDA	714.8 > 669.6	6.81e3	1.05e4	0.117	1.018	4.66	4.58	8.11	67.9	63.7
30	30 13C4-PFBA	217 > 171.8	1.47e3	1.47e3	0.117	1.000	1.43	1.38	12.5	107	100.0
31	31 13C5-PFHxA	318 > 272.9	3.82e4	3.82e4	0.117	1.000	3.18	3.13	5.00	42.6	100.0
32	32 13C3-PFHxS	401.9 > 79.9	5.83e3	5.83e3	0.117	1.000	3.55	3.46	12.5	107	100.0
	Work Order 1700804										

AC 7/18/17

Work Order 17/00804

Vista Analytical Laboratory

Reviewed: WJL 7/19/2017

Dataset: U:\Q4.PRO\results\170713M1\170713M1-13.qld

Last Altered: Tuesday, July 18, 2017 14:48:01 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:48:17 Pacific Daylight Time

Name: 170713M1_13, Date: 13-Jul-2017, Time: 18:15:56, ID: 1700804-05RE1 IRPSite33-GW-11MW204D-20170629 0.114, Description: IRPSite33-GW-11MW204D-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	2.96e4	2.96e4	0.117	1.000	3.63	3.59	12.5	107	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.67e4	2.67e4	0.117	1.000	3.82	3.76	12.5	107	100.0
35	35 13C4-PFOS	503 > 79.9	4.20e3	4.20e3	0.117	1.000	3.86	3.81	12.5	107	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.51e4	1.51e4	0.117	1.000	4.00	3.93	12.5	107	100.0
37	37 13C7-PFUnA	570.1 > 524.8	1.05e4	1.05e4	0.117	1.000	4.16	4.10	12.5	107	100.0
38	38 Total PFBS	299 > 79.7	7.47e2	3.70e3	0.117		2.92		2.52	9.95	
39	39 Total PFHxS	398.9 > 79.6	2.91e3	2.69e3	0.117		3.55		13.5	62.9	
40	40 Total PFOA	413 > 368.7	3.42e4	3.29e4	0.117		3.63		13.0	95.8	
41	41 Total PFOS	499 > 79.9	1.96e3	4.86e3	0.117		3.86		5.03	38.3	
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	1.73e3	0.117		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	1.82e3	0.117		4.30		0.000		

Dataset: U:\Q4.PRO\results\170713M1\170713M1-13.qld

Last Altered: Tuesday, July 18, 2017 14:48:01 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:48:17 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_13, Date: 13-Jul-2017, Time: 18:15:56, ID: 1700804-05RE1 IRPSite33-GW-11MW204D-20170629 0.114, Description: IRPSite33-GW-11MW204D-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.89	746.780	3703.664	2.520	bb	10.0

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.46	2906.838	2685.359	13.531	MM	62.9

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7	3.59	31602.855	32874.227	12.017	db	89.2
2	40 Total PFOA	413 > 368.7	3.53	2609.961	32874.227	0.992	bd	6.6

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.81	1957.758	4861.352	5.034	MM	38.3

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-13.qld

Last Altered: Tuesday, July 18, 2017 14:48:01 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:48:17 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_13, Date: 13-Jul-2017, Time: 18:15:56, ID: 1700804-05RE1 IRPSite33-GW-11MW204D-20170629 0.114, Description: IRPSite33-GW-11MW204D-20170629

AC 7/18/17

Dataset: U:\Q4.PRO\results\170713M1\170713M1-13.qld

Last Altered: Tuesday, July 18, 2017 14:48:01 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:48:17 Pacific Daylight Time

Name: 170713M1_13, Date: 13-Jul-2017, Time: 18:15:56, ID: 1700804-05RE1 IRPSite33-GW-11MW204D-20170629 0.114, Description: IRPSite33-GW-11MW204D-20170629

AC 7/18/17

Work Order 1700804

Page 84 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-13.qld

Last Altered: Tuesday, July 18, 2017 14:48:01 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:48:17 Pacific Daylight Time

Name: 170713M1_13, Date: 13-Jul-2017, Time: 18:15:56, ID: 1700804-05RE1 IRPSite33-GW-11MW204D-20170629 0.114, Description: IRPSite33-GW-11MW204D-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-13.qld

Quantify Sample Report

Last Altered: Tuesday, July 18, 2017 14:48:01 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:48:17 Pacific Daylight Time

Name: 170713M1_13, Date: 13-Jul-2017, Time: 18:15:56, ID: 1700804-05RE1 IRPSite33-GW-11MW204D-20170629 0.114, Description: IRPSite33-GW-11MW204D-20170629

AC 7/18/17

Work Order 1700804 Page 86 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-13.qld

Last Altered: Tuesday, July 18, 2017 14:48:01 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:48:17 Pacific Daylight Time

Name: 170713M1_13, Date: 13-Jul-2017, Time: 18:15:56, ID: 1700804-05RE1 IRPSite33-GW-11MW204D-20170629 0.114, Description: IRPSite33-GW-11MW204D-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-14.qld

Last Altered: Tuesday, July 18, 2017 14:50:33 Pacific Daylight Time Tuesday, July 18, 2017 15:06:07 Pacific Daylight Time Printed:

Method: U:\Q4.PRO\MethDB\PFAS L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_14, Date: 13-Jul-2017, Time: 18:26:34, ID: 1700804-06RE1 IRPSite33-GW-11MW204S-20170629 0.120, Description: IRPSite33-GW-11MW204S-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	6.06e2	3.12e3	0.117		2.92	2.90	2.43	9.66	
2	2 PFHxA	313.2 > 268.9	1.88e4	9.26e3	0.117		3.16	3.13	10.2	52.9	
2 3	3 PFHpA	363 > 318.9	5.98e3	2.15e4	0.117		3.43	3.39	3.47	20.5	
	4 PFHxS	398.9 > 79.6	1.98e3	2.17e3	0.117		3.55	3.46	11.4	53.6	
4 5 6	5 PFOA	413 > 368.7	1.98e4	2.65e4	0.117		3.63	3.59	9.34	69.6	
6	6 PFNA	462.9 > 418.8	3.86e2	2.01e4	0.117		3.82	3.77	0.240	1.14	
7	7 PFOS	499 > 79.9	1.18e3	3.81e3	0.117		3.86	3.76	3.86	29.6	
8	8 PFDA	513 > 468.8	1.29e2	1.02e4	0.117		4.00	3.93	0.159	1.29	
8 9	9 PFUnA	562.9 > 518.9		5.98e3	0.117		4.16				
10	10 N-MeFOSAA	570.1 > 419		1.13e3	0.117		4.00				
11	11 N-EtFOSAA	584.2 > 419		1.14e3	0.117		4.08				
12	12 PFDoA	612.9 > 318.8		4.30e2	0.117		4.32				
13	13 PFTrDA	662.9 > 618.9		4.30e2	0.117		4.50				
14	14 PFTeDA	712.9 > 668.8		5.67e3	0.117		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.13e3	1.24e3	0.117	0.918	1.43	1.37	11.4	107	99.6
16	16 13C3-PFPeA	266 > 221.8	2.55e4	2.77e4	0.117	0.275	2.72	2.67	4.60	143	133.8
17	17 13C3-PFBS	302 > 98.8	3.12e3	2.77e4	0.117	0.033	2.92	2.89	0.563	146	135.9
18	18 13C2-PFHxA	315 > 269.8	9.26e3	2.77e4	0.117	0.304	3.16	3.13	1.67	47.2	110.0
19	19 13C4-PFHpA	367.2 > 321.8	2.15e4	2.77e4	0.117	0.306	3.43	3.39	3.89	109	101.7
20	20 18O2-PFHxS	403 > 102.6	2.17e3	4.99e3	0.117	0.437	3.55	3.46	5.43	107	99.4
21	21 13C2-PFOA	414.9 > 369.7	2.65e4	2.35e4	0.117	1.292	3.63	3.59	14.1	93.3	87.1
22	22 13C5-PFNA	468.2 > 422.9	2.01e4	2.06e4	0.117	0.980	3.82	3.76	12.2	107	99.5
23	23 13C8-PFOS	507 > 79.9	3.81e3	3.34e3	0.117	1.098	3.86	3.81	14.3	111	104.0
24	24 13C2-PFDA	515.1 > 469.9	1.02e4	1.17e4	0.117	0.928	4.00	3.93	10.9	100	93.6
25	25 13C2-PFUnA	565 > 519.8	5.98e3	6.13e3	0.117	1.083	4.16	4.09	12.2	96.6	90.1
23 24 25 26	26 d3-N-MeFOSAA	573.3 > 419	1.13e3	6.13e3	0.117	0.224	4.00	3.96	2.30	87.8	81.9
27	27 d5-N-EtFOSAA	589.3 > 419	1.14e3	6.13e3	0.117	0.230	4.08	4.02	2.32	86.5	80.7
28	28 13C2-PFDoA	615 > 569.7	4.30e2	6.13e3	0.117	0.130	4.32	4.25	0.877	57.9	54.0
29	29 13C2-PFTeDA	714.8 > 669.6	5.67e3	6.13e3	0.117	1.018	4.66	4.58	11.5	97.3	90.7
30	30 13C4-PFBA	217 > 171.8	1.24e3	1.24e3	0.117	1.000	1.43	1.36	12.5	107	100.0
31	31 13C5-PFHxA	318 > 272.9	2.77e4	2.77e4	0.117	1.000	3.18	3.13	5.00	42.9	100.0
32	32 13C3-PFHxS	401.9 > 79.9	4.99e3	4.99e3	0.117	1.000	3.55	3.46	12.5	107	100.0
	Work Order 1700804		-	_		_	-	_	-		

AC 7/18/17

Work Order 17/00804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-14.qld

Quantify Sample Summary Report

Last Altered: Tuesday, July 18, 2017 14:50:33 Pacific Daylight Time Tuesday, July 18, 2017 15:06:07 Pacific Daylight Time Printed:

Name: 170713M1_14, Date: 13-Jul-2017, Time: 18:26:34, ID: 1700804-06RE1 IRPSite33-GW-11MW204S-20170629 0.120, Description: IRPSite33-GW-11MW204S-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	2.35e4	2.35e4	0.117	1.000	3.63	3.59	12.5	107	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.06e4	2.06e4	0.117	1.000	3.82	3.77	12.5	107	100.0
35	35 13C4-PFOS	503 > 79.9	3.34e3	3.34e3	0.117	1.000	3.86	3.82	12.5	107	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.17e4	1.17e4	0.117	1.000	4.00	3.93	12.5	107	100.0
37	37 13C7-PFUnA	570.1 > 524.8	6.13e3	6.13e3	0.117	1.000	4.16	4.09	12.5	107	100.0
38	38 Total PFBS	299 > 79.7	6.06e2	3.12e3	0.117		2.92		2.43	9.66	
39	39 Total PFHxS	398.9 > 79.6	1.98e3	2.17e3	0.117		3.55		11.4	53.6	
40	40 Total PFOA	413 > 368.7	2.19e4	2.65e4	0.117		3.63		10.3	76.0	
41	41 Total PFOS	499 > 79.9	1.18e3	3.81e3	0.117		3.86		3.86	29.6	
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	1.13e3	0.117		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	1.14e3	0.117		4.30		0.000		

Page 2 of 2

Dataset: U:\Q4.PRO\results\170713M1\170713M1-14.qld

Last Altered: Tuesday, July 18, 2017 14:50:33 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:06:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_14, Date: 13-Jul-2017, Time: 18:26:34, ID: 1700804-06RE1 IRPSite33-GW-11MW204S-20170629 0.120, Description: IRPSite33-GW-11MW204S-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.90	605.720	3119.961	2.427	bb	9.7

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.46	1980.404	2167.802	11.419	MM	53.6

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7	3.59	19796.086	26487.924	9.342	db	69.6
2	40 Total PFOA	413 > 368.7	3.54	2064.943	26487.924	0.974	bd	6.5

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.76	1178.117	3812.808	3.862	MM	29.6

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-14.qld

Last Altered: Tuesday, July 18, 2017 14:50:33 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:06:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_14, Date: 13-Jul-2017, Time: 18:26:34, ID: 1700804-06RE1 IRPSite33-GW-11MW204S-20170629 0.120, Description: IRPSite33-GW-11MW204S-20170629

AC 7/18/17

Vista Analytical Laboratory

Quantify Sample Report

Reviewed: WJL 7/19/2017

Dataset: U:\Q4.PRO\results\170713M1\170713M1-14.qld

Last Altered: Tuesday, July 18, 2017 14:50:33 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:06:07 Pacific Daylight Time

Name: 170713M1_14, Date: 13-Jul-2017, Time: 18:26:34, ID: 1700804-06RE1 IRPSite33-GW-11MW204S-20170629 0.120, Description: IRPSite33-GW-11MW204S-20170629

AC 7/18/17

Dataset: U:\Q4.PRO\results\170713M1\170713M1-14.qld

Last Altered: Tuesday, July 18, 2017 14:50:33 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:06:07 Pacific Daylight Time

Name: 170713M1_14, Date: 13-Jul-2017, Time: 18:26:34, ID: 1700804-06RE1 IRPSite33-GW-11MW204S-20170629 0.120, Description: IRPSite33-GW-11MW204S-20170629

AC 7/18/17

Work Order 1700804

Page 93 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-14.qld

Quantify Sample Report

Last Altered: Tuesday, July 18, 2017 14:50:33 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:06:07 Pacific Daylight Time

Name: 170713M1_14, Date: 13-Jul-2017, Time: 18:26:34, ID: 1700804-06RE1 IRPSite33-GW-11MW204S-20170629 0.120, Description: IRPSite33-GW-11MW204S-20170629

AC 7/18/17

Work Order 1700804 Page 94 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-14.qld

Last Altered: Tuesday, July 18, 2017 14:50:33 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:06:07 Pacific Daylight Time

Name: 170713M1_14, Date: 13-Jul-2017, Time: 18:26:34, ID: 1700804-06RE1 IRPSite33-GW-11MW204S-20170629 0.120, Description: IRPSite33-GW-11MW204S-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-15.qld

Last Altered: Tuesday, July 18, 2017 14:51:32 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:05:35 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_15, Date: 13-Jul-2017, Time: 18:37:13, ID: 1700804-07RE1 Bldg 110-GW-11MW205D-20170629 0.1212, Description: Bldg 110-GW-11MW205D-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	9.23e2	4.00e3	0.117		2.92	2.90	2.88	11.3	
2	2 PFHxA	313.2 > 268.9	2.21e4	1.23e4	0.117		3.16	3.13	8.97	46.3	
2 3	3 PFHpA	363 > 318.9	3.90e3	2.56e4	0.117		3.43	3.39	1.91	11.1	
	4 PFHxS	398.9 > 79.6	4.28e3	2.96e3	0.117		3.55	3.46	18.1	83.7	
5	5 PFOA	413 > 368.7	1.70e4	3.42e4	0.117		3.63	3.59	6.21	45.6	
4 5 6 7	6 PFNA	462.9 > 418.8		2.30e4	0.117		3.82				
7	7 PFOS	499 > 79.9	1.04e3	4.85e3	0.117		3.86	3.76	2.67	20.3	
8	8 PFDA	513 > 468.8		1.10e4	0.117		4.00				
8 9	9 PFUnA	562.9 > 518.9		5.11e3	0.117		4.16				
10	10 N-MeFOSAA	570.1 > 419		1.19e3	0.117		4.00				
11	11 N-EtFOSAA	584.2 > 419		1.12e3	0.117		4.08				
12	12 PFDoA	612.9 > 318.8		3.04e2	0.117		4.32				
13	13 PFTrDA	662.9 > 618.9		3.04e2	0.117		4.50				
14	14 PFTeDA	712.9 > 668.8		3.40e3	0.117		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.42e3	1.46e3	0.117	0.918	1.43	1.38	12.2	113	106.1
16	16 13C3-PFPeA	266 > 221.8	3.23e4	3.61e4	0.117	0.275	2.72	2.67	4.47	139	130.1
17	17 13C3-PFBS	302 > 98.8	4.00e3	3.61e4	0.117	0.033	2.92	2.90	0.554	142	133.8
18	18 13C2-PFHxA	315 > 269.8	1.23e4	3.61e4	0.117	0.304	3.16	3.13	1.71	48.0	112.6
19	19 13C4-PFHpA	367.2 > 321.8	2.56e4	3.61e4	0.117	0.306	3.43	3.39	3.54	98.6	92.6
20	20 18O2-PFHxS	403 > 102.6	2.96e3	6.18e3	0.117	0.437	3.55	3.46	5.99	117	109.5
21	21 13C2-PFOA	414.9 > 369.7	3.42e4	2.78e4	0.117	1.292	3.63	3.59	15.4	102	95.4
22	22 13C5-PFNA	468.2 > 422.9	2.30e4	2.38e4	0.117	0.980	3.82	3.77	12.1	105	98.8
23	23 13C8-PFOS	507 > 79.9	4.85e3	4.46e3	0.117	1.098	3.86	3.82	13.6	106	99.1
24	24 13C2-PFDA	515.1 > 469.9	1.10e4	1.54e4	0.117	0.928	4.00	3.93	8.86	81.3	76.4
23 24 25	25 13C2-PFUnA	565 > 519.8	5.11e3	5.66e3	0.117	1.083	4.16	4.09	11.3	88.8	83.4
26	26 d3-N-MeFOSAA	573.3 > 419	1.19e3	5.66e3	0.117	0.224	4.00	3.97	2.62	99.4	93.4
27	27 d5-N-EtFOSAA	589.3 > 419	1.12e3	5.66e3	0.117	0.230	4.08	4.03	2.48	92.0	86.4
28	28 13C2-PFDoA	615 > 569.7	3.04e2	5.66e3	0.117	0.130	4.32	4.25	0.672	44.1	41.4
29	29 13C2-PFTeDA	714.8 > 669.6	3.40e3	5.66e3	0.117	1.018	4.66	4.58	7.50	62.8	58.9
30	30 13C4-PFBA	217 > 171.8	1.46e3	1.46e3	0.117	1.000	1.43	1.39	12.5	106	100.0
31	31 13C5-PFHxA	318 > 272.9	3.61e4	3.61e4	0.117	1.000	3.18	3.13	5.00	42.6	100.0
32	32 13C3-PFHxS	401.9 > 79.9	6.18e3	6.18e3	0.117	1.000	3.55	3.46	12.5	106	100.0
	Work Order 1700804		-		-		_		-	-	

AC 7/18/17

Dataset: U:\Q4.PRO\results\170713M1\170713M1-15.qld

Last Altered: Tuesday, July 18, 2017 14:51:32 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:05:35 Pacific Daylight Time

Name: 170713M1_15, Date: 13-Jul-2017, Time: 18:37:13, ID: 1700804-07RE1 Bldg 110-GW-11MW205D-20170629 0.1212, Description: Bldg 110-GW-11MW205D-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	2.78e4	2.78e4	0.117	1.000	3.63	3.59	12.5	106	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.38e4	2.38e4	0.117	1.000	3.82	3.77	12.5	106	100.0
35	35 13C4-PFOS	503 > 79.9	4.46e3	4.46e3	0.117	1.000	3.86	3.82	12.5	106	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.54e4	1.54e4	0.117	1.000	4.00	3.93	12.5	106	100.0
37	37 13C7-PFUnA	570.1 > 524.8	5.66e3	5.66e3	0.117	1.000	4.16	4.09	12.5	106	100.0
38	38 Total PFBS	299 > 79.7	9.23e2	4.00e3	0.117		2.92		2.88	11.3	
39	39 Total PFHxS	398.9 > 79.6	4.28e3	2.96e3	0.117		3.55		18.1	83.7	
40	40 Total PFOA	413 > 368.7	1.88e4	3.42e4	0.117		3.63		6.86	49.6	
41	41 Total PFOS	499 > 79.9	1.04e3	4.85e3	0.117		3.86		2.67	20.3	
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	1.19e3	0.117		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	1.12e3	0.117		4.30		0.000		

 $\label{eq:decomposition} Dataset: \qquad U:\Q4.PRO\results\170713M1\170713M1-15.qld$

Last Altered: Tuesday, July 18, 2017 14:51:32 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:05:35 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_15, Date: 13-Jul-2017, Time: 18:37:13, ID: 1700804-07RE1 Bldg 110-GW-11MW205D-20170629 0.1212, Description: Bldg 110-GW-11MW205D-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.90	922.977	4000.696	2.884	bb	11.3

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.46	4279.309	2957.770	18.085	MM	83.7

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	40 Total PFOA	413 > 368.7	3.54	1773.561	34227.504	0.648	bd	4.0
2	5 PFOA	413 > 368.7	3.59	17005.928	34227.504	6.211	db	45.6

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.76	1035.111	4850.592	2.667	MM	20.3

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-15.qld

Last Altered: Tuesday, July 18, 2017 14:51:32 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:05:35 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_15, Date: 13-Jul-2017, Time: 18:37:13, ID: 1700804-07RE1 Bldg 110-GW-11MW205D-20170629 0.1212, Description: Bldg 110-GW-11MW205D-20170629

AC 7/18/17

Dataset: U:\Q4.PRO\results\170713M1\170713M1-15.qld

Last Altered: Tuesday, July 18, 2017 14:51:32 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:05:35 Pacific Daylight Time

Name: 170713M1_15, Date: 13-Jul-2017, Time: 18:37:13, ID: 1700804-07RE1 Bldg 110-GW-11MW205D-20170629 0.1212, Description: Bldg 110-GW-11MW205D-20170629

AC 7/18/17

Work Order 1700804 Page 100 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-15.qld

Last Altered: Tuesday, July 18, 2017 14:51:32 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:05:35 Pacific Daylight Time

Name: 170713M1_15, Date: 13-Jul-2017, Time: 18:37:13, ID: 1700804-07RE1 Bldg 110-GW-11MW205D-20170629 0.1212, Description: Bldg 110-GW-11MW205D-20170629

AC 7/18/17

Work Order 1700804 Page 101 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-15.qld

Quantify Sample Report

Last Altered: Tuesday, July 18, 2017 14:51:32 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:05:35 Pacific Daylight Time

Name: 170713M1_15, Date: 13-Jul-2017, Time: 18:37:13, ID: 1700804-07RE1 Bldg 110-GW-11MW205D-20170629 0.1212, Description: Bldg 110-GW-11MW205D-20170629

AC 7/18/17

Work Order 1700804 Page 102 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-15.qld

Last Altered: Tuesday, July 18, 2017 14:51:32 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:05:35 Pacific Daylight Time

Name: 170713M1_15, Date: 13-Jul-2017, Time: 18:37:13, ID: 1700804-07RE1 Bldg 110-GW-11MW205D-20170629 0.1212, Description: Bldg 110-GW-11MW205D-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-16.qld

Last Altered: Tuesday, July 18, 2017 14:54:37 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:55:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_16, Date: 13-Jul-2017, Time: 18:47:51, ID: 1700804-08RE1 Bldg 110-GW-FRB01-20170629 0.12521, Description: Bldg 110-GW-FRB01-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7		4.10e3	0.120		2.92				
2	2 PFHxA	313.2 > 268.9		1.21e4	0.120		3.16				
2 3	3 PFHpA	363 > 318.9		2.74e4	0.120		3.43				
4	4 PFHxS	398.9 > 79.6		3.08e3	0.120		3.55				
5	5 PFOA	413 > 368.7		3.68e4	0.120		3.63				
6	6 PFNA	462.9 > 418.8		2.87e4	0.120		3.82				
7	7 PFOS	499 > 79.9		6.60e3	0.120		3.86				
8	8 PFDA	513 > 468.8		1.94e4	0.120		4.00				
9	9 PFUnA	562.9 > 518.9		1.23e4	0.120		4.16				
10	10 N-MeFOSAA	570.1 > 419		3.19e3	0.120		4.00				
11	11 N-EtFOSAA	584.2 > 419		3.26e3	0.120		4.08				
12	12 PFDoA	612.9 > 318.8		4.87e2	0.120		4.32				
13	13 PFTrDA	662.9 > 618.9		4.87e2	0.120		4.50				
14	14 PFTeDA	712.9 > 668.8		8.19e2	0.120		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.49e3	1.47e3	0.120	0.918	1.43	1.38	12.6	115	110.1
16	16 13C3-PFPeA	266 > 221.8	3.38e4	3.65e4	0.120	0.275	2.72	2.66	4.64	141	135.1
17	17 13C3-PFBS	302 > 98.8	4.10e3	3.65e4	0.120	0.033	2.92	2.89	0.562	142	135.7
18	18 13C2-PFHxA	315 > 269.8	1.21e4	3.65e4	0.120	0.304	3.16	3.13	1.65	45.4	108.8
19	19 13C4-PFHpA	367.2 > 321.8	2.74e4	3.65e4	0.120	0.306	3.43	3.39	3.75	102	98.1
20	20 18O2-PFHxS	403 > 102.6	3.08e3	6.34e3	0.120	0.437	3.55	3.46	6.08	116	111.2
21	21 13C2-PFOA	414.9 > 369.7	3.68e4	3.20e4	0.120	1.292	3.63	3.59	14.4	92.9	89.1
22	22 13C5-PFNA	468.2 > 422.9	2.87e4	2.88e4	0.120	0.980	3.82	3.76	12.4	106	101.6
23	23 13C8-PFOS	507 > 79.9	6.60e3	5.86e3	0.120	1.098	3.86	3.82	14.1	107	102.5
24	24 13C2-PFDA	515.1 > 469.9	1.94e4	2.70e4	0.120	0.928	4.00	3.94	8.95	80.5	77.2
25	25 13C2-PFUnA	565 > 519.8	1.23e4	1.33e4	0.120	1.083	4.16	4.09	11.6	89.7	85.9
26	26 d3-N-MeFOSAA	573.3 > 419	3.19e3	1.33e4	0.120	0.224	4.00	3.96	3.00	112	107.1
27	27 d5-N-EtFOSAA	589.3 > 419	3.26e3	1.33e4	0.120	0.230	4.08	4.03	3.07	111	106.7
28	28 13C2-PFDoA	615 > 569.7	4.87e2	1.33e4	0.120	0.130	4.32	4.26	0.458	29.5	28.2
29	29 13C2-PFTeDA	714.8 > 669.6	8.19e2	1.33e4	0.120	1.018	4.66	4.58	0.771	6.32	6.1
30	30 13C4-PFBA	217 > 171.8	1.47e3	1.47e3	0.120	1.000	1.43	1.39	12.5	104	100.0
31	31 13C5-PFHxA	318 > 272.9	3.65e4	3.65e4	0.120	1.000	3.18	3.13	5.00	41.7	100.0
32	32 13C3-PFHxS	401.9 > 79.9	6.34e3	6.34e3	0.120	1.000	3.55	3.46	12.5	104	100.0
	Work Order 1700004										

AC 7/18/17

Dataset: U:\Q4.PRO\results\170713M1\170713M1-16.qld

Quantify Sample Summary Report

Last Altered: Tuesday, July 18, 2017 14:54:37 Pacific Daylight Time Tuesday, July 18, 2017 14:55:07 Pacific Daylight Time Printed:

Name: 170713M1_16, Date: 13-Jul-2017, Time: 18:47:51, ID: 1700804-08RE1 Bldg 110-GW-FRB01-20170629 0.12521, Description: Bldg 110-GW-FRB01-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	3.20e4	3.20e4	0.120	1.000	3.63	3.59	12.5	104	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.88e4	2.88e4	0.120	1.000	3.82	3.76	12.5	104	100.0
35	35 13C4-PFOS	503 > 79.9	5.86e3	5.86e3	0.120	1.000	3.86	3.82	12.5	104	100.0
36	36 13C6-PFDA	519.1 > 473.7	2.70e4	2.70e4	0.120	1.000	4.00	3.94	12.5	104	100.0
37	37 13C7-PFUnA	570.1 > 524.8	1.33e4	1.33e4	0.120	1.000	4.16	4.10	12.5	104	100.0
38	38 Total PFBS	299 > 79.7	0.00e0	4.10e3	0.120		2.92		0.000		
39	39 Total PFHxS	398.9 > 79.6	0.00e0	3.08e3	0.120		3.55		0.000		
40	40 Total PFOA	413 > 368.7	0.00e0	3.68e4	0.120		3.63		0.000		
41	41 Total PFOS	499 > 79.9	0.00e0	6.60e3	0.120		3.86		0.000		
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	3.19e3	0.120		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	3.26e3	0.120		4.30		0.000		

Work Order 1700804 Page 105 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-16.qld

Last Altered: Tuesday, July 18, 2017 14:54:37 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:55:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18 VAL-PFAS Q4 7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_16, Date: 13-Jul-2017, Time: 18:47:51, ID: 1700804-08RE1 Bldg 110-GW-FRB01-20170629 0.12521, Description: Bldg 110-GW-FRB01-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-16.qld

Last Altered: Tuesday, July 18, 2017 14:54:37 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:55:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_16, Date: 13-Jul-2017, Time: 18:47:51, ID: 1700804-08RE1 Bldg 110-GW-FRB01-20170629 0.12521, Description: Bldg 110-GW-FRB01-20170629

AC 7/18/17

Dataset: U:\Q4.PRO\results\170713M1\170713M1-16.qld

Last Altered: Tuesday, July 18, 2017 14:54:37 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:55:07 Pacific Daylight Time

Name: 170713M1_16, Date: 13-Jul-2017, Time: 18:47:51, ID: 1700804-08RE1 Bldg 110-GW-FRB01-20170629 0.12521, Description: Bldg 110-GW-FRB01-20170629

AC 7/18/17

Work Order 1700804 Page 108 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-16.qld

Last Altered: Tuesday, July 18, 2017 14:54:37 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:55:07 Pacific Daylight Time

Name: 170713M1_16, Date: 13-Jul-2017, Time: 18:47:51, ID: 1700804-08RE1 Bldg 110-GW-FRB01-20170629 0.12521, Description: Bldg 110-GW-FRB01-20170629

Work Order 1700804

Page 109 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-16.qld

Last Altered: Tuesday, July 18, 2017 14:54:37 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:55:07 Pacific Daylight Time

Name: 170713M1_16, Date: 13-Jul-2017, Time: 18:47:51, ID: 1700804-08RE1 Bldg 110-GW-FRB01-20170629 0.12521, Description: Bldg 110-GW-FRB01-20170629

Work Order 1700804 Page 110 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-16.qld

Last Altered: Tuesday, July 18, 2017 14:54:37 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:55:07 Pacific Daylight Time

Name: 170713M1_16, Date: 13-Jul-2017, Time: 18:47:51, ID: 1700804-08RE1 Bldg 110-GW-FRB01-20170629 0.12521, Description: Bldg 110-GW-FRB01-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-17.qld

Last Altered: Tuesday, July 18, 2017 14:59:31 Pacific Daylight Time Tuesday, July 18, 2017 14:59:36 Pacific Daylight Time Printed:

Method: U:\Q4.PRO\MethDB\PFAS L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_17, Date: 13-Jul-2017, Time: 18:58:37, ID: 1700804-09RE1 Bldg 110-GW-11MW205S-20170629 0.1147, Description: Bldg 110-GW-11MW205S-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	5.20e2	4.54e3	0.112		2.92	2.90	1.43	6.18	
2	2 PFHxA	313.2 > 268.9	1.01e4	1.27e4	0.112		3.16	3.13	3.99	21.5	
2 3	3 PFHpA	363 > 318.9	2.11e3	2.91e4	0.112		3.43	3.39	0.906	5.44	
	4 PFHxS	398.9 > 79.6	3.18e3	3.66e3	0.112		3.55	3.46	10.9	53.2	
4 5 6	5 PFOA	413 > 368.7	5.80e3	3.72e4	0.112		3.63	3.59	1.95	14.4	
6	6 PFNA	462.9 > 418.8		2.65e4	0.112		3.82				
7	7 PFOS	499 > 79.9	1.90e3	5.18e3	0.112		3.86	3.82	4.60	36.8	
8	8 PFDA	513 > 468.8	3.58e2	1.48e4	0.112		4.00	3.93	0.303	2.21	
8 9	9 PFUnA	562.9 > 518.9		1.52e4	0.112		4.16				
10	10 N-MeFOSAA	570.1 > 419		2.83e3	0.112		4.00				
11	11 N-EtFOSAA	584.2 > 419		3.28e3	0.112		4.08				
12	12 PFDoA	612.9 > 318.8		1.79e3	0.112		4.32				
13	13 PFTrDA	662.9 > 618.9		1.79e3	0.112		4.50				
14	14 PFTeDA	712.9 > 668.8		1.96e4	0.112		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.71e3	1.72e3	0.112	0.918	1.43	1.38	12.4	121	108.4
16	16 13C3-PFPeA	266 > 221.8	3.72e4	4.23e4	0.112	0.275	2.72	2.67	4.39	143	127.8
17	17 13C3-PFBS	302 > 98.8	4.54e3	4.23e4	0.112	0.033	2.92	2.90	0.536	145	129.4
18	18 13C2-PFHxA	315 > 269.8	1.27e4	4.23e4	0.112	0.304	3.16	3.13	1.50	44.1	98.6
19	19 13C4-PFHpA	367.2 > 321.8	2.91e4	4.23e4	0.112	0.306	3.43	3.39	3.44	101	89.9
20	20 18O2-PFHxS	403 > 102.6	3.66e3	7.66e3	0.112	0.437	3.55	3.46	5.97	122	109.2
21	21 13C2-PFOA	414.9 > 369.7	3.72e4	2.99e4	0.112	1.292	3.63	3.59	15.5	108	96.2
22	22 13C5-PFNA	468.2 > 422.9	2.65e4	3.02e4	0.112	0.980	3.82	3.77	11.0	100	89.5
23	23 13C8-PFOS	507 > 79.9	5.18e3	4.63e3	0.112	1.098	3.86	3.82	14.0	114	101.9
24	24 13C2-PFDA	515.1 > 469.9	1.48e4	1.93e4	0.112	0.928	4.00	3.94	9.59	92.6	82.7
23 24 25 26	25 13C2-PFUnA	565 > 519.8	1.52e4	1.59e4	0.112	1.083	4.16	4.10	12.0	99.2	88.6
26	26 d3-N-MeFOSAA	573.3 > 419	2.83e3	1.59e4	0.112	0.224	4.00	3.96	2.23	89.1	79.6
27	27 d5-N-EtFOSAA	589.3 > 419	3.28e3	1.59e4	0.112	0.230	4.08	4.03	2.58	101	89.9
28	28 13C2-PFDoA	615 > 569.7	1.79e3	1.59e4	0.112	0.130	4.32	4.25	1.41	97.2	86.9
29	29 13C2-PFTeDA	714.8 > 669.6	1.96e4	1.59e4	0.112	1.018	4.66	4.58	15.5	136	121.4
30	30 13C4-PFBA	217 > 171.8	1.72e3	1.72e3	0.112	1.000	1.43	1.38	12.5	112	100.0
31	31 13C5-PFHxA	318 > 272.9	4.23e4	4.23e4	0.112	1.000	3.18	3.13	5.00	44.8	100.0
32	32_13C3-PFHxS	401.9 > 79.9	7.66e3	7.66e3	0.112	1.000	3.55	3.46	12.5	112	100.0
	Work Order 1700804										

AC 7/18/17

Work Order 17/00804

Page 2 of 2

Reviewed: WJL 7/19/2017

Dataset: U:\Q4.PRO\results\170713M1\170713M1-17.qld

Last Altered: Tuesday, July 18, 2017 14:59:31 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:59:36 Pacific Daylight Time

Name: 170713M1_17, Date: 13-Jul-2017, Time: 18:58:37, ID: 1700804-09RE1 Bldg 110-GW-11MW205S-20170629 0.1147, Description: Bldg 110-GW-11MW205S-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	2.99e4	2.99e4	0.112	1.000	3.63	3.59	12.5	112	100.0
34	34 13C9-PFNA	472.2 > 426.9	3.02e4	3.02e4	0.112	1.000	3.82	3.77	12.5	112	100.0
35	35 13C4-PFOS	503 > 79.9	4.63e3	4.63e3	0.112	1.000	3.86	3.82	12.5	112	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.93e4	1.93e4	0.112	1.000	4.00	3.93	12.5	112	100.0
37	37 13C7-PFUnA	570.1 > 524.8	1.59e4	1.59e4	0.112	1.000	4.16	4.10	12.5	112	100.0
38	38 Total PFBS	299 > 79.7	5.20e2	4.54e3	0.112		2.92		1.43	6.18	
39	39 Total PFHxS	398.9 > 79.6	3.18e3	3.66e3	0.112		3.55		10.9	53.2	
40	40 Total PFOA	413 > 368.7	6.24e3	3.72e4	0.112		3.63		2.10	14.7	
41	41 Total PFOS	499 > 79.9	1.90e3	5.18e3	0.112		3.86		4.60	36.8	
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	2.83e3	0.112		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	3.28e3	0.112		4.30		0.000		

Dataset: U:\Q4.PRO\results\170713M1\170713M1-17.qld

Last Altered: Tuesday, July 18, 2017 14:59:31 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:59:36 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_17, Date: 13-Jul-2017, Time: 18:58:37, ID: 1700804-09RE1 Bldg 110-GW-11MW205S-20170629 0.1147, Description: Bldg 110-GW-11MW205S-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.90	519.987	4539.162	1.432	bb	6.2

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.46	3176.948	3655.580	10.863	MM	53.2

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7	3.59	5804.291	37166.527	1.952	MM	14.4
2	40 Total PFOA	413 > 368.7	3.54	431.658	37166.527	0.145	MM	0.2

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.82	1903.728	5175.866	4.598	MM	36.8

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	11 N-EtFOSAA	584.2 > 419			3277.420		MM-I	

Dataset: U:\Q4.PRO\results\170713M1\170713M1-17.qld

Last Altered: Tuesday, July 18, 2017 14:59:31 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:59:36 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_17, Date: 13-Jul-2017, Time: 18:58:37, ID: 1700804-09RE1 Bldg 110-GW-11MW205S-20170629 0.1147, Description: Bldg 110-GW-11MW205S-20170629

AC 7/18/17

Work Order 1700804

Page 115 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-17.qld

Last Altered: Tuesday, July 18, 2017 14:59:31 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:59:36 Pacific Daylight Time

Name: 170713M1_17, Date: 13-Jul-2017, Time: 18:58:37, ID: 1700804-09RE1 Bldg 110-GW-11MW205S-20170629 0.1147, Description: Bldg 110-GW-11MW205S-20170629

AC 7/18/17

Work Order 1700804

Page 116 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-17.qld

Last Altered: Tuesday, July 18, 2017 14:59:31 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:59:36 Pacific Daylight Time

Name: 170713M1_17, Date: 13-Jul-2017, Time: 18:58:37, ID: 1700804-09RE1 Bldg 110-GW-11MW205S-20170629 0.1147, Description: Bldg 110-GW-11MW205S-20170629

AC 7/18/17

Work Order 1700804 Page 117 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-17.qld

Quantify Sample Report

Last Altered: Tuesday, July 18, 2017 14:59:31 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:59:36 Pacific Daylight Time

Name: 170713M1_17, Date: 13-Jul-2017, Time: 18:58:37, ID: 1700804-09RE1 Bldg 110-GW-11MW205S-20170629 0.1147, Description: Bldg 110-GW-11MW205S-20170629

AC 7/18/17

Work Order 1700804 Page 118 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-17.qld

Last Altered: Tuesday, July 18, 2017 14:59:31 Pacific Daylight Time Printed: Tuesday, July 18, 2017 14:59:36 Pacific Daylight Time

Name: 170713M1_17, Date: 13-Jul-2017, Time: 18:58:37, ID: 1700804-09RE1 Bldg 110-GW-11MW205S-20170629 0.1147, Description: Bldg 110-GW-11MW205S-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-18.qld

Last Altered: Tuesday, July 18, 2017 15:01:19 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:01:39 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_18, Date: 13-Jul-2017, Time: 19:09:16, ID: 1700804-10RE1 IRPSite7-GW-07GW102-20170629 0.12057, Description: IRPSite7-GW-07GW102-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	8.70e2	4.62e3	0.121		2.92	2.90	2.35	9.06	
2	2 PFHxA	313.2 > 268.9	2.80e4	1.36e4	0.121		3.16	3.13	10.3	51.7	
2 3	3 PFHpA	363 > 318.9	1.31e4	3.07e4	0.121		3.43	3.39	5.34	30.6	
	4 PFHxS	398.9 > 79.6	1.73e4	3.07e3	0.121		3.55	3.46	70.6	309	
5	5 PFOA	413 > 368.7	2.87e4	3.59e4	0.121		3.63	3.59	10.0	72.0	
4 5 6 7	6 PFNA	462.9 > 418.8	1.22e3	2.20e4	0.121		3.82	3.77	0.692	3.84	
7	7 PFOS	499 > 79.9	1.49e4	2.95e3	0.121		3.86	3.76	62.9	433	
8	8 PFDA	513 > 468.8		9.04e3	0.121		4.00				
8 9	9 PFUnA	562.9 > 518.9		5.35e3	0.121		4.16				
10	10 N-MeFOSAA	570.1 > 419		8.92e2	0.121		4.00				
11	11 N-EtFOSAA	584.2 > 419		1.13e3	0.121		4.08				
12	12 PFDoA	612.9 > 318.8		3.89e2	0.121		4.32				
13	13 PFTrDA	662.9 > 618.9		3.89e2	0.121		4.50				
14	14 PFTeDA	712.9 > 668.8		5.76e3	0.121		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.58e3	1.71e3	0.121	0.918	1.43	1.38	11.5	104	100.6
16	16 13C3-PFPeA	266 > 221.8	3.74e4	4.53e4	0.121	0.275	2.72	2.67	4.13	125	120.3
17	17 13C3-PFBS	302 > 98.8	4.62e3	4.53e4	0.121	0.033	2.92	2.90	0.511	128	123.3
18	18 13C2-PFHxA	315 > 269.8	1.36e4	4.53e4	0.121	0.304	3.16	3.13	1.50	41.0	99.0
19	19 13C4-PFHpA	367.2 > 321.8	3.07e4	4.53e4	0.121	0.306	3.43	3.39	3.39	91.7	88.6
20	20 18O2-PFHxS	403 > 102.6	3.07e3	6.71e3	0.121	0.437	3.55	3.46	5.72	108	104.6
21	21 13C2-PFOA	414.9 > 369.7	3.59e4	3.03e4	0.121	1.292	3.63	3.59	14.8	94.9	91.7
22	22 13C5-PFNA	468.2 > 422.9	2.20e4	2.41e4	0.121	0.980	3.82	3.77	11.4	96.6	93.3
23 24 25	23 13C8-PFOS	507 > 79.9	2.95e3	2.64e3	0.121	1.098	3.86	3.82	14.0	105	101.7
24	24 13C2-PFDA	515.1 > 469.9	9.04e3	1.02e4	0.121	0.928	4.00	3.93	11.1	98.8	95.5
25	25 13C2-PFUnA	565 > 519.8	5.35e3	5.73e3	0.121	1.083	4.16	4.10	11.7	89.3	86.2
26	26 d3-N-MeFOSAA	573.3 > 419	8.92e2	5.73e3	0.121	0.224	4.00	3.97	1.95	71.8	69.4
27	27 d5-N-EtFOSAA	589.3 > 419	1.13e3	5.73e3	0.121	0.230	4.08	4.03	2.47	88.8	85.8
28	28 13C2-PFDoA	615 > 569.7	3.89e2	5.73e3	0.121	0.130	4.32	4.25	0.849	54.1	52.3
29	29 13C2-PFTeDA	714.8 > 669.6	5.76e3	5.73e3	0.121	1.018	4.66	4.58	12.6	102	98.7
30	30 13C4-PFBA	217 > 171.8	1.71e3	1.71e3	0.121	1.000	1.43	1.38	12.5	103	100.0
31	31 13C5-PFHxA	318 > 272.9	4.53e4	4.53e4	0.121	1.000	3.18	3.13	5.00	41.4	100.0
32	32 13C3-PFHxS	401.9 > 79.9	6.71e3	6.71e3	0.121	1.000	3.55	3.46	12.5	103	100.0
	Work Order 1700804		-				_		-		

AC 7/18/17

Work Order 1700804

Dataset: U:\Q4.PRO\results\170713M1\170713M1-18.qld

Last Altered: Tuesday, July 18, 2017 15:01:19 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:01:39 Pacific Daylight Time

Name: 170713M1_18, Date: 13-Jul-2017, Time: 19:09:16, ID: 1700804-10RE1 IRPSite7-GW-07GW102-20170629 0.12057, Description: IRPSite7-GW-07GW102-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	3.03e4	3.03e4	0.121	1.000	3.63	3.59	12.5	103	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.41e4	2.41e4	0.121	1.000	3.82	3.77	12.5	103	100.0
35	35 13C4-PFOS	503 > 79.9	2.64e3	2.64e3	0.121	1.000	3.86	3.82	12.5	103	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.02e4	1.02e4	0.121	1.000	4.00	3.93	12.5	103	100.0
37	37 13C7-PFUnA	570.1 > 524.8	5.73e3	5.73e3	0.121	1.000	4.16	4.10	12.5	103	100.0
38	38 Total PFBS	299 > 79.7	8.70e2	4.62e3	0.121		2.92		2.35	9.06	
39	39 Total PFHxS	398.9 > 79.6	1.73e4	3.07e3	0.121		3.55		70.6	309	
40	40 Total PFOA	413 > 368.7	2.98e4	3.59e4	0.121		3.63		10.4	73.9	
41	41 Total PFOS	499 > 79.9	1.49e4	2.95e3	0.121		3.86		62.9	433	
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	8.92e2	0.121		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	1.13e3	0.121		4.30		0.000		

Dataset: U:\Q4.PRO\results\170713M1\170713M1-18.qld

Last Altered: Tuesday, July 18, 2017 15:01:19 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:01:39 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_18, Date: 13-Jul-2017, Time: 19:09:16, ID: 1700804-10RE1 IRPSite7-GW-07GW102-20170629 0.12057, Description: IRPSite7-GW-07GW102-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.90	870.469	4622.597	2.354	bb	9.1

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.46	17328.627	3067.581	70.612	MM	309.3

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7	3.59	28726.936	35874.363	10.010	db	72.0
2	40 Total PFOA	413 > 368.7	3.54	1072.987	35874.363	0.374	bd	1.9

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.76	14853.599	2952.506	62.886	MM	433.1

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-18.qld

Last Altered: Tuesday, July 18, 2017 15:01:19 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:01:39 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_18, Date: 13-Jul-2017, Time: 19:09:16, ID: 1700804-10RE1 IRPSite7-GW-07GW102-20170629 0.12057, Description: IRPSite7-GW-07GW102-20170629

AC 7/18/17

Work Order 1700804

Page 123 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-18.qld

Last Altered: Tuesday, July 18, 2017 15:01:19 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:01:39 Pacific Daylight Time

Name: 170713M1_18, Date: 13-Jul-2017, Time: 19:09:16, ID: 1700804-10RE1 IRPSite7-GW-07GW102-20170629 0.12057, Description: IRPSite7-GW-07GW102-20170629

AC 7/18/17

Work Order 1700804 Page 124 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-18.qld

Last Altered: Tuesday, July 18, 2017 15:01:19 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:01:39 Pacific Daylight Time

Name: 170713M1_18, Date: 13-Jul-2017, Time: 19:09:16, ID: 1700804-10RE1 IRPSite7-GW-07GW102-20170629 0.12057, Description: IRPSite7-GW-07GW102-20170629

Work Order 1700804

Page 125 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-18.qld

Last Altered: Tuesday, July 18, 2017 15:01:19 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:01:39 Pacific Daylight Time

Name: 170713M1_18, Date: 13-Jul-2017, Time: 19:09:16, ID: 1700804-10RE1 IRPSite7-GW-07GW102-20170629 0.12057, Description: IRPSite7-GW-07GW102-20170629

AC 7/18/17

Work Order 1700804 Page 126 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-18.qld

Last Altered: Tuesday, July 18, 2017 15:01:19 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:01:39 Pacific Daylight Time

Name: 170713M1_18, Date: 13-Jul-2017, Time: 19:09:16, ID: 1700804-10RE1 IRPSite7-GW-07GW102-20170629 0.12057, Description: IRPSite7-GW-07GW102-20170629

Dataset: U:\Q4.PRO\results\170713M1\170713M1-22.qld

Last Altered: Tuesday, July 18, 2017 15:03:20 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:03:34 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_22, Date: 13-Jul-2017, Time: 19:51:49, ID: 1700804-11RE1 IRPSite5-GW-04GW82-20170629 0.12427, Description: IRPSite5-GW-04GW82-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	1.57e2	3.79e3	0.117		2.92	2.90	0.519	2.49	
2	2 PFHxA	313.2 > 268.9		1.15e4	0.117		3.16				
2 3	3 PFHpA	363 > 318.9	3.05e2	2.57e4	0.117		3.43	3.40	0.148	0.688	
4	4 PFHxS	398.9 > 79.6	7.61e2	2.97e3	0.117		3.55	3.47	3.20	15.4	
5	5 PFOA	413 > 368.7	1.01e3	3.13e4	0.117		3.63	3.60	0.405	2.17	
6	6 PFNA	462.9 > 418.8		1.98e4	0.117		3.82				
7	7 PFOS	499 > 79.9	2.25e1	3.56e3	0.117		3.86	3.77	0.0789	0.387	
8	8 PFDA	513 > 468.8		8.29e3	0.117		4.00				
8 9	9 PFUnA	562.9 > 518.9		2.54e3	0.117		4.16				
10	10 N-MeFOSAA	570.1 > 419		8.00e2	0.117		4.00				
11	11 N-EtFOSAA	584.2 > 419		5.83e2	0.117		4.08				
12	12 PFDoA	612.9 > 318.8		1.33e2	0.117		4.32				
13	13 PFTrDA	662.9 > 618.9		1.33e2	0.117		4.50				
14	14 PFTeDA	712.9 > 668.8		2.33e3	0.117		4.66				
15	15 13C3-PFBA	216.1 > 171.8	1.41e3	1.47e3	0.117	0.918	1.43	1.39	12.0	112	104.5
16	16 13C3-PFPeA	266 > 221.8	3.36e4	3.72e4	0.117	0.275	2.72	2.67	4.51	141	131.4
17	17 13C3-PFBS	302 > 98.8	3.79e3	3.72e4	0.117	0.033	2.92	2.90	0.509	132	122.9
18	18 13C2-PFHxA	315 > 269.8	1.15e4	3.72e4	0.117	0.304	3.16	3.13	1.55	43.7	101.9
19	19 13C4-PFHpA	367.2 > 321.8	2.57e4	3.72e4	0.117	0.306	3.43	3.40	3.45	96.7	90.2
20	20 18O2-PFHxS	403 > 102.6	2.97e3	6.65e3	0.117	0.437	3.55	3.47	5.58	110	102.2
21	21 13C2-PFOA	414.9 > 369.7	3.13e4	2.58e4	0.117	1.292	3.63	3.60	15.2	101	93.9
22	22 13C5-PFNA	468.2 > 422.9	1.98e4	2.08e4	0.117	0.980	3.82	3.77	11.9	104	97.0
23	23 13C8-PFOS	507 > 79.9	3.56e3	3.20e3	0.117	1.098	3.86	3.82	13.9	109	101.6
24	24 13C2-PFDA	515.1 > 469.9	8.29e3	1.10e4	0.117	0.928	4.00	3.94	9.39	86.8	81.0
25	25 13C2-PFUnA	565 > 519.8	2.54e3	2.76e3	0.117	1.083	4.16	4.10	11.5	91.1	85.0
26	26 d3-N-MeFOSAA	573.3 > 419	8.00e2	2.76e3	0.117	0.224	4.00	3.97	3.62	138	129.1
27	27 d5-N-EtFOSAA	589.3 > 419	5.83e2	2.76e3	0.117	0.230	4.08	4.03	2.64	98.4	91.8
28	28 13C2-PFDoA	615 > 569.7	1.33e2	2.76e3	0.117	0.130	4.32	4.26	0.601	39.7	37.0
29	29 13C2-PFTeDA	714.8 > 669.6	2.33e3	2.76e3	0.117	1.018	4.66	4.58	10.6	88.9	82.9
30	30 13C4-PFBA	217 > 171.8	1.47e3	1.47e3	0.117	1.000	1.43	1.39	12.5	107	100.0
31	31 13C5-PFHxA	318 > 272.9	3.72e4	3.72e4	0.117	1.000	3.18	3.14	5.00	42.9	100.0
32	32_13C3-PFHxS	401.9 > 79.9	6.65e3	6.65e3	0.117	1.000	3.55	3.47	12.5	107	100.0
	Work Order 1700804										

AC 7/18/17

Work Order 1700804

Page 128 of 248

Quantify Sample Summary Report

Reviewed: WJL 7/19/2017

Dataset: U:\Q4.PRO\results\170713M1\170713M1-22.qld

Last Altered: Tuesday, July 18, 2017 15:03:20 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:03:34 Pacific Daylight Time

Name: 170713M1_22, Date: 13-Jul-2017, Time: 19:51:49, ID: 1700804-11RE1 IRPSite5-GW-04GW82-20170629 0.12427, Description: IRPSite5-GW-04GW82-20170629

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
33	33 13C8-PFOA	421.3 > 376	2.58e4	2.58e4	0.117	1.000	3.63	3.59	12.5	107	100.0
34	34 13C9-PFNA	472.2 > 426.9	2.08e4	2.08e4	0.117	1.000	3.82	3.77	12.5	107	100.0
35	35 13C4-PFOS	503 > 79.9	3.20e3	3.20e3	0.117	1.000	3.86	3.82	12.5	107	100.0
36	36 13C6-PFDA	519.1 > 473.7	1.10e4	1.10e4	0.117	1.000	4.00	3.94	12.5	107	100.0
37	37 13C7-PFUnA	570.1 > 524.8	2.76e3	2.76e3	0.117	1.000	4.16	4.10	12.5	107	100.0
38	38 Total PFBS	299 > 79.7	1.57e2	3.79e3	0.117		2.92		0.519	2.49	
39	39 Total PFHxS	398.9 > 79.6	7.61e2	2.97e3	0.117		3.55		3.20	15.4	
40	40 Total PFOA	413 > 368.7	1.01e3	3.13e4	0.117		3.63		0.405	2.17	
41	41 Total PFOS	499 > 79.9	2.25e1	3.56e3	0.117		3.86		0.0789	0.387	
42	42 Total N-Me-FOSAA	570.1 > 419	0.00e0	8.00e2	0.117		4.20		0.000		
43	43 Total N-EtFOSAA	584.2 > 419	0.00e0	5.83e2	0.117		4.30		0.000		

Dataset: U:\Q4.PRO\results\170713M1\170713M1-22.qld

Last Altered: Tuesday, July 18, 2017 15:03:20 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:03:34 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_22, Date: 13-Jul-2017, Time: 19:51:49, ID: 1700804-11RE1 IRPSite5-GW-04GW82-20170629 0.12427, Description: IRPSite5-GW-04GW82-20170629

Total PFBS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	299 > 79.7	2.90	157.184	3787.993	0.519	bb	2.5

Total PFHxS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	398.9 > 79.6	3.47	761.470	2973.030	3.202	MM	15.4

Total PFOA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	413 > 368.7	3.60	1012.555	31257.529	0.405	MM	2.2

Total PFOS

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.77	22.491	3563.940	0.079	MM	0.4

Total N-Me-FOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Dataset: U:\Q4.PRO\results\170713M1\170713M1-22.qld

Last Altered: Tuesday, July 18, 2017 15:03:20 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:03:34 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_22, Date: 13-Jul-2017, Time: 19:51:49, ID: 1700804-11RE1 IRPSite5-GW-04GW82-20170629 0.12427, Description: IRPSite5-GW-04GW82-20170629

AC 7/18/17

Work Order 1700804

Page 131 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-22.qld

Last Altered: Tuesday, July 18, 2017 15:03:20 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:03:34 Pacific Daylight Time

Name: 170713M1_22, Date: 13-Jul-2017, Time: 19:51:49, ID: 1700804-11RE1 IRPSite5-GW-04GW82-20170629 0.12427, Description: IRPSite5-GW-04GW82-20170629

AC 7/18/17

Work Order 1700804 Page 132 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-22.qld

Last Altered: Tuesday, July 18, 2017 15:03:20 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:03:34 Pacific Daylight Time

Name: 170713M1_22, Date: 13-Jul-2017, Time: 19:51:49, ID: 1700804-11RE1 IRPSite5-GW-04GW82-20170629 0.12427, Description: IRPSite5-GW-04GW82-20170629

AC 7/18/17

Work Order 1700804 Page 133 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-22.qld

Quantify Sample Report

Last Altered: Tuesday, July 18, 2017 15:03:20 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:03:34 Pacific Daylight Time

Name: 170713M1_22, Date: 13-Jul-2017, Time: 19:51:49, ID: 1700804-11RE1 IRPSite5-GW-04GW82-20170629 0.12427, Description: IRPSite5-GW-04GW82-20170629

AC 7/18/17

Work Order 1700804 Page 134 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-22.qld

Last Altered: Tuesday, July 18, 2017 15:03:20 Pacific Daylight Time Printed: Tuesday, July 18, 2017 15:03:34 Pacific Daylight Time

Name: 170713M1_22, Date: 13-Jul-2017, Time: 19:51:49, ID: 1700804-11RE1 IRPSite5-GW-04GW82-20170629 0.12427, Description: IRPSite5-GW-04GW82-20170629

CONTINUING CALIBRATION

Work Order 1700804 Page 136 of 248

Page 1 of 2

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-2.qld

Last Altered: Printed:

Tuesday, July 18, 2017 07:37:58 Pacific Daylight Time Tuesday, July 18, 2017 07:38:49 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_2, Date: 13-Jul-2017, Time: 16:10:55, ID: ST170713M1-1 PFC CS-1 17G1230, Description: PFC CS-1 17G1230

# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	/ Axis Resp.	Conc.	%Rec
1 PFBS	299 > 79.7	2.13e2	2.13e3	1.0000		2.92	2.87	1.25	0.610	122.0 70-130
2 PFHxA	313.2 > 268.9	1.40e3	7.13e3	1.0000		3.16	3.11	0.983	0.568	113.5
3 3 PFHpA	363 > 318.9	1.21e3	1.84e4	1.0000		3.43	3.37	0.823	0.550	110.0
4 PFHxS	398.9 > 79.6	1.87e2	2.18e3	1.0000		3.55	3.44	1.07	0.636	127.2
5 PFOA	413 > 368.7	1.61e3	3.31e4	1.0000		3.63	3.57	0.607	0.430	86.1
6 6 PFNA	462.9 > 418.8	2.27e3	3.99e4	1.0000		3.82	3.75	0.712	0.478	95.7
7 7 PFOS	499 > 79.9	4.80e2	8.73e3	1.0000		3.86	3.80	0.687	0.595	119.1
8 8 PFDA	513 > 468.8	1.97e3	3.72e4	1.0000		4.00	3.91	0.662	0.485	97.0
9 9 PFUnA	562.9 > 518.9	1.92e3	3.93e4	1.0000		4.16	4.08	0.611	0.453	90.6
10 N-MeFOSAA	570.1 > 419	7.33e2	9.71e3	1.0000		4.00	3.95	0.944	0.561	112.1
11 N-EtFOSAA	584.2 > 419	6.43e2	1.11e4	1.0000		4.08	4.01	0.723	0.533	106.6
12 12 PFDoA	612.9 > 318.8	1.65e2	3.86e3	1.0000		4.32	4.23	0.535	0.634	126.8
13 PFTrDA	662.9 > 618.9	2.60e3	3.86e3	1.0000		4.50	4.39	8.42	0.615	123.0
14 PFTeDA	712.9 > 668.8	1.84e3	2.95e4	1.0000		4.66	4.55	0.778	0.552	110.3
15 13C3-PFBA	216.1 > 171.8	9.08e3	1.01e4	1.0000	0.918	1.43	1.35	11.2	12.2	97.5 50-150
16 13C3-PFPeA	266 > 221.8	1.63e4	2.29e4	1.0000	0.275	2.72	2.63	3.56	13.0	103.6
17 13C3-PFBS	302 > 98.8	2.13e3	2.29e4	1.0000	0.033	2.92	2.87	0.465	14.0	112.2
18 13C2-PFHxA	315 > 269.8	7.13e3	2.29e4	1.0000	0.304	3.16	3.11	1.56	5.12	102.4
19 13C4-PFHpA	367.2 > 321.8	1.84e4	2.29e4	1.0000	0.306	3.43	3.37	4.01	13.1	104.9
20 18O2-PFHxS	403 > 102.6	2.18e3	4.93e3	1.0000	0.437	3.55	3.45	5.52	12.6	101.0
21 21 13C2-PFOA	414.9 > 369.7	3.31e4	2.71e4	1.0000	1.292	3.63	3.57	15.3	11.8	94.4
22 13C5-PFNA 23 23 13C8-PFOS	468.2 > 422.9	3.99e4	3.81e4	1.0000	0.980	3.82	3.75	13.1	13.3	106.7
■ 2. Prof. 2 (2017) ■ 2. Prof. 2 (2017) ■ 3. Prof. 2 (2017) ■ 4. Prof. 2 (201	507 > 79.9	8.73e3	7.91e3	1.0000	1.098	3.86	3.80	13.8	12.6	100.6
24 24 13C2-PFDA	515.1 > 469.9	3.72e4	3.67e4	1.0000	0.928	4.00	3.91	12.7	13.6	109.2
25 25 13C2-PFUnA	565 > 519.8	3.93e4	3.29e4	1.0000	1.083	4.16	4.07	14.9	13.8	110.3
26 26 d3-N-MeFOSAA	573.3 > 419	9.71e3	3.29e4	1.0000	0.224	4.00	3.94	3.69	16.4	131.4
27 27 d5-N-EtFOSAA	589.3 > 419	1.11e4	3.29e4	1.0000	0.230	4.08	4.01	4.22	18.4	146.9
28 13C2-PFDoA	615 > 569.7	3.86e3	3.29e4	1.0000	0.130	4.32	4.23	1.47	11.3	90.3
29 29 13C2-PFTeDA	714.8 > 669.6	2.95e4	3.29e4	1.0000	1.018	4.66	4.55	11.2	11.0	87.9
30 30 13C4-PFBA	217 > 171.8	1.01e4	1.01e4	1.0000	1.000	1.43	1.34	12.5	12.5	100.0
31 Work OtdlaC5700804	318 > 272.9	2.29e4	2.29e4	1.00 <u>00</u>	1.000	3.18	3.11	5.00	5.00	190.9 e 137 of 248

MassLynx MassLynx V4.1 SCN 945

Page 2 of 2

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170713M1\170713M1-2.qld

Last Altered: Tuesday, July 18, 2017 07:37:58 Pacific Daylight Time Printed: Tuesday, July 18, 2017 07:38:49 Pacific Daylight Time

Name: 170713M1_2, Date: 13-Jul-2017, Time: 16:10:55, ID: ST170713M1-1 PFC CS-1 17G1230, Description: PFC CS-1 17G1230

# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
32 13C3-PFHxS	401.9 > 79.9	4.93e3	4.93e3	1.0000	1.000	3.55	3.45	12.5	12.5	100.0
33 33 13C8-PFOA	421.3 > 376	2.71e4	2.71e4	1.0000	1.000	3.63	3.57	12.5	12.5	100.0
34 13C9-PFNA	472.2 > 426.9	3.81e4	3.81e4	1.0000	1.000	3.82	3.75	12.5	12.5	100.0
35 13C4-PFOS	503 > 79.9	7.91e3	7.91e3	1.0000	1.000	3.86	3.80	12.5	12.5	100.0
36 13C6-PFDA	519.1 > 473.7	3.67e4	3.67e4	1.0000	1.000	4.00	3.91	12.5	12.5	100.0
37 13C7-PFUnA	570.1 > 524.8	3.29e4	3.29e4	1.0000	1.000	4.16	4.08	12.5	12.5	100.0

Work Order 1700804 Page 138 of 248

Dataset:

Untitled

Last Altered: Printed:

Tuesday, July 18, 2017 07:58:37 Pacific Daylight Time Tuesday, July 18, 2017 07:59:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Compound name: PFBS

	Name	(D	Acq.Date	Acq.Time
1/2/3/4	170713M1_1	IPA	13-Jul-17	16:00:11
2	170713M1_2	ST170713M1-1 PFC CS-1 17G1230	13-Jul-17	16:10:55
3 *	170713M1_3	IPA	13-Jul-17	16:21:34
4	170713M1_4	B7G0049-BS1 OPR 0.125	13-Jul-17	16:38:24
5	170713M1_5	B7G0054-BS1 OPR 0.125	13-Jul-17	16:49:10
6	170713M1_6	IPA	13-Jul-17	16:59:57
7 () () ()	170713M1_7	B7G0049-BLK1 Method Blank 0.125	13-Jul-17	17:10:36
8	170713M1_8	B7G0054-BLK1 Method Blank 0.125	13-Jul-17	17:22:39
9	170713M1_9	1700804-01RE1 IRPSite7-GW-07GW41-2017	13-Jul-17	17:33:22
105	170713M1_10	1700804-02RE1 IRPSite5-GW-05GW01-2017	13-Jul-17	17:44:00
44.	170713M1_11	1700804-03RE1 IRPSite5-GW-FD01-2017062	13-Jul-17	17:54:39
12	170713M1_12	1700804-04RE1 IRPSite33-GW-FRB01-2017	13-Jul-17	18:05:18
13	170713M1_13	1700804-05RE1 IRPSite33-GW-11MW204D-2	13-Jul-17	18:15:56
14	170713M1_14	1700804-06RE1 IRPSite33-GW-11MW204S-2	13-Jul-17	18:26:34
15	170713M1_15	1700804-07RE1 Bldg 110-GW-11MW205D-20	13-Jul-17	18:37:13
16	170713M1_16	1700804-08RE1 Bldg 110-GW-FRB01-201706	13-Jul-17	18:47:51
17	170713M1_17	1700804-09RE1 Bldg 110-GW-11MW205S-20	13-Jul-17	18:58:37
18:	170713M1_18	1700804-10RE1 IRPSite7-GW-07GW102-201	13-Jul-17	19:09:16
19 💮 💮	170713M1_19	IPA	13-Jul-17	19:19:54
20	170713M1_20	ST170713M1-2 PFC CS3 17G1231	13-Jul-17	19:30:32
21	170713M1_21	IPA	13-Jul-17	19:41:11
22	170713M1_22	1700804-11RE1 IRPSite5-GW-04GW82-2017	13-Jul-17	19:51:49
23	170713M1_23	1700803-01RE1 SB01 0.11986	13-Jul-17	20:02:28
24	170713M1_24	1700803-02RE1 EB01 0.12093	13-Jul-17	20:13:06
25	170713M1_25	1700803-03RE1 IRPSite7-GW-46GW205-201	13-Jul-17	20:23:44
26	170713M1_26	1700803-04RE1 IRPSite7-GW-FD01-2017062	13-Jul-17	20:34:23
27	170713M1_27	1700803-05RE1 IRPSite7-GW-07GW202-201	13-Jul-17	20:45:01
28/19 1	170713M1_28	1700803-06RE1 IRPSite7-GW-FRB01-20170	13-Jul-17	20:55:40
29	170713M1_29	1700803-07RE1 IRPSite5-GW-FRB01-20170	13-Jul-17	21:06:18
30 🖟	170713M1_30	1700803-08RE1 IRPSite5-GW-04GW81S-201	13-Jul-17	21:16:56
31 Work	07de13M1008 04	_1700803-09RE1 IRPSite5-GW-04GW80-2017	13-Jul-17	21:27:35

Quantify Compound Summary Report Vista Analytical Laboratory

MassLynx MassLynx V4.1 SCN 945

Page 2 of 2

Dataset:

Untitled

Last Altered: Printed: Tuesday, July 18, 2017 07:58:37 Pacific Daylight Time Tuesday, July 18, 2017 07:59:16 Pacific Daylight Time

Compound name: PFBS

Name	(D	Acq.Date	Acq.Time
32 170713M1_		13-Jul-17	21:38:13
33 170713M1_	_33 B7G0054-MSD1 Matrix Spike Dup 0.11356	13-Jul-17	21:48:51
34 170713M1_	_34 IPA	13-Jul-17	21:59:30
35 170713M1_	_35 ST170713M1-3 PFC CS3 17G1231	13-Jul-17	22:10:08
36 170713M1_	_36 IPA	13-Jul-17	22:20:47
37 r 🕩 🖢 170713M1_	_37 1700803-10RE1 EB02 0.12181	13-Jul-17	22:31:25
38 🛴 🥻 🖟 170713M1_	_38	13-Jul-17	22:42:03
39 170713M1_	_39 1700836-02RE1 DPH-B7 0.12115	13-Jul-17	22:52:42
40 170713M1_	_40	13-Jul-17	23:03:20
41 170713M1	_41 1700836-04RE1 DPH-EX4 0.11551	13-Jul-17	23:13:59
42 170713M1	_42	13-Jul-17	23:24:37
43 170713M1	_43	13-Jul-17	23:35:15
44 170713M1	44 ST170713M1-4 PFC CS3 17G1231	13-Jul-17	23:45:54

Work Order 1700804

LC Calibration Standards Review Checklist Q

		ION Ratio	Concentration	C-Cals Name	Sign Date	Correct I-Cal	Manual Integrations	NA
Calibration ID: STM6713M1-1	<u>С</u> м н	NEA		g		I		<u> </u>
Calibration ID: -2	L WH	þ	₽ □	3	Ø	1		ф
Calibration ID:3	LMH-	ф	□	I			3	ф
Calibration ID:	L(M)H		\downarrow \Box		I	ď	ď	4
Calibration ID:	LMH							
Calibration ID:	LMH							
Calibration ID:	LMH							
Calibration ID:	LMH							
Calibration ID:	LMH						· 🗖 ·	
Calibration ID:	LMH							
					Fuil Ma	ass Cal. D)ate: 621	<u>I</u>
Run Log Present:								·
# of Samples per Sequence Checked:	T				cinte	FDOA :	exceeds r	A in
Reviewed By: 71/8/17 Initials/Date					SAM	iplos.	AC7/18	117

IDYOLIRQIDOSIR00804

Rev. No.: 0

Rev. Date: 06/06/2017

Page 141 of 248 1

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-2.qld

Last Altered:

Printed:

Tuesday, July 18, 2017 07:37:58 Pacific Daylight Time Tuesday, July 18, 2017 07:38:49 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_2, Date: 13-Jul-2017, Time: 16:10:55, ID: ST170713M1-1 PFC CS-1 17G1230, Description: PFC CS-1 17G1230

Page 2 of 5

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-2.qld

Last Altered: Printed:

Tuesday, July 18, 2017 07:37:58 Pacific Daylight Time Tuesday, July 18, 2017 07:38:49 Pacific Daylight Time

Name: 170713M1_2, Date: 13-Jul-2017, Time: 16:10:55, ID: ST170713M1-1 PFC CS-1 17G1230, Description: PFC CS-1 17G1230

Work Order 1700804 Page 143 of 248

U:\Q4.PRO\results\170713M1\170713M1-2.qld

Last Altered:

Dataset:

Printed:

Tuesday, July 18, 2017 07:37:58 Pacific Daylight Time Tuesday, July 18, 2017 07:38:49 Pacific Daylight Time

Name: 170713M1_2, Date: 13-Jul-2017, Time: 16:10:55, ID: ST170713M1-1 PFC CS-1 17G1230, Description: PFC CS-1 17G1230

Work Order 1700804 Page 144 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-2.qld

Last Altered: Tuesday, July 18, 2017 07:37:58 Pacific Daylight Time Printed: Tuesday, July 18, 2017 07:38:49 Pacific Daylight Time

Name: 170713M1 2, Date: 13-Jul-2017, Time: 16:10:55, ID: ST170713M1-1 PFC CS-1 17G1230, Description: PFC CS-1 17G1230

Work Order 1700804 Page 145 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-2.qld

Last Altered: Tuesday, July 18, 2017 07:37:58 Pacific Daylight Time Printed: Tuesday, July 18, 2017 07:38:49 Pacific Daylight Time

Name: 170713M1_2, Date: 13-Jul-2017, Time: 16:10:55, ID: ST170713M1-1 PFC CS-1 17G1230, Description: PFC CS-1 17G1230

Work Order 1700804 Page 146 of 248

Page 1 of 2

U:\Q4.PRO\results\170713M1\170713M1-20.qld

Last Altered: Printed:

Dataset:

Tuesday, July 18, 2017 07:41:57 Pacific Daylight Time Tuesday, July 18, 2017 07:48:39 Pacific Daylight Time D Exceeds method criteria.

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_20, Date: 13-Jul-2017, Time: 19:30:32, ID: ST170713M1-2 PFC CS3 17G1231, Description: PFC CS3 17G1231

# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1 PFBS	299 > 79.7	3.81e3	2.16e3	1,0000	KKE	2.92	2.90	y Axis Nesp. 22.0	9.71	97.1 70-12
2 PFHxA	313.2 > 268.9	2.67e4	6.72e3	1.0000		3.16	3.13	19.9	12.1	121.2
3 PFHpA	363 > 318.9	1.97e4	1.82e4	1.0000		3.43	3.40	13.5	9.39	93.9
4 PFHxS	398.9 > 79.6	3.27e3	2.18e3	1.0000		3.45	3.47	18.7	10.2	101.9
5 PFOA	413 > 368.7	3.40e4	3.88e4	1.0000		3.63	3.59	11.0	9.54	95.4
6 PFNA	462.9 > 418.8	4.17e4	3.93e4	1.0000		3.82	3.77	13.3	9.67	96.7
7 PFOS	499 > 79.9	6.60e3	8.77e3	1.0000		3.86	3.82	9.40	8.37	83.7
8 PFDA	513 > 468.8	5.20e4	3.95e4	1.0000		4.00	3.94	16.5	10.9	109.2
9 PFUnA	562.9 > 518.9	3.18e4	4.11e4	1.0000		4.16	4.10	9.68	9.19	91.9
10 N-MeFOSAA	570.1 > 419	1.39e4	9.36e3	1.0000		4.00	3.96	18.5	9.94	99.4
11 N-EtFOSAA	584.2 > 419	1.15e4	1.03e4	1.0000		4.08	4.03	14.0	10.3	102.6
12 PFDoA	612.9 > 318.8	5.45e3	3.84e3	1.0000		4.32	4.25	17.7	19.8 (
13 PFTrDA	662.9 > 618.9	4.89e4	3.84e3	1.0000		4.50	4.42	159	11.8	118.3
14 PFTeDA	712.9 > 668.8	2.90e4	2.80e4	1.0000		4.66	4.58	12.9	10.3	102.5
15 13C3-PFBA	216.1 > 171.8	9.12e3	1.00e4	1.0000	0.918	1.43	1.38	11.4	12.4	99.4 50-15
16 13C3-PFPeA	266 > 221.8	1.65e4	2.37e4	1.0000	0.275	2.72	2.68	3.47	12.6	101.1
17 13C3-PFBS	302 > 98.8	2.16e3	2.37e4	1.0000	0.033	2.92	2.90	0.456	13.8	110,1
18 13C2-PFHxA	315 > 269.8	6.72e3	2.37e4	1.0000	0.304	3.16	3.13	1.42	4.67	93.3
19 13C4-PFHpA	367.2 > 321.8	1.82e4	2.37e4	1.0000	0.306	3.43	3.40	3.84	12.5	100.3
20 18O2-PFHxS	403 > 102.6	2.18e3	4.83e3	1.0000	0.437	3.55	3.47	5.64	12.9	103.2
21 13C2-PFOA	414.9 > 369.7	3.88e4	3.03e4	1.0000	1.292	3.63	3.59	16.0	12.4	99.0
22 13C5-PFNA	468.2 > 422.9	3.93e4	3.95e4	1.0000	0.980	3.82	3.77	12.4	12.7	101.4
23 13C8-PFOS	507 > 79.9	8.77e3	7.99e3	1.0000	1.098	3.86	3.82	13.7	12.5	100.0
24 13C2-PFDA	515.1 > 469.9	3.95e4	4.31e4	1.0000	0.928	4.00	3.94	11.5	12.4	98.8
25 13C2-PFUnA	565 > 519.8	4.11e4	4.51e4	1.0000	1.083	4.16	4.10	11.4	10.5	84.1
26 d3-N-MeFOSAA	573.3 > 419	9.36e3	4.51e4	1.0000	0.224	4.00	3.97	2.59	11.6	92.4
27 d5-N-EtFOSAA	589.3 > 419	1.03e4	4.51e4	1.0000	0.230	4.08	4.03	2.85	12.4	99.0
28 13C2-PFDoA	615 > 569.7	3.84e3	4.51e4	1.0000	0.130	4.32	4.25	1.06	8.19	65.5
29 13C2-PFTeDA	714.8 > 669.6	2.80e4	4.51e4	1.0000	1.018	4.66	4.58	7.76	7.63	61.0
30 13C4-PFBA	217 > 171.8	1.00e4	1.00e4	1.0000	1.000	1.43	1.39	12.5	12.5	100.0
Work Order 5700804	318 > 272.9	2.37e4	2.37e4	1.0000	1.000	3.18	3.13	5.00	5.00	16 0. g e 147 of

Page 2 of 2

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-20.qld

Last Altered:

Printed:

Tuesday, July 18, 2017 07:41:57 Pacific Daylight Time Tuesday, July 18, 2017 07:48:39 Pacific Daylight Time

Name: 170713M1_20, Date: 13-Jul-2017, Time: 19:30:32, ID: ST170713M1-2 PFC CS3 17G1231, Description: PFC CS3 17G1231

# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT)	y Axis Resp.	Conc.	%Rec
32 13C3-PFHxS	401.9 > 79.9	4.83e3	4.83e3	1.0000	1.000	3.55	3.47	12.5	12.5	100.0
33 13C8-PFOA	421.3 > 376	3.03e4	3.03e4	1.0000	1.000	3.63	3.59	12.5	12.5	100.0
34 13C9-PFNA	472.2 > 426.9	3.95e4	3.95e4	1.0000	1.000	3.82	3.77	12.5	12.5	100.0
35 13C4-PFOS	503 > 79.9	7.99e3	7.99e3	1.0000	1.000	3.86	3.82	12.5	12.5	100.0
36 13C6-PFDA	519.1 > 473.7	4.31e4	4.31e4	1.0000	1.000	4.00	3.94	12.5	12.5	100.0
37 37 13C7-PFUnA	570.1 > 524.8	4.51e4	4.51e4	1.0000	1.000	4.16	4.10	12.5	12.5	100.0

Work Order 1700804 Page 148 of 248

Dataset:

Untitled

Last Altered: Printed:

Tuesday, July 18, 2017 07:58:37 Pacific Daylight Time Tuesday, July 18, 2017 07:59:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Compound name: PFBS

	IName:	D	Acq.Date	Acq.Time
	170713M1_1	IPA	13-Jul-17	16:00:11
2 4	170713M1_2	ST170713M1-1 PFC CS-1 17G1230	13-Jul-17	16:10:55
8	្តី 170713M1_3	IPA	13-Jul-17	16:21:34
4	170713M1_4	B7G0049-BS1 OPR 0.125	13-Jul-17	16:38:24
5	170713M1_5	B7G0054-BS1 OPR 0.125	13-Jul-17	16:49:10
6	170713M1_6	IPA	13-Jul-17	16:59:57
7	170713M1_7	B7G0049-BLK1 Method Blank 0.125	13-Jul-17	17:10:36
8	170713M1_8	B7G0054-BLK1 Method Blank 0.125	13-Jul-17	17:22:39
9	170713M1_9	1700804-01RE1 IRPSite7-GW-07GW41-2017	13-Jul-17	17:33:22
400	170713M1_10	1700804-02RE1 IRPSite5-GW-05GW01-2017	13-Jul-17	17:44:00
	170713M1_11	1700804-03RE1 IRPSite5-GW-FD01-2017062	. 13-Jul-17	17:54:39
	170713M1_12	1700804-04RE1 IRPSite33-GW-FRB01-2017	13-Jul-17	18:05:18
fiet.	170713M1_13	1700804-05RE1 IRPSite33-GW-11MW204D-2	. 13-Jul-17	18:15:56
užiti iš iš	170713M1_14	1700804-06RE1 IRPSite33-GW-11MW204S-2	. 13-Jul-17	18:26:34
45	170713M1_15	1700804-07RE1 Bldg 110-GW-11MW205D-20.	13-Jul-17	18:37:13
filo de de de la	170713M1_16	1700804-08RE1 Bldg 110-GW-FRB01-201706.	13-Jul-17	18:47:51
67	170713M1_17	1700804-09RE1 Bldg 110-GW-11MW205S-20.	13-Jul-17	18:58:37
16	170713M1_18	1700804-10RE1 IRPSite7-GW-07GW102-201	. 13-Jul-17	19:09:16
io i	170713M1_19	IPA	13-Jul-17	19:19:54
e0	170713M1_20	ST170713M1-2 PFC CS3 17G1231	13-Jul-17	19:30:32
	170713M1_21	IPA	13-Jul-17	19:41:11
622	170713M1_22	1700804-11RE1 IRPSite5-GW-04GW82-2017	. 13-Jul-17	19:51:49
	170713M1_23	1700803-01RE1 SB01 0.11986	13-Jul-17	20:02:28
24:	170713M1_24	1700803-02RE1 EB01 0.12093	13-Jul-17	20:13:06
Q.5	170713M1_25	1700803-03RE1 IRPSite7-GW-46GW205-201.	13-Jul-17	20:23:44
26	170713M1_26	1700803-04RE1 IRPSite7-GW-FD01-2017062.	13-Jul-17	20:34:23
27	170713M1_27	1700803-05RE1 IRPSite7-GW-07GW202-201.	13-Jul-17	20:45:01
	170713M1_28	1700803-06RE1 IRPSite7-GW-FRB01-20170	. 13-Jul-17	20:55:40
943 A V	170713M1_29	1700803-07RE1 IRPSite5-GW-FRB01-20170	. 13-Jul-17	21:06:18
30 4 30	170713M0030 4	1700803-08RE1 IRPSite5-GW-04GW81S-201	13-Jul-17	21:16:56
	470712141 21	1700803_00PE1_IRPSite5_GW_04GW80-2017	13lul-17	21:27:35

Quantify Compound Summary Report Vista Analytical Laboratory MassLynx MassLynx V4.1 SCN 945

Page 2 of 2

Dataset:

Untitled

Last Altered: Printed:

Tuesday, July 18, 2017 07:58:37 Pacific Daylight Time Tuesday, July 18, 2017 07:59:16 Pacific Daylight Time

Compound name: PFBS

	Name	ID .	Acq.Date	Acq.Time
32	170713M1_32	B7G0054-MS1 Matrix Spike 0.12064	13-Jul-17	21:38:13
330	170713M1_33	B7G0054-MSD1 Matrix Spike Dup 0.11356	13-Jul-17	21:48:51
34	170713M1_34	IPA	13-Jul-17	21:59:30
35.	170713M1_35	ST170713M1-3 PFC CS3 17G1231	13-Jul-17	22:10:08
36	170713M1_36	IPA	13-Jul-17	22:20:47
37 - 18	170713M1_37	1700803-10RE1 EB02 0.12181	13-Jul-17	22:31:25
38	170713M1_38	1700836-01RE1 DPH-MW11 0.11781	13-Jul-17	22:42:03
397	170713M1_39	1700836-02RE1 DPH-B7 0.12115	13-Jul-17	22:52:42
40** **	170713M1_40	1700836-03RE1 DPH-MW3-17 0.11871	13-Jul-17	23:03:20
40	170713M1_41	1700836-04RE1 DPH-EX4 0.11551	13-Jul-17	23:13:59
42	170713M1_42	1700836-05RE1 DPH-MW6-17 0.11801	13-Jul-17	23:24:37
43	170713M1_43	IPA	13-Jul-17	23:35:15
44	170713M1_44	ST170713M1-4 PFC CS3 17G1231	13-Jul-17	23:45:54

Work Order 1700804

Page 1 of 5

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-20.qld

Last Altered: Printed:

Tuesday, July 18, 2017 07:41:57 Pacific Daylight Time Tuesday, July 18, 2017 07:48:39 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18 VAL-PFAS Q4 7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_20, Date: 13-Jul-2017, Time: 19:30:32, ID: ST170713M1-2 PFC CS3 17G1231, Description: PFC CS3 17G1231

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-20.qld

Last Altered: Printed:

Tuesday, July 18, 2017 07:41:57 Pacific Daylight Time Tuesday, July 18, 2017 07:48:39 Pacific Daylight Time

Name: 170713M1_20, Date: 13-Jul-2017, Time: 19:30:32, ID: ST170713M1-2 PFC CS3 17G1231, Description: PFC CS3 17G1231

Work Order 1700804 Page 152 of 248

Dataset: U:\Q4.PRO\results\170713M1\170713M1-20.qld

Last Altered: Tuesday, July 18, 2017 07:41:57 Pacific Daylight Time Printed: Tuesday, July 18, 2017 07:48:39 Pacific Daylight Time

Name: 170713M1_20, Date: 13-Jul-2017, Time: 19:30:32, ID: ST170713M1-2 PFC CS3 17G1231, Description: PFC CS3 17G1231

Work Order 1700804 Page 153 of 248

U:\Q4.PRO\results\170713M1\170713M1-20.qld

Last Altered: Printed:

Dataset:

Tuesday, July 18, 2017 07:41:57 Pacific Daylight Time Tuesday, July 18, 2017 07:48:39 Pacific Daylight Time

Name: 170713M1_20, Date: 13-Jul-2017, Time: 19:30:32, ID: ST170713M1-2 PFC CS3 17G1231, Description: PFC CS3 17G1231

Work Order 1700804 Page 154 of 248

U:\Q4.PRO\results\170713M1\170713M1-20.qld

Last Altered: Printed:

Dataset:

Tuesday, July 18, 2017 07:41:57 Pacific Daylight Time Tuesday, July 18, 2017 07:48:39 Pacific Daylight Time

Name: 170713M1_20, Date: 13-Jul-2017, Time: 19:30:32, ID: ST170713M1-2 PFC CS3 17G1231, Description: PFC CS3 17G1231

Work Order 1700804 Page 155 of 248

Page 1 of 2

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-35.qld

Last Altered:

Tuesday, July 18, 2017 07:54:43 Pacific Daylight Time

Printed: Tuesday, July 18, 2017 07:55:24 Pacific Daylight Time

@ Exceeds method cntena

1/18/17 A

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_35, Date: 13-Jul-2017, Time: 22:10:08, ID: ST170713M1-3 PFC CS3 17G1231, Description: PFC CS3 17G1231

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
10000	1 PFBS	299 > 79.7	3.70e3	2.08e3	1.0000	" i i administra	2.92	2.91	22.2	9.80	98.0 70-130
2	2 PFHxA	313.2 > 268.9	2.54e4	7.25e3	1.0000		3.16	3.14	17.5	10.7	106.7
3	3 PFHpA	363 > 318.9	2.04e4	1.82e4	1.0000		3.43	3.40	14.0	9.74	97.4
4	4 PFHxS	398.9 > 79.6	3.48e3	2.19e3	1.0000		3.55	3.47	19.8	10.8	107.7
5	5 PFOA	413 > 368.7	3.32e4	3.59e4	1.0000		3.63	3.60	11.6	10.1	100.7
6	6 PFNA	462.9 > 418.8	4.04e4	3.84e4	1.0000		3.82	3.77	13.2	9.59	95.9
7	7 PFOS	499 > 79.9	8.14e3	7.80e3	1.0000		3.86	3.82	13.0	11.6	115.5
8	8 PFDA	513 > 468.8	4.51e4	3.48e4	1.0000		4.00	3.94	16.2	10.8	107.7
9	9 PFUnA	562.9 > 518.9	2.89e4	3.79e4	1.0000		4.16	4.10	9.53	9.05	90.5
10	10 N-MeFOSAA	570.1 > 419	1.36e4	9.96e3	1.0000		4.00	3.97	17.0	9.11	91.1
11	11 N-EtFOSAA	584.2 > 419	1.14e4	1.05e4	1.0000		4.08	4.04	13.6	9.96	99.6
12	12 PFDoA	612.9 > 318.8	5.67e3	3.27e3	1.0000		4.32	4.26	21.6	23.5 (234.5
13	13 PFTrDA	662.9 > 618.9	4.36e4	3.27e3	1.0000		4.50	4.42	166	12.4	123.8
14	14 PFTeDA	712.9 > 668.8	2.39e4	2.26e4	1.0000		4.66	4.59	13.2	10.5	104.7
15	15 13C3-PFBA	216.1 > 171.8	8.88e3	9.73e3	1.0000	0.918	1.43	1.40	11.4	12.4	99.4650-150
16	16 13C3-PFPeA	266 > 221.8	1.56e4	2.23e4	1.0000	0.275	2.72	2.68	3.48	12.7	101.4 C
17	17 13C3-PFBS	302 > 98.8	2.08e3	2.23e4	1.0000	0.033	2.92	2.91	0.465	14.0	112.4 1/18/in
18	18 13C2-PFHxA	315 > 269.8	7.25e3	2.23e4	1.0000	0.304	3.16	3.14	1.62	5.34	106.9
19	19 13C4-PFHpA	367.2 > 321.8	1.82e4	2.23e4	1.0000	0.306	3.43	3.40	4.06	13.3	106.2
20	20 18O2-PFHxS	403 > 102.6	2.19e3	4.73e3	1.0000	0.437	3.55	3.47	5.80	13.3	106.1
21	21 13C2-PFOA	414.9 > 369.7	3.59e4	3.00e4	1.0000	1.292	3.63	3.60	15.0	11.6	92.8
22	22 13C5-PFNA	468.2 > 422.9	3.84e4	3.92e4	1.0000	0.980	3.82	3.77	12.2	12.5	99.7
23	23 13C8-PFOS	507 > 79.9	7.80e3	7.96e3	1.0000	1.098	3.86	3.82	12.3	11.2	89.3
24	24 13C2-PFDA	515.1 > 469.9	3.48e4	3.67e4	1.0000	0.928	4.00	3.94	11.8	12.8	102.1
25	25 13C2-PFUnA	565 > 519.8	3.79e4	4.06e4	1.0000	1.083	4.16	4.10	11.7	10.8	86.2
26	26 d3-N-MeFOSAA	573.3 > 419	9.96e3	4.06e4	1.0000	0.224	4.00	3.97	3.06	13.7	109.3
27	27 d5-N-EtFOSAA	589.3 > 419	1.05e4	4.06e4	1.0000	0.230	4.08	4.03	3.24	14.1	113.0
28	28 13C2-PFDoA	615 > 569.7	3.27e3	4.06e4	1.0000	0.130	4.32	4.26	1.01	7.76	62.0
29	29 13C2-PFTeDA	714.8 > 669.6	2.26e4	4.06e4	1.0000	1.018	4.66	4.59	6.95	6.83	54.6
30	30 13C4-PFBA	217 > 171.8	9.73e3	9.73e3	1.0000	1.000	1.43	1.40	12.5	12.5	100.0
31 Wor	k OtrderC5779798004	318 > 272.9	2.23e4	2.23e4	1.0000	1.000	3.18	3.14	5.00	5.00	100a.g e 156 of 248

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Page 2 of 2

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-35.qld

Last Altered: Printed:

Tuesday, July 18, 2017 07:54:43 Pacific Daylight Time Tuesday, July 18, 2017 07:55:24 Pacific Daylight Time

Name: 170713M1_35, Date: 13-Jul-2017, Time: 22:10:08, ID: ST170713M1-3 PFC CS3 17G1231, Description: PFC CS3 17G1231

# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Сопс.	%Rec
32 13C3-PFHxS	401.9 > 79.9	4.73e3	4.73e3	1.0000	1.000	3.55	3.47	12.5	12.5	100.0
33 13C8-PFOA	421.3 > 376	3.00e4	3.00e4	1.0000	1.000	3.63	3.60	12.5	12.5	100.0
34 13C9-PFNA	472.2 > 426.9	3.92e4	3.92e4	1.0000	1.000	3.82	3.77	12.5	12.5	100.0
35 13C4-PFOS	503 > 79.9	7.96e3	7.96e3	1.0000	1.000	3.86	3.82	12.5	12.5	100.0
36 13C6-PFDA	519.1 > 473.7	3.67e4	3.67e4	1.0000	1.000	4.00	3.94	12.5	12.5	100.0
37 37 13C7-PFUnA	570.1 > 524.8	4.06e4	4.06e4	1.0000	1.000	4.16	4.10	12.5	12.5	100.0

Work Order 1700804 Page 157 of 248

Dataset:

Untitled

Last Altered: Printed:

Tuesday, July 18, 2017 07:58:37 Pacific Daylight Time Tuesday, July 18, 2017 07:59:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Compound name: PFBS

7.56	Name .	ID .	Acq.Date	Acq.Time
	170713M1_1	IPA	13-Jul-17	16:00:11
2	170713M1_2	ST170713M1-1 PFC CS-1 17G1230	13-Jul-17	16:10:55
	170713M1_3	IPA	13-Jul-17	16:21:34
4	170713M1_4	B7G0049-BS1 OPR 0.125	13-Jul-17	16:38:24
5	170713M1_5	B7G0054-BS1 OPR 0.125	13-Jul-17	16:49:10
6	170713M1_6	IPA	13-Jul-17	16:59:57
7	170713M1_7	B7G0049-BLK1 Method Blank 0.125	13-Jul-17	17:10:36
837 24	170713M1_8	B7G0054-BLK1 Method Blank 0.125	13-Jul-17	17:22:39
9 (1)	170713M1_9	1700804-01RE1 IRPSite7-GW-07GW41-2017	13-Jul-17	17:33:22
10	170713M1_10	1700804-02RE1 IRPSite5-GW-05GW01-2017	13-Jul-17	17:44:00
	170713M1_11	1700804-03RE1 IRPSite5-GW-FD01-2017062	13-Jul-17	17:54:39
2	170713M1_12	1700804-04RE1 IRPSite33-GW-FRB01-2017	13-Jul-17	18:05:18
no.	170713M1_13	1700804-05RE1 IRPSite33-GW-11MW204D-2	. 13-Jul-17	18:15:56
160	170713M1_14	1700804-06RE1 IRPSite33-GW-11MW204S-2	. 13-Jul-17	18:26:34
(5)	170713M1_15	1700804-07RE1 Bldg 110-GW-11MW205D-20	. 13-Jul-17	18:37:13
1600	170713M1_16	1700804-08RE1 Bldg 110-GW-FRB01-201706	. 13-Jul-17	18:47:51
	170713M1_17	1700804-09RE1 Bldg 110-GW-11MW205S-20	. 13-Jul-17	18:58:37
18	170713M1_18	1700804-10RE1 IRPSite7-GW-07GW102-201	13-Jul-17	19:09:16
de de la companya de	170713M1_19	IPA	13-Jul-17	19:19:54
200	170713M1_20	ST170713M1-2 PFC CS3 17G1231	13-Jul-17	19:30:32
24	170713M1_21	IPA	13-Jul-17	19:41:11
22	170713M1_22	1700804-11RE1 IRPSite5-GW-04GW82-2017	. 13-Jul-17	19:51:49
	170713M1_23	1700803-01RE1 SB01 0.11986	13-Jul-17	20:02:28
24	170713M1_24	1700803-02RE1 EB01 0.12093	13-Jul-17	20:13:06
	170713M1_25	1700803-03RE1 IRPSite7-GW-46GW205-201	. 13-Jul-17	20:23:44
26	170713M1_26	1700803-04RE1 IRPSite7-GW-FD01-2017062	. 13-Jul-17	20:34:23
27	170713M1_27	1700803-05RE1 IRPSite7-GW-07GW202-201	. 13-Jul-17	20:45:01
288	170713M1_28	1700803-06RE1 IRPSite7-GW-FRB01-20170	13-Jul-17	20:55:40
29.7	170713M1_29	1700803-07RE1 IRPSite5-GW-FRB01-20170		21:06:18
50	17.02.13M 003004	1700803-08RE1 IRPSite5-GW-04GW81S-201.	13-Jul-17	21:16:56
以外来	17071211 31	1700803-09RF1 IRPSite5-GW-04GW80-2017	13-Jul-17	21:27:35

Quantify Compound Summary Report Vista Analytical Laboratory

MassLynx MassLynx V4.1 SCN 945

Page 2 of 2

Dataset:

Untitled

Last Altered: Printed:

Tuesday, July 18, 2017 07:58:37 Pacific Daylight Time Tuesday, July 18, 2017 07:59:16 Pacific Daylight Time

Compound name: PFBS

	Name	ID.	Acq:Date	Acq.Time
32	170713M1_32	B7G0054-MS1 Matrix Spike 0.12064	13-Jul-17	21:38:13
330	170713M1_33	B7G0054-MSD1 Matrix Spike Dup 0.11356	13-Jul-17	21:48:51
341	170713M1_34	IPA	13-Jul-17	21:59:30
35	170713M1_35	ST170713M1-3 PFC CS3 17G1231	13-Jul-17	22:10:08
36	170713M1_36	IPA	13-Jul-17	22:20:47
	170713M1_37	1700803-10RE1 EB02 0.12181	13-Jul-17	22:31:25
38	170713M1_38	1700836-01RE1 DPH-MW11 0.11781	13-Jul-17	22:42:03
39 T F/H	170713M1_39	1700836-02RE1 DPH-B7 0.12115	13-Jul-17	22:52:42
40 mg	170713M1_40	1700836-03RE1 DPH-MW3-17 0.11871	13-Jul-17	23:03:20
41	170713M1_41	1700836-04RE1 DPH-EX4 0.11551	13-Jul-17	23:13:59
42	170713M1_42	1700836-05RE1 DPH-MW6-17 0.11801	13-Jul-17	23:24:37
43%	170713M1_43	IPA	13-Jul-17	23:35:15
44.	, 170713M1_44	ST170713M1-4 PFC CS3 17G1231	13-Jul-17	23:45:54

Work Order 1700804

Page 159 of 248

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170713M1\170713M1-35.qld

Last Altered: Tuesday, July 18, 2017 07:54:43 Pacific Daylight Time Printed: Tuesday, July 18, 2017 07:55:24 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18 VAL-PFAS Q4 7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170713M1_35, Date: 13-Jul-2017, Time: 22:10:08, ID: ST170713M1-3 PFC CS3 17G1231, Description: PFC CS3 17G1231

U:\Q4.PRO\results\170713M1\170713M1-35.qld

Last Altered:

Dataset:

Printed:

Tuesday, July 18, 2017 07:54:43 Pacific Daylight Time Tuesday, July 18, 2017 07:55:24 Pacific Daylight Time

Name: 170713M1_35, Date: 13-Jul-2017, Time: 22:10:08, ID: ST170713M1-3 PFC CS3 17G1231, Description: PFC CS3 17G1231

Work Order 1700804

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-35.qld

Last Altered: Printed:

Tuesday, July 18, 2017 07:54:43 Pacific Daylight Time Tuesday, July 18, 2017 07:55:24 Pacific Daylight Time

Name: 170713M1_35, Date: 13-Jul-2017, Time: 22:10:08, ID: ST170713M1-3 PFC CS3 17G1231, Description: PFC CS3 17G1231

Work Order 1700804 Page 162 of 248

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-35.qld

Last Altered:

Tuesday, July 18, 2017 07:54:43 Pacific Daylight Time

Printed: Tuesday, July 18, 2017 07:55:24 Pacific Daylight Time

Name: 170713M1_35, Date: 13-Jul-2017, Time: 22:10:08, ID: ST170713M1-3 PFC CS3 17G1231, Description: PFC CS3 17G1231

Work Order 1700804 Page 163 of 248

Dataset:

U:\Q4.PRO\results\170713M1\170713M1-35.qld

Last Altered: Printed:

Tuesday, July 18, 2017 07:54:43 Pacific Daylight Time Tuesday, July 18, 2017 07:55:24 Pacific Daylight Time

Name: 170713M1_35, Date: 13-Jul-2017, Time: 22:10:08, ID: ST170713M1-3 PFC CS3 17G1231, Description: PFC CS3 17G1231

Work Order 1700804 Page 164 of 248

INITIAL CALIBRATION

Work Order 1700804 Page 165 of 248

Page 1 of 19

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Printed:

Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Compound name: PFBS

Correlation coefficient: r = 0.999476, $r^2 = 0.998952$

Calibration curve: 2.28219 * x + -0.143808

Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

The state of the s	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	0.250	2.97	64.107	1829.255	0.438	0.3	2.0	NO	0.999	NO	bb
2	2 170710M3_3	Standard	0.500	2.96	174.822	1889.439	1.157	0.6	14.0	NO	0.999	NO	bb
3	3 170710M3_4	Standard	1.000	2.95	250.827	1680.475	1.866	0.9	-11.9	NO	0.999	NO	bb
4 7500 4 10 10 10 10	4 170710M3_5	Standard	2.000	2.95	664.245	1675.008	4.957	2.2	11.8	NO	0.999	NO	bb
5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 170710M3_6	Standard	5.000	2.95	1423.155	1827.422	9.735	4.3	-13.4	NO	0.999	NO	bb
6	6 170710M3_7	Standard	10.000	2.95	3293.945	1863.759	22.092	9.7	-2.6	NO	0.999	NO	bb
7 111 112 1131	7 170710M3_8	Standard	50.000	2.95	14448.479	1600.534	112.841	49.5	-1.0	NO	0.999	NO	bb
8	8 170710M3_9	Standard	100.000	2.95	31826.346	1723.074	230.883	101.2	1.2	NO	0.999	NO	bb

Compound name: PFHxA

Correlation coefficient: r = 0.999913, r^2 = 0.999826

Calibration curve: 1.63833 * x + 0.053424

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

aliuminaanaan	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	0.250	3.19	518.924	6599.234	0.393	0.2	-17.1	NO	1.000	NO	bb
2	2 170710M3_3	Standard	0.500	3.19	1190.925	6260.955	0.951	0.5	9.6	NO	1.000	NO	bb
3	3 170710M3_4	Standard	1.000	3.18	2031.727	5844.579	1.738	1.0	2.8	NO	1.000	NO	bb
4	4 170710M3_5	Standard	2.000	3.18	4143.116	6095.467	3.399	2.0	2.1	NO	1.000	NO	bb
5	5 170710M3_6	Standard	5.000	3.18	11189.350	6584.623	8.497	5.2	3.1	NO	1.000	NO	bb
6 - 11 - 11	6 170710M3_7	Standard	10.000	3.19	22422.309	6880.506	16.294	9.9	-0.9	NO	1.000	NO	bb
7	7 170710M3_8	Standard	50.000	3.19	107894.484	6517.125	82.778	50.5	1.0	NO	1.000	NO	bb
8	8 170710M3_9	Standard	100.000	3.18	224318.094	6887.408	162.847	99.4	-0.6	NO	1.000	NO	bb

Work Order 1700804 Page 166 of 248

Page 2 of 19

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: r = 0.999627, $r^2 = 0.999254$

Calibration curve: 1.43595 * x + 0.0332012

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

in incorrection during the pro- ple of the particular of the pro- ple of the particular of the pro-	# Name	Туре	Std. Conc	RT	Area	1S Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
The state of the s	1 170710M3_2	Standard	0.250	3.46	484.804	16912.918	0.358	0.2	-9.4	NO	0.999	NO	bb
2	2 170710M3_3	Standard	0.500	3.45	1094.714	15983.809	0.856	0.6	14.6	NO	0.999	NO	db
3	3 170710M3_4	Standard	1.000	3.44	1816.426	14729.492	1.541	1.1	5.0	NO	0.999	NO	bb
4	4 170710M3_5	Standard	2.000	3.44	3368.228	16736.117	2.516	1.7	-13.6	NO	0.999	NO	bb
5	5 170710M3_6	Standard	5.000	3.44	9552.159	16831.109	7.094	4.9	-1.7	NO	0.999	NO	bb
6	6 170710M3_7	Standard	10.000	3.45	19620.016	16406.695	14.948	10.4	3.9	NO	0.999	NO	bb
7	7 170710M3_8	Standard	50.000	3.45	91102.258	15463.272	73.644	51.3	2.5	NO	0.999	NO	bb
8-14-12-14-14-14-14-14-14-14-14-14-14-14-14-14-	8 170710M3_9	Standard	100.000	3.45	193055.844	17039.475	141.624	98.6	-1.4	NO	0.999	NO	bb

Compound name: PFHxS

Coefficient of Determination: R^2 = 0.997055

Calibration curve: 0.00158619 * x^2 + 1.83332 * x + -0.0924995 Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans; None

Mario de la contra de la casa de	# Name	Туре	Std. Conc	RT	Area _	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	0.250	3.52	58.724	1651.524	0.444	0.3	17.1	NO	0.997	NO	bb
2	2 170710M3_3	Standard	0.500	3.51	92.843	1720.000	0.675	0.4	-16.3	NO	0.997	NO	MM
3	3 170710M3_4	Standard	1.000	3.51	174.046	1350.057	1.611	0.9	-7.1	NO	0.997	NO	db
4	4 170710M3_5	Standard	2.000	3.51	444.710	1600.253	3.474	1.9	-2.9	NO	0.997	NO	MM
5	5 170710M3_6	Standard	5.000	3.51	1145.275	1665.698	8.595	4.7	-5.6	NO	0.997	NO	bb
6	6 170710M3_7	Standard	10.000	3.51	2600.573	1486.850	21.863	11.9	18.5	NO	0.997	NO	MM
7	7 170710M3_8	Standard	50.000	3.51	10991.491	1511.473	90.900	47.7	-4.7	NO	0.997	NO	MM
8	8 170710M3_9	Standard	100.000	3.51	25585.689	1590.326	201.104	100.9	0.9	NO	0.997	NO	MM

Work Order 1700804 Page 167 of 248

Page 3 of 19

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: r = 0.999752, $r^2 = 0.999504$

Calibration curve: 1.13698 * x + 0.117502

Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	0.250	3.65	719.562	24338.092	0.370	0.2	-11.3	NO	1.000	NO	bb
2	2 170710M3_3	Standard	0.500	3.65	1500.520	25154.738	0.746	0.6	10.5	NO	1.000	NO	bb
3	3 170710M3_4	Standard	1.000	3.65	2177.131	22319.385	1.219	1.0	-3.1	NO	1.000	NO	bb
4	4 170710M3_5	Standard	2.000	3.65	4933.051	25531.586	2.415	2.0	1.0	NO	1.000	NO	bb
5	5 170710M3_6	Standard	5.000	3.64	12429.696	27012.830	5.752	5.0	-0.9	NO	1.000	NO	bb
6 (20)	6 170710M3_7	Standard	10.000	3.65	25517.219	27058.725	11.788	10.3	2.6	NO	1.000	NO	bb
7	7 170710M3_8	Standard	50.000	3.64	123694.688	26424.334	58.514	51.4	2.7	NO	1.000	NO	bb
	8 170710M3_9	Standard	100.000	3.65	248919.391	27780.598	112.002	98.4	-1.6	NO	1.000	NO	bb

Compound name: PFNA

Correlation coefficient: r = 0.999771, $r^2 = 0.999542$

Calibration curve: 1.36517 * x + 0.0586296

Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

and a second control of	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	0.250	3.83	809.352	23133.879	0.437	0.3	11.0	NO	1.000	NO	bb
2	2 170710M3_3	Standard	0.500	3.82	1465.662	25510.555	0.718	0.5	-3.4	NO	1.000	NO	bb
3	3 170710M3_4	Standard	1.000	3.82	2763.543	25152.525	1.373	1.0	-3.7	NO	1.000	NO	bb
A three many a program of the second of the	4 170710M3_5	Standard	2.000	3.82	6805.311	27896.482	3.049	2.2	9.5	NO	1.000	NO	bb
5 makes the same	5 170710M3_6	Standard	5.000	3.82	16015.691	27575.711	7.260	5.3	5.5	NO	1.000	NO	bb
6	6 170710M3_7	Standard	10.000	3.82	32890.461	30707.572	13.389	9.8	-2.4	NO	1.000	NO	bb
7	7 170710M3_8	Standard	50.000	3.82	146644.188	26401.301	69.430	50.8	1.6	NO	1.000	NO	bb
	8 170710M3_9	Standard	100.000	3.82	313277.875	28967.555	135.185	99.0	-1.0	NO	1.000	NO	bb

Work Order 1700804 Page 168 of 248

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: R^2 = 0.999061

Calibration curve: $0.00185446 * x^2 + 1.10476 * x + 0.0290336$ Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

calport 2 Tapes policy Control and the Secretary	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 Towns of the second	1 170710M3_2	Standard	0.250	3.88	115.763	5370.698	0.269	0.2	-13.0	NO	0.999	NO	bb
2	2 170710M3_3	Standard	0.500	3.87	241.388	5419.104	0.557	0.5	-4.5	NO	0.999	NO	ММ
3,4111	3 170710M3_4	Standard	1.000	3.88	500.986	5346.955	1.171	1.0	3.2	NO	0.999	NO	bb
4 Program Review Commence	4 170710M3_5	Standard	2.000	3.88	1168.767	5508.184	2.652	2.4	18.3	NO	0.999	NO	bb
5	5 170710M3_6	Standard	5.000	3.87	2478.524	5282.377	5.865	5.2	4.7	NO	0.999	NO	bb
6	6 170710M3_7	Standard	10.000	3.88	5348.684	5677.549	11.776	10.4	4.5	NO	0.999	NO	bb
Zenterani je pi strike programija je programi	7 170710M3_8	Standard	50.000	3.88	26226.332	5678.869	57.728	48.3	-3.4	NO	0.999	NO	bb
8	8 170710M3_9	Standard	100.000	3.88	56412.301	5421.565	130.065	100.7	0.7	NO	0.999	NO	bb

Compound name: PFDA

Coefficient of Determination: R^2 = 0.998836

Calibration curve: 0.000679513 * x^2 + 1.50572 * x + -0.0681733 Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 170710M3_2	Standard	0.250	3.99	972.213	28930.936	0.420	0.3	29.7	NO	0.999	NO	db
10000	2 170710M3_3	Standard	0.500	4.00	1382.475	29747.686	0.581	0.4	-13.8	NO	0.999	NO	bb
Sile and the same	3 170710M3_4	Standard	1.000	3.99	3557.009	31897.771	1.394	1.0	-2.9	NO	0.999	NO	bb
	4 170710M3_5	Standard	2.000	3.99	7354.864	31493.791	2.919	2.0	-0.9	NO	0.999	NO	bb
tocomplete color (1,4)	5 170710M3_6	Standard	5.000	4.00	16044.657	29596.766	6.776	4.5	-9.3	NO	0.999	NO	bb
n 1920 (1930) Kalendari (1930)	6 170710M3_7	Standard	10.000	3.99	37473.484	33043.109	14.176	9.4	-5.8	NO	0.999	NO	bb
	7 170710M3_8	Standard	50.000	3.99	195941.813	30631.795	79.959	51.9	3.9	NO	0.999	NO	bb
	8 170710M3_9	Standard	100.000	3.99	392413.031	31463.066	155.902	99.1	-0.9	NO	0.999	NO	bb

Work Order 1700804 Page 169 of 248

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: PFUnA

Correlation coefficient: r = 0.998876, $r^2 = 0.997753$

Calibration curve: 1.03711 * x + 0.141151

Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT:	Area -	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1.	1 170710M3_2	Standard	0.250	4.15	1000.258	28511.633	0.439	0.3	14.7	NO	0.998	NO	bb
2	2 170710M3_3	Standard	0.500	4.15	1613.189	35214.363	0.573	0.4	-16.8	NO	0.998	NO	bb
3	3 170710M3_4	Standard	1.000	4.15	3030.180	29618.668	1.279	1.1	9.7	NO	0.998	NO	bb
4 Harriston	4 170710M3_5	Standard	2.000	4.15	5814.139	32452.291	2.239	2.0	1.2	NO	0.998	NO	bb
5	5 170710M3_6	Standard	5.000	4.15	14655.979	32879.375	5.572	5.2	4.7	NO	0.998	NO	bb
6	6 170710M3_7	Standard	10.000	4.15	29217.963	39593.965	9.224	8.8	-12.4	NO	0.998	NO	bb
7	7 170710M3_8	Standard	50.000	4.15	137931.563	34542.293	49.914	48.0	-4.0	NO	0.998	NO	bb
8	8 170710M3_9	Standard	100.000	4.15	285394.844	33371.344	106.901	102.9	2.9	NO	0.998	NO	bb

Page 5 of 19

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.999758

Calibration curve: -0.000725393 * x^2 + 1.88459 * x + -0.112345 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

The state of	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
144	1 170710M3_2	Standard	0.250	4.01	186.794	7235.550	0.323	0.2	-7.7	NO	1.000	NO	bb
2	2 170710M3_3	Standard	0.500	4.02	464.219	7333.048	0.791	0.5	-4.1	NO	1.000	NO	bb
3	3 170710M3_4	Standard	1.000	4.02	800.254	6481.465	1.543	0.9	-12.1	NO	1.000	NO	bb
4	4 170710M3_5	Standard	2.000	4.02	1945.937	6639.098	3.664	2.0	0.3	NO	1.000	NO	bb
5	5 170710M3_6	Standard	5.000	4.02	5107.766	6875.079	9.287	5.0	-0.1	NO	1.000	NO	bb
6	6 170710M3_7	Standard	10.000	4.02	10428.781	7052.758	18.484	9.9	-0.9	NO	1.000	NO	bb
7	7 170710M3_8	Standard	50.000	4.02	47146.820	6322.343	93.215	50.5	1.0	NO	1.000	NO	bb
8 2 1922 5 1921	8 170710M3_9	Standard	100.000	4.02	100772.484	6972.632	180.657	99.7	-0.3	NO	1.000	NO	bb

Work Order 1700804 Page 170 of 248

Page 6 of 19

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.998485

Calibration curve: $0.00300948 * x^2 + 1.32985 * x + 0.0134202$ Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Experience (Control of Control of	# Name	Туре	Std. Conc	RT -	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	0.250	4.09	234.930	7680.203	0.382	0.3	10.9	NO	0.998	NO	bb
2	2 170710M3_3	Standard	0.500	4.09	302.139	7756.188	0.487	0.4	-28.8	NO	0.998	NO	bb
3	3 170710M3_4	Standard	1.000	4.09	661.819	6483.096	1.276	0.9	-5.3	NO	0.998	NO	bb
4	4 170710M3_5	Standard	2.000	4.09	1767.924	6911.000	3.198	2.4	19.1	NO	0.998	NO	bb
5	5 170710M3_6	Standard	5.000	4.09	4013.729	7309.417	6.864	5.1	1.9	NO	0.998	NO	bb
6	6 170710M3_7	Standard	10.000	4.09	8229.293	6897.159	14.914	10.9	9.3	NO	0.998	NO	bb
7 9600 (11,000)	7 170710M3_8	Standard	50.000	4.09	40260.930	7098.953	70.892	48.1	-3.9	NO	0.998	NO	bb
8	8 170710M3_9	Standard	100.000	4.09	81647.523	6203.575	164.517	100.7	0.7	NO	0.998	NO	bb

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.996663

Calibration curve: 0.00839285 * x^2 + 0.722755 * x + 0.0737712 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 170710M3_2	Standard	0.250	4.31	48.922	4029.594	0.152	0.1	-56.9	YES	0.997	NO	MMX
2	2 170710M3_3	Standard	0.500	4.30	130.253	4364.951	0.373	0.4	-17.6	NO	0.997	NO	MM
3	3 170710M3_4	Standard	1.000	4.31	250.646	3671.525	0.853	1.1	6.5	NO	0.997	NO	MM
4 Page propagation of the Control of	4 170710M3_5	Standard	2.000	4.31	576.522	3407.532	2.115	2.7	36.9	YES	0.997	NO	MM
5	5 170710M3_6	Standard	5.000	4.31	1409.589	4397.531	4.007	5.1	2.7	NO	0.997	NO	bb
6	6 170710M3_7	Standard	10.000	4.31	2715.122	4609.228	7.363	9.1	-8.8	NO	0.997	NO	bb
7	7 170710M3_8	Standard	50.000	4.31	16155.003	3523.270	57.315	50.1	0.2	NO	0.997	NO	bb
8	8 170710M3_9	Standard	100.000	4.31	30002.807	3866.813	96.988	72.7	-27.3	NO	0.997	NO	bbX

Work Order 1700804 Page 171 of 248

Page 7 of 19

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: PFTrDA

Coefficient of Determination: R^2 = 0.998284

Calibration curve: $-0.0031383 * x^2 + 13.4645 * x + 0.137265$ Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	- IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	0.250	4.47	1075.260	4029.594	3.336	0.2	-5.0	NO	0.998	NO	bb
2	2 170710M3_3	Standard	0.500	4.47	2399.472	4364.951	6.871	0.5	0.0	NO	0.998	NO	bb
3	3 170710M3_4	Standard	1.000	4.47	4107.874	3671.525	13.986	1.0	2.9	NO	0.998	NO	bd
4	4 170710M3_5	Standard	2.000	4.47	8625.419	3407.532	31.641	2.3	17.1	NO	0.998	NO	bb
5	5 170710M3_6	Standard	5.000	4.47	21857.848	4397.531	62.131	4.6	-7.8	NO	0.998	NO	bb
6	6 170710M3_7	Standard	10.000	4.47	44589.504	4609.228	120.925	9.0	-10.1	NO	0.998	NO	bb
7	7 170710M3_8	Standard	50.000	4.47	194608.984	3523.270	690.442	51.9	3.8	NO	0.998	NO	bb
8	8 170710M3_9	Standard	100.000	4.47	403466.813	3866.813	1304.261	99.1	-0.9	NO	0.998	NO	bb

Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.999913

Calibration curve: -0.000928994 * x^2 + 1.26436 * x + 0.081381 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 170710M3_2	Standard	0.250	4.65	1083.578	33198.340	0.408	0.3	3.3	NO	1.000	NO	MM
Admir St.	2 170710M3_3	Standard	0.500	4.64	1820.870	32091.508	0.709	0.5	-0.6	NO	1.000	NO	bb
	3 170710M3_4	Standard	1.000	4.64	2825.587	26986.623	1.309	1.0	-2.9	NO	1.000	NO	bb
Committee	4 170710M3_5	Standard	2.000	4.64	6951.492	32219.420	2.697	2.1	3.6	NO	1.000	NO	bd
iii fightenew Li ([])d[billenew	5 170710M3_6	Standard	5.000	4.64	15829.568	31939.072	6.195	4.9	-2.9	NO	1.000	NO	bb
i pilotea.	6 170710M3_7	Standard	10.000	4.64	32960.660	32979.863	12.493	9.9	-1.1	NO	1.000	NO	bb
	7 170710M3_8	Standard	50.000	4.64	144863.203	29463.150	61.459	50.4	8.0	NO	1.000	NO	bb
	8 170710M3_9	Standard	100.000	4.64	289834.000	30963.135	117.008	99.8	-0.2	NO	1.000	NO	bb

Work Order 1700804 Page 172 of 248

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960 Vista Analytical Laboratory

Page 8 of 19

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C3-PFBA

Response Factor: 0.917788

RRF SD: 0.0220833, Relative SD: 2.40614

Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	1.53	7397.170	8045.280	11.493	12.5	0.2	NO	en verker in die estere kennikel over Absonsonere betrack namer Sa	NO	bb
2	2 170710M3_3	Standard	12.500	1.53	7319.772	8103.498	11.291	12.3	-1.6	NO		NO	bb
3	3 170710M3_4	Standard	12.500	1.52	6882.142	7483.426	11.496	12.5	0.2	NO		NO	bb
4	4 170710M3_5	Standard	12.500	1.53	7838.344	8401.936	11.662	12.7	1.6	NO		NO	bb
5	5 170710M3_6	Standard	12.500	1.53	7407.220	8412.924	11.006	12.0	-4.1	NO		NO	bb
6	6 170710M3_7	Standard	12.500	1.52	7861.154	8228.657	11.942	13.0	4.1	NO		NO	bb
7.360-3511.istpotthinibus	7 170710M3_8	Standard	12.500	1.53	7586.854	8207.246	11.555	12.6	0.7	NO		NO	bb
8 15 հերասանունը։ Արևում	8 170710M3_9	Standard	12.500	1.53	7829.357	8634.025	11.335	12.4	-1.2	NO		NO	bb

Compound name: 13C3-PFPeA

Response Factor: 0.274834

RRF SD: 0.00525449, Relative SD: 1.91188

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	2.77	14987.434	21818.400	3.435	12.5	-0.0	NO	a de la company de la consideración de la cons	NO	bb
2	2 170710M3_3	Standard	12.500	2.75	14679.565	21557.213	3.405	12.4	-0.9	NO		NO	bb
3	3 170710M3_4	Standard	12.500	2.75	13179.834	19500.141	3.379	12.3	-1.6	NO		NO	bb
4	4 170710M3_5	Standard	12.500	2.75	14388.955	20840.465	3.452	12.6	0.5	NO		NO	bb
5	5 170710M3_6	Standard	12.500	2.75	14900.713	22435.646	3.321	12.1	-3.3	NO		NO	bb
6	6 170710M3_7	Standard	12.500	2.75	14839.357	21282.260	3.486	12.7	1.5	NO		NO	bb
7	7 170710M3_8	Standard	12.500	2.75	14494.135	20826.820	3.480	12.7	1.3	NO		NO	bb
8	8 170710M3_9	Standard	12.500	2.75	15390.460	21826.197	3.526	12.8	2.6	NO _		NO	bb

Work Order 1700804 Page 173 of 248

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C3-PFBS Response Factor: 0.0331429

RRF SD: 0.00163339, Relative SD: 4.92831

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD	Flag x=excluded
	1 170710M3_2	Standard	12.500	2.97	1829.255	21818.400	0.419	12.6	1.2	NO	N	O bb
2	2 170710M3_3	Standard	12.500	2.96	1889.439	21557.213	0.438	13.2	5.8	NO	N	O bb
3	3 170710M3_4	Standard	12.500	2.96	1680.475	19500.141	0.431	13.0	4.0	NO	N	O bb
4	4 170710M3_5	Standard	12.500	2.95	1675.008	20840.465	0.402	12.1	-3.0	NO	N	O bb
5	5 170710M3_6	Standard	12.500	2.95	1827.422	22435.646	0.407	12.3	-1.7	NO	N	O bb
6	6 170710M3_7	Standard	12.500	2.95	1863.759	21282.260	0.438	13.2	5.7	NO	N	O bb
7	7 170710M3_8	Standard	12.500	2.95	1600.534	20826.820	0.384	11.6	-7.3	NO	N	O bb
8	8 170710M3_9	Standard	12.500	2.95	1723.074	21826.197	0.395	11.9	-4.7	NO	N	O bb

Page 9 of 19

Compound name: 13C2-PFHxA

Response Factor: 0.303795

RRF SD: 0.0121481, Relative SD: 3.99878

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1 Militarina, a metra esta di mandra	1 170710M3_2	Standard	5.000	3.20	6599.234	21818.400	1.512	5.0	-0.4	NO	NO	bb
2	2 170710M3_3	Standard	5.000	3.19	6260.955	21557.213	1.452	4.8	-4.4	NO	NO	bb
3 հետում գրականում և ։ Ռուսելույթյան հայար	3 170710M3_4	Standard	5.000	3.19	5844.579	19500.141	1.499	4.9	-1.3	NO	NO	bb
4	4 170710M3_5	Standard	5.000	3.18	6095.467	20840.465	1.462	4.8	-3.7	NO	NO	bb
5	5 170710M3_6	Standard	5.000	3.18	6584.623	22435.646	1.467	4.8	-3.4	NO	NO	bb
6	6 170710M3_7	Standard	5.000	3.19	6880.506	21282.260	1.616	5.3	6.4	NO	NO	bb
7	7 170710M3_8	Standard	5.000	3.19	6517.125	20826.820	1.565	5.2	3.0	NO	NO	bb
8	8 170710M3_9	Standard	5.000	3.18	6887.408	21826.197	1.578	5.2	3.9	NO	NO	bb

Work Order 1700804 Page 174 of 248

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960 Vista Analytical Laboratory

Page 10 of 19

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C4-PFHpA

Response Factor: 0.305965

RRF SD: 0.00856155, Relative SD: 2.79821

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	3.45	16912.918	21818.400	3.876	12.7	1.3	NO	9930 6 - 6 - 6 - 6 - 6 - 7 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	NO	bb
2	2 170710M3_3	Standard	12.500	3.45	15983.809	21557.213	3.707	12.1	-3.1	NO		NO	bb
3	3 170710M3_4	Standard	12.500	3.45	14729.492	19500.141	3.777	12.3	-1.2	NO		NO	bb
4	4 170710M3_5	Standard	12.500	3.45	16736.117	20840.465	4.015	13.1	5.0	- NO		NO	bb
5 ************************************	5 170710M3_6	Standard	12.500	3.44	16831.109	22435.646	3.751	12.3	-1.9	NO		NO	bb
6	6 170710M3_7	Standard	12.500	3.45	16406.695	21282.260	3.855	12.6	0.8	NO		NO	bb
	7 170710M3_8	Standard	12.500	3.44	15463.272	20826.820	3.712	12.1	-2.9	NO		NO	bb
8	8 170710M3_9	Standard	12.500	3.45	17039.475	21826.197	3.903	12.8	2.1	NO		NO	bb

Compound name: 1802-PFHxS

Response Factor: 0.437301

RRF SD: 0.0226112, Relative SD: 5.17063

Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD F	lag x=excluded
1.300	1 170710M3_2	Standard	12.500	3.52	1651.524	3795.795	5.439	12.4	-0.5	NO	NO	bb
2	2 170710M3_3	Standard	12.500	3.52	1720.000	3856.194	5.575	12.7	2.0	NO	NO	bb
3	3 170710M3_4	Standard	12.500	3.52	1350.057	3265.055	5.169	11.8	-5.4	NO	NO	,bb
4	4 170710M3_5	Standard	12.500	3.52	1600.253	3796.757	5.268	12.0	-3.6	NO	NO	bb
5	5 170710M3_6	Standard	12.500	3.52	1665.698	3472.170	5.997	13.7	9.7	NO	NO	bb
6	6 170710M3_7	Standard	12.500	3.51	1486.850	3371.803	5.512	12.6	8.0	NO	NO	bb
7	7 170710M3_8	Standard	12.500	3.51	1511.473	3354.416	5.632	12.9	3.0	NO	NO	bb
8	8 170710M3_9	Standard	12.500	3.52	1590.326	3869.111	5.138	11.7	-6.0	NO	NO	bb

Work Order 1700804 Page 175 of 248

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 1.29206

RRF SD: 0.0648147, Relative SD: 5.01639

Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	3.65	24338.092	17959.266	16.940	13.1	4.9	NO		NO	bb
2	2 170710M3_3	Standard	12.500	3.65	25154.738	19184.902	16.390	12.7	1.5	NO		NO	bb
3	3 170710M3_4	Standard	12.500	3.65	22319.385	18247.898	15.289	11.8	-5.3	NO		NO	bb
4	4 170710M3_5	Standard	12.500	3.65	25531.586	20935.916	15.2 4 4	11.8	-5.6	NO		NO	bb
5	5 170710M3_6	Standard	12.500	3.64	27012.830	21746.758	15.527	12.0	-3.9	NO		NO	bb
6	6 170710M3_7	Standard	12.500	3.65	27058.725	19624.896	17.235	13.3	6.7	NO		NO	bb
7	7 170710M3_8	Standard	12.500	3.65	26424.334	21065.352	15.680	12.1	-2.9	NO		NO	bb
8	8 170710M3_9	Standard	12.500	3.65	27780.598	20545.762	16.902	13.1	4.6	NO		NO	bb

Page 11 of 19

Compound name: 13C5-PFNA Response Factor: 0.980095

RRF SD: 0.0617584, Relative SD: 6.30126

Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	3.83	23133.879	24826.572	11.648	11.9	-4.9	NO		NO	bb
2	2 170710M3_3	Standard	12.500	3.82	25510.555	25407.900	12.551	12.8	2.4	NO		NO	bb
3	3 170710M3_4	Standard	12.500	3.82	25152.525	26987.840	11.650	11.9	-4.9	NO		NO	bb
4	4 170710M3_5	Standard	12.500	3.82	27896.482	30615.023	11.390	11.6	-7.0	NO		NO	bb
5	5 170710M3_6	Standard	12.500	3.82	27575.711	27704.439	12.442	12.7	1.6	NO		NO	bb
6	6 170710M3_7	Standard	12.500	3.82	30707.572	28246.664	13.589	13.9	10.9	NO		NO	bb
7	7 170710M3_8	Standard	12.500	3.82	26401.301	25411.732	12.987	13.3	6.0	NO		NO	bb
8	8 170710M3_9	Standard	12.500	3.82	28967.555	30807.039	11.754	12.0	-4.1	NO		NO	bb

Work Order 1700804 Page 176 of 248

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C8-PFOS

Response Factor: 1.09812

RRF SD: 0.106578, Relative SD: 9.7055

Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD (CoD Flag	x=excluded
The state of the s	1 170710M3_2	Standard	12.500	3.88	5370.698	4072.196	16.486	15.0	20.1	NO	ever and a programment of the second of the	NO	bb
2	2 170710M3_3	Standard	12.500	3.88	5419.104	5130.696	13.203	12.0	-3.8	NO		NO	bb
3	3 170710M3_4	Standard	12.500	3.87	5346.955	4837.479	13.816	12.6	0.7	NO		NO	bb
4	4 170710M3_5	Standard	12.500	3.88	5508.184	5669.458	12.144	11.1	-11.5	NO		NO	bb
5	5 170710M3_6	Standard	12.500	3.87	5282.377	5068.695	13.027	11.9	-5.1	NO		NO	bb
6	6 170710M3_7	Standard	12.500	3.88	5677.549	5023.010	14.129	12.9	2.9	NO		NO	bb
7 :	7 170710M3_8	Standard	12.500	3.87	5678.869	4963.667	14.301	13.0	4.2	NO		NO	bb
8 2 10 2 10 10	8 170710M3_9	Standard	12.500	3.88	5421.565	5333.926	12.705	11.6	-7.4	NO		NO	bd

Page 12 of 19

Compound name: 13C2-PFDA

Response Factor: 0.927939

RRF SD: 0.0650889, Relative SD: 7.01435

Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)

Curve type: RF

property property and	# Name	Type	Std. Conc	- RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	3.99	28930.936	30066.424	12.028	13.0	3.7	NO	NO	bb
2	2 170710M3_3	Standard	12.500	3.99	29747.686	34644.785	10.733	11.6	-7.5	NO	NO	bb
3 min property	3 170710M3_4	Standard	12.500	3.99	31897.771	35483.492	11.237	12.1	-3.1	NO	NO	bb
400000	4 170710M3_5	Standard	12.500	3.99	31493.791	33241.297	11.843	12.8	2.1	NO	NO	bb
5	5 170710M3_6	Standard	12.500	4.00	29596.766	34417.320	10.749	11.6	-7.3	NO	NO	bb
6	6 170710M3_7	Standard	12.500	3.99	33043.109	37874.355	10.906	11.8	-6.0	NO	NO	bb
7	7 170710M3_8	Standard	12.500	3.99	30631.795	30816.412	12.425	13.4	7.1	NO	NO	bb
8	8 170710M3_9	Standard	12.500	3.99	31463.066	30550.707	12.873	13.9	11.0	NO	NO	bb

Work Order 1700804 Page 177 of 248

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C2-PFUnA

Response Factor: 1.08252

RRF SD: 0.0785153, Relative SD: 7.25299

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
Approximation programmes and survey of the s	1 170710M3_2	Standard	12.500	4.15	28511.633	29392.709	12.125	11.2	-10.4	NO		NO	bb
2	2 170710M3_3	Standard	12.500	4.15	35214.363	33292.914	13.221	12.2	-2.3	NO		NO	db
3	3 170710M3_4	Standard	12.500	4.15	29618.668	25046.889	14.782	13.7	9.2	NO		NO	bb
4	4 170710M3_5	Standard	12.500	4.15	32452.291	31311.639	12.955	12.0	-4.3	NO		NO	bb
5	5 170710M3_6	Standard	12.500	4.15	32879.375	32131.605	12.791	11.8	-5.5	NO		NO	bb
6	6 170710M3_7	Standard	12.500	4.15	39593.965	33095.688	14.954	13.8	10.5	NO		NO	bb
7 The manufacture of the	7 170710M3_8	Standard	12.500	4.15	34542.293	32101.432	13.450	12.4	-0.6	NO		NO	bb
8 1036 1 1105 0.0	8 170710M3_9	Standard	12.500	4.15	33371.344	29853.807	13.973	12.9	3.3	NO		NO	bb

Page 13 of 19

Compound name: d3-N-MeFOSAA

Response Factor: 0.224351

RRF SD: 0.0203519, Relative SD: 9.07147

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

្តសម្រេច ស្រុក ប្រជាជាក្នុង ខេត្ត ស្រុក ស្រុក ស	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	4.02	7235.550	29392.709	3.077	13.7	9.7	NO	NO	bb
2	2 170710M3_3	Standard	12.500	4.02	7333.048	33292.914	2.753	12.3	-1.8	NO	NO	bb
3	3 170710M3_4	Standard	12.500	4.02	6481.465	25046.889	3.235	14.4	15.3	NO	NO	bb
4	4 170710M3_5	Standard	12.500	4.02	6639.098	31311.639	2.650	11.8	-5.5	NO	NO	bb
5	5 170710M3_6	Standard	12.500	4.02	6875.079	32131.605	2.675	11.9	-4.6	NO	NO	bb
6 (1) - 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (6 170710M3_7	Standard	12.500	4.02	7052.758	33095.688	2.664	11.9	-5.0	NO	NO	bb
7	7 170710M3_8	Standard	12.500	4.02	6322.343	32101.432	2.462	11.0	-12.2	NO	NO	bb
8 Million Company	8 170710M3_9	Standard	12.500	4.02	6972.632	29853.807	2.919	13.0	4.1	NO	NO	bb

Work Order 1700804 Page 178 of 248

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Printed: Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: d5-N-EtFOSAA

Response Factor: 0.22983

RRF SD: 0.0205291, Relative SD: 8.9323

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

լին, հենք արդյուն բոչմեն հետո Այրադարություն գույնում և հա	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 Marian Marian	1 170710M3_2	Standard	12.500	4.09	7680.203	29392.709	3.266	14.2	13.7	NO		NO	bb
2	2 170710M3_3	Standard	12.500	4.09	7756.188	33292.914	2.912	12.7	1.4	NO		NO	bb
3	3 170710M3_4	Standard	12.500	4.09	6483.096	25046.889	3.235	14.1	12.6	NO		NO	bb
4.906.63	4 170710M3_5	Standard	12.500	4.09	6911.000	31311.639	2.759	12.0	-4.0	NO		NO	bb
5	5 170710M3_6	Standard	12.500	4.09	7309.417	32131.605	2.844	12.4	-1.0	NO		NO	bb
6.000	6 170710M3_7	Standard	12.500	4.09	6897.159	33095.688	2.605	11.3	-9.3	NO		NO	bb
7	7 170710M3_8	Standard	12.500	4.09	7098.953	32101.432	2.764	12.0	-3.8	NO		NO	bb
8	8 170710M3_9	Standard	12.500	4.09	6203.575	29853.807	2.597	11.3	-9.6	NO		NO _	bb

Compound name: 13C2-PFDoA

Response Factor: 0.129878

RRF SD: 0.0137216, Relative SD: 10.565

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

KA NA	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
	1 170710M3_2	Standard	12.500	4.31	4029.594	29392.709	1.714	13.2	5.6	NO	NO	bb
2	2 170710M3_3	Standard	12.500	4.31	4364.951	33292.914	1.639	12.6	0.9	NO	NO	bb
3	3 170710M3_4	Standard	12.500	4.30	3671.525	25046.889	1.832	14.1	12.9	NO	NO	bb
4	4 170710M3_5	Standard	12.500	4.31	3407.532	31311.639	1.360	10.5	-16.2	NO	NO	bb
5	5 170710M3_6	Standard	12.500	4.30	4397.531	32131.605	1.711	13.2	5.4	NO	NO	bb
6	6 170710M3_7	Standard	12.500	4.31	4609.228	33095.688	1.741	13.4	7.2	NO	NO	bb
7	7 170710M3_8	Standard	12.500	4.30	3523.270	32101.432	1.372	10.6	-15.5	NO	NO	bb
8	8 170710M3_9	Standard	12.500	4.31	3866.813	29853.807	1.619	12.5	-0.3	NO	NO	bb

Work Order 1700804 Page 179 of 248

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C2-PFTeDA

Response Factor: 1.01816

RRF SD: 0.0659527, Relative SD: 6.47762

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	4.65	33198.340	29392.709	14.118	13.9	10.9	NO	NO	bb
2	2 170710M3_3	Standard	12.500	4.65	32091.508	33292.914	12.049	11.8	-5.3	NO	NO	bb
3	3 170710M3_4	Standard	12.500	4.64	26986.623	25046.889	13.468	13.2	5.8	NO	NO	bb
4	4 170710M3_5	Standard	12.500	4.65	32219.420	31311.639	12.862	12.6	1.1	NO	NO	bb
5	5 170710M3_6	Standard	12.500	4.65	31939.072	32131.605	12.425	12.2	-2.4	NO	NO	bb
6	6 170710M3_7	Standard	12.500	4.65	32979.863	33095.688	12.456	12.2	-2.1	NO	NO	bb
7	7 170710M3_8	Standard	12.500	4.64	29463.150	32101.432	11.473	11.3	-9.9	NO	NO	bb
8	8 170710M3_9	Standard	12.500	4.65	30963.135	29853.807	12.964	12.7	1.9	NO	NO	bb

Page 15 of 19

Compound name: 13C4-PFBA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	1.53	8045.280	8045.280	12.500	12.5	0.0	NO	NO	bb
2	2 170710M3_3	Standard	12.500	1.53	8103.498	8103.498	12.500	12.5	0.0	NO	NO	bb
3	3 170710M3_4	Standard	12.500	1.52	7483.426	7483.426	12.500	12.5	0.0	NO	NO	bb
4	4 170710M3_5	Standard	12.500	1.53	8401.936	8401.936	12.500	12.5	0.0	NO	NO	bb
5	5 170710M3_6	Standard	12.500	1.53	8412.924	8412.924	12.500	12.5	0.0	NO	NO	bb
6 in hiji ja 191	6 170710M3_7	Standard	12.500	1.52	8228.657	8228.657	12.500	12.5	0.0	NO	NO	bb
7 . promogađe	7 170710M3_8	Standard	12.500	1.53	8207.246	8207.246	12.500	12.5	0.0	NO	NO	bb
8	8 170710M3_9	Standard	12.500	1.53	8634.025	8634.025	12.500	12.5	0.0	NO	NO	bb

Work Order 1700804 Page 180 of 248

Page 16 of 19

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Printed:

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C5-PFHxA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	GoD CoD Fla	ig x=excluded
1	1 170710M3_2	Standard	5.000	3.19	21818.400	21818.400	5.000	5.0	0.0	NO	NO	bb
2	2 170710M3_3	Standard	5.000	3.19	21557.213	21557.213	5.000	5.0	0.0	NO	NO	bb
3	3 170710M3_4	Standard	5.000	3.18	19500.141	19500.141	5.000	5.0	0.0	NO	NO	bb
4 10 70 70 10 10 10 10 10 10 10 10 10 10 10 10 10	4 170710M3_5	Standard	5.000	3.19	20840.465	20840.465	5.000	5.0	0.0	NO	NO	bb
5	5 170710M3_6	Standard	5.000	3.18	22435.646	22435.646	5.000	5.0	0.0	NO	NO	bb
6	6 170710M3_7	Standard	5.000	3.19	21282.260	21282.260	5.000	5.0	0.0	NO	NO	bb
Z arionalni prilipitari	7 170710M3_8	Standard	5.000	3.19	20826.820	20826.820	5.000	5.0	0.0	NO	NO	bb
8	8 170710M3_9	Standard	5.000	3.18	21826.197	21826.197	5.000	5.0	0.0	NO	NO	bb

Compound name: 13C3-PFHxS

Response Factor: 1

RRF SD: 1.11022e-016, Relative SD: 1.11022e-014

Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	3.52	3795.795	3795.795	12.500	12.5	0.0	NO	# HINGS STREET, 1912.1.2.220 v.22.22001 X C. 30.000	NO	bb
2	2 170710M3_3	Standard	12.500	3.52	3856.194	3856.194	12.500	12.5	0.0	NO		NO	bb
3	3 170710M3_4	Standard	12.500	3.51	3265.055	3265.055	12.500	12.5	0.0	NO		NO	bb
4	4 170710M3_5	Standard	12.500	3.52	3796.757	3796.757	12.500	12.5	0.0	NO		NO	bb
5	5 170710M3_6	Standard	12.500	3.51	3472.170	3472.170	12.500	12.5	0.0	NO		NO	bb
6	6 170710M3_7	Standard	12.500	3.52	3371.803	3371.803	12.500	12.5	0.0	NO		NO	bb
7	7 170710M3_8	Standard	12.500	3.52	3354.416	3354.416	12.500	12.5	0.0	NO		NO	bb
8	8 170710M3_9	Standard	12.500	3.52	3869.111	3869.111	12.500	12.5	0.0	NO		NO	bb

Page 181 of 248 Work Order 1700804

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Printed: Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 4.19625e-017, Relative SD: 4.19625e-015

Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)

Curve type: RF

100 mm (100 mm) (100	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
	1 170710M3_2	Standard	12.500	3.65	17959.266	17959.266	12.500	12.5	0.0	NO	NO	bb
2	2 170710M3_3	Standard	12.500	3.65	19184.902	19184.902	12.500	12.5	0.0	NO	NO	bb
3 Maria 14 Hill Hill Hill Hill Hill Hill Hill Hil	3 170710M3_4	Standard	12.500	3.64	18247.898	18247.898	12.500	12.5	0.0	NO	NO	bb
4 to the control of t	4 170710M3_5	Standard	12.500	3.65	20935.916	20935.916	12.500	12.5	0.0	NO	NO	bb
5	5 170710M3_6	Standard	12.500	3.64	21746.758	21746.758	12.500	12.5	0.0	NO	NO	bb
6	6 170710M3_7	Standard	12.500	3.65	19624.896	19624.896	12.500	12.5	0.0	NO	NO	bb
7	7 170710M3_8	Standard	12.500	3.65	21065.352	21065.352	12.500	12.5	0.0	NO	NO	bb
8 de l'appliant réprés	8 170710M3_9	Standard	12.500	3.65	20545.762	20545.762	12.500	12.5	0.0	NO	NO	bb

Page 17 of 19

Compound name: 13C9-PFNA

Response Factor: 1

RRF SD: 1.25887e-016, Relative SD: 1.25887e-014

Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	3.82	24826.572	24826.572	12.500	12.5	0.0	NO	NO	bb
2	2 170710M3_3	Standard	12.500	3.82	25407.900	25407.900	12.500	12.5	0.0	NO	NO	bb
3	3 170710M3_4	Standard	12.500	3.82	26987.840	26987.840	12.500	12.5	0.0	NO	NO	bb
4	4 170710M3_5	Standard	12.500	3.82	30615.023	30615.023	12.500	12.5	0.0	NO	NO	bb
5 10 10 10 10 10 10 10 10 10 10 10 10 10	5 170710M3_6	Standard	12.500	3.82	27704.439	27704.439	12.500	12.5	0.0	NO	NO	bb
6	6 170710M3_7	Standard	12.500	3.82	28246.664	28246.664	12.500	12.5	0.0	NO	NO	bb
7	7 170710M3_8	Standard	12.500	3.82	25411.732	25411.732	12.500	12.5	0.0	NO	NO	bb
8	8 170710M3_9	Standard	12.500	3.82	30807.039	30807.039	12.500	12.5	0.0	NO	NO	bb

Work Order 1700804 Page 182 of 248

Page 18 of 19

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 8.3925e-017, Relative SD: 8.3925e-015

Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)

Curve type: RF

DECL Standard Commence	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 170710M3_2	Standard	12.500	3.88	4072.196	4072.196	12.500	12.5	0.0	NO		NO	bb
2	2 170710M3_3	Standard	12.500	3.88	5130.696	5130.696	12.500	12.5	0.0	NO		NO	bb
3	3 170710M3_4	Standard	12.500	3.87	4837.479	4837.479	12.500	12.5	0.0	NO		NO	bb
4	4 170710M3_5	Standard	12.500	3.87	5669.458	5669.458	12.500	12.5	0.0	NO		NO	bb
5	5 170710M3_6	Standard	12.500	3.88	5068.695	5068.695	12.500	12.5	0.0	NO		NO	bb
6	6 170710M3_7	Standard	12.500	3.87	5023.010	5023.010	12.500	12.5	0.0	NO		NO	bb
7	7 170710M3_8	Standard	12.500	3.87	4963.667	4963.667	12.500	12.5	0.0	NO		NO	bb
8 (8 170710M3_9	Standard	12.500	3.88	5333.926	5333.926	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C6-PFDA

Response Factor: 1

RRF SD: 5.93439e-017, Relative SD: 5.93439e-015

Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)

Curve type: RF

-	# Name	Туре	Std. Conc	- RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Fla	ig x=excluded
1	1 170710M3_2	Standard	12.500	3.99	30066.424	30066.424	12.500	12.5	0.0	NO	NO	bb
2	2 170710M3_3	Standard	12.500	3.99	34644.785	34644.785	12.500	12.5	0.0	NO	NO	bb
3	3 170710M3_4	Standard	12.500	3.99	35483.492	35483.492	12.500	12.5	0.0	NO	NO	bb
4	4 170710M3_5	Standard	12.500	3.99	33241.297	33241.297	12.500	12.5	0.0	NO	NO	bb
5	5 170710M3_6	Standard	12.500	3.99	34417.320	34417.320	12.500	12.5	0.0	NO	NO	bb
6	6 170710M3_7	Standard	12.500	4.00	37874.355	37874.355	12.500	12.5	0.0	NO	NO	bb
7 man Saintellini	7 170710M3_8	Standard	12.500	3.99	30816.412	30816.412	12.500	12.5	0.0	NO	NO	bb
8	8 170710M3_9	Standard	12.500	3.99	30550.707	30550.707	12.500	12.5	0.0	NO	NO	bb

Work Order 1700804 Page 183 of 248

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:57:46 Pacific Daylight Time Printed: Friday, July 14, 2017 08:58:48 Pacific Daylight Time

Compound name: 13C7-PFUnA

Response Factor: 1

RRF SD: 1.18688e-016, Relative SD: 1.18688e-014

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

on the state of th	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD CoD Flag	x=excluded
The state of the next to the state of the st	1 170710M3_2	Standard	12.500	4.15	29392.709	29392.709	12.500	12.5	0.0	NO	NO	bb
2	2 170710M3_3	Standard	12.500	4.15	33292.914	33292.914	12.500	12.5	0.0	NO	NO	bb
3.00.000	3 170710M3_4	Standard	12.500	4.15	25046.889	25046.889	12.500	12.5	0.0	NO	NO	bb
4	4 170710M3_5	Standard	12.500	4.15	31311.639	31311.639	12.500	12.5	0.0	NO	NO	bb
5	5 170710M3_6	Standard	12.500	4.15	32131.605	32131.605	12.500	12.5	0.0	NO	NO	bb
6	6 170710M3_7	Standard	12.500	4.15	33095.688	33095.688	12.500	12.5	0.0	NO	NO	bb
7. Aller of the State of the St	7 170710M3_8	Standard	12.500	4.15	32101.432	32101.432	12.500	12.5	0.0	NO	NO	bb
8	8 170710M3_9	Standard	12.500	4.15	29853.807	29853.807	12.500	12.5	0.0	NO	NO	bb

Page 19 of 19

Work Order 1700804 Page 184 of 248

Dataset:

Untitled

Last Altered: Printed: Friday, July 14, 2017 09:02:22 Pacific Daylight Time Friday, July 14, 2017 09:03:26 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Compound name: PFBS

	Name	ID:	Acq.Date	Acq.Time
1	170710M3_1	IPA	10-Jul-17	16:24:39
2	170710M3_2	ST170710M3-1 PFC CS-2 17G1003	10-Jul-17	16:35:25
3	170710M3_3	ST170710M3-2 PFC CS-1 17G1004	10-Jul-17	16:46:13
4	170710M3_4	ST170710M3-3 PFC CS0 17G1005	10-Jul-17	16:56:56
5	170710M3_5	ST170710M3-4 PFC CS1 17G1006	10-Jul-17	17:07:35
6	170710M3_6	ST170710M3-5 PFC CS2 17G1007	10-Jul-17	17:18:21
7	170710M3_7	ST170710M3-6 PFC CS3 17G1008	10-Jul-17	17:28:59
8	170710M3_8	ST170710M3-7 PFC CS4 17G1009	10-Jul-17	17:39:46
9	170710M3_9	ST170710M3-8 PFC CS5 17G1010	10-Jul-17	17:50:33
10	170710M3_10	IPA	10-Jul-17	18:01:19
11	170710M3_11	SS170710M3-1 PFC SSS 17G1011	10-Jul-17	18:11:57
12	170710M3_12	IPA	10-Jul-17	18:22:44
13	170710M3_13	B7G0013-BS1 OPR 0.125	10-Jul-17	18:33:22
14	170710M3_14	B7G0020-BS1 OPR 0.25	10-Jul-17	18:44:08
15	170710M3_15	B7G0024-BS1 OPR 0.25	10-Jul-17	18:54:55
16	170710M3_16	B7G0024-BS2 OPR 0.25	10-Jul-17	19:06:07
17	170710M3_17	IPA	10-Jul-17	19:17:52
18	170710M3_18	B7G0013-BLK1 Method Blank 0.125	10-Jul-17	19:29:17
19	170710M3_19	B7G0020-BLK1 Method Blank 0.25	10-Jul-17	19:40:01
20	170710M3_20	B7G0024-BLK1 Method Blank 0.25	10-Jul-17	19:50:39
21	170710M3_21	1700757-01RE1 DPH-MW6 0.11883	10-Jul-17	20:01:26
22	170710M3_22	1700757-02RE1 DPH-B5 0.12231	10-Jul-17	20:12:04
23	170710M3_23	1700757-03RE1 DPH-105 0.11689	10-Jul-17	20:22:43
24	170710M3_24	1700767-01RE1 1 Main 0.24476	10-Jul-17	20:33:21
25	170710M3_25	1700767-02RE1 2 Keyser 0.2358	10-Jul-17	20:43:59
26	170710M3_26	1700767-03RE1 3 College 0.24414	10-Jul-17	20:54:46
27	170710M3_27	1700767-04RE1 4 College 0.24491	10-Jul-17	21:05:24
28	170710M3_28	1700767-05RE1 5 Sunrise 0.24353	10-Jul-17	21:16:02
29	170710M3_29	1700803-02 EB01 0.11989	10-Jul-17	21:26:41
30	170710M3_30	1700804-01 IRPSite7-GW-07GW41-2017062	10-Jul-17	21:37:19
31	170710M3_31	1700804-02 IRPSite5-GW-05GW01-2017062	10-Jul-17	21:48:06

Work Order 1700804 Page 185 of 248

Dataset:

Untitled

Last Altered: Printed: Friday, July 14, 2017 09:02:22 Pacific Daylight Time Friday, July 14, 2017 09:03:26 Pacific Daylight Time

Compound name: PFBS

produced by 1255	Name	- ID	Acq.Date	Acq.Time
32	170710M3_32	IPA	10-Jul-17	21:58:44
33	170710M3 33	ST170710M3-9 PFC CS3 17G1008	10-Jul-17	22:09:22
34	170710M3_34	IPA	10-Jul-17	22:20:01
35	170710M3 35	1700804-03 IRPSite5-GW-FD01-20170629 0		22:31:27
36	170710M3 36	1700804-04 IRPSite33-GW-FRB01-20170629		22:42:07
37	170710M3 37	1700804-05 IRPSite33-GW-11MW204D-2017	10-Jul-17	22:52:45
38	170710M3_38	1700804-06 IRPSite33-GW-11MW204S-2017	10-Jul-17	23:03:24
39	170710M3_39	1700804-07 Bldg 110-GW-11MW205D-20170	10-Jul-17	23:14:02
40	170710M3_40	1700804-08 Bldg 110-GW-FRB01-20170629 0		23:24:41
41	170710M3 41	1700804-09 Bldg 110-GW-11MW205S-20170		23:35:19
42	170710M3 42	1700804-10 IRPSite7-GW-07GW102-201706	10-Jul-17	23:45:57
43	170710M3_43	1700804-11 IRPSite5-GW-04GW82-2017062	10-Jul-17	23:56:36
44	170710M3_44	1700751-01RE1 NH0100960_I 0.23355	11-Jul-17	00:07:41
45	170710M3_45	IPA	11-Jul-17	00:18:50
46	170710M3_46	ST170710M3-10 PFC CS3 17G1008	11-Jul-17	00:29:28
47	170710M3_47	IPA	11-Jul-17	00:40:16
48	170710M3_48	1700751-02RE1 NH0100960_E 0.24913	11-Jul-17	00:51:03
49	170710M3_49	1700751-03RE1 NH0100901_I 0.25207	11-Jul-17	01:01:51
50	170710M3_50	1700751-04RE1 NH0100901_E 0.24547	11-Jul-17	01:12:29
51	170710M3_51	1700751-05RE1 NH0100668_I 0.22393	11-Jul-17	01:23:08
52	170710M3_52	1700751-06RE1 NH0100668_E 0.24262	11-Jul-17	01:33:46
53	170710M3_53	1700751-07RE1 NH0101303_I 0.05246	11-Jul-17	01:44:33
54	170710M3_54	1700751-08RE1 NH0101303_E 0.24891	11-Jul-17	01:55:11
55	170710M3_55	1700751-09RE1 NH0101311_I 0.23975	11-Jul-17	02:06:00
56	170710M3_56	1700751-10RE1 NH0101311_E 0.25554	11-Jul-17	02:17:45
57	170710M3_57	1700752-01RE1 STP-MW-71-061917 0.11831	11-Jul-17	02:28:31
58	170710M3_58	IPA	11-Jul-17	02:39:10
59	170710M3_59	ST170710M3-11 PFC CS3 17G1008	11-Jul-17	02:49:48
60	170710M3_60	IPA	11-Jul-17	03:00:35
61	170710M3_61	1700752-02RE1 STP-MW-72-061917 0.02754	11-Jul-17	03:11:21
62	170710M3_62	1700752-03RE1 STP-MW-73-061917 0.11524	11-Jul-17	03:21:59
63	170710M3_63	1700752-04RE1 STP-MW-70-062017 0.11762	11-Jul-17	03:32:38
64	170710M3_64	1700752-05RE1 STP-MW-34-062017 0.11783	11-Jul-17	03:43:24
65	170710M3_65	1700752-06RE1 STP-EB3-061917 0.11814	11-Jul-17	03:54:11

Work Order 1700804 Page 186 of 248

Quantify Compound Summary Report Vista Analytical Laboratory MassLynx MassLynx V4.1 SCN945 SCN960 Page 3 of 129

Untitled Dataset:

Last Altered: Friday, July 14, 2017 09:02:22 Pacific Daylight Time Printed: Friday, July 14, 2017 09:03:26 Pacific Daylight Time

Compound name: PFBS

Name	ID.	Acq.Date	Acq.Time
66 170710M3_66	1700752-07RE1 STP-EB4-062017 0.1185	11-Jul-17	04:04:49
67 170710M3_67	IPA	11-Jul-17	04:15:27
68 170710M3_68	ST170710M3-12 PFC CS3 17G1008	11-Jul-17	04:26:06
69 170710M3_69	IPA	11-Jul-17	04:36:48

Work Order 1700804 Page 187 of 248

Page 1 of 14

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:45:55

Compound name: PFBS

Correlation coefficient: r = 0.999476, $r^2 = 0.998952$

Calibration curve: 2.28219 * x + -0.143808

Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: r = 0.999913, $r^2 = 0.999826$

Calibration curve: 1.63833 * x + 0.053424

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700804

Vista Analytical Laboratory Q1

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: r = 0.999627, $r^2 = 0.999254$

Calibration curve: 1 43595 * x + 0.0332012

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFHxS

Coefficient of Determination: R^2 = 0.997055

Calibration curve: $0.00158619 \times x^2 + 1.83332 \times x + -0.0924995$ Response type: Internal Std (Ref 20), Area \times (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700804

Page 191 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: r = 0.999752, $r^2 = 0.999504$

Calibration curve: 1.13698 * x + 0.117502

Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700804

Page 6 of 14

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: r = 0.999771, $r^2 = 0.999542$

Calibration curve: 1.36517 * x + 0.0586296

Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1700804

Page 193 of 248

Quantify Calibration Report Vista Analytical Laboratory Q1 MassLynx WassLynx V4.1 SCN945 SCN960

Page 7 of 14

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: R^2 = 0.999061

Calibration curve: 0.00185446 * x^2 + 1.10476 * x + 0.0290336 Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1700804

Page 194 of 248

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: R^2 = 0.998836

Calibration curve: 0.000679513 * x^2 + 1.50572 * x + -0.0681733 Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700804 Page 195 of 248

Page 9 of 14

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFUnA

Correlation coefficient: r = 0.998876, $r^2 = 0.997753$

Calibration curve: 1.03711 * x + 0.141151

Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report MassLynx W4.1 SCN945 SCN960

Page 10 of 14

Vista Analytical Laboratory Q1

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Printed:

Dataset:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.999758

Calibration curve: -0.000725393 * x^2 + 1.88459 * x + -0.112345 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1700804

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.998485

Calibration curve: $0.00300948 * x^2 + 1.32985 * x + 0.0134202$ Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1700804

Page 1 of 1

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:57:46 Pacific Daylight Time Friday, July 14, 2017 08:59:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.996663

Calibration curve: 0.00839285 * x^2 + 0.722755 * x + 0.0737712 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

MassLynx MassLynx V4.1 SCN945 SCN960

Page 13 of 14

Vista Analytical Laboratory Q1

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFTrDA

Coefficient of Determination: R^2 = 0.998284

Calibration curve: $-0.0031383 * x^2 + 13.4645 * x + 0.137265$ Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700804

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:53:58 Pacific Daylight Time

Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.999913

Calibration curve: -0.000928994 * x^2 + 1.26436 * x + 0.081381 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700804 Page 201 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:45:55

Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003

Work Order 1700804

Page 203 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003

Work Order 1700804 Page 204 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003

Work Order 1700804 Page 205 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003

Work Order 1700804 Page 206 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_3, Date: 10-Jul-2017, Time: 16:46:13, ID: ST170710M3-2 PFC CS-1 17G1004, Description: PFC CS-1 17G1004

Work Order 1700804

Page 207 of 248

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_3, Date: 10-Jul-2017, Time: 16:46:13, ID: ST170710M3-2 PFC CS-1 17G1004, Description: PFC CS-1 17G1004

Work Order 1700804 Page 208 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_3, Date: 10-Jul-2017, Time: 16:46:13, ID: ST170710M3-2 PFC CS-1 17G1004, Description: PFC CS-1 17G1004

Work Order 1700804

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_3, Date: 10-Jul-2017, Time: 16:46:13, ID: ST170710M3-2 PFC CS-1 17G1004, Description: PFC CS-1 17G1004

Work Order 1700804 Page 210 of 248

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_3, Date: 10-Jul-2017, Time: 16:46:13, ID: ST170710M3-2 PFC CS-1 17G1004, Description: PFC CS-1 17G1004

Work Order 1700804 Page 211 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 17G1005

Work Order 1700804

Page 212 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 17G1005

Work Order 1700804 Page 213 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 17G1005

Work Order 1700804

Page 214 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 17G1005

Work Order 1700804

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 17G1005

Work Order 1700804 Page 216 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 17G1006

Work Order 1700804 Page 217 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time

Printed: Friday, July 14.

Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 17G1006

Work Order 1700804 Page 218 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 17G1006

Work Order 1700804 Page 219 of 248

Page 19 of 40

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 17G1006

Work Order 1700804 Page 220 of 248

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 17G1006

Work Order 1700804 Page 221 of 248

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 17G1007

Work Order 1700804 Page 222 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 17G1007

Work Order 1700804 Page 223 of 248

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 17G1007

Work Order 1700804 Page 224 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 17G1007

Work Order 1700804 Page 225 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 17G1007

Work Order 1700804 Page 226 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17G1008

Work Order 1700804

Page 227 of 248

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17G1008

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Printed: Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17G1008

Work Order 1700804 Page 229 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17G1008

Work Order 1700804 Page 230 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17G1008

Work Order 1700804 Page 231 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID: ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009

Work Order 1700804

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID: ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009

Work Order 1700804

Page 233 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.gld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID: ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009

Work Order 1700804 Page 234 of 248

Dataset: U:\0

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID: ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009

Work Order 1700804 Page 235 of 248

Page 35 of 40

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID: ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009

Work Order 1700804 Page 236 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17G1010

Work Order 1700804 Page 237 of 248

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17G1010

Work Order 1700804

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed: Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17G1010

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17G1010

Work Order 1700804

Page 240 of 248

Page 40 of 40

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-CRV-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 08:46:00 Pacific Daylight Time Friday, July 14, 2017 08:49:41 Pacific Daylight Time

Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17G1010

Work Order 1700804 Page 241 of 248

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-11-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 09:05:59 Pacific Daylight Time Friday, July 14, 2017 09:06:30 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17G1011

ille gjelsej en den jane) - er en fille karrede en en gest en en kriste gjelse karrede en en gest	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	299 > 79.7	2.41e3	1.61e3	1.000	and the second of the second o	2.92	2.95	18.7	8.27	82.7 70-130
2	2 PFHxA	313.2 > 268.9	1.88e4	6.57e3	1.000		3.16	3.19	14.3	8.71	87.1
3 1	3 PFHpA	363 > 318.9	1.55e4	1.56e4	1.000		3.43	3.45	12.4	8.62	86.2
4	4 PFHxS	398.9 > 79.6	1.79e3	1.43e3	1.000		3.55	3.51	15.6	8.51	85.1
5	5 PFOA	413 > 368.7	2.07e4	2.44e4	1.000		3.63	3.65	10.6	9.21	92.1
6	6 PFNA	462.9 > 418.8	2.58e4	2.82e4	1.000		3.82	3.82	11.5	8.36	83.6
Zazakana Selakan Zazakana	7 PFOS	499 > 79.9	4.20e3	4.85e3	1.000		3.86	3.88	10.8	9.62	96.2
8	8 PFDA	513 > 468.8	3.07e4	2.87e4	1.000		4.00	3.99	13.4	8.90	89.0
9	9 PFUnA	562.9 > 518.9	2.51e4	3.22e4	1.000		4.16	4.15	9.72	9.23	92.3
10	10 N-MeFOSAA	570.1 > 419	8.56e3	6.40e3	1.000		4.00	4.02	16.7	8.96	89.6
111	11 N-EtFOSAA	584.2 > 419	6.67e3	6.80e3	1.000		4.08	4.09	12.3	9.02	90.2
12	12 PFDoA	612.9 > 318.8	2.76e3	3.66e3	1.000		4.32	4.30	9.43	11.4	114.3
13	13 PFTrDA	662.9 > 618.9	3.48e4	3.66e3	1.000		4.50	4.47	119	8.82	88.2
14	14 PFTeDA	712.9 > 668.8	2.52e4	2.75e4	1.000		4.66	4.64	11.4	9.04	90.4
15	15 13C3-PFBA	216.1 > 171.8	7.34e3	8.20e3	1.000	0.918	1.43	1.53	11.2	12.2	97.5 50-150
16	16 13C3-PFPeA	266 > 221.8	1.36e4	2.07e4	1.000	0.275	2.72	2.75	3.28	11.9	95.6
17	17 13C3-PFBS	302 > 98.8	1.61e3	2.07e4	1.000	0.033	2.92	2.96	0.389	11.7	93.8
18	18 13C2-PFHxA	315 > 269.8	6.57e3	2.07e4	1.000	0.304	3.16	3.19	1.59	5.22	104.4
19	19 13C4-PFHpA	367.2 > 321.8	1.56e4	2.07e4	1.000	0.306	3.43	3.45	3.77	12.3	98.6
20	20 18O2-PFHxS	403 > 102.6	1.43e3	3.46e3	1.000	0.437	3.55	3.52	5.18	11.9	94.8
21	21 13C2-PFOA	414.9 > 369.7	2.44e4	1.73e4	1.000	1.292	3.63	3.65	17.6	13.6	109.2
22	22 13C5-PFNA	468.2 > 422.9	2.82e4	2.84e4	1.000	0.980	3.82	3.82	12.4	12.6	101.1
23	23 13C8-PFOS	507 > 79.9	4.85e3	5.16e3	1.000	1.098	3.86	3.88	11.8	10.7	85.6
24	24 13C2-PFDA	515.1 > 469.9	2.87e4	3.44e4	1.000	0.928	4.00	3.99	10.4	11.2	90.0
25	25 13C2-PFUnA	565 > 519.8	3.22e4	3.24e4	1.000	1.083	4.16	4.15	12.4	11.5	91.9
26	26 d3-N-MeFOSAA	573.3 > 419	6.40e3	3.24e4	1.000	0.224	4.00	4.02	2.47	11.0	88.0
27	27 d5-N-EtFOSAA	589.3 > 419	6.80e3	3.24e4	1.000	0.230	4.08	4.08	2.62	11.4	91.3
28	28 13C2-PFDoA	615 > 569.7	3.66e3	3.24e4	1.000	0.130	4.32	4.30	1.41	10.9	87.0
29	29 13C2-PFTeDA	714.8 > 669.6	2.75e4	3.24e4	1.000	1.018	4.66	4.64	10.6	10.4	83.5
30	30 13C4-PFBA	217 > 171.8	8.20e3	8.20e3	1.000	1.000	1.43	1.53	12.5	12.5	100.0
31	ork, Order <u>51</u> 770804	318 > 272.9	2.07e4	2.07e4	1.000	1.000	3.18	3.18	5.00	5.00	188 242 of 248

MassLynx WassLynx V4.1 SCN945 SCN960

Page 2 of 2

Dataset:

U:\Q4.PRO\results\170710M3\170710M3-11-L14A.qld

Last Altered:

Friday, July 14, 2017 09:05:59 Pacific Daylight Time

Printed:

Friday, July 14, 2017 09:06:30 Pacific Daylight Time

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17G1011

# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
32 13C3-PFHxS	401.9 > 79.9	3.46e3	3.46e3	1.000	1.000	3.55	3.52	12.5	12.5	100.0
33 13C8-PFOA	421.3 > 376	1.73e4	1.73e4	1.000	1.000	3.63	3.65	12.5	12.5	100.0
34 13C9-PFNA	472.2 > 426.9	2.84e4	2.84e4	1.000	1.000	3.82	3.82	12.5	12.5	100.0
35 35 13C4-PFOS	503 > 79.9	5.16e3	5.16e3	1.000	1.000	3.86	3.87	12.5	12.5	100.0
36 13C6-PFDA	519.1 > 473.7	3.44e4	3.44e4	1.000	1.000	4.00	3.99	12.5	12.5	100.0
37 13C7-PFUnA	570.1 > 524.8	3.24e4	3.24e4	1.000	1.000	4.16	4.15	12.5	12.5	100.0

Work Order 1700804 Page 243 of 248

U:\Q4.PRO\results\170710M3\170710M3-11-L14A.qld

Last Altered:

Friday, July 14, 2017 09:05:59 Pacific Daylight Time

Printed:

Friday, July 14, 2017 09:06:30 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-13-17.mdb 14 Jul 2017 08:41:09

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17G1011

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170710M3\170710M3-11-L14A.qld

Last Altered: Friday, July 14, 2017 09:05:59 Pacific Daylight Time Printed: Friday, July 14, 2017 09:06:30 Pacific Daylight Time

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17G1011

U:\Q4.PRO\results\170710M3\170710M3-11-L14A.qld

Last Altered:

Friday, July 14, 2017 09:05:59 Pacific Daylight Time

Printed: Friday, July 14, 2017 09:06:30 Pacific Daylight Time

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17G1011

Work Order 1700804

U:\Q4.PRO\results\170710M3\170710M3-11-L14A.gld

Last Altered:

Friday, July 14, 2017 09:05:59 Pacific Daylight Time

Printed: Friday, July 1

Friday, July 14, 2017 09:06:30 Pacific Daylight Time

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17G1011

Work Order 1700804

U:\Q4.PRO\results\170710M3\170710M3-11-L14A.qld

Last Altered: Printed:

Friday, July 14, 2017 09:05:59 Pacific Daylight Time Friday, July 14, 2017 09:06:30 Pacific Daylight Time

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17G1011

Work Order 1700804 Page 248 of 248

```
"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t
est_type","cas_rn","chemical_name","result_value","result_error_delta","result_type_code","reportable_result","detect_
flag", "lab qualifiers", "organic yn", "method detection limit", "reporting detection limit", "quantatation limit", "result u
nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me
asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik
e recovery", "qc rpd", "qc spike lcl", "qc spike ucl", "qc rpd cl", "qc spike status", "qc dup spike status", "qc rpd sta
tus"
"IRPSite7-GW-07GW41-20170629", "537 MOD", "07/13/17", "17:33", "N", "NA", "000", "375-73-
., .,, .,, .,, .,,
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","307-24-
4", "PERFLUOROHEXANOIC ACID
1111 1111 1111 1111
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","355-46-
4"."PERFLUOROHEXANESULFONIC ACID
ii iiii iiii iiii iiii
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","335-67-
1", "PERFLUOROOCTANOIC ACID
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
(PFNA)","3.26","","TRG","Yes","Y","J","Y","0.840","5.17","8.29","NG_L","NG_L","","","","","","","","","","",""
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","2355-31-
nn nn nn nn nn
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","2991-50-
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","307-55-
1"."PERFLUORODODECANOIC ACID
ñ nn nn nn
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","72629-94-
```

```
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","376-06-
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","13C3-PFBS","13C3-
PFBS","144","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","144","144","","","","","","","50","150","",""
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","13C2-PFHxA","13C2-
PFHxA","109","","IS","Yes","Y","","","","","","PCT_REC","","","","100","109","109","109","","","","","","","50","150","",
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","13C4-PFHpA","13C4-
PFHpA","95.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","95.8","95.8","95.8","","","","","","150","
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","18O2-PFHxS","18O2-
PFHxS","115","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","115","115","","","","","","","50","150","",
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C
PFOA","84.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","84.7","84.7","84.7","","","","","","","150",""
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","13C8-PFOS","13C8-
PFOS","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","103","103","","","","","","","50","150","",""
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","13C5-PFNA","13C5-
11 1111 1111
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","13C2-PFDA","13C2-
PFDA","92.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","92.5","92.5","92.5","","","","","","50","150",""
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","68.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","68.4","68.4","","","","","","","50","15
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","13C2-PFUnA","13C2-
PFUnA","75.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","75.3","75.3","","","","","","","50","150","
.. ... ... ...
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","79.3","","IS","Yes","Y","","","","","","PCT_RÉC","","","","100","79.3","79.3","","","","","","","150","150
"IRPSite7-GW-07GW41-20170629","537 MOD","07/13/17","17:33","N","NA","000","13C2-PFDoA","13C2-
PFDoA","61.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","61.1","61.1","61.1","","","","","50","150","
"IRPSite7-GW-07GW41-20170629","537_MOD","07/13/17","17:33","N","NA","000","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA
PFTeDA","83.4","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","83.4","83.4","83.4","","","","","","150"
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","375-73-
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","307-24-
4", "PERFLUOROHEXANOIC ACID
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","375-85-
9","PERFLUOROHEPTANOIC ACID
```

```
, , , ,
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","355-46-
4", "PERFLUOROHEXANESULFONIC ACID
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","335-67-
1", "PERFLUOROOCTANOIC ACID
nin nin nin nin
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
ù,"",""
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","2355-31-
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","2991-50-
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","307-55-
1"."PERFLUORODODECANOIC ACID
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","72629-94-
"IRPSite5-GW-05GW01-20170629","537 MOD","07/13/17","17:44","N","NA","000","376-06-
, , , ,
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C3-PFBS","13C3-
PFBS","131","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","131","131","","","","","","","50","150","",""
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C2-PFHxA","13C2-
PFHxA","107","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","107","107","107","","","","","","","50","150","",
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C4-PFHpA","13C4-
PFHpA","91.5","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","91.5","91.5","91.5","","","","","","","50","150","
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","18O2-PFHxS","18O2-
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C2-PFOA","13C2-
```

```
PFOA","91.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","91.0","91.0","91.0","","","","","","150","150",""
, , ,
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C8-PFOS","13C8-
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C5-PFNA","13C5-
PFNA","93.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","93.8","93.8","93.8","","","","","","150","150",""
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C
PFDA","82.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","82.2","82.2","82.2","","","","","","50","150",""
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","d3-MeFOSAA","d3-
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFU
PFUnA","79.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","79.1","79.1","","","","","","","50","150","
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","87.3","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","87.3","87.3","87.3","","","","","150","150
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C2-PFDoA","13C2-
PFDoA","37.4","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","100","37.4","37.4","37.4","","","","","50","150"
"IRPSite5-GW-05GW01-20170629","537_MOD","07/13/17","17:44","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","118","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","118","118","118","","","","","","50","150","
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","375-73-
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","307-24-
4","PERFLUOROHEXANOIC ACID
(PFHXA)","6.86","","TRG","Yes","Y","J","Y","2.42","5.53","8.88","NG_L","NG_L","","","","","","","","","","",""
"IRPSite5-GW-FD01-20170629","537 MOD","07/13/17","17:54","N","NA","000","375-85-
9","PERFLUOROHEPTANOIC ACID
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","355-46-
4"."PERFLUOROHEXANESULFONIC ACID
, , ,
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","335-67-
1","PERFLUOROOCTANOIC ACID
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","335-76-
```

```
2","PERFLUORODECANOIC ACID
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","2355-31-
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","2991-50-
"", ", ", ",
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","307-55-
1","PERFLUORODODECANOIC ACID
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","72629-94-
"IRPSite5-GW-FD01-20170629","537 MOD","07/13/17","17:54","N","NA","000","376-06-
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","13C3-PFBS","13C3-
PFBS","117","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","117","117","","","","","","","","50","150","",""
"IRPSite5-GW-FD01-20170629","537\_MOD","07/13/17","17:54","N","NA","000","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFH
.... .... ....
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","13C4-PFHpA","13C4-
PFHpA","92.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","92.8","92.8","92.8","","","","","","50","150","
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","18O2-PFHxS","18O2-
"","",""
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-
PFOA","98.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","98.0","98.0","98.0","","","","","","150",""
, , , ,
"IRPSite5-GW-FD01-20170629","537 MOD","07/13/17","17:54","N","NA","000","13C8-PFOS","13C8-
PFOS","99.9","","IS","Yes","Y","","","","","","","PCT_REC","","","","100","99.9","99.9","","","","","","","","150",""
, ,
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","13C5-PFNA","13C5-
PFNA","97.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","97.7","97.7","97.7","","","","","","150",""
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","13C2-PFDA","13C2-
PFDA","87.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","87.5","87.5","87.5","","","","","","150",""
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","70.8","","IS","Yes","Y","","Y","","","PCT_REC","","","","","100","70.8","70.8","","","","","","50","15
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA
PFUnA","82.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.8","82.8","","","","","","","50","150","
"IRPSite5-GW-FD01-20170629","537 MOD","07/13/17","17:54","N","NA","000","d5-EtFOSAA","d5-
```

```
EtFOSAA","93.6","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","93.6","93.6","","","","","","","50","150
" "" "" "" ""
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","13C2-PFDoA","13C2-
PFDoA","62.3","","IS","Yes","Y","","","","","","","PCT_REC","","","","100","62.3","62.3","62.3","","","","","","50","150","
"IRPSite5-GW-FD01-20170629","537_MOD","07/13/17","17:54","N","NA","000","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTeDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA","13C2-PFTEDA",
PFTeDA","92.3","","IS","Yes","Y","","Y","","","PCT_REC","","","","","100","92.3","92.3","","","","","","50","150"
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","1.82","5.08","8.15","NG_L","NG_L","","","","","","","","","","","","",
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","307-24-
4"."PERFLUOROHEXANOIC ACID
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","375-85-
9"."PERFLUOROHEPTANOIC ACID
" "" "" ""
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","335-67-
1", "PERFLUOROOCTANOIC ACID
ù","",""
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","375-95-
1","PERFLUORONONANOIC ACID
1111 1111 1111
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
11 1111 1111
"IRPSite33-GW-FRB01-20170629","537 MOD","07/13/17","18:05","N","NA","000","2355-31-
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
"IRPSite33-GW-FRB01-20170629","537 MOD","07/13/17","18:05","N","NA","000","2991-50-
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","307-55-
1","PERFLUORODODECANOIC ACID
11 1111 1111 1111
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","72629-94-
```

```
.. ... ... ... ...
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","376-06-
, , , ,
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","13C3-PFBS","13C3-
PFBS","125","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","125","125","","","","","","","50","150","",""
"IRPSite33-GW-FRB01-20170629","537 MOD","07/13/17","18:05","N","NA","000","13C2-PFHxA","13C2-
PFHxA","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","103","103","103","","","","","50","150","",
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","13C4-PFHpA","13C4-
PFHpA","96.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","96.5","96.5","96.5","","","","","","50","150","
", ", ", "
"IRPSite33-GW-FRB01-20170629","537 MOD","07/13/17","18:05","N","NA","000","18O2-PFHxS","18O2-
PFHxS","108","","IS","Yes","Y","","","","","","PCT_REC","","","","100","108","108","108","","","","","","50","150","",
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C
PFOA","98.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","98.5","98.5","98.5","","","","","","50","150",""
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","13C8-PFOS","13C8-
PFOS","90.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","90.3","90.3","","","","","","","50","150","",
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","13C5-PFNA","13C5-
PFNA","104","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","104","104","","","","","","","50","150","","
"IRPSite33-GW-FRB01-20170629","537 MOD","07/13/17","18:05","N","NA","000","13C2-PFDA","13C2-
PFDA","91.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","91.5","91.5","91.5","","","","","","150",""
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","71.0","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","71.0","71.0","","","","","","50","15
"IRPSite33-GW-FRB01-20170629","537 MOD","07/13/17","18:05","N","NA","000","13C2-PFUnA","13C2-
PFUnA","76.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","76.2","76.2","76.2","","","","","","50","150","
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","78.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","78.1","78.1","","","","","","150","150
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFD
PFDoA","44.6","","IS","Yes","Y","H","Y","","","PCT_RÉC","","","","100","44.6","44.6","44.6","","","","50","150"
 "" "*" "" ""
"IRPSite33-GW-FRB01-20170629","537_MOD","07/13/17","18:05","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","74.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","74.4","74.4","74.4","","","","","50","150"
"IRPSite33-GW-11MW204D-20170629","537 MOD","07/13/17","18:15","N","NA","000","375-73-
nni nn nn nni
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","307-24-
4"."PERFLUOROHEXANOIC ACID
nn nn nn nn
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
```

11 1111 1111 1111 1111

```
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","355-46-
4"."PERFLUOROHEXANESULFONIC ACID
iin iiii iiii iiii
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","335-67-
1"."PERFLUOROOCTANOIC ACID
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite33-GW-11MW204D-20170629","537 MOD","07/13/17","18:15","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
nn nn nn nn
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
nn nn nn nn
"IRPSite33-GW-11MW204D-20170629","537 MOD","07/13/17","18:15","N","NA","000","2355-31-
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
1111 1111 1111
"IRPSite33-GW-11MW204D-20170629","537 MOD","07/13/17","18:15","N","NA","000","2991-50-
, , , ,
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","307-55-
1", "PERFLUORODODECANOIC ACID
"IRPSite33-GW-11MW204D-20170629","537 MOD","07/13/17","18:15","N","NA","000","72629-94-
", ", ", ",
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","376-06-
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","13C3-PFBS","13C3-
PFBS","117","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","117","117","","","","","","","","50","150","",""
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","13C2-PFHxA","13C2-
PFHxA","101","","IS","Yes","Y","","","","","","PCT_REC","","","","100","101","101","","","","","","","50","150","",
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHpA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-PFHPA","13C4-
PFHpA","92.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","92.5","92.5","","","","","","","50","150","
"IRPSite33-GW-11MW204D-20170629","537 MOD","07/13/17","18:15","N","NA","000","18O2-PFHxS","18O2-
"IRPSite33-GW-11MW204D-20170629","537 MOD","07/13/17","18:15","N","NA","000","13C2-PFOA","13C2-
PFOA", "85.9", "", "IS", "Yes", "Y", "", "", "", "", "PCT REC", "", "", "", "100", "85.9", "85.9", "85.9", "", "", "", "", "", "150", ""
```

```
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","13C8-PFOS","13C8-
, ,
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","13C5-PFNA","13C5-
PFNA","88.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","88.7","88.7","88.7","","","","","","50","150",""
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","
PFDA","85.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","85.5","85.5","85.5","","","","","","50","150",""
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","73.4","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","73.4","73.4","","","","","","50","15
0","","","",""
"IRPSite33-GW-11MW204D-20170629","537 MOD","07/13/17","18:15","N","NA","000","13C2-PFUnA","13C2-
PFUnA","78.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","78.7","78.7","","","","","","","50","150","
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","75.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","75.4","75.4","75.4","","","","","150
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-
PFDoA","37.4","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","100","37.4","37.4","37.4","","","","","50","150"
"IRPSite33-GW-11MW204D-20170629","537_MOD","07/13/17","18:15","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","63.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","63.7","63.7","63.7","","","","","50","150"
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","375-73-
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","307-24-
4", "PERFLUOROHEXANOIC ACID
, , , ,
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","335-67-
1","PERFLUOROOCTANOIC ACID
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
, , , ,
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","335-76-
2","PERFLUORODECANOIC ACID
```

```
.. .... ....
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","2355-31-
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
"IRPSite33-GW-11MW204S-20170629","537 MOD","07/13/17","18:26","N","NA","000","2991-50-
, , , ,
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","307-55-
1", "PERFLUORODODECANOIC ACID
11 1111 1111 1111
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","72629-94-
, , , ,
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","376-06-
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","13C3-PFBS","13C3-
PFBS","136","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","136","136","","","","","","","","50","150","",""
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-
PFHxA","110","","IS","Yes","Y","","","","","","PCT_REC","","","","100","110","110","","","","","","","50","150","",
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","13C4-PFHpA","13C4-
PFHpA","102","","IS","Yes","Y","","","","","","PCT_REC","","","","100","102","102","102","","","","","","50","150",""
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","18O2-PFHxS","18O2-
PFHxS","99.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","99.4","99.4","99.4","","","","","","50","150","
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","13C2-PFOA","13C2-
PFOA","87.1","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","87.1","87.1","","","","","","","","150",""
, , , ,
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","13C8-PFOS","13C8-
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","13C5-PFNA","13C5-
PFNA","99.5","","IS","Yes","Y","","","","","","","PCT_REC","","","","","100","99.5","99.5","99.5","","","","","","150",""
 "IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","
PFDA","93.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","93.6","93.6","93.6","","","","","","50","150",""
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","81.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","81.9","81.9","","","","","","50","15
0","","","",
"IRPSite33-GW-11MW204S-20170629","537 MOD","07/13/17","18:26","N","NA","000","13C2-PFUnA","13C2-
PFUnA","90.1","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","90.1","90.1","","","","","","","50","150","
.. ... ... ...
"IRPSite33-GW-11MW204S-20170629","537 MOD","07/13/17","18:26","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","80.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","80.7","80.7","","","","","","","150
```

```
.. ... ... ... ...
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-
PFDoA","54.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","54.0","54.0","54.0","","","","","","50","150","
", ", ", "
"IRPSite33-GW-11MW204S-20170629","537_MOD","07/13/17","18:26","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","90.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","90.7","90.7","","","","","","","50","150"
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","375-73-
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","307-24-
4", "PERFLUOROHEXANOIC ACID
, , , ,
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","375-85-
9","PERFLUOROHEPTANOIC ACID
11 1111 1111 1111 1111
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","335-67-
1"."PERFLUOROOCTANOIC ACID
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","375-95-
1","PERFLUORONONANOIC ACID
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","335-76-
2","PERFLUORODECANOIC ACID
11 1111 1111
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","2355-31-
, , , , ,
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
1111 1111 1111
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","2991-50-
"" "" "" "" ""
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","307-55-
1", "PERFLUORODODECANOIC ACID
11 1111 1111 1111
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","72629-94-
```

```
, , , ,
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","376-06-
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","13C3-PFBS","13C3-
PFBS","134","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","134","134","","","","","","","50","150","",""
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","13C2-PFHxA","13C2-
PFHxA","113","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","113","113","","","","","","","","50","150","",
1111 1111 1111
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","13C4-PFHpA","13C4-
PFHpA","92.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","92.6","92.6","92.6","","","","","","50","150","
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","18O2-PFHxS","18O2-
"", "", """
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","13C2-PFOA","13C2-
PFOA","95.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","95.4","95.4","95.4","","","","","","150",""
, , ,
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","13C8-PFOS","13C8-
PFOS","99.1","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","99.1","99.1","","","","","","","","150",""
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","13C5-PFNA","13C5-
PFNA","98.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","98.8","98.8","98.8","","","","","","150",""
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","13C2-PFDA","13C2-
PFDĀ","76.4","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","76.4","76.4","76.4","","","","","","","150",""
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","93.4","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","93.4","93.4","","","","","","50","15
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","13C2-PFUnA","13C2-
PFUnA","83.4","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","83.4","83.4","83.4","","","","","","50","150","
11 1111 1111 1111
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","86.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","86.4","86.4","86.4","","","","","150","150
", ", ", ",
"Bldg 110-GW-11MW205D-20170629","537_MOD","07/13/17","18:37","N","NA","000","13C2-PFDoA","13C2-
PFDoA","41.4","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","100","41.4","41.4","41.4","","","","50","150"
"Bldg 110-GW-11MW205D-20170629","537 MOD","07/13/17","18:37","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","58.9","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","58.9","58.9","","","","","","50","150"
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","375-73-
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","307-24-
4"."PERFLUOROHEXANOIC ACID
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
ń nn nn nń
```

```
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","355-46-
4", "PERFLUOROHEXANESULFONIC ACID
11 1111 1111 1111
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","335-67-
1","PERFLUOROOCTANOIC ACID
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","375-95-
1"."PERFLUORONONANOIC ACID
1111 1111 1111<sup>°</sup>
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","335-76-
2","PERFLUORODECANOIC ACID
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","2355-31-
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","2991-50-
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","307-55-
1","PERFLUORODODECANOIC ACID
"Bldg 110-GW-FRB01-20170629","537 MOD","07/13/17","18:47","N","NA","000","72629-94-
"Bldg 110-GW-FRB01-20170629","537 MOD","07/13/17","18:47","N","NA","000","376-06-
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C3-PFBS","13C3-
PFBS","136","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","136","136","","","","","","","","50","150","",""
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C2-PFHxA","13C2-
PFHxA","109","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","109","109","109","","","","","","","50","150","",
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C4-PFHpA","13C4-
PFHpA","98.1","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","98.1","98.1","98.1","","","","","","150","150","
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","18O2-PFHxS","18O2-
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2
PFOA","89.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","89.1","89.1","89.1","","","","","","","50","150",""
```

```
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C8-PFOS","13C8-
PFOŠ","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","103","103","103","","","","","","","50","150","",""
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C5-PFNA","13C5-
PFNA","102","","IS","Yes","Y","","Y","","","","","PCT_REC","","","","100","102","102","","","","","","","50","150","","
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C2-PFDA","13C2-
PFDA","77.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","77.2","77.2","","","","","","","50","150",""
 "Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","107","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","107","107","107","","","","","","150
, , , ,
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUN
PFUnA","85.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","85.9","85.9","85.9","","","","","","50","150","
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","107","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","107","107","","","","","","","50","150",
... ... ... ...
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDA
PFDoA","28.2","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","100","28.2","28.2","","","","","","50","150"
 "" "*" "" ""
"Bldg 110-GW-FRB01-20170629","537_MOD","07/13/17","18:47","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","6.10","","IS","Yes","Y","H","Y","","","PCT_REC","","","","100","6.10","6.10","6.10","","","","","50","15
0","","*","",""
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","375-73-
" "" "" "" ""
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","307-24-
4","PERFLUOROHEXANOIC ACID
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","375-85-
9","PERFLUOROHEPTANOIC ACID
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","355-46-
4", "PERFLUOROHEXANESULFONIC ACID
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","335-67-
1", "PERFLUOROOCTANOIC ACID
nin nin nin nin
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","375-95-
1","PERFLUORONONANOIC ACID
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
```

```
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","2355-31-
, , , , ,
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","2991-50-
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","307-55-
1"."PERFLUORODODECANOIC ACID
11 1111 1111 1111<sup>°</sup>
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","72629-94-
"Bldg 110-GW-11MW205S-20170629","537 MOD","07/13/17","18:58","N","NA","000","376-06-
, , , ,
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","13C3-PFBS","13C3-
PFBS","129","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","129","129","","","","","","","50","150","",""
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","13C2-PFHxA","13C2-
PFHxA","98.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","98.6","98.6","98.6","","","","","","50","150","
.. ... ... ...
"Bldg 110-GW-11MW205S-20170629","537 MOD","07/13/17","18:58","N","NA","000","13C4-PFHpA","13C4-
PFHpA","89.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","89.9","89.9","89.9","","","","","","50","150","
", ", ",
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","18O2-PFHxS","18O2-
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","1
PFOA","96.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","96.2","96.2","96.2","","","","","","150",""
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","13C8-PFOS","13C8-
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","13C5-PFNA","13C5-
PFNA","89.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","89.5","89.5","89.5","","","","","","150",""
"Bldg 110-GW-11MW205S-20170629","537 MOD","07/13/17","18:58","N","NA","000","13C2-PFDA","13C2-
"Bldg 110-GW-11MW205S-20170629","537 MOD","07/13/17","18:58","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","79.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","79.6","79.6","79.6","","","","","50","15
0","","","",
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","13C2-PFUnA","13C2-
PFUnA","88.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","88.6","88.6","88.6","","","","","","50","150","
"Bldg 110-GW-11MW205S-20170629","537 MOD","07/13/17","18:58","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","89.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","89.9","89.9","","","","","","","150
.. .... .... .... ....
```

```
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","13C2-PFDoA","13C2-
PFDoA","86.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","86.9","86.9","86.9","","","","","","50","150","
"Bldg 110-GW-11MW205S-20170629","537_MOD","07/13/17","18:58","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","121","","IS","Yes","Y","","","","","","PCT_REC","","","","100","121","121","","","","","","","50","150","
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","375-73-
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","307-24-
4"."PERFLUOROHEXANOIC ACID
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","375-85-
9"."PERFLUOROHEPTANOIC ACID
ñ uu uu uú úu
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","355-46-
4", "PERFLUOROHEXANESULFONIC ACID
"" "" "" ""
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","335-67-
1", "PERFLUOROOCTANOIC ACID
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","375-95-
1"."PERFLUORONONANOIC ACID
(PFNA)","3.84","","TRG","Yes","Y","J","Y","0.838","5.17","8.28","NG_L","NG_L","","","","","","","","","","",""
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","335-76-
2"."PERFLUORODECANOIC ACID
ñ nn nn
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","2355-31-
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","2058-94-
8"."PERFLUOROUNDECANOIC ACID
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","1.42","5.17","8.28","NG_L","NG_L","","","","","","","","","","",""
, , , ,
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","307-55-
1"."PERFLUORODODECANOIC ACID
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","72629-94-
",",",",
```

```
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","376-06-
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","13C3-PFBS","13C3-
PFBS","123","","IS","Yes","Y","","","","","","PCT_REC","","","","100","123","123","","","","","","","50","150","",""
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","13C2-PFHxA","13C2-
PFHxA","99.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","99.0","99.0","99.0","","","","","50","150","
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","13C4-PFHpA","13C4-
PFHpA","88.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","88.6","88.6","88.6","","","","","","50","150","
",",","
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","18O2-PFHxS","18O2-
PFHxS","105","","IS","Yes","Y","","","","","","PCT_REC","","","","100","105","105","","","","","","","50","150","",
.... .... ....
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13
PFOA","91.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","91.7","91.7","91.7","","","","","","50","150",""
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","13C8-PFOS","13C8-
PFOS","102","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","102","102","102","","","","","","","50","150","",""
, ,
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","13C5-PFNA","13C5-
PFNA","93.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","93.3","93.3","93.3","","","","","","50","150",""
 "IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13
PFDA","95.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","95.5","95.5","95.5","","","","","","50","150",""
, , ,
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","69.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","69.4","69.4","69.4","","","","","","50","15
0","","","",""
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PF
PFUnA","86.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","86.2","86.2","86.2","","","","","","50","150","
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","85.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","85.8","85.8","85.8","","","","","","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150
"IRPSite7-GW-07GW102-20170629","537 MOD","07/13/17","19:09","N","NA","000","13C2-PFDoA","13C2-
PFDoA","52.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","52.3","52.3","52.3","","","","","50","150","
"IRPSite7-GW-07GW102-20170629","537_MOD","07/13/17","19:09","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","98.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","98.7","98.7","","","","","","","50","150"
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","375-73-
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","307-24-
4","PERFLUOROHEXANOIC ACID
, , ,
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","375-85-
9","PERFLUOROHEPTANOIC ACID
... ... ... ... ...
"IRPSite5-GW-04GW82-20170629","537 MOD","07/13/17","19:51","N","NA","000","355-46-
```

```
4", "PERFLUOROHEXANESULFONIC ACID
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","335-67-
1", "PERFLUOROOCTANOIC ACID
nn nn nn nn
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","375-95-
1","PERFLUORONONANOIC ACID
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
ii 1111 1111
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","2355-31-
, , , , ,
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","2991-50-
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","307-55-
1"."PERFLUORODODECANOIC ACID
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","72629-94-
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","376-06-
, , , ,
"IRPSite5-GW-04GW82-20170629","537 MOD","07/13/17","19:51","N","NA","000","13C3-PFBS","13C3-
PFBS","123","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","123","123","","","","","","","50","150","",""
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","13C2-PFHxA","13C2-
PFHxA","102","","IS","Yes","Y","","","","","","PCT_REC","","","","100","102","102","","","","","","","50","150",""
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","13C4-PFHpA","13C4-
PFHpA","90.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","90.2","90.2","90.2","","","","","","50","150","
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFHXS","18O2-PFTTS PFTTS P
PFHxS","102","","IS","Yes","Y","","","","","","PCT_REC","","","","100","102","102","","","","","","","50","150","",
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","13C2-PFOA","13C2-
PFOA","93.9","","IS","Yes","Y","","","","","","","PCT_REC","","","","","100","93.9","93.9","93.9","","","","","","50","150",""
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","13C8-PFOS","13C8-
```

```
PFOS","102","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","102","102","","","","","","","","50","150","",""
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","13C5-PFNA","13C5-
PFNA","97.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","97.0","97.0","97.0","","","","","","50","150",""
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C
PFDA","81.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","81.0","81.0","81.0","","","","","","50","150",""
"IRPSite5-GW-04GW82-20170629","537\_MOD","07/13/17","19:51","N","NA","000","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA","d3-MeFOSAA ","d3-MeFOSAA ","d3-MeFOSAA ","d3-MeFOSAA ","d3-MeFOSAA ","d3-MeFOSAA ","d3-MeFOSAA ","d3-MeFOSAA ","d3-MeFOSAA 
MeFOSAA","129","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","129","129","129","","","","","50","150
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","13C2-PFUnA","13C2-
PFUnA","85.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","85.0","85.0","85.0","","","","","","50","150","
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","91.8","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","91.8","91.8","","","","","","","50","150
"IRPSite5-GW-04GW82-20170629","537_MOD","07/13/17","19:51","N","NA","000","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFD
PFDoA","37.0","","IS","Yes","Y","H","Y","","","",""PCT_REC","","","","","100","37.0","37.0","","","","","","50","150"
"IRPSite5-GW-04GW82-20170629","537 MOD","07/13/17","19:51","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","82.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","82.9","82.9","82.9","","","","","","150"
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","375-73-
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
1111 1111 1111
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
" "" ""
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","2355-31-
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
```

```
, , ,
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","2991-50-
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
ii iiii iiii iiii
"B7G0049-BLK1","537 MOD","07/13/17","17:10","N","NA","000","72629-94-
, , , ,
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","376-06-
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","13C3-PFBS","13C3-
PFBS","122","","IŚ","Yes","Y","","Y","","","","PCT_RÉC","","","","100","122","122","","","","","","","","50","150","",""
"B7G0049-BLK1","537 MOD","07/13/17","17:10","N","NA","000","13C2-PFHxA","13C2-
PFHxA","107","","IS","Yes","Y","","","","","","PCT_REC","","","","100","107","107","","","","","","","","50","150","",
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","13C4-PFHpA","13C4-
PFHpA","93.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","93.2","93.2","93.2","","","","","","50","150","
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","18O2-PFHxS","18O2-
PFHxS","118","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","118","118","","","","","","","50","150","",
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","13C2-PFOA","13C2-
PFOA","91.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","91.4","91.4","91.4","","","","","","50","150",""
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","13C8-PFOS","13C8-
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","13C5-PFNA","13C5-
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","13C2-PFDA","13C2-
PFDA","96.5","","İS","Yes","Y","","","","","","PCT_REC","","","","100","96.5","96.5","96.5","","","","","","","150",""
, , ,
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","96.9","","ĪS","Yes","Y","","Y","","","PCT_REC","","","","","100","96.9","96.9","96.9","","","","","50","15
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","13C2-PFUnA","13C2-
PFUnA","80.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","80.2","80.2","","","","","","","50","150","
.. ... ... ...
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","98.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","98.5","98.5","","","","","","","150
", ", ", ",
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","13C2-PFDoA","13C2-
PFDoA","56.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","56.7","56.7","56.7","","","","","","50","150","
"B7G0049-BLK1","537_MOD","07/13/17","17:10","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","148","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","148","148","","","","","","","50","150","
","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","375-73-
5","PFBS","65.5","","TRG","Yes","Y","","Y","1.79","5.00","8.00","NG_L","NG_L","","","","80.0","65.5","81.9","",""
```

```
"","","","70","130","","","",""
"B7G0049-BS1","537\_MOD","07/13/17","16:38","N","NA","000","307-24-4","PERFLUOROHEXANOIC\ ACID\ "","","","70","130","","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","67.1","","TRG","Yes","Y","","Y","0.591","5.00","8.00","NG_L","NG_L","","","","80.0","67.1","83.8","","
","","","70","130","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC
(PFHXS)","76.3","","TRG","Yes","Y","","Y","0.947","5.00","8.00","NG_L","NG_L","","","","80.0","76.3","95.3","","
","","","","70","130","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","67.8","","TRG","Yes","Y","","Y","0.651","5.00","8.00","NG_L","NG_L","","","","80.0","67.8","84.8","","","",
"","","","70","130","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"70","130","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"","","","70","130","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","64.5","","TRG","Yes","Y","","Y","1.49","5.00","8.00","NG_L","NG_L","","","","80.0","64.5","80.7","","","",""
","","","70","130","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","2355-31-
9","MeFOSAA","69.9<sup>"</sup>,"","TRG","Yes","Y","","Y","1.65","5.00","8.00","NG_L","NG_L","","","","80.0","69.9","87.3"
,"","","","","","70","130","","","","","
"B7G0049-BS1","537 MOD","07/13/17","16:38","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","73.5","","TRG","Yes","Y","","Y","1.05","5.00","8.00","NG_L","NG_L","","","","80.0","73.5","91.9","",""
"","","","70","130","","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","2991-50-
6","EtFOSAA","75.6","","TRG","Yes","Y","","Y","1.37","5.00","8.00","NG_L","NG_L","","","","80.0","75.6","94.5",
"","","","","","70","130","","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","102","","TRG","Yes","Y","","Y","0.792","5.00","8.00","NG_L","NG_L","","","","80.0","102","127","","",
"","","","70","130","","","","",""
"B7G0049-BS1","537 MOD","07/13/17","16:38","N","NA","000","72629-94-
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","376-06-
7","PFTeDA","79.0",","TRG","Yes","Y","","Y","0.755","5.00","8.00","NG_L","NG_L","","","","80.0","79.0","98.8","
","","","","","70","130","","","",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","13C3-PFBS","13C3-
"B7G0049-BS1","537 MOD","07/13/17","16:38","N","NA","000","13C2-PFHxA","13C2-
PFHxA","102","","IS","Yes","Y","","","","","","PCT_REC","","","","100","102","102","102","","","","","","","50","150","",
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","13C4-PFHpA","13C4-
PFHpA","88.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","88.2","88.2","88.2","","","","","","50","150","
PFHxS","109","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","109","109","","","","","","","","50","150","",
```

```
"B7G0049-BS1","537 MOD","07/13/17","16:38","N","NA","000","13C2-PFOA","13C2-
PFOA","104","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","104","104","","","","","","","50","150","","
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","13C8-PFOS","13C8-
PFOS","106","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","106","106","106","","","","","","50","150","",""
"B7G0049-BS1","537 MOD","07/13/17","16:38","N","NA","000","13C5-PFNA","13C5-
PFNA","101","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","101","101","","","","","","","50","150","","
.. .... ....
"B7G0049-BS1","537 MOD","07/13/17","16:38","N","NA","000","13C2-PFDA","13C2-
PFDA","93.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","93.1","93.1","93.1","","","","","","150",""
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA", "68.2", "", "IS", "Yes", "Y", "", "Y", "", "PCT_REC", "", "", "", "100", "68.2", "68.2", "68.2", "", "", "", "150", "15
0","","","",
"B7G0049-BS1","537 MOD","07/13/17","16:38","N","NA","000","13C2-PFUnA","13C2-
PFUnA","65.4","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","65.4","65.4","65.4","","","","","","50","150","
11 1111 1111 1111
"B7G0049-BS1","537 MOD","07/13/17","16:38","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","77.0","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","77.0","77.0","","","","","","","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150"
.. ... ... ... ...
"B7G0049-BS1","537_MOD","07/13/17","16:38","N","NA","000","13C2-PFDoA","13C2-
PFDoA","62.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","62.5","62.5","62.5","","","","","","50","150","
.. ... ... ...
"B7G0049-BS1","537 MOD","07/13/17","16:38","N","NA","000","13C2-PFTeDA","13C2-
```

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AMEC Foster Wheeler, Inc. 7376 SW Durham Road Portland, OR 97224 Attn: Ms. Medora Hackler August 8, 2017

SUBJECT: White Oak, Data Validation

Dear Ms. Hackler,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on August 2, 2017. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #39198:

SDG # Fraction

1700803, 1700804, 1700887 Perfluorinated Alkyl Acids

The data validation was performed under Stage 2B & 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for Initial Assessment of Perf-fluorinated Compounds or Per-and Polyfluoralkyl Substances Sites at Various Base Realignment and Closure Installations, June 2017
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1, 2017
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review, January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

Project Manager/Senior Chemist

	946 pages-SF												A	ttach	men	ıt 1																			
	Client Select	Stage 2B	/4		LD	C #3	391	98	(AN	IEC	Fo	ste	r W	/he	eler	· - S	an	Die	go	, C/	4 / \	Whi	ite (Dak	()										
LDC	SDG#	DATE REC'D	(1) DATE DUE		As 37)																														
Matrix	: Water/Soil		T	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	1700803		08/09/17		0																											Ш	Ш	Ш	
В	1700804	08/02/17	08/09/17	8	0																											Ш	Ш	Ш	
В	1700804	08/02/17	08/09/17	1	0																											Ш	Ш	Ш	
С	1700887	08/02/17	08/09/17	4	0																											Ш	Ш	Ш	
С	1700887	08/02/17	08/09/17	1	0																											igsqcut	Ш	Ш	
																																Ш	Ш	Ш	
																																	\bigsqcup	Ш	
																																	\bigsqcup	Ш	
																																	\bigsqcup	Ш	
																																	\bigsqcup	Ш	
																																	\bigsqcup	Ш	
																																	Ш		
																																\bigsqcup	Ш	Ш	
																																		Ш	
																																		П	\Box
																																		П	\neg
																																П	П	П	\neg
																																		П	\neg
Total	J/PG			19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

White Oak

LDC Report Date:

August 4, 2017

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 2B

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1700803

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
IRPSite7-GW-46GW205-20170628	1700803-03	Water	06/28/17
IRPSite7-GW-FD01-20170628	1700803-04	Water	06/28/17
IRPSite7-GW-07GW202-20170628	1700803-05	Water	06/28/17
IRPSite5-GW-04GW81S-20170628	1700803-08	Water	06/28/17
IRPSite5-GW-04GW80-20170628	1700803-09	Water	06/28/17
IRPSite5-GW-04GW80-20170628MS	1700803-09MS	Water	06/28/17
IRPSite5-GW-04GW80-20170628MSD	1700803-09MSD	Water	06/28/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling and Analysis Plan) for Initial Assessment of Perf-fluorinated Compounds (PFCS) or Per- and Polyfluoralkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance check was performed prior to initial calibration.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

For each calibration point, the percent differences (%D) of its true value were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Standard	Compound	%D	Associated Samples	Flag	- A or P
07/10/17	ICAL-CS02	PFDoA	-56.9	All samples in SDG 1700803	UJ (all non-detects)	P
07/10/17	ICAL-CS2	PFDoA	+36.9	All samples in SDG 1700803	NA	-

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples IRPSite7-GW-FRB01-20170628 and IRPSite5-GW-FRB01-20170628 were identified as field rinsate blanks. No contaminants were found.

Samples EB01 and EB02 were identified as equipment blanks. No contaminants were found.

Sample SB01 was identified as a source blank. No contaminants were found.

VII. Surrogates

Surrogates were not performed for this SDG.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
IRPSite5-GW-04GW80-20170628MS/MSD (IRPSite5-GW-04GW80-20170628)	PFDoA	-	185 (70-130)	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
IRPSite5-GW-04GW80-20170628MS/MSD (IRPSite5-GW-04GW80-20170628)	PFDoA PFTrDA	66.2 (≤30) 70.1 (≤30)	NA	-

IX. Ongoing Precision Recovery Samples

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples IRPSite7-GW-46GW205-20170628 and IRPSite7-GW-FD01-20170628 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrati	on (ng/L)				
Compound	IRPSite7-GW-46GW205-20170628	IRPSite7-GW-FD01-20170628	RPD (Limits)	Differences (Limits)	Flag	A or P
PFBS	6.05	2.48	-	3.57 (≤8.49)	-	-
PFHpA	2.92	4.95	-	2.03 (≤8.49)	-	-
PFHxS	7.69	20.2	-	12.51 (≤8.49)	J (all detects)	А
PFOA	7.05	15.2	-	8.15 (≤8.49)	-	-
PFOS	6.07	22.6	-	16.53 (≤8.49)	J (all detects)	Α
PFHxA	5.30U	8.15	<u>.</u>	2.85 (≤8.49)	-	_
PFNA	5.30U	1.02	•	4.28 (≤8.49)	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Affected Compound	Flag	A or P
IRPSite7-GW-46GW205-20170628	¹³ C₂-PFDoA ¹³ C₂-PFTeDA	4.20 (50-150) 4.90 (50-150)	PFDoA PFTrDA PFTeDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р
IRPSite7-GW-FD01-20170628	¹³ C ₂ -PFDoA ¹³ C ₂ -PFTeDA	19.4 (50-150) 9.60 (50-150)	PFDoA PFTrDA PFTeDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р
IRPSite7-GW-07GW202-20170628	¹³ C ₂ -PFDoA ¹³ C ₂ -PFTeDA	31.2 (50-150) 20.1 (50-150)	PFDoA PFTrDA PFTeDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р
IRPSite5-GW-04GW81S-20170628	¹³ C₂-PFDoA ¹³ C₂-PFTeDA	10.7 (50-150) 25.6 (50-150)	PFDoA PFTrDA PFTeDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	P
IRPSite5-GW-04GW80-20170628	¹³ C ₂ -PFDoA ¹³ C ₂ -PFTeDA	36.6 (50-150) 26.3 (50-150)	PFDoA PFTrDA PFTeDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р

XII. Compound Quantitation

The laboratory limit of quantitation (LOQ) and limit of detection (LOD) with no moisture or dilution are higher than the QAPP LOQ and LOD.

The laboratory detection limit (DL) with no moisture or dilution for PFOS is higher than the QAPP DL.

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to initial calibration %D, field duplicate differences, and internal standards area, data were qualified as estimated in five samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

White Oak Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1700803

Sample	Compound	Flag	A or P	Reason
IRPSite7-GW-46GW205-20170628 IRPSite7-GW-FD01-20170628 IRPSite7-GW-07GW202-20170628 IRPSite5-GW-04GW81S-20170628 IRPSite5-GW-04GW80-20170628	PFDoA	UJ (all non-detects)	Р	Initial calibration (%D)
IRPSite7-GW-46GW205-20170628 IRPSite7-GW-FD01-20170628	PFHxS PFOS	J (all detects) J (all detects)	Α	Field duplicates (RPD)
IRPSite7-GW-46GW205-20170628 IRPSite7-GW-FD01-20170628 IRPSite7-GW-07GW202-20170628 IRPSite5-GW-04GW81S-20170628 IRPSite5-GW-04GW80-20170628	PFDoA PFTrDA PFTeDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р	Internal standards (area)

White Oak Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1700803

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 39198A96

SDG #: 1700803

Stage 2B

Laboratory: Vista Analytical Laboratory

METHOD: LCMS Perfluorinated Alkyl Acids (EPA Method 537)

2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A	
11.	LC/MS Instrument performance check	A	· · · · · · · · · · · · · · · · · · ·
111.	Initial calibration/ICV	A A	RSD = \$20/0.7, 39, 104 = 30/0
IV.	Continuing calibration	-0	RSD < 30/0. 7, 39, 104 < 30/0
V.	Laboratory Blanks	A	/
VI.	Field blanks	ND	\$=1. 23=2.10, FB=6,T
VII.	Surrogate spikes	0	
VIII.	Matrix spike/Matrix spike duplicates	w	
IX.	Laboratory control samples	A	OPR
X.	Field duplicates	W	D=3+4
XI.	Internal standards	M	
XII.	Compound quantitation RL/LOQ/LODs	TW	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	3B01	1700803-01	Water	06/28/17
2	EB01	1700803-02	Water	06/28/17
3/1	IRPSite7-GW-46GW205-20170628	1700803-03	Water	06/28/17
4	IRPSite7-GW-FD01-20170628	1700803-04	Water	06/28/17
5	IRPSite7-GW-07GW202-20170628	1700803-05	Water	06/28/17
6	IRPSite7-GW-FRB01-20170628	1700803-06	Water	06/28/17
7	IRPSite5-GW-FRB01-20170628	1700803-07	Water	06/28/17
₈ 1	IRPSite5-GW-04GW81S-20170628	1700803-08	Water	06/28/17
9	IRPSite5-GW-04GW80-20170628	1700803-09	Water	06/28/17
10-	EB02	1700803-10	Water	06/28/17
11	IRPSite5-GW-04GW80-20170628MS	1700803-09MS	Water	06/28/17
12	IRPSite5-GW-04GW80-20170628MSD	1700803-09MSD	Water	06/28/17
13			0 +15	

+ 30% for each cultivation pt. and 50

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

METHOD: PFOS/PFOAS			
A. Perfluorohexanoic agid (PFHxA)			
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)			
D. Perfluorononanoc acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			·
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorodo ecanoic acid (PFDoA)		·	
H. Perfluorotyldecanoic acid (PFTriA)			
I. Perfluorotetradecanoic acid (PFTeA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluor hexanesulfonic acid (PFHxS)			
L. Perfluorpheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N.Perfluorpdecanesulfonic acid (PFDS)			
O. Perflucrooctane Sulfonamide (FOSA)		·	
P. Perflugrobutanoic acid (PFBA)			
Q. Perliuorepentanoic acis (PFPeA)			
R. 6:2FTS			
S. 8:2FTS			

LDC #:39198 A 96

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page:_	<u>/</u> of/
Reviewer:_	9
2nd Reviewer:	F

METHOD: LCMS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory perform a 5 point calibration prior to sample analysis? Did the initial calibration meet the curve fit acceptance criteria of \geq 0.990? Were all percent relative standard deviations (%RSD) \leq 20%? X/N N/A

Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?

Ť (IV	1	vvere all arranytes within	70-10070 of percent	T = 100 (%D) ≤30% of	I len true value loi each	T Standard !	1
#	Date	Standard ID	Compound	Finding %RSD/r ²	Finding %D	Associated Samples	Qualifications
	10/17	1CAL-C502 V C52	PFDOA	6.	-56.9 +36.9	All (NO)	YW/AP
	, ,	1 052	· L		+36.9		Itels/AP
							7
							
					1	I I	
<u> </u>							
ļ							
-							

LDC #: 39198A 96

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates/Duplicates

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?

N/A Was a MS/MSD analyzed every 20 samples of each matrix?

N/N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

M(N/A) Were all duplicate sample relative percent differences (RPD) or differences within QC limits?

 	N(N/β) Were all duplicate sample relative percent differences (RPD) or differences within QC limits?								
#	Date	MS/MSD/DUP ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications	
		11/12	PFDOA		185(TO-130)		a (ND)	Llets &	
			PFDOA PFTYDA			66.2 (≤ 30) 70.1 V			
			DETVIDA			70.1 1			
			T 1 1 2 7 1					•	
$\ - \ $	_	·							
 									
		-							
 									
		<u> </u>							

LDC#: 39198A96

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

METHOD: PFCs (Method 537 mod)

	Concentra	tion (ng/L)	(≤30)	D		
Compound	3	4	RPD	Difference	Limits	Qual
J	6.05	2.48		3.57	≤8.49	
В	2.92	4.95		2.03	≤8.49	
К	7.69	20.2		12.51	≤8.49 –	det=/A
С	7.05	15.2		8.15	≤8.49	
м	6.07	22.6		16.53	≤8.49 ~	slots A
А	5.30U	8.15		2.85	≤8.49	/
D	5.30U	1.02		4.28	≤8.49	

LDC #:39198A96

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: /of / Reviewer: 9 2nd Reviewer: 9

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were all internal standard area counts within 50-150% limits?

YN/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

			Internal	as within +/- 30 seconds of the retention		
#	Date	Sample ID	Standard	Area (Limits)	RT (Limits)	Qualifications
		B740014-BH				VILLE (PFDO)
			13CZ-PFTEDA	11.3 V		N (PFTE.DA
						(HTYD)
		, , , ,				
		BT4054-B41	13CZ-PFDOA	14.0 (50-150) 39.8 V		VH PPDOA
			BC2-PFTeDA	39.8 V		(PFTODA
						LAFTYDA
				<u> </u>		
						*
		3	13C2-DFD0A			VILLE (NO)
<u></u>			13C2-PFTeDA	4.90 (50-150)		
		4		9.60		
				9.60		
					· · · · · · · · · · · · · · · · · · ·	
	····	5		3,2		
				20.		
		8		10.7		
				256		
<u> </u>		182				
		9		36.6		/
			ν̈́	26.3		V
\dashv		11 (NS)		28.8		No anal
-+		11 (M-)		12.2		No unax
-				(

(* PFDOA, PFTODA, PFTEDA)

LDC#:39198A96

VALIDATION FINDINGS WORKSHEET Internal Standards

	Page:_	<u>->_</u> of	
	Reviewer:		}_
2nd	Reviewer:	7	ラー

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN/N/A Were all internal standard area counts within 50-150% limits?

Y N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits) 20.8 (50-150) 1 = 2	RT (Limits)	Qualifications
		12(MS)	13C2-PFD0A	20.8 (50-150)		No and
			13C2-DFTEDA	12.2		d
						-
						
			w.			
<u></u>						<u> </u>
\dashv						
	-					

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page: _	
Reviewer:	0-
2nd Reviewer:	5

METHOD: LC/MS PFCs

Diagon (auglifications	bolow for all	questions answered	UNIU I	Not applicable	augotiona i	ara identified	OO !!N!/A!!
ricase ;	≻ ⊽⊂	qualifications	DEIOW IOI AII	questions answered	17	NOT applicable	questions	are identified	as IV/A.

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Sample ID	Finding	Qualifications
		All	Lab rerported LOD/LOQ > LOD/LOQ in the QAPP	Text
		All	The DL for PFOS = 0.807 ng/L, DL in the QAPP = 0.305 ng/L	Text
			· · · · · · · · · · · · · · · · · · ·	

Comments:	See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

White Oak

LDC Report Date:

August 4, 2017

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 2B & 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1700804

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
IRPSite7-GW-07GW41-20170629	1700804-01	Water	06/29/17
IRPSite5-GW-05GW01-20170629	1700804-02	Water	06/29/17
IRPSite5-GW-FD01-20170629	1700804-03	Water	06/29/17
IRPSite33-GW-11MW204D-20170629	1700804-05	Water	06/29/17
IRPSite33-GW-11MW204S 20170629	1700804-06	Water	06/29/17
Bldg 110-GW-11MW205D-20170629	1700804-07	Water	06/29/17
Bldg 110-GW-11MW205S 20170629	1700804-09	Water	06/29/17
IRPSite7-GW-07GW102 20170629**	1700804-10**	Water	06/29/17
IRPSite5-GW-04GW82-20170629	1700804-11	Water	06/29/17

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling and Analysis Plan) for Initial Assessment of Perf-fluorinated Compounds (PFCS) or Per- and Polyfluoralkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance check was performed prior to initial calibration.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

For each calibration point, the percent differences (%D) of its true value were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Standard	Compound	%D	Associated Samples	Flag	A or P
07/10/17	ICAL-CS02	PFDoA	-56.9	All samples in SDG 1700804	UJ (all non-detects)	Р
07/10/17	ICAL-CS2	PFDoA	+36.9	All samples in SDG 1700804		

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Standard	Compound	%D	Associated Samples	Flag	A or P
07/13/17	170713M1_20	PFDoA	+98.0	All samples in SDG 1700804	NA	-

Date	Standard	Compound	%D	Associated Samples	Flag	A or P
07/13/17	170713M1_35	PFDoA	+135	IRPSite5-GW-04GW82-20170629	NA	-

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples IRPSite7-GW-FRB01-20170628, IRPSite5-GW-FRB01-20170628 (both from SDG 1700803), IRPSite33-GW-FRB01-20170629, and Bldg 110-GW-FRB01 20170629 were identified as field rinsate blanks. No contaminants were found.

Sample SB01 (from SDG 1700803) was identified as a source blank. No contaminants were found.

VII. Surrogates

Surrogates were not performed for this SDG.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Ongoing Precision Recovery Samples

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples IRPSite5-GW-05GW01-20170629 and IRPSite5-GW-FD01-20170629 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ng/L)				
Compound	IRPSite5-GW-05GW01-20170629	IRPSite5-GW-FD01-20170629	RPD (Limits)	Differences (Limits)	Flag	A or P
PFHxA	6.98	6.86	-	0.12 (≤8.88)	-	-
PFHpA	3.96	3.17	-	0.79 (≤8.88)	-	-

	Concentrat	Concentration (ng/L)				
Compound	IRPSite5-GW-05GW01-20170629	IRPSite5-GW-FD01-20170629	RPD (Limits)	Differences (Limits)	Flag	A or P
PFHxS	61.1	64.9	6 (≤30)	-	-	-
PFOA	48.8	51.3	5 (≤30)	-	-	-
PFOS	205	199	3 (≤30)	-	-	-
PFNA	3.24	2.82	-	0.42 (≤8.88)	-	-
PFBS	5.43U	2.30	-	3.13 (≤8.88)	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Affected Compound	Flag	A or P
IRPSite5-GW-05GW01-20170629	¹³ C ₂ -PFDoA	37.4 (50-150)	PFDoA PFTriA	UJ (all non-detects) UJ (all non-detects)	Р
IRPSite33-GW-11MW204D-20170629	¹³ C ₂ -PFDoA	37.4 (50-150)	PFDoA PFTriA	UJ (all non-detects) UJ (all non-detects)	Р
Bidg 110-GW-11MW205D-20170629	¹³ C₂-PFDoA	41.4 (50-150)	PFDoA PFTriA	UJ (all non-detects) UJ (all non-detects)	Р
IRPSite5-GW-04GW82-20170629	¹³C₂-PFDoA	37.0 (50-150)	PFDoA PFTriA	UJ (all non-detects) UJ (all non-detects)	Р

XII. Compound Quantitation

The laboratory limit of quantitation (LOQ) and limit of detection (LOD) with no moisture or dilution are higher than the QAPP LOQ and LOD.

The laboratory detection limit (DL) with no moisture or dilution for PFOS is higher than the QAPP DL.

All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to initial calibration %D and internal standards area, data were qualified as estimated in nine samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

White Oak
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1700804

Sample	Compound	Flag	A or P	Reason
IRPSite7-GW-07GW41-20170629 IRPSite5-GW-05GW01-20170629 IRPSite5-GW-FD01-20170629 IRPSite33-GW-11MW204D-20170629 IRPSite33-GW-11MW204S 20170629 Bldg 110-GW-11MW205D-20170629 Bldg 110-GW-11MW205S 20170629 IRPSite7-GW-07GW102 20170629** IRPSite5-GW-04GW82-20170629	PFDoA	UJ (all non-detects)	Р	Initial calibration (%D)
IRPSite5-GW-05GW01-20170629 IRPSite33-GW-11MW204D-20170629 Bldg 110-GW-11MW205D-20170629 IRPSite5-GW-04GW82-20170629	PFDoA PFTriA	UJ (all non-detects) UJ (all non-detects)	P	Internal standards (area)

White Oak

Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1700804

No Sample Data Qualified in this SDG

LDC #: 39198B96 VALIDATION COMPLETENESS WORKSHEET SDG #: 1700804 Stage 2B/4

Laboratory: Vista Analytical Laboratory

METHOD: LCMS Perfluorinated Alkyl Acids (EPA Method 537)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	1	
11.	LC/MS Instrument performance check	A	
111.	Initial calibration/ICV	WA	\$50 ≤ 20%. 1. 70 \$ 38%, 10 × 38%
IV.	Continuing calibration	W	ecv = 30/0
V.	Laboratory Blanks	A	
VI.	Field blanks	NO	FRB=4,8,IRPSite7-GW-FRB01-20170628,IRPSite5-GW-FRB01-20170628
VII.	Surrogate spikes	N	\$3-5B01 (1700803)
VIII.	Matrix spike/Matrix spike duplicates	\mathcal{N}	<i>C</i> 9
IX.	Laboratory control samples	4	OPR
Χ.	Field duplicates	w	0=2+3
XI.	Internal standards	w	
XII.	Compound quantitation RL/LOQ/LODs	w	Not reviewed for Stage 2B validation
XIII.	Target compound identification	A	Not reviewed for Stage 2B validation
XIV.	System performance	Φ	Not reviewed for Stage 2B validation
XV.	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

SW = See worksheet
** Indicates sample underwent Stage 4 validation

	Client ID	Lab ID	Matrix	Date
1	IRPSite7-GW-07GW41-20170629	1700804-01	Water	06/29/17
2	IRPSite5-GW-05GW01-20170629	1700804-02	Water	06/29/17
3	IRPSite5-GW-FD01-20170629	1700804-03	Water	06/29/17
4	IRPSite33 GW FRB01-20170629	1700804-04	Water	06/29/17
5	IRPSite33-GW-11MW204D-20170629	1700804-05	Water	06/29/17
6	IRPSite33-GW-11MW204S - 20170629	1700804-06	Water	06/29/17
7	Bldg 110-GW-11MW205D-20170629	1700804-07	Water	06/29/17
8	Bidg 110-GW-FRB01-20170629	1700804-08	Water	06/29/17 -
9	Bldg 110-GW-11MW205S-20170629	1700804-09	Water	06/29/17
10	IRPSite7-GW-07GW102-20170629**	1700804-10**	Water	06/29/17
11	IRPSite5-GW-04GW82-20170629 2 0170629 -	1700804-11	Water	06/29/17
12				
13				

VALIDATION FINDINGS CHECKLIST

Page: of >
Reviewer: 2nd Reviewer:

Method: LCMS (EPA Method 537)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		The Marie		
Were all technical holding times met?	/_		ļ	
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of ≥ 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard				
IIIb. Initial Calibration Verification		10		
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?				
V. Laboratory Blanks		T Tale		
Was a laboratory blank associated with every sample in this SDG?			ļ	
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				199
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates		ICARP Solution		
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?			/	_
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			

VALIDATION FINDINGS CHECKLIST

Page:	<u> 그</u> of_고
Reviewer:	9_
2nd Reviewer:	17

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	163	NO	IVA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/		
X. Field duplicates			du ja	The state of the s
Were field duplicate pairs identified in this SDG?	/			
Were target compounds detected in the field duplicates?.				
XI. Internal standards				
Were internal standard area counts within <u>+</u> 50% of the associated calibration standard?		/		·
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				The state of the s
Overall assessment of data was found to be acceptable.	/			

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

METHOD: PFOS/PFOAS			
A. Perfluorohexanoic acid (PFHxA)			
B. Perluoroheptanojc acid (PFHpA)			
C. Perfluorooctano/c acid (PFOA)			
D. Perfluorononaroic acid (PFNA)		·	
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorpriodecanoic acid (PFDoA)			
H. Perfluoro ridecanoic acid (PFTriA)			
I. Perfluorotetradecanoic acid (PFTeA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheplanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N/Perfluorodecanesulfonic acid (PFDS)			
φ. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoid acid (PFBA)			
Q. Perfluoropentanoid acis (PFPeA)	·		,
R. 6:2FTS			
S. 8:2FTS			

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page:_	<u></u>
Reviewer:_	9_
2nd Reviewer:	<u></u>

METHOD: LCMS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

MN/A Did the laboratory perform a 5 point calibration prior to sample analysis?

 $\frac{\text{Y N N/A}}{\text{N N/A}}$ Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?

Y_N_N/A Were all percent relative standard deviations (%RSD) ≤ 20%?

Y(N) N/A Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?

	IN/A			differences (76D) 53076 01			
#	Date	Standard ID	Compound	Finding %RSD/r ²	Finding %D	Associated Samples	Qualifications
	TOST	(CAL-C502	- PFDOA		-56.9 +36.9	All (ND)	1/41/7
	/ /	V C52	V		+36.9	,	Solds/P
							<u> </u>

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	 of
Reviewer:	Q
2nd Reviewer:	15

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". WA N/A Was a continuing calibration standard analyzed after every 10 injections for each instrument? Y N N/A

Were all continuing calibration percent differences (%D) ≤30 %?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Finding RRF (Limit:)	Associated Samples	Qualifications
	7/13/17	170713H1_20	PFDOA	+ 48.0		AII (NO)	Jolots/A =
							+ + +
	7/12/17	17071341-35	PFOOA	+135		11 (ND)	*
			· · · · · · · · · · · · · · · · · · ·				* grad PTOOA-
							PFTVD
			<u></u>	-			
	<u> </u>						
			<u> </u>				

LDC#: <u>3919</u>8B96

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

METHOD: PFCs (Method 537 mod)

	Concentra	tion (ng/L)	(≤30)			Qual
Compound	2	3	RPD	Difference	Limits	
А	6.98	6.86		0.12	≤8.88	
В	3.96	3.17		0.79	≤8.88	
к	61.1	64.9	6			
С	48.8	51.3	5			
м	205	199	3			
D	3.24	2.82		0.42	≤8.88	
J	5.43U	2.30		3.13	≤8.88	

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	<u></u> of <u></u>
Reviewer:_	d
2nd Reviewer:	<i>T</i> 7

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were all internal standard area counts within 50-150% limits?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

	N N/A vere the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?						
#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications	
		2(ND)	13C2-PFDOA	37.4 (50-150)		JMA (4.H)	
		5 CNDI		31.4			
				•			
		7 (NB		41.4			
		(ND)	V	37.0		V	
				•		3	
			I			1	
-							
\blacksquare		I .					
\parallel							
$\ - \ $							
$oxed{oxed}$		I					

LDC #: 39198**8**96

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page: _	
Reviewer:	0-
2nd Reviewer:	F

METHOD: LC/MS PFCs

Please s	see qualifications	below for all o	questions answered '	"N". Not applicable	questions are	identified as "N/A".

Y N N/A
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Sample ID	Finding	Qualifications
		All	Lab rerported LOD/LOQ > LOD/LOQ in the QAPP	Text
		All	The DL for PFOS = 0.807 ng/L, DL in the QAPP = 0.305 ng/L	Text

Comments:	See sample calculation verification worksheet for recalculations	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: / of / Reviewer: / 2nd Reviewer: /

Method: LC/MS/MS PFCs

Calibration	01-	0	Otendend	(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
7/10/2017	Q4	PFBS	0	0.4380675	0.25
			s1	1.1565725	0.50
			s2	1.8657437	1.00
			s3	4.9570275	2.00
			s4	9.7347175	5.00
			s5	22.092078	10.00
			s6	112.84108	50.00
			s7	230.883470	100.00

Regression Output		Reported **
Constant	-0.636769	-0.143808
Std Err of Y Est		
R Squared	0.999849	0.998952
Degrees of Freedom		
X Coefficient(s)	2.305558	2.282190
Std Err of Coef.		
Correlation Coefficient	0.999925	
Coefficient of Determination (r^2)	0.999849	0.998952

* 1/x W+

LDC #: 39/98B96

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:	
Reviewer	9
2nd Reviewer	<u></u>
	/ /

•			
WETHOD:	GC	V HPLC	/MS
		 ' ''	

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

#	Standard ID	Calibration Date	Compound	Average CF(Ical)/ CCV Conc.	Reported CF/Conc. CCV	Recalculated CF/Conc. CCV	Reported %D	Recalculated %D
1_	170713ML	7/13/17	PFBS	0.50	0.610	0.61/	22.0	اردد
2								
3	· ·							
4			:					

Comments:	Refer to Continuing	Calibration find	<u>lings worksheet t</u>	or list of qua	<u>alifications and</u>	associated sar	<u>nples when r</u>	eported results	<u>do not agree wi</u>	<u>thin 10.0%</u>	of the
ecalculated	results.				· .						

LDC #: 39193B96

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page:_	_of
Reviewer:	9
2nd Reviewer:	17

METHOD:	GC	_/HPLC	MS
METHOD:	GC	<u> </u> ✓HPLC	ME

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples:

	Spike		Spiked Sample		Lo	LCS		LCSD		LCS/LCSD	
Compound	(n	dded S/ム)	Concentration (NS/-)		Percent Recovery		Percent Recovery		RPD		
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.	
Gasoline (8015)											
Diesel (8015)											
Benzene (8021B)											
Methane (RSK-175)											
2,4-D (8151)											
Dinoseb (8151)											
Naphthalene (8310)					,						
Anthracene (8310)											
HMX (8330)											
2,4,6-Trinitrotoluene (8330)											
ф Т ВS	80.0	NA	65,5	NA	81.9	81.9					
						,					

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:39198B96

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: _	<u> </u>
Reviewer:	7
2nd Reviewer:	5

METHOD: __GC V HPLC MS

Y N N/A Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10% of the reported results?

Concentration=	(A)(Fv)(Df)
(F	RF)(Vs or Ws)(%S/100)

A= Area or height of the compound to be measured

Fv= Final Volume of extract

Df= Dilution Factor

RF= Average response factor of the compound

In the initial calibration

Vs= Initial volume of the sample

Ws= Initial weight of the sample

%S= Percent Solid

Example:

Sample ID. 16 Compound Name PFBS

Concentration = $\frac{870 \times 12^5}{4620} \pm 0.143808$ (1)

= 9.05 n3/c

#	Sample ID	Compound	Reported Concentrations	Recalculated Results Concentrations ()	Qualifications
	10	PFBS	9.06		

omments:	 	

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page: _	/of /
Reviewer:	<u> </u>
2nd Reviewer:	5
	/ /

METHOD: LC/MS PFCs

Please see	aualifications	helow for all	augetione anewered	"N"	Not applicable (rupetione are	identified as "N/A".
ATTENDIO COCC 1	quamications	DCIOW IOI all	questions answered		TYOU APPRICABLE V	aucononio ai c	identifica as in/A.

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Sample ID	Finding	Qualifications
		All	Lab rerported LOD/LOQ > LOD/LOQ in the QAPP	Text
		All	The DL for PFOS = 0.807 ng/L, DL in the QAPP = 0.305 ng/L	Text

Comments: _	See sample calculation	verification worksheet f	for recalculations		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

White Oak

LDC Report Date:

August 4, 2017

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 2B & 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1700887

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
IRPSite 6-GW-06GW01-20170712	1700887-01	Water	07/12/17
IRPSite 6-GW-06GW02-20170712	1700887-02	Water	07/12/17
Site 33-GW-33GW01-20170712	1700887-04	Water	07/12/17
Building110-GW-110GW01-20170712**	1700887-05**	Water	07/12/17
IRPSite 6-GW-06FD01-20170712	1700887-06	Water	07/12/17

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling and Analysis Plan) for Initial Assessment of Perf-fluorinated Compounds (PFCS) or Per- and Polyfluoralkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance check was performed prior to initial calibration.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

For each calibration point, the percent differences (%D) of its true value were less than or equal to 30.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples IRPSite33-GW-FRB01-20170629, Bldg 110-GW-FRB01 20170629 (both from SDG 1700804), and IRPSite 6-GW-FRB01-20170712 were identified as field rinsate blanks. No contaminants were found.

Sample SB01 (from SDG 1700803) was identified as a source blank. No contaminants were found.

VII. Surrogates

Surrogates were not performed for this SDG.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Ongoing Precision Recovery Samples

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples IRPSite 6-GW-06GW02-20170712 and IRPSite 6-GW-06FD01-20170712 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ng/L)					
Compound	IRPSite 6-GW-06GW02-20170712	IRPSite 6-GW-06FD01-20170712	RPD (Limits)	Differences (Limits)	Flag	A or P
PFBS	21.8	21.7	0 (≤30)	-	-	-
PFHxA	20.0	17.6	13 (≤30)	-	<u>-</u>	-
PFHpA	10.3	9.00	-	1.3 (≤10.1)	-	-
PFHxS	6.18	5.70	-	0.48 (≤10.1)	-	-
PFOA	20.1	20.6	2 (≤30)	-	-	-
PFOS	16.5	13.5	20 (≤30)	-	-	-
PFNA	3.81	2.80	-	1.01 (≤10.1)	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

The laboratory limit of quantitation (LOQ) and limit of detection (LOD) with no moisture or dilution are higher than the QAPP LOQ and LOD.

The laboratory detection limit (DL) with no moisture or dilution for PFOS is higher than the QAPP DL.

All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

White Oak

Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1700887

No Sample Data Qualified in this SDG

White Oak Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1700887

No Sample Data Qualified in this SDG

DG # abora	t:1700887 atory:Vista Analytical Laboratory	St	age 2B/4	SS WORKSHEE		Date: 8/3 , Page:/of Reviewer:
he sa	IOD: LCMS Perfluorinated Alkyl Acids (amples listed below were reviewed for e tion findings worksheets.		,	dation areas. Valida	ition findings are	noted in attache
	Validation Area			Com	ments	
l.	Sample receipt/Technical holding times	A				
II.	LC/MS Instrument performance check	A			<u> </u>	
III.	Initial calibration/ICV	AA	RSOS	20/0. Y ? Tol	<30%.	CV=380
IV.	Continuing calibration	\triangleleft	COV	€300		
V.	Laboratory Blanks	A		<i>Z</i>		
VI.	Field blanks	ND	FRB=3,IRPSit	e33-GW-FRB01-201706	629,Bldg 110-GW-F	RB01 20170629 (1 7
VII.	Surrogate spikes	Δ/	53 00	30/(170080	3)	
VIII.	Matrix spike/Matrix spike duplicates	Λ/	05			
IX.	Laboratory control samples	\$	OPR			
Χ.	Field duplicates	w	D=2	-5		
XI.	Internal standards	w				
XII.	Compound quantitation RL/LOQ/LODs	W	Not reviewed	for Stage 2B validation		
XIII.	Target compound identification	A	Not reviewed for Stage 2B validation Not reviewed for Stage 2B validation			
XIV.	System performance	A		for Stage 2B validation	·····	
XV.	Overall assessment of data	X				
ote:	N = Not provided/applicable R = R	No compoundations at the second secon	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
	IRPSite 6-GW-06GW01-20170712		4.00	1700887-01	Water	07/12/17
<u> </u>	IRPSite 6-GW-06GW02-20170712			1700887-02	Water	07/12/17
	IRPSite 6-GW-FRB01-20170712			1700887-03	Water	07/12/17
;	Site 33-GW-33GW01-20170712			1700887-04	Water	07/12/17
	Building110-GW-110GW01-20170712**			1700887-05**	Water	07/12/17
- 1	IRPSite 6-GW-06FD01-20170712			1700887-06	Water	07/12/17
otes:		-	- T			
\perp						
1						···
\bot					,	
- 1			1 1			

VALIDATION FINDINGS CHECKLIST

Page: /of Z Reviewer: 9 2nd Reviewer: 11

Method: LCMS (EPA Method 537)

Wetnod: LCMS (EPA Method 537) Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	163	140		1 munigaroommonia
Were all technical holding times met?	/			
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check		Ph.L		
Were the instrument performance reviewed and found to be within the specified criteria?		,		
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration				The state of the s
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of ≥ 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?				
V. Laboratory Blanks		10 10 2	E#4:	
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?	~			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates			iii V	
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	1	<u> </u>	<u> </u>	L

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		•		
Were target compounds detected in the field duplicates?.				
XI. Internal standards		10		
Were internal standard area counts within \pm 50% of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.		•		
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: PFOS/PFOAs

METHOD: PFOS/PFOAs		
A. Perfluorohexanoie acid (PFHxA)		
B. Perfluoroheptanoic acid (PFHpA)		
C. Perfluorooctanoic acid (PFOA)		
D. Perfluorononanoic acid (PFNA)		
E. Perfluorodecanoic acid (PFDA)		
F. Perfluoroundecanoic acid (PFUnA)		
G. Perfluorododecanoic acid (PFDoA)		
H. Perfluorotridecanoic acid (PFTriA)		
I. Perfluorotetradecanoic acid (PFTeA)		
J. Perfluorobutanesulfonic acid (PFBS)		
K. Perfluorohexanesulfonic acid (PFHxS)		
L. Perfluoroneptanesulfonic acid (PFHpS)		
M. Perfluorooctanesulfonic acid (PFOS)		
N.Perfluorodecanesulfonic acid (PFDS)		
O. Perfluprooctane Sulfonamide (FOSA)		
P. Perflyorobutanoic acid (PFBA)		
Q. Perfluoropentanoie acie (PFPeA)		
R. 6:2FTS		
S. 8:2FTS		

LDC#:<u>39198</u>c96

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:	
Reviewer:	$\overline{\mathbf{Q}}$
2nd Reviewer:_	FI

METHOD: PFCs (Method 537 mod)

	Concentra	tion (ng/L)	(≤30)			
Compound	2	6	RPD	Difference	Limits	Qual
J	21.8	21.7	0			
А	20.0	17.6	13			
В	10.3	9.00		1.3	≤10.1	
к	6.18	5.70		0.48	≤10.1	
С	20.1	20.6	2			
М	16.5	13.5	20			
D	3.81	2.80		1.01	≤10.1	

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	<u>_/</u> of_/
Reviewer:_	9_
2nd Reviewer:	M

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YNA

Were all internal standard area counts within 50-150% limits?

TY)N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID B75-0079-B44		Area (Limits)	RT (Limits)	Qualifications
		B740079-BH	1302-47 TEDA	Area (Limits) 45.1 (SO-150)		WHY COFTEDA
			1			/ / ' ' '
ļ						
-						

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page:	<u></u> of
Reviewer:	J.
2nd Reviewer:	FI

METHOD: LC/MS PFCs

"Please see qualifications below for all questions answered "N". Not applicable questions are identified as

Y N N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Y N N/A Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Sample ID	Finding	Qualifications
		All	Lab rerported LOD/LOQ > LOD/LOQ in the QAPP	Text
		All	The DL for PFOS = 0.807 ng/L, DL in the QAPP = 0.305 ng/L	Text

Comments:	See sample calculation	verification worksheet	for recalculations			

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: / of ~ Reviewer: ~ 2nd Reviewer: ______

Method: LC/MS/MS PFCs

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
7/27/2017	Q2	PFBS	s1	1.4453125	0.50
1			s2	2.0194375	1.00
			s3	3.541275	2.00
			s4	9.4866062	5.00
			s5	16.99074	10.00
			s6	83.904108	50.00
			s7	157.926820	100.00

Regression Output

Rei	port	ed
-----	------	----

Constant	1.183817	0.593256
Std Err of Y Est		
R Squared	0.999221	0.998731
Degrees of Freedom		
X Coefficient(s)	1.584733	1.607660
Std Err of Coef.		
Correlation Coefficient	0.999611	
Coefficient of Determination (r^2)	0.999221	0.998731

LDC#: 39198c96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: LC/MS/MS PFCs

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
7/28/2017	Q2	PFDoA	0	0.0331250	0.25
			s1	0.0527637	0.50
			s2	0.1130487	1.00
			s3	0.266025	2.00
			s4	0.6203462	5.00
			s5	1.2761775	10.00
			s6	6.096625	50.00
			s7	12.084870	100.00

Regression Output

Re	po	rte	d
----	----	-----	---

		· · · · · · · · · · · · · · · · · · ·
Constant	0.017917	0.000590
Std Err of Y Est		
R Squared	0.999957	0.999601
Degrees of Freedom		
X Coefficient(s)	0.120887	0.121673
Std Err of Coef.		
Correlation Coefficient	0.999979	
Coefficient of Determination (r^2)	0.999957	0.999601

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	of
Reviewer:	Q
2nd Reviewer:_	97

METHOD: GC	V	_HPLC/MS_
------------	---	-----------

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF ·CF = A/C

Where: ave. CF = initial calibration average CF CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

#	Standard ID	Calibration Date	Compound	Average CF(Ical)/ CCV Conc.	Reported CF/Conc. CCV	Recalculated CF/Conc. CCV	Reported %D	Recalculated %D
1	170131424	484 7/31/17	PFBS	1.000	0.876	0.879	13.4	/>./
2	170BA12	7/31/17	PFDOA	0.500	0.375	0.375	24.9	25.0
3								
4								

Comments:	Refer to Continuing	<u>, Calibration fi</u>	<u>indings worksheet fo</u>	or list of qualification	ons and associated	samples when r	<u>reported results do no</u>	ot agree within '	<u>10.0% of the</u>
recalculated	results.				•				
					•				
		,,							

LDC#:39193C96

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page:	\angle of_	\angle
Reviewer:_	9	
2nd Reviewer:_	7	<u> </u>

METHOD:	 GC	<u>/</u> H	PLC/	MS
			_	

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: B74079-BS/

	S	pike	Spiked	Spiked Sample LCS Concentration		LCSD		LCS/LCSD		
Compound	(M	dded S/A	Conce	ntration	Percent I	Recovery	Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)										
Diesel (8015)										
Benzene (8021B)										
Methane (RSK-175)										
2,4-D (8151)										
Dinoseb (8151)										
Naphthalene (8310)										
Anthracene (8310)										
HMX (8330)										
2,4,6-Trinitrotoluene (8330)										
PTBS	80.0	NA	74.1	NA	90.5	92.6				
				,		-				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#39198096

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

Page: _	\angle of $_$	
Reviewer:	9	_
2nd Reviewer:	F	2

METHOD: __GC V HPLC /MS

M	N	N/A
Y	M	N/A

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10% of the reported results?

Concentr	ation= (A)(Fv)(Df)	
	(RF)(Vs or Ws)(%S/100)	
A= Area	or height of the compound to be measured	
Fv= Final	Volume of extract	
Df= Diluti	on Factor	
RF= Avera	ge response factor of the compound	
In the	initial calibration	
Vs= Initial	volume of the sample	
Ws= Initial	weight of the sample	
%S= Perce	nt Solid	

Example:			
Sample ID. 3	Compound Name	4FBS	
Concentration = 3.7	40/e3x/2.5 148.e3	-0.593256)	
()	1.60766) ((0.118)	
= 39	3.1 ns/c		

#	Sample ID	Compound	Reported Concentrations	Recalculated Results Concentrations ()	Qualifications
	5	9FBS	39.2		

mments:		
	•	

LDC#:39198

EDD POPULATION COMPLETENESS WORKSHEET

Date: 8/7/1	•
Page: 1 of 1	
2 nd Reviewer:	

	EDD Process		Comments/Action
I.	EDD Completeness	-	
Ia.	- All methods present?	4	
Ib.	- All samples present/match report?	'Y	
lc.	- All reported analytes present?	4	
Id.	10% or 100% verification of EDD?	4	
		12 July 1	
II.	EDD Preparation/Entry	-	
IIa.	- Carryover U/J?	_	
IIb.	- Reason Codes used? If so, note which codes.	4	client
IIc.	- Additional Information (QC Level, Validator, Validated Y/N, etc.)	Ч	
III.	Reasonableness Checks	-	
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	4	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	4	
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	4	
IIId.	-Does the detect flag require changing for blank qualifier? If so, are all U results marked ND?	+	
IIIe.	- Do blank concentrations in report match EDD where data was qualified due to blank contamination?	_	
IIIf.	- Were multiple results reported due to dilutions/reanalysis? If so, were results qualified appropriately?	+	
IIIg.	-Are there any discrepancies between the data packet and the EDD?	N	

Notes:	*see discrepancy sheet	

SDG 1700804

INSTALLATION_ID	SITE_NAME	LOCATION_NAME	LOCATION_TYPE	LOCATION_TYPE_DESC	COORD_X	COORD_Y	SAMPLE_NAME	SAMPLE_MATRIX	SAMPLE_MATRIX_DESC	COLLECT_DATE	ANALYTICAL_METHOD_GRP_DESC
WHITE_OAK_NSWC	SITE 00011	11MW205D	WLM	Monitoring Well	1317686.2	499662.39	BLDG 110-GW-11MW205D-20170629	WG	Ground water	29-Jun-17	Perfluoroalkyl Compounds
WHITE_OAK_NSWC	SITE 00011	11MW205S	WLM	Monitoring Well	1317630.294	499680.8687	BLDG 110-GW-11MW205S-20170629	WG	Ground water	29-Jun-17	Perfluoroalkyl Compounds
WHITE_OAK_NSWC	SITE 00011	11MW204D	WLM	Monitoring Well	1317375.45	499504.94	IRPSITE33-GW-11MW204D-20170629	WG	Ground water	29-Jun-17	Perfluoroalkyl Compounds
WHITE_OAK_NSWC	SITE 00011	11MW204S	WLM	Monitoring Well	1317368.01	499499.96	IRPSITE33-GW-11MW204S-20170629	WG	Ground water	29-Jun-17	Perfluoroalkyl Compounds
WHITE_OAK_NSWC	SITE 00004	04GW82	WLM	Monitoring Well	1324187.24	500487.47	IRPSITE5-GW-04GW82-20170629	WG	Ground water	29-Jun-17	Perfluoroalkyl Compounds
WHITE_OAK_NSWC	SITE 00005	05GW01	WLM	Monitoring Well	1323788.14	500642.426	IRPSITE5-GW-05GW01-20170629	WG	Ground water	29-Jun-17	Perfluoroalkyl Compounds
WHITE_OAK_NSWC	SITE 00005	05GW01	WLM	Monitoring Well	1323788.14	500642.426	IRPSITE5-GW-FD01-20170629	WG	Ground water	29-Jun-17	Perfluoroalkyl Compounds
WHITE_OAK_NSWC	SITE 00007	07GW102	WLM	Monitoring Well	1324942.56	500236.28	IRPSITE7-GW-07GW102-20170629	WG	Ground water	29-Jun-17	Perfluoroalkyl Compounds
WHITE_OAK_NSWC	SITE 00007	07GW41	WLM	Monitoring Well	1325048.56	500121.34	IRPSITE7-GW-07GW41-20170629	WG	Ground water	29-Jun-17	Perfluoroalkyl Compounds

SDG 1700804