

Groundwater Sample Results,
Level 2 Laboratory Report, Level 4 Laboratory Report,
Electronic Data Deliverable, Data Validation Report,
Sample Location Report, SDG 1700887

NSWC White Oak MD

December 2020



August 01, 2017

### Vista Work Order No. 1700887

Ms. Nia Nikmanesh KMEA 2423 Hoover Avenue National City, CA 91950

Dear Ms. Nikmanesh,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 15, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'NSWC White Oak'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier

Laboratory Director

Karing Nolpendeta for



Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph; 916-673-1520 fx; 916-673-0106 www.vista-analytical.com

Work Order 1700887 Page 1 of 20

### Vista Work Order No. 1700887 Case Narrative

#### **Sample Condition on Receipt:**

Six aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

### **Analytical Notes:**

### **Modified EPA Method 537**

The chemist noted that samples "IRPSite 6-GW-06GW01-20170712", "IRPSite 6-GW-06GW02-20170712", "Site 33-GW-33GW01-20170712", "Building 110-GW-110GW01-20170712", and "IRPSite 6-GW-06FD01-20170712" had a thick layer of particulate and were centrifuged prior to extraction. The chemist also noted that a limited amount of sample volume was left after centrifuging for samples "IRPSite 6-GW-06GW01-20170712" and "IRPSite 6-GW-06GW02-20170712".

The samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

### **Holding Times**

The samples were extracted and analyzed within the method hold times.

### **Quality Control**

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The labeled standard 13C2-PFTeDA in the OPR was below the method acceptance criteria at 36.3%. All other OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

### QC Anomalies

| LabNumber    | SampleName   | Analysis                | Analyte     | Flag | %Rec |
|--------------|--------------|-------------------------|-------------|------|------|
| B7G0079-BLK1 | B7G0079-BLK1 | Modified EPA Method 537 | 13C2-PFTeDA | Н    | 45.1 |
| B7G0079-BS1  | B7G0079-BS1  | Modified EPA Method 537 | 13C2-PFTeDA | Н    | 36.3 |

H = Recovery was outside laboratory acceptance criteria.

Work Order 1700887 Page 2 of 20

### TABLE OF CONTENTS

| Case Narrative     | 1  |
|--------------------|----|
| Table of Contents  | 3  |
| Sample Inventory   | 4  |
| Analytical Results | 5  |
| Qualifiers         | 14 |
| Certifications     | 15 |
| Sample Receipt     | 18 |

Work Order 1700887 Page 3 of 20

# **Sample Inventory Report**

| Vista<br>Sample ID | Client<br>Sample ID                 | Sampled         | Received        | Components/Containers |
|--------------------|-------------------------------------|-----------------|-----------------|-----------------------|
| 1700887-01         | IRPSite 6-GW-06GW01-20170712        | 12-Jul-17 09:30 | 15-Jul-17 09:06 | HDPE Bottle, 125 mL   |
|                    |                                     |                 |                 | HDPE Bottle, 125 mL   |
| 1700887-02         | IRPSite 6-GW-06GW02-20170712        | 12-Jul-17 11:00 | 15-Jul-17 09:06 | HDPE Bottle, 125 mL   |
|                    |                                     |                 |                 | HDPE Bottle, 125 mL   |
| 1700887-03         | IRPSite 6-GW-FRB01-20170712         | 12-Jul-17 11:05 | 15-Jul-17 09:06 | HDPE Bottle, 125 mL   |
|                    |                                     |                 |                 | HDPE Bottle, 125 mL   |
| 1700887-04         | Site 33-GW-33GW01-20170712          | 12-Jul-17 15:30 | 15-Jul-17 09:06 | HDPE Bottle, 125 mL   |
|                    |                                     |                 |                 | HDPE Bottle, 125 mL   |
| 1700887-05         | Building<br>110-GW-110GW01-20170712 | 12-Jul-17 12:45 | 15-Jul-17 09:06 | HDPE Bottle, 125 mL   |
|                    |                                     |                 |                 | HDPE Bottle, 125 mL   |
| 1700887-06         | IRPSite 6-GW-06FD01-20170712        | 12-Jul-17 11:10 | 15-Jul-17 09:06 | HDPE Bottle, 125 mL   |
|                    |                                     |                 |                 | HDPE Bottle, 125 mL   |
|                    |                                     |                 |                 |                       |

Vista Project: 1700887 Client Project: NSWC White Oak

Work Order 1700887 Page 4 of 20

### ANALYTICAL RESULTS

Work Order 1700887 Page 5 of 20



| Sample ID: Mo                          | ethod Blank  |                             |                          |       |            |    |                  | Modif                                   | ied EPA M | ethod 537  |
|----------------------------------------|--------------|-----------------------------|--------------------------|-------|------------|----|------------------|-----------------------------------------|-----------|------------|
| Matrix: Aqueou<br>Sample Size: 0.125 L |              | QC Batch:<br>Date Extracted | B7G0079<br>: 20-Jul-2017 | 11:18 |            |    | •                | .K1<br>02 Column: BEH<br>54 Column: BEH |           |            |
| Analyte                                | Conc. (ng/L) | DL                          | LOD                      | LOQ   | Qualifiers | ]  | Labeled Standard | %R                                      | LCL-UCL   | Qualifiers |
| PFBS                                   | ND           | 1.79                        | 5.00                     | 8.00  |            | IS | 13C3-PFBS        | 106                                     | 50 - 150  |            |
| PFHxA                                  | ND           | 2.18                        | 5.00                     | 8.00  |            | IS | 13C2-PFHxA       | 87.3                                    | 50 - 150  |            |
| PFHpA                                  | ND           | 0.591                       | 5.00                     | 8.00  |            | IS | 13C4-PFHpA       | 86.9                                    | 50 - 150  |            |
| PFHxS                                  | ND           | 0.947                       | 5.00                     | 8.00  |            | IS | 18O2-PFHxS       | 92.3                                    | 50 - 150  |            |
| PFOA                                   | ND           | 0.651                       | 5.00                     | 8.00  |            | IS | 13C2-PFOA        | 85.3                                    | 50 - 150  |            |
| PFOS                                   | ND           | 0.807                       | 5.00                     | 8.00  |            | IS | 13C8-PFOS        | 89.5                                    | 50 - 150  |            |
| PFNA                                   | ND           | 0.810                       | 5.00                     | 8.00  |            | IS | 13C5-PFNA        | 91.2                                    | 50 - 150  |            |
| PFDA                                   | ND           | 1.49                        | 5.00                     | 8.00  |            | IS | 13C2-PFDA        | 76.5                                    | 50 - 150  |            |
| MeFOSAA                                | ND           | 1.65                        | 5.00                     | 8.00  |            | IS | d3-MeFOSAA       | 50.5                                    | 50 - 150  |            |
| PFUnA                                  | ND           | 1.05                        | 5.00                     | 8.00  |            | IS | 13C2-PFUnA       | 59.0                                    | 50 - 150  |            |
| EtFOSAA                                | ND           | 1.37                        | 5.00                     | 8.00  |            | IS | d5-EtFOSAA       | 50.3                                    | 50 - 150  |            |
| PFDoA                                  | ND           | 0.792                       | 5.00                     | 8.00  |            | IS | 13C2-PFDoA       | 56.4                                    | 50 - 150  |            |
| PFTrDA                                 | ND           | 0.494                       | 5.00                     | 8.00  |            | IS | 13C2-PFTeDA      | 45.1                                    | 50 - 150  | Н          |
| PFTeDA                                 | ND           | 0.755                       | 5.00                     | 8.00  |            |    |                  |                                         |           |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 6 of 20



| Sample ID: OPR                          |                             |                           |             |                      |                           |                              | Modified           | EPA Method 537      |
|-----------------------------------------|-----------------------------|---------------------------|-------------|----------------------|---------------------------|------------------------------|--------------------|---------------------|
| Matrix: Aqueous<br>Sample Size: 0.125 L | QC Batch:<br>Date Extracted | B7G0079<br>l: 20-Jul-2017 | 11:18       |                      | Lab Sample<br>Date Analyz | zed: 31-Jul-17 10:37 Column: |                    |                     |
| Analyte A                               | <br>mt Found (ng/L)         | Spike Amt                 | %R          | Limits               |                           | 31-Jul-17 14:11 Column: I    | %R                 | LOL HOL             |
|                                         |                             | •                         |             |                      | IC                        | 13C3-PFBS                    | 76 <b>R</b><br>107 | LCL-UCL<br>50 - 150 |
| PFBS<br>PFHxA                           | 74.1<br>86.7                | 80.0<br>80.0              | 92.6<br>108 | 70 - 130<br>70 - 130 | IS<br>IS                  | 13C2-PFHxA                   | 93.6               | 50 - 150            |
| PFHpA                                   | 87.0                        | 80.0                      | 108         | 70 - 130             | IS                        | 13C4-PFHpA                   | 86.2               | 50 - 150            |
| PFHxS                                   | 83.0                        | 80.0                      | 109         | 70 - 130             | IS                        | 18O2-PFHxS                   | 88.3               | 50 - 150            |
| PFOA                                    | 90.3                        | 80.0                      | 113         | 70 - 130             | IS                        | 13C2-PFOA                    | 90.4               | 50 - 150            |
| PFOS                                    | 76.5                        | 80.0                      | 95.7        | 70 - 130             | IS                        | 13C8-PFOS                    | 92.9               | 50 - 150            |
| PFNA                                    | 77.6                        | 80.0                      | 97.0        | 70 - 130             | IS                        | 13C5-PFNA                    | 91.2               | 50 - 150            |
| PFDA                                    | 77.5                        | 80.0                      | 96.9        | 70 - 130             | IS                        | 13C2-PFDA                    | 76.4               | 50 - 150            |
| MeFOSAA                                 | 94.5                        | 80.0                      | 118         | 70 - 130             | IS                        | d3-MeFOSAA                   | 52.0               | 50 - 150            |
| PFUnA                                   | 87.6                        | 80.0                      | 110         | 70 - 130             | IS                        | 13C2-PFUnA                   | 61.6               | 50 - 150            |
| EtFOSAA                                 | 82.3                        | 80.0                      | 103         | 70 - 130             | IS                        | d5-EtFOSAA                   | 56.7               | 50 - 150            |
| PFDoA                                   | 79.7                        | 80.0                      | 99.7        | 70 - 130             | IS                        | 13C2-PFDoA                   | 57.7               | 50 - 150            |
| PFTrDA                                  | 75.3                        | 80.0                      | 94.1        | 60 - 130             | IS                        | 13C2-PFTeDA                  | 36.3               | 50 - 150            |
| PFTeDA                                  | 95.3                        | 80.0                      | 119         | 70 - 130             |                           |                              |                    |                     |

LCL-UCL - Lower control limit - upper control limit

Work Order 1700887 Page 7 of 20



| Sample ID:      | IRPSite 6-GW-06GW01- | -2017071 | 2            |          |            |          |                            | Modifie         | ed EPA Me   | ethod 537  |
|-----------------|----------------------|----------|--------------|----------|------------|----------|----------------------------|-----------------|-------------|------------|
| Client Data     |                      |          | Sample Data  |          | Lab        | oratory  | y Data                     |                 |             |            |
| Name:           | KMEA                 |          | Matrix:      | Aqueous  | La         | ıb Samp  | ole: 1700887-01            | Date Received:  | 15-Jul-2017 | 9:06       |
| Project:        | NSWC White Oak       |          | Sample Size: | 0.0834 L | Q          | C Batch  | B7G0079                    | Date Extracted: | 20-Jul-2017 | 11:18      |
| Date Collected: | 12-Jul-2017 9:30     |          |              |          | Da         | ate Anal | lyzed: 31-Jul-17 11:15 Col | lumn: BEH C18   |             |            |
| Location:       | IRP Site 6           |          |              |          |            |          | 31-Jul-17 15:06 Col        | lumn: BEH C18   |             |            |
| Analyte         | Conc. (ng/L)         | DL       | LOD          | LOQ      | Qualifiers |          | Labeled Standard           | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 4.56                 | 2.68     | 7.49         | 12.0     | J          | IS       | 13C3-PFBS                  | 105             | 50 - 150    |            |
| PFHxA           | 11.1                 | 3.27     | 7.49         | 12.0     | J          | IS       | 13C2-PFHxA                 | 94.0            | 50 - 150    |            |
| PFHpA           | 4.77                 | 0.886    | 7.49         | 12.0     | J          | IS       | 13C4-PFHpA                 | 99.5            | 50 - 150    |            |
| PFHxS           | 4.93                 | 1.42     | 7.49         | 12.0     | J          | IS       | 18O2-PFHxS                 | 94.1            | 50 - 150    |            |
| PFOA            | 11.3                 | 0.975    | 7.49         | 12.0     | J          | IS       | 13C2-PFOA                  | 84.9            | 50 - 150    |            |
| PFOS            | 5.47                 | 1.21     | 7.49         | 12.0     | J          | IS       | 13C8-PFOS                  | 88.6            | 50 - 150    |            |
| PFNA            | 1.27                 | 1.21     | 7.49         | 12.0     | J          | IS       | 13C5-PFNA                  | 84.4            | 50 - 150    |            |
| PFDA            | ND                   | 2.23     | 7.49         | 12.0     |            | IS       | 13C2-PFDA                  | 72.9            | 50 - 150    |            |
| MeFOSAA         | ND                   | 2.47     | 7.49         | 12.0     |            | IS       | d3-MeFOSAA                 | 58.5            | 50 - 150    |            |
| PFUnA           | ND                   | 1.57     | 7.49         | 12.0     |            | IS       | 13C2-PFUnA                 | 59.3            | 50 - 150    |            |
| EtFOSAA         | ND                   | 2.05     | 7.49         | 12.0     |            | IS       | d5-EtFOSAA                 | 59.3            | 50 - 150    |            |
| PFDoA           | ND                   | 1.19     | 7.49         | 12.0     |            | IS       | 13C2-PFDoA                 | 52.0            | 50 - 150    |            |
| PFTrDA          | ND                   | 0.740    | 7.49         | 12.0     |            | IS       | 13C2-PFTeDA                | 50.2            | 50 - 150    |            |
| PFTeDA          | ND                   | 1.13     | 7.49         | 12.0     |            |          |                            |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 8 of 20



| Sample ID:      | IRPSite 6-GW-06GW02 | -2017071 | 2            |          |            |          |                             | Modifie         | d EPA Me    | ethod 537  |
|-----------------|---------------------|----------|--------------|----------|------------|----------|-----------------------------|-----------------|-------------|------------|
| Client Data     |                     |          | Sample Data  |          | Lab        | oratory  | y Data                      |                 |             |            |
| Name:           | KMEA                |          | Matrix:      | Aqueous  | La         | b Samp   | ole: 1700887-02             | Date Received:  | 15-Jul-2017 | 9:06       |
| Project:        | NSWC White Oak      |          | Sample Size: | 0.0994 L | QC         | Batch    | : B7G0079                   | Date Extracted: | 20-Jul-2017 | 11:18      |
| Date Collected: | 12-Jul-2017 11:00   |          |              |          | Da         | ite Anal | lyzed: 31-Jul-17 11:27 Col- | umn: BEH C18    |             |            |
| Location:       | IRP Site 6          |          |              |          |            |          | 31-Jul-17 15:19 Col         | umn: BEH C18    |             |            |
| Analyte         | Conc. (ng/L)        | DL       | LOD          | LOQ      | Qualifiers |          | Labeled Standard            | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 21.8                | 2.25     | 6.29         | 10.1     |            | IS       | 13C3-PFBS                   | 123             | 50 - 150    |            |
| PFHxA           | 20.0                | 2.74     | 6.29         | 10.1     |            | IS       | 13C2-PFHxA                  | 97.9            | 50 - 150    |            |
| PFHpA           | 10.3                | 0.743    | 6.29         | 10.1     |            | IS       | 13C4-PFHpA                  | 99.2            | 50 - 150    |            |
| PFHxS           | 6.18                | 1.19     | 6.29         | 10.1     | J          | IS       | 18O2-PFHxS                  | 95.5            | 50 - 150    |            |
| PFOA            | 20.1                | 0.819    | 6.29         | 10.1     |            | IS       | 13C2-PFOA                   | 90.4            | 50 - 150    |            |
| PFOS            | 16.5                | 1.01     | 6.29         | 10.1     |            | IS       | 13C8-PFOS                   | 93.1            | 50 - 150    |            |
| PFNA            | 3.81                | 1.02     | 6.29         | 10.1     | J          | IS       | 13C5-PFNA                   | 89.4            | 50 - 150    |            |
| PFDA            | ND                  | 1.87     | 6.29         | 10.1     |            | IS       | 13C2-PFDA                   | 81.6            | 50 - 150    |            |
| MeFOSAA         | ND                  | 2.08     | 6.29         | 10.1     |            | IS       | d3-MeFOSAA                  | 65.1            | 50 - 150    |            |
| PFUnA           | ND                  | 1.32     | 6.29         | 10.1     |            | IS       | 13C2-PFUnA                  | 67.4            | 50 - 150    |            |
| EtFOSAA         | ND                  | 1.72     | 6.29         | 10.1     |            | IS       | d5-EtFOSAA                  | 66.6            | 50 - 150    |            |
| PFDoA           | ND                  | 0.996    | 6.29         | 10.1     |            | IS       | 13C2-PFDoA                  | 64.3            | 50 - 150    |            |
| PFTrDA          | ND                  | 0.621    | 6.29         | 10.1     |            | IS       | 13C2-PFTeDA                 | 51.1            | 50 - 150    |            |
| PFTeDA          | ND                  | 0.950    | 6.29         | 10.1     |            |          |                             |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 9 of 20



| Sample ID:      | IRPSite 6-GW-FRB01 | 1-20170712 |              |         |          |          |                              | Modifie         | ed EPA M    | ethod 537  |
|-----------------|--------------------|------------|--------------|---------|----------|----------|------------------------------|-----------------|-------------|------------|
| Client Data     |                    |            | Sample Data  |         | I        | aborator | ry Data                      |                 |             |            |
| Name:           | KMEA               |            | Matrix:      | Aqueous |          | Lab Sam  | ple: 1700887-03              | Date Received:  | 15-Jul-2017 | 7 9:06     |
| Project:        | NSWC White Oak     |            | Sample Size: | 0.114 L |          | QC Batcl | h: B7G0079                   | Date Extracted: | 20-Jul-2017 | 7 11:18    |
| Date Collected: | 12-Jul-2017 11:05  |            |              |         |          | Date Ana | alyzed: 31-Jul-17 11:40 Colu | ımn: BEH C18    |             |            |
| Location:       | IRP Site 6         |            |              |         |          |          | 31-Jul-17 15:32 Colu         | ımn: BEH C18    |             |            |
| Analyte         | Conc. (ng/L)       | DL         | LOD          | LOQ     | Qualific | ers      | Labeled Standard             | %R              | LCL-UCL     | Qualifiers |
| PFBS            | ND                 | 1.96       | 5.48         | 8.74    |          | IS       | 13C3-PFBS                    | 106             | 50 - 150    |            |
| PFHxA           | ND                 | 2.38       | 5.48         | 8.74    |          | IS       | 13C2-PFHxA                   | 101             | 50 - 150    |            |
| PFHpA           | ND                 | 0.645      | 5.48         | 8.74    |          | IS       | 13C4-PFHpA                   | 88.2            | 50 - 150    |            |
| PFHxS           | ND                 | 1.03       | 5.48         | 8.74    |          | IS       | 18O2-PFHxS                   | 94.7            | 50 - 150    |            |
| PFOA            | ND                 | 0.711      | 5.48         | 8.74    |          | IS       | 13C2-PFOA                    | 87.7            | 50 - 150    |            |
| PFOS            | ND                 | 0.881      | 5.48         | 8.74    |          | IS       | 13C8-PFOS                    | 107             | 50 - 150    |            |
| PFNA            | ND                 | 0.885      | 5.48         | 8.74    |          | IS       | 13C5-PFNA                    | 94.4            | 50 - 150    |            |
| PFDA            | ND                 | 1.63       | 5.48         | 8.74    |          | IS       | 13C2-PFDA                    | 80.5            | 50 - 150    |            |
| MeFOSAA         | ND                 | 1.80       | 5.48         | 8.74    |          | IS       | d3-MeFOSAA                   | 63.0            | 50 - 150    |            |
| PFUnA           | ND                 | 1.15       | 5.48         | 8.74    |          | IS       | 13C2-PFUnA                   | 66.7            | 50 - 150    |            |
| EtFOSAA         | ND                 | 1.50       | 5.48         | 8.74    |          | IS       | d5-EtFOSAA                   | 55.7            | 50 - 150    |            |
| PFDoA           | ND                 | 0.865      | 5.48         | 8.74    |          | IS       | 13C2-PFDoA                   | 66.2            | 50 - 150    |            |
| PFTrDA          | ND                 | 0.540      | 5.48         | 8.74    |          | IS       | 13C2-PFTeDA                  | 59.0            | 50 - 150    |            |
| PFTeDA          | ND                 | 0.825      | 5.48         | 8.74    |          |          |                              |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 10 of 20



| Sample ID:      | Site 33-GW-33GW01-20170 | 712   |              |         |         |       |        |                              | Modifie         | ed EPA Mo   | ethod 537  |
|-----------------|-------------------------|-------|--------------|---------|---------|-------|--------|------------------------------|-----------------|-------------|------------|
| Client Data     |                         |       | Sample Data  |         | I       | Labor | atory  | <sup>7</sup> Data            |                 |             |            |
| Name:           | KMEA                    |       | Matrix:      | Aqueous |         | Lab   | Samp   | le: 1700887-04               | Date Received:  | 15-Jul-2017 | 9:06       |
| Project:        | NSWC White Oak          |       | Sample Size: | 0.121 L |         | QC I  | Batch: | : B7G0079                    | Date Extracted: | 20-Jul-2017 | 11:18      |
| Date Collected: | 12-Jul-2017 15:30       |       |              |         |         | Date  | Analy  | yzed: 31-Jul-17 11:52 Column | n: BEH C18      |             |            |
| Location:       | Site 33                 |       |              |         |         |       |        | 31-Jul-17 15:44 Columi       | n: BEH C18      |             |            |
| Analyte         | Conc. (ng/L)            | DL    | LOD          | LOQ     | Qualifi | ers   |        | Labeled Standard             | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 10.7                    | 1.85  | 5.17         | 8.28    |         |       | IS     | 13C3-PFBS                    | 110             | 50 - 150    |            |
| PFHxA           | 68.1                    | 2.26  | 5.17         | 8.28    |         |       | IS     | 13C2-PFHxA                   | 95.7            | 50 - 150    |            |
| PFHpA           | 8.36                    | 0.611 | 5.17         | 8.28    |         |       | IS     | 13C4-PFHpA                   | 99.8            | 50 - 150    |            |
| PFHxS           | 155 (                   | 0.980 | 5.17         | 8.28    |         |       | IS     | 18O2-PFHxS                   | 93.3            | 50 - 150    |            |
| PFOA            | 90.6                    | 0.674 | 5.17         | 8.28    |         |       | IS     | 13C2-PFOA                    | 88.9            | 50 - 150    |            |
| PFOS            | 28.1                    | 0.835 | 5.17         | 8.28    |         |       | IS     | 13C8-PFOS                    | 96.2            | 50 - 150    |            |
| PFNA            | 1.42                    | 0.838 | 5.17         | 8.28    | J       |       | IS     | 13C5-PFNA                    | 83.7            | 50 - 150    |            |
| PFDA            | ND                      | 1.54  | 5.17         | 8.28    |         |       | IS     | 13C2-PFDA                    | 81.1            | 50 - 150    |            |
| MeFOSAA         | ND                      | 1.71  | 5.17         | 8.28    |         |       | IS     | d3-MeFOSAA                   | 65.7            | 50 - 150    |            |
| PFUnA           | ND                      | 1.09  | 5.17         | 8.28    |         |       | IS     | 13C2-PFUnA                   | 70.9            | 50 - 150    |            |
| EtFOSAA         | ND                      | 1.42  | 5.17         | 8.28    |         |       | IS     | d5-EtFOSAA                   | 63.8            | 50 - 150    |            |
| PFDoA           | ND (                    | 0.819 | 5.17         | 8.28    |         |       | IS     | 13C2-PFDoA                   | 68.6            | 50 - 150    |            |
| PFTrDA          | ND (                    | 0.511 | 5.17         | 8.28    |         |       | IS     | 13C2-PFTeDA                  | 58.5            | 50 - 150    |            |
| PFTeDA          | ND (                    | 0.781 | 5.17         | 8.28    |         |       |        |                              |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 11 of 20



| Sample ID:      | Building 110-GW-110GV | W01-2017 | 70712        |         |            |          |                           | Modifie         | d EPA M     | ethod 537  |
|-----------------|-----------------------|----------|--------------|---------|------------|----------|---------------------------|-----------------|-------------|------------|
| Client Data     |                       |          | Sample Data  |         | Lal        | oratory  | <b>Data</b>               |                 |             |            |
| Name:           | KMEA                  |          | Matrix:      | Aqueous | L          | ab Samp  | ole: 1700887-05           | Date Received:  | 15-Jul-2017 | 9:06       |
| Project:        | NSWC White Oak        |          | Sample Size: | 0.118 L | Q          | C Batch  | : B7G0079                 | Date Extracted: | 20-Jul-2017 | 7 11:18    |
| Date Collected: | 12-Jul-2017 12:45     |          |              |         | D          | ate Anal | yzed: 31-Jul-17 12:05 Col | umn: BEH C18    |             |            |
| Location:       | Building 110          |          |              |         |            |          | 31-Jul-17 15:57 Col       | umn: BEH C18    |             |            |
| Analyte         | Conc. (ng/L)          | DL       | LOD          | LOQ     | Qualifiers |          | Labeled Standard          | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 39.2                  | 1.90     | 5.30         | 8.49    |            | IS       | 13C3-PFBS                 | 103             | 50 - 150    |            |
| PFHxA           | 120                   | 2.31     | 5.30         | 8.49    |            | IS       | 13C2-PFHxA                | 92.3            | 50 - 150    |            |
| PFHpA           | 17.6                  | 0.627    | 5.30         | 8.49    |            | IS       | 13C4-PFHpA                | 93.1            | 50 - 150    |            |
| PFHxS           | 610                   | 1.01     | 5.30         | 8.49    |            | IS       | 18O2-PFHxS                | 91.2            | 50 - 150    |            |
| PFOA            | 135                   | 0.691    | 5.30         | 8.49    |            | IS       | 13C2-PFOA                 | 88.3            | 50 - 150    |            |
| PFOS            | 1230                  | 4.28     | 26.5         | 42.5    | D          | IS       | 13C8-PFOS                 | 101             | 50 - 150    | D          |
| PFNA            | ND                    | 0.860    | 5.30         | 8.49    |            | IS       | 13C5-PFNA                 | 76.1            | 50 - 150    |            |
| PFDA            | ND                    | 1.58     | 5.30         | 8.49    |            | IS       | 13C2-PFDA                 | 73.8            | 50 - 150    |            |
| MeFOSAA         | ND                    | 1.75     | 5.30         | 8.49    |            | IS       | d3-MeFOSAA                | 57.3            | 50 - 150    |            |
| PFUnA           | ND                    | 1.11     | 5.30         | 8.49    |            | IS       | 13C2-PFUnA                | 59.6            | 50 - 150    |            |
| EtFOSAA         | ND                    | 1.45     | 5.30         | 8.49    |            | IS       | d5-EtFOSAA                | 65.2            | 50 - 150    |            |
| PFDoA           | ND                    | 0.841    | 5.30         | 8.49    |            | IS       | 13C2-PFDoA                | 58.5            | 50 - 150    |            |
| PFTrDA          | ND                    | 0.524    | 5.30         | 8.49    |            | IS       | 13C2-PFTeDA               | 53.3            | 50 - 150    |            |
| PFTeDA          | ND                    | 0.801    | 5.30         | 8.49    |            |          |                           |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 12 of 20



| Sample ID:      | IRPSite 6-GW-06FD01-2 | 20170712 |              |         |          |          |                             | Modifie         | ed EPA Me   | ethod 537  |
|-----------------|-----------------------|----------|--------------|---------|----------|----------|-----------------------------|-----------------|-------------|------------|
| Client Data     |                       |          | Sample Data  |         | L        | aborator | y Data                      |                 |             |            |
| Name:           | KMEA                  |          | Matrix:      | Aqueous |          | Lab Samp | ole: 1700887-06             | Date Received:  | 15-Jul-2017 | 7 9:06     |
| Project:        | NSWC White Oak        |          | Sample Size: | 0.106 L |          | QC Batch | B7G0079                     | Date Extracted: | 20-Jul-2017 | 7 11:18    |
| Date Collected: | 12-Jul-2017 11:10     |          |              |         |          | Date Ana | lyzed: 31-Jul-17 12:30 Col- | umn: BEH C18    |             |            |
| Location:       | Duplicate             |          |              |         |          |          | 31-Jul-17 16:09 Col         | umn: BEH C18    |             |            |
| Analyte         | Conc. (ng/L)          | DL       | LOD          | LOQ     | Qualifie | rs       | Labeled Standard            | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 21.7                  | 2.11     | 5.90         | 9.44    |          | IS       | 13C3-PFBS                   | 116             | 50 - 150    |            |
| PFHxA           | 17.6                  | 2.57     | 5.90         | 9.44    |          | IS       | 13C2-PFHxA                  | 103             | 50 - 150    |            |
| PFHpA           | 9.00                  | 0.697    | 5.90         | 9.44    | J        | IS       | 13C4-PFHpA                  | 106             | 50 - 150    |            |
| PFHxS           | 5.70                  | 1.12     | 5.90         | 9.44    | J        | IS       | 18O2-PFHxS                  | 93.8            | 50 - 150    |            |
| PFOA            | 20.6                  | 0.768    | 5.90         | 9.44    |          | IS       | 13C2-PFOA                   | 99.9            | 50 - 150    |            |
| PFOS            | 13.5                  | 0.952    | 5.90         | 9.44    |          | IS       | 13C8-PFOS                   | 91.3            | 50 - 150    |            |
| PFNA            | 2.80                  | 0.956    | 5.90         | 9.44    | J        | IS       | 13C5-PFNA                   | 90.7            | 50 - 150    |            |
| PFDA            | ND                    | 1.76     | 5.90         | 9.44    |          | IS       | 13C2-PFDA                   | 87.0            | 50 - 150    |            |
| MeFOSAA         | ND                    | 1.95     | 5.90         | 9.44    |          | IS       | d3-MeFOSAA                  | 59.7            | 50 - 150    |            |
| PFUnA           | ND                    | 1.24     | 5.90         | 9.44    |          | IS       | 13C2-PFUnA                  | 69.0            | 50 - 150    |            |
| EtFOSAA         | ND                    | 1.62     | 5.90         | 9.44    |          | IS       | d5-EtFOSAA                  | 66.6            | 50 - 150    |            |
| PFDoA           | ND                    | 0.935    | 5.90         | 9.44    |          | IS       | 13C2-PFDoA                  | 63.1            | 50 - 150    |            |
| PFTrDA          | ND                    | 0.583    | 5.90         | 9.44    |          | IS       | 13C2-PFTeDA                 | 50.9            | 50 - 150    |            |
| PFTeDA          | ND                    | 0.891    | 5.90         | 9.44    |          |          |                             |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 13 of 20

### **DATA QUALIFIERS & ABBREVIATIONS**

| В     | This compound was also detected in the method blank.                                    |
|-------|-----------------------------------------------------------------------------------------|
| D     | Dilution                                                                                |
| E     | The associated compound concentration exceeded the calibration range of the instrument. |
| Н     | Recovery and/or RPD was outside laboratory acceptance limits.                           |
| I     | Chemical Interference                                                                   |
| J     | The amount detected is below the Reporting Limit/LOQ.                                   |
| M     | Estimated Maximum Possible Concentration. (CA Region 2 projects only)                   |
| *     | See Cover Letter                                                                        |
| Conc. | Concentration                                                                           |
| NA    | Not applicable                                                                          |
| ND    | Not Detected                                                                            |
| TEQ   | Toxic Equivalency                                                                       |

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1700887 Page 14 of 20

### **CERTIFICATIONS**

| Accrediting Authority                               | <b>Certificate Number</b> |
|-----------------------------------------------------|---------------------------|
| Arkansas Department of Environmental Quality        | 17-015-0                  |
| California Department of Health – ELAP              | 2892                      |
| DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005     | 3091.01                   |
| Florida Department of Health                        | E87777-18                 |
| Hawaii Department of Health                         | N/A                       |
| Louisiana Department of Environmental Quality       | 01977                     |
| Maine Department of Health                          | 2016026                   |
| Minnesota Department of Health                      | 1175673                   |
| Nevada Division of Environmental Protection         | CA004132017-1             |
| New Hampshire Environmental Accreditation Program   | 207716                    |
| New Jersey Department of Environmental Protection   | CA003                     |
| New York Department of Health                       | 11411                     |
| Oregon Laboratory Accreditation Program             | 4042-008                  |
| Pennsylvania Department of Environmental Protection | 013                       |
| Texas Commission on Environmental Quality           | T104704189-17-8           |
| Virginia Department of General Services             | 8621                      |
| Washington Department of Ecology                    | C584                      |
| Wisconsin Department of Natural Resources           | 998036160                 |

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1700887 Page 15 of 20

### **NELAP Accredited Test Methods**

| MATRIX: Air                                                  |        |
|--------------------------------------------------------------|--------|
| Description of Test                                          | Method |
| Determination of Polychlorinated p-Dioxins & Polychlorinated | EPA 23 |
| Dibenzofurans                                                |        |

| MATRIX: Biological Tissue                                              |             |
|------------------------------------------------------------------------|-------------|
| Description of Test                                                    | Method      |
| Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope          | EPA 1613B   |
| Dilution GC/HRMS                                                       |             |
| Brominated Diphenyl Ethers by HRGC/HRMS                                | EPA 1614A   |
| Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue    | EPA 1668A/C |
| by GC/HRMS                                                             |             |
| Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by          | EPA 1699    |
| HRGC/HRMS                                                              |             |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS       | EPA 537     |
| Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by | EPA 8280A/B |
| GC/HRMS                                                                |             |
| Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated             | EPA         |
| Dibenzofurans (PCDFs) by GC/HRMS                                       | 8290/8290A  |

| MATRIX: Drinking Water                                           |          |
|------------------------------------------------------------------|----------|
| Description of Test                                              | Method   |
| 2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS      | EPA 1613 |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537  |

| MATRIX: Non-Potable Water                                               |             |
|-------------------------------------------------------------------------|-------------|
| Description of Test                                                     | Method      |
| Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope           | EPA 1613B   |
| Dilution GC/HRMS                                                        |             |
| Brominated Diphenyl Ethers by HRGC/HRMS                                 | EPA 1614A   |
| Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue     | EPA 1668A/C |
| by GC/HRMS                                                              |             |
| Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS | EPA 1699    |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS        | EPA 537     |
| Dioxin by GC/HRMS                                                       | EPA 613     |
| Polychlorinated Dibenzo-p-Dioxins and Polychlorinated                   | EPA 8280A/B |
| Dibenzofurans by GC/HRMS                                                |             |
| Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated              | EPA         |
| Dibenzofurans (PCDFs) by GC/HRMS                                        | 8290/8290A  |

| MATRIX: Solids                                                        |           |
|-----------------------------------------------------------------------|-----------|
| Description of Test                                                   | Method    |
| Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS | EPA 1613  |
| Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope         | EPA 1613B |

Work Order 1700887 Page 16 of 20

| Dilution GC/HRMS                                                    |             |
|---------------------------------------------------------------------|-------------|
| Brominated Diphenyl Ethers by HRGC/HRMS                             | EPA 1614A   |
| Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C |
| by GC/HRMS                                                          |             |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS    | EPA 537     |
| Polychlorinated Dibenzo-p-Dioxins and Polychlorinated               | EPA 8280A/B |
| Dibenzofurans by GC/HRMS                                            |             |
| Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated          | EPA         |
| Dibenzofurans (PCDFs) by GC/HRMS                                    | 8290/8290A  |

Work Order 1700887 Page 17 of 20



## **CHAIN OF CUSTODY**

| For Laboratory Use Only | 07             |           | 07       |    |
|-------------------------|----------------|-----------|----------|----|
| Laboratory Project ID:  | <del>20+</del> | Temp:     | 0.7      | °C |
| Storage ID: WR-2        | Storage Se     | ecured: Y | Yes 🖪 No |    |

| Andrytical Eab                                                            | oratory                        |         |                                            |          |             |            |         |                        |       |         |                     |               |                                                |                    | Stora        | ge ID:                      |                                            | VVK                        | -             |                                         |                   | _ Storage     | Secure                  | d: Yes [       | No 🗌     |
|---------------------------------------------------------------------------|--------------------------------|---------|--------------------------------------------|----------|-------------|------------|---------|------------------------|-------|---------|---------------------|---------------|------------------------------------------------|--------------------|--------------|-----------------------------|--------------------------------------------|----------------------------|---------------|-----------------------------------------|-------------------|---------------|-------------------------|----------------|----------|
| Project ID: NSWC 1                                                        | white 1                        | OalC    | PO#: <u>TO 0</u> 0                         | 8        |             |            | _San    | mpler: _               | Die   | go      | Gov<br>(na          | <b>(₹-(</b> ( | ٠ ٢                                            | _                  |              |                             | TAT<br>(chec                               | k one)                     |               |                                         |                   | ge may a      | days<br>pply)<br>ays Sp | pecify.        | 10de     |
| Invoice to: Name                                                          |                                | Compan  | у                                          |          | Addı        | ress       |         | •                      |       |         |                     |               |                                                |                    | City         |                             |                                            |                            | St            | ate                                     |                   | Ph#           |                         | Fax#           |          |
|                                                                           |                                | Amec To | Her Wheeler ESI, I                         | nc.      | 0           | 7210       | SI      | ky Pa                  | rK    | 60      | + 11                |               | (                                              | an.                | Die          | eu                          |                                            | CA                         |               |                                         | 15                | 53)63         | a-31                    | 400            |          |
| Relinquished by (printed nam                                              |                                |         | Date                                       |          | Time        | 9          |         | Receiv                 | ed b  | y (pri  | nted na             | ame a         | nd sig                                         | natu               | re)          | 2                           |                                            |                            |               |                                         | (-                | Date          |                         | Time           |          |
| Diego Gonz                                                                | alez                           | he      | 7/14/1                                     | 7        | 10          | 15         |         |                        |       | Fe      | d E                 | X             |                                                |                    |              |                             |                                            |                            |               |                                         |                   |               |                         |                |          |
| Relinquished by (printed named Fe                                         | e and signa                    | ture)   | Date 07/15/1                               | 7        | Time<br>OQE |            | 1.      | Received to the second | red b | y (prin | nted na             | ame a         | nd sig                                         | natu               | en<br>en     | de                          | čł                                         | ,                          |               |                                         | 0                 | Date 7/15/    |                         | Time           |          |
| SHIP TO: Vista Analytical 1104 Windfield VEI Dorado Hills, (916) 673-1520 | Vay<br>CA 95762<br>* Fax (916) |         | Method of Shipment: Fed Ex Tracking No.:   | Add      |             | ainer(     | s)      |                        | 18/   | A A A   |                     |               | 06.59 K.                                       | \\ \frac{\xi}{\xi} | 1            | 000 A                       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\     | Finers FD <sub>A</sub> 186 | */            | \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | /                 | S.S. P.F.B.S. | /                       |                |          |
| Sample ID                                                                 | Date                           | Time    | Location/Sample Description                | - / 3    |             | Water Land |         |                        | 1000  |         | 15 100 15 50 S      |               | 30 / R. S. |                    | 10 m         | 3/3                         | 200 S. | Salas Jager                | IN            |                                         | 24 S              | Con           | nments                  | s              |          |
| TRP <u>Sik 6-6W-066W01</u><br>-20170712                                   | 7117                           | 0930    | IRP Site 6                                 | Z        | P           | AQ         |         |                        | -     |         |                     |               |                                                |                    |              |                             |                                            |                            | 1             | X                                       |                   |               |                         |                |          |
| RPSIEB-6W-066W &                                                          | 7172                           | 1100    | IRPS.te 6                                  | 2        | P           | AQ         |         |                        | #     |         |                     |               |                                                |                    |              |                             |                                            |                            | +             | X                                       |                   |               |                         |                |          |
| DRPSILG - SW-FRBOI -20170712                                              | 7117                           | 1105    | IRP Sike6                                  | 2        | P           | AQ         |         |                        | 1     |         |                     |               |                                                |                    |              |                             |                                            | 1                          |               | X                                       |                   |               |                         |                |          |
| 5123-6W-336W01<br>-20170712                                               | 7/12                           | 1530    | Site 33                                    | 2        | 7           | AQ         |         |                        | #     |         |                     |               |                                                |                    |              |                             |                                            |                            |               | X                                       |                   |               |                         |                |          |
| Building 110-GW-110GWO<br>-20170712                                       | 1712                           | 1245    | Building 110                               | 2        | P           | A          |         |                        | +     |         |                     |               |                                                |                    |              |                             |                                            |                            |               | X                                       |                   |               |                         |                |          |
|                                                                           | 6W01                           | - has   | one Full bottle and<br>Vista and confirmed | ang      | ر ا         | 90         | 70 F    | ــ<br>ااح              |       |         | SEN<br>UMEN<br>RESU | TATI          |                                                | (                  | Comp<br>Addr | any: _<br>ess: _<br>City: _ | Au<br>9:                                   | 7                          | joste<br>ky i | r luh<br>Parm                           | eeley<br>(au<br>S | larie i       | 7                       | ev<br>(ip:_ 92 | -123     |
|                                                                           |                                |         | -D-2405                                    |          |             |            |         | _                      |       |         |                     |               |                                                |                    |              |                             |                                            | ora, h                     |               |                                         | -                 |               | narie.                  | bevier 6       | Pamae Gu |
| Container Types: P= HDPE, P.                                              | I= HDPE Jar                    |         | Bottle Preserva                            | ition Ty | pe: T       | = Thio:    | sulfate | e,                     |       | М       | atrix Ty            | /pes:         | AQ =                                           | Aque               | ous, D       | W = D                       | rinkin                                     | g Water                    | r, EF =       | Effluer                                 | nt, PP            | = Pulp/Pap    | per, SD                 | = Sedim        | ent,     |
| O = Other:                                                                |                                |         | TZ = Trizma:                               |          |             |            |         |                        |       |         |                     |               |                                                |                    |              |                             |                                            | 3 = Bloc                   |               |                                         |                   |               |                         |                |          |

r 1700887 IRP-FDOI - 1110

TOD FERCH - LLUX

Page 18 of 20



## **CHAIN OF CUSTODY**

| For Laboratory Use Only       |                  | -07        |   |
|-------------------------------|------------------|------------|---|
| Laboratory Project ID: 170087 | Temp:            | 017        | 5 |
| Storage ID: WR-2              | Storage Secured: | Yes 🗗 No 🗆 |   |

|                                                                                              |                                                  |              |                                            |          |                                        |          |                     |                                        |              |                |                                                 |                                        |         |        | -3-                                                      |                 |               |                  |         |                                          |                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .go ooaa   |                     |       |
|----------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------|----------|----------------------------------------|----------|---------------------|----------------------------------------|--------------|----------------|-------------------------------------------------|----------------------------------------|---------|--------|----------------------------------------------------------|-----------------|---------------|------------------|---------|------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|-------|
| Project ID: NSW( (                                                                           | Uhite.                                           | Oak          | PO#: TO 008                                | į        |                                        |          | Samp                | oler: _                                | <b>D</b> . ( | Gen            | <del>کو (د</del>                                | 2-<br>ne)                              |         |        | _                                                        | TA<br>(che      | T<br>eck o    | ne):             |         | -                                        |                                         | rge may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                     | 100   |
| Invoice to: Name                                                                             |                                                  | Compan       | у                                          |          | Addr                                   | ess      |                     |                                        |              |                |                                                 |                                        |         | Cit    | у                                                        |                 |               |                  | Sta     |                                          |                                         | Ph#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,-         | Fax#                |       |
|                                                                                              | Am                                               | c Foste      | Wheeler E3I                                |          | 921                                    | 05       | 47                  | -t                                     | Cont         | 4              |                                                 |                                        | Sai     | nD     | ice                                                      | 0               |               |                  | CA      | -                                        | ,                                       | (02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 639-       | 3400                | · ·   |
| Relinquished by (printed name                                                                |                                                  |              | Date                                       |          | Time                                   |          |                     |                                        | ved by       |                | ed nar                                          | ne and                                 | signa   | ature) |                                                          | 5               |               |                  |         |                                          | (                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate        | Time                |       |
| Dingo barales                                                                                | 2                                                | 7/           | 7/14/13                                    | +        | 10                                     | 15       |                     |                                        |              | Fe             | dE                                              | ×                                      |         |        |                                                          |                 |               |                  |         |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.2       |                     |       |
| Relinquished by (printed name                                                                | _                                                |              | Date                                       |          | Time                                   |          | \ F                 | Receiv                                 | ved by       | (print         | ed nar                                          | ne and                                 | d signa | ature) | 1                                                        |                 |               |                  |         |                                          |                                         | Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ate 1      | Time                |       |
| Fe                                                                                           | aEx                                              |              | 07/15/17                                   |          | 240                                    | 6        | Ya                  | 64                                     | H            | Shu            | ed                                              | i                                      | 1       | DI     | ren                                                      | ede             | Č             | 4                |         |                                          |                                         | 07/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/17       | 09                  | 09    |
| SHIP TO: Vista Analytical La<br>1104 Windfield W<br>El Dorado Hills, C<br>(916) 673-1520 * I | ay<br>A 95762<br>Fax (916) 6                     |              | Method of Shipment:                        |          |                                        | is(es) l | Reques              | /                                      |              | Epg 7673       |                                                 | Z. Z.                                  |         |        | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | /               |               | - 1600<br>- 1700 | /4      | A 1614                                   | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | A PARTY OF THE PROPERTY OF THE | M. J.      |                     |       |
| ATTN: Karen L. V.                                                                            | Date                                             | Time         | Tracking No.:  Location/Sample Description | Origini  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Metric   | 23.86.5<br>20.00.00 |                                        |              |                | 40 LOO 1.00 00 00 00 00 00 00 00 00 00 00 00 00 | 437 50 K                               |         |        | SH 8                                                     | 200 PLAWAR P.C. | Ser Compenses | 2 / W            |         | % / S. / S |                                         | /. /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /          | . No                |       |
| **                                                                                           | 7/12                                             |              |                                            | 2        |                                        | 1        |                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2 (          | <del>*/*</del> | 100                                             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ₹/      | Q / K  | 7                                                        | 1               | ( v           | Q                | 1 2     | V                                        | 7                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ommer      | its                 |       |
| sitelo-Gw. obfdul                                                                            | 7112                                             | luo          | Duplicate                                  | 10       | P                                      | AC       | K                   | -                                      | +            | +              | +                                               | $\vdash$                               | +       | +      | +-                                                       | +               | ├             | $\vdash$         | 1       | ^                                        | -                                       | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                     |       |
| 215071                                                                                       | <del>                                     </del> | <del> </del> | 1                                          | ├        |                                        |          | $\vdash$            | -                                      | -            | -              | -                                               | $\vdash$                               | +       |        | +                                                        | $\vdash$        | _             | _                | _       |                                          | -                                       | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                     |       |
|                                                                                              | -                                                | -            |                                            | -        |                                        |          | -                   | _                                      | $\perp$      | +              |                                                 | $\vdash$                               | _       |        | _                                                        |                 | _             | 1                | _       | _                                        | _                                       | ┼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                     |       |
|                                                                                              |                                                  | ļ            |                                            | ╙        |                                        |          |                     |                                        |              |                |                                                 |                                        | _       | _      | $\perp$                                                  | $\perp$         |               |                  | $\perp$ | L                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                     |       |
|                                                                                              |                                                  |              |                                            |          |                                        |          |                     |                                        |              |                |                                                 |                                        |         |        |                                                          |                 |               |                  |         |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                     |       |
|                                                                                              |                                                  |              |                                            |          |                                        |          |                     |                                        |              |                |                                                 |                                        |         |        |                                                          |                 |               |                  |         |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                     |       |
|                                                                                              |                                                  |              |                                            |          |                                        |          |                     |                                        |              |                |                                                 |                                        |         |        | Т                                                        |                 |               | П                | Π       | Π                                        | Π                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                     |       |
|                                                                                              |                                                  |              |                                            |          |                                        |          |                     |                                        |              |                |                                                 | П                                      |         | $\top$ | $\top$                                                   | $\top$          | $\vdash$      |                  |         | Т                                        | Τ                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                     |       |
|                                                                                              |                                                  |              |                                            | $\vdash$ |                                        |          |                     | $\dashv$                               | $\vdash$     | $\top$         |                                                 | $\Box$                                 | $\top$  | +      | $\top$                                                   | $\vdash$        |               | T                | 1       |                                          | t                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                     |       |
| .,                                                                                           | 1                                                |              |                                            | $\vdash$ |                                        |          | $\vdash$            |                                        | +            | +              | -                                               |                                        | +       | +      | +                                                        | +               | $\vdash$      | $\vdash$         | +       | $\vdash$                                 | $\vdash$                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | or collect a supply |       |
|                                                                                              | 1                                                |              |                                            |          |                                        |          |                     |                                        |              |                |                                                 |                                        |         |        |                                                          | 1               | <u> </u>      |                  |         | <u> </u>                                 |                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                     |       |
| Special Instructions/Comments:                                                               | TER                                              | site 6       | Duplicate                                  |          |                                        |          |                     |                                        |              |                | SEND                                            | )                                      |         |        |                                                          |                 |               |                  | -       |                                          |                                         | lavie &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                     |       |
|                                                                                              |                                                  |              |                                            |          |                                        |          |                     |                                        |              | DOCU           | MENT                                            | ATIO                                   |         |        | npany                                                    |                 |               |                  |         |                                          |                                         | er Est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · <u> </u> |                     |       |
|                                                                                              |                                                  |              |                                            |          |                                        |          |                     |                                        | •            | יוים וי        | LOOL                                            |                                        | •       | , ,0   | City                                                     |                 | 5             |                  |         |                                          |                                         | State: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A          | Zip: 97             | 123   |
|                                                                                              |                                                  |              |                                            |          |                                        |          |                     |                                        |              |                |                                                 |                                        |         |        | Phone                                                    | : 50            | 3 -           | 630              | 1-3     |                                          | د                                       | Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                     |       |
|                                                                                              |                                                  |              |                                            |          |                                        |          |                     |                                        |              |                |                                                 |                                        |         |        | Emai                                                     | : Me            | lora          | مدما.            | hlad    | aun                                      | ech                                     | J. (an)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | novie.     | beviere             | amecP |
| Container Types: P= HDPE, PJ=                                                                | HDPE Jar                                         |              | Bottle Preservat                           | ion Ty   | pe: T                                  | = Thios  | sulfate,            |                                        |              |                | to the contract of the                          |                                        |         |        |                                                          |                 |               |                  |         |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paper, S   | D = Sedim           | ent,  |
| O = Other:                                                                                   |                                                  |              | TZ = Trizma:                               |          |                                        |          |                     |                                        |              | SL:            | = Sludg                                         | ge, SO                                 | = Soil, | WW =   | Waste                                                    | ewater          | , B =         | Blood            | /Seru   | m, O :                                   | = Oth                                   | er:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                     |       |



### Sample Log-in Checklist

| Vista Work Orde   | er #:           | 17008          | 387              |       | TAT_          | 14       |          | _                 |  |  |
|-------------------|-----------------|----------------|------------------|-------|---------------|----------|----------|-------------------|--|--|
| Samples           | Date/Time       |                | Initials:        | 1     | Location:     | WR-      | 2        |                   |  |  |
| Arrival:          | 07/15/17        | 0904           | USA              | 1/5   | Shelf/Rac     | k:_W     | A        |                   |  |  |
|                   | Date/Time       | ( ===          | Initials:        |       | Location:     | l        | UR       | 7                 |  |  |
| Logged In:        | 07/15/17        | 131+           | BUB              |       | Shelf/Rac     | k:       | B6       |                   |  |  |
| Delivered By:     | FedEx           | JPS On Tra     | ac GSO           | DHL   | Har<br>Delive |          | Oth      | ner               |  |  |
| Preservation:     | Ice             | ) Bli          | ue Ice           |       | Dry Ice       |          | None     |                   |  |  |
| Temp °C: ()       | (corrected      | 7              | 912<br>ed: Yes 1 | lo□   | Thermome      | eter ID: | DT-3     |                   |  |  |
| Temp C Or         | .7 (corrected   | 1)             |                  |       |               |          |          |                   |  |  |
|                   |                 |                |                  |       |               | YES      | NO       | NA                |  |  |
| Adequate Samp     | le Volume Red   | eived?         | 18               |       |               | V        |          |                   |  |  |
| Holding Time Ad   | cceptable?      |                |                  |       |               | /        |          |                   |  |  |
| Shipping Contain  | ner(s) Intact?  |                |                  |       |               | V        |          |                   |  |  |
| Shipping Custoo   | ly Seals Intact | ?              |                  |       |               |          |          | V                 |  |  |
| Shipping Docum    |                 |                |                  |       |               | 1        |          |                   |  |  |
| Airbill           | Trk#            | 7796 35        | 86 310           | 13    |               | V        |          |                   |  |  |
| Sample Contain    | er Intact?      |                |                  |       |               | V        | <u> </u> |                   |  |  |
| Sample Custody    | Seals Intact?   |                |                  |       |               |          |          |                   |  |  |
| Chain of Custod   | y / Sample Do   | cumentation Pr | resent?          |       |               | V        |          |                   |  |  |
| COC Anomaly/S     | ample Accept    | ance Form com  | npleted?         |       |               |          |          |                   |  |  |
| If Chlorinated or | Drinking Wate   | r Samples, Ac  | ceptable Pre     | serva | tion?         |          |          |                   |  |  |
| Preservation Do   |                 | $Na_2S_2O_3$   | Trizma           |       | None          | Yes      | No       | NA                |  |  |
| Shipping Contain  | ner             | Vista          | Client           | Re    | etain R       | eturn    | Disp     | oose              |  |  |
| Comments: Sai     | nples I         | RPSik6-        | GW-066           | WOI   | -201707       | 42)      | AU H     | hese sa<br>partic |  |  |
|                   | 9               | (SA)           |                  |       |               |          | herre    | partic            |  |  |
|                   |                 | k33-GW-1       |                  |       |               |          | Prese    | ent.              |  |  |
|                   |                 | De le 6-GW     |                  |       |               |          |          |                   |  |  |

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1



August 01, 2017

### Vista Work Order No. 1700887

Ms. Nia Nikmanesh KMEA 2423 Hoover Avenue National City, CA 91950

Dear Ms. Nikmanesh,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 15, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'NSWC White Oak'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier

Laboratory Director

Karing. Volpend gta for



Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph; 916-673-1520 fx; 916-673-0106 www.vista-analytical.com

Work Order 1700887 Page 1 of 316

### Vista Work Order No. 1700887 Case Narrative

#### **Sample Condition on Receipt:**

Six aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

### **Analytical Notes:**

### **Modified EPA Method 537**

The chemist noted that samples "IRPSite 6-GW-06GW01-20170712", "IRPSite 6-GW-06GW02-20170712", "Site 33-GW-33GW01-20170712", "Building 110-GW-110GW01-20170712", and "IRPSite 6-GW-06FD01-20170712" had a thick layer of particulate and were centrifuged prior to extraction. The chemist also noted that a limited amount of sample volume was left after centrifuging for samples "IRPSite 6-GW-06GW01-20170712" and "IRPSite 6-GW-06GW02-20170712".

The samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

### **Holding Times**

The samples were extracted and analyzed within the method hold times.

### **Quality Control**

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The labeled standard 13C2-PFTeDA in the OPR was below the method acceptance criteria at 36.3%. All other OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

### QC Anomalies

| LabNumber    | SampleName   | Analysis                | Analyte     | Flag | %Rec |
|--------------|--------------|-------------------------|-------------|------|------|
| B7G0079-BLK1 | B7G0079-BLK1 | Modified EPA Method 537 | 13C2-PFTeDA | Н    | 45.1 |
| B7G0079-BS1  | B7G0079-BS1  | Modified EPA Method 537 | 13C2-PFTeDA | Н    | 36.3 |

H = Recovery was outside laboratory acceptance criteria.

Work Order 1700887 Page 2 of 316

### TABLE OF CONTENTS

| Case Narrative                        | 1   |
|---------------------------------------|-----|
| Table of Contents                     | 3   |
| Sample Inventory                      | 4   |
| Analytical Results                    | 5   |
| Qualifiers                            | 14  |
| Certifications                        | 15  |
| Sample Receipt                        | 18  |
| Extraction Information                | 21  |
| Sample Data - Modified EPA Method 537 | 26  |
| Continuing Calibration                | 142 |
| Initial Calibration                   | 173 |

Work Order 1700887 Page 3 of 316

# **Sample Inventory Report**

| Client<br>Sample ID                 | Sampled                                                                                                                                                          | Received                                                                                                                                                                                                                                                                                                                        | Components/Containers                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IRPSite 6-GW-06GW01-20170712        | 12-Jul-17 09:30                                                                                                                                                  | 15-Jul-17 09:06                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IRPSite 6-GW-06GW02-20170712        | 12-Jul-17 11:00                                                                                                                                                  | 15-Jul-17 09:06                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IRPSite 6-GW-FRB01-20170712         | 12-Jul-17 11:05                                                                                                                                                  | 15-Jul-17 09:06                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Site 33-GW-33GW01-20170712          | 12-Jul-17 15:30                                                                                                                                                  | 15-Jul-17 09:06                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Building<br>110-GW-110GW01-20170712 | 12-Jul-17 12:45                                                                                                                                                  | 15-Jul-17 09:06                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IRPSite 6-GW-06FD01-20170712        | 12-Jul-17 11:10                                                                                                                                                  | 15-Jul-17 09:06                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 | HDPE Bottle, 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     | Sample ID  IRPSite 6-GW-06GW01-20170712  IRPSite 6-GW-06GW02-20170712  IRPSite 6-GW-FRB01-20170712  Site 33-GW-33GW01-20170712  Building 110-GW-110GW01-20170712 | Sample ID       Sampled         IRPSite 6-GW-06GW01-20170712       12-Jul-17 09:30         IRPSite 6-GW-06GW02-20170712       12-Jul-17 11:00         IRPSite 6-GW-FRB01-20170712       12-Jul-17 11:05         Site 33-GW-33GW01-20170712       12-Jul-17 15:30         Building 110-GW-110GW01-20170712       12-Jul-17 12:45 | Sample ID         Sampled         Received           IRPSite 6-GW-06GW01-20170712         12-Jul-17 09:30         15-Jul-17 09:06           IRPSite 6-GW-06GW02-20170712         12-Jul-17 11:00         15-Jul-17 09:06           IRPSite 6-GW-FRB01-20170712         12-Jul-17 11:05         15-Jul-17 09:06           Site 33-GW-33GW01-20170712         12-Jul-17 15:30         15-Jul-17 09:06           Building 110-GW-110GW01-20170712         12-Jul-17 12:45         15-Jul-17 09:06 |

Vista Project: 1700887 Client Project: NSWC White Oak

Work Order 1700887 Page 4 of 316

### ANALYTICAL RESULTS

Work Order 1700887 Page 5 of 316



| Sample ID: | Method Blank       |                             |                          |       |            |    |                 | Modifi                                      | ied EPA Mo | ethod 537  |
|------------|--------------------|-----------------------------|--------------------------|-------|------------|----|-----------------|---------------------------------------------|------------|------------|
|            | Aqueous<br>0.125 L | QC Batch:<br>Date Extracted | B7G0079<br>: 20-Jul-2017 | 11:18 |            |    | •               | .K1<br>02 Column: BEH (<br>54 Column: BEH ( |            |            |
| Analyte    | Conc. (ng/L)       | DL                          | LOD                      | LOQ   | Qualifiers | L  | abeled Standard | %R                                          | LCL-UCL    | Qualifiers |
| PFBS       | ND                 | 1.79                        | 5.00                     | 8.00  |            | IS | 13C3-PFBS       | 106                                         | 50 - 150   |            |
| PFHxA      | ND                 | 2.18                        | 5.00                     | 8.00  |            | IS | 13C2-PFHxA      | 87.3                                        | 50 - 150   |            |
| PFHpA      | ND                 | 0.591                       | 5.00                     | 8.00  |            | IS | 13C4-PFHpA      | 86.9                                        | 50 - 150   |            |
| PFHxS      | ND                 | 0.947                       | 5.00                     | 8.00  |            | IS | 18O2-PFHxS      | 92.3                                        | 50 - 150   |            |
| PFOA       | ND                 | 0.651                       | 5.00                     | 8.00  |            | IS | 13C2-PFOA       | 85.3                                        | 50 - 150   |            |
| PFOS       | ND                 | 0.807                       | 5.00                     | 8.00  |            | IS | 13C8-PFOS       | 89.5                                        | 50 - 150   |            |
| PFNA       | ND                 | 0.810                       | 5.00                     | 8.00  |            | IS | 13C5-PFNA       | 91.2                                        | 50 - 150   |            |
| PFDA       | ND                 | 1.49                        | 5.00                     | 8.00  |            | IS | 13C2-PFDA       | 76.5                                        | 50 - 150   |            |
| MeFOSAA    | ND                 | 1.65                        | 5.00                     | 8.00  |            | IS | d3-MeFOSAA      | 50.5                                        | 50 - 150   |            |
| PFUnA      | ND                 | 1.05                        | 5.00                     | 8.00  |            | IS | 13C2-PFUnA      | 59.0                                        | 50 - 150   |            |
| EtFOSAA    | ND                 | 1.37                        | 5.00                     | 8.00  |            | IS | d5-EtFOSAA      | 50.3                                        | 50 - 150   |            |
| PFDoA      | ND                 | 0.792                       | 5.00                     | 8.00  |            | IS | 13C2-PFDoA      | 56.4                                        | 50 - 150   |            |
| PFTrDA     | ND                 | 0.494                       | 5.00                     | 8.00  |            | IS | 13C2-PFTeDA     | 45.1                                        | 50 - 150   | Н          |
| PFTeDA     | ND                 | 0.755                       | 5.00                     | 8.00  |            |    |                 |                                             |            |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 6 of 316



| Sample ID: OPR                          |                             |                           |         |          |                             |                           | Modified | EPA Method 537 |
|-----------------------------------------|-----------------------------|---------------------------|---------|----------|-----------------------------|---------------------------|----------|----------------|
| Matrix: Aqueous<br>Sample Size: 0.125 L | QC Batch:<br>Date Extracted | B7G0079<br>l: 20-Jul-2017 | 7 11:18 |          | Lab Sample:<br>Date Analyze |                           | ЕН С18   |                |
|                                         |                             |                           |         |          |                             | 31-Jul-17 14:11 Column: B | EH C18   |                |
| Analyte                                 | Amt Found (ng/L)            | Spike Amt                 | %R      | Limits   |                             | Labeled Standard          | %R       | LCL-UCL        |
| PFBS                                    | 74.1                        | 80.0                      | 92.6    | 70 - 130 | IS                          | 13C3-PFBS                 | 107      | 50 - 150       |
| PFHxA                                   | 86.7                        | 80.0                      | 108     | 70 - 130 | IS                          | 13C2-PFHxA                | 93.6     | 50 - 150       |
| PFHpA                                   | 87.0                        | 80.0                      | 109     | 70 - 130 | IS                          | 13C4-PFHpA                | 86.2     | 50 - 150       |
| PFHxS                                   | 83.0                        | 80.0                      | 104     | 70 - 130 | IS                          | 18O2-PFHxS                | 88.3     | 50 - 150       |
| PFOA                                    | 90.3                        | 80.0                      | 113     | 70 - 130 | IS                          | 13C2-PFOA                 | 90.4     | 50 - 150       |
| PFOS                                    | 76.5                        | 80.0                      | 95.7    | 70 - 130 | IS                          | 13C8-PFOS                 | 92.9     | 50 - 150       |
| PFNA                                    | 77.6                        | 80.0                      | 97.0    | 70 - 130 | IS                          | 13C5-PFNA                 | 91.2     | 50 - 150       |
| PFDA                                    | 77.5                        | 80.0                      | 96.9    | 70 - 130 | IS                          | 13C2-PFDA                 | 76.4     | 50 - 150       |
| MeFOSAA                                 | 94.5                        | 80.0                      | 118     | 70 - 130 | IS                          | d3-MeFOSAA                | 52.0     | 50 - 150       |
| PFUnA                                   | 87.6                        | 80.0                      | 110     | 70 - 130 | IS                          | 13C2-PFUnA                | 61.6     | 50 - 150       |
| EtFOSAA                                 | 82.3                        | 80.0                      | 103     | 70 - 130 | IS                          | d5-EtFOSAA                | 56.7     | 50 - 150       |
| PFDoA                                   | 79.7                        | 80.0                      | 99.7    | 70 - 130 | IS                          | 13C2-PFDoA                | 57.7     | 50 - 150       |
| PFTrDA                                  | 75.3                        | 80.0                      | 94.1    | 60 - 130 | IS                          | 13C2-PFTeDA               | 36.3     | 50 - 150       |
| PFTeDA                                  | 95.3                        | 80.0                      | 119     | 70 - 130 |                             |                           |          |                |

LCL-UCL - Lower control limit - upper control limit

Work Order 1700887 Page 7 of 316



| Sample ID:      | IRPSite 6-GW-06GW01 | 1-2017071 | 2            |          |            |          |                             | Modifie         | d EPA Mo    | ethod 537  |
|-----------------|---------------------|-----------|--------------|----------|------------|----------|-----------------------------|-----------------|-------------|------------|
| Client Data     |                     |           | Sample Data  |          | Lab        | oratory  | y Data                      |                 |             |            |
| Name:           | KMEA                |           | Matrix:      | Aqueous  | La         | b Samp   | ole: 1700887-01             | Date Received:  | 15-Jul-2017 | 9:06       |
| Project:        | NSWC White Oak      |           | Sample Size: | 0.0834 L | Q          | Batch    | : B7G0079                   | Date Extracted: | 20-Jul-2017 | 7 11:18    |
| Date Collected: | 12-Jul-2017 9:30    |           |              |          | Da         | ite Anal | lyzed: 31-Jul-17 11:15 Colu | ımn: BEH C18    |             |            |
| Location:       | IRP Site 6          |           |              |          |            |          | 31-Jul-17 15:06 Col         | umn: BEH C18    |             |            |
| Analyte         | Conc. (ng/L)        | DL        | LOD          | LOQ      | Qualifiers |          | Labeled Standard            | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 4.56                | 2.68      | 7.49         | 12.0     | J          | IS       | 13C3-PFBS                   | 105             | 50 - 150    |            |
| PFHxA           | 11.1                | 3.27      | 7.49         | 12.0     | J          | IS       | 13C2-PFHxA                  | 94.0            | 50 - 150    |            |
| PFHpA           | 4.77                | 0.886     | 7.49         | 12.0     | J          | IS       | 13C4-PFHpA                  | 99.5            | 50 - 150    |            |
| PFHxS           | 4.93                | 1.42      | 7.49         | 12.0     | J          | IS       | 18O2-PFHxS                  | 94.1            | 50 - 150    |            |
| PFOA            | 11.3                | 0.975     | 7.49         | 12.0     | J          | IS       | 13C2-PFOA                   | 84.9            | 50 - 150    |            |
| PFOS            | 5.47                | 1.21      | 7.49         | 12.0     | J          | IS       | 13C8-PFOS                   | 88.6            | 50 - 150    |            |
| PFNA            | 1.27                | 1.21      | 7.49         | 12.0     | J          | IS       | 13C5-PFNA                   | 84.4            | 50 - 150    |            |
| PFDA            | ND                  | 2.23      | 7.49         | 12.0     |            | IS       | 13C2-PFDA                   | 72.9            | 50 - 150    |            |
| MeFOSAA         | ND                  | 2.47      | 7.49         | 12.0     |            | IS       | d3-MeFOSAA                  | 58.5            | 50 - 150    |            |
| PFUnA           | ND                  | 1.57      | 7.49         | 12.0     |            | IS       | 13C2-PFUnA                  | 59.3            | 50 - 150    |            |
| EtFOSAA         | ND                  | 2.05      | 7.49         | 12.0     |            | IS       | d5-EtFOSAA                  | 59.3            | 50 - 150    |            |
| PFDoA           | ND                  | 1.19      | 7.49         | 12.0     |            | IS       | 13C2-PFDoA                  | 52.0            | 50 - 150    |            |
| PFTrDA          | ND                  | 0.740     | 7.49         | 12.0     |            | IS       | 13C2-PFTeDA                 | 50.2            | 50 - 150    |            |
| PFTeDA          | ND                  | 1.13      | 7.49         | 12.0     |            |          |                             |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 8 of 316



| Sample ID:      | IRPSite 6-GW-06GW02 | -2017071 | 2            |          |            |          |                             | Modifie         | d EPA Me    | ethod 537  |
|-----------------|---------------------|----------|--------------|----------|------------|----------|-----------------------------|-----------------|-------------|------------|
| Client Data     |                     |          | Sample Data  |          | Lab        | oratory  | y Data                      |                 |             |            |
| Name:           | KMEA                |          | Matrix:      | Aqueous  | La         | b Samp   | ole: 1700887-02             | Date Received:  | 15-Jul-2017 | 9:06       |
| Project:        | NSWC White Oak      |          | Sample Size: | 0.0994 L | QC         | Batch    | : B7G0079                   | Date Extracted: | 20-Jul-2017 | 11:18      |
| Date Collected: | 12-Jul-2017 11:00   |          |              |          | Da         | ite Anal | lyzed: 31-Jul-17 11:27 Col- | umn: BEH C18    |             |            |
| Location:       | IRP Site 6          |          |              |          |            |          | 31-Jul-17 15:19 Col         | umn: BEH C18    |             |            |
| Analyte         | Conc. (ng/L)        | DL       | LOD          | LOQ      | Qualifiers |          | Labeled Standard            | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 21.8                | 2.25     | 6.29         | 10.1     |            | IS       | 13C3-PFBS                   | 123             | 50 - 150    |            |
| PFHxA           | 20.0                | 2.74     | 6.29         | 10.1     |            | IS       | 13C2-PFHxA                  | 97.9            | 50 - 150    |            |
| PFHpA           | 10.3                | 0.743    | 6.29         | 10.1     |            | IS       | 13C4-PFHpA                  | 99.2            | 50 - 150    |            |
| PFHxS           | 6.18                | 1.19     | 6.29         | 10.1     | J          | IS       | 18O2-PFHxS                  | 95.5            | 50 - 150    |            |
| PFOA            | 20.1                | 0.819    | 6.29         | 10.1     |            | IS       | 13C2-PFOA                   | 90.4            | 50 - 150    |            |
| PFOS            | 16.5                | 1.01     | 6.29         | 10.1     |            | IS       | 13C8-PFOS                   | 93.1            | 50 - 150    |            |
| PFNA            | 3.81                | 1.02     | 6.29         | 10.1     | J          | IS       | 13C5-PFNA                   | 89.4            | 50 - 150    |            |
| PFDA            | ND                  | 1.87     | 6.29         | 10.1     |            | IS       | 13C2-PFDA                   | 81.6            | 50 - 150    |            |
| MeFOSAA         | ND                  | 2.08     | 6.29         | 10.1     |            | IS       | d3-MeFOSAA                  | 65.1            | 50 - 150    |            |
| PFUnA           | ND                  | 1.32     | 6.29         | 10.1     |            | IS       | 13C2-PFUnA                  | 67.4            | 50 - 150    |            |
| EtFOSAA         | ND                  | 1.72     | 6.29         | 10.1     |            | IS       | d5-EtFOSAA                  | 66.6            | 50 - 150    |            |
| PFDoA           | ND                  | 0.996    | 6.29         | 10.1     |            | IS       | 13C2-PFDoA                  | 64.3            | 50 - 150    |            |
| PFTrDA          | ND                  | 0.621    | 6.29         | 10.1     |            | IS       | 13C2-PFTeDA                 | 51.1            | 50 - 150    |            |
| PFTeDA          | ND                  | 0.950    | 6.29         | 10.1     |            |          |                             |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 9 of 316



| Sample ID:      | IRPSite 6-GW-FRB01-20 | 170712 |              |         |         |         |          |                     | Modifie         | d EPA M     | ethod 537  |
|-----------------|-----------------------|--------|--------------|---------|---------|---------|----------|---------------------|-----------------|-------------|------------|
| Client Data     |                       |        | Sample Data  |         |         | Laborat | ory Data |                     |                 |             |            |
| Name:           | KMEA                  |        | Matrix:      | Aqueous |         | Lab Sa  | mple:    | 1700887-03          | Date Received:  | 15-Jul-2017 | 7 9:06     |
| Project:        | NSWC White Oak        |        | Sample Size: | 0.114 L |         | QC Ba   | tch:     | B7G0079             | Date Extracted: | 20-Jul-2017 | 7 11:18    |
| Date Collected: | 12-Jul-2017 11:05     |        |              |         |         | Date A  | nalyzed: | 31-Jul-17 11:40 Col | umn: BEH C18    |             |            |
| Location:       | IRP Site 6            |        |              |         |         |         |          | 31-Jul-17 15:32 Col | umn: BEH C18    |             |            |
| Analyte         | Conc. (ng/L)          | DL     | LOD          | LOQ     | Qualifi | ers     | Labe     | eled Standard       | %R              | LCL-UCL     | Qualifiers |
| PFBS            | ND                    | 1.96   | 5.48         | 8.74    |         | IS      | 13C3     | 3-PFBS              | 106             | 50 - 150    |            |
| PFHxA           | ND                    | 2.38   | 5.48         | 8.74    |         | IS      | 13C2     | 2-PFHxA             | 101             | 50 - 150    |            |
| PFHpA           | ND                    | 0.645  | 5.48         | 8.74    |         | IS      | 3 13C4   | I-PFHpA             | 88.2            | 50 - 150    |            |
| PFHxS           | ND                    | 1.03   | 5.48         | 8.74    |         | IS      | 1802     | 2-PFHxS             | 94.7            | 50 - 150    |            |
| PFOA            | ND                    | 0.711  | 5.48         | 8.74    |         | IS      | 3 13C2   | 2-PFOA              | 87.7            | 50 - 150    |            |
| PFOS            | ND                    | 0.881  | 5.48         | 8.74    |         | IS      | 13C8     | 3-PFOS              | 107             | 50 - 150    |            |
| PFNA            | ND                    | 0.885  | 5.48         | 8.74    |         | IS      | 13C5     | 5-PFNA              | 94.4            | 50 - 150    |            |
| PFDA            | ND                    | 1.63   | 5.48         | 8.74    |         | IS      |          | 2-PFDA              | 80.5            | 50 - 150    |            |
| MeFOSAA         | ND                    | 1.80   | 5.48         | 8.74    |         | IS      | d3-M     | IeFOSAA             | 63.0            | 50 - 150    |            |
| PFUnA           | ND                    | 1.15   | 5.48         | 8.74    |         | IS      | 13C2     | 2-PFUnA             | 66.7            | 50 - 150    |            |
| EtFOSAA         | ND                    | 1.50   | 5.48         | 8.74    |         | IS      | d5-E     | tFOSAA              | 55.7            | 50 - 150    |            |
| PFDoA           | ND                    | 0.865  | 5.48         | 8.74    |         | IS      |          | 2-PFDoA             | 66.2            | 50 - 150    |            |
| PFTrDA          | ND                    | 0.540  | 5.48         | 8.74    |         | IS      | 3 13C2   | 2-PFTeDA            | 59.0            | 50 - 150    |            |
| PFTeDA          | ND                    | 0.825  | 5.48         | 8.74    |         |         |          |                     |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 10 of 316



| Sample ID:      | Site 33-GW-33GW01-2017 | 0712  |              |         |          |         |                          | Modifie         | ed EPA Mo   | ethod 537  |
|-----------------|------------------------|-------|--------------|---------|----------|---------|--------------------------|-----------------|-------------|------------|
| Client Data     |                        |       | Sample Data  |         | I        | ∠aborat | ory Data                 |                 |             |            |
| Name:           | KMEA                   |       | Matrix:      | Aqueous |          | Lab Sa  | mple: 1700887-04         | Date Received:  | 15-Jul-2017 | 7 9:06     |
| Project:        | NSWC White Oak         |       | Sample Size: | 0.121 L |          | QC Ba   | tch: B7G0079             | Date Extracted: | 20-Jul-2017 | 7 11:18    |
| Date Collected: | 12-Jul-2017 15:30      |       |              |         |          | Date A  | nalyzed: 31-Jul-17 11:52 | Column: BEH C18 |             |            |
| Location:       | Site 33                |       |              |         |          |         | 31-Jul-17 15:44          | Column: BEH C18 |             |            |
| Analyte         | Conc. (ng/L)           | DL    | LOD          | LOQ     | Qualifie | ers     | Labeled Standard         | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 10.7                   | 1.85  | 5.17         | 8.28    |          | IS      | 13C3-PFBS                | 110             | 50 - 150    |            |
| PFHxA           | 68.1                   | 2.26  | 5.17         | 8.28    |          | IS      | 13C2-PFHxA               | 95.7            | 50 - 150    |            |
| PFHpA           | 8.36                   | 0.611 | 5.17         | 8.28    |          | IS      | 13C4-PFHpA               | 99.8            | 50 - 150    |            |
| PFHxS           | 155                    | 0.980 | 5.17         | 8.28    |          | IS      | 18O2-PFHxS               | 93.3            | 50 - 150    |            |
| PFOA            | 90.6                   | 0.674 | 5.17         | 8.28    |          | IS      | 13C2-PFOA                | 88.9            | 50 - 150    |            |
| PFOS            | 28.1                   | 0.835 | 5.17         | 8.28    |          | IS      | 13C8-PFOS                | 96.2            | 50 - 150    |            |
| PFNA            | 1.42                   | 0.838 | 5.17         | 8.28    | J        | IS      | 13C5-PFNA                | 83.7            | 50 - 150    |            |
| PFDA            | ND                     | 1.54  | 5.17         | 8.28    |          | IS      | 13C2-PFDA                | 81.1            | 50 - 150    |            |
| MeFOSAA         | ND                     | 1.71  | 5.17         | 8.28    |          | IS      | d3-MeFOSAA               | 65.7            | 50 - 150    |            |
| PFUnA           | ND                     | 1.09  | 5.17         | 8.28    |          | IS      | 13C2-PFUnA               | 70.9            | 50 - 150    |            |
| EtFOSAA         | ND                     | 1.42  | 5.17         | 8.28    |          | IS      | d5-EtFOSAA               | 63.8            | 50 - 150    |            |
| PFDoA           | ND                     | 0.819 | 5.17         | 8.28    |          | IS      | 13C2-PFDoA               | 68.6            | 50 - 150    |            |
| PFTrDA          | ND                     | 0.511 | 5.17         | 8.28    |          | IS      | 13C2-PFTeDA              | 58.5            | 50 - 150    |            |
| PFTeDA          | ND                     | 0.781 | 5.17         | 8.28    |          |         |                          |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 11 of 316



| Sample ID:      | Building 110-GW-110GV | W01-2017 | 70712        |         |            |          |                           | Modifie         | d EPA M     | ethod 537  |
|-----------------|-----------------------|----------|--------------|---------|------------|----------|---------------------------|-----------------|-------------|------------|
| Client Data     |                       |          | Sample Data  |         | Lal        | oratory  | <b>Data</b>               |                 |             |            |
| Name:           | KMEA                  |          | Matrix:      | Aqueous | L          | ab Samp  | ole: 1700887-05           | Date Received:  | 15-Jul-2017 | 9:06       |
| Project:        | NSWC White Oak        |          | Sample Size: | 0.118 L | Q          | C Batch  | : B7G0079                 | Date Extracted: | 20-Jul-2017 | 7 11:18    |
| Date Collected: | 12-Jul-2017 12:45     |          |              |         | D          | ate Anal | yzed: 31-Jul-17 12:05 Col | umn: BEH C18    |             |            |
| Location:       | Building 110          |          |              |         |            |          | 31-Jul-17 15:57 Col       | umn: BEH C18    |             |            |
| Analyte         | Conc. (ng/L)          | DL       | LOD          | LOQ     | Qualifiers |          | Labeled Standard          | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 39.2                  | 1.90     | 5.30         | 8.49    |            | IS       | 13C3-PFBS                 | 103             | 50 - 150    |            |
| PFHxA           | 120                   | 2.31     | 5.30         | 8.49    |            | IS       | 13C2-PFHxA                | 92.3            | 50 - 150    |            |
| PFHpA           | 17.6                  | 0.627    | 5.30         | 8.49    |            | IS       | 13C4-PFHpA                | 93.1            | 50 - 150    |            |
| PFHxS           | 610                   | 1.01     | 5.30         | 8.49    |            | IS       | 18O2-PFHxS                | 91.2            | 50 - 150    |            |
| PFOA            | 135                   | 0.691    | 5.30         | 8.49    |            | IS       | 13C2-PFOA                 | 88.3            | 50 - 150    |            |
| PFOS            | 1230                  | 4.28     | 26.5         | 42.5    | D          | IS       | 13C8-PFOS                 | 101             | 50 - 150    | D          |
| PFNA            | ND                    | 0.860    | 5.30         | 8.49    |            | IS       | 13C5-PFNA                 | 76.1            | 50 - 150    |            |
| PFDA            | ND                    | 1.58     | 5.30         | 8.49    |            | IS       | 13C2-PFDA                 | 73.8            | 50 - 150    |            |
| MeFOSAA         | ND                    | 1.75     | 5.30         | 8.49    |            | IS       | d3-MeFOSAA                | 57.3            | 50 - 150    |            |
| PFUnA           | ND                    | 1.11     | 5.30         | 8.49    |            | IS       | 13C2-PFUnA                | 59.6            | 50 - 150    |            |
| EtFOSAA         | ND                    | 1.45     | 5.30         | 8.49    |            | IS       | d5-EtFOSAA                | 65.2            | 50 - 150    |            |
| PFDoA           | ND                    | 0.841    | 5.30         | 8.49    |            | IS       | 13C2-PFDoA                | 58.5            | 50 - 150    |            |
| PFTrDA          | ND                    | 0.524    | 5.30         | 8.49    |            | IS       | 13C2-PFTeDA               | 53.3            | 50 - 150    |            |
| PFTeDA          | ND                    | 0.801    | 5.30         | 8.49    |            |          |                           |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 12 of 316



| Sample ID:      | IRPSite 6-GW-06FD01-2 | 20170712 | ,            |         |            |          |                            | Modifie         | ed EPA Me   | ethod 537  |
|-----------------|-----------------------|----------|--------------|---------|------------|----------|----------------------------|-----------------|-------------|------------|
| Client Data     |                       |          | Sample Data  |         | Lal        | boratory | y Data                     |                 |             |            |
| Name:           | KMEA                  |          | Matrix:      | Aqueous | L          | ab Samp  | ole: 1700887-06            | Date Received:  | 15-Jul-2017 | 9:06       |
| Project:        | NSWC White Oak        |          | Sample Size: | 0.106 L | Q          | C Batch  | B7G0079                    | Date Extracted: | 20-Jul-2017 | 11:18      |
| Date Collected: | 12-Jul-2017 11:10     |          |              |         | D          | ate Anal | lyzed: 31-Jul-17 12:30 Col | umn: BEH C18    |             |            |
| Location:       | Duplicate             |          |              |         |            |          | 31-Jul-17 16:09 Col        | umn: BEH C18    |             |            |
| Analyte         | Conc. (ng/L)          | DL       | LOD          | LOQ     | Qualifiers | s        | Labeled Standard           | %R              | LCL-UCL     | Qualifiers |
| PFBS            | 21.7                  | 2.11     | 5.90         | 9.44    |            | IS       | 13C3-PFBS                  | 116             | 50 - 150    |            |
| PFHxA           | 17.6                  | 2.57     | 5.90         | 9.44    |            | IS       | 13C2-PFHxA                 | 103             | 50 - 150    |            |
| PFHpA           | 9.00                  | 0.697    | 5.90         | 9.44    | J          | IS       | 13C4-PFHpA                 | 106             | 50 - 150    |            |
| PFHxS           | 5.70                  | 1.12     | 5.90         | 9.44    | J          | IS       | 18O2-PFHxS                 | 93.8            | 50 - 150    |            |
| PFOA            | 20.6                  | 0.768    | 5.90         | 9.44    |            | IS       | 13C2-PFOA                  | 99.9            | 50 - 150    |            |
| PFOS            | 13.5                  | 0.952    | 5.90         | 9.44    |            | IS       | 13C8-PFOS                  | 91.3            | 50 - 150    |            |
| PFNA            | 2.80                  | 0.956    | 5.90         | 9.44    | J          | IS       | 13C5-PFNA                  | 90.7            | 50 - 150    |            |
| PFDA            | ND                    | 1.76     | 5.90         | 9.44    |            | IS       | 13C2-PFDA                  | 87.0            | 50 - 150    |            |
| MeFOSAA         | ND                    | 1.95     | 5.90         | 9.44    |            | IS       | d3-MeFOSAA                 | 59.7            | 50 - 150    |            |
| PFUnA           | ND                    | 1.24     | 5.90         | 9.44    |            | IS       | 13C2-PFUnA                 | 69.0            | 50 - 150    |            |
| EtFOSAA         | ND                    | 1.62     | 5.90         | 9.44    |            | IS       | d5-EtFOSAA                 | 66.6            | 50 - 150    |            |
| PFDoA           | ND                    | 0.935    | 5.90         | 9.44    |            | IS       | 13C2-PFDoA                 | 63.1            | 50 - 150    |            |
| PFTrDA          | ND                    | 0.583    | 5.90         | 9.44    |            | IS       | 13C2-PFTeDA                | 50.9            | 50 - 150    |            |
| PFTeDA          | ND                    | 0.891    | 5.90         | 9.44    |            |          |                            |                 |             |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Results reported to DL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

Work Order 1700887 Page 13 of 316

### **DATA QUALIFIERS & ABBREVIATIONS**

| В     | This compound was also detected in the method blank.                                    |
|-------|-----------------------------------------------------------------------------------------|
| D     | Dilution                                                                                |
| E     | The associated compound concentration exceeded the calibration range of the instrument. |
| Н     | Recovery and/or RPD was outside laboratory acceptance limits.                           |
| I     | Chemical Interference                                                                   |
| J     | The amount detected is below the Reporting Limit/LOQ.                                   |
| M     | Estimated Maximum Possible Concentration. (CA Region 2 projects only)                   |
| *     | See Cover Letter                                                                        |
| Conc. | Concentration                                                                           |
| NA    | Not applicable                                                                          |
| ND    | Not Detected                                                                            |
| TEQ   | Toxic Equivalency                                                                       |

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1700887 Page 14 of 316

### **CERTIFICATIONS**

| Accrediting Authority                               | <b>Certificate Number</b> |
|-----------------------------------------------------|---------------------------|
| Arkansas Department of Environmental Quality        | 17-015-0                  |
| California Department of Health – ELAP              | 2892                      |
| DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005     | 3091.01                   |
| Florida Department of Health                        | E87777-18                 |
| Hawaii Department of Health                         | N/A                       |
| Louisiana Department of Environmental Quality       | 01977                     |
| Maine Department of Health                          | 2016026                   |
| Minnesota Department of Health                      | 1175673                   |
| Nevada Division of Environmental Protection         | CA004132017-1             |
| New Hampshire Environmental Accreditation Program   | 207716                    |
| New Jersey Department of Environmental Protection   | CA003                     |
| New York Department of Health                       | 11411                     |
| Oregon Laboratory Accreditation Program             | 4042-008                  |
| Pennsylvania Department of Environmental Protection | 013                       |
| Texas Commission on Environmental Quality           | T104704189-17-8           |
| Virginia Department of General Services             | 8621                      |
| Washington Department of Ecology                    | C584                      |
| Wisconsin Department of Natural Resources           | 998036160                 |

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1700887 Page 15 of 316

### **NELAP Accredited Test Methods**

| MATRIX: Air                                                  |        |
|--------------------------------------------------------------|--------|
| Description of Test                                          | Method |
| Determination of Polychlorinated p-Dioxins & Polychlorinated | EPA 23 |
| Dibenzofurans                                                |        |

| MATRIX: Biological Tissue                                              |             |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|--|--|
| Description of Test                                                    | Method      |  |  |  |  |  |  |  |  |  |
| Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope          | EPA 1613B   |  |  |  |  |  |  |  |  |  |
| Dilution GC/HRMS                                                       |             |  |  |  |  |  |  |  |  |  |
| Brominated Diphenyl Ethers by HRGC/HRMS                                | EPA 1614A   |  |  |  |  |  |  |  |  |  |
| Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue    | EPA 1668A/C |  |  |  |  |  |  |  |  |  |
| by GC/HRMS                                                             |             |  |  |  |  |  |  |  |  |  |
| Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by          | EPA 1699    |  |  |  |  |  |  |  |  |  |
| HRGC/HRMS                                                              |             |  |  |  |  |  |  |  |  |  |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS       | EPA 537     |  |  |  |  |  |  |  |  |  |
| Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by | EPA 8280A/B |  |  |  |  |  |  |  |  |  |
| GC/HRMS                                                                |             |  |  |  |  |  |  |  |  |  |
| Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated             | EPA         |  |  |  |  |  |  |  |  |  |
| Dibenzofurans (PCDFs) by GC/HRMS                                       | 8290/8290A  |  |  |  |  |  |  |  |  |  |

| MATRIX: Drinking Water                                           |          |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|
| Description of Test                                              | Method   |  |  |  |  |  |  |  |  |  |
| 2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS      | EPA 1613 |  |  |  |  |  |  |  |  |  |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537  |  |  |  |  |  |  |  |  |  |

| MATRIX: Non-Potable Water                                               |             |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|--|
| Description of Test                                                     | Method      |  |  |  |  |  |  |  |  |
| Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope           | EPA 1613B   |  |  |  |  |  |  |  |  |
| Dilution GC/HRMS                                                        |             |  |  |  |  |  |  |  |  |
| Brominated Diphenyl Ethers by HRGC/HRMS                                 | EPA 1614A   |  |  |  |  |  |  |  |  |
| Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue     | EPA 1668A/C |  |  |  |  |  |  |  |  |
| by GC/HRMS                                                              |             |  |  |  |  |  |  |  |  |
| Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS | EPA 1699    |  |  |  |  |  |  |  |  |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS        | EPA 537     |  |  |  |  |  |  |  |  |
| Dioxin by GC/HRMS                                                       | EPA 613     |  |  |  |  |  |  |  |  |
| Polychlorinated Dibenzo-p-Dioxins and Polychlorinated                   | EPA 8280A/B |  |  |  |  |  |  |  |  |
| Dibenzofurans by GC/HRMS                                                |             |  |  |  |  |  |  |  |  |
| Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated              | EPA         |  |  |  |  |  |  |  |  |
| Dibenzofurans (PCDFs) by GC/HRMS                                        | 8290/8290A  |  |  |  |  |  |  |  |  |

| MATRIX: Solids                                                        |           |
|-----------------------------------------------------------------------|-----------|
| Description of Test                                                   | Method    |
| Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS | EPA 1613  |
| Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope         | EPA 1613B |

Work Order 1700887 Page 16 of 316

| Dilution GC/HRMS                                                    |             |
|---------------------------------------------------------------------|-------------|
| Brominated Diphenyl Ethers by HRGC/HRMS                             | EPA 1614A   |
| Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C |
| by GC/HRMS                                                          |             |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS    | EPA 537     |
| Polychlorinated Dibenzo-p-Dioxins and Polychlorinated               | EPA 8280A/B |
| Dibenzofurans by GC/HRMS                                            |             |
| Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated          | EPA         |
| Dibenzofurans (PCDFs) by GC/HRMS                                    | 8290/8290A  |

Work Order 1700887 Page 17 of 316



# **CHAIN OF CUSTODY**

| For Laboratory Use Only | 207 -07                 |
|-------------------------|-------------------------|
| Laboratory Project ID:  | Temp:                   |
| Storage ID: WR-2        | Storage Secured: Yes No |

| ,                                                                                                                  |                                      |                           |                                              |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |       |         |                      |                      |                                          |                | Sioraç                          | Je ID.                                 |                         | 146                                | -                |                   |            | . Storage Secur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ea: res L      | M NO           |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|----------------------------------------------|-----------|-------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|---------|----------------------|----------------------|------------------------------------------|----------------|---------------------------------|----------------------------------------|-------------------------|------------------------------------|------------------|-------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| Project ID: NSW C L                                                                                                | shite 6                              | DalC                      | PO#: <u>TØ 0</u> 0                           | 8         |       |         | Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pler: _       | Die   | go.     | (na                  | <b>(~~√</b> (<br>me) | 22                                       |                |                                 | - 1                                    | TAT<br>check            | one):                              |                  | ndard:<br>sh (sui | char       | 21 days<br>ge may apply)<br>7 days 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 10 de          |
| Invoice to: Name                                                                                                   |                                      | Compan                    |                                              |           | Addr  |         | -/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |       |         |                      |                      |                                          | -              | City                            |                                        |                         |                                    | Sta              |                   |            | Ph#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fax#           |                |
|                                                                                                                    |                                      | mec Tos                   | for Wheeler ESI, I                           | nc.       | 0     | 1210    | Sk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y Pa          | ir K  | Co      | wr+                  |                      | 4                                        | an I           | ie                              | EU.                                    | (                       | A.                                 |                  |                   | 15         | 3)634-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3400           |                |
| Relinquished by (printed name                                                                                      | and signat                           | ure)                      | Date                                         |           | Time  | 9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Recei         | ved b | y (pri  | inted na             | ame a                | nd sig                                   | natur          | e) C                            | 2                                      |                         |                                    |                  |                   | (-         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time           |                |
| Diele Gara                                                                                                         |                                      |                           | 7/14/1                                       | 7         | 10    | 15      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |       |         | ed E                 |                      |                                          |                |                                 |                                        |                         |                                    |                  |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| Relinquished by (printed name                                                                                      |                                      | ure)                      | Date 07/15/1                                 | 7         | Time  |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Recei<br>1    | ved b | by (pri | inted na             | ame a                | nd sig                                   | natur          | e)<br>Phot                      | de                                     | ċł                      |                                    |                  |                   | 0          | Date 7/15/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7ime           |                |
| SHIP TO: Vista Analytical La<br>1104 Windfield Wa<br>El Dorado Hills, C/<br>(916) 673-1520 * F<br>ATTN: Karen L. V | ay<br>A 95762<br>Fax (916) 6         |                           | Method of Shipment: Fed Ex Tracking No.:     |           | Conta | ainer(s | 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 15    |         | 1/8                  |                      | 000/                                     | #5 J #5 J #6 2 |                                 |                                        |                         | Salvens Fra 1865                   | 7                | /                 |            | 18 (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5.5) (5. |                |                |
| Sample ID                                                                                                          | Date                                 | Time                      | Location/Sample Description                  | Zage Care |       | , then  | \$ \\ \frac{\x}{\x} \\ \x |               | 3/002 | \$ 25 S |                      |                      | 00/20/20/20/20/20/20/20/20/20/20/20/20/2 |                | O AZ                            | 3                                      | 20                      | A 28 0                             | I Z              |                   |            | Commer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nte            |                |
| TRPSikb-GW-06GW01<br>-20170712                                                                                     | 7112                                 | 0930                      | IRP SITE 6                                   | Z         | P     | AQ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | Ť     |         |                      |                      |                                          |                |                                 | Ĭ                                      |                         |                                    |                  | X                 |            | Commer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |
| RPSIK6-6W-06GWQ_<br>-20170712                                                                                      | 7112                                 | 1100                      | IRPSite 6                                    | 2         | P     | Aq      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 1     | 1       |                      |                      |                                          |                | 1                               |                                        |                         |                                    |                  | X                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| 20170712                                                                                                           | 7117                                 | 1105                      | IRP Sike 6                                   | 2         | P     | AQ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 1     |         |                      |                      | H                                        |                |                                 |                                        |                         | +                                  |                  | X                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| 1633-6W-336W01<br>-20170712                                                                                        | 7/12                                 |                           | Site 33                                      | 2         | P     | AQ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |       |         |                      |                      | Н                                        |                | 1                               |                                        |                         |                                    |                  | X                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| Suilding 110-GW-110GW01<br>-20170712                                                                               | 712                                  | 1245                      | Building 110                                 | 2         | P     | AQ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 1     |         |                      |                      |                                          |                | 7                               |                                        |                         | +                                  |                  | X                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| Sumple - Ob<br>due to well diging<br>Analyze For PFOA, PTC                                                         | 6W01<br>up. Con<br>15, and F<br>2473 | - has<br>bacted<br>FBS by | USEPA 537 Mod<br>- D-2405<br>Bottle Preserva | amo       | i n   | 909     | SUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ا ا<br>تا دست |       | AND     | SEN<br>CUMEN<br>RESU | LTS                  | ro:                                      |                | ompa<br>Addre<br>C<br>Pho<br>En | any:ess:<br>City:<br>one: _\$<br>nail: | Aun<br>92<br>San<br>33. | ec F<br>lo S<br>Div<br>630<br>a.h. | ky P<br>ge<br>34 | arm<br>oo<br>Qam  | St<br>even | ate: (A-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zip: <u>Q2</u> | <u>Pamelis</u> |
| O = Other:                                                                                                         |                                      | 7                         | _ TZ = Trizma:                               |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |       |         | L = Sluc             |                      |                                          |                |                                 |                                        |                         |                                    |                  |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D - Ocuilli    |                |

Work Order 1700887

IRP-FD01 - 1110 +00-FERCH - LLUT

Page 18 of 316



# **CHAIN OF CUSTODY**

| For Laboratory Use Only       |                  | -07        |   |
|-------------------------------|------------------|------------|---|
| Laboratory Project ID: 170087 | Temp:            | 017        | 5 |
| Storage ID: WR-2              | Storage Secured: | Yes 🗗 No 🗆 |   |

| ,                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                        |          |       |         |          |          |         |                                          |                    |                                           |          | 310            | laye ii                        | J. <u> </u>  | V / C       | - 0                                   |         |          |          | _ 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rage Secui                     | rea: res       | I NO [                                 |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------|----------|-------|---------|----------|----------|---------|------------------------------------------|--------------------|-------------------------------------------|----------|----------------|--------------------------------|--------------|-------------|---------------------------------------|---------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|----------------------------------------|
| Project ID: NSW( (                                                                         | Nhite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Osk     | PO#: TO 008                            | <u> </u> |       |         | Sami     | pler: _  | <u></u> | Com                                      | <del>کر</del> (nan | ne)                                       |          |                | _                              | TA<br>(che   | T<br>eck or | ne):                                  |         | ı (su    |          | rge ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21 days<br>ay apply)<br>7 days |                | (100                                   |
| Invoice to: Name                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compan  | у                                      |          | Addr  | ess     |          |          |         |                                          |                    | ,                                         |          | City           | y                              |              |             |                                       | State   |          |          | Ph#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | Fa             |                                        |
|                                                                                            | Am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c Fosto | wheeler E3I                            |          | 92    | U S     | Kx x     | ark      | Cast    | 4                                        |                    |                                           | Sa       | nD             | ice                            | 0            |             |                                       | CA      |          | _        | ((2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 639-                           | -34            | <sub>ව</sub> ට                         |
| Relinquished by (printed name                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Date                                   |          | Time  |         |          |          |         | y (print                                 | ed na              | me and                                    | d sign:  | ature)         | e                              | 5            |             |                                       |         |          | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                           | Tim            |                                        |
| Direo barale                                                                               | ٤,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7/      | 7/14/1:                                | 7        | 10    | 15      |          |          |         | Fe                                       | ut                 | ×                                         |          |                |                                |              |             |                                       |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                                        |
| Relinquished by (printed name                                                              | and signated the signature of the signat |         | Date 07/15/17                          | - 6      | 71me  |         | Y        | Recei    | ved by  | y (print                                 | ed nai             | me and                                    | d sign   | b &            | th                             | ede          | Č           | 6                                     |         |          |          | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date /5/17                     | Tim<br>2 C     | 909                                    |
| SHIP TO: Vista Analytical La<br>1104 Windfield W<br>El Dorado Hills, C<br>(916) 673-1520 * | ay<br>A 95762<br>Fax (916) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | Method of Shipment: FUEK Tracking No.: |          | Conta | is(es)  | (3)      |          | 13/     | 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | 18                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2     | /        | 14/            | \$ 7 S                         |              |             | 7/8°                                  | /       |          | 18       | The state of the s |                                |                |                                        |
| Sample ID                                                                                  | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time    | Location/Sample Description            | 1        | 1 2   | Matrix  |          | 18/      | 3       |                                          |                    | N. S. | 18/      | 3 2            | SAK                            |              |             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Jun Ohm | 100      | \$ 4 / S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commer                         | nts            |                                        |
| Sike 6-6W-06FD01                                                                           | 7/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ino     | Duplicate                              | 2        | P     | AC      |          |          |         |                                          |                    |                                           |          |                |                                |              |             |                                       |         | X        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                                        |
| 3170712                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                        |          |       |         |          |          |         |                                          |                    | П                                         |          | T              | 1                              | T            |             |                                       |         | Ť        |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                |                                        |
| A VISTORIA AND MARKET                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                        |          |       |         |          |          | $\top$  |                                          |                    | $\Box$                                    | 13       | 1              | T                              | $\vdash$     | $\vdash$    |                                       |         |          |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                |                                        |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                        | 1        |       |         |          |          | $\top$  | +                                        |                    | $\Box$                                    | $\dashv$ | $\top$         | T                              | $\vdash$     | $\vdash$    |                                       |         |          |          | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                |                                        |
|                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +       |                                        | $\vdash$ |       |         |          | $\neg +$ | +       | _                                        | +                  | $\vdash$                                  | +        | +              | +                              | $\vdash$     |             |                                       |         | -        |          | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                |                                        |
|                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -       |                                        | $\vdash$ |       |         | $\vdash$ | -        | +       |                                          | +                  |                                           | +        | +              | +                              |              |             |                                       | -       |          | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                | No. 20031-                             |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |                                        | $\vdash$ |       |         |          |          | +       | -                                        | -                  | $\vdash$                                  | -        | _              | $\perp$                        | _            |             | _                                     | _       |          | -        | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                |                                        |
|                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                        | _        |       |         |          |          | _       |                                          |                    | $\sqcup$                                  |          | $\perp$        | $\perp$                        | $oxed{oxed}$ |             |                                       |         |          |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                |                                        |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                        |          |       |         |          |          |         |                                          |                    |                                           |          |                |                                |              |             |                                       |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                                        |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                        |          |       |         |          |          |         |                                          |                    |                                           |          |                |                                |              |             |                                       |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                                        |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                        |          |       |         |          |          |         |                                          |                    |                                           | $\top$   | $\top$         | 1                              |              |             |                                       |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5-1   | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  |          |       |         |          |          |         |                                          |                    |                                           |          |                |                                | 1            |             |                                       | 1 6     |          | ///      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Beure                          |                |                                        |
| Special Instructions/Comments:                                                             | _ · _ TEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Site    | o Duplicate                            |          |       |         |          |          |         | DOCU<br>AND F                            |                    | CITAT                                     |          | Com<br>Ad<br>F | npany<br>dress<br>City<br>hone | 50           | 210<br>5 -  | St. St.                               | 4 Pa    | ( ) de 1 | Co       | State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CA                             | Zip:_ <b>9</b> | 2123<br>Dames Fr                       |
| Container Types: P= HDPE, PJ=                                                              | HDPE Jar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | Bottle Preserva                        | tion Ty  | pe: T | = Thios | sulfate, |          |         | Mat                                      | trix Ty            | pes: A                                    | Q = Ac   | ueous,         | DW =                           | Drink        | ing W       | ater, I                               | EF = E  | ffluer   | nt, PP   | > = Pulp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /Paper, S                      | D = Sed        | iment,                                 |
| O = Other:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | TZ = Trizma:                           |          |       |         |          |          |         | SL                                       | = Slud             | ge, SO                                    | = Soil,  | WW =           | Waste                          | water        | , B = E     | 3lood/                                | Serun   | n, O =   | = Oth    | er:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                |                                        |



## Sample Log-in Checklist

| Vista Work Orde                                                                                                                                                                 | er#:          | 1.       | 1008      | 87          |        | TA      | AT/_            | ł      |      |   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-----------|-------------|--------|---------|-----------------|--------|------|---|--|
| Samples                                                                                                                                                                         | Date/Time     |          |           | Initials:   | 1 4    | Locatio | on: WR          | -2     |      | ] |  |
| Arrival:                                                                                                                                                                        | 07/15/17      | 1 09     | 04        | USK         | 1/5    | Shelf/R | ack:            | IA     |      |   |  |
|                                                                                                                                                                                 | Date/Time     |          | . 1.5     | Initials:   |        | Locatio | n:              | WR     | 7    |   |  |
| Logged In:                                                                                                                                                                      | 07/15/1       | 1 13     | 31+       | BUB         |        | Shelf/R | ack:            | B6     |      |   |  |
| Delivered By:                                                                                                                                                                   | FedEx         | UPS      | On Trac   | GSO         | DHL    |         | Hand<br>livered | Otl    | ner  |   |  |
| Preservation:                                                                                                                                                                   | Ice           | )        | Blu       | e Ice       |        | Dry Ic  | е               | No     | ne   |   |  |
| Temp °C:                                                                                                                                                                        | (uncorrec     | ted) Ti  | me: 0     | 912         |        | Thomas  | water ID        | . DT 2 |      |   |  |
| Temp °C: -∅, → (corrected) Probe used: Yes No□ Thermometer ID: DT-3                                                                                                             |               |          |           |             |        |         |                 |        |      |   |  |
|                                                                                                                                                                                 |               |          |           |             |        |         | YES             | NO     | NA   | 1 |  |
| Adequate Sample                                                                                                                                                                 | e Volume Re   | ceived?  |           | B           |        |         | 1/              | NO     | NA   |   |  |
| Adequate Sample Volume Received?  Holding Time Acceptable?                                                                                                                      |               |          |           |             |        |         |                 |        |      |   |  |
| Shipping Contain                                                                                                                                                                | 5 8 V S       |          |           | a de de de  |        |         | V               |        |      |   |  |
| Shipping Custod                                                                                                                                                                 |               |          |           |             |        |         |                 |        | V    |   |  |
| Shipping Docum                                                                                                                                                                  |               |          |           |             |        |         | 1               |        |      |   |  |
| Airbill                                                                                                                                                                         | Trk#          | 7796     | 35        | 86 310      | 13     |         | V               |        |      |   |  |
| Sample Containe                                                                                                                                                                 |               |          |           |             |        |         | V               |        |      |   |  |
| Sample Custody                                                                                                                                                                  | Seals Intact  | ?        |           |             |        |         |                 |        |      |   |  |
| Chain of Custody                                                                                                                                                                | y / Sample De | ocument  | ation Pre | esent?      |        |         | V               |        |      | / |  |
| COC Anomaly/S                                                                                                                                                                   | ample Accep   | tance Fo | orm com   | oleted?     |        |         |                 | V      | i    |   |  |
| If Chlorinated or                                                                                                                                                               | Drinking Wat  | er Samp  | les, Acc  | eptable Pre | eserva | tion?   |                 |        | V    |   |  |
| Preservation Dod                                                                                                                                                                |               |          | $S_2O_3$  | Trizma      |        | None    | Yes             | No     | NA   |   |  |
| Shipping Contain                                                                                                                                                                | ner           | Vi       | sta       | Client      | R      | etain   | Return          | Dis    | pose |   |  |
| Comments: Samples IRPSik 6-GW-06GW01-20170712  V V V WD2  Sik 33-GW-33GW01-20170712  BWIding 110-GW-110 GW01-20170712  TRPSik 4-GW-06FD01-20170712  TRPSik 4-GW-06FD01-20170712 |               |          |           |             |        |         |                 |        |      |   |  |
|                                                                                                                                                                                 | t             | rpsite   | 4-GW      | -06 F.DOI-  | 2017   | 0712    | )               |        |      |   |  |

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

## **EXTRACTION INFORMATION**

Work Order 1700887 Page 21 of 316

**Process Sheet** 

Workorder: 1700887

Prep Expiration: 2017-Jul-26

Client: KMEA

Workorder Due: 31-Jul-17 00:00

TAT: 16

Method: 537M PFAS DOD (LOQ as mRL)

Matrix: Aqueous

Prep Data Entered:

Version: 537 (14 Analyte)

Initial Sequence:

| LabSampleID         | Reco     | on ClientSampleID                | Date Received   | Location | Comments |
|---------------------|----------|----------------------------------|-----------------|----------|----------|
| 1700887-01          | <b>√</b> | IRPSite 6-GW-06GW01-20170712     | 15-Jul-17 09:06 | WR-2 B-6 |          |
| 1700887-02 <b>A</b> |          | IRPSite 6-GW-06GW02-20170712     | 15-Jul-17 09:06 | WR-2 B-6 | \        |
| 1700887-03 🐧        | V        | IRPSite 6-GW-FRB01-20170712      | 15-Jul-17 09:06 | WR-2 B-6 |          |
| 1700887-04          |          | Site 33-GW-33GW01-20170712       | 15-Jul-17 09:06 | WR-2 B-6 |          |
| 1700887-05          |          | Building 110-GW-110GW01-20170712 | 15-Jul-17 09:06 | WR-2 B-6 |          |
| 1700887-06          |          | IRPSite 6-GW-06FD01-20170712     | 15-Jul-17 09:06 | WR-2 B-6 |          |

WO Comments: Samples contain particulate. Centrifuge and decant.

Vista PM:Martha Maier

Vial Box ID: Sale US

Sample Reconciled By:

Page 1 of 1

Work Order 1700887 Page 22 of 316 Batch: B7G0079 Matrix: Aqueous

| LabNumber    | WetWeight<br>(Initial) | % Solids<br>(Extraction Solids) | DryWeight | Final | Extracted       | Ext By | Spike   | SpikeAmount | ClientMatrix | Analysis              |
|--------------|------------------------|---------------------------------|-----------|-------|-----------------|--------|---------|-------------|--------------|-----------------------|
| 1700875-01   | 0.11821                | NA                              | NI        | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700875-02   | 0.11912                | <u> </u>                        |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700875-03   | 0.11822                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700875-04   | 0.11793                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700875-05   | 0.11994                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700884-01   | 0.11935                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700884-02   | 0.11989                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700884-03   | 0.11984 🖊              |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700884-04   | 0.11984                | ,                               |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700887-01   | 0.08342                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700887-02   | 0.09939                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700887-03   | 0.11445                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    | _       |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700887-04   | 0.12081                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700887-05   | 0.11776                | /                               |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| 1700887-06   | 0.10593                |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             | Aqueous      | 537M PFAS DOD (LOQ as |
| B7G0079-BLK1 | 0.125                  |                                 |           | 1000  | 20-Jul-17 11:18 | BAP    |         |             |              | QC                    |
| B7G0079-BS1  | 0.125                  | 7                               |           | 1000  | 20-Jul-17 11:18 | BAP    | 17D2705 | √ 10 √      |              | QC                    |

HB 7/21/13

PrinteW:ofl/20r120r17700088756PM

#### PREPARATION BENCH SHEET

Method: 537M PFAS DOD (LOO as mRL)

| B7G0079 |         |  |
|---------|---------|--|
|         | B7G0079 |  |

Chemist: **BP**Prep Date/Time: **18**-Jul-17 11:18

Prepared using: LCMS - SPE Extraction-LCMS

|   |                               |              |             |               |                       |                           |                       |                       |      | ı                      | c760019    | 7                      |
|---|-------------------------------|--------------|-------------|---------------|-----------------------|---------------------------|-----------------------|-----------------------|------|------------------------|------------|------------------------|
| С | VISTA<br>Sample ID            | pH<br>Before | pH<br>After | Chlorine (Cl) | Drops<br>HCl<br>Added | Bottle +<br>Sample<br>(g) | Bottle<br>Only<br>(g) | Sample<br>Amt.<br>(L) | CHE  | S/NS<br>EM/WIT<br>DATE | SPE        | RS<br>CHEM/WIT<br>DATE |
|   | B7G0079-BLK1                  | 5            | 2           | 0             | \$ 2                  | NA                        | NA                    | (0.125)               | B8 1 | £ 7.20.17              | 7K 7.20.17 | BP 7/C7.20.17          |
|   | B7G0079-BS1                   | 5            | 2           | 0             | *32                   | $\downarrow$              | ₩                     | T ,                   | 7    |                        |            |                        |
|   | 1700875-01 <b>A</b>           | 6            | 2           | 0             | 3                     | 144.93                    | 26.72                 | 0.11821               |      |                        |            |                        |
|   | 1700875-02 <b>A</b>           | 6            | 2           | 0             | 3                     | 145.83                    | 26.71                 | 0.11912               |      |                        |            |                        |
|   | 1700875-03 <b>(A</b> )        | 6            | 2           | 0             | 3                     | 149.94                    | 26.72                 | 0.11827               |      |                        |            |                        |
|   | 1700875-04                    | 6            | 2           | 0             | 3                     | 14.96                     | 27.03                 | 0.11793               |      |                        |            |                        |
|   | 1700875-05                    | 5            | 2           | 0             | 2                     | 146.55                    | 24-61                 | 0.11997               |      |                        |            |                        |
|   | 1700884-01                    | 6            | 2           | 0             | 3                     | 146.09                    | 26.74                 | 0.11935               |      |                        |            |                        |
|   | 1700884-02 <b>(P</b> )        | 5            | 2           | 0             | 2                     | 145.69                    | 471                   | 0.11898               |      |                        |            |                        |
|   | 1700884-03                    | 5            | 2           | 0             | 2                     | 146.55                    | 26.71                 | 0.1984                |      |                        |            |                        |
|   | 1700884-04                    | _5           | 2           | 0             | 2                     | H6.70                     | 24.86                 | 0.11964               |      |                        |            |                        |
|   | 1700887-01 <b>(A) (B)</b>     | 5            | 2           | 0             | 2                     | 109.95                    | U.53                  | 0.8342                | //   |                        |            |                        |
|   | 1700887-02 <b>(h) (B) (C)</b> | 6            | 2           | 0             | 3                     | 125.99                    | 26.60                 | 0.09939               |      |                        |            |                        |
|   | 1700887-03                    | 5            | 7           | 0             | 2                     | 191.87                    | 24.92                 | 0.11945               | /    |                        |            |                        |
|   | 1700887-04 <b>(1)</b> (1)     | 5            | 2           | 0             | 2                     | 147.43                    | 24.62                 | 0.12091               | /    |                        |            |                        |
|   | 1700887-05 <b>A</b> B         | 5            | 2           | 0             | 1                     | 144.36                    | 26.66                 | 0.11776               | / ,  | <b>.</b> .             | 4          |                        |

| IS Name     | NS Name      | RS Name     | SPE Chem: Strata X-AW 33 m 200mg                     | Check Out:<br>Chemist/Date: HB 7/19/17                                                    |
|-------------|--------------|-------------|------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 1761307,1aL | 1702705,1001 | 17F3038,10M | Ele SOLV: 0.5%. N. Hyou in MCUH/West Final Volume(s) | Check In: ha HISHIP HB 7/18/17 Chemist/Date: HRMS-8 pH Adjusted: Chemist/Date: HB 7/18/17 |

Comments: Assume 1 g = 1 ml @ samples were centrifuged to remove particulate. HB 7/18/17 @ samples had thick layer of particulate. HB 7/18/17 @ samples had thick layer of particulate. HB 7/18/17

#### PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537M PFAS DOD (LOO as mRL)

B7G0079

Chemist:

Prep Date/Time: 22 Jul-17 11;18

80 1.20. 17

Prepared using: LCMS - SPE Extraction-LCMS

|   |                       |              |             |               | _                     |                           |                       |                       |                           | (760079     |                        |
|---|-----------------------|--------------|-------------|---------------|-----------------------|---------------------------|-----------------------|-----------------------|---------------------------|-------------|------------------------|
| С | VISTA<br>Sample ID    | pH<br>Before | pH<br>After | Chlorine (Cl) | Drops<br>HCl<br>Added | Bottle +<br>Sample<br>(g) | Bottle<br>Only<br>(g) | Sample<br>Amt.<br>(L) | IS/NS<br>CHEM/WIT<br>DATE | SPE         | RS<br>CHEM/WIT<br>DATE |
|   | 1700887-06 <b>(A)</b> | 5            | 2           | 0             | 2                     | 132.52                    | 26.59                 | 0.105934              | BP /2-7.20-17             | The 7.10-17 | BC 7/2 7.20.17         |

| SPE Chem: State XW 33 m 700 m | Check Out: Chemist/Date: HB 3/18/13 | Check In: Che

## **SAMPLE DATA – MODIFIED EPA METHOD 537**

Work Order 1700887 Page 26 of 316

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-8.qld

Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time Printed: Monday, July 31, 2017 11:23:09 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2\_8, Date: 31-Jul-2017, Time: 11:02:39

|    | # Name         | Trace           | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|----------------|-----------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 3 PFBS         | 299.0 > 79.7    |           | 3.938e3 |          | 0.125  |      |       |      |
| 2  | 4 PFHxA        | 312.9 > 268.9   |           | 4.470e3 |          | 0.125  |      |       |      |
| 3  | 5 PFHpA        | 363 > 318.9     |           | 5.864e3 |          | 0.125  |      |       |      |
| 4  | 6 PFHxS        | 398.9 > 79.6    |           | 3.430e3 |          | 0.125  |      |       |      |
| 5  | 7 PFOA         | 413.0 > 368.7   | 6.025e1   | 1.194e4 |          | 0.125  | 4.22 |       |      |
| 6  | 8 PFNA         | 463.0 > 418.8   |           | 5.289e3 |          | 0.125  |      |       |      |
| 7  | 9 PFOS         | 499.0 >79.9     |           | 6.175e3 |          | 0.125  |      |       |      |
| 8  | 10 PFDA        | 512.7 > 219.0   | 5.251e0   | 9.635e3 |          | 0.125  | 4.87 |       |      |
| 9  | 12 13C3-PFBS   | 302.0 > 98.8    | 3.938e3   | 1.420e4 | 0.263    | 0.125  | 2.89 | 106   | 106  |
| 10 | 14 13C2-PFHxA  | 315.0 > 269.8   | 4.470e3   | 1.420e4 | 0.361    | 0.125  | 3.27 | 87.3  | 87.3 |
| 11 | 15 13C4-PFHpA  | 367.2 > 321.8   | 5.864e3   | 1.420e4 | 0.475    | 0.125  | 3.81 | 86.9  | 86.9 |
| 12 | 16 18O2-PFHxS  | 403 > 102.6     | 3.430e3   | 9.048e3 | 0.411    | 0.125  | 3.93 | 92.3  | 92.3 |
| 13 | 17 13C2-PFOA   | 414.9 > 369.7   | 1.194e4   | 4.928e3 | 2.843    | 0.125  | 4.22 | 85.3  | 85.3 |
| 14 | 18 13C5-PFNA   | 468.2 > 422.9   | 5.289e3   | 6.794e3 | 0.854    | 0.125  | 4.56 | 91.2  | 91.2 |
| 15 | 19 13C2-PFDA   | 514.8 > 469.7   | 9.635e3   | 7.235e3 | 1.742    | 0.125  | 4.86 | 76.5  | 76.5 |
| 16 | 20 13C8-PFOS   | 507.0 > 79.9    | 6.175e3   | 7.445e3 | 0.927    | 0.125  | 4.63 | 89.5  | 89.5 |
| 17 | 22 13C5-PFHxA  | 318>272.9       | 1.420e4   | 1.420e4 | 1.000    | 0.125  | 3.27 | 100   | 100  |
| 18 | 23 13C3-PFHxS  | 401.9 > 79.9    | 9.048e3   | 9.048e3 | 1.000    | 0.125  | 3.93 | 100   | 100  |
| 19 | 24 13C8-PFOA   | 421.3 > 376     | 4.928e3   | 4.928e3 | 1.000    | 0.125  | 4.22 | 100   | 100  |
| 20 | 25 13C9-PFNA   | 472.2 > 426.9   | 6.794e3   | 6.794e3 | 1.000    | 0.125  | 4.56 | 100   | 100  |
| 21 | 26 13C4-PFOS   | 503.0 > 79.9    | 7.445e3   | 7.445e3 | 1.000    | 0.125  | 4.63 | 100   | 100  |
| 22 | 27 13C6-PFDA   | 519.10 > 473.70 | 7.235e3   | 7.235e3 | 1.000    | 0.125  | 4.86 | 100   | 100  |
| 23 | 28 Total PFBS  | 299.0 > 79.7    |           | 3.938e3 |          | 0.125  |      |       |      |
| 24 | 29 Total PFHxS | 398.9 > 79.6    |           | 3.430e3 |          | 0.125  |      |       |      |
| 25 | 30 Total PFOA  | 413.0 > 368.7   |           | 1.194e4 |          | 0.125  |      |       |      |
| 26 | 31 Total PFOS  | 499.0 >79.9     |           | 6.175e3 |          | 0.125  |      |       |      |

#### **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-8.qld

Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time Printed: Monday, July 31, 2017 11:23:09 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2\_8, Date: 31-Jul-2017, Time: 11:02:39

#### **Total PFBS**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

#### **Total PFHxS**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

#### **Total PFOA**

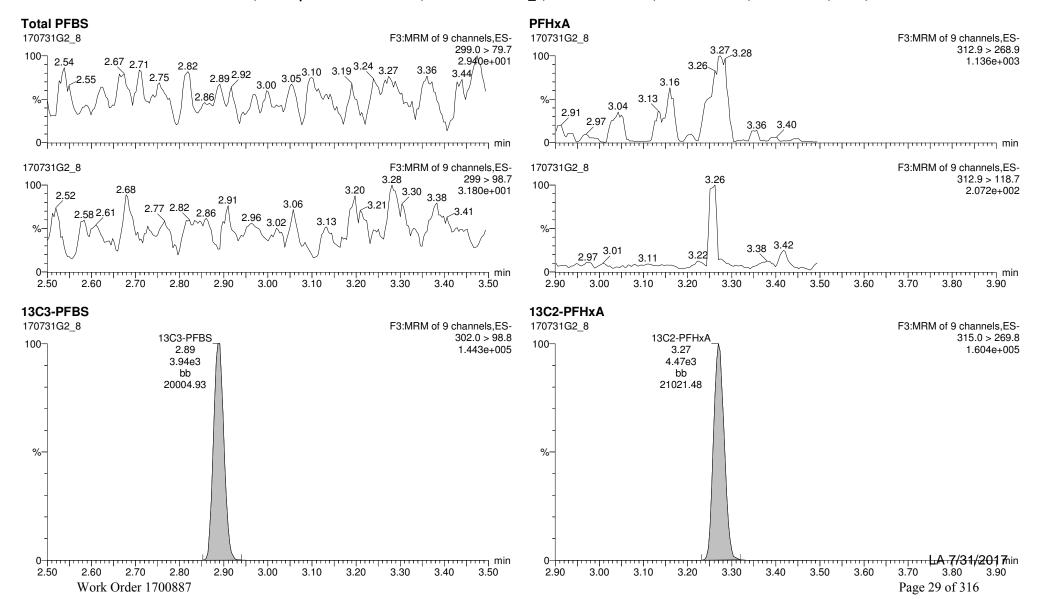
|   | # Name | Trace         | RT   | Area   | IS Area   | Conc. |
|---|--------|---------------|------|--------|-----------|-------|
| 1 | 7 PFOA | 413.0 > 368.7 | 4.22 | 60.253 | 11944.127 |       |

#### **Total PFOS**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

Page 1 of 1 Rev'd: MM 7/31/17 Quantify Sample Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1


Dataset:

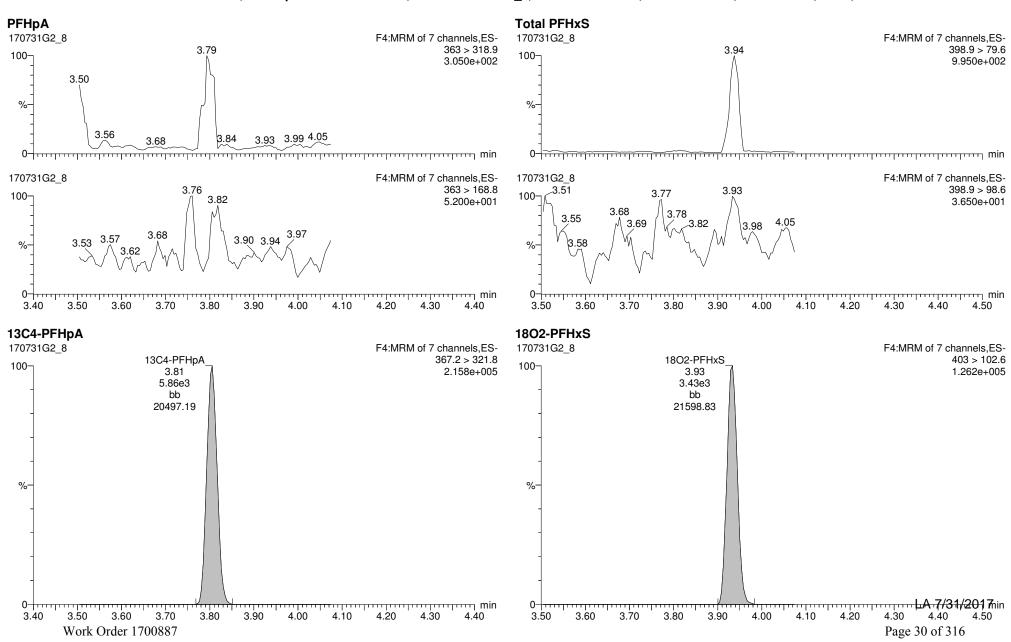
U:\G1.PRO\Results\2017\170731G2\170731G2-8.gld

Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time Printed: Monday, July 31, 2017 11:23:09 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2 8, Date: 31-Jul-2017, Time: 11:02:39, Instrument: , Lab: , User:



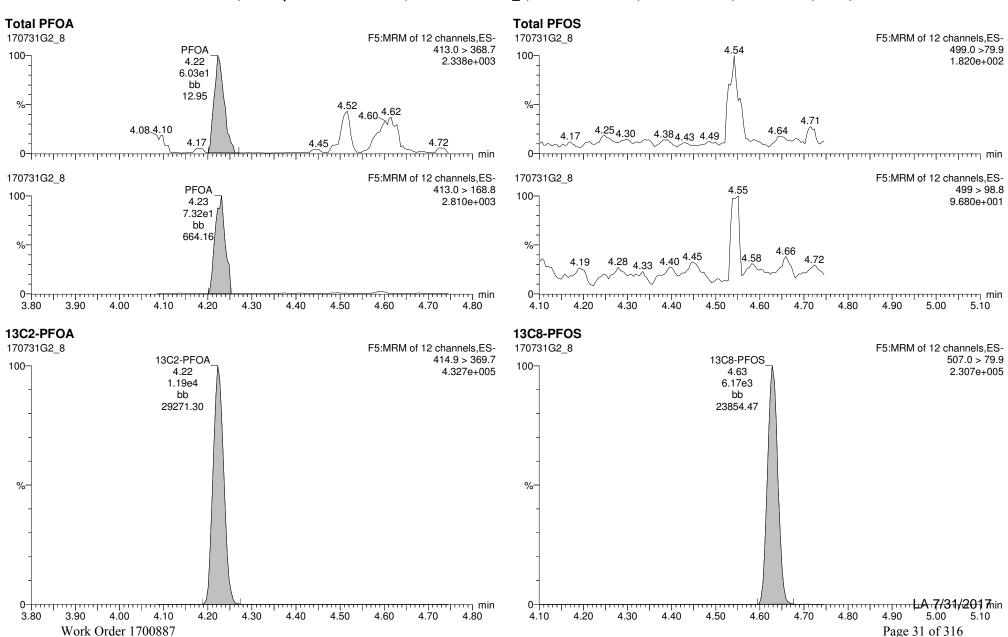

Page 1 of 6 Rev'd: MM 7/31/17

MassLynx 4.1 SCN815

Page 2 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-8.qld

Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time Printed: Monday, July 31, 2017 11:23:09 Pacific Daylight Time

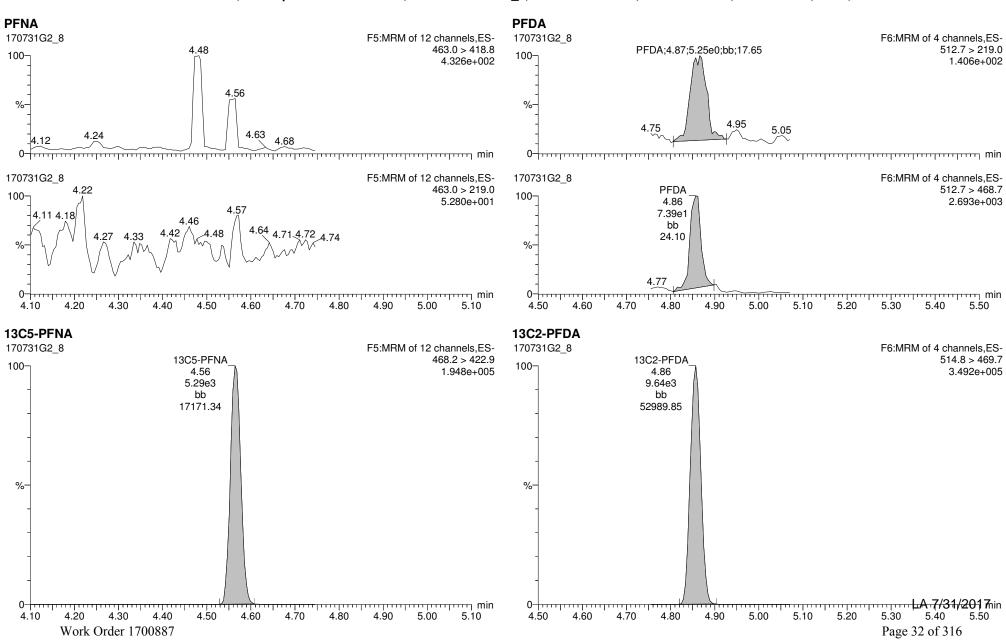



MassLynx 4.1 SCN815

Page 3 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-8.qld

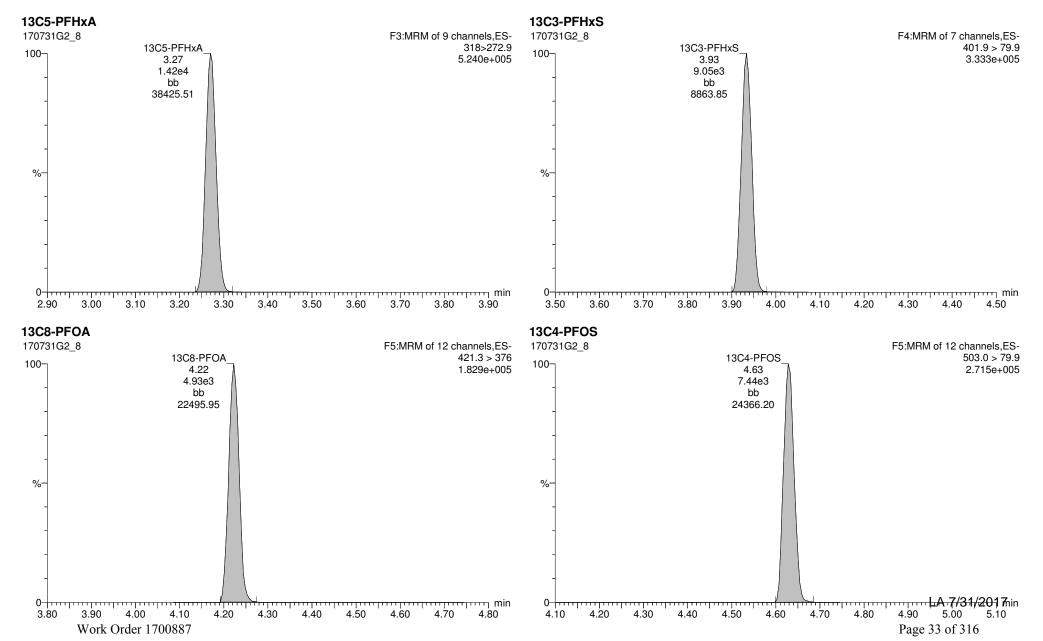
Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time Printed: Monday, July 31, 2017 11:23:09 Pacific Daylight Time



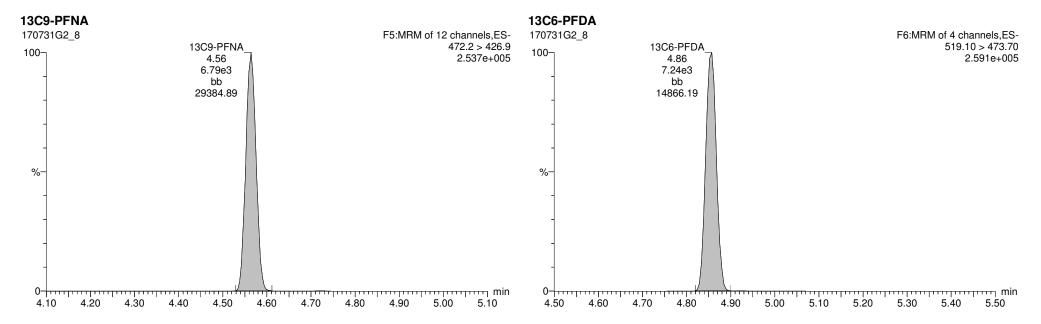

MassLynx 4.1 SCN815

Page 4 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-8.qld


Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time Printed: Monday, July 31, 2017 11:23:09 Pacific Daylight Time




Page 5 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-8.qld

Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time Printed: Monday, July 31, 2017 11:23:09 Pacific Daylight Time



Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time Printed: Monday, July 31, 2017 11:23:09 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-6.qld

Last Altered: Monday, July 31, 2017 16:24:20 Pacific Daylight Time Printed: Monday, July 31, 2017 16:26:16 Pacific Daylight Time

Method: U:\G1.PRO\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.PRO\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G1\_6, Date: 31-Jul-2017, Time: 14:54:16

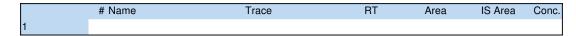
|    | # Name             | Trace         | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|--------------------|---------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 2 N-MeFOSAA        | 570.1 > 419.0 |           | 2.887e3 |          | 0.125  |      |       |      |
| 2  | 4 PFUnA            | 563 > 518.9   | 2.897e2   | 1.446e4 |          | 0.125  | 5.12 |       |      |
| 3  | 5 N-EtFOSAA        | 584.2 > 419.0 |           | 3.389e3 |          | 0.125  |      |       |      |
| 4  | 6 PFDoA            | 612.9 > 318.8 |           | 1.771e4 |          | 0.125  |      |       |      |
| 5  | 7 PFTrDA           | 662.9 > 618.9 |           | 0.000e0 |          | 0.125  |      |       |      |
| 6  | 8 PFTeDA           | 712.9 > 668.8 | 1.682e2   | 1.496e4 |          | 0.125  | 5.73 |       |      |
| 7  | 10 d3-N-MeFOSAA    | 573.3 > 419.0 | 2.887e3   | 1.666e4 | 0.026    | 0.125  | 4.99 | 657   | 50.5 |
| 8  | 11 13C2-PFUnA      | 565 > 519.8   | 1.446e4   | 1.666e4 | 1.471    | 0.125  | 5.12 | 59.0  | 59.0 |
| 9  | 12 d5-N-EtFOSAA    | 589.3 > 419.0 | 3.389e3   | 1.666e4 | 0.031    | 0.125  | 5.11 | 654   | 50.3 |
| 10 | 13 13C2-PFDoA      | 615 > 569.7   | 1.771e4   | 1.666e4 | 1.887    | 0.125  | 5.36 | 56.4  | 56.4 |
| 11 | 14 13C2-PFTeDA     | 715 > 669.7   | 1.496e4   | 1.666e4 | 1.990    | 0.125  | 5.74 | 45.1  | 45.1 |
| 12 | 15 13C7-PFUnA      | 570.1 > 524.8 | 1.666e4   | 1.666e4 | 1.000    | 0.125  | 5.12 | 100   | 100  |
| 13 | 16 Total N-MeFOSAA | 570.1 > 419.0 |           | 2.887e3 |          | 0.125  |      |       |      |
| 14 | 17 Total N-EtFOSAA | 584.2 > 419.0 |           | 3.389e3 |          | 0.125  |      |       |      |

#### **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-6.qld


Last Altered: Monday, July 31, 2017 16:24:20 Pacific Daylight Time Printed: Monday, July 31, 2017 16:26:16 Pacific Daylight Time

Method: U:\G1.PRO\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.PRO\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G1\_6, Date: 31-Jul-2017, Time: 14:54:16

#### **Total N-MeFOSAA**



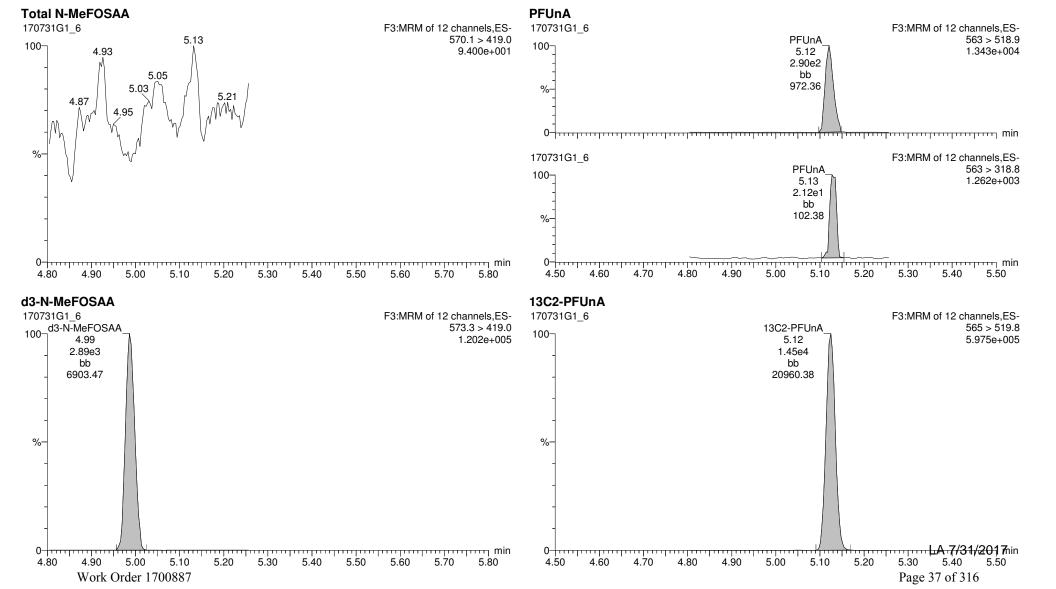
#### **Total N-EtFOSAA**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

Quantify Sample Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1

Dataset:


U:\G1.PRO\Results\2017\170731G1\170731G1-6.gld

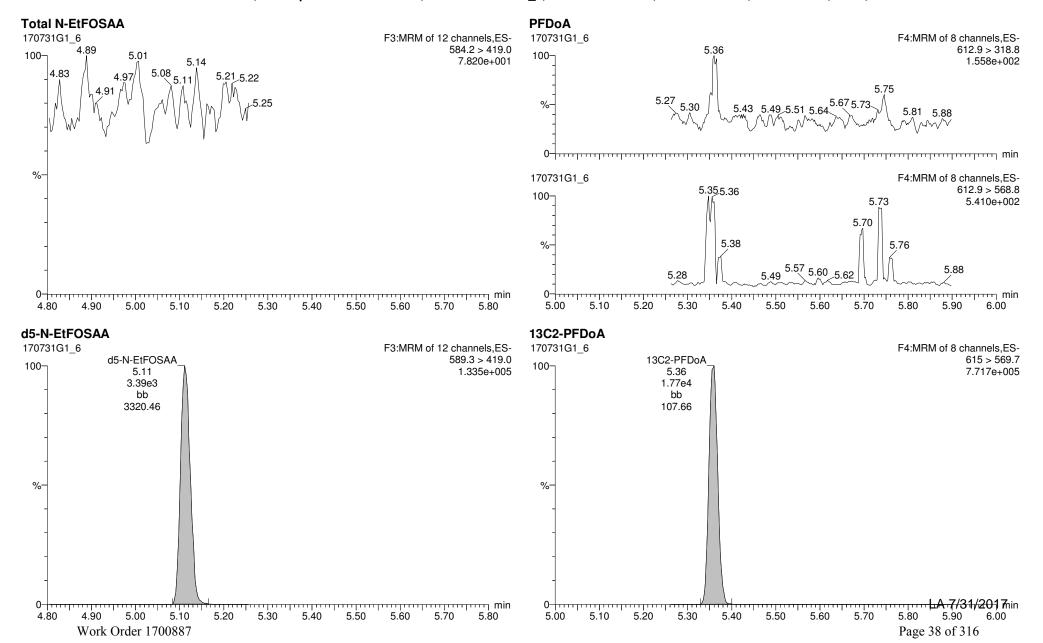
Last Altered: Monday, July 31, 2017 16:24:20 Pacific Daylight Time Printed: Monday, July 31, 2017 16:26:16 Pacific Daylight Time

 $Method: U: \G1.PRO\MethDB\PFAS\_B\_2TRAN\_0714.mdb\ 14\ Jul\ 2017\ 15:36:03$ 

Calibration: U:\G1.PRO\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G1\_6, Date: 31-Jul-2017, Time: 14:54:16, Instrument: , Lab: , User:



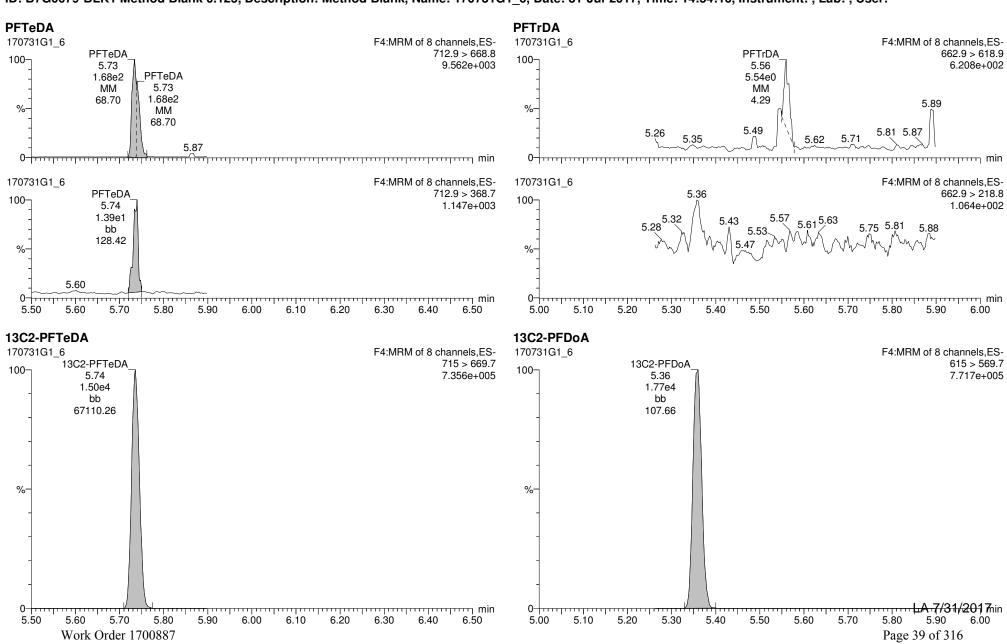

Rev'd: MM 7/31/17

MassLynx 4.1 SCN815

Page 2 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-6.qld

Last Altered: Monday, July 31, 2017 16:24:20 Pacific Daylight Time Printed: Monday, July 31, 2017 16:26:16 Pacific Daylight Time




MassLynx 4.1 SCN815

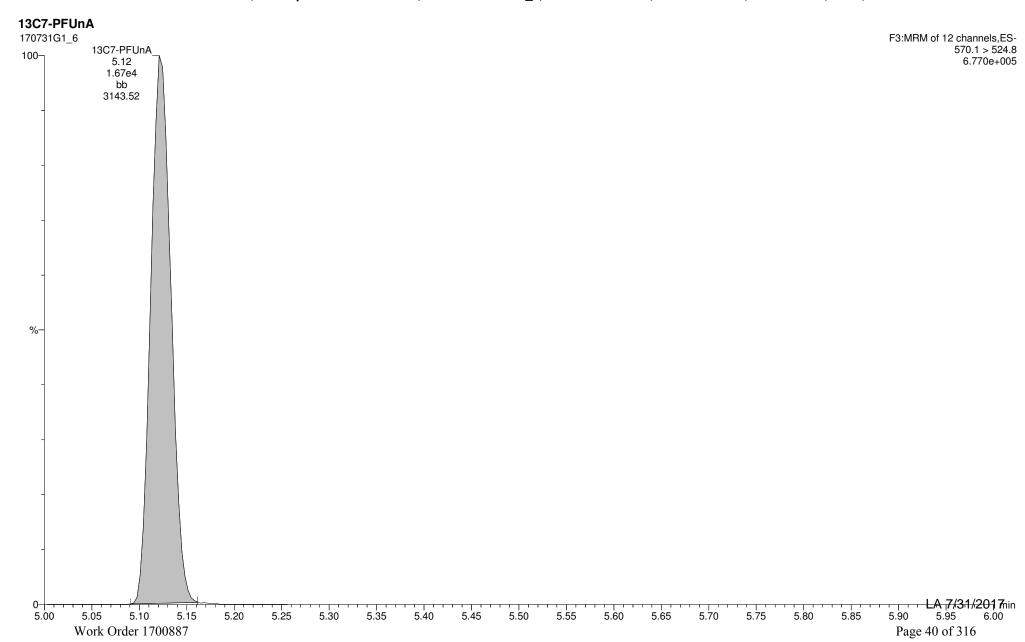
Page 3 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-6.gld

Last Altered: Monday, July 31, 2017 16:24:20 Pacific Daylight Time Printed: Monday, July 31, 2017 16:26:16 Pacific Daylight Time



MassLynx 4.1 SCN815


Vista Analytical Laboratory Q1

**Quantify Sample Report** 

Page 4 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-6.qld

Last Altered: Monday, July 31, 2017 16:24:20 Pacific Daylight Time Printed: Monday, July 31, 2017 16:26:16 Pacific Daylight Time



Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time Printed: Monday, July 31, 2017 11:18:39 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2\_6, Date: 31-Jul-2017, Time: 10:37:29

|    | # Name         | Trace           | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|----------------|-----------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 3 PFBS         | 299.0 > 79.7    | 5.126e3   | 4.141e3 |          | 0.125  | 2.89 | 74.1  | 92.6 |
| 2  | 4 PFHxA        | 312.9 > 268.9   | 8.241e3   | 4.969e3 |          | 0.125  | 3.27 | 86.7  | 108  |
| 3  | 5 PFHpA        | 363 > 318.9     | 1.035e4   | 6.038e3 |          | 0.125  | 3.81 | 87.0  | 109  |
| 4  | 6 PFHxS        | 398.9 > 79.6    | 4.500e3   | 3.031e3 |          | 0.125  | 3.93 | 83.0  | 104  |
| 5  | 7 PFOA         | 413.0 > 368.7   | 8.000e3   | 1.100e4 |          | 0.125  | 4.23 | 90.3  | 113  |
| 6  | 8 PFNA         | 463.0 > 418.8   | 8.763e3   | 4.884e3 |          | 0.125  | 4.56 | 77.6  | 97.0 |
| 7  | 9 PFOS         | 499.0 >79.9     | 2.303e3   | 6.359e3 |          | 0.125  | 4.63 | 76.5  | 95.7 |
| 8  | 10 PFDA        | 512.7 > 219.0   | 1.413e3   | 9.155e3 |          | 0.125  | 4.86 | 77.5  | 96.9 |
| 9  | 12 13C3-PFBS   | 302.0 > 98.8    | 4.141e3   | 1.473e4 | 0.263    | 0.125  | 2.89 | 107   | 107  |
| 10 | 14 13C2-PFHxA  | 315.0 > 269.8   | 4.969e3   | 1.473e4 | 0.361    | 0.125  | 3.27 | 93.6  | 93.6 |
| 11 | 15 13C4-PFHpA  | 367.2 > 321.8   | 6.038e3   | 1.473e4 | 0.475    | 0.125  | 3.81 | 86.2  | 86.2 |
| 12 | 16 18O2-PFHxS  | 403 > 102.6     | 3.031e3   | 8.357e3 | 0.411    | 0.125  | 3.93 | 88.3  | 88.3 |
| 13 | 17 13C2-PFOA   | 414.9 > 369.7   | 1.100e4   | 4.279e3 | 2.843    | 0.125  | 4.22 | 90.4  | 90.4 |
| 14 | 18 13C5-PFNA   | 468.2 > 422.9   | 4.884e3   | 6.276e3 | 0.854    | 0.125  | 4.56 | 91.2  | 91.2 |
| 15 | 19 13C2-PFDA   | 514.8 > 469.7   | 9.155e3   | 6.876e3 | 1.742    | 0.125  | 4.86 | 76.4  | 76.4 |
| 16 | 20 13C8-PFOS   | 507.0 > 79.9    | 6.359e3   | 7.385e3 | 0.927    | 0.125  | 4.63 | 92.9  | 92.9 |
| 17 | 22 13C5-PFHxA  | 318>272.9       | 1.473e4   | 1.473e4 | 1.000    | 0.125  | 3.27 | 100   | 100  |
| 18 | 23 13C3-PFHxS  | 401.9 > 79.9    | 8.357e3   | 8.357e3 | 1.000    | 0.125  | 3.93 | 100   | 100  |
| 19 | 24 13C8-PFOA   | 421.3 > 376     | 4.279e3   | 4.279e3 | 1.000    | 0.125  | 4.22 | 100   | 100  |
| 20 | 25 13C9-PFNA   | 472.2 > 426.9   | 6.276e3   | 6.276e3 | 1.000    | 0.125  | 4.56 | 100   | 100  |
| 21 | 26 13C4-PFOS   | 503.0 > 79.9    | 7.385e3   | 7.385e3 | 1.000    | 0.125  | 4.63 | 100   | 100  |
| 22 | 27 13C6-PFDA   | 519.10 > 473.70 | 6.876e3   | 6.876e3 | 1.000    | 0.125  | 4.86 | 100   | 100  |
| 23 | 28 Total PFBS  | 299.0 > 79.7    |           | 4.141e3 |          | 0.125  |      | 74.1  |      |
| 24 | 29 Total PFHxS | 398.9 > 79.6    |           | 3.031e3 |          | 0.125  |      | 83.0  |      |
| 25 | 30 Total PFOA  | 413.0 > 368.7   |           | 1.100e4 |          | 0.125  |      | 90.3  |      |
| 26 | 31_Total PFOS  | 499.0 >79.9     | _         | 6.359e3 |          | 0.125  |      | 76.5  |      |

#### **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-6.qld

Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time Printed: Monday, July 31, 2017 11:18:39 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2\_6, Date: 31-Jul-2017, Time: 10:37:29

#### **Total PFBS**

|   | # Name | Trace        | RT   | Area     | IS Area  | Conc. |
|---|--------|--------------|------|----------|----------|-------|
| 1 | 3 PFBS | 299.0 > 79.7 | 2.89 | 5126.127 | 4140.785 | 74.1  |

#### **Total PFHxS**

|   |   | # Name  | Trace        | RT   | Area     | IS Area  | Conc. |
|---|---|---------|--------------|------|----------|----------|-------|
| ١ | 1 | 6 PFHxS | 398.9 > 79.6 | 3.93 | 4500.121 | 3030.833 | 83.0  |

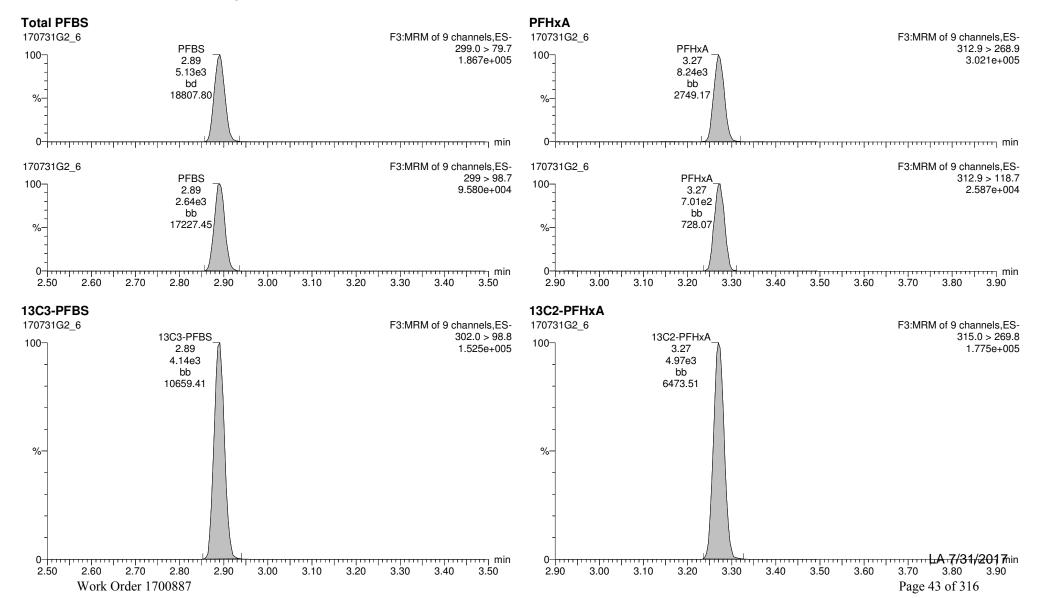
#### **Total PFOA**

|   | # Name | Trace         | RT   | Area     | IS Area   | Conc. |
|---|--------|---------------|------|----------|-----------|-------|
| 1 | 7 PFOA | 413.0 > 368.7 | 4.23 | 8000.339 | 10997.512 | 90.3  |

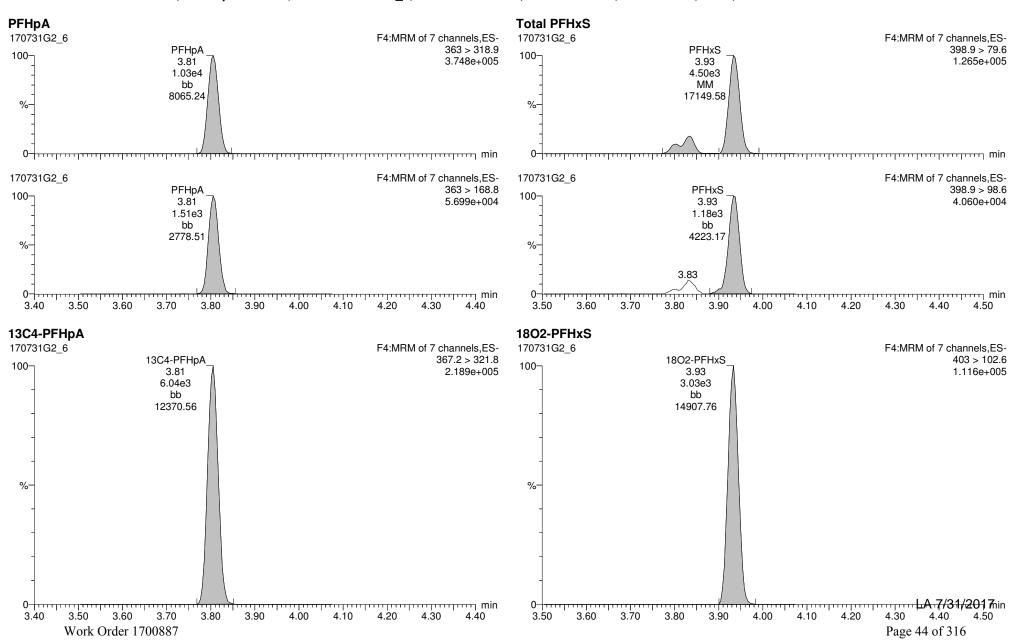
#### **Total PFOS**

|   | # Name | Trace       | RT   | Area     | IS Area  | Conc. |
|---|--------|-------------|------|----------|----------|-------|
| 1 | 9 PFOS | 499.0 >79.9 | 4.63 | 2302.586 | 6359.301 | 76.5  |

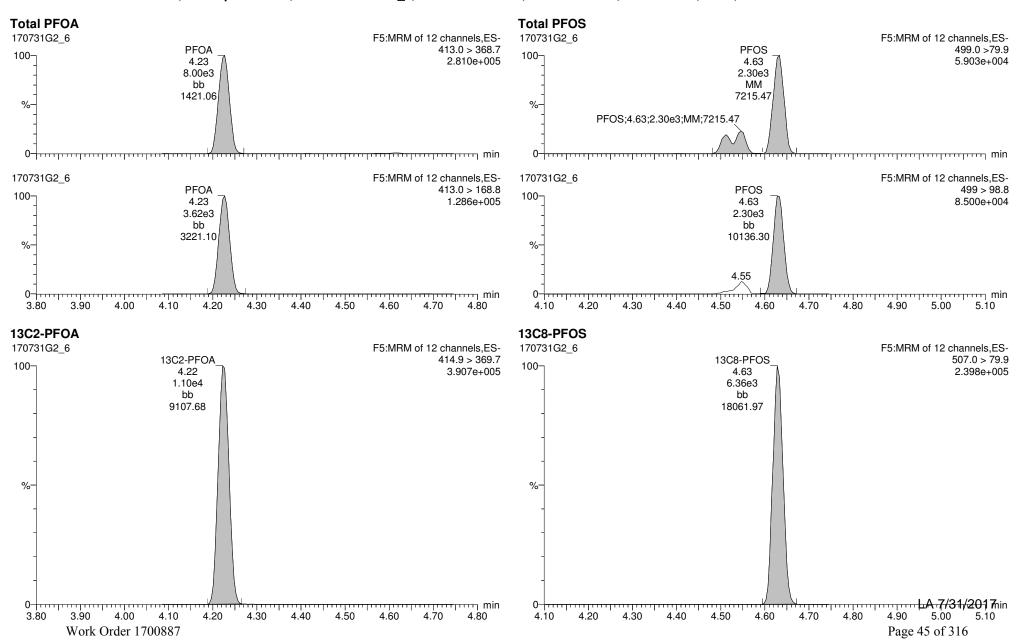
Page 1 of 1


Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-6.qld


Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time Printed: Monday, July 31, 2017 11:18:39 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17


Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

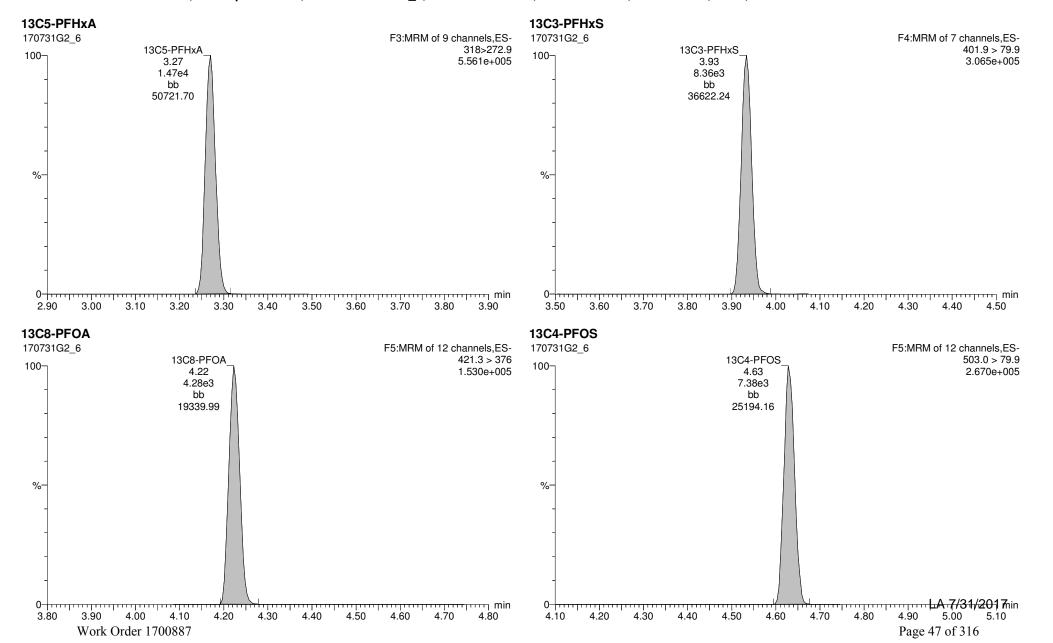


Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time Printed: Monday, July 31, 2017 11:18:39 Pacific Daylight Time



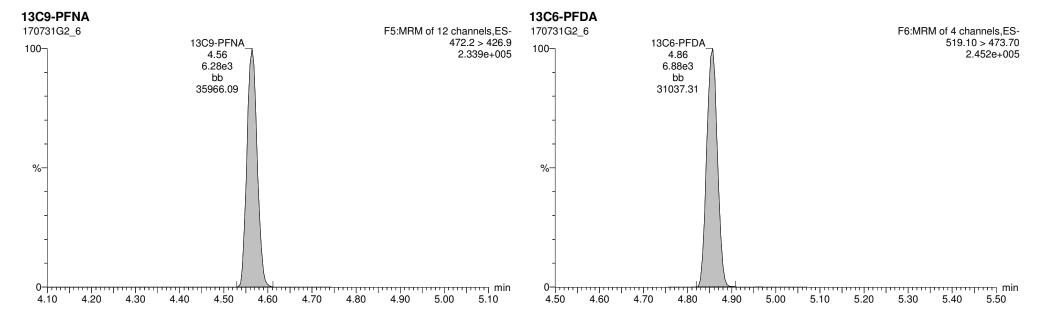
Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time Printed: Monday, July 31, 2017 11:18:39 Pacific Daylight Time




Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time Printed: Monday, July 31, 2017 11:18:39 Pacific Daylight Time



Vista Analytical Laboratory Q1


Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-6.qld

Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time Printed: Monday, July 31, 2017 11:18:39 Pacific Daylight Time



Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-6.qld

Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time Printed: Monday, July 31, 2017 11:18:39 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-4.qld

Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time Printed: Monday, July 31, 2017 14:59:31 Pacific Daylight Time

 $Method: U: \G1.pro\\MethDB\\PFAS\_B\_2TRAN\_0714.mdb\ 14\ Jul\ 2017\ 15:36:03$ 

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1\_4, Date: 31-Jul-2017, Time: 14:11:43

|    | # Name             | Trace         | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|--------------------|---------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 2 N-MeFOSAA        | 570.1 > 419.0 | 4.623e3   | 2.203e3 |          | 0.125  | 4.99 | 94.5  | 118  |
| 2  | 4 PFUnA            | 563 > 518.9   | 9.547e3   | 1.118e4 |          | 0.125  | 5.12 | 87.6  | 110  |
| 3  | 5 N-EtFOSAA        | 584.2 > 419.0 | 3.102e3   | 2.829e3 |          | 0.125  | 5.11 | 82.3  | 103  |
| 4  | 6 PFDoA            | 612.9 > 318.8 | 1.305e3   | 1.345e4 |          | 0.125  | 5.36 | 79.7  | 99.7 |
| 5  | 7 PFTrDA           | 662.9 > 618.9 | 1.019e4   | 0.000e0 |          | 0.125  | 5.56 | 75.3  | 94.1 |
| 6  | 8 PFTeDA           | 712.9 > 668.8 | 7.787e3   | 8.910e3 |          | 0.125  | 5.73 | 95.3  | 119  |
| 7  | 10 d3-N-MeFOSAA    | 573.3 > 419.0 | 2.203e3   | 1.234e4 | 0.026    | 0.125  | 4.98 | 677   | 52.0 |
| 8  | 11 13C2-PFUnA      | 565 > 519.8   | 1.118e4   | 1.234e4 | 1.471    | 0.125  | 5.12 | 61.6  | 61.6 |
| 9  | 12 d5-N-EtFOSAA    | 589.3 > 419.0 | 2.829e3   | 1.234e4 | 0.031    | 0.125  | 5.11 | 737   | 56.7 |
| 10 | 13 13C2-PFDoA      | 615 > 569.7   | 1.345e4   | 1.234e4 | 1.887    | 0.125  | 5.35 | 57.7  | 57.7 |
| 11 | 14 13C2-PFTeDA     | 715 > 669.7   | 8.910e3   | 1.234e4 | 1.990    | 0.125  | 5.73 | 36.3  | 36.3 |
| 12 | 15 13C7-PFUnA      | 570.1 > 524.8 | 1.234e4   | 1.234e4 | 1.000    | 0.125  | 5.11 | 100   | 100  |
| 13 | 16 Total N-MeFOSAA | 570.1 > 419.0 |           | 2.203e3 |          | 0.125  |      | 94.5  |      |
| 14 | 17 Total N-EtFOSAA | 584.2 > 419.0 |           | 2.829e3 |          | 0.125  |      | 82.3  |      |

#### **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-4.qld

Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time Printed: Monday, July 31, 2017 14:59:31 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1\_4, Date: 31-Jul-2017, Time: 14:11:43

#### **Total N-MeFOSAA**

|   | # Name      | Trace         | RT   | Area     | IS Area  | Conc. |
|---|-------------|---------------|------|----------|----------|-------|
| 1 | 2 N-MeFOSAA | 570.1 > 419.0 | 4.99 | 4622.846 | 2202.750 | 94.5  |

#### **Total N-EtFOSAA**

|   | # Name      | Trace         | RT   | Area     | IS Area  | Conc. |
|---|-------------|---------------|------|----------|----------|-------|
| 1 | 5 N-EtFOSAA | 584.2 > 419.0 | 5.11 | 3102.213 | 2829.002 | 82.3  |

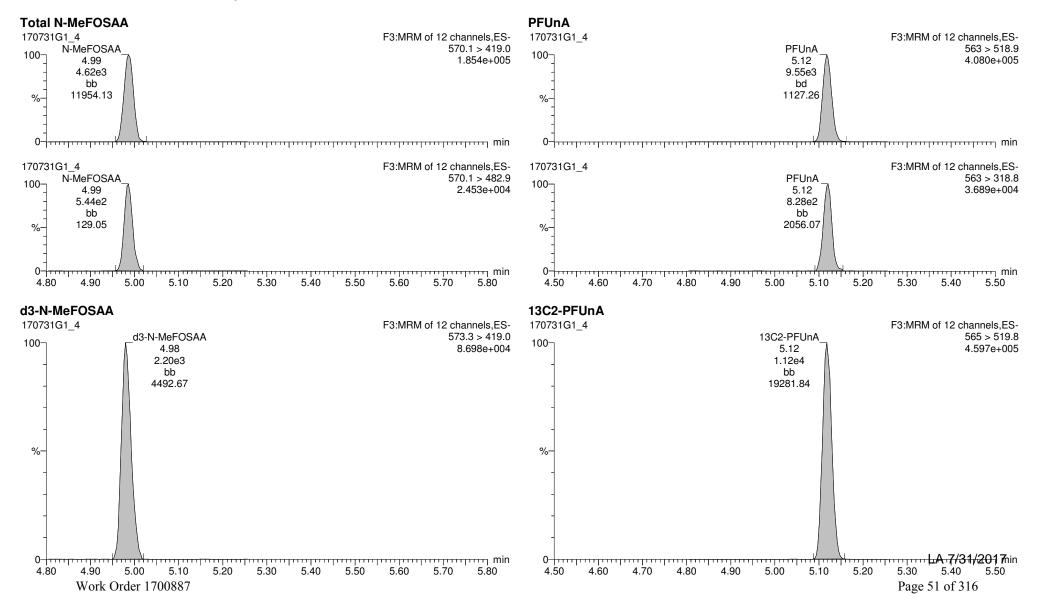
Page 1 of 1 Rev'd: MM 7/31/17

Work Order 1700887

Quantify Sample Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1

Dataset:


U:\G1.PRO\Results\2017\170731G1\170731G1-4.qld

Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time Printed: Monday, July 31, 2017 14:59:31 Pacific Daylight Time

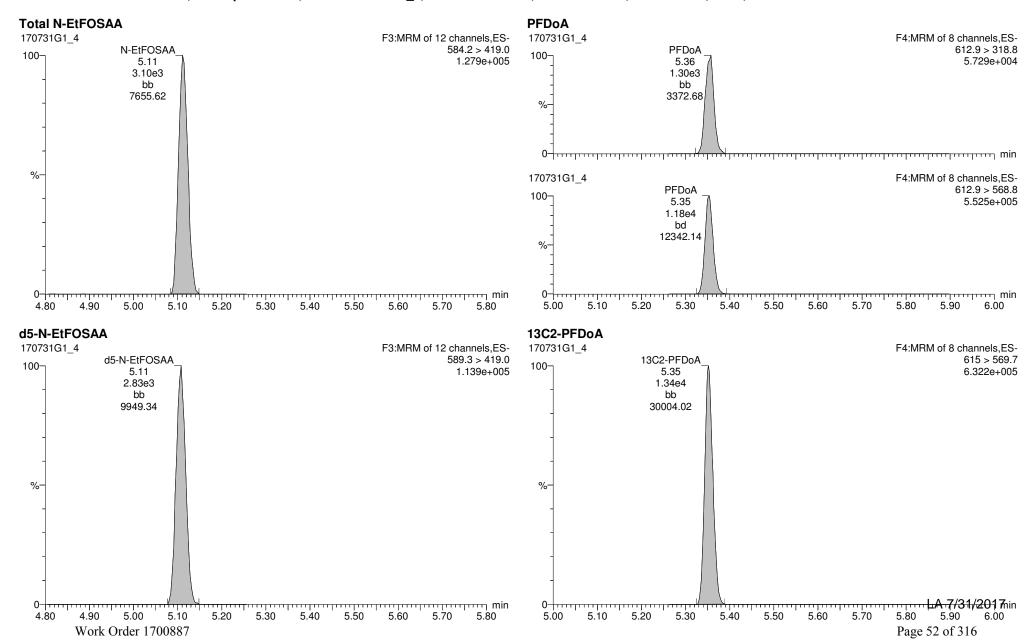
 $Method: U: \G1.pro \MethDB \PFAS\_B\_2TRAN\_0714.mdb\ 14\ Jul\ 2017\ 15:36:03$ 

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1\_4, Date: 31-Jul-2017, Time: 14:11:43, Instrument: , Lab: , User:



Rev'd: MM 7/31/17

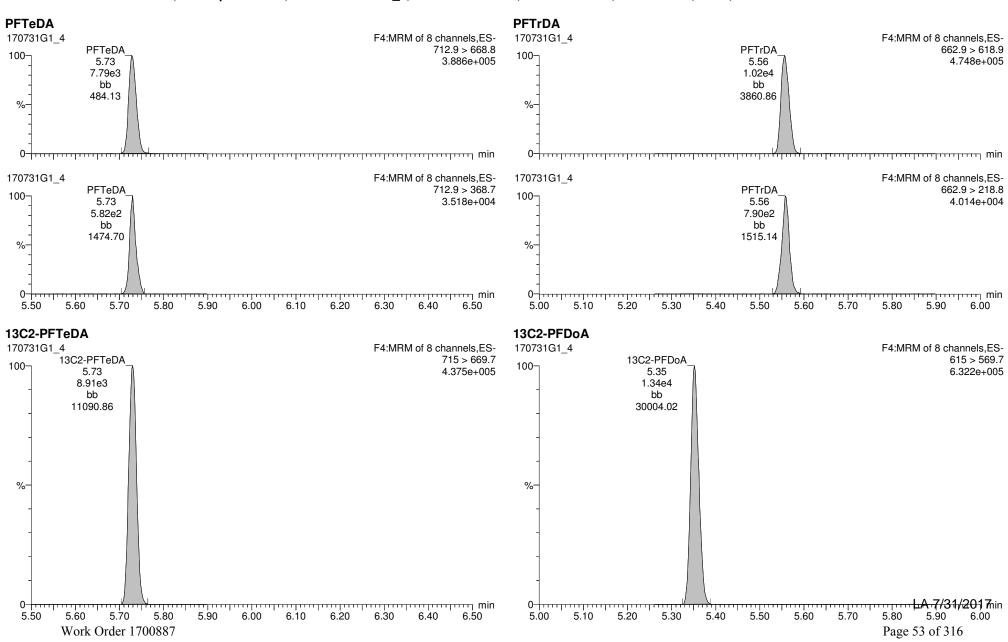

MassLynx 4.1 SCN815

Page 2 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-4.qld

Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time Printed: Monday, July 31, 2017 14:59:31 Pacific Daylight Time

## ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1 4, Date: 31-Jul-2017, Time: 14:11:43, Instrument: , Lab: , User:



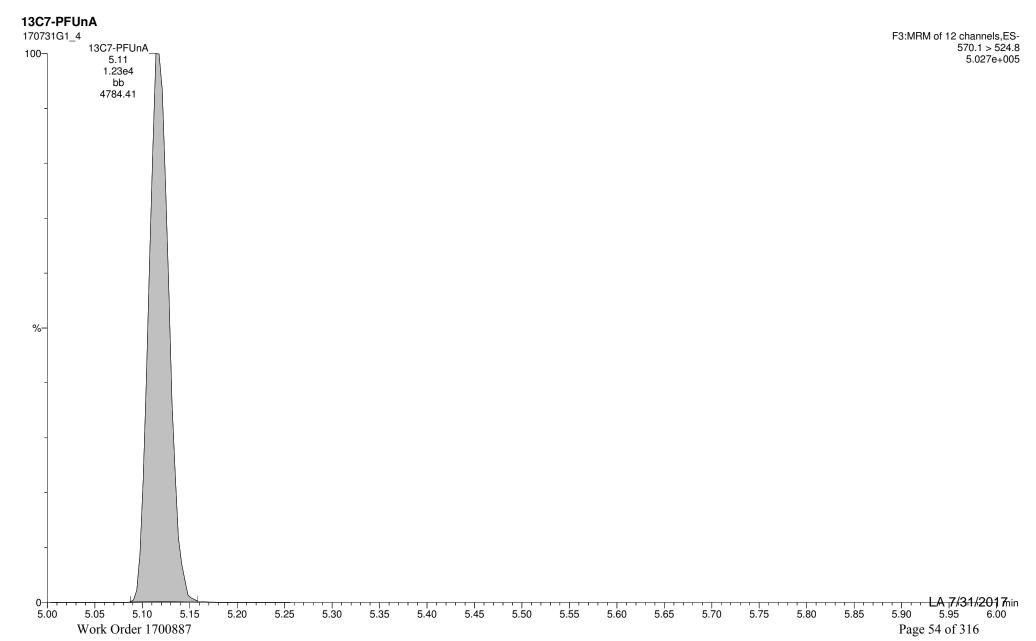

Page 3 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-4.qld

Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time Printed: Monday, July 31, 2017 14:59:31 Pacific Daylight Time

## ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1 4, Date: 31-Jul-2017, Time: 14:11:43, Instrument: , Lab: , User:




MassLynx 4.1 SCN815

**Quantify Sample Report** Vista Analytical Laboratory Q1 Page 4 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-4.qld

Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time Monday, July 31, 2017 14:59:31 Pacific Daylight Time Printed:

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1\_4, Date: 31-Jul-2017, Time: 14:11:43, Instrument: , Lab: , User:



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-9.qld

Last Altered: Monday, July 31, 2017 12:28:24 Pacific Daylight Time Printed: Monday, July 31, 2017 12:29:19 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-01 IRPSite 6-GW-06GW01-20170712 0.08342, Description: IRPSite 6-GW-06GW01-20170712, Name: 170731G2\_9, Date: 31-Jul-2017, Time: 11:15:11

|    | # Name         | Trace           | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|----------------|-----------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 3 PFBS         | 299.0 > 79.7    | 5.232e2   | 5.427e3 |          | 0.0834 | 2.89 | 4.56  |      |
| 2  | 4 PFHxA        | 312.9 > 268.9   | 1.023e3   | 6.701e3 |          | 0.0834 | 3.26 | 11.1  |      |
| 3  | 5 PFHpA        | 363 > 318.9     | 7.695e2   | 9.347e3 |          | 0.0834 | 3.80 | 4.77  |      |
| 4  | 6 PFHxS        | 398.9 > 79.6    | 3.880e2   | 5.765e3 |          | 0.0834 | 3.93 | 4.93  |      |
| 5  | 7 PFOA         | 413.0 > 368.7   | 1.386e3   | 2.048e4 |          | 0.0834 | 4.22 | 11.3  |      |
| 6  | 8 PFNA         | 463.0 > 418.8   | 2.161e2   | 8.414e3 |          | 0.0834 | 4.57 | 1.27  |      |
| 7  | 9 PFOS         | 499.0 >79.9     | 1.899e2   | 9.751e3 |          | 0.0834 | 4.63 | 5.47  |      |
| 8  | 10 PFDA        | 512.7 > 219.0   | 3.768e1   | 1.260e4 |          | 0.0834 | 4.86 | 0.601 |      |
| 9  | 12 13C3-PFBS   | 302.0 > 98.8    | 5.427e3   | 1.976e4 | 0.263    | 0.0834 | 2.88 | 157   | 104  |
| 10 | 14 13C2-PFHxA  | 315.0 > 269.8   | 6.701e3   | 1.976e4 | 0.361    | 0.0834 | 3.25 | 141   | 94.0 |
| 11 | 15 13C4-PFHpA  | 367.2 > 321.8   | 9.347e3   | 1.976e4 | 0.475    | 0.0834 | 3.80 | 149   | 99.5 |
| 12 | 16 18O2-PFHxS  | 403 > 102.6     | 5.765e3   | 1.492e4 | 0.411    | 0.0834 | 3.93 | 141   | 94.1 |
| 13 | 17 13C2-PFOA   | 414.9 > 369.7   | 2.048e4   | 8.483e3 | 2.843    | 0.0834 | 4.22 | 127   | 84.9 |
| 14 | 18 13C5-PFNA   | 468.2 > 422.9   | 8.414e3   | 1.168e4 | 0.854    | 0.0834 | 4.56 | 126   | 84.4 |
| 15 | 19 13C2-PFDA   | 514.8 > 469.7   | 1.260e4   | 9.920e3 | 1.742    | 0.0834 | 4.86 | 109   | 72.9 |
| 16 | 20 13C8-PFOS   | 507.0 > 79.9    | 9.751e3   | 1.187e4 | 0.927    | 0.0834 | 4.63 | 133   | 88.6 |
| 17 | 22 13C5-PFHxA  | 318>272.9       | 1.976e4   | 1.976e4 | 1.000    | 0.0834 | 3.25 | 150   | 100  |
| 18 | 23 13C3-PFHxS  | 401.9 > 79.9    | 1.492e4   | 1.492e4 | 1.000    | 0.0834 | 3.93 | 150   | 100  |
| 19 | 24 13C8-PFOA   | 421.3 > 376     | 8.483e3   | 8.483e3 | 1.000    | 0.0834 | 4.22 | 150   | 100  |
| 20 | 25 13C9-PFNA   | 472.2 > 426.9   | 1.168e4   | 1.168e4 | 1.000    | 0.0834 | 4.56 | 150   | 100  |
| 21 | 26 13C4-PFOS   | 503.0 > 79.9    | 1.187e4   | 1.187e4 | 1.000    | 0.0834 | 4.63 | 150   | 100  |
| 22 | 27 13C6-PFDA   | 519.10 > 473.70 | 9.920e3   | 9.920e3 | 1.000    | 0.0834 | 4.85 | 150   | 100  |
| 23 | 28 Total PFBS  | 299.0 > 79.7    |           | 5.427e3 |          | 0.0834 |      | 4.56  |      |
| 24 | 29 Total PFHxS | 398.9 > 79.6    |           | 5.765e3 |          | 0.0834 |      | 4.93  |      |
| 25 | 30 Total PFOA  | 413.0 > 368.7   |           | 2.048e4 |          | 0.0834 |      | 11.3  |      |
| 26 | 31 Total PFOS  | 499.0 >79.9     |           | 9.751e3 |          | 0.0834 |      | 5.47  |      |

## **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-9.qld

Last Altered: Monday, July 31, 2017 12:28:24 Pacific Daylight Time Printed: Monday, July 31, 2017 12:29:19 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-01 IRPSite 6-GW-06GW01-20170712 0.08342, Description: IRPSite 6-GW-06GW01-20170712, Name: 170731G2\_9, Date: 31-Jul-2017, Time: 11:15:11

## **Total PFBS**

|   | # Name | Trace        | RT   | Area    | IS Area  | Conc. |
|---|--------|--------------|------|---------|----------|-------|
| 1 | 3 PFBS | 299.0 > 79.7 | 2.89 | 523.245 | 5426.815 | 4.6   |

## **Total PFHxS**

|   | # Name  | Trace        | RT   | Area    | IS Area  | Conc. |
|---|---------|--------------|------|---------|----------|-------|
| 1 | 6 PFHxS | 398.9 > 79.6 | 3.93 | 388.047 | 5764.691 | 4.9   |

### **Total PFOA**

|   | # Name        | Trace         | RT   | Area     | IS Area   | Conc. |
|---|---------------|---------------|------|----------|-----------|-------|
| 1 | 7 PFOA        | 413.0 > 368.7 | 4.22 | 1385.920 | 20478.307 | 11.3  |
| 2 | 30 Total PFOA | 413.0 > 368.7 | 4.13 | 148.209  | 20478.307 |       |

### **Total PFOS**

|   |   | # Name | Trace       | RT   | Area    | IS Area  | Conc. |
|---|---|--------|-------------|------|---------|----------|-------|
| 1 | 1 | 9 PFOS | 499.0 >79.9 | 4.63 | 189.872 | 9751.255 | 5.5   |

Page 1 of 1 Rev'd: MM 7/31/17

Work Order 1700887

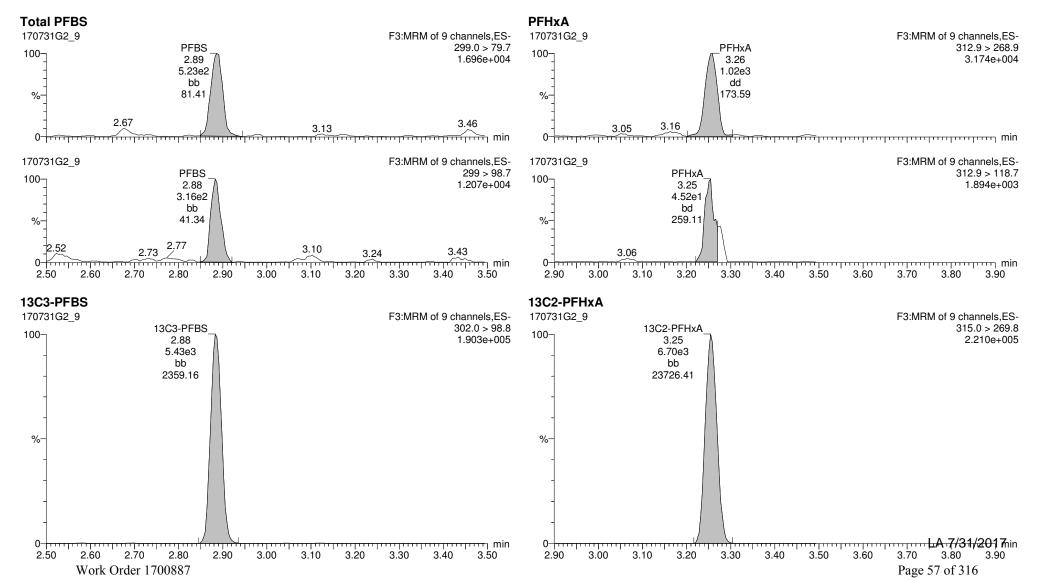
**Quantify Sample Report**Vista Analytical Laboratory Q1

MassLynx 4.1 SCN815

·

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-9.qld

Last Altered: Monday, July 31, 2017 12:28:24 Pacific Daylight Time Printed: Monday, July 31, 2017 12:29:19 Pacific Daylight Time

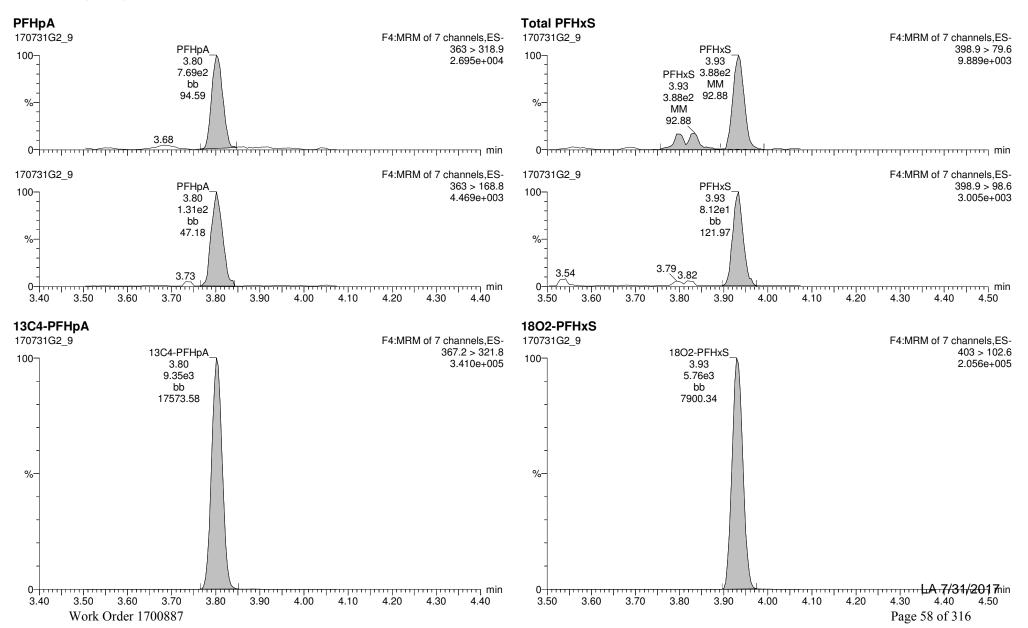

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-01 IRPSite 6-GW-06GW01-20170712 0.08342, Description: IRPSite 6-GW-06GW01-20170712, Name: 170731G2\_9, Date: 31-Jul-2017, Time: 11:15:11, Instrument: , Lab: , User:

Page 1 of 6

Rev'd: MM 7/31/17

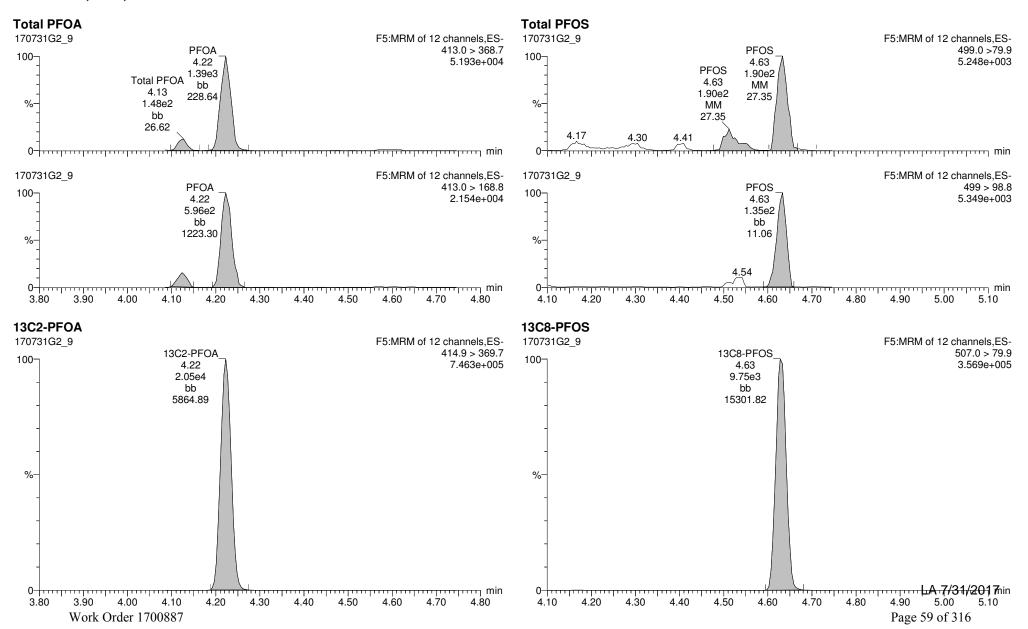



MassLynx 4.1 SCN815

Page 2 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-9.qld

Last Altered: Monday, July 31, 2017 12:28:24 Pacific Daylight Time Printed: Monday, July 31, 2017 12:29:19 Pacific Daylight Time

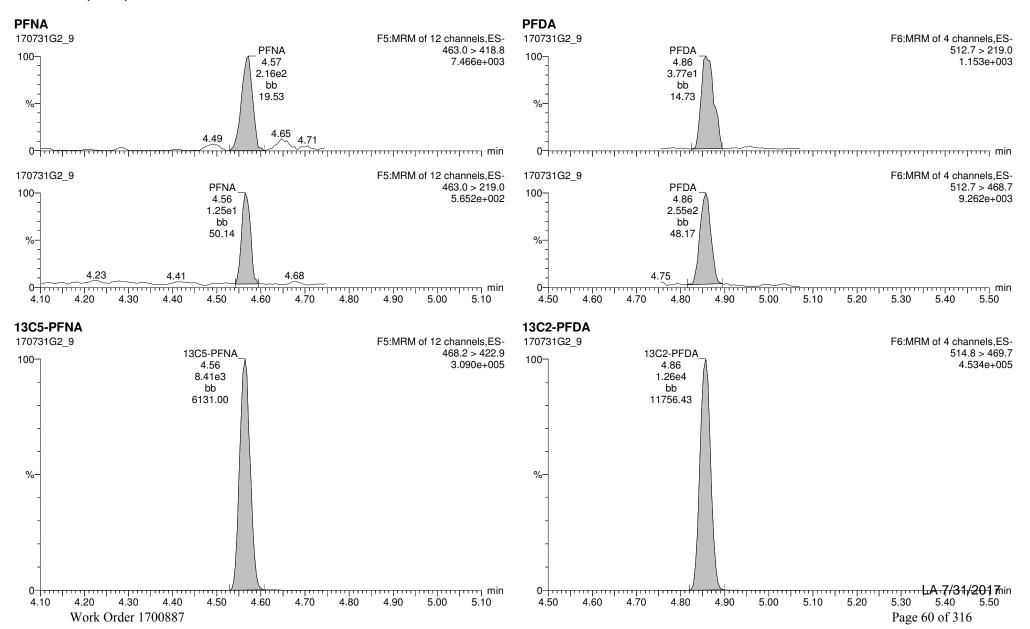



MassLynx 4.1 SCN815

Page 3 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-9.qld

Last Altered: Monday, July 31, 2017 12:28:24 Pacific Daylight Time Printed: Monday, July 31, 2017 12:29:19 Pacific Daylight Time

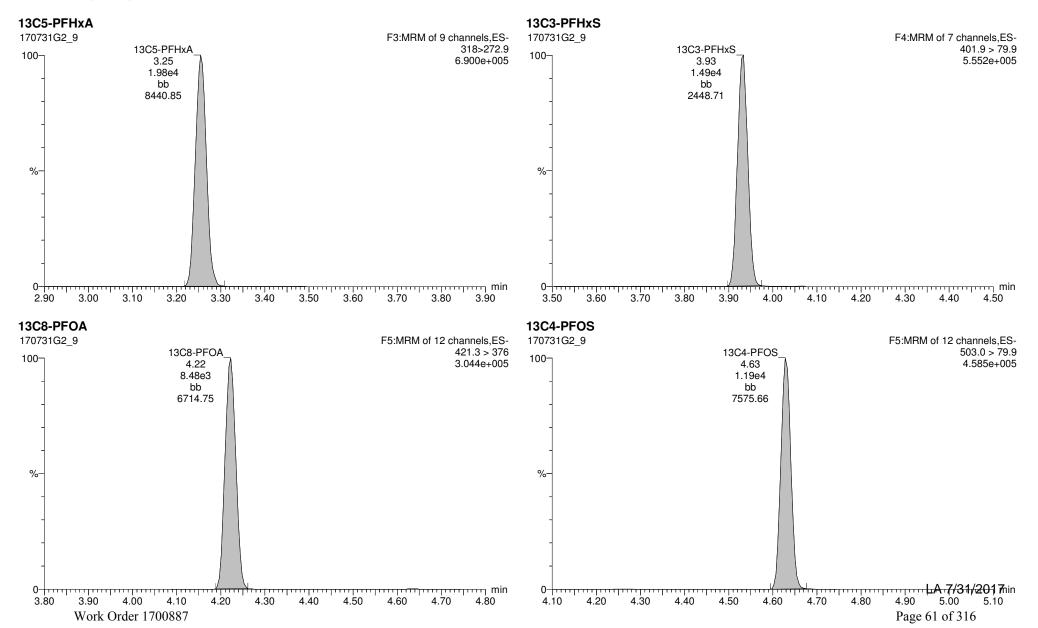



MassLynx 4.1 SCN815

Page 4 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-9.qld

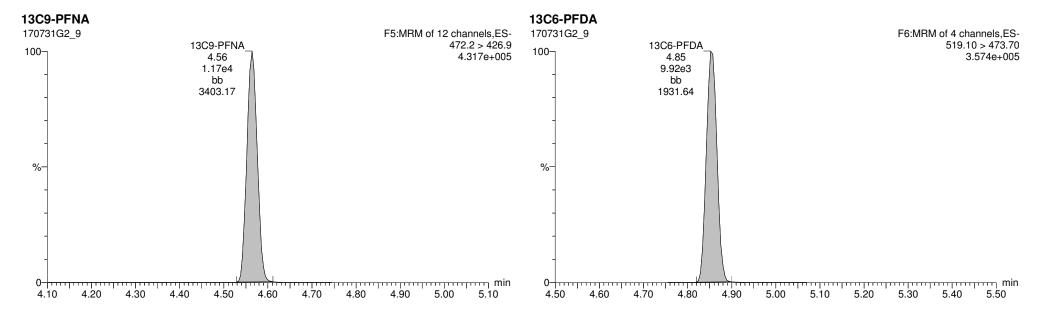
Last Altered: Monday, July 31, 2017 12:28:24 Pacific Daylight Time Printed: Monday, July 31, 2017 12:29:19 Pacific Daylight Time




MassLynx 4.1 SCN815

Page 5 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-9.qld


Last Altered: Monday, July 31, 2017 12:28:24 Pacific Daylight Time Printed: Monday, July 31, 2017 12:29:19 Pacific Daylight Time



Page 6 of 6 Rev'd: MM 7/31/17 MassLynx 4.1 SCN815

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-9.qld

Monday, July 31, 2017 12:28:24 Pacific Daylight Time Last Altered: Monday, July 31, 2017 12:29:19 Pacific Daylight Time Printed:



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-7.qld

Last Altered: Monday, July 31, 2017 16:33:46 Pacific Daylight Time Printed: Monday, July 31, 2017 16:33:55 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-01 IRPSite 6-GW-06GW01-20170712 0.08342, Description: IRPSite 6-GW-06GW01-20170712, Name: 170731G1\_7, Date: 31-Jul-2017, Time: 15:06:51

|    | # Name             | Trace         | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|--------------------|---------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 2 N-MeFOSAA        | 570.1 > 419.0 |           | 4.045e3 |          | 0.0834 |      |       |      |
| 2  | 4 PFUnA            | 563 > 518.9   | 3.974e2   | 1.757e4 |          | 0.0834 | 5.12 | 0.265 |      |
| 3  | 5 N-EtFOSAA        | 584.2 > 419.0 |           | 4.827e3 |          | 0.0834 |      |       |      |
| 4  | 6 PFDoA            | 612.9 > 318.8 |           | 1.977e4 |          | 0.0834 |      |       |      |
| 5  | 7 PFTrDA           | 662.9 > 618.9 |           | 0.000e0 |          | 0.0834 |      |       |      |
| 6  | 8 PFTeDA           | 712.9 > 668.8 | 1.704e2   | 2.013e4 |          | 0.0834 | 5.73 |       |      |
| 7  | 10 d3-N-MeFOSAA    | 573.3 > 419.0 | 4.045e3   | 2.015e4 | 0.026    | 0.0834 | 4.98 | 1140  | 58.5 |
| 8  | 11 13C2-PFUnA      | 565 > 519.8   | 1.757e4   | 2.015e4 | 1.471    | 0.0834 | 5.12 | 88.8  | 59.3 |
| 9  | 12 d5-N-EtFOSAA    | 589.3 > 419.0 | 4.827e3   | 2.015e4 | 0.031    | 0.0834 | 5.11 | 1150  | 59.3 |
| 10 | 13 13C2-PFDoA      | 615 > 569.7   | 1.977e4   | 2.015e4 | 1.887    | 0.0834 | 5.35 | 77.9  | 52.0 |
| 11 | 14 13C2-PFTeDA     | 715 > 669.7   | 2.013e4   | 2.015e4 | 1.990    | 0.0834 | 5.73 | 75.2  | 50.2 |
| 12 | 15 13C7-PFUnA      | 570.1 > 524.8 | 2.015e4   | 2.015e4 | 1.000    | 0.0834 | 5.12 | 150   | 100  |
| 13 | 16 Total N-MeFOSAA | 570.1 > 419.0 |           | 4.045e3 |          | 0.0834 |      |       |      |
| 14 | 17 Total N-EtFOSAA | 584.2 > 419.0 |           | 4.827e3 |          | 0.0834 |      |       |      |

## **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-7.qld

Last Altered: Monday, July 31, 2017 16:33:46 Pacific Daylight Time Printed: Monday, July 31, 2017 16:33:55 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-01 IRPSite 6-GW-06GW01-20170712 0.08342, Description: IRPSite 6-GW-06GW01-20170712, Name: 170731G1\_7, Date: 31-Jul-2017, Time: 15:06:51

## **Total N-MeFOSAA**



## **Total N-EtFOSAA**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

4.80

4.90

5.00

Work Order 1700887

5.10

5.20

5.30

5.40

5.50

5.60

5.70

5.80

4.50

4.60

4.70

4.80

4.90

5.00

5.10

5.20

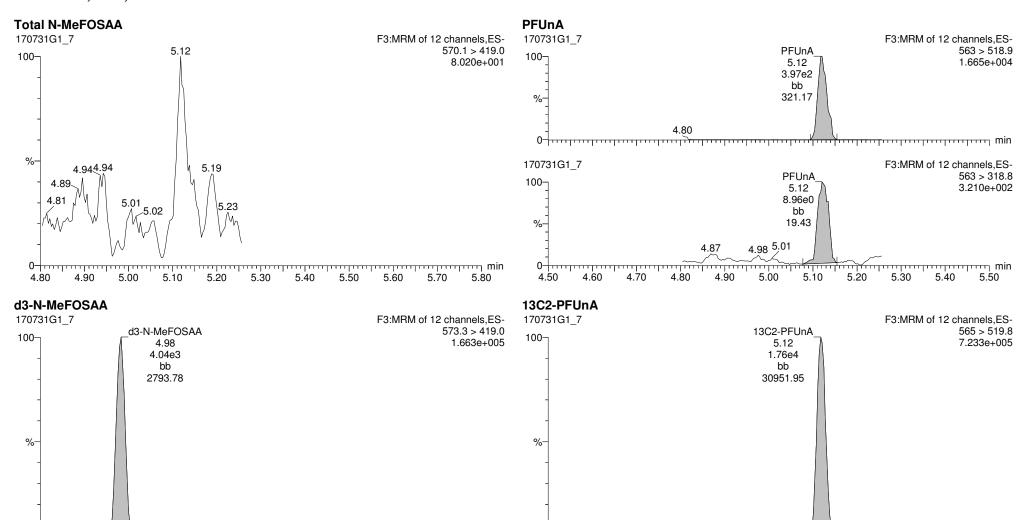
5.30

MassLynx 4.1 SCN815

Page 1 of 4 Rev'd: MM 7/31/17

-----LA 7/31/2017nin

5.40


Page 65 of 316

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-7.qld

Last Altered: Monday, July 31, 2017 16:33:46 Pacific Daylight Time Printed: Monday, July 31, 2017 16:33:55 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18 VAL-PFC Q1 7-28-17 B 2Trans NEW.cdb 31 Jul 2017 08:37:52



%-

4.80

4.90

5.00

Work Order 1700887

5.10

5.20

5.30

5.40

5.50

5.60

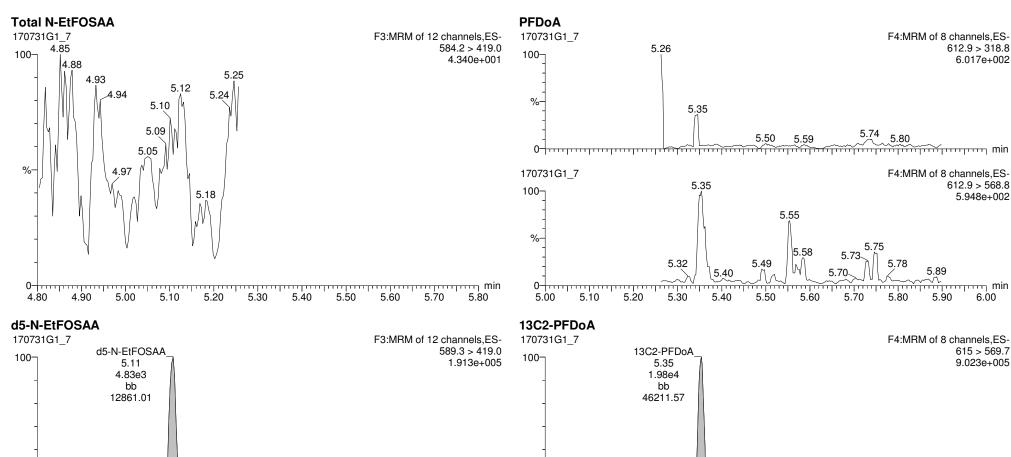
5.70

5.80

MassLynx 4.1 SCN815

Page 2 of 4 Rev'd: MM 7/31/17

<del>---,----LA-7/31/201</del>7nin


5.90

Page 66 of 316

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-7.qld

Last Altered: Monday, July 31, 2017 16:33:46 Pacific Daylight Time Printed: Monday, July 31, 2017 16:33:55 Pacific Daylight Time

ID: 1700887-01 IRPSite 6-GW-06GW01-20170712 0.08342, Description: IRPSite 6-GW-06GW01-20170712, Name: 170731G1\_7, Date: 31-Jul-2017, Time: 15:06:51, Instrument: , Lab: , User:



%-

5.00

5.10

5.20

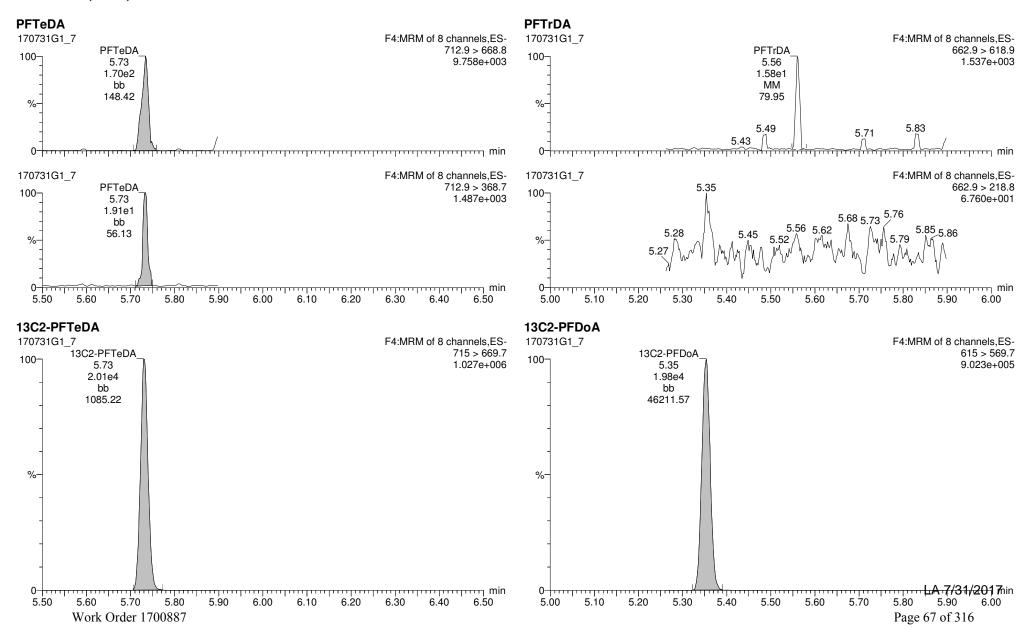
5.30

5.40

5.50

5.60

5.70


5.80

MassLynx 4.1 SCN815

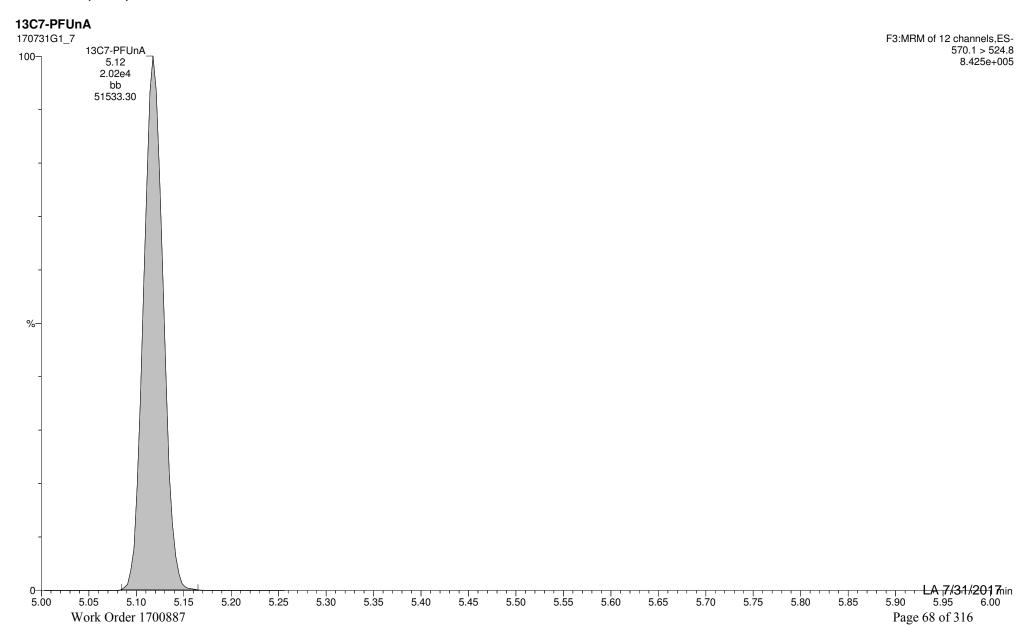
Page 3 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-7.qld

Last Altered: Monday, July 31, 2017 16:33:46 Pacific Daylight Time Printed: Monday, July 31, 2017 16:33:55 Pacific Daylight Time



MassLynx 4.1 SCN815


Vista Analytical Laboratory Q1

**Quantify Sample Report** 

Page 4 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-7.qld

Last Altered: Monday, July 31, 2017 16:33:46 Pacific Daylight Time Printed: Monday, July 31, 2017 16:33:55 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-10.qld

Last Altered: Monday, July 31, 2017 12:41:11 Pacific Daylight Time Monday, July 31, 2017 12:42:46 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

|    | # Name         | Trace           | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|----------------|-----------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 3 PFBS         | 299.0 > 79.7    | 1.610e3   | 4.933e3 |          | 0.0994 | 2.87 | 21.8  |      |
| 2  | 4 PFHxA        | 312.9 > 268.9   | 1.702e3   | 5.404e3 |          | 0.0994 | 3.26 | 20.0  |      |
| 3  | 5 PFHpA        | 363 > 318.9     | 1.298e3   | 7.220e3 |          | 0.0994 | 3.80 | 10.3  |      |
| 4  | 6 PFHxS        | 398.9 > 79.6    | 4.447e2   | 4.626e3 |          | 0.0994 | 3.93 | 6.18  |      |
| 5  | 7 PFOA         | 413.0 > 368.7   | 1.977e3   | 1.510e4 |          | 0.0994 | 4.22 | 19.5  |      |
| 6  | 8 PFNA         | 463.0 > 418.8   | 4.072e2   | 5.320e3 |          | 0.0994 | 4.56 | 3.81  |      |
| 7  | 9 PFOS         | 499.0 >79.9     | 3.607e2   | 5.639e3 |          | 0.0994 | 4.63 | 16.5  |      |
| 8  | 10 PFDA        | 512.7 > 219.0   | 2.920e1   | 7.928e3 |          | 0.0994 | 4.86 | 0.944 |      |
| 9  | 12 13C3-PFBS   | 302.0 > 98.8    | 4.933e3   | 1.530e4 | 0.263    | 0.0994 | 2.87 | 154   | 123  |
| 10 | 14 13C2-PFHxA  | 315.0 > 269.8   | 5.404e3   | 1.530e4 | 0.361    | 0.0994 | 3.26 | 123   | 97.9 |
| 11 | 15 13C4-PFHpA  | 367.2 > 321.8   | 7.220e3   | 1.530e4 | 0.475    | 0.0994 | 3.80 | 125   | 99.2 |
| 12 | 16 18O2-PFHxS  | 403 > 102.6     | 4.626e3   | 1.179e4 | 0.411    | 0.0994 | 3.93 | 120   | 95.5 |
| 13 | 17 13C2-PFOA   | 414.9 > 369.7   | 1.510e4   | 5.872e3 | 2.843    | 0.0994 | 4.22 | 114   | 90.4 |
| 14 | 18 13C5-PFNA   | 468.2 > 422.9   | 5.320e3   | 6.975e3 | 0.854    | 0.0994 | 4.56 | 112   | 89.4 |
| 15 | 19 13C2-PFDA   | 514.8 > 469.7   | 7.928e3   | 5.581e3 | 1.742    | 0.0994 | 4.86 | 103   | 81.6 |
| 16 | 20 13C8-PFOS   | 507.0 > 79.9    | 5.639e3   | 6.535e3 | 0.927    | 0.0994 | 4.63 | 117   | 93.1 |
| 17 | 22 13C5-PFHxA  | 318>272.9       | 1.530e4   | 1.530e4 | 1.000    | 0.0994 | 3.26 | 126   | 100  |
| 18 | 23 13C3-PFHxS  | 401.9 > 79.9    | 1.179e4   | 1.179e4 | 1.000    | 0.0994 | 3.93 | 126   | 100  |
| 19 | 24 13C8-PFOA   | 421.3 > 376     | 5.872e3   | 5.872e3 | 1.000    | 0.0994 | 4.22 | 126   | 100  |
| 20 | 25 13C9-PFNA   | 472.2 > 426.9   | 6.975e3   | 6.975e3 | 1.000    | 0.0994 | 4.56 | 126   | 100  |
| 21 | 26 13C4-PFOS   | 503.0 > 79.9    | 6.535e3   | 6.535e3 | 1.000    | 0.0994 | 4.63 | 126   | 100  |
| 22 | 27 13C6-PFDA   | 519.10 > 473.70 | 5.581e3   | 5.581e3 | 1.000    | 0.0994 | 4.86 | 126   | 100  |
| 23 | 28 Total PFBS  | 299.0 > 79.7    |           | 4.933e3 |          | 0.0994 |      | 21.8  |      |
| 24 | 29 Total PFHxS | 398.9 > 79.6    |           | 4.626e3 |          | 0.0994 |      | 6.18  |      |
| 25 | 30 Total PFOA  | 413.0 > 368.7   |           | 1.510e4 |          | 0.0994 |      | 20.1  |      |
| 26 | 31 Total PFOS  | 499.0 >79.9     | _         | 5.639e3 | _        | 0.0994 | _    | 16.5  |      |

# **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-10.qld

Last Altered: Monday, July 31, 2017 12:41:11 Pacific Daylight Time Printed: Monday, July 31, 2017 12:42:46 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-02 IRPSite 6-GW-06GW02-20170712 0.09939, Description: IRPSite 6-GW-06GW02-20170712, Name: 170731G2\_10, Date: 31-Jul-2017, Time: 11:27:45

## **Total PFBS**

|   | # Name | Trace        | RT   | Area     | IS Area  | Conc. |
|---|--------|--------------|------|----------|----------|-------|
| 1 | 3 PFBS | 299.0 > 79.7 | 2.87 | 1609.669 | 4933.027 | 21.8  |

## **Total PFHxS**

|   | # Name  | Trace        | RT   | Area    | IS Area  | Conc. |
|---|---------|--------------|------|---------|----------|-------|
| 1 | 6 PFHxS | 398.9 > 79.6 | 3.93 | 444.730 | 4626.080 | 6.2   |

### **Total PFOA**

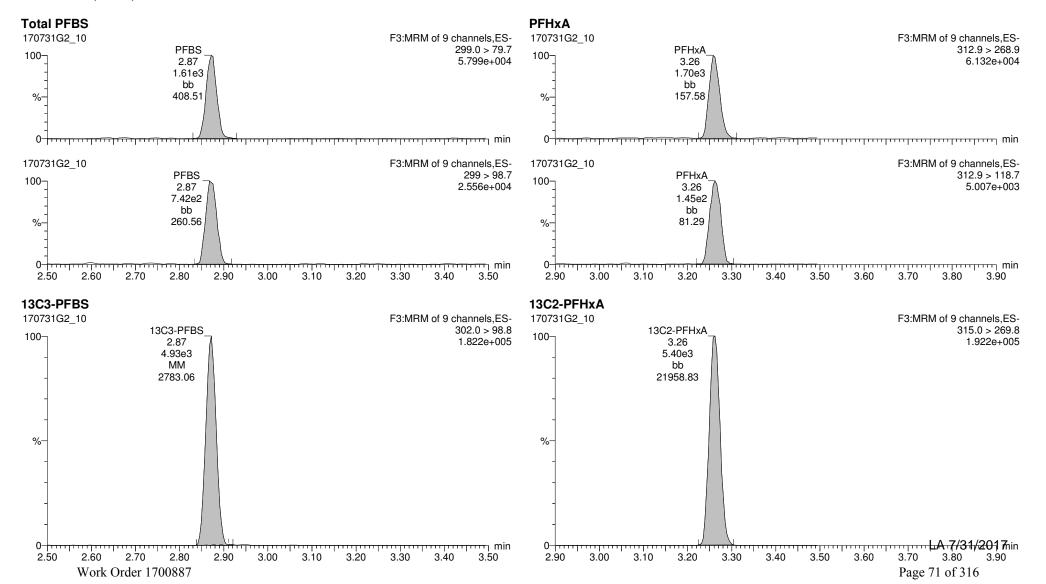
|   | # Name        | Trace         | RT   | Area     | IS Area   | Conc. |
|---|---------------|---------------|------|----------|-----------|-------|
| 1 | 30 Total PFOA | 413.0 > 368.7 | 4.12 | 174.042  | 15097.119 | 0.7   |
| 2 | 7 PFOA        | 413.0 > 368.7 | 4.22 | 1977.068 | 15097.119 | 19.5  |

### **Total PFOS**

|   | # Name | Trace       | RT   | Area    | IS Area  | Conc. |
|---|--------|-------------|------|---------|----------|-------|
| 1 | 9 PFOS | 499.0 >79.9 | 4.63 | 360.718 | 5639.413 | 16.5  |

Page 1 of 1 Rev'd: MM 7/31/17

Work Order 1700887

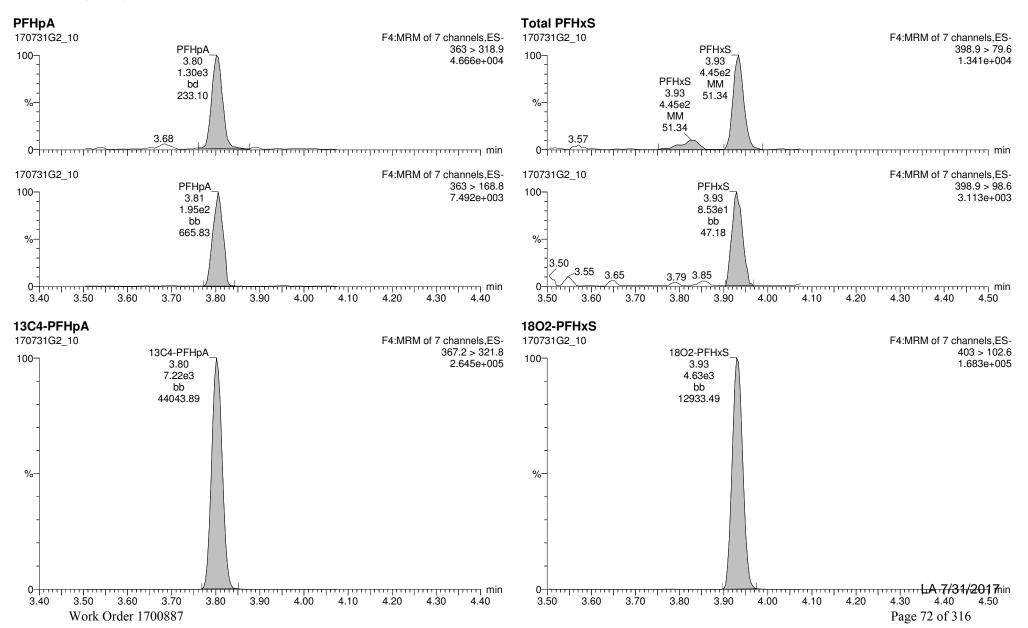

Page 1 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-10.qld

Last Altered: Monday, July 31, 2017 12:41:11 Pacific Daylight Time Printed: Monday, July 31, 2017 12:42:46 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS 14or16 2trans 0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18 VAL-PFC Q1 7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

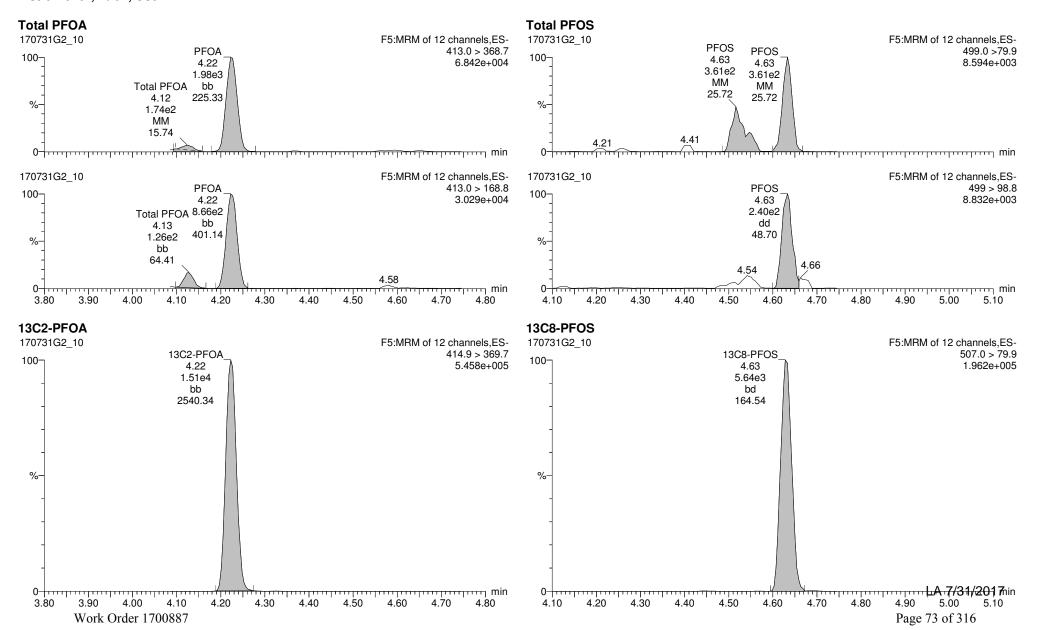



MassLynx 4.1 SCN815

Page 2 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-10.qld

Last Altered: Monday, July 31, 2017 12:41:11 Pacific Daylight Time Printed: Monday, July 31, 2017 12:42:46 Pacific Daylight Time

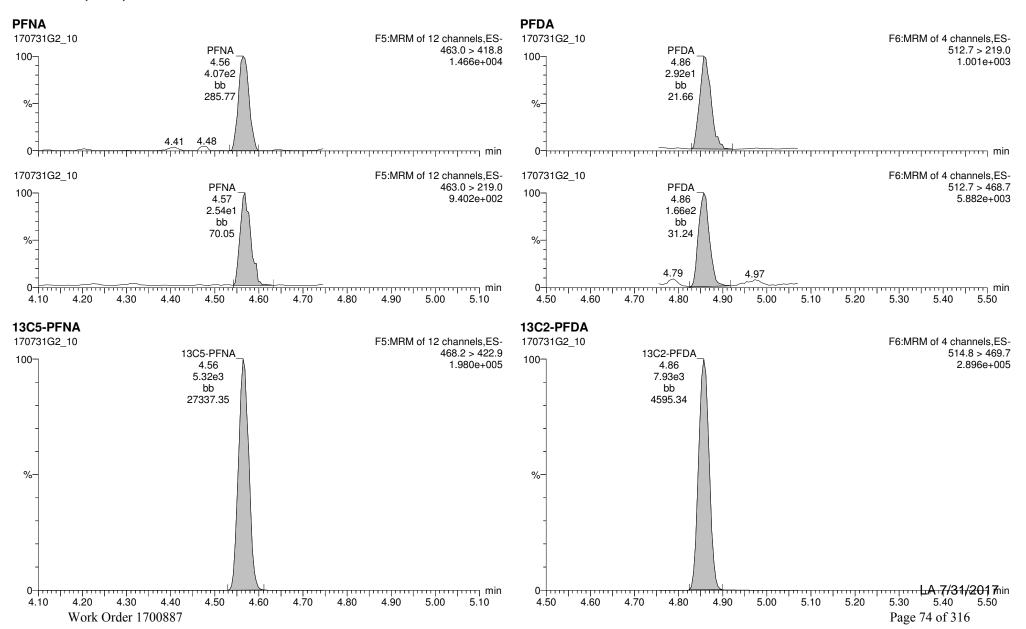



MassLynx 4.1 SCN815

Page 3 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-10.gld

Last Altered: Monday, July 31, 2017 12:41:11 Pacific Daylight Time Printed: Monday, July 31, 2017 12:42:46 Pacific Daylight Time

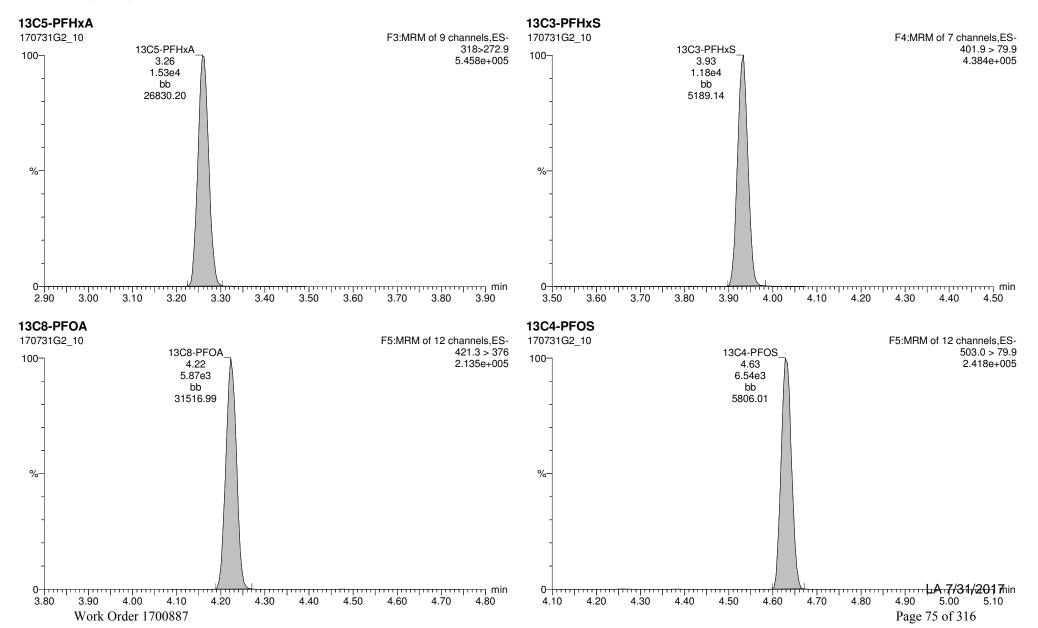



MassLynx 4.1 SCN815

Page 4 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-10.qld

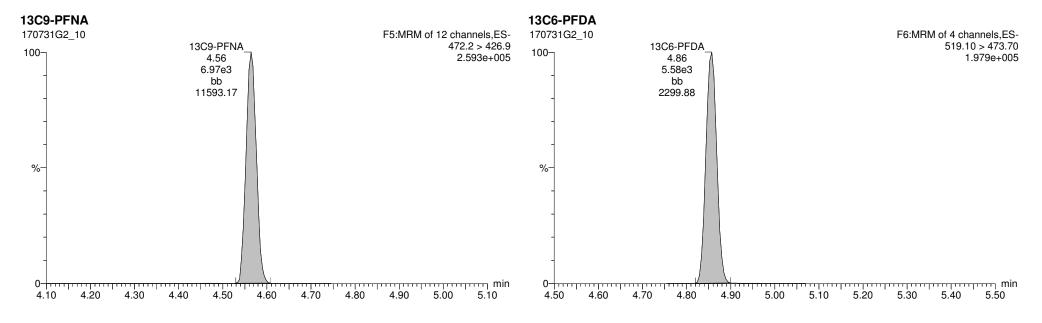
Last Altered: Monday, July 31, 2017 12:41:11 Pacific Daylight Time Printed: Monday, July 31, 2017 12:42:46 Pacific Daylight Time




MassLynx 4.1 SCN815

Page 5 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-10.qld


Last Altered: Monday, July 31, 2017 12:41:11 Pacific Daylight Time Printed: Monday, July 31, 2017 12:42:46 Pacific Daylight Time



Page 6 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-10.qld

Last Altered: Monday, July 31, 2017 12:41:11 Pacific Daylight Time Printed: Monday, July 31, 2017 12:42:46 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-8.qld

Last Altered: Monday, July 31, 2017 16:29:16 Pacific Daylight Time Printed: Monday, July 31, 2017 16:29:52 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

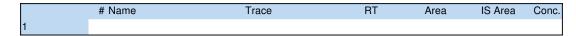
|    | # Name             | Trace         | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|--------------------|---------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 2 N-MeFOSAA        | 570.1 > 419.0 |           | 3.463e3 |          | 0.0994 |      |       |      |
| 2  | 4 PFUnA            | 563 > 518.9   | 2.974e2   | 1.537e4 |          | 0.0994 | 5.12 |       |      |
| 3  | 5 N-EtFOSAA        | 584.2 > 419.0 |           | 4.175e3 |          | 0.0994 |      |       |      |
| 4  | 6 PFDoA            | 612.9 > 318.8 |           | 1.880e4 |          | 0.0994 |      |       |      |
| 5  | 7 PFTrDA           | 662.9 > 618.9 |           | 0.000e0 |          | 0.0994 |      |       |      |
| 6  | 8 PFTeDA           | 712.9 > 668.8 | 1.366e2   | 1.575e4 |          | 0.0994 | 5.73 |       |      |
| 7  | 10 d3-N-MeFOSAA    | 573.3 > 419.0 | 3.463e3   | 1.550e4 | 0.026    | 0.0994 | 4.98 | 1070  | 65.1 |
| 8  | 11 13C2-PFUnA      | 565 > 519.8   | 1.537e4   | 1.550e4 | 1.471    | 0.0994 | 5.12 | 84.8  | 67.4 |
| 9  | 12 d5-N-EtFOSAA    | 589.3 > 419.0 | 4.175e3   | 1.550e4 | 0.031    | 0.0994 | 5.10 | 1090  | 66.6 |
| 10 | 13 13C2-PFDoA      | 615 > 569.7   | 1.880e4   | 1.550e4 | 1.887    | 0.0994 | 5.35 | 80.8  | 64.3 |
| 11 | 14 13C2-PFTeDA     | 715 > 669.7   | 1.575e4   | 1.550e4 | 1.990    | 0.0994 | 5.73 | 64.2  | 51.1 |
| 12 | 15 13C7-PFUnA      | 570.1 > 524.8 | 1.550e4   | 1.550e4 | 1.000    | 0.0994 | 5.12 | 126   | 100  |
| 13 | 16 Total N-MeFOSAA | 570.1 > 419.0 |           | 3.463e3 |          | 0.0994 |      |       |      |
| 14 | 17 Total N-EtFOSAA | 584.2 > 419.0 |           | 4.175e3 |          | 0.0994 |      |       |      |

## **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-8.qld


Last Altered: Monday, July 31, 2017 16:29:16 Pacific Daylight Time Printed: Monday, July 31, 2017 16:29:52 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-02 IRPSite 6-GW-06GW02-20170712 0.09939, Description: IRPSite 6-GW-06GW02-20170712, Name: 170731G1\_8, Date: 31-Jul-2017, Time: 15:19:26

## **Total N-MeFOSAA**



## **Total N-EtFOSAA**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

4.80

4.90

5.00

Work Order 1700887

5.10

5.20

5.30

5.40

5.50

5.60

5.70

5.80

4.50

4.60

4.70

4.80

4.90

5.00

5.10

5.20

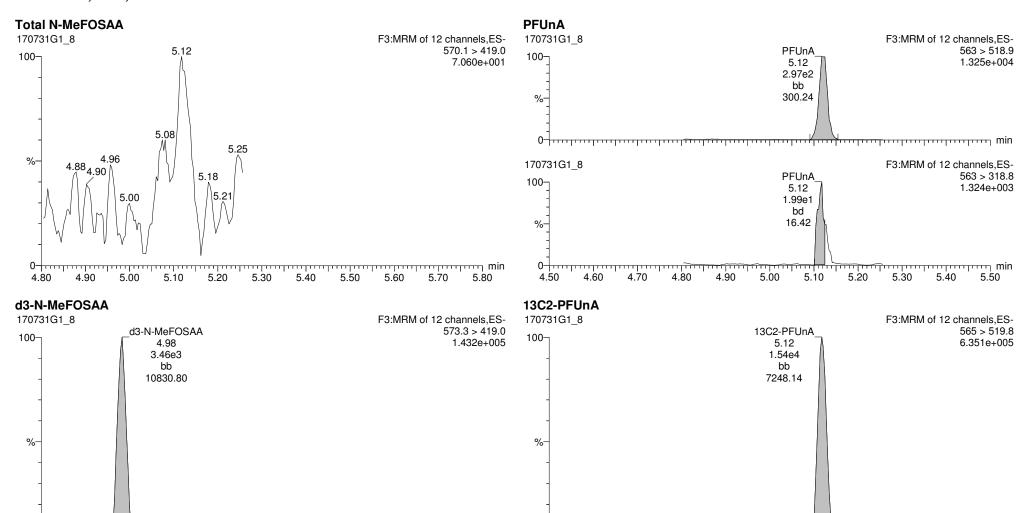
5.30

MassLynx 4.1 SCN815

Page 1 of 4 Rev'd: MM 7/31/17

-----LA 7/31/2017nin

5.40


Page 79 of 316

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-8.gld

Last Altered: Monday, July 31, 2017 16:29:16 Pacific Daylight Time Printed: Monday, July 31, 2017 16:29:52 Pacific Daylight Time

 $Method: U: \G1.pro\\MethDB\\PFAS\_B\_2TRAN\_0714.mdb\ 14\ Jul\ 2017\ 15:36:03$ 

Calibration: U:\G1.pro\CurveDB\C18 VAL-PFC Q1 7-28-17 B 2Trans NEW.cdb 31 Jul 2017 08:37:52



MassLynx 4.1 SCN815

Page 2 of 4 Rev'd: MM 7/31/17

F4:MRM of 8 channels.ES-

F4:MRM of 8 channels, ES-

5.88

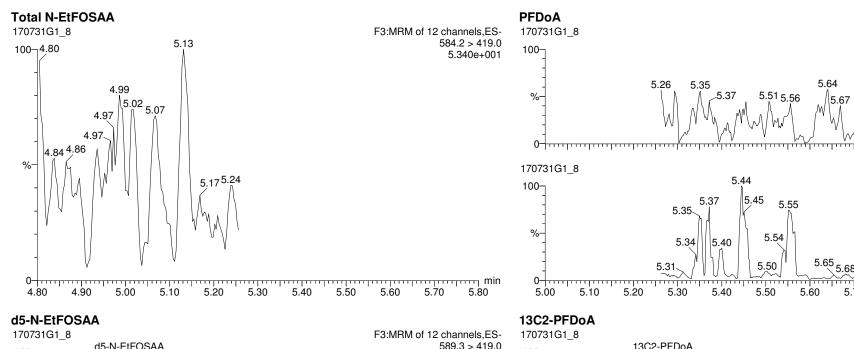
5.84

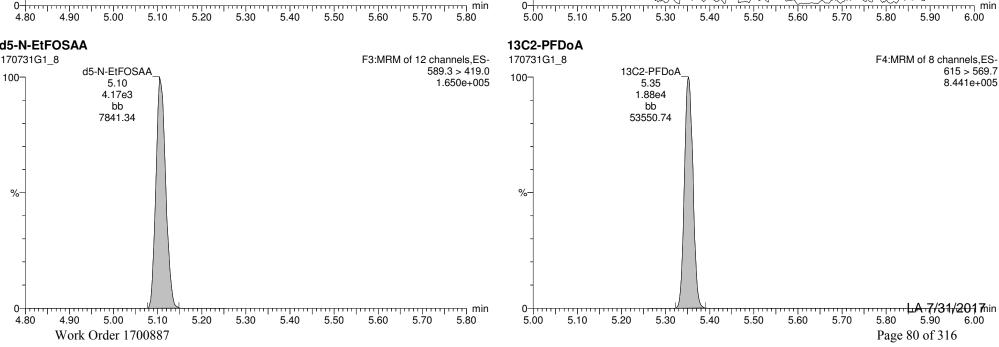
612.9 > 318.8

612.9 > 568.8

4.772e+002

5.940e+001


5.73

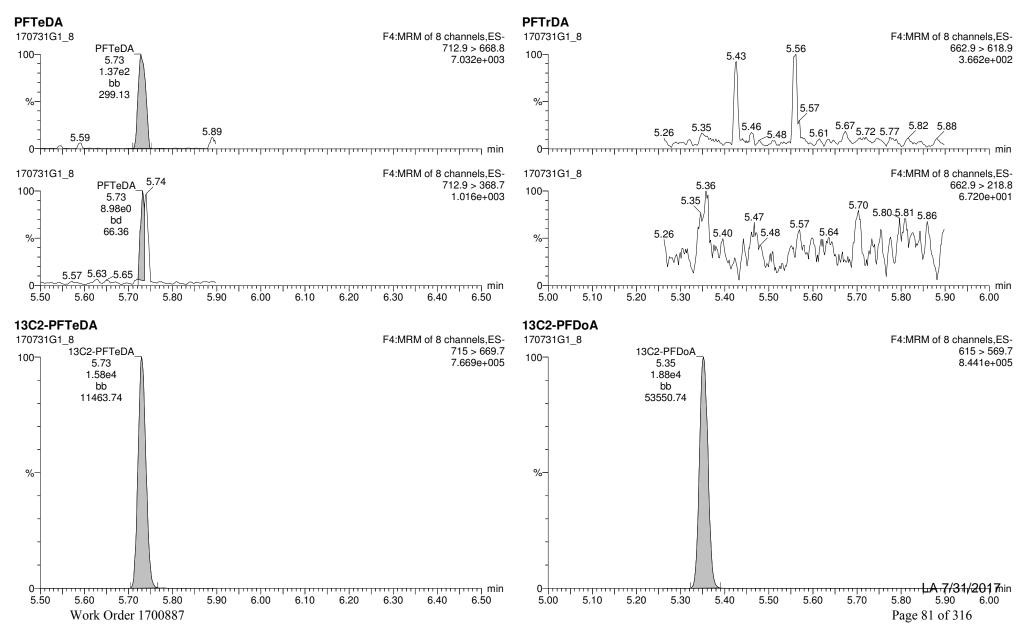

5.76

5.79

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-8.qld

Last Altered: Monday, July 31, 2017 16:29:16 Pacific Daylight Time Printed: Monday, July 31, 2017 16:29:52 Pacific Daylight Time






MassLynx 4.1 SCN815

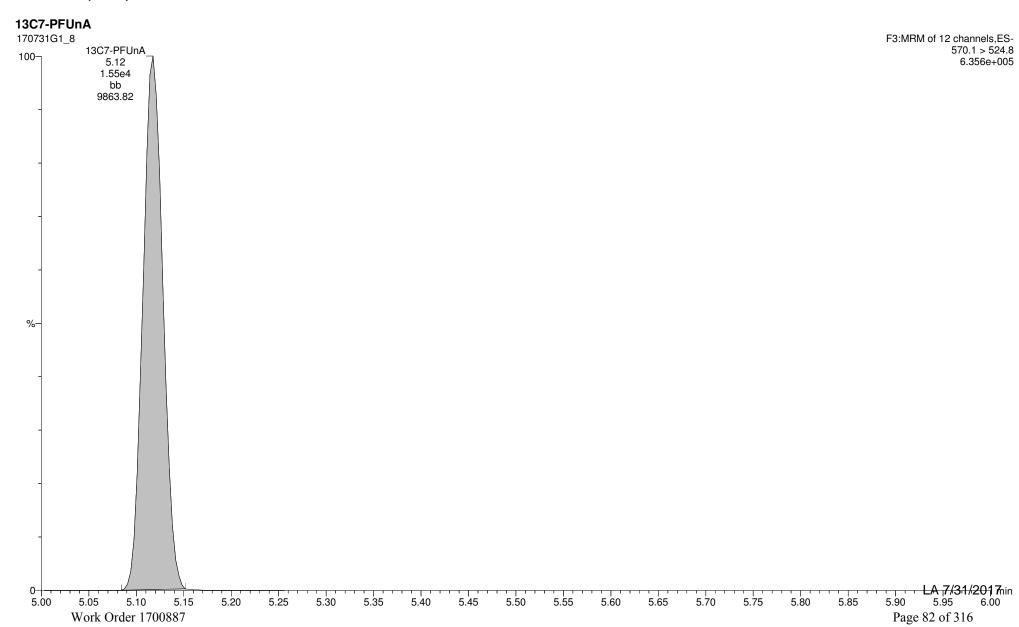
Page 3 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-8.qld

Last Altered: Monday, July 31, 2017 16:29:16 Pacific Daylight Time Printed: Monday, July 31, 2017 16:29:52 Pacific Daylight Time



MassLynx 4.1 SCN815


Vista Analytical Laboratory Q1

**Quantify Sample Report** 

Page 4 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-8.qld

Last Altered: Monday, July 31, 2017 16:29:16 Pacific Daylight Time Printed: Monday, July 31, 2017 16:29:52 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-11.qld

Last Altered: Monday, July 31, 2017 12:45:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:50:38 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G2\_11, Date: 31-Jul-2017, Time: 11:40:15

|    | # Name         | Trace           | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|----------------|-----------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 3 PFBS         | 299.0 > 79.7    |           | 3.613e3 |          | 0.114  |      |       |      |
| 2  | 4 PFHxA        | 312.9 > 268.9   |           | 4.718e3 |          | 0.114  |      |       |      |
| 3  | 5 PFHpA        | 363 > 318.9     |           | 5.440e3 |          | 0.114  |      |       |      |
| 4  | 6 PFHxS        | 398.9 > 79.6    | 1.362e1   | 3.050e3 |          | 0.114  | 3.94 |       |      |
| 5  | 7 PFOA         | 413.0 > 368.7   | 5.493e1   | 1.100e4 |          | 0.114  | 4.22 |       |      |
| 6  | 8 PFNA         | 463.0 > 418.8   |           | 4.357e3 |          | 0.114  |      |       |      |
| 7  | 9 PFOS         | 499.0 >79.9     |           | 5.638e3 |          | 0.114  |      |       |      |
| 8  | 10 PFDA        | 512.7 > 219.0   | 9.769e0   | 7.502e3 |          | 0.114  | 4.86 |       |      |
| 9  | 12 13C3-PFBS   | 302.0 > 98.8    | 3.613e3   | 1.297e4 | 0.263    | 0.114  | 2.89 | 116   | 106  |
| 10 | 14 13C2-PFHxA  | 315.0 > 269.8   | 4.718e3   | 1.297e4 | 0.361    | 0.114  | 3.27 | 110   | 101  |
| 11 | 15 13C4-PFHpA  | 367.2 > 321.8   | 5.440e3   | 1.297e4 | 0.475    | 0.114  | 3.81 | 96.3  | 88.2 |
| 12 | 16 18O2-PFHxS  | 403 > 102.6     | 3.050e3   | 7.847e3 | 0.411    | 0.114  | 3.93 | 103   | 94.7 |
| 13 | 17 13C2-PFOA   | 414.9 > 369.7   | 1.100e4   | 4.412e3 | 2.843    | 0.114  | 4.22 | 95.8  | 87.7 |
| 14 | 18 13C5-PFNA   | 468.2 > 422.9   | 4.357e3   | 5.408e3 | 0.854    | 0.114  | 4.56 | 103   | 94.4 |
| 15 | 19 13C2-PFDA   | 514.8 > 469.7   | 7.502e3   | 5.353e3 | 1.742    | 0.114  | 4.86 | 87.9  | 80.5 |
| 16 | 20 13C8-PFOS   | 507.0 > 79.9    | 5.638e3   | 5.683e3 | 0.927    | 0.114  | 4.63 | 117   | 107  |
| 17 | 22 13C5-PFHxA  | 318>272.9       | 1.297e4   | 1.297e4 | 1.000    | 0.114  | 3.27 | 109   | 100  |
| 18 | 23 13C3-PFHxS  | 401.9 > 79.9    | 7.847e3   | 7.847e3 | 1.000    | 0.114  | 3.93 | 109   | 100  |
| 19 | 24 13C8-PFOA   | 421.3 > 376     | 4.412e3   | 4.412e3 | 1.000    | 0.114  | 4.22 | 109   | 100  |
| 20 | 25 13C9-PFNA   | 472.2 > 426.9   | 5.408e3   | 5.408e3 | 1.000    | 0.114  | 4.56 | 109   | 100  |
| 21 | 26 13C4-PFOS   | 503.0 > 79.9    | 5.683e3   | 5.683e3 | 1.000    | 0.114  | 4.63 | 109   | 100  |
| 22 | 27 13C6-PFDA   | 519.10 > 473.70 | 5.353e3   | 5.353e3 | 1.000    | 0.114  | 4.86 | 109   | 100  |
| 23 | 28 Total PFBS  | 299.0 > 79.7    |           | 3.613e3 |          | 0.114  |      |       |      |
| 24 | 29 Total PFHxS | 398.9 > 79.6    |           | 3.050e3 |          | 0.114  |      |       |      |
| 25 | 30 Total PFOA  | 413.0 > 368.7   |           | 1.100e4 |          | 0.114  |      |       |      |
| 26 | 31 Total PFOS  | 499.0 >79.9     | _         | 5.638e3 | _        | 0.114  | _    | _     |      |

# **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-11.qld

Last Altered: Monday, July 31, 2017 12:45:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:50:38 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G2\_11, Date: 31-Jul-2017, Time: 11:40:15

## **Total PFBS**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

## **Total PFHxS**

|   | # Name  | Trace        | RT   | Area   | IS Area  | Conc. |
|---|---------|--------------|------|--------|----------|-------|
| 1 | 6 PFHxS | 398.9 > 79.6 | 3.94 | 13.618 | 3049.991 |       |

### **Total PFOA**

|   | # Name | Trace         | RT   | Area   | IS Area   | Conc. |
|---|--------|---------------|------|--------|-----------|-------|
| 1 | 7 PFOA | 413.0 > 368.7 | 4.22 | 54.930 | 11002.534 |       |

#### **Total PFOS**

|   |   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|---|--------|-------|----|------|---------|-------|
| ŀ | 1 |        |       |    |      |         |       |

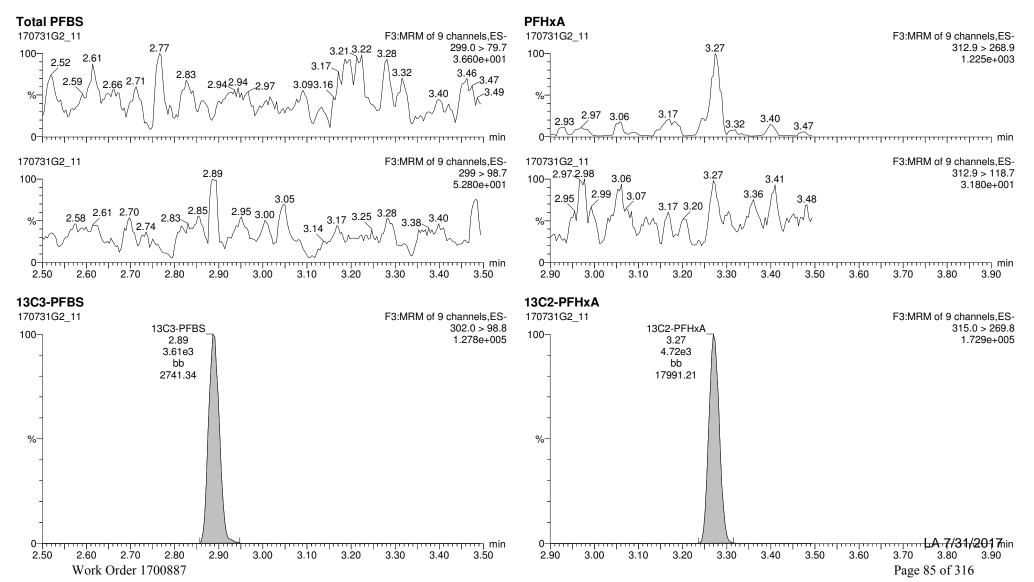
Page 1 of 1 Rev'd: MM 7/31/17

Work Order 1700887

Quantify Sample Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1

Dataset:


U:\G1.PRO\Results\2017\170731G2\170731G2-11.qld

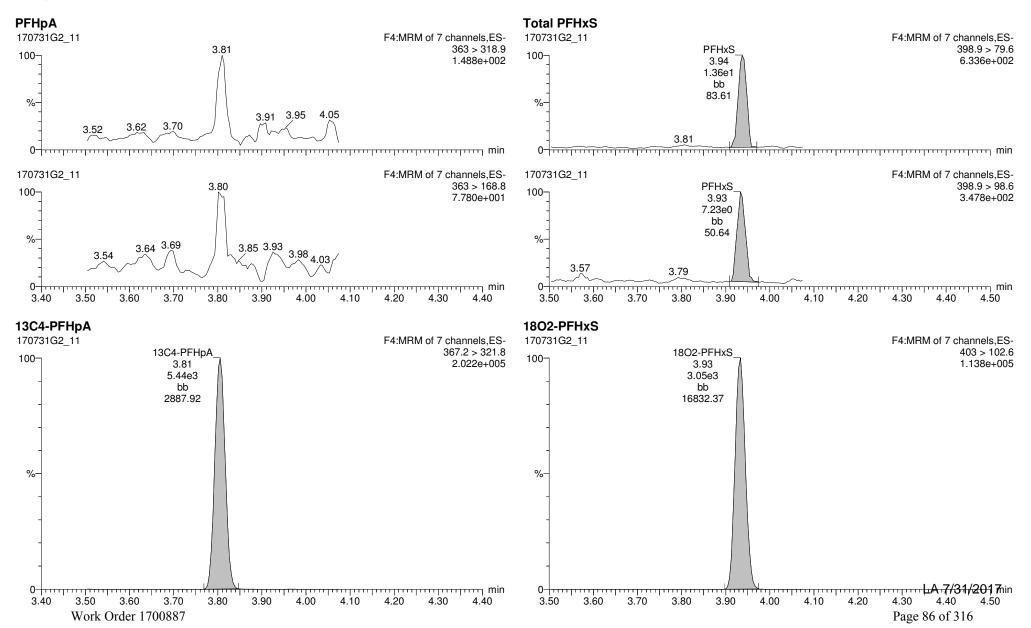
Last Altered: Monday, July 31, 2017 12:45:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:50:38 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G2\_11, Date: 31-Jul-2017, Time: 11:40:15, Instrument: , Lab: , User:

Page 1 of 6 Rev'd: MM 7/31/17




MassLynx 4.1 SCN815

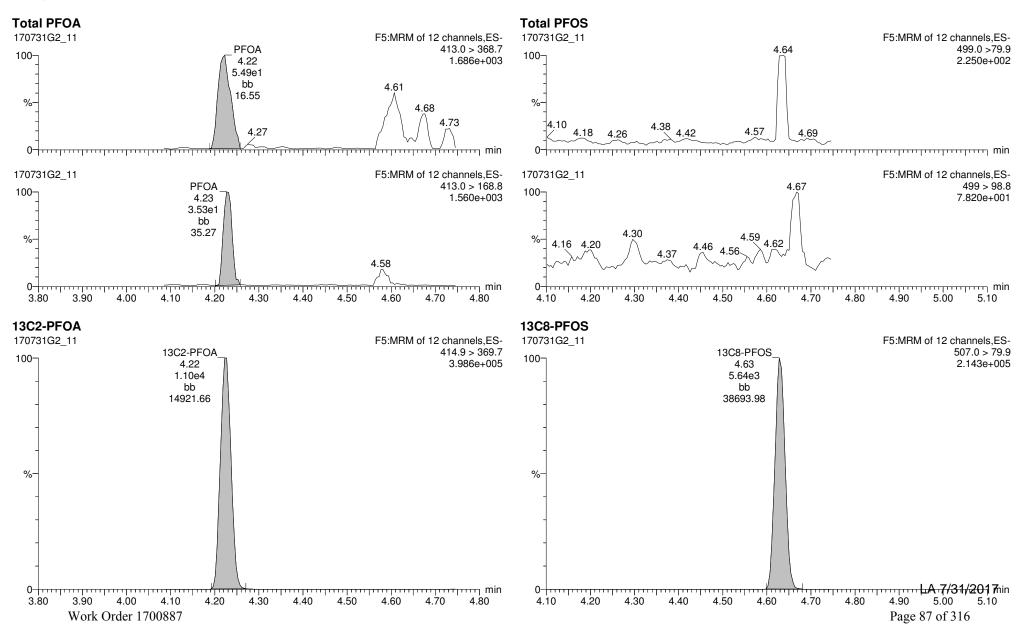
Page 2 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-11.gld

Last Altered: Monday, July 31, 2017 12:45:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:50:38 Pacific Daylight Time

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G2\_11, Date: 31-Jul-2017, Time: 11:40:15, Instrument: , Lab: , User:




MassLynx 4.1 SCN815

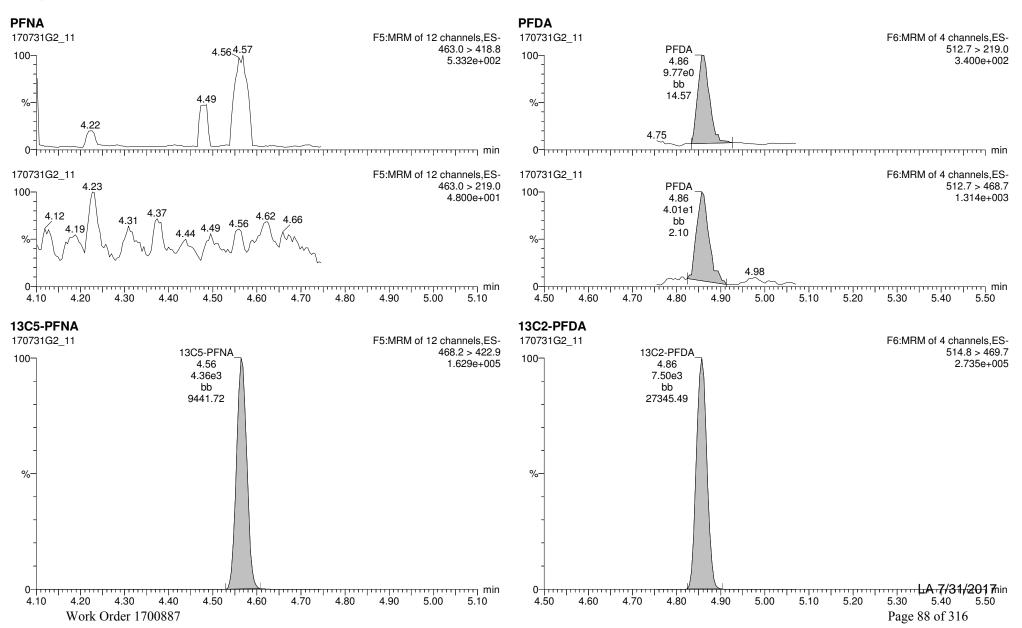
Page 3 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-11.qld

Last Altered: Monday, July 31, 2017 12:45:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:50:38 Pacific Daylight Time

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G2\_11, Date: 31-Jul-2017, Time: 11:40:15, Instrument: , Lab: , User:




MassLynx 4.1 SCN815

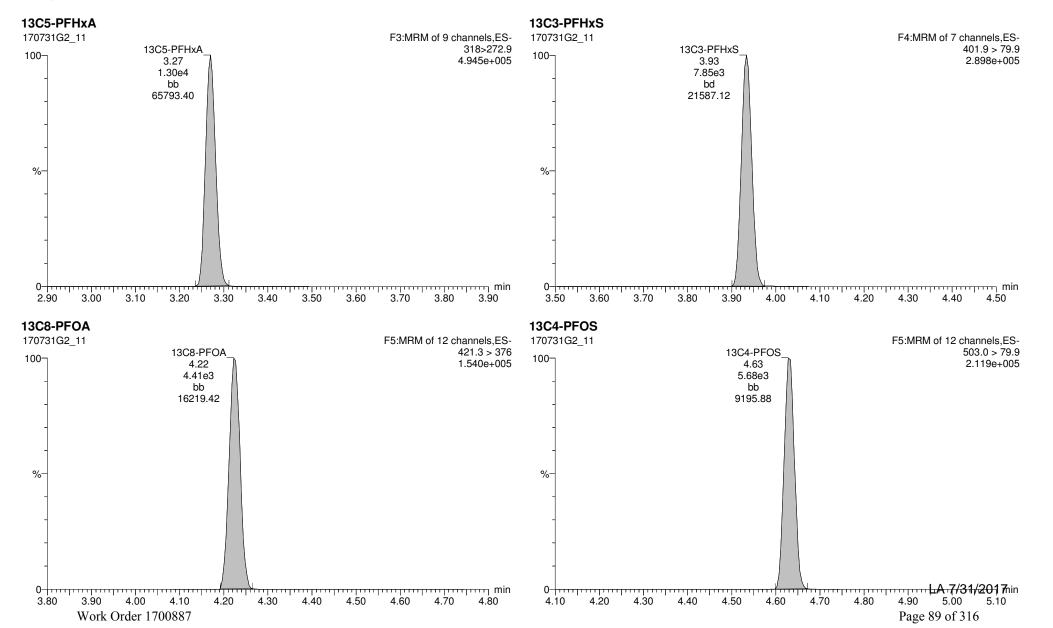
Page 4 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-11.qld

Last Altered: Monday, July 31, 2017 12:45:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:50:38 Pacific Daylight Time

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G2\_11, Date: 31-Jul-2017, Time: 11:40:15, Instrument: , Lab: , User:

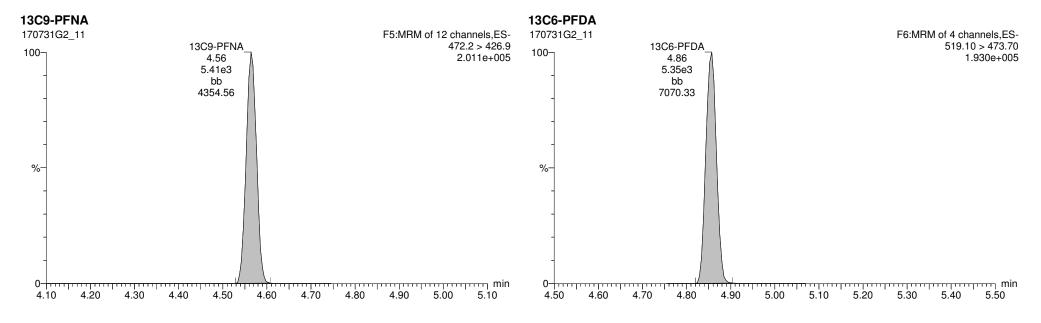



MassLynx 4.1 SCN815

Page 5 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-11.qld

Last Altered: Monday, July 31, 2017 12:45:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:50:38 Pacific Daylight Time


ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G2\_11, Date: 31-Jul-2017, Time: 11:40:15, Instrument: , Lab: , User:



Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-11.qld

Last Altered: Monday, July 31, 2017 12:45:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:50:38 Pacific Daylight Time

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G2\_11, Date: 31-Jul-2017, Time: 11:40:15, Instrument: , Lab: , User:



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-9.qld

Last Altered: Monday, July 31, 2017 16:31:12 Pacific Daylight Time Printed: Monday, July 31, 2017 16:32:01 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

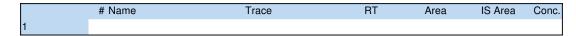
ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G1\_9, Date: 31-Jul-2017, Time: 15:32:02

|    | # Name             | Trace         | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|--------------------|---------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 2 N-MeFOSAA        | 570.1 > 419.0 |           | 2.358e3 |          | 0.114  |      |       |      |
| 2  | 4 PFUnA            | 563 > 518.9   | 9.249e1   | 1.072e4 |          | 0.114  | 5.12 |       |      |
| 3  | 5 N-EtFOSAA        | 584.2 > 419.0 |           | 2.458e3 |          | 0.114  |      |       |      |
| 4  | 6 PFDoA            | 612.9 > 318.8 |           | 1.363e4 |          | 0.114  |      |       |      |
| 5  | 7 PFTrDA           | 662.9 > 618.9 |           | 0.000e0 |          | 0.114  |      |       |      |
| 6  | 8 PFTeDA           | 712.9 > 668.8 | 1.418e2   | 1.282e4 |          | 0.114  | 5.73 |       |      |
| 7  | 10 d3-N-MeFOSAA    | 573.3 > 419.0 | 2.358e3   | 1.092e4 | 0.026    | 0.114  | 4.98 | 894   | 63.0 |
| 8  | 11 13C2-PFUnA      | 565 > 519.8   | 1.072e4   | 1.092e4 | 1.471    | 0.114  | 5.12 | 72.9  | 66.7 |
| 9  | 12 d5-N-EtFOSAA    | 589.3 > 419.0 | 2.458e3   | 1.092e4 | 0.031    | 0.114  | 5.10 | 791   | 55.7 |
| 10 | 13 13C2-PFDoA      | 615 > 569.7   | 1.363e4   | 1.092e4 | 1.887    | 0.114  | 5.35 | 72.3  | 66.2 |
| 11 | 14 13C2-PFTeDA     | 715 > 669.7   | 1.282e4   | 1.092e4 | 1.990    | 0.114  | 5.73 | 64.4  | 59.0 |
| 12 | 15 13C7-PFUnA      | 570.1 > 524.8 | 1.092e4   | 1.092e4 | 1.000    | 0.114  | 5.12 | 109   | 100  |
| 13 | 16 Total N-MeFOSAA | 570.1 > 419.0 |           | 2.358e3 |          | 0.114  |      |       |      |
| 14 | 17 Total N-EtFOSAA | 584.2 > 419.0 |           | 2.458e3 |          | 0.114  |      |       |      |

## **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-9.qld


Last Altered: Monday, July 31, 2017 16:31:12 Pacific Daylight Time Printed: Monday, July 31, 2017 16:32:01 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G1\_9, Date: 31-Jul-2017, Time: 15:32:02

## **Total N-MeFOSAA**



### **Total N-EtFOSAA**

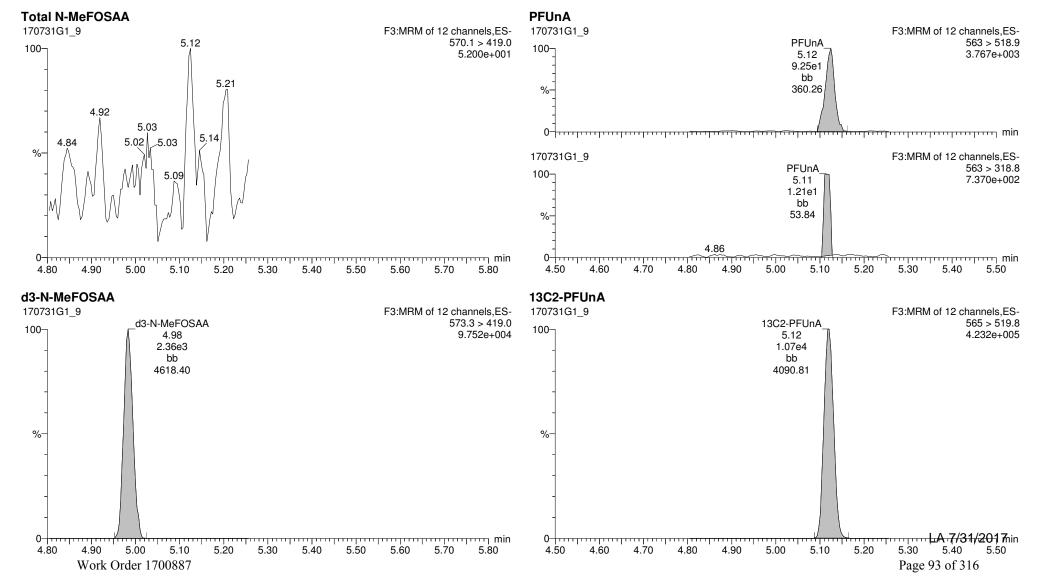
|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

Page 1 of 1 Rev'd: MM 7/31/17

Work Order 1700887

MassLynx 4.1 SCN815

Page 1 of 4 Rev'd: MM 7/31/17


Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-9.ald

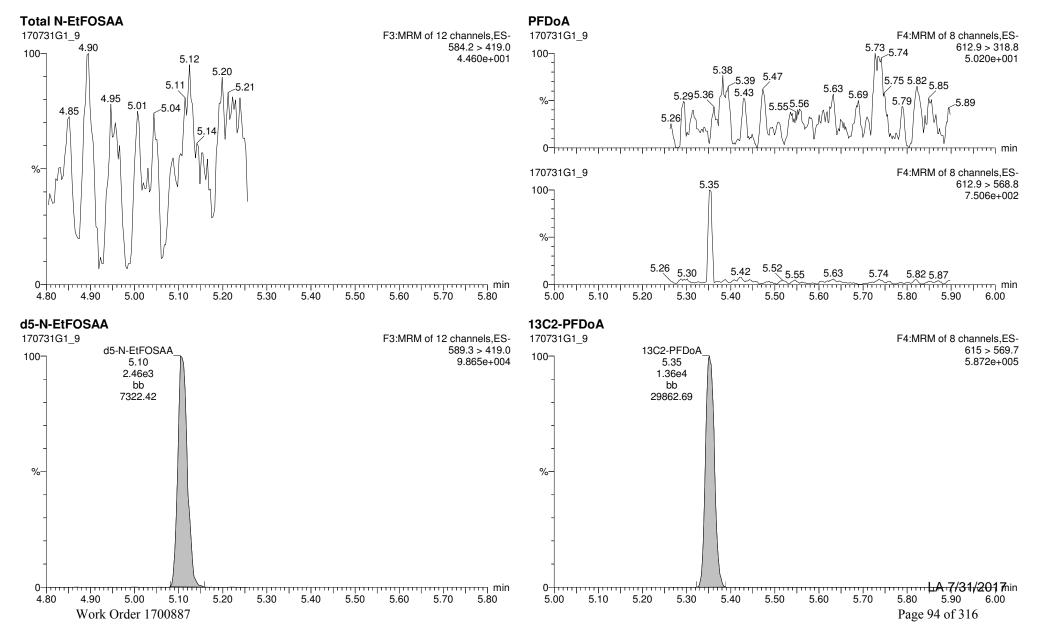
Last Altered: Monday, July 31, 2017 16:31:12 Pacific Daylight Time Printed: Monday, July 31, 2017 16:32:01 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS B 2TRAN 0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18 VAL-PFC Q1 7-28-17 B 2Trans NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G1 9, Date: 31-Jul-2017, Time: 15:32:02, Instrument: , Lab: , User:




MassLynx 4.1 SCN815

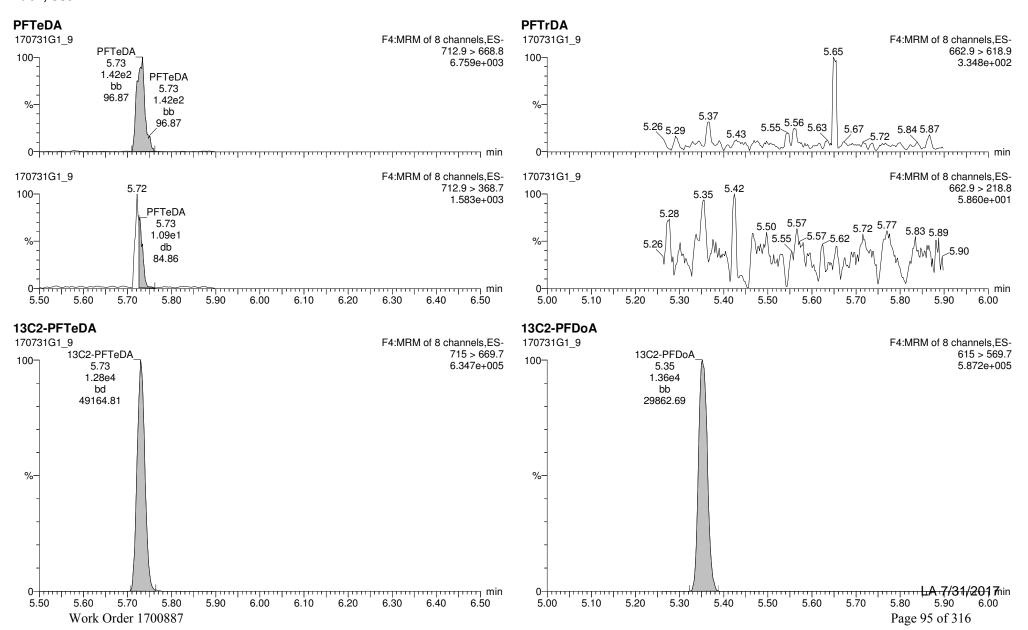
Page 2 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-9.qld

Last Altered: Monday, July 31, 2017 16:31:12 Pacific Daylight Time Printed: Monday, July 31, 2017 16:32:01 Pacific Daylight Time

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G1\_9, Date: 31-Jul-2017, Time: 15:32:02, Instrument: , Lab: , User:




MassLynx 4.1 SCN815

Page 3 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-9.qld

Last Altered: Monday, July 31, 2017 16:31:12 Pacific Daylight Time Printed: Monday, July 31, 2017 16:32:01 Pacific Daylight Time

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G1\_9, Date: 31-Jul-2017, Time: 15:32:02, Instrument: , Lab: , User:



MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1


**Quantify Sample Report** 

Page 4 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-9.qld

Last Altered: Monday, July 31, 2017 16:31:12 Pacific Daylight Time Printed: Monday, July 31, 2017 16:32:01 Pacific Daylight Time

ID: 1700887-03 IRPSite 6-GW-FRB01-20170712 0.11445, Description: IRPSite 6-GW-FRB01-20170712, Name: 170731G1\_9, Date: 31-Jul-2017, Time: 15:32:02, Instrument: , Lab: , User:



Page 1 of 1 Rev'd: MM 7/31/17

 $\label{lem:decomposition} Dataset: \qquad U:\G1.PRO\Results\2017\170731G2\170731G2-12.qld$ 

Last Altered: Monday, July 31, 2017 12:53:02 Pacific Daylight Time Monday, July 31, 2017 12:53:31 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

|    | # Name         | Trace           | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|----------------|-----------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 3 PFBS         | 299.0 > 79.7    | 7.286e2   | 3.405e3 |          | 0.121  | 2.89 | 10.7  |      |
| 2  | 4 PFHxA        | 312.9 > 268.9   | 5.154e3   | 4.082e3 |          | 0.121  | 3.27 | 68.1  |      |
| 3  | 5 PFHpA        | 363 > 318.9     | 9.975e2   | 5.613e3 |          | 0.121  | 3.81 | 8.36  |      |
| 4  | 6 PFHxS        | 398.9 > 79.6    | 8.882e3   | 3.330e3 |          | 0.121  | 3.94 | 155   |      |
| 5  | 7 PFOA         | 413.0 > 368.7   | 7.641e3   | 1.231e4 |          | 0.121  | 4.23 | 79.6  |      |
| 6  | 8 PFNA         | 463.0 > 418.8   | 1.649e2   | 4.351e3 |          | 0.121  | 4.56 | 1.42  |      |
| 7  | 9 PFOS         | 499.0 >79.9     | 7.735e2   | 5.951e3 |          | 0.121  | 4.63 | 28.1  |      |
| 8  | 10 PFDA        | 512.7 > 219.0   | 2.506e1   | 8.371e3 |          | 0.121  | 4.86 | 0.416 |      |
| 9  | 12 13C3-PFBS   | 302.0 > 98.8    | 3.405e3   | 1.182e4 | 0.263    | 0.121  | 2.89 | 113   | 110  |
| 10 | 14 13C2-PFHxA  | 315.0 > 269.8   | 4.082e3   | 1.182e4 | 0.361    | 0.121  | 3.27 | 99.1  | 95.7 |
| 11 | 15 13C4-PFHpA  | 367.2 > 321.8   | 5.613e3   | 1.182e4 | 0.475    | 0.121  | 3.81 | 103   | 99.8 |
| 12 | 16 18O2-PFHxS  | 403 > 102.6     | 3.330e3   | 8.697e3 | 0.411    | 0.121  | 3.93 | 96.5  | 93.3 |
| 13 | 17 13C2-PFOA   | 414.9 > 369.7   | 1.231e4   | 4.869e3 | 2.843    | 0.121  | 4.23 | 92.0  | 88.9 |
| 14 | 18 13C5-PFNA   | 468.2 > 422.9   | 4.351e3   | 6.088e3 | 0.854    | 0.121  | 4.57 | 86.6  | 83.7 |
| 15 | 19 13C2-PFDA   | 514.8 > 469.7   | 8.371e3   | 5.928e3 | 1.742    | 0.121  | 4.86 | 83.9  | 81.1 |
| 16 | 20 13C8-PFOS   | 507.0 > 79.9    | 5.951e3   | 6.673e3 | 0.927    | 0.121  | 4.63 | 99.5  | 96.2 |
| 17 | 22 13C5-PFHxA  | 318>272.9       | 1.182e4   | 1.182e4 | 1.000    | 0.121  | 3.27 | 103   | 100  |
| 18 | 23 13C3-PFHxS  | 401.9 > 79.9    | 8.697e3   | 8.697e3 | 1.000    | 0.121  | 3.93 | 103   | 100  |
| 19 | 24 13C8-PFOA   | 421.3 > 376     | 4.869e3   | 4.869e3 | 1.000    | 0.121  | 4.22 | 103   | 100  |
| 20 | 25 13C9-PFNA   | 472.2 > 426.9   | 6.088e3   | 6.088e3 | 1.000    | 0.121  | 4.57 | 103   | 100  |
| 21 | 26 13C4-PFOS   | 503.0 > 79.9    | 6.673e3   | 6.673e3 | 1.000    | 0.121  | 4.63 | 103   | 100  |
| 22 | 27 13C6-PFDA   | 519.10 > 473.70 | 5.928e3   | 5.928e3 | 1.000    | 0.121  | 4.86 | 103   | 100  |
| 23 | 28 Total PFBS  | 299.0 > 79.7    |           | 3.405e3 |          | 0.121  |      | 10.7  |      |
| 24 | 29 Total PFHxS | 398.9 > 79.6    |           | 3.330e3 |          | 0.121  |      | 155   |      |
| 25 | 30 Total PFOA  | 413.0 > 368.7   |           | 1.231e4 |          | 0.121  |      | 90.6  |      |
| 26 | 31 Total PFOS  | 499.0 >79.9     |           | 5.951e3 |          | 0.121  |      | 28.1  |      |

## **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-12.qld

Last Altered: Monday, July 31, 2017 12:53:02 Pacific Daylight Time Printed: Monday, July 31, 2017 12:53:31 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-04 Site 33-GW-33GW01-20170712 0.12081, Description: Site 33-GW-33GW01-20170712, Name: 170731G2\_12, Date: 31-Jul-2017, Time: 11:52:47

### **Total PFBS**

|   | # Name | Trace        | RT   | Area    | IS Area  | Conc. |
|---|--------|--------------|------|---------|----------|-------|
| 1 | 3 PFBS | 299.0 > 79.7 | 2.89 | 728.623 | 3404.713 | 10.7  |

### **Total PFHxS**

|   |   | # Name  | Trace        | RT   | Area     | IS Area  | Conc. |
|---|---|---------|--------------|------|----------|----------|-------|
| ١ | 1 | 6 PFHxS | 398.9 > 79.6 | 3.94 | 8881.569 | 3330.308 | 154.6 |

#### **Total PFOA**

|   | # Name        | Trace         | RT   | Area     | IS Area   | Conc. |
|---|---------------|---------------|------|----------|-----------|-------|
| 1 | 30 Total PFOA | 413.0 > 368.7 | 4.12 | 1140.732 | 12312.276 | 11.1  |
| 2 | 7 PFOA        | 413.0 > 368.7 | 4.23 | 7640.729 | 12312.276 | 79.6  |

#### **Total PFOS**

|   | # Name | Trace       | RT   | Area    | IS Area  | Conc. |
|---|--------|-------------|------|---------|----------|-------|
| 1 | 9 PFOS | 499.0 >79.9 | 4.63 | 773.549 | 5950.658 | 28.1  |

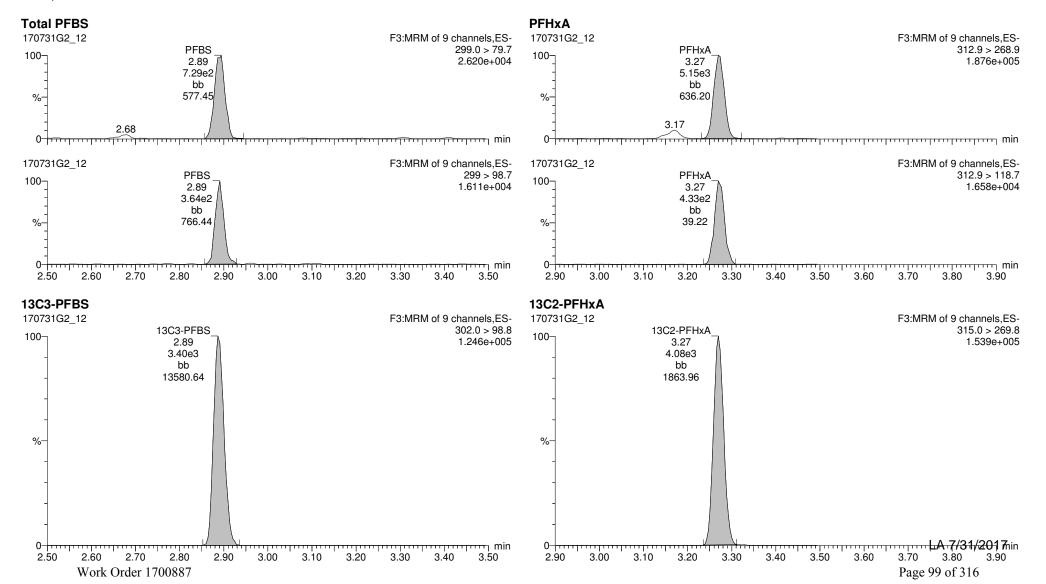
Page 1 of 1 Rev'd: MM 7/31/17

Work Order 1700887

Quantify Sample Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1

Dataset:

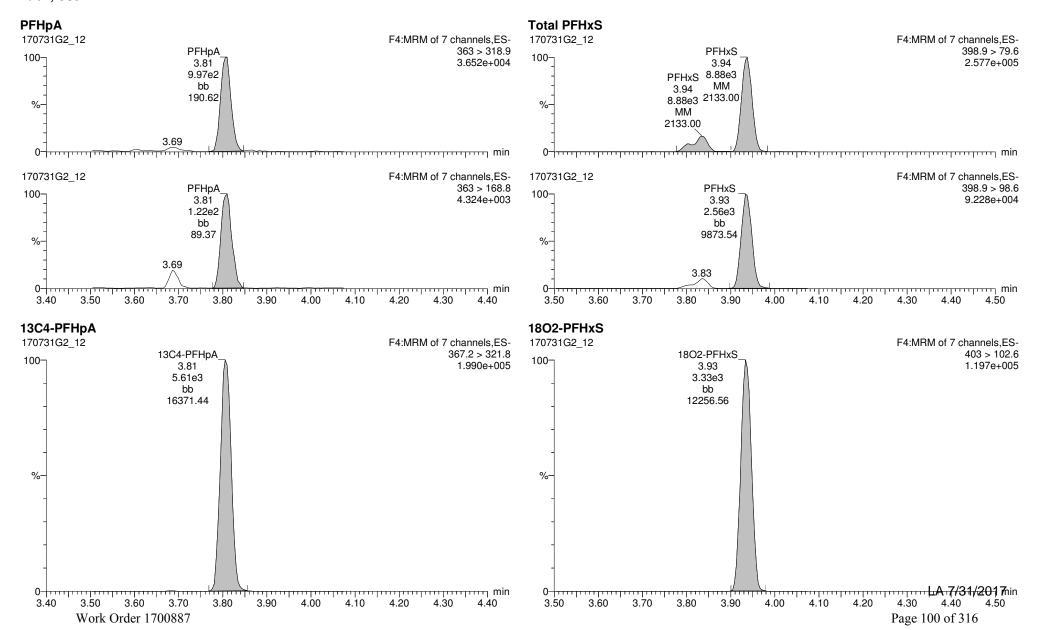

U:\G1.PRO\Results\2017\170731G2\170731G2-12.qld

Last Altered: Monday, July 31, 2017 12:53:02 Pacific Daylight Time Printed: Monday, July 31, 2017 12:53:31 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-04 Site 33-GW-33GW01-20170712 0.12081, Description: Site 33-GW-33GW01-20170712, Name: 170731G2\_12, Date: 31-Jul-2017, Time: 11:52:47, Instrument: , Lab: , User:

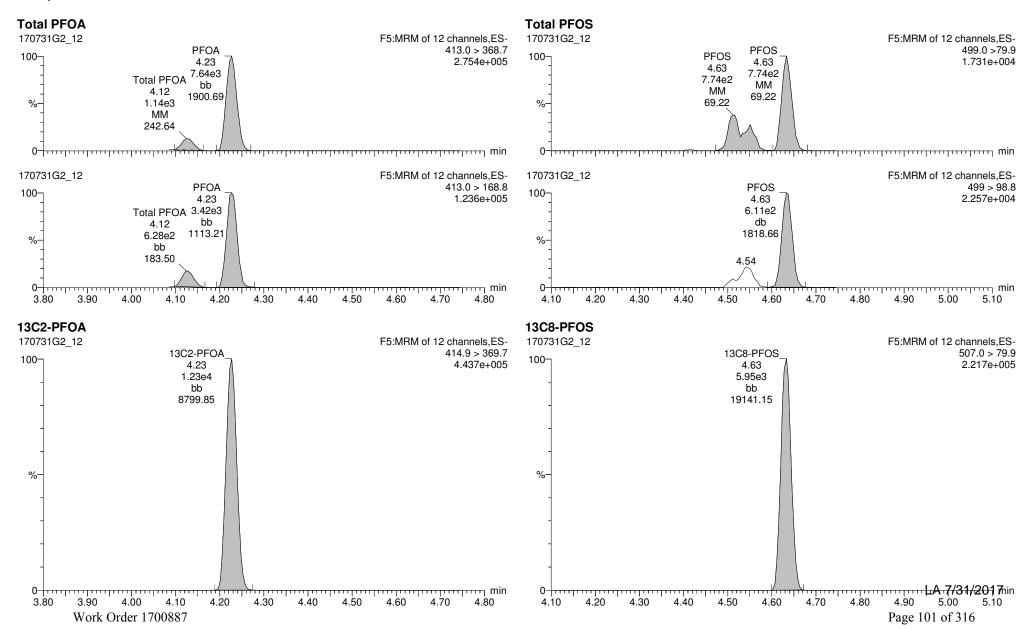
Page 1 of 6 Rev'd: MM 7/31/17




MassLynx 4.1 SCN815

Page 2 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-12.qld

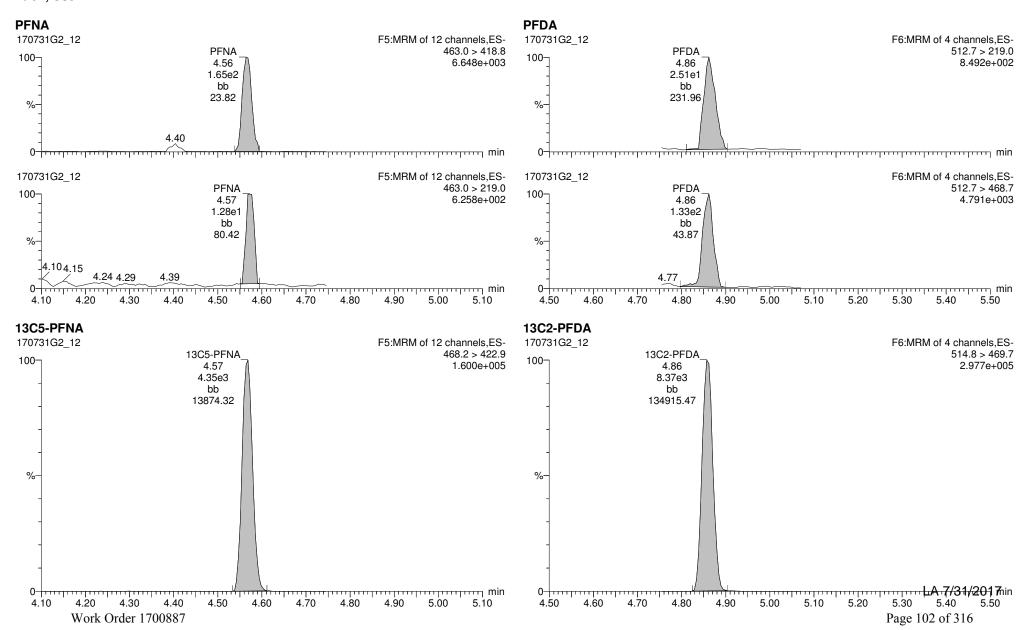

Last Altered: Monday, July 31, 2017 12:53:02 Pacific Daylight Time Printed: Monday, July 31, 2017 12:53:31 Pacific Daylight Time



Page 3 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-12.qld

Last Altered: Monday, July 31, 2017 12:53:02 Pacific Daylight Time Printed: Monday, July 31, 2017 12:53:31 Pacific Daylight Time

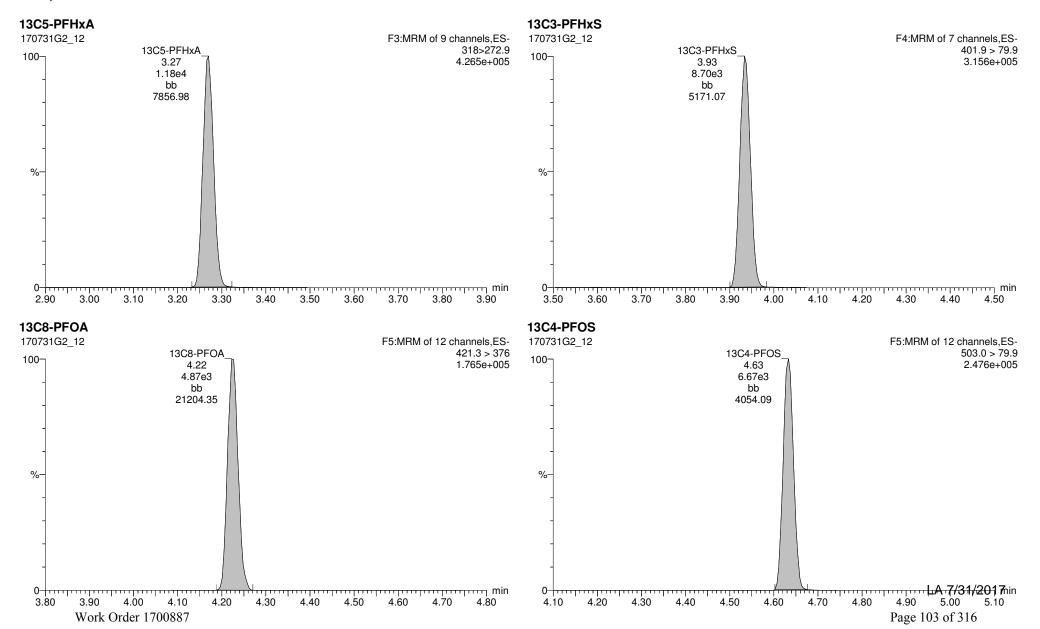



MassLynx 4.1 SCN815

Page 4 of 6 Rev'd: MM 7/31/17

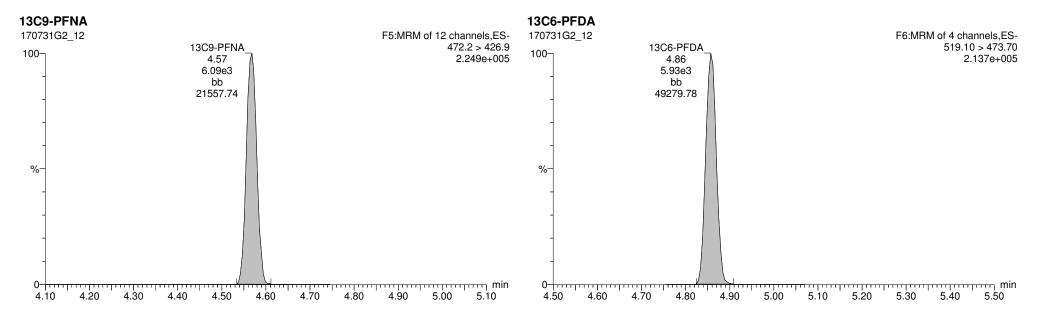
Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-12.qld

Last Altered: Monday, July 31, 2017 12:53:02 Pacific Daylight Time Printed: Monday, July 31, 2017 12:53:31 Pacific Daylight Time




MassLynx 4.1 SCN815

Page 5 of 6 Rev'd: MM 7/31/17


Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-12.qld

Last Altered: Monday, July 31, 2017 12:53:02 Pacific Daylight Time Printed: Monday, July 31, 2017 12:53:31 Pacific Daylight Time



Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-12.qld

Last Altered: Monday, July 31, 2017 12:53:02 Pacific Daylight Time Printed: Monday, July 31, 2017 12:53:31 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-10.qld

Last Altered: Monday, July 31, 2017 16:33:01 Pacific Daylight Time Printed: Monday, July 31, 2017 16:34:52 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-04 Site 33-GW-33GW01-20170712 0.12081, Description: Site 33-GW-33GW01-20170712, Name: 170731G1\_10, Date: 31-Jul-2017, Time: 15:44:39

|    | # Name             | Trace         | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc.  | %Rec |
|----|--------------------|---------------|-----------|---------|----------|--------|------|--------|------|
| 1  | 2 N-MeFOSAA        | 570.1 > 419.0 |           | 2.507e3 |          | 0.121  |      |        |      |
| 2  | 4 PFUnA            | 563 > 518.9   | 1.694e2   | 1.161e4 |          | 0.121  | 5.12 |        |      |
| 3  | 5 N-EtFOSAA        | 584.2 > 419.0 |           | 2.871e3 |          | 0.121  |      |        |      |
| 4  | 6 PFDoA            | 612.9 > 318.8 |           | 1.441e4 |          | 0.121  |      |        |      |
| 5  | 7 PFTrDA           | 662.9 > 618.9 |           | 0.000e0 |          | 0.121  |      |        |      |
| 6  | 8 PFTeDA           | 712.9 > 668.8 | 1.643e2   | 1.296e4 |          | 0.121  | 5.74 | 0.0306 |      |
| 7  | 10 d3-N-MeFOSAA    | 573.3 > 419.0 | 2.507e3   | 1.112e4 | 0.026    | 0.121  | 4.98 | 884    | 65.7 |
| 8  | 11 13C2-PFUnA      | 565 > 519.8   | 1.161e4   | 1.112e4 | 1.471    | 0.121  | 5.12 | 73.4   | 70.9 |
| 9  | 12 d5-N-EtFOSAA    | 589.3 > 419.0 | 2.871e3   | 1.112e4 | 0.031    | 0.121  | 5.11 | 859    | 63.8 |
| 10 | 13 13C2-PFDoA      | 615 > 569.7   | 1.441e4   | 1.112e4 | 1.887    | 0.121  | 5.35 | 71.0   | 68.6 |
| 11 | 14 13C2-PFTeDA     | 715 > 669.7   | 1.296e4   | 1.112e4 | 1.990    | 0.121  | 5.73 | 60.6   | 58.5 |
| 12 | 15 13C7-PFUnA      | 570.1 > 524.8 | 1.112e4   | 1.112e4 | 1.000    | 0.121  | 5.12 | 103    | 100  |
| 13 | 16 Total N-MeFOSAA | 570.1 > 419.0 |           | 2.507e3 |          | 0.121  |      |        |      |
| 14 | 17 Total N-EtFOSAA | 584.2 > 419.0 |           | 2.871e3 |          | 0.121  |      |        |      |

## **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-10.qld

Last Altered: Monday, July 31, 2017 16:33:01 Pacific Daylight Time Printed: Monday, July 31, 2017 16:34:52 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-04 Site 33-GW-33GW01-20170712 0.12081, Description: Site 33-GW-33GW01-20170712, Name: 170731G1\_10, Date: 31-Jul-2017, Time: 15:44:39

### **Total N-MeFOSAA**

|     |   | # Name | Trace | RT | Area | IS Area | Conc. |
|-----|---|--------|-------|----|------|---------|-------|
| - 1 | 1 |        |       |    |      |         |       |

### **Total N-EtFOSAA**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

Page 1 of 1 Rev'd: MM 7/31/17

Work Order 1700887

Total N-MeFOSAA 170731G1 10 MassLynx 4.1 SCN815

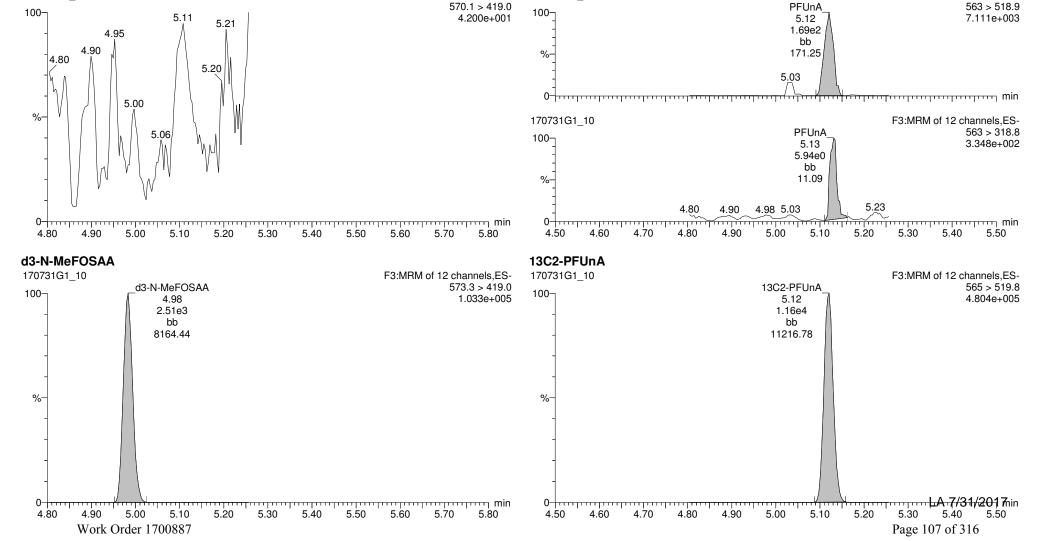
Page 1 of 4 Rev'd: MM 7/31/17

F3:MRM of 12 channels, ES-

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-10.gld

Last Altered: Monday, July 31, 2017 16:33:01 Pacific Daylight Time Printed: Monday, July 31, 2017 16:34:52 Pacific Daylight Time

 $Method: U: \G1.pro\\MethDB\\PFAS\_B\_2TRAN\_0714.mdb\ 14\ Jul\ 2017\ 15:36:03$ 


Calibration: U:\G1.pro\CurveDB\C18 VAL-PFC Q1 7-28-17 B 2Trans NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-04 Site 33-GW-33GW01-20170712 0.12081, Description: Site 33-GW-33GW01-20170712, Name: 170731G1\_10, Date: 31-Jul-2017, Time: 15:44:39, Instrument: , Lab: , User:

F3:MRM of 12 channels, ES-

**PFUnA** 

170731G1 10



5.00

Work Order 1700887

5.10

5.20

5.30

5.40

5.50

5.60

5.70

5.80

5.00

5.10

5.20

5.30

5.40

5.50

5.60

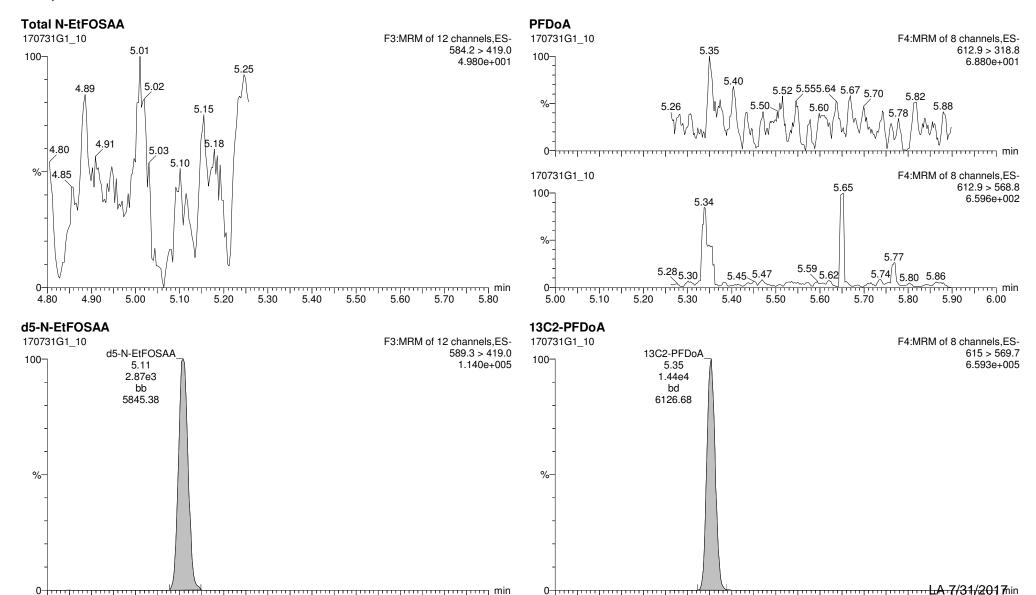
5.70

5.80

5.90

Page 108 of 316

4.90

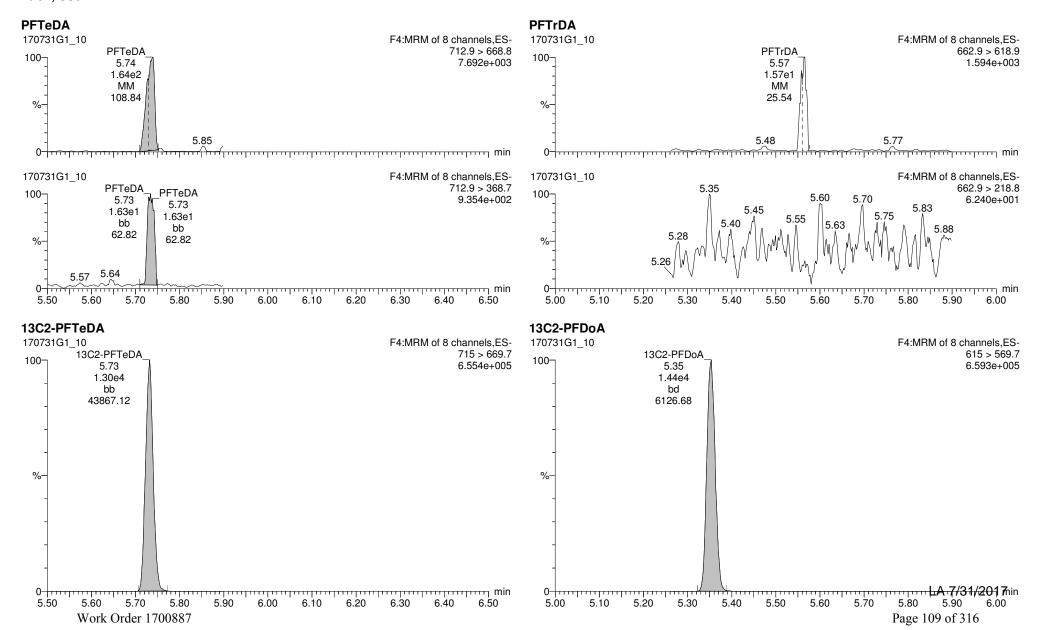

4.80

MassLynx 4.1 SCN815

Page 2 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-10.qld

Last Altered: Monday, July 31, 2017 16:33:01 Pacific Daylight Time Printed: Monday, July 31, 2017 16:34:52 Pacific Daylight Time




MassLynx 4.1 SCN815

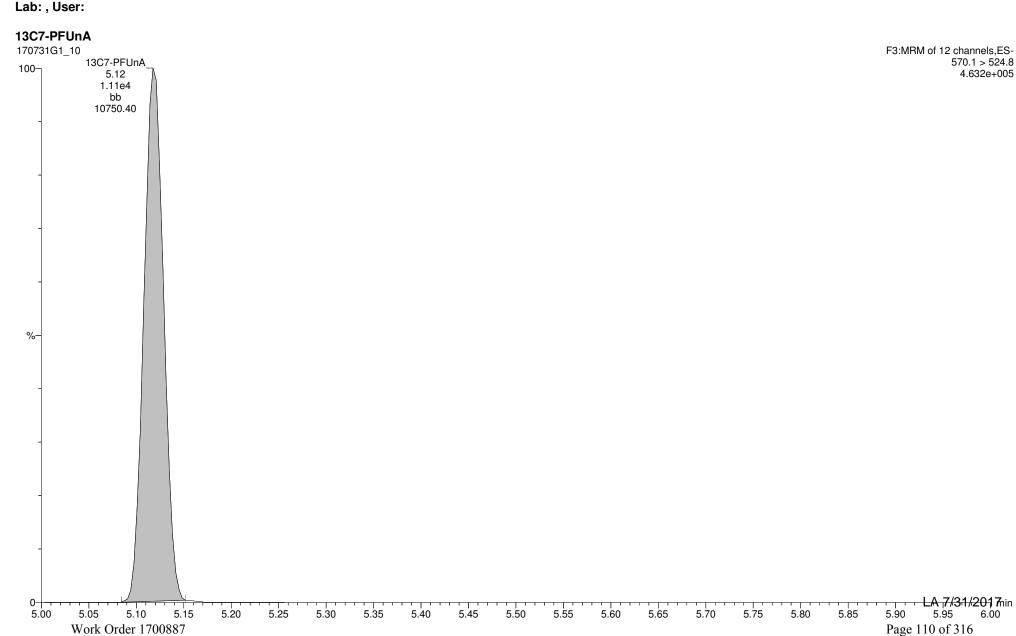
Page 3 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-10.gld

Last Altered: Monday, July 31, 2017 16:33:01 Pacific Daylight Time Printed: Monday, July 31, 2017 16:34:52 Pacific Daylight Time



MassLynx 4.1 SCN815


Vista Analytical Laboratory Q1

**Quantify Sample Report** 

Page 4 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-10.qld

Last Altered: Monday, July 31, 2017 16:33:01 Pacific Daylight Time Printed: Monday, July 31, 2017 16:34:52 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-13.qld

Last Altered: Monday, July 31, 2017 12:55:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:56:08 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-05 Building 110-GW-110GW01-20170712 0.1177, Description: Building 110-GW-110GW01-20170712, Name: 170731G2\_13, Date: 31-Jul-2017, Time: 12:05:21

|    | # Name         | Trace           | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc.  | %Rec |
|----|----------------|-----------------|-----------|---------|----------|--------|------|--------|------|
| 1  | 3 PFBS         | 299.0 > 79.7    | 2.401e3   | 3.748e3 |          | 0.118  | 2.89 | 39.2   |      |
| 2  | 4 PFHxA        | 312.9 > 268.9   | 1.001e4   | 4.626e3 |          | 0.118  | 3.27 | 120    |      |
| 3  | 5 PFHpA        | 363 > 318.9     | 2.108e3   | 6.155e3 |          | 0.118  | 3.81 | 17.6   |      |
| 4  | 6 PFHxS        | 398.9 > 79.6    | 3.239e4   | 3.168e3 |          | 0.118  | 3.94 | 610    |      |
| 5  | 7 PFOA         | 413.0 > 368.7   | 1.109e4   | 1.287e4 |          | 0.118  | 4.23 | 114    |      |
| 6  | 8 PFNA         | 463.0 > 418.8   |           | 4.010e3 |          | 0.118  |      |        |      |
| 7  | 9 PFOS         | 499.0 >79.9     | 2.667e4   | 4.907e3 |          | 0.118  | 4.63 | 1230 * |      |
| 8  | 10 PFDA        | 512.7 > 219.0   | 1.405e1   | 7.234e3 |          | 0.118  | 4.86 |        |      |
| 9  | 12 13C3-PFBS   | 302.0 > 98.8    | 3.748e3   | 1.391e4 | 0.263    | 0.118  | 2.89 | 109    | 103  |
| 10 | 14 13C2-PFHxA  | 315.0 > 269.8   | 4.626e3   | 1.391e4 | 0.361    | 0.118  | 3.27 | 97.9   | 92.3 |
| 11 | 15 13C4-PFHpA  | 367.2 > 321.8   | 6.155e3   | 1.391e4 | 0.475    | 0.118  | 3.81 | 98.8   | 93.1 |
| 12 | 16 18O2-PFHxS  | 403 > 102.6     | 3.168e3   | 8.457e3 | 0.411    | 0.118  | 3.93 | 96.8   | 91.2 |
| 13 | 17 13C2-PFOA   | 414.9 > 369.7   | 1.287e4   | 5.127e3 | 2.843    | 0.118  | 4.23 | 93.7   | 88.3 |
| 14 | 18 13C5-PFNA   | 468.2 > 422.9   | 4.010e3   | 6.176e3 | 0.854    | 0.118  | 4.57 | 80.7   | 76.1 |
| 15 | 19 13C2-PFDA   | 514.8 > 469.7   | 7.234e3   | 5.624e3 | 1.742    | 0.118  | 4.86 | 78.4   | 73.8 |
| 16 | 20 13C8-PFOS   | 507.0 > 79.9    | 4.907e3   | 4.952e3 | 0.927    | 0.118  | 4.63 | 113    | 107  |
| 17 | 22 13C5-PFHxA  | 318>272.9       | 1.391e4   | 1.391e4 | 1.000    | 0.118  | 3.27 | 106    | 100  |
| 18 | 23 13C3-PFHxS  | 401.9 > 79.9    | 8.457e3   | 8.457e3 | 1.000    | 0.118  | 3.93 | 106    | 100  |
| 19 | 24 13C8-PFOA   | 421.3 > 376     | 5.127e3   | 5.127e3 | 1.000    | 0.118  | 4.23 | 106    | 100  |
| 20 | 25 13C9-PFNA   | 472.2 > 426.9   | 6.176e3   | 6.176e3 | 1.000    | 0.118  | 4.57 | 106    | 100  |
| 21 | 26 13C4-PFOS   | 503.0 > 79.9    | 4.952e3   | 4.952e3 | 1.000    | 0.118  | 4.63 | 106    | 100  |
| 22 | 27 13C6-PFDA   | 519.10 > 473.70 | 5.624e3   | 5.624e3 | 1.000    | 0.118  | 4.86 | 106    | 100  |
| 23 | 28 Total PFBS  | 299.0 > 79.7    |           | 3.748e3 |          | 0.118  |      | 39.2   |      |
| 24 | 29 Total PFHxS | 398.9 > 79.6    |           | 3.168e3 |          | 0.118  |      | 610    |      |
| 25 | 30 Total PFOA  | 413.0 > 368.7   |           | 1.287e4 |          | 0.118  |      | 135    |      |
| 26 | 31 Total PFOS  | 499.0 >79.9     |           | 4.907e3 |          | 0.118  |      | 1230   |      |

\*SEE DILUTION

# **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-13.qld

Monday, July 31, 2017 12:55:49 Pacific Daylight Time Last Altered: Monday, July 31, 2017 12:56:08 Pacific Daylight Time Printed:

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-05 Building 110-GW-110GW01-20170712 0.1177, Description: Building 110-GW-110GW01-20170712, Name: 170731G2\_13, Date: 31-Jul-2017, Time: 12:05:21

# **Total PFBS**

|   | # Name | Trace        | RT   | Area     | IS Area  | Conc. |
|---|--------|--------------|------|----------|----------|-------|
| 1 | 3 PFBS | 299.0 > 79.7 | 2.89 | 2401.042 | 3748.206 | 39.2  |

### **Total PFHxS**

| I |   | # Name  | Trace        | RT   | Area      | IS Area  | Conc. |
|---|---|---------|--------------|------|-----------|----------|-------|
|   | 1 | 6 PFHxS | 398.9 > 79.6 | 3.94 | 32390.773 | 3168.106 | 609.7 |

#### **Total PFOA**

|   | # Name        | Trace         | RT   | Area      | IS Area   | Conc. |
|---|---------------|---------------|------|-----------|-----------|-------|
| 1 | 30 Total PFOA | 413.0 > 368.7 | 4.13 | 2140.067  | 12866.975 | 21.2  |
| 2 | 7 PFOA        | 413.0 > 368.7 | 4.23 | 11085.630 | 12866.975 | 113.7 |

#### **Total PFOS**

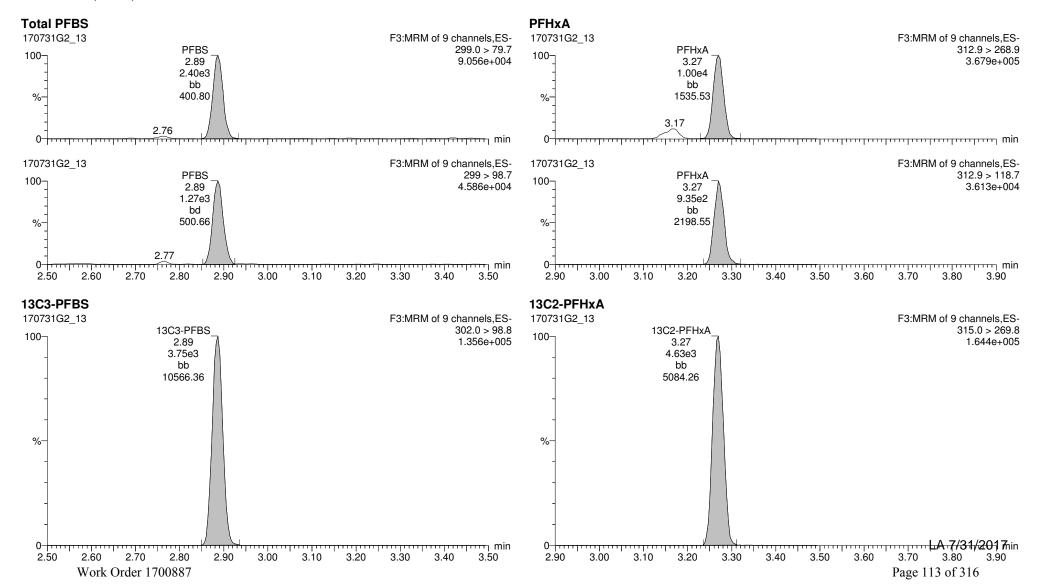
|   |   | # Name | Trace       | RT   | Area      | IS Area  | Conc.  |
|---|---|--------|-------------|------|-----------|----------|--------|
| - | 1 | 9 PFOS | 499.0 >79.9 | 4.63 | 26674.246 | 4907.274 | 1226.9 |

Work Order 1700887 Page 112 of 316 Quantify Sample Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170731G2\170731G2-13.qld

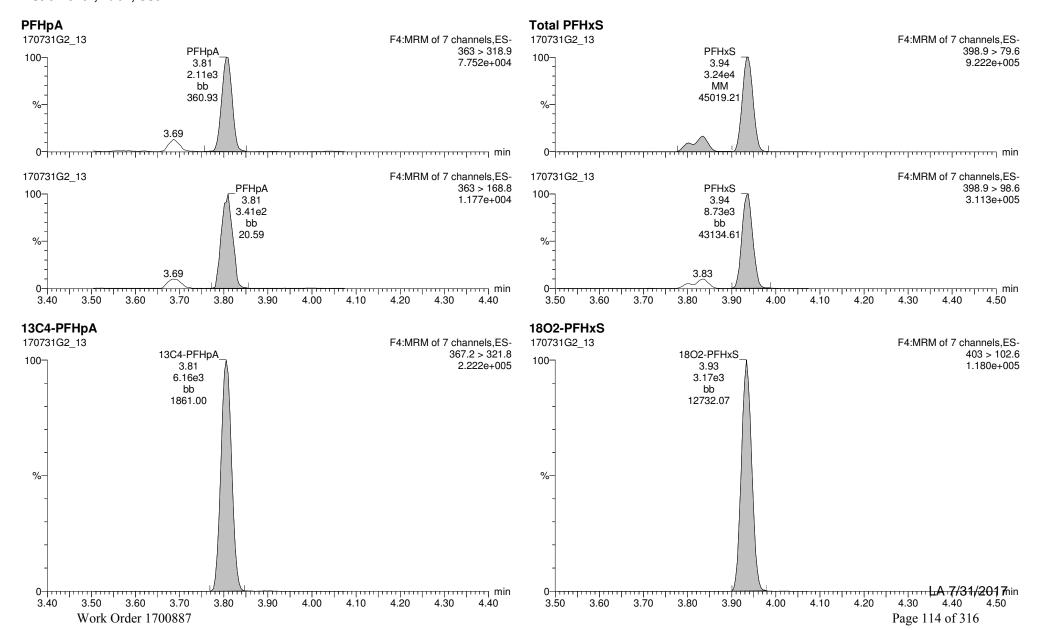

Last Altered: Monday, July 31, 2017 12:55:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:56:08 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:\G1.pro\CurveDB\C18 VAL-PFC Q1 7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-05 Building 110-GW-110GW01-20170712 0.1177, Description: Building 110-GW-110GW01-20170712, Name: 170731G2\_13, Date: 31-Jul-2017, Time: 12:05:21, Instrument: , Lab: , User:

Page 1 of 6

Rev'd: MM 7/31/17

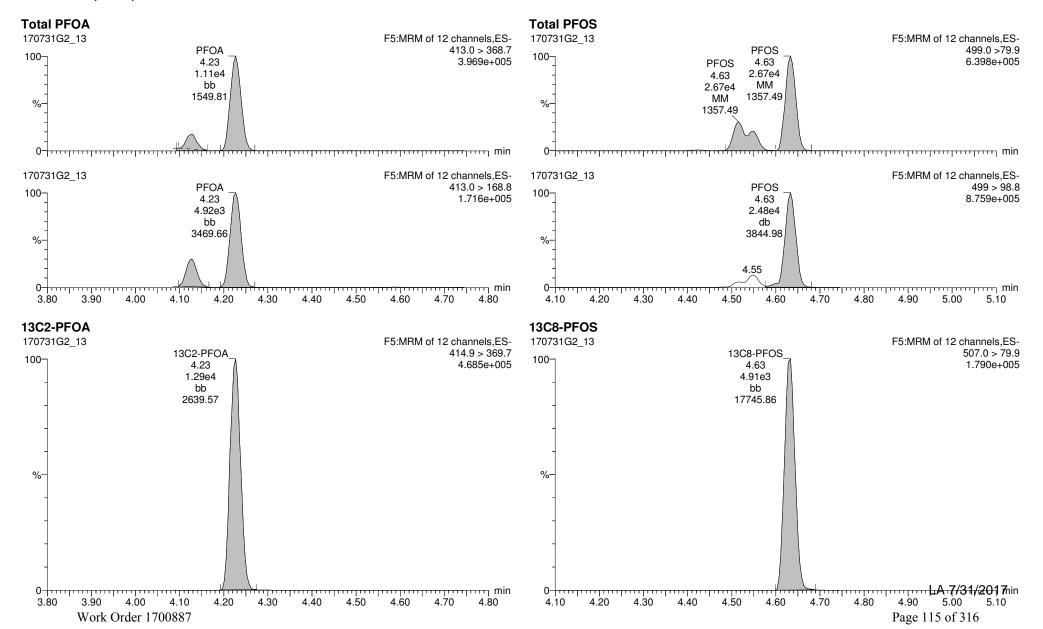



MassLynx 4.1 SCN815

Page 2 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-13.qld

Last Altered: Monday, July 31, 2017 12:55:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:56:08 Pacific Daylight Time

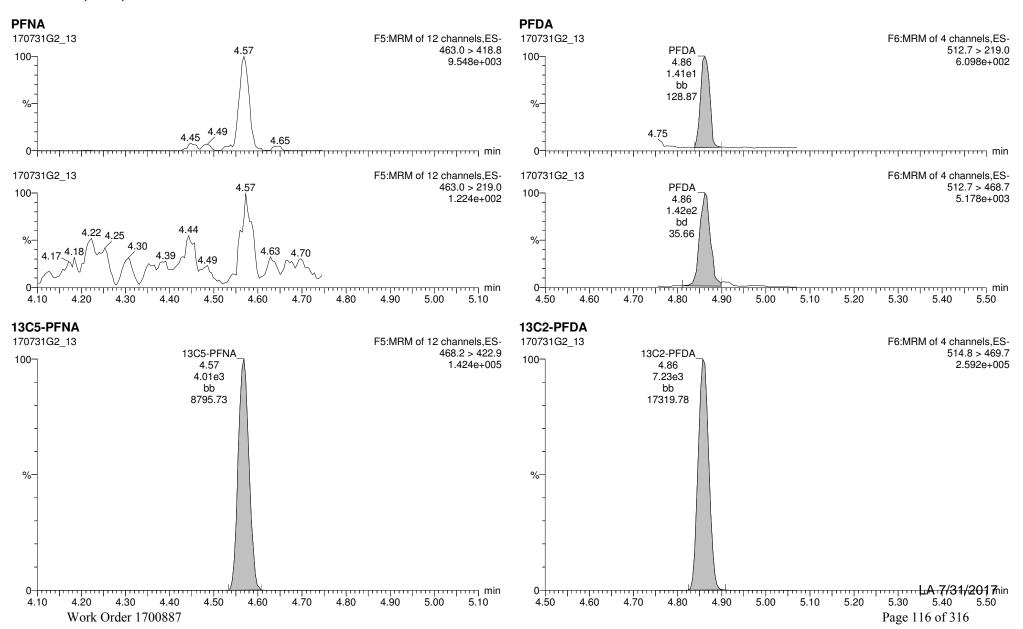



MassLynx 4.1 SCN815

Page 3 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-13.qld

Last Altered: Monday, July 31, 2017 12:55:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:56:08 Pacific Daylight Time

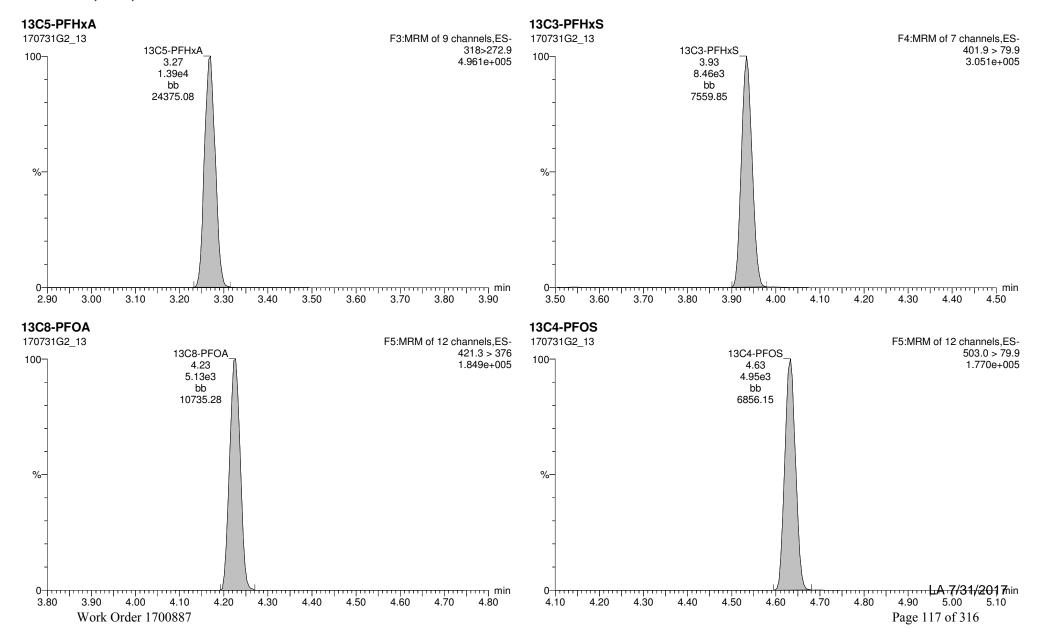



MassLynx 4.1 SCN815

Page 4 of 6 Rev'd: MM 7/31/17

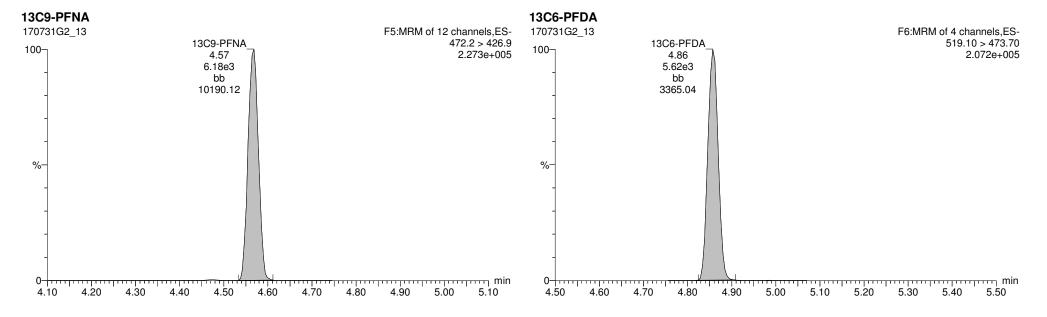
Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-13.qld

Last Altered: Monday, July 31, 2017 12:55:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:56:08 Pacific Daylight Time




MassLynx 4.1 SCN815

Page 5 of 6 Rev'd: MM 7/31/17


Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-13.qld

Last Altered: Monday, July 31, 2017 12:55:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:56:08 Pacific Daylight Time



Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-13.qld

Last Altered: Monday, July 31, 2017 12:55:49 Pacific Daylight Time Printed: Monday, July 31, 2017 12:56:08 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 8/1/17

 $\label{lem:decomposition} Dataset: \qquad U:\G1.PRO\Results\2017\170731G1\170731G1-11.qld$ 

Last Altered: Monday, July 31, 2017 16:35:58 Pacific Daylight Time Printed: Monday, July 31, 2017 16:37:00 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-05 Building 110-GW-110GW01-20170712 0.1177, Description: Building 110-GW-110GW01-20170712, Name: 170731G1 11, Date: 31-Jul-2017, Time: 15:57:16

|    | # Name             | Trace         | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc.  | %Rec |
|----|--------------------|---------------|-----------|---------|----------|--------|------|--------|------|
| 1  | 2 N-MeFOSAA        | 570.1 > 419.0 |           | 2.865e3 |          | 0.118  |      |        |      |
| 2  | 4 PFUnA            | 563 > 518.9   | 2.777e2   | 1.278e4 |          | 0.118  | 5.12 | 0.0883 |      |
| 3  | 5 N-EtFOSAA        | 584.2 > 419.0 |           | 3.846e3 |          | 0.118  |      |        |      |
| 4  | 6 PFDoA            | 612.9 > 318.8 |           | 1.610e4 |          | 0.118  |      |        |      |
| 5  | 7 PFTrDA           | 662.9 > 618.9 |           | 0.000e0 |          | 0.118  |      |        |      |
| 6  | 8 PFTeDA           | 712.9 > 668.8 | 1.799e2   | 1.548e4 |          | 0.118  | 5.73 |        |      |
| 7  | 10 d3-N-MeFOSAA    | 573.3 > 419.0 | 2.865e3   | 1.459e4 | 0.026    | 0.118  | 4.98 | 791    | 57.3 |
| 8  | 11 13C2-PFUnA      | 565 > 519.8   | 1.278e4   | 1.459e4 | 1.471    | 0.118  | 5.12 | 63.2   | 59.6 |
| 9  | 12 d5-N-EtFOSAA    | 589.3 > 419.0 | 3.846e3   | 1.459e4 | 0.031    | 0.118  | 5.11 | 900    | 65.2 |
| 10 | 13 13C2-PFDoA      | 615 > 569.7   | 1.610e4   | 1.459e4 | 1.887    | 0.118  | 5.35 | 62.1   | 58.5 |
| 11 | 14 13C2-PFTeDA     | 715 > 669.7   | 1.548e4   | 1.459e4 | 1.990    | 0.118  | 5.73 | 56.6   | 53.3 |
| 12 | 15 13C7-PFUnA      | 570.1 > 524.8 | 1.459e4   | 1.459e4 | 1.000    | 0.118  | 5.12 | 106    | 100  |
| 13 | 16 Total N-MeFOSAA | 570.1 > 419.0 |           | 2.865e3 |          | 0.118  |      |        |      |
| 14 | 17 Total N-EtFOSAA | 584.2 > 419.0 |           | 3.846e3 |          | 0.118  |      |        |      |

# **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Page 1 of 1 Rev'd: MM 8/1/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-11.qld

Last Altered: Monday, July 31, 2017 16:35:58 Pacific Daylight Time Printed: Monday, July 31, 2017 16:37:00 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-05 Building 110-GW-110GW01-20170712 0.1177, Description: Building 110-GW-110GW01-20170712, Name: 170731G1\_11, Date: 31-Jul-2017, Time: 15:57:16

### **Total N-MeFOSAA**

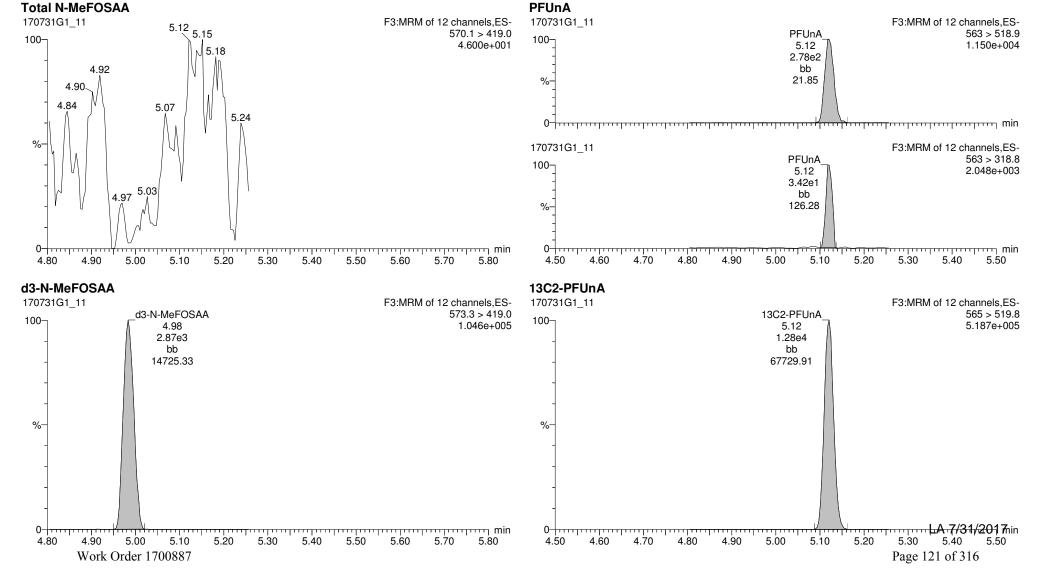
|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

### **Total N-EtFOSAA**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

Work Order 1700887

MassLynx 4.1 SCN815


Page 1 of 4 Rev'd: MM 8/1/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-11.gld

Last Altered: Monday, July 31, 2017 16:35:58 Pacific Daylight Time Printed: Monday, July 31, 2017 16:37:00 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18 VAL-PFC Q1 7-28-17 B 2Trans NEW.cdb 31 Jul 2017 08:37:52



MassLynx 4.1 SCN815

Page 2 of 4 Rev'd: MM 8/1/17

F4:MRM of 8 channels.ES-

F4:MRM of 8 channels, ES-

5.80 5.83 5.88

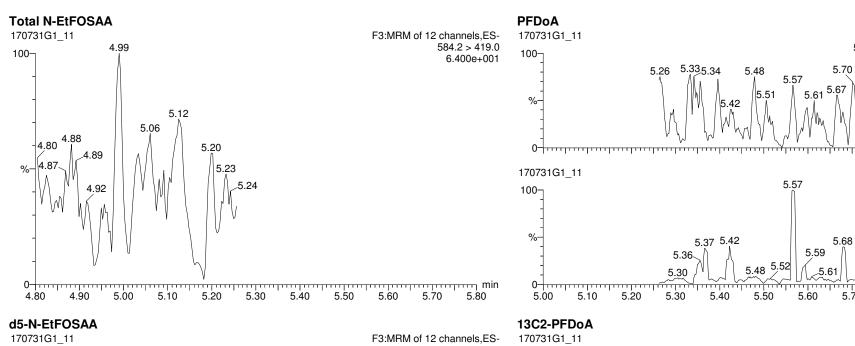
5.78

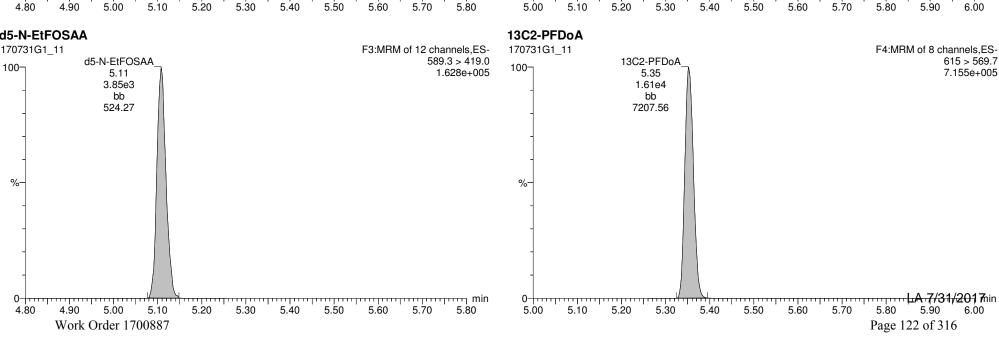
5.82

5.73

612.9 > 318.8

612.9 > 568.8


5.350e+002

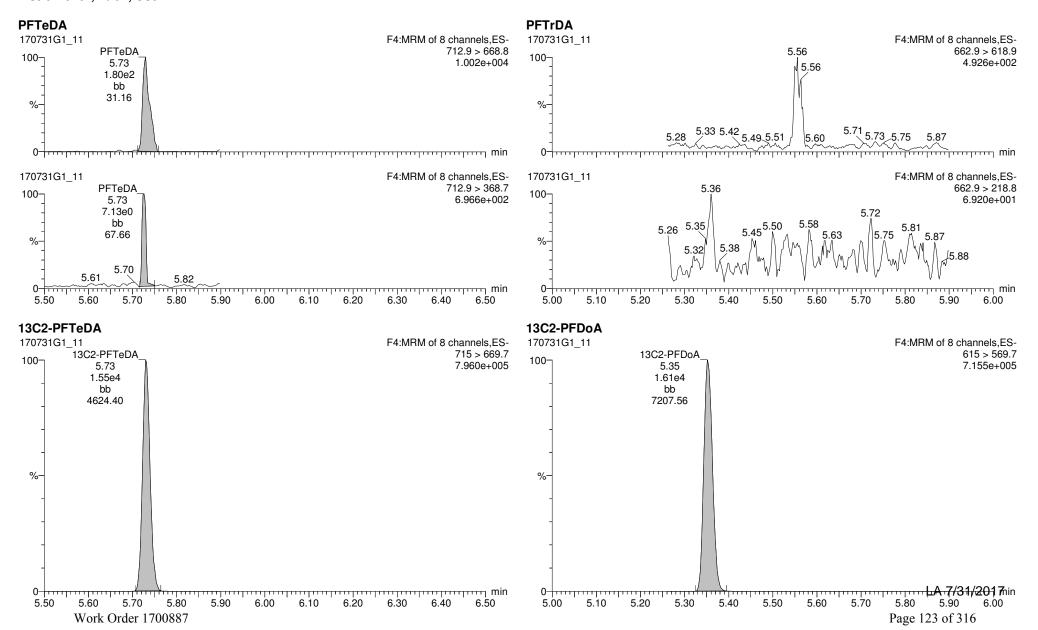

4.320e+001

5.73

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-11.qld

Last Altered: Monday, July 31, 2017 16:35:58 Pacific Daylight Time Printed: Monday, July 31, 2017 16:37:00 Pacific Daylight Time






MassLynx 4.1 SCN815

Page 3 of 4 Rev'd: MM 8/1/17

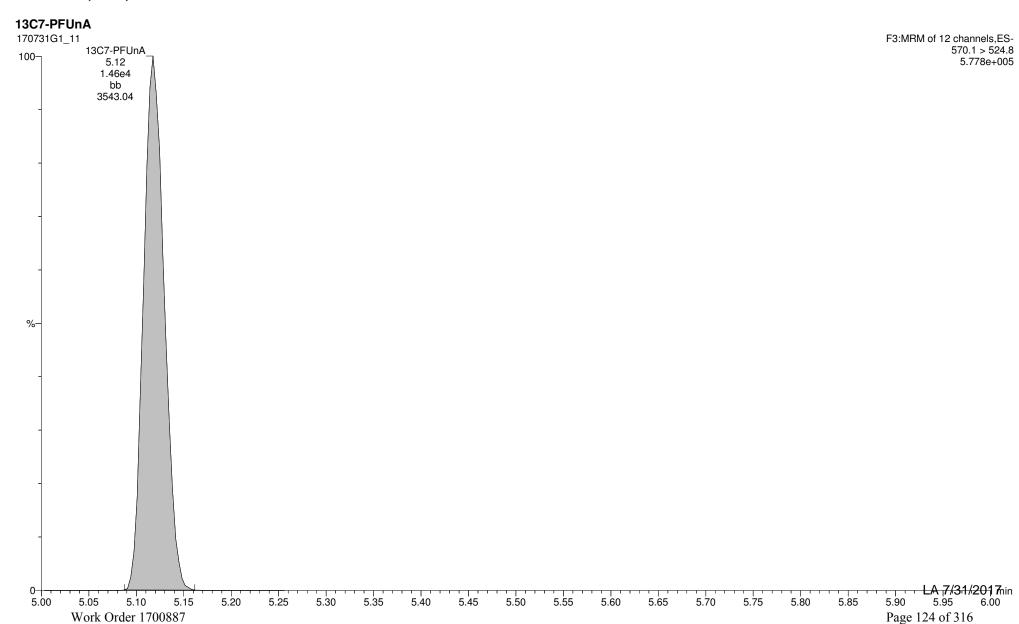
Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-11.gld

Last Altered: Monday, July 31, 2017 16:35:58 Pacific Daylight Time Printed: Monday, July 31, 2017 16:37:00 Pacific Daylight Time



MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1


**Quantify Sample Report** 

Page 4 of 4 Rev'd: MM 8/1/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-11.qld

Last Altered: Monday, July 31, 2017 16:35:58 Pacific Daylight Time Printed: Monday, July 31, 2017 16:37:00 Pacific Daylight Time

ID: 1700887-05 Building 110-GW-110GW01-20170712 0.1177, Description: Building 110-GW-110GW01-20170712, Name: 170731G1\_11, Date: 31-Jul-2017, Time: 15:57:16, Instrument: , Lab: , User:



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-16.qld

Last Altered: Monday, July 31, 2017 13:00:55 Pacific Daylight Time Printed: Monday, July 31, 2017 13:02:40 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

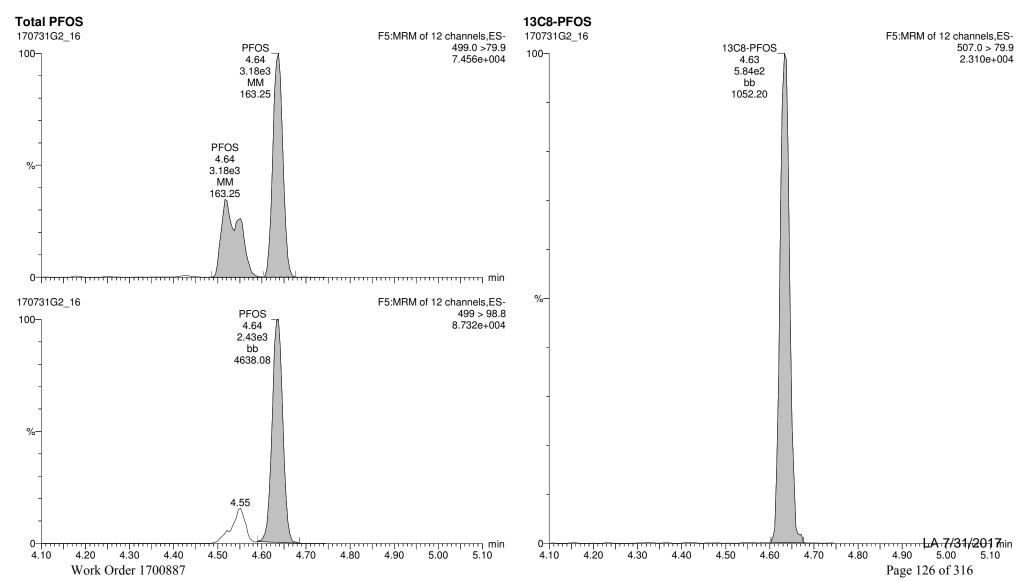
Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-05@5X Building 110-GW-110GW01-20170712, Description: Building 110-GW-110GW01-20170712, Name: 170731G2 16, Date: 31-Jul-2017, Time: 12:43:01

|   | # Name        | Trace        | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|---|---------------|--------------|-----------|---------|----------|--------|------|-------|------|
| 1 | 9 PFOS        | 499.0 >79.9  | 3.178e3   | 5.836e2 |          | 0.118  | 4.64 | 1230  |      |
| 2 | 20 13C8-PFOS  | 507.0 > 79.9 | 5.836e2   | 6.210e2 | 0.927    | 0.118  | 4.63 | 108   | 101  |
| 3 | 26 13C4-PFOS  | 503.0 > 79.9 | 6.210e2   | 6.210e2 | 1.000    | 0.118  | 4.64 | 106   | 100  |
| 4 | 31 Total PFOS | 499.0 >79.9  |           | 5.836e2 |          | 0.118  |      | 1230  |      |

MassLynx 4.1 SCN815

Page 1 of 2 Rev'd: MM 7/31/17


Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-16.ald

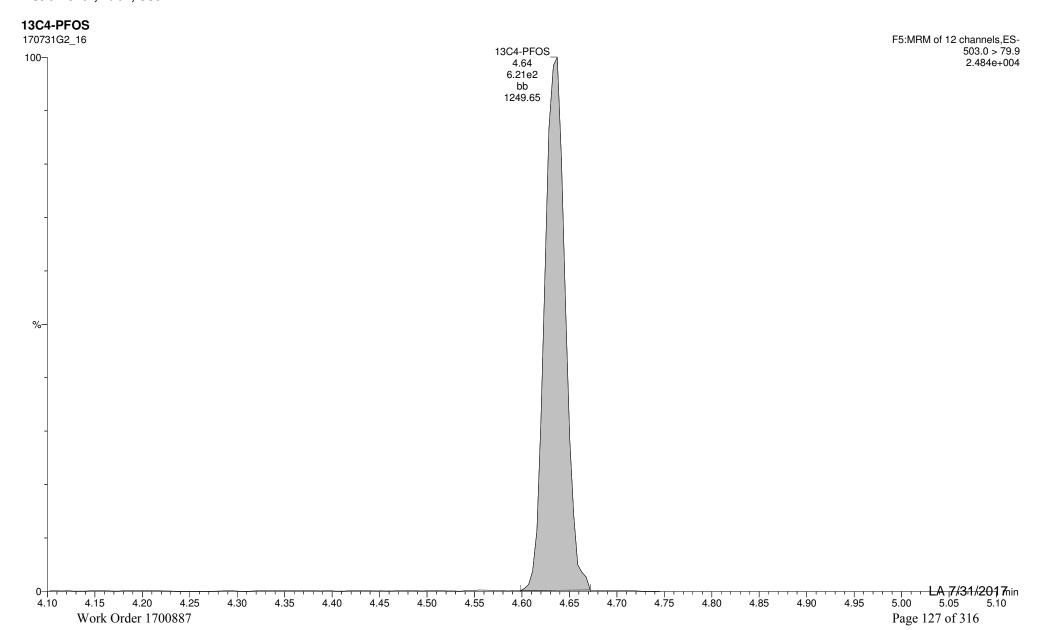
Last Altered: Monday, July 31, 2017 13:00:55 Pacific Daylight Time Printed: Monday, July 31, 2017 13:02:40 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS 14or16 2trans 0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18 VAL-PFC Q1 7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-05@5X Building 110-GW-110GW01-20170712, Description: Building 110-GW-110GW01-20170712, Name: 170731G2 16, Date: 31-Jul-2017, Time: 12:43:01, Instrument: , Lab: , User:




MassLynx 4.1 SCN815

Page 2 of 2 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-16.qld

Last Altered: Monday, July 31, 2017 13:00:55 Pacific Daylight Time Printed: Monday, July 31, 2017 13:02:40 Pacific Daylight Time

ID: 1700887-05@5X Building 110-GW-110GW01-20170712, Description: Building 110-GW-110GW01-20170712, Name: 170731G2\_16, Date: 31-Jul-2017, Time: 12:43:01, Instrument: , Lab: , User:



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-15.qld

Last Altered: Monday, July 31, 2017 12:59:17 Pacific Daylight Time Monday, July 31, 2017 12:59:37 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

|    | # Name         | Trace           | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|----------------|-----------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 3 PFBS         | 299.0 > 79.7    | 2.353e3   | 6.866e3 |          | 0.106  | 2.87 | 21.7  |      |
| 2  | 4 PFHxA        | 312.9 > 268.9   | 2.458e3   | 8.311e3 |          | 0.106  | 3.26 | 17.6  |      |
| 3  | 5 PFHpA        | 363 > 318.9     | 1.910e3   | 1.132e4 |          | 0.106  | 3.81 | 9.00  |      |
| 4  | 6 PFHxS        | 398.9 > 79.6    | 6.004e2   | 6.344e3 |          | 0.106  | 3.93 | 5.70  |      |
| 5  | 7 PFOA         | 413.0 > 368.7   | 3.252e3   | 2.345e4 |          | 0.106  | 4.23 | 19.4  |      |
| 6  | 8 PFNA         | 463.0 > 418.8   | 4.461e2   | 7.278e3 |          | 0.106  | 4.57 | 2.80  |      |
| 7  | 9 PFOS         | 499.0 >79.9     | 3.767e2   | 6.719e3 |          | 0.106  | 4.63 | 13.5  |      |
| 8  | 10 PFDA        | 512.7 > 219.0   | 2.658e1   | 7.957e3 |          | 0.106  | 4.86 | 0.681 |      |
| 9  | 12 13C3-PFBS   | 302.0 > 98.8    | 6.866e3   | 2.245e4 | 0.263    | 0.106  | 2.87 | 137   | 116  |
| 10 | 14 13C2-PFHxA  | 315.0 > 269.8   | 8.311e3   | 2.245e4 | 0.361    | 0.106  | 3.26 | 121   | 103  |
| 11 | 15 13C4-PFHpA  | 367.2 > 321.8   | 1.132e4   | 2.245e4 | 0.475    | 0.106  | 3.80 | 125   | 106  |
| 12 | 16 18O2-PFHxS  | 403 > 102.6     | 6.344e3   | 1.646e4 | 0.411    | 0.106  | 3.93 | 111   | 93.8 |
| 13 | 17 13C2-PFOA   | 414.9 > 369.7   | 2.345e4   | 8.254e3 | 2.843    | 0.106  | 4.23 | 118   | 99.9 |
| 14 | 18 13C5-PFNA   | 468.2 > 422.9   | 7.278e3   | 9.397e3 | 0.854    | 0.106  | 4.57 | 107   | 90.7 |
| 15 | 19 13C2-PFDA   | 514.8 > 469.7   | 7.957e3   | 5.253e3 | 1.742    | 0.106  | 4.86 | 103   | 87.0 |
| 16 | 20 13C8-PFOS   | 507.0 > 79.9    | 6.719e3   | 7.937e3 | 0.927    | 0.106  | 4.63 | 108   | 91.3 |
| 17 | 22 13C5-PFHxA  | 318>272.9       | 2.245e4   | 2.245e4 | 1.000    | 0.106  | 3.26 | 118   | 100  |
| 18 | 23 13C3-PFHxS  | 401.9 > 79.9    | 1.646e4   | 1.646e4 | 1.000    | 0.106  | 3.93 | 118   | 100  |
| 19 | 24 13C8-PFOA   | 421.3 > 376     | 8.254e3   | 8.254e3 | 1.000    | 0.106  | 4.22 | 118   | 100  |
| 20 | 25 13C9-PFNA   | 472.2 > 426.9   | 9.397e3   | 9.397e3 | 1.000    | 0.106  | 4.57 | 118   | 100  |
| 21 | 26 13C4-PFOS   | 503.0 > 79.9    | 7.937e3   | 7.937e3 | 1.000    | 0.106  | 4.63 | 118   | 100  |
| 22 | 27 13C6-PFDA   | 519.10 > 473.70 | 5.253e3   | 5.253e3 | 1.000    | 0.106  | 4.86 | 118   | 100  |
| 23 | 28 Total PFBS  | 299.0 > 79.7    |           | 6.866e3 |          | 0.106  |      | 21.7  |      |
| 24 | 29 Total PFHxS | 398.9 > 79.6    |           | 6.344e3 |          | 0.106  |      | 5.70  |      |
| 25 | 30 Total PFOA  | 413.0 > 368.7   |           | 2.345e4 |          | 0.106  |      | 20.6  |      |
| 26 | 31 Total PFOS  | 499.0 >79.9     |           | 6.719e3 |          | 0.106  |      | 13.5  |      |

# **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-15.qld

Last Altered: Monday, July 31, 2017 12:59:17 Pacific Daylight Time Printed: Monday, July 31, 2017 12:59:37 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700887-06 IRPSite 6-GW-06FD01-20170712 0.10593, Description: IRPSite 6-GW-06FD01-20170712, Name: 170731G2\_15, Date: 31-Jul-2017, Time: 12:30:29

### **Total PFBS**

|   | # Name | Trace        | RT   | Area     | IS Area  | Conc. |
|---|--------|--------------|------|----------|----------|-------|
| 1 | 3 PFBS | 299.0 > 79.7 | 2.87 | 2353.283 | 6865.844 | 21.7  |

## **Total PFHxS**

|   | # Name  | Trace        | RT   | Area    | IS Area  | Conc. |
|---|---------|--------------|------|---------|----------|-------|
| 1 | 6 PFHxS | 398.9 > 79.6 | 3.93 | 600.405 | 6344.049 | 5.7   |

### **Total PFOA**

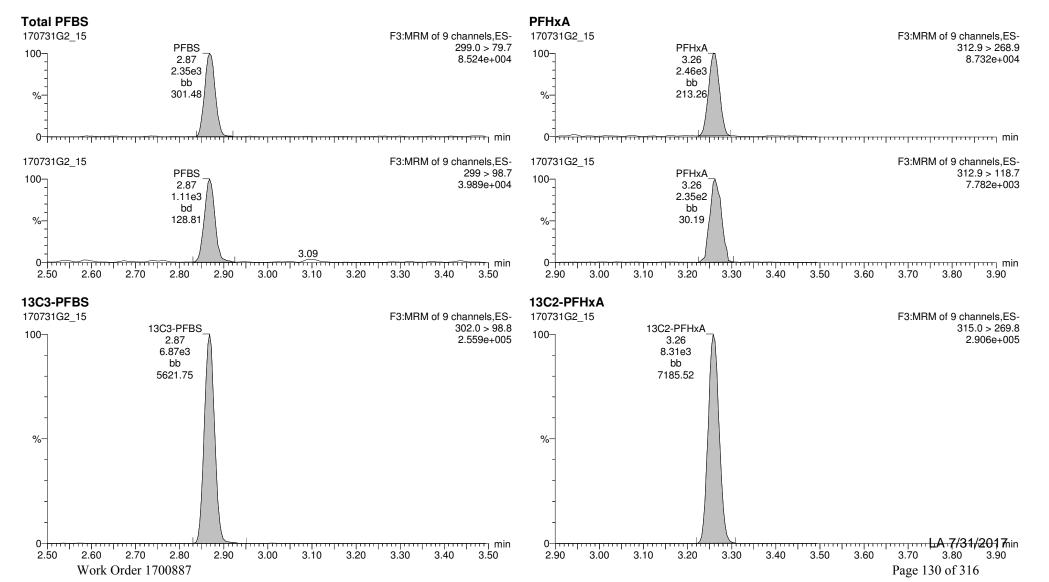
|   | # Name        | Trace         | RT   | Area     | IS Area   | Conc. |
|---|---------------|---------------|------|----------|-----------|-------|
| 1 | 30 Total PFOA | 413.0 > 368.7 | 4.12 | 359.528  | 23449.838 | 1.2   |
| 2 | 7 PFOA        | 413.0 > 368.7 | 4.23 | 3251.505 | 23449.838 | 19.4  |

### **Total PFOS**

|   | # Name | Trace       | RT   | Area    | IS Area  | Conc. |
|---|--------|-------------|------|---------|----------|-------|
| 1 | 9 PFOS | 499.0 >79.9 | 4.63 | 376.683 | 6718.627 | 13.5  |

Page 1 of 1 Rev'd: MM 7/31/17

Work Order 1700887

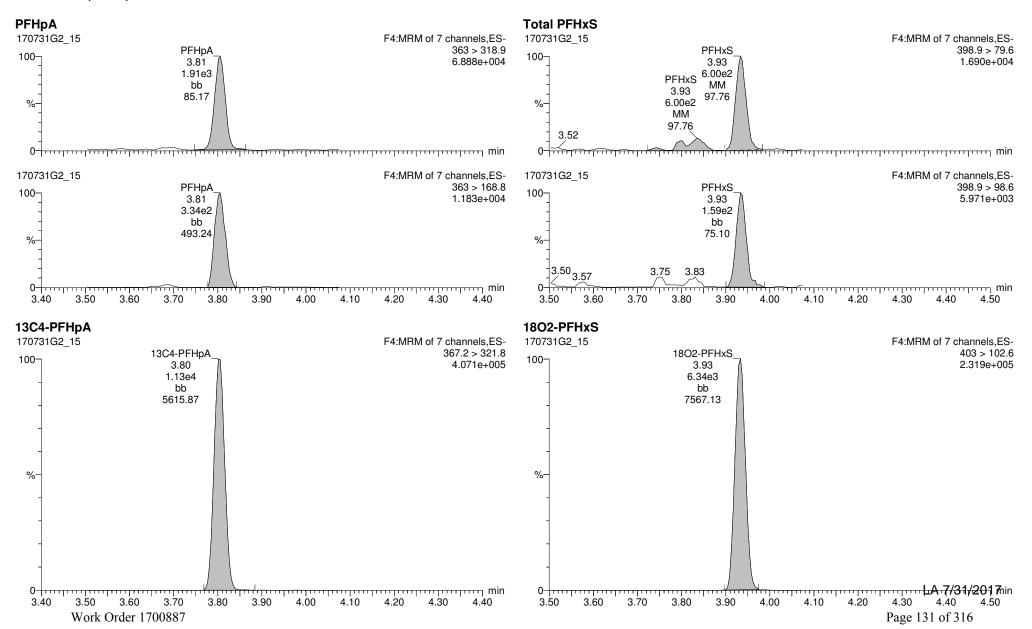

Page 1 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-15.qld

Last Altered: Monday, July 31, 2017 12:59:17 Pacific Daylight Time Printed: Monday, July 31, 2017 12:59:37 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS 14or16 2trans 0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18 VAL-PFC Q1 7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

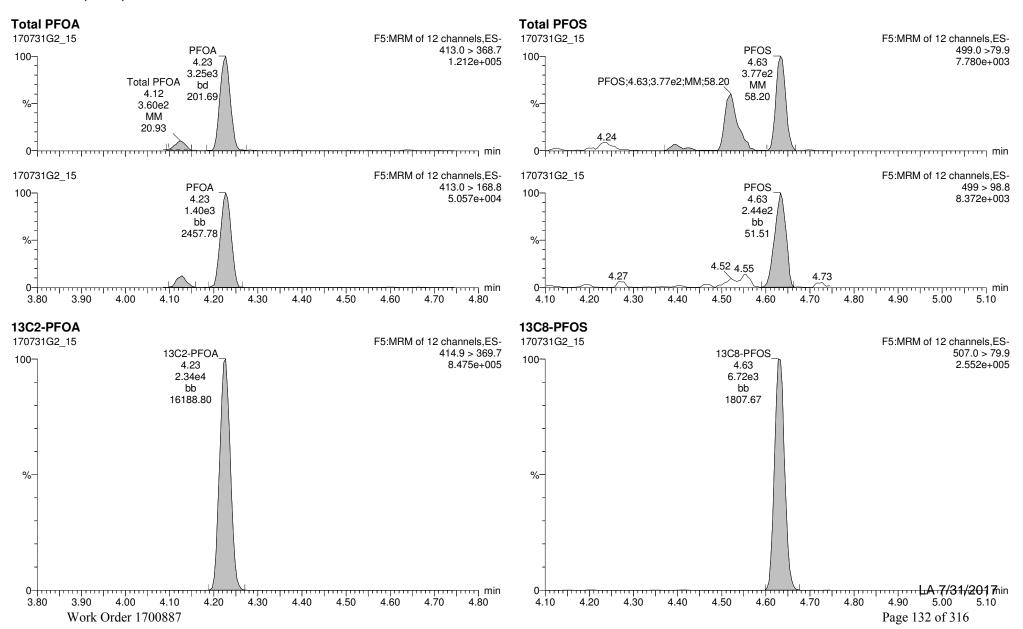



MassLynx 4.1 SCN815

Page 2 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-15.qld

Last Altered: Monday, July 31, 2017 12:59:17 Pacific Daylight Time Printed: Monday, July 31, 2017 12:59:37 Pacific Daylight Time

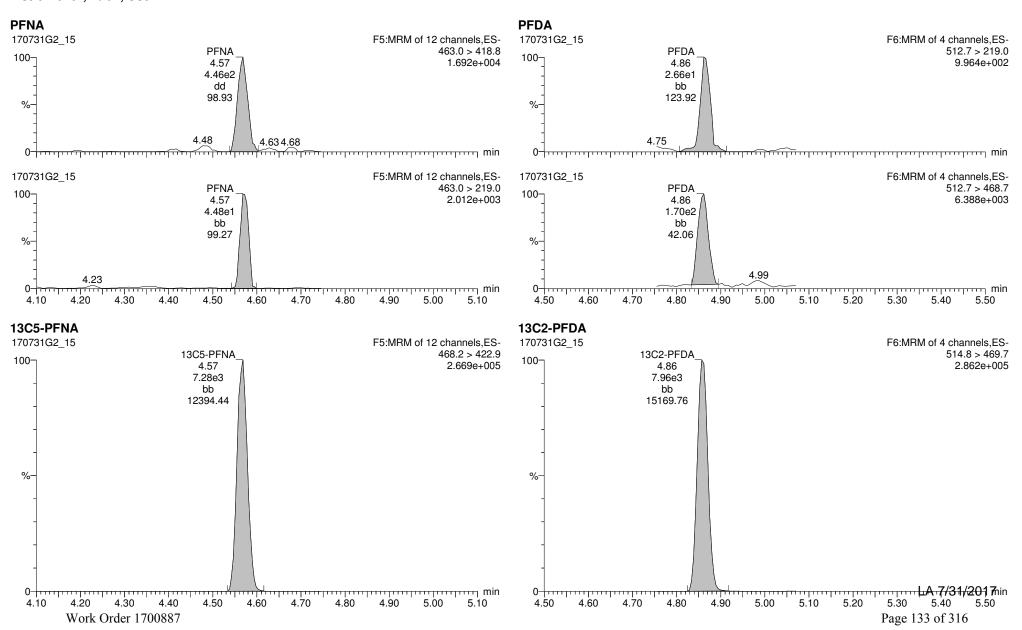



MassLynx 4.1 SCN815

Page 3 of 6 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-15.qld

Last Altered: Monday, July 31, 2017 12:59:17 Pacific Daylight Time Printed: Monday, July 31, 2017 12:59:37 Pacific Daylight Time

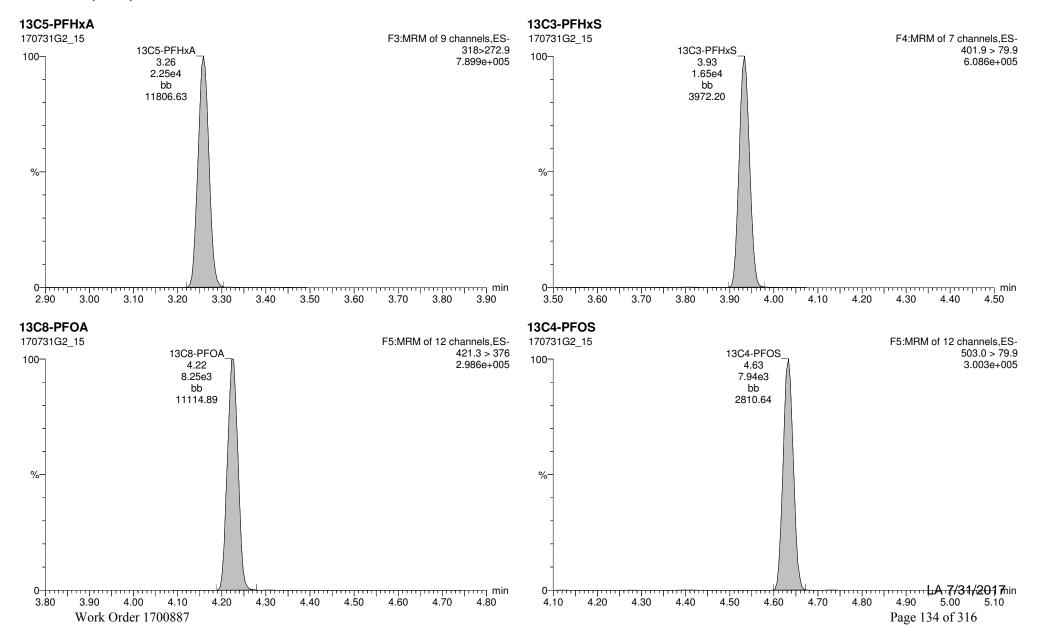



MassLynx 4.1 SCN815

Page 4 of 6 Rev'd: MM 7/31/17

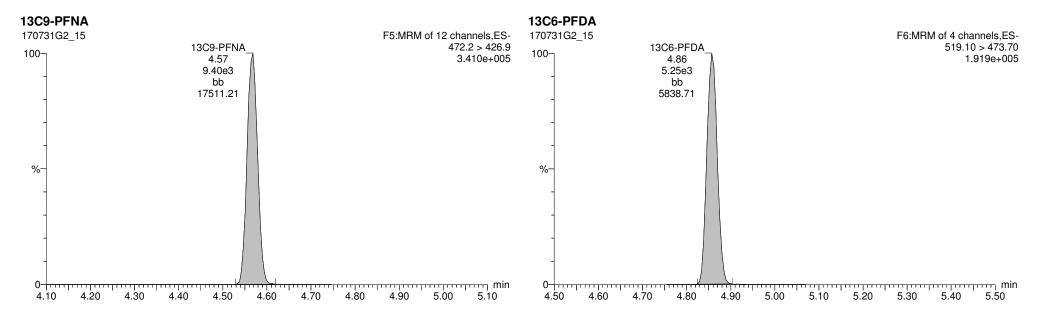
Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-15.qld

Last Altered: Monday, July 31, 2017 12:59:17 Pacific Daylight Time Printed: Monday, July 31, 2017 12:59:37 Pacific Daylight Time




MassLynx 4.1 SCN815

Page 5 of 6 Rev'd: MM 7/31/17


Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-15.qld

Last Altered: Monday, July 31, 2017 12:59:17 Pacific Daylight Time Printed: Monday, July 31, 2017 12:59:37 Pacific Daylight Time



Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-15.qld

Last Altered: Monday, July 31, 2017 12:59:17 Pacific Daylight Time Printed: Monday, July 31, 2017 12:59:37 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-12.qld

Last Altered: Monday, July 31, 2017 16:38:13 Pacific Daylight Time Printed: Monday, July 31, 2017 16:38:38 Pacific Daylight Time

 $Method: U: \G1.pro \MethDB \PFAS\_B\_2TRAN\_0714.mdb \ 14 \ Jul \ 2017 \ 15:36:03$ 

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-06 IRPSite 6-GW-06FD01-20170712 0.10593, Description: IRPSite 6-GW-06FD01-20170712, Name: 170731G1 12, Date: 31-Jul-2017, Time: 16:09:57

|    | # Name             | Trace         | Peak Area | IS Resp | RRF Mean | wt/vol | RT   | Conc. | %Rec |
|----|--------------------|---------------|-----------|---------|----------|--------|------|-------|------|
| 1  | 2 N-MeFOSAA        | 570.1 > 419.0 |           | 3.555e3 |          | 0.106  |      |       |      |
| 2  | 4 PFUnA            | 563 > 518.9   | 4.184e2   | 1.764e4 |          | 0.106  | 5.12 | 0.345 |      |
| 3  | 5 N-EtFOSAA        | 584.2 > 419.0 |           | 4.679e3 |          | 0.106  |      |       |      |
| 4  | 6 PFDoA            | 612.9 > 318.8 | 9.195e0   | 2.068e4 |          | 0.106  | 5.36 | 0.385 |      |
| 5  | 7 PFTrDA           | 662.9 > 618.9 |           | 0.000e0 |          | 0.106  |      |       |      |
| 6  | 8 PFTeDA           | 712.9 > 668.8 | 1.608e2   | 1.760e4 |          | 0.106  | 5.73 |       |      |
| 7  | 10 d3-N-MeFOSAA    | 573.3 > 419.0 | 3.555e3   | 1.738e4 | 0.026    | 0.106  | 4.99 | 915   | 59.7 |
| 8  | 11 13C2-PFUnA      | 565 > 519.8   | 1.764e4   | 1.738e4 | 1.471    | 0.106  | 5.12 | 81.4  | 69.0 |
| 9  | 12 d5-N-EtFOSAA    | 589.3 > 419.0 | 4.679e3   | 1.738e4 | 0.031    | 0.106  | 5.11 | 1020  | 66.6 |
| 10 | 13 13C2-PFDoA      | 615 > 569.7   | 2.068e4   | 1.738e4 | 1.887    | 0.106  | 5.36 | 74.4  | 63.1 |
| 11 | 14 13C2-PFTeDA     | 715 > 669.7   | 1.760e4   | 1.738e4 | 1.990    | 0.106  | 5.73 | 60.1  | 50.9 |
| 12 | 15 13C7-PFUnA      | 570.1 > 524.8 | 1.738e4   | 1.738e4 | 1.000    | 0.106  | 5.12 | 118   | 100  |
| 13 | 16 Total N-MeFOSAA | 570.1 > 419.0 |           | 3.555e3 |          | 0.106  |      |       |      |
| 14 | 17 Total N-EtFOSAA | 584.2 > 419.0 |           | 4.679e3 |          | 0.106  |      |       |      |

# **Quantify Totals Report MassLynx 4.1 SCN815**

Vista Analytical Laboratory Q1

Page 1 of 1 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-12.qld

Last Altered: Monday, July 31, 2017 16:38:13 Pacific Daylight Time Printed: Monday, July 31, 2017 16:38:38 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700887-06 IRPSite 6-GW-06FD01-20170712 0.10593, Description: IRPSite 6-GW-06FD01-20170712, Name: 170731G1\_12, Date: 31-Jul-2017, Time: 16:09:57

### **Total N-MeFOSAA**

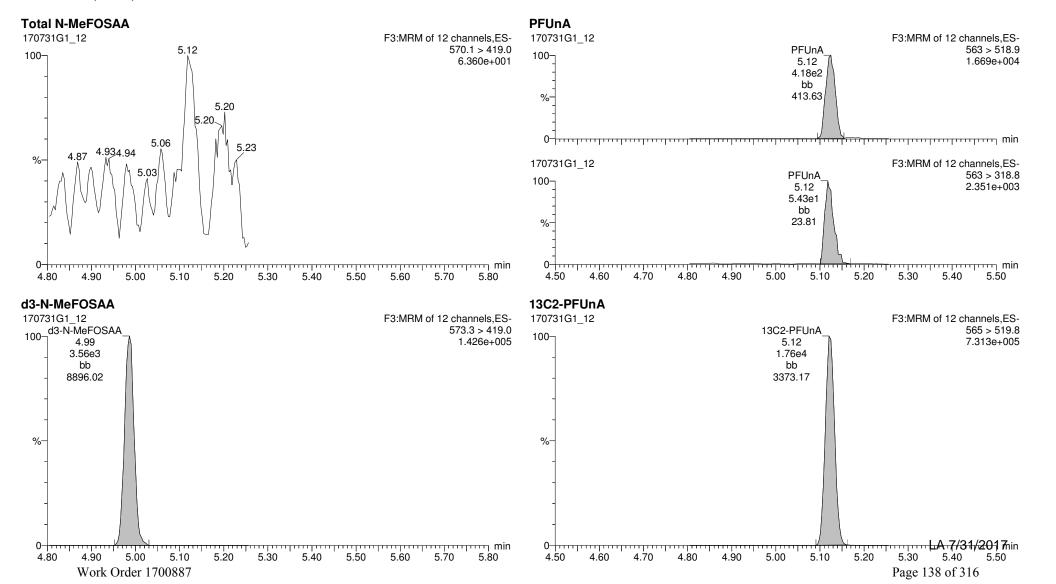
|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

### **Total N-EtFOSAA**

|   | # Name | Trace | RT | Area | IS Area | Conc. |
|---|--------|-------|----|------|---------|-------|
| 1 |        |       |    |      |         |       |

Work Order 1700887

MassLynx 4.1 SCN815

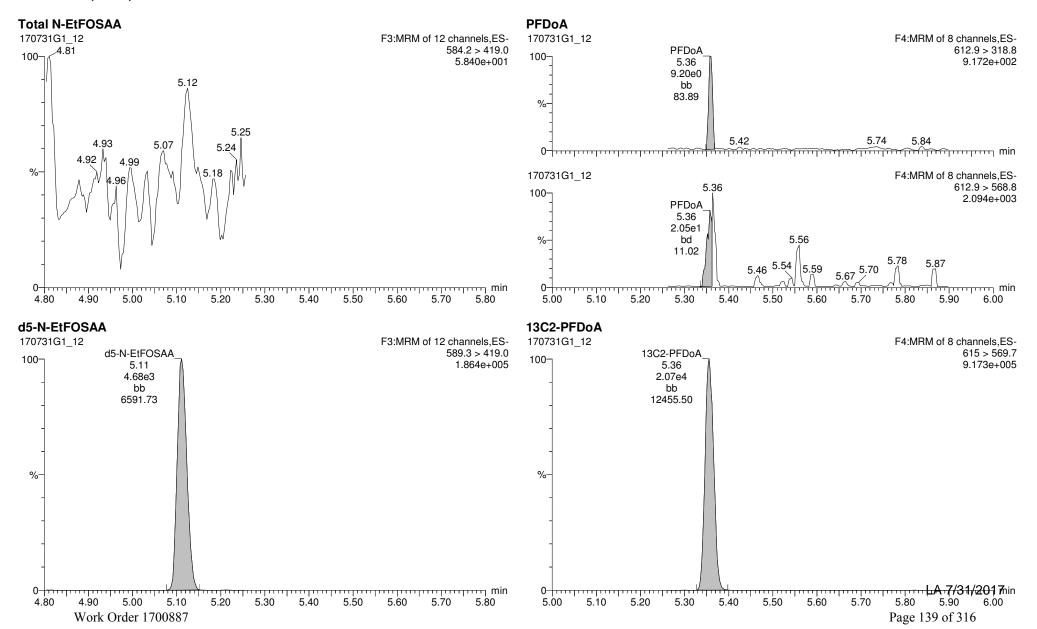

Page 1 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-12.gld

Last Altered: Monday, July 31, 2017 16:38:13 Pacific Daylight Time Printed: Monday, July 31, 2017 16:38:38 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

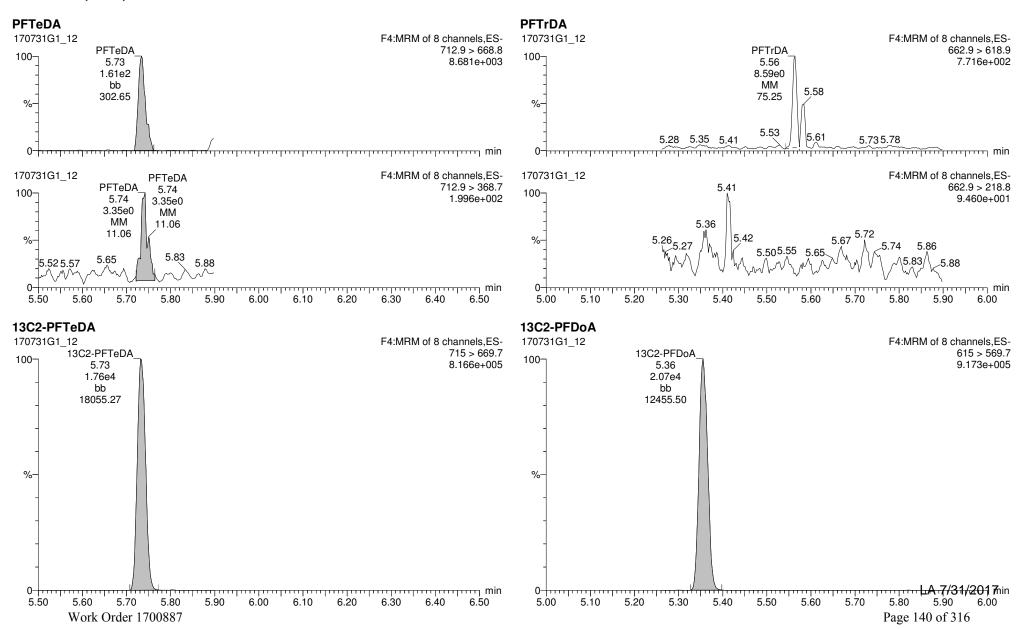



MassLynx 4.1 SCN815

Page 2 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-12.qld

Last Altered: Monday, July 31, 2017 16:38:13 Pacific Daylight Time Printed: Monday, July 31, 2017 16:38:38 Pacific Daylight Time




MassLynx 4.1 SCN815

Page 3 of 4 Rev'd: MM 7/31/17

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-12.gld

Last Altered: Monday, July 31, 2017 16:38:13 Pacific Daylight Time Printed: Monday, July 31, 2017 16:38:38 Pacific Daylight Time



MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1

Work Order 1700887

**Quantify Sample Report** 

Page 4 of 4 Rev'd: MM 7/31/17

Page 141 of 316

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-12.qld

Monday, July 31, 2017 16:38:13 Pacific Daylight Time Last Altered: Monday, July 31, 2017 16:38:38 Pacific Daylight Time Printed:

ID: 1700887-06 IRPSite 6-GW-06FD01-20170712 0.10593, Description: IRPSite 6-GW-06FD01-20170712, Name: 170731G1\_12, Date: 31-Jul-2017, Time: 16:09:57,



# CONTINUING CALIBRATION

Work Order 1700887 Page 142 of 316

MassLynx 4.1 SCN815

Page 1 of 1

Dataset:

U:\G1.PRO\Results\2017\170731G1\170731G1-2.qld

Last Altered:

Monday, July 31, 2017 14:37:21 Pacific Daylight Time

Printed:

Monday, July 31, 2017 14:39:02 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

Name: 170731G1\_2, Date: 31-Jul-2017, Time: 13:46:30, ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B

| # Name          | Trace         | Response | IS Resp | RRF   | Wt/Vol | RT   | Conc. | %Rec  |          |             |
|-----------------|---------------|----------|---------|-------|--------|------|-------|-------|----------|-------------|
| 1 PFOSA         | 498.1 > 77.7  | 1.28e3   | 2.20e4  | 3     | 1.000  | 4.61 | 0.479 | 95.9  | 70-130   |             |
| 2 N-MeFOSAA     | 570.1 > 419.0 | 4.90e2   | 6.46e3  |       | 1.000  | 4.99 | 0.419 | 83.7  | Ì        |             |
| 3 3 PFDS        | 598.8 > 98.7  | 6.36e2   | 2.91e4  |       | 1.000  | 5.15 | 0.636 | 127.1 |          |             |
| 4 PFUnA         | 563 > 518.9   | 1.88e3   | 2.91e4  |       | 1.000  | 5.12 | 0.572 | 114.4 |          |             |
| 5 N-EtFOSAA     | 584.2 > 419.0 | 2.71e2   | 8.21e3  |       | 1.000  | 5.12 | 0.366 | 73.2  | [        | Yeu 7/3/17  |
| 6 6 PFDoA       | 612.9 > 318.8 | 1.45e2   | 3.92e4  |       | 1.000  | 5.35 | 0.375 | 75.1  | Į.       | 140 7131113 |
| 7 7 PFTrDA      | 662.9 > 618.9 | 1.94e3   | 0.00e0  |       | 1.000  | 5.56 | 0.517 | 103.4 | 1        |             |
| 8 PFTeDA        | 712.9 > 668.8 | 2.22e3   | 4.01e4  |       | 1.000  | 5.73 | 0.595 | 118.9 | <b>V</b> |             |
| 9 9 13C8-PFOSA  | 506.1 > 77.7  | 2.20e4   | 2.13e4  | 1.146 | 1.000  | 4.61 | 11.2  | 90.0  | 50-150   |             |
| 10 d3-N-MeFOSAA | 573.3 > 419.0 | 6.46e3   | 2.13e4  | 0.026 | 1.000  | 4.98 | 144   | 88.5  |          |             |
| 11 13C2-PFUnA   | 565 > 519.8   | 2.91e4   | 2.13e4  | 1.471 | 1.000  | 5.12 | 11.6  | 93.0  | ·        |             |
| 12 d5-N-EtFOSAA | 589.3 > 419.0 | 8.21e3   | 2.13e4  | 0.031 | 1.000  | 5.11 | 155   | 95.3  |          |             |
| 13 13C2-PFDoA   | 615 > 569.7   | 3.92e4   | 2.13e4  | 1.887 | 1.000  | 5.35 | 12.2  | 97.5  |          |             |
| 14 13C2-PFTeDA  | 715 > 669.7   | 4.01e4   | 2.13e4  | 1.990 | 1.000  | 5.73 | 11.8  | 94.6  | ₩        |             |
| 15 13C7-PFUnA   | 570.1 > 524.8 | 2.13e4   | 2.13e4  | 1.000 | 1.000  | 5.12 | 12.5  | 100.0 |          |             |

Work Order 1700887 Page 143 of 316

**Quantify Compound Summary Report** 

MassLynx 4.1 SCN815

Page 1 of 1

Vista Analytical Laboratory VG-11

Dataset:

Untitled

Last Altered: Printed:

Monday, July 31, 2017 16:53:40 Pacific Daylight Time Monday, July 31, 2017 16:53:54 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

# Compound name: PFOSA

| A STATE OF THE STA | Name        | ID Specification                        | Acq.Date  | Acq.Time |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|-----------|----------|
| A secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170731G1_1  | IPA                                     | 31-Jul-17 | 13:33:35 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170731G1_2  | ST170731G1-1 PFC CS-1 17G3102           | 31-Jul-17 | 13:46:30 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170731G1_3  | IPA                                     | 31-Jul-17 | 13:59:06 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170731G1_4  | B7G0079-BS1 OPR 0.125                   | 31-Jul-17 | 14:11:43 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170731G1_5  | IPA                                     | 31-Jul-17 | 14:24:17 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170731G1_6  | B7G0079-BLK1 Method Blank 0.125         | 31-Jul-17 | 14:54:16 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170731G1_7  | 1700887-01 IRPSite 6-GW-06GW01-2017071  | 31-Jul-17 | 15:06:51 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170731G1_8  | 1700887-02 IRPSite 6-GW-06GW02-2017071  | 31-Jul-17 | 15:19:26 |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170731G1_9  | 1700887-03 IRPSite 6-GW-FRB01-20170712  | 31-Jul-17 | 15:32:02 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170731G1_10 | 1700887-04 Site 33-GW-33GW01-20170712   | 31-Jul-17 | 15:44:39 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170731G1_11 | 1700887-05 Building 110-GW-110GW01-2017 | 31-Jul-17 | 15:57:16 |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170731G1_12 | 1700887-06 IRPSite 6-GW-06FD01-20170712 | 31-Jul-17 | 16:09:57 |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170731G1_13 | IPA                                     | 31-Jul-17 | 16:22:30 |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170731G1_14 | ST170731G1-2 PFC CS3 17G3102            | 31-Jul-17 | 16:35:07 |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170731G1_15 |                                         |           |          |

Work Order 1700887

|                 | LC Ca               | libratio   | n Standard | ls Review Ch  | ecklist        | : _ Q        | 1                |                        |          |
|-----------------|---------------------|------------|------------|---------------|----------------|--------------|------------------|------------------------|----------|
|                 |                     |            | ION Ratio  | Concentration | C-Cals<br>Name | Sign<br>Date | Correct<br>I-Cal | Manual<br>Integrations | NA       |
| Calibration ID: | St170731G1 - 1      | EM H       | P<br>P     | Ø             | Z              |              |                  | Ø                      | P        |
| Calibration ID: | - 2                 | ∟(M)H<br>- | 4          |               |                | Ø            |                  | $\Box$                 | <b>₽</b> |
| Calibration ID: |                     | LMH<br>-   |            |               |                |              |                  |                        |          |
| Calibration ID: |                     | LMH<br>-   |            |               |                |              |                  |                        |          |
| Calibration ID: |                     | LMH        |            |               |                |              |                  |                        |          |
| Calibration ID: |                     | LMH<br>-   |            |               |                |              |                  |                        |          |
| Calibration ID: |                     | LMH<br>-   |            |               |                |              |                  |                        |          |
| Calibration ID: |                     | LMH<br>-   |            |               |                |              |                  |                        |          |
| Calibration ID: |                     | LMH<br>-   |            |               |                |              |                  |                        |          |
| Calibration ID: |                     | LMH<br>-   |            |               |                |              |                  |                        |          |
|                 |                     |            |            |               |                | Full Ma      | ıss Cal. D       | Pate: 4 5 17           |          |
| Run Log Present | t: 🛮                |            |            |               | ,              |              |                  |                        |          |
| # of Samples ne | r Sequence Checked: |            |            |               |                | Commo        | ents:            |                        |          |
| Reviewed By:    | Initials/Date       | E          |            |               |                | BL           | -14 -            | 217GNS                 |          |

Rev. Date: 06/06/2017

Rev. No.: 0

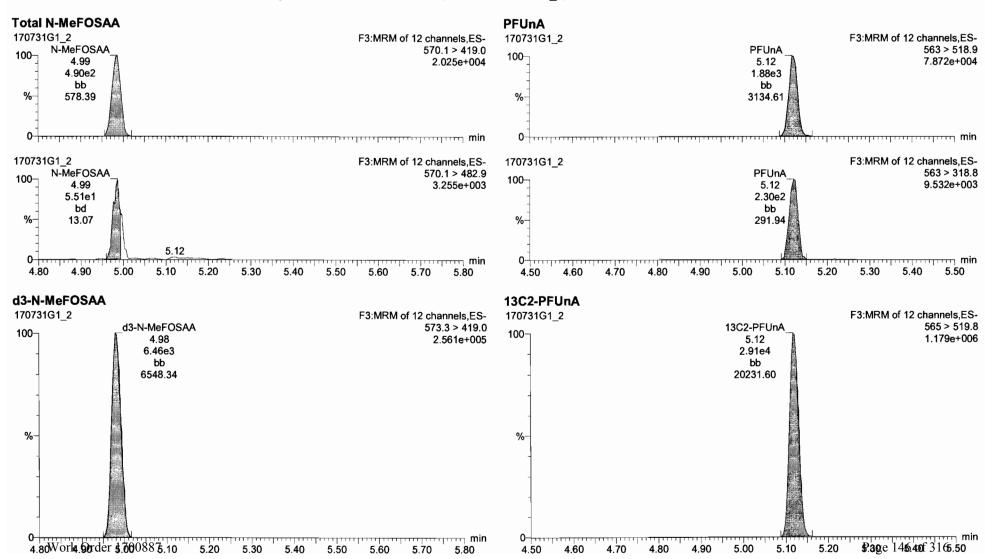
Page 145 of 31 of 1

**ID:** LR - LCSRC Work Order 1700887 **Quantify Sample Report** 

MassLynx 4.1 SCN815

Page 1 of 4

Vista Analytical Laboratory Q1


Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-2.qld

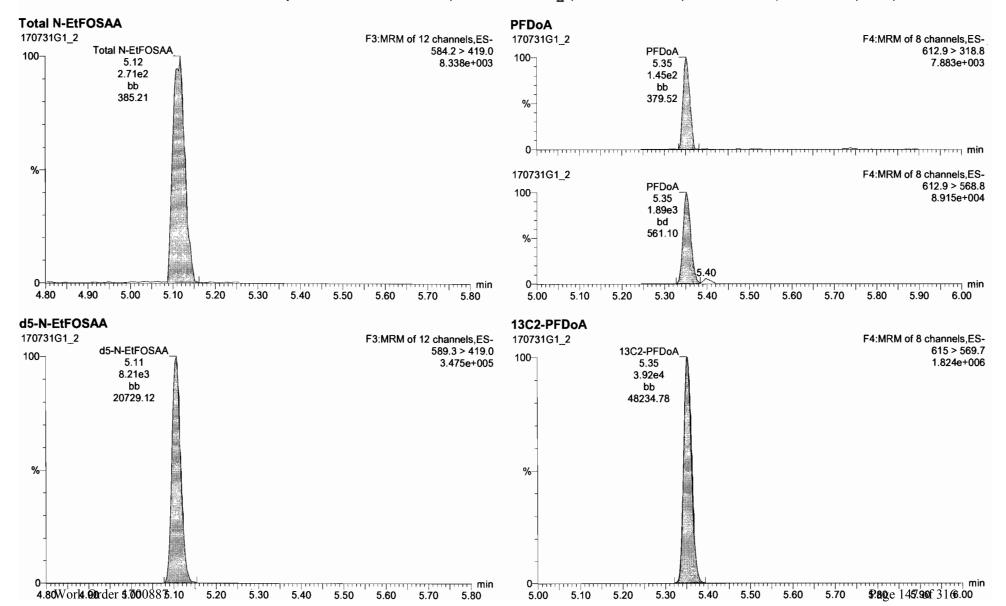
Last Altered: Monday, July 31, 2017 14:37:21 Pacific Daylight Time Printed: Monday, July 31, 2017 14:38:48 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B, Name: 170731G1\_2, Date: 31-Jul-2017, Time: 13:46:30, Instrument: , Lab: , User:




Page 2 of 4

Vista Analytical Laboratory Q1

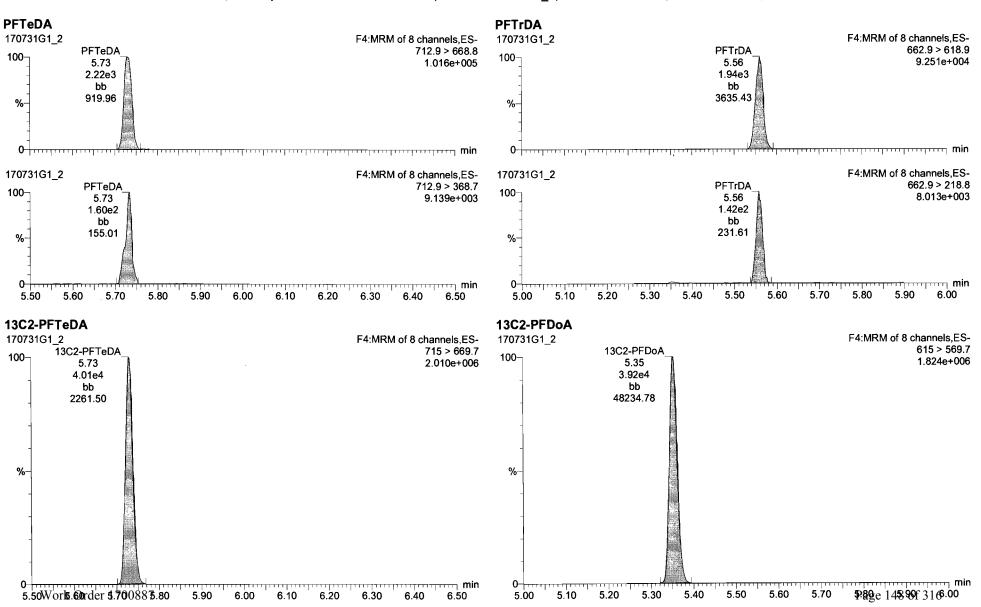
Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-2.qld

Last Altered: Monday, July 31, 2017 14:37:21 Pacific Daylight Time Printed: Monday, July 31, 2017 14:38:48 Pacific Daylight Time

# ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B, Name: 170731G1\_2, Date: 31-Jul-2017, Time: 13:46:30, Instrument: , Lab: , User:



Vista Analytical Laboratory Q1


Dataset:

U:\G1.PRO\Results\2017\170731G1\170731G1-2.qld

Last Altered: Printed:

Monday, July 31, 2017 14:37:21 Pacific Daylight Time Monday, July 31, 2017 14:38:48 Pacific Daylight Time

## ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B, Name: 170731G1 2, Date: 31-Jul-2017, Time: 13:46:30, Instrument: , Lab: , User:



**Quantify Sample Report** Page 4 of 4 MassLynx 4.1 SCN815 Vista Analytical Laboratory Q1 U:\G1.PRO\Results\2017\170731G1\170731G1-2.qld Dataset: Monday, July 31, 2017 14:37:21 Pacific Daylight Time Last Altered: Printed: Monday, July 31, 2017 14:38:48 Pacific Daylight Time ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B, Name: 170731G1\_2, Date: 31-Jul-2017, Time: 13:46:30, Instrument: , Lab: , User: 13C7-PFUnA 170731G1\_2 F3:MRM of 12 channels, ES-13C7-PFUnA 570.1 > 524.8 100-8.630e+005 5.12 2.13e4 bb 2701.10

519age 145995f 3166.00

5.80

5.70

5.65

5.75

5.85

0 5.00 Works Order 1700887 5.15

5.20

5.25

5.30

5.35

5.40

5.45

5.50

5.55

5.60

**Quantify Sample Summary Report** 

MassLynx 4.1 SCN815

Page 1 of 1

Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170731G1\170731G1-14.qld

Last Altered:

Monday, July 31, 2017 16:52:30 Pacific Daylight Time

Printed:

Monday, July 31, 2017 16:53:26 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

Name: 170731G1\_14, Date: 31-Jul-2017, Time: 16:35:07, ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B

|                      | # Name          | Trace         | Response | IS Resp | RRF   | Wt/Vol | ⊫ ,RT |      | %Rec  |                 |
|----------------------|-----------------|---------------|----------|---------|-------|--------|-------|------|-------|-----------------|
| 1                    | 1 PFOSA         | 498.1 > 77.7  | 2.05e4   | 2.00e4  |       | 1.000  | 4.61  | 10.4 | 103.8 | 70-130          |
| 2                    | 2 N-MeFOSAA     | 570.1 > 419.0 | 1.06e4   | 6.65e3  |       | 1.000  | 4.99  | 8.91 | 89.1  |                 |
| 3                    | 3 PFDS          | 598.8 > 98.7  | 1.10e4   | 2.77e4  |       | 1.000  | 5.15  | 10.8 | 107.8 | [1              |
| 4                    | 4 PFUnA         | 563 > 518.9   | 2.12e4   | 2.77e4  |       | 1.000  | 5.12  | 9.79 | 97.9  |                 |
| 5                    | 5 N-EtFOSAA     | 584.2 > 419.0 | 7.43e3   | 5.76e3  |       | 1.000  | 5.11  | 12.1 | 121.3 | []              |
| 6                    | 6 PFDoA         | 612.9 > 318.8 | 3.63e3   | 3.50e4  |       | 1.000  | 5.35  | 10.7 | 106.6 | \QU 7 31 17     |
| 7                    | 7 PFTrDA        | 662.9 > 618.9 | 3.48e4   | 0.00e0  |       | 1.000  | 5.56  | 9.63 | 96.3  |                 |
| 8                    | 8 PFTeDA        | 712.9 > 668.8 | 2.96e4   | 3.97e4  |       | 1.000  | 5.73  | 10.1 | 101.2 | ↓               |
| 9                    | 9 13C8-PFOSA    | 506.1 > 77.7  | 2.00e4   | 1.93e4  | 1.146 | 1.000  | 4.61  | 11.3 | 90.6  | 50-1 <b>5</b> 0 |
| 10                   | 10 d3-N-MeFOSAA | 573.3 > 419.0 | 6.65e3   | 1.93e4  | 0.026 | 1.000  | 4.98  | 163  | 100.5 |                 |
| 11                   | 11 13C2-PFUnA   | 565 > 519.8   | 2.77e4   | 1.93e4  | 1.471 | 1.000  | 5.12  | 12.2 | 97.8  |                 |
| 12                   | 12 d5-N-EtFOSAA | 589.3 > 419.0 | 5.76e3   | 1.93e4  | 0.031 | 1.000  | 5.11  | 120  | 73.9  |                 |
| 13                   | 13 13C2-PFDoA   | 615 > 569.7   | 3.50e4   | 1.93e4  | 1.887 | 1.000  | 5.35  | 12.0 | 96.1  |                 |
| 14 The Carlesian     | 14 13C2-PFTeDA  | 715 > 669.7   | 3.97e4   | 1.93e4  | 1.990 | 1.000  | 5.73  | 12.9 | 103.5 | <b>↓</b>        |
| 15 <sup>114444</sup> | 15 13C7-PFUnA   | 570.1 > 524.8 | 1.93e4   | 1.93e4  | 1.000 | 1.000  | 5.12  | 12.5 | 100.0 |                 |

Work Order 1700887

**Quantify Compound Summary Report** 

MassLynx 4.1 SCN815

Page 1 of 1

Vista Analytical Laboratory VG-11

Dataset:

Untitled

Last Altered:

Monday, July 31, 2017 16:53:40 Pacific Daylight Time

Printed: Monday, July 31, 2017 16:53:54 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

| Name           | ,ID                    |                        | ار cq.Date | Acq.Time |
|----------------|------------------------|------------------------|------------|----------|
| 170731G1_1     | I IPA                  | 3                      | 1-Jul-17   | 13:33:35 |
| 2170731G1_2    | ST170731G1-1 PFC       | CS-1 17G3102 3         | 1-Jul-17   | 13:46:30 |
| 3. 170731G1_3  | 3 IPA                  | 3                      | 1-Jul-17   | 13:59:06 |
| 4 3 170731G1_4 | B7G0079-BS1 OPR        | 0.125                  | 31-Jul-17  | 14:11:43 |
| 5 170731G1_    | 5 IPA                  | 3                      | 31-Jul-17  | 14:24:17 |
| 6 170731G1_0   | B7G0079-BLK1 Meth      | od Blank 0.125 3       | 31-Jul-17  | 14:54:16 |
| 7170731G1_1    | 7 1700887-01 IRPSite   | 6-GW-06GW01-2017071 3  | 31-Jul-17  | 15:06:51 |
| 8 170731G1_8   | 8 1700887-02 IRPSite   | 6-GW-06GW02-2017071 3  | 31-Jul-17  | 15:19:26 |
| 9 170731G1_9   | 9 1700887-03 IRPSite   | 6-GW-FRB01-20170712 3  | 31-Jul-17  | 15:32:02 |
| 10 170731G1_   | 10 1700887-04 Site 33- | GW-33GW01-20170712 3   | 31-Jul-17  | 15:44:39 |
| 170731G1_      | 11 1700887-05 Building | 110-GW-110GW01-2017 3  | 31-Jul-17  | 15:57:16 |
| 170731G1_      | 12 1700887-06 IRPSite  | 6-GW-06FD01-20170712 3 | 31-Jul-17  | 16:09:57 |
| 13 170731G1_   | 13 IPA                 | 3                      | 31-Jul-17  | 16:22:30 |
| 170731G1_      | 14 ST170731G1-2 PFC    | CS3 17G3102            | 31-Jul-17  | 16:35:07 |
| 15 170731G1_   | 15                     |                        |            |          |

Work Order 1700887

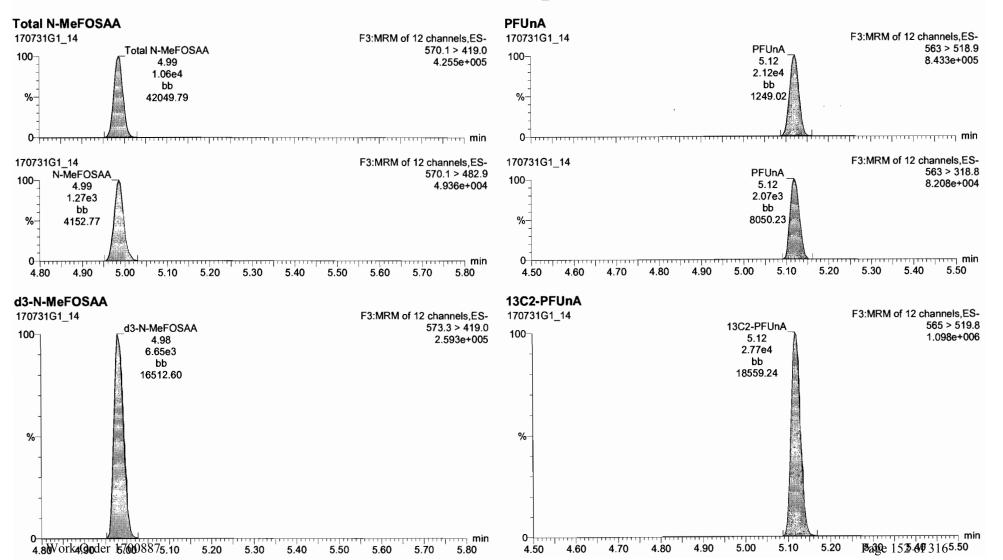
Page 1 of 4

Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170731G1\170731G1-14.qid

Last Altered:

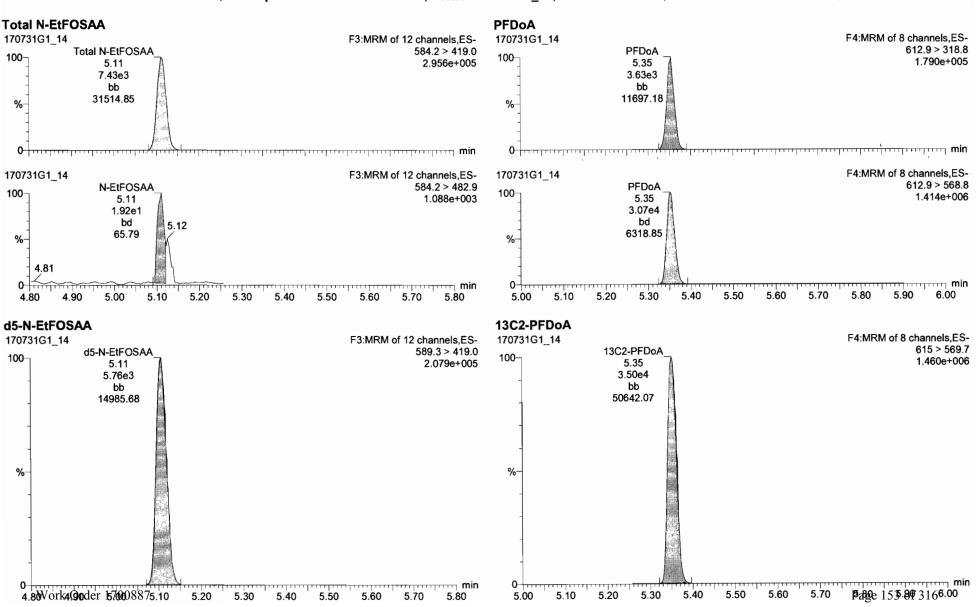

Monday, July 31, 2017 16:52:30 Pacific Daylight Time

Printed: Monday, July 31, 2017 16:53:16 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G1\_14, Date: 31-Jul-2017, Time: 16:35:07, Instrument: , Lab: , User:




Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-14.qld

Last Altered: Monday, July 31, 2017 16:52:30 Pacific Daylight Time Printed: Monday, July 31, 2017 16:53:16 Pacific Daylight Time

# ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G1\_14, Date: 31-Jul-2017, Time: 16:35:07, Instrument: , Lab: , User:



**Quantify Sample Report** MassLynx 4.1 SCN815 Page 3 of 4 Vista Analytical Laboratory Q1 U:\G1.PRO\Results\2017\170731G1\170731G1-14.qld Dataset: Last Altered: Monday, July 31, 2017 16:52:30 Pacific Daylight Time Printed: Monday, July 31, 2017 16:53:16 Pacific Daylight Time ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G1\_14, Date: 31-Jul-2017, Time: 16:35:07, Instrument: , Lab: , User: **PFTeDA PFTrDA** F4:MRM of 8 channels, ES-170731G1\_14 170731G1\_14 F4:MRM of 8 channels.ES-**PFTrDA** 662.9 > 618.9 PFTeDA 712.9 > 668.8 100-100-5.56 1.697e+006 1.413e+006 5.73 2.96e4 3.48e4 bb ďb 10222.93 10513.61 %-F4:MRM of 8 channels, ES-170731G1\_14 F4:MRM of 8 channels, ES-170731G1 14 662.9 > 218.8 PFTrDA PFTeDA 712.9 > 368.7 100 100-1.136e+005 5.56 1.210e+005 5.73 2.36e3 2.67e3 bb bb 8540.36 6102.61 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10 5.10 5.20 5.50 5.60 5.70 5.80 5.90 6.00 6.20 6.30 6.40 5.00 13C2-PFTeDA 13C2-PFDoA F4:MRM of 8 channels, ES-170731G1\_14 F4:MRM of 8 channels, ES-170731G1\_14 13C2-PFDoA 615 > 569.7 13C2-PFTeDA 715 > 669.7 100-100-1.460e+006 1.961e+006 5.35 5.73 3.97e4 3.50e4 bb bb 50642.07 12786.51 %-% 5.50 Works Gorder \$7,0008875.80 5.40 5.50 5.60 5.70 P& 154.90 3166.00

6.50

5.00

6.40

5.90

6.00

6.10

6.20

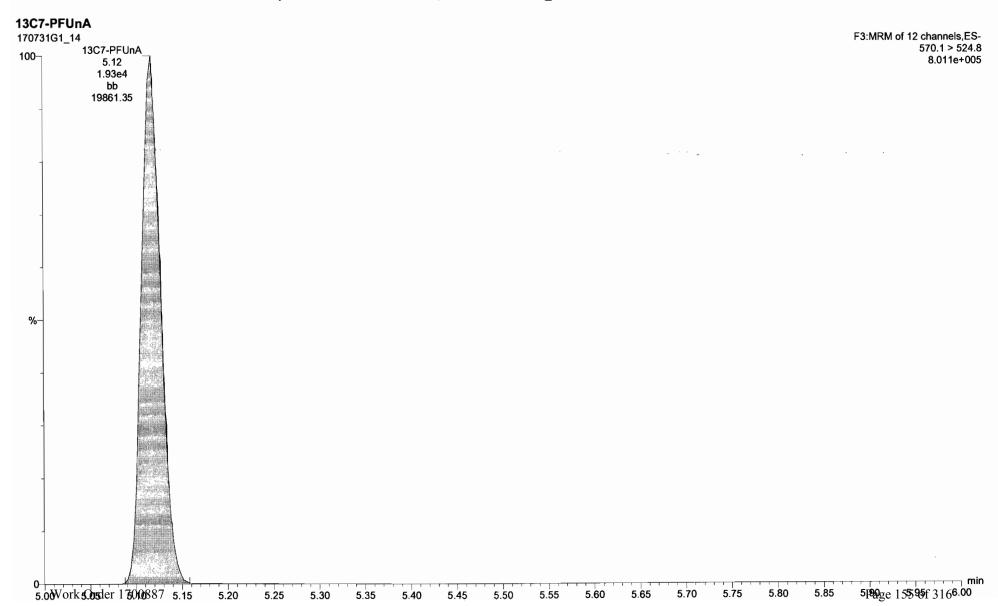
6.30

5.20

5.10

5.30

Vista Analytical Laboratory Q1


Dataset:

U:\G1.PRO\Results\2017\170731G1\170731G1-14.qld

Last Altered: Printed:

Monday, July 31, 2017 16:52:30 Pacific Daylight Time Monday, July 31, 2017 16:53:16 Pacific Daylight Time

ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G1\_14, Date: 31-Jul-2017, Time: 16:35:07, Instrument: , Lab: , User:



Page 1 of 1

Dataset:

U:\G1.PRO\Results\2017\170731G2\170731G2-4.qld

Last Altered:

Monday, July 31, 2017 10:38:20 Pacific Daylight Time

Printed:

Monday, July 31, 2017 16:59:08 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

Name: 170731G2\_4, Date: 31-Jul-2017, Time: 10:12:39, ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A

| # Name        | Trace         | Response | IS Resp | RRF         | Wt/Vol | RT   | Conc  | %Rec  |        |     |
|---------------|---------------|----------|---------|-------------|--------|------|-------|-------|--------|-----|
| 1 PFBA        | 212.9 > 168.9 | 2.04e3   | 2.71e4  | Vinda Vinda | 1.000  | 1.72 | 1.20  |       | 70-130 |     |
| 2 PFPeA       | 263.0 > 218.8 | 9.76e2   | 1.04e4  |             | 1.000  | 2.61 | 1.02  | 102.1 |        |     |
| 3 PFBS        | 299.0 > 79.7  | 1.05e3   | 6.54e3  |             | 1.000  | 2.88 | 0.876 | 87.6  |        |     |
| 4 PFHxA       | 312.9 > 268.9 | 1.47e3   | 8.61e3  |             | 1.000  | 3.27 | 1.04  | 104.2 |        |     |
| 5 PFHpA       | 363 > 318.9   | 2.10e3   | 1.12e4  |             | 1.000  | 3.81 | 1.07  | 107.2 |        | (m  |
| 6 PFHxS       | 398.9 > 79.6  | 1.01e3   | 6.09e3  |             | 1.000  | 3.94 | 1.10  | 110.0 |        | You |
| 7 PFOA        | 413.0 > 368.7 | 2.05e3   | 2.27e4  |             | 1.000  | 4.23 | 1.30  | 129.6 |        | ,   |
| 8 PFNA        | 463.0 > 418.8 | 1.88e3   | 1.07e4  |             | 1.000  | 4.57 | 0.914 | 91.4  |        |     |
| 9 PFOS        | 499.0 >79.9   | 3.63e2   | 1.03e4  |             | 1.000  | 4.63 | 0.872 | 87.2  |        |     |
| 10 PFDA       | 512.7 > 219.0 | 2.82e2   | 1.41e4  |             | 1.000  | 4.86 | 1.13  | 112.7 |        |     |
| 11 13C3-PFBA  | 215.9 > 171.8 | 2.71e4   | 2.54e4  | 1.183       | 1.000  | 1.71 | 11.3  | 90.3  | 50-150 |     |
| 12 13C3-PFBS  | 302.0 > 98.8  | 6.54e3   | 2.35e4  | 0.263       | 1.000  | 2.88 | 13.2  | 105.7 | 1      |     |
| 13 13C3-PFPeA | 266.0 > 221.8 | 1.04e4   | 2.35e4  | 0.446       | 1.000  | 2.61 | 12.4  | 99.0  |        |     |
| 14 13C2-PFHxA | 315.0 > 269.8 | 8.61e3   | 2.35e4  | 0.361       | 1.000  | 3.27 | 12.7  | 101.4 |        |     |
| 15 13C4-PFHpA | 367.2 > 321.8 | 1.12e4   | 2.35e4  | 0.475       | 1.000  | 3.81 | 12.5  | 100.0 | ľ      |     |
| 16 18O2-PFHxS | 403 > 102.6   | 6.09e3   | 1.57e4  | 0.411       | 1.000  | 3.93 | 11.8  | 94.4  |        |     |
| 17 13C2-PFOA  | 414.9 > 369.7 | 2.27e4   | 8.50e3  | 2.843       | 1.000  | 4.23 | 11.7  | 94.0  |        |     |
| 18 13C5-PFNA  | 468.2 > 422.9 | 1.07e4   | 1.23e4  | 0.854       | 1.000  | 4.57 | 12.7  | 101.9 |        |     |
| 19 13C2-PFDA  | 514.8 > 469.7 | 1.41e4   | 9.51e3  | 1.742       | 1.000  | 4.86 | 10.6  | 84.8  |        |     |
| 20 13C8-PFOS  | 507.0 > 79.9  | 1.03e4   | 1.14e4  | 0.927       | 1.000  | 4.63 | 12.2  | 97.6  | l      |     |
| 21 13C4-PFBA  | 216.9 > 171.8 | 2.54e4   | 2.54e4  | 1.000       | 1.000  | 1.71 | 12.5  | 100.0 |        |     |
| 22 13C5-PFHxA | 318>272.9     | 2.35e4   | 2.35e4  | 1.000       | 1.000  | 3.27 | 12.5  | 100.0 |        |     |
| 23 13C3-PFHxS | 401.9 > 79.9  | 1.57e4   | 1.57e4  | 1.000       | 1.000  | 3.93 | 12.5  | 100.0 |        |     |
| 24 13C8-PFOA  | 421.3 > 376   | 8.50e3   | 8.50e3  | 1.000       | 1.000  | 4.22 | 12.5  | 100.0 |        |     |
| 25 13C9-PFNA  | 472.2 > 426.9 | 1.23e4   | 1.23e4  | 1.000       | 1.000  | 4.57 | 12.5  | 100.0 |        |     |
| 26 13C4-PFOS  | 503.0 > 79.9  | 1.14e4   | 1.14e4  | 1.000       | 1.000  | 4.63 | 12.5  | 100.0 |        |     |
| 27 13C6-PFDA  | 519.10 > 47   | 9.51e3   | 9.51e3  | 1.000       | 1.000  | 4.86 | 12.5  | 100.0 |        |     |

Work Order 1700887 Page 156 of 316

**Quantify Compound Summary Report** 

Vista Analytical Laboratory VG-11

Dataset:

Untitled

Last Altered: Printed: Monday, July 31, 2017 17:00:48 Pacific Daylight Time Monday, July 31, 2017 17:00:55 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

MassLynx 4.1 SCN815

# Compound name: PFBA

|       | Name        | ID                                      | Acq.Date  | Acq.Time |
|-------|-------------|-----------------------------------------|-----------|----------|
| 1     | 170731G2_1  | IPA                                     | 31-Jul-17 | 09:32:17 |
| 2     | 170731G2_2  | ST170731G2-1 PFC CS-1 17G3103           | 31-Jul-17 | 09:44:30 |
| 3     | 170731G2_3  | IPA                                     | 31-Jul-17 | 09:57:00 |
| 4     | 170731G2_4  | ST170731G2-2 PFC CS0 17G2609            | 31-Jul-17 | 10:12:39 |
| 5     | 170731G2_5  | IPA                                     | 31-Jul-17 | 10:24:52 |
| 6     | 170731G2_6  | B7G0079-BS1 OPR 0.125                   | 31-Jul-17 | 10:37:29 |
| 7.000 | 170731G2_7  | IPA                                     | 31-Jul-17 | 10:50:03 |
| 8     | 170731G2_8  | B7G0079-BLK1 Method Blank 0.125         | 31-Jul-17 | 11:02:39 |
| 9     | 170731G2_9  | 1700887-01 IRPSite 6-GW-06GW01-2017071  | 31-Jul-17 | 11:15:11 |
| 10    | 170731G2_10 | 1700887-02 IRPSite 6-GW-06GW02-2017071  | 31-Jul-17 | 11:27:45 |
| 11    | 170731G2_11 | 1700887-03 IRPSite 6-GW-FRB01-20170712  | 31-Jul-17 | 11:40:15 |
| 12    | 170731G2_12 | 1700887-04 Site 33-GW-33GW01-20170712   | 31-Jul-17 | 11:52:47 |
| 13    | 170731G2_13 | 1700887-05 Building 110-GW-110GW01-2017 | 31-Jul-17 | 12:05:21 |
| 14    | 170731G2_14 | IPA                                     | 31-Jul-17 | 12:17:54 |
| 15    | 170731G2_15 | 1700887-06 IRPSite 6-GW-06FD01-20170712 | 31-Jul-17 | 12:30:29 |
| 16    | 170731G2_16 | 1700887-05@5X Building 110-GW-110GW01   | 31-Jul-17 | 12:43:01 |
| 17    | 170731G2_17 | IPA                                     | 31-Jul-17 | 12:55:34 |
| 18    | 170731G2_18 | ST170731G2-3 PFC CS3 17G3104            | 31-Jul-17 | 13:08:18 |
| 19    | 170731G2_19 | IPA                                     | 31-Jul-17 | 13:20:57 |

@INJECTION NOT USED. KON 7/3/17

Work Order 1700887

## LC Calibration Standards Review Checklist Manual **C-Cals** Sign Correct NA **ION Ratio** Integrations Concentration Name **Date** I-Cal 7 (L)M H **Calibration ID:** ST17073162 - 2 7 7 7 L(M)H **1** 7 **Calibration ID:** LMH П **Calibration ID:** Full Mass Cal. Date: 4517 $\square$ **Run Log Present: Comments:** # of Samples per Sequence Checked: A LIG- 2Trans Reviewed By: Initials/Date

Work Order 1700887

Rev. No.: 0

Rev. Date: 06/06/2017

Page 158 of 316 1

**Quantify Sample Report** 

MassLynx 4.1 SCN815

Page 1 of 6

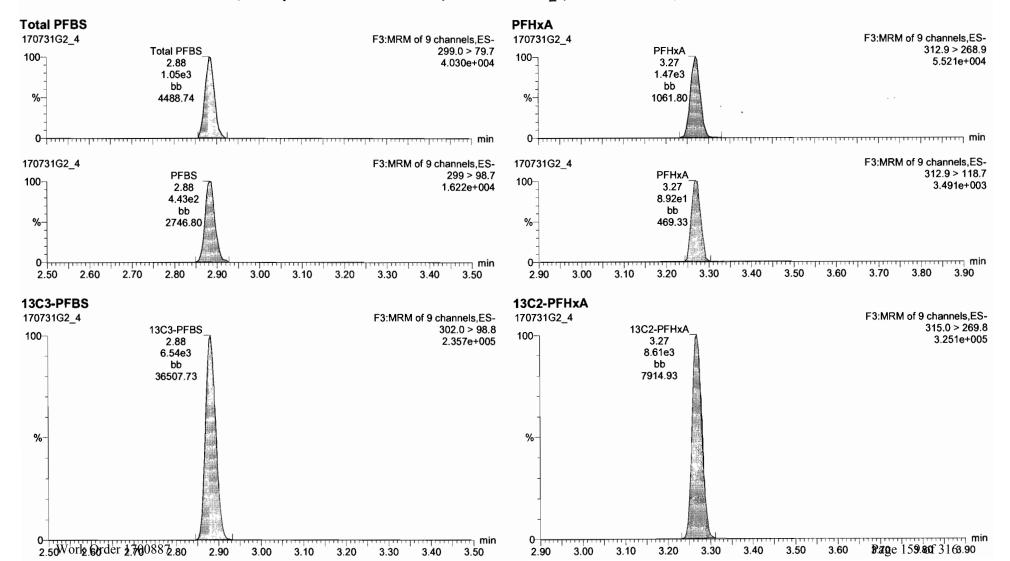
Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170731G2\170731G2-4.qld

Last Altered:

Monday, July 31, 2017 10:38:20 Pacific Daylight Time


Printed:

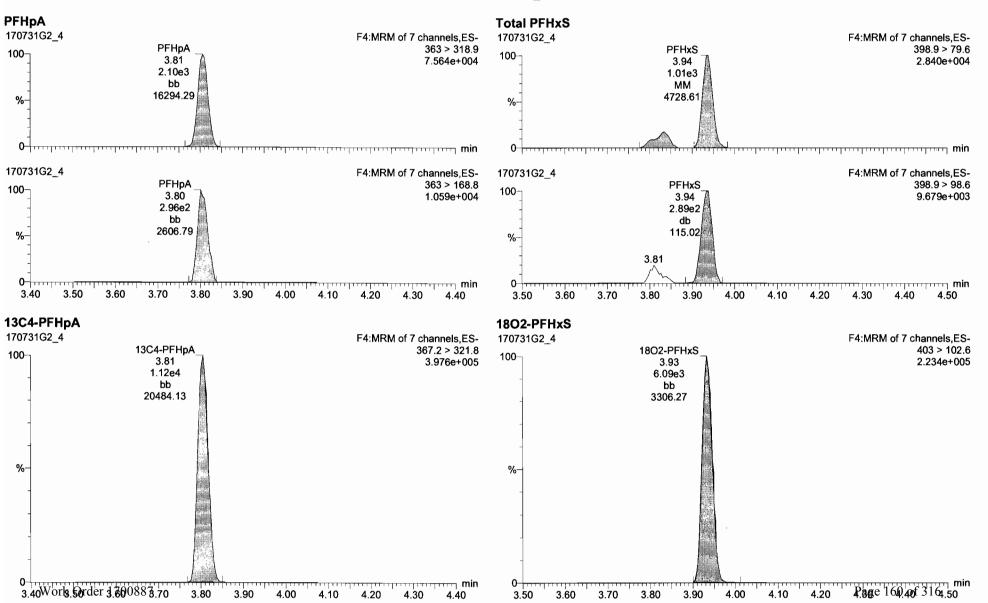
Monday, July 31, 2017 16:58:40 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A, Name: 170731G2 4, Date: 31-Jul-2017, Time: 10:12:39, Instrument: , Lab: , User:




Dataset:

U:\G1.PRO\Results\2017\170731G2\170731G2-4.qld

Last Altered: Printed:

Monday, July 31, 2017 10:38:20 Pacific Daylight Time

inted: Monday, July 31, 2017 16:58:40 Pacific Daylight Time



**Quantify Sample Report** MassLynx 4.1 SCN815 Page 3 of 6 Vista Analytical Laboratory Q1 U:\G1.PRO\Results\2017\170731G2\170731G2-4.qld Dataset: Last Altered: Monday, July 31, 2017 10:38:20 Pacific Daylight Time Printed: Monday, July 31, 2017 16:58:40 Pacific Daylight Time ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A, Name: 170731G2\_4, Date: 31-Jul-2017, Time: 10:12:39, Instrument: , Lab: , User: **Total PFOA Total PFOS** 170731G2 4 F5:MRM of 12 channels.ES-170731G2 4 F5:MRM of 12 channels, ES-Total PFOA **PFOS** 413.0 > 368.7 499.0 > 79.9 100-100-4.23 7.536e+004 4.63 1.144e+004 2.05e3 3.63e2 bb MM 240.64 2145.41 PFOS;4.63;3.63e2;MM;2145.41 4.59 170731G2 4 F5:MRM of 12 channels, ES-170731G2\_4 F5:MRM of 12 channels, ES-**PFOA** 413.0 > 168.8 **PFOS** 499 > 98.8 100-100-4.23 1.405e+004 3.070e+004 4.63 9.06e2 3.77e2 bb bb 3560.03 88.56 %-4.55 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 4.70 4.80 13C2-PFOA **13C8-PFOS** 170731G2 4 170731G2 4 F5:MRM of 12 channels, ES-F5:MRM of 12 channels.ES-13C2-PFOA 414.9 > 369.7 13C8-PFOS 507.0 > 79.9 100-100-3.803e+005 4.23 8.247e+005 4.63 2.27e4 1.03e4 MM bb 5127.79 9953.77 %-

Page 16d.00 f 3165.10

4.80

4.70

3.80Works.90rder 4.7000887.10

4.20

4.30

4.40

4.50

4.60

4.70

4.80

4.10

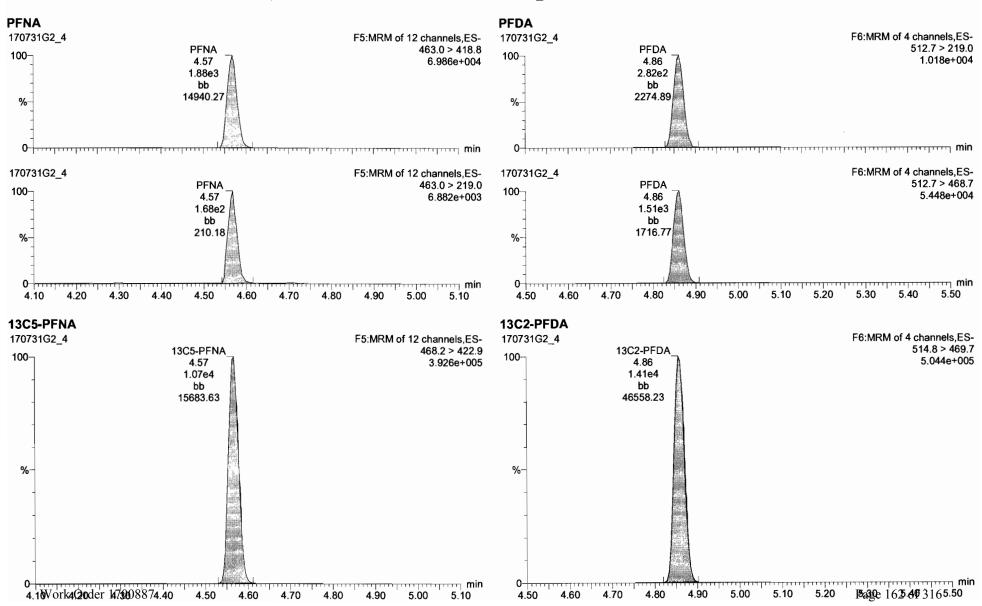
4.20

4.30

4.40

4.50

4.60


Dataset:

U:\G1.PRO\Results\2017\170731G2\170731G2-4.qld

Last Altered: Printed:

Monday, July 31, 2017 10:38:20 Pacific Daylight Time

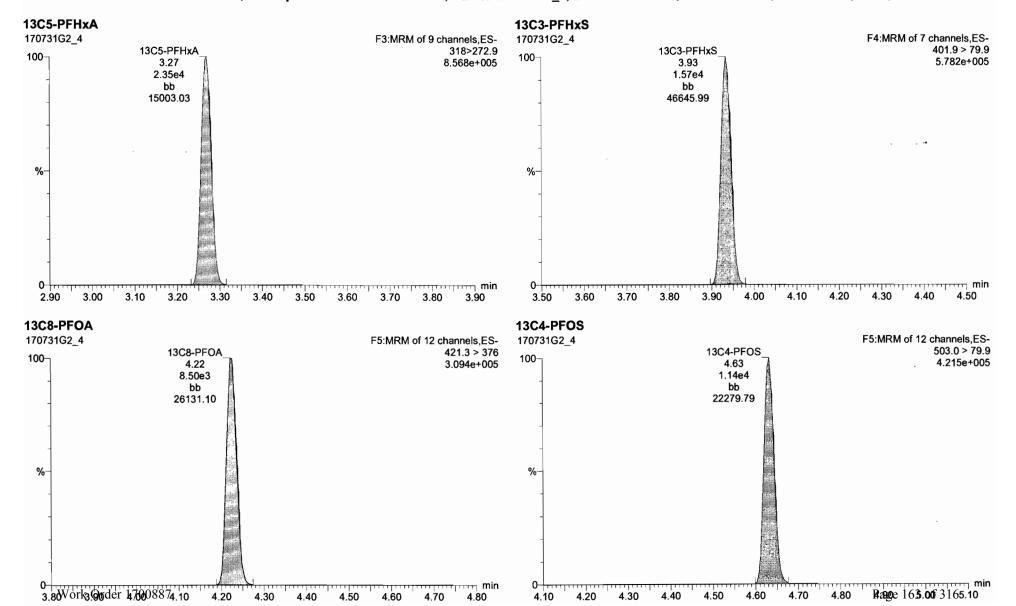
Monday, July 31, 2017 16:58:40 Pacific Daylight Time



**Quantify Sample Report** 

MassLynx 4.1 SCN815

Page 5 of 6


Vista Analytical Laboratory Q1

Dataset:

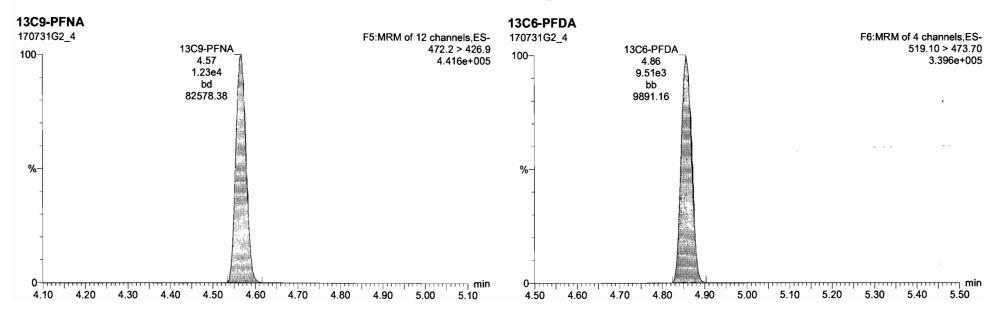
U:\G1.PRO\Results\2017\170731G2\170731G2-4.qld

Last Altered: Printed:

Monday, July 31, 2017 10:38:20 Pacific Daylight Time Monday, July 31, 2017 16:58:40 Pacific Daylight Time



MassLynx 4.1 SCN815


Page 6 of 6

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-4.qld

Last Altered: Monday, July 31, 2017 10:38:20 Pacific Daylight Time Printed: Monday, July 31, 2017 16:58:40 Pacific Daylight Time

## ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A, Name: 170731G2\_4, Date: 31-Jul-2017, Time: 10:12:39, Instrument: , Lab: , User:



Work Order 1700887 Page 164 of 316

Page 1 of 1

Dataset:

U:\G1.PRO\Results\2017\170731G2\170731G2-18.qld

Last Altered: Printed:

Monday, July 31, 2017 13:41:38 Pacific Daylight Time Monday, July 31, 2017 16:59:22 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

Name: 170731G2\_18, Date: 31-Jul-2017, Time: 13:08:18, ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A

| # Name                   | Trace              | Response   | IS Resp | RRF   | Wt/Vol | RT   | Conc. | %Rec  |          |             |
|--------------------------|--------------------|------------|---------|-------|--------|------|-------|-------|----------|-------------|
| 1 PFBA                   | 212.9 > 168        | 3.9 1.58e4 | 2.75e4  |       | 1.000  | 1.65 | 9.51  | 95.1  | 70-130   |             |
| 2 PFPe                   | A 263.0 > 218      | 8.8 7.67e3 | 9.65e3  |       | 1.000  | 2.61 | 8.98  | 89.8  | 1        |             |
| 3 PFBS                   | 299.0 > 79.        | 7 7.98e3   | 5.93e3  |       | 1.000  | 2.89 | 10.1  | 100.9 | 1        |             |
| 4 4 PFHx                 | A 312.9 > 268      | 8.9 1.18e4 | 9.05e3  |       | 1.000  | 3.27 | 8.51  | 85.1  | 1        |             |
| 5 5 PFHp                 | A 363 > 318.9      | 9 1.70e4   | 1.11e4  |       | 1.000  | 3.81 | 9.73  | 97.3  |          |             |
| 6 PFHx                   | S 398.9 > 79.      | 6 8.10e3   | 6.04e3  |       | 1.000  | 3.94 | 9.36  | 93.6  | 1        |             |
| 7 PFO                    | 413.0 > 368        | 3.7 1.57e4 | 2.40e4  |       | 1.000  | 4.23 | 10.2  | 101.7 |          |             |
| 8 8 PFNA                 | 463.0 > 418        | 3.8 1.73e4 | 1.05e4  |       | 1.000  | 4.57 | 8.85  | 88.5  |          |             |
| 9 9 PFOS                 | 499.0 >79.9        | 9 3.95e3   | 1.26e4  |       | 1.000  | 4.63 | 8.24  | 82.4  |          |             |
| 10 PFDA                  | 512.7 > 219        | 9.0 2.93e3 | 2.04e4  |       | 1.000  | 4.86 | 8.98  | 89.8  | <b>1</b> |             |
| 11 13C3                  | -PFBA 215.9 > 171  | 1.8 2.75e4 | 1.93e4  | 1.183 | 1.000  | 1.64 | 15.1  | 121.0 | 50-150   | YOU 7/3/117 |
| 12 13C3                  | -PFBS 302.0 > 98.  | 8 5.93e3   | 1.93e4  | 0.263 | 1.000  | 2.89 | 14.6  | 116.8 | 1        | YOU TISH    |
| 13 13C3                  | -PFPeA 266.0 > 221 | 1.8 9.65e3 | 1.93e4  | 0.446 | 1.000  | 2.61 | 14.0  | 111.9 |          |             |
| 14 13C2                  | -PFHxA 315.0 > 269 | 9.8 9.05e3 | 1.93e4  | 0.361 | 1.000  | 3.27 | 16.3  | 130.1 |          |             |
| 15 13C4                  | -PFHpA 367.2 > 321 | 1.8 1.11e4 | 1.93e4  | 0.475 | 1.000  | 3.81 | 15.1  | 120.5 |          |             |
| <b>16</b> 16 18O2        | -PFHxS 403 > 102.6 | 6.04e3     | 1.20e4  | 0.411 | 1.000  | 3.94 | 15.3  | 122.7 |          |             |
| 17 13C2                  | -PFOA 414.9 > 369  | 9.7 2.40e4 | 6.61e3  | 2.843 | 1.000  | 4.23 | 16.0  | 127.7 |          |             |
| 18 13C5                  | PFNA 468.2 > 422   | 2.9 1.05e4 | 9.53e3  | 0.854 | 1.000  | 4.57 | 16.2  | 129.5 |          |             |
| 19 13C2                  | -PFDA 514.8 > 469  | 9.7 2.04e4 | 1.05e4  | 1.742 | 1.000  | 4.86 | 14.0  | 111.9 |          |             |
| <b>20</b> 20 13C8        | PFOS 507.0 > 79.   | 9 1.26e4   | 1.12e4  | 0.927 | 1.000  | 4.63 | 15.2  | 121.6 | <b>V</b> |             |
| 21 13C4                  | PFBA 216.9 > 171   | 1.8 1.93e4 | 1.93e4  | 1.000 | 1.000  | 1.64 | 12.5  | 100.0 |          |             |
| 22 13C5<br>23 23 13C3    | PFHxA 318>272.9    | 1.93e4     | 1.93e4  | 1.000 | 1.000  | 3.27 | 12.5  | 100.0 |          |             |
|                          | PFHxS 401.9 > 79.  | 9 1.20e4   | 1.20e4  | 1.000 | 1.000  | 3.94 | 12.5  | 100.0 |          |             |
| <b>24</b> 24 13C8        | -PFOA 421.3 > 376  | 6.61e3     | 6.61e3  | 1.000 | 1.000  | 4.23 | 12.5  | 100.0 |          |             |
| <b>25</b> 25 13C9        | -PFNA 472.2 > 426  | 6.9 9.53e3 | 9.53e3  | 1.000 | 1.000  | 4.57 | 12.5  | 100.0 |          |             |
| 26 26 13C4<br>27 27 13C6 | PFOS 503.0 > 79.   | 9 1.12e4   | 1.12e4  | 1.000 | 1.000  | 4.63 | 12.5  | 100.0 |          |             |
| <b>27</b> 27 13C6        | -PFDA 519.10 > 47  | 7 1.05e4   | 1.05e4  | 1.000 | 1.000  | 4.86 | 12.5  | 100.0 |          |             |

Work Order 1700887 Page 165 of 316

MassLynx 4.1 SCN815

Page 1 of 1

Dataset:

Untitled

Last Altered:

Monday, July 31, 2017 17:00:48 Pacific Daylight Time

Printed:

Monday, July 31, 2017 17:00:55 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

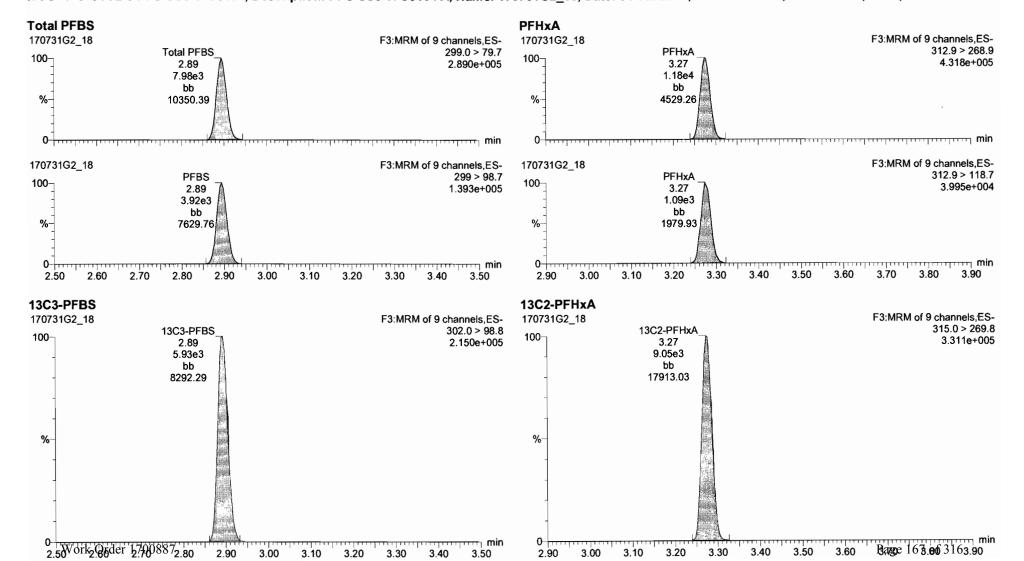
Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

## Compound name: PFBA

|          | Name        | " ID                                    | Acq.Date    | Acq Time |
|----------|-------------|-----------------------------------------|-------------|----------|
| 1        | 170731G2_1  | IPA                                     | 31-Jul-17   | 09:32:17 |
| 2        | 170731G2_2  | ST170731G2-1 PFC CS-1 17G3103           | 31-Jul-17   | 09:44:30 |
| 3        | 170731G2_3  | IPA                                     | 31-Jul-17   | 09:57:00 |
| 4        | 170731G2_4  | ST170731G2-2 PFC CS0 17G2609            | 31-Jul-17   | 10:12:39 |
| 5        | 170731G2_5  | IPA                                     | 31-Jul-17   | 10:24:52 |
| 6 3      | 170731G2_6  | B7G0079-BS1 OPR 0.125                   | 31-Jul-17   | 10:37:29 |
| 7        | 170731G2_7  | IPA                                     | 31-Jul-17   | 10:50:03 |
| 8        | 170731G2_8  | B7G0079-BLK1 Method Blank 0.125         | 31-Jul-17   | 11:02:39 |
| 9        | 170731G2_9  | 1700887-01 IRPSite 6-GW-06GW01-2017071  | 31-Jul-17   | 11:15:11 |
| 10       | 170731G2_10 | 1700887-02 IRPSite 6-GW-06GW02-2017071  | 31-Jul-17   | 11:27:45 |
| rī .     | 170731G2_11 | 1700887-03 IRPSite 6-GW-FRB01-20170712  | 31-Jul-17   | 11:40:15 |
| 1200     | 170731G2_12 | 1700887-04 Site 33-GW-33GW01-20170712 . | 31-Jul-17   | 11:52:47 |
| 134 (24) | 170731G2_13 | 1700887-05 Building 110-GW-110GW01-2017 | ' 31-Jul-17 | 12:05:21 |
| 14       | 170731G2_14 | IPA                                     | 31-Jul-17   | 12:17:54 |
| 15/14    | 170731G2_15 | 1700887-06 IRPSite 6-GW-06FD01-20170712 | 2 31-Jul-17 | 12:30:29 |
| 16 × 5   | 170731G2_16 | 1700887-05@5X Building 110-GW-110GW01   | 31-Jul-17   | 12:43:01 |
| 17       | 170731G2_17 | IPA                                     | 31-Jul-17   | 12:55:34 |
| 18 🙌 🛂   | 170731G2_18 | ST170731G2-3 PFC CS3 17G3104            | 31-Jul-17   | 13:08:18 |
| 49       | 170731G2_19 | IPA                                     | 31-Jul-17   | 13:20:57 |

@INJECTION NOT USED! YOU 7/3/17

Work Order 1700887


Page 166 of 316

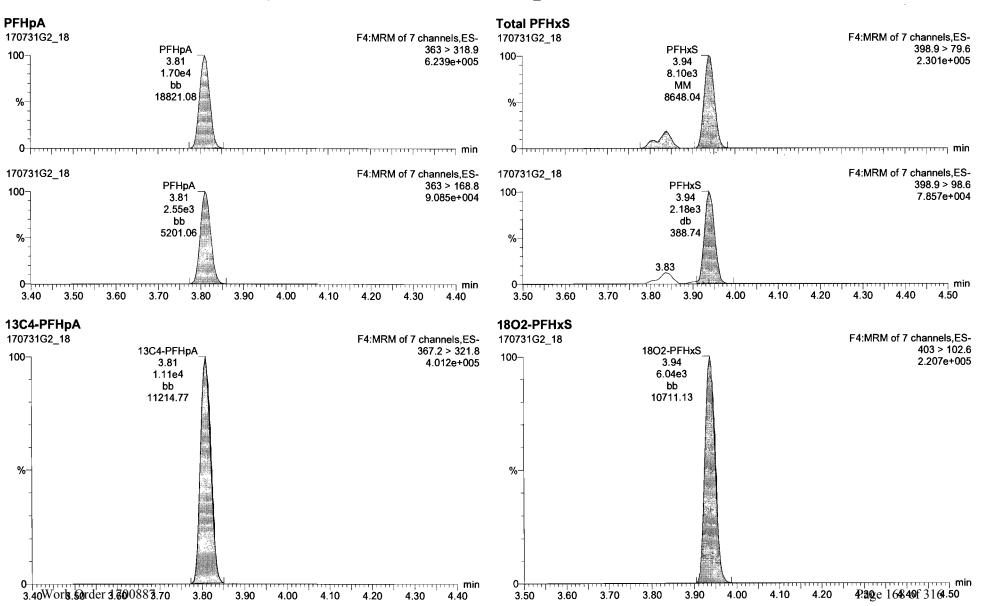
-

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-18.gld

Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time Printed: Monday, July 31, 2017 16:59:33 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

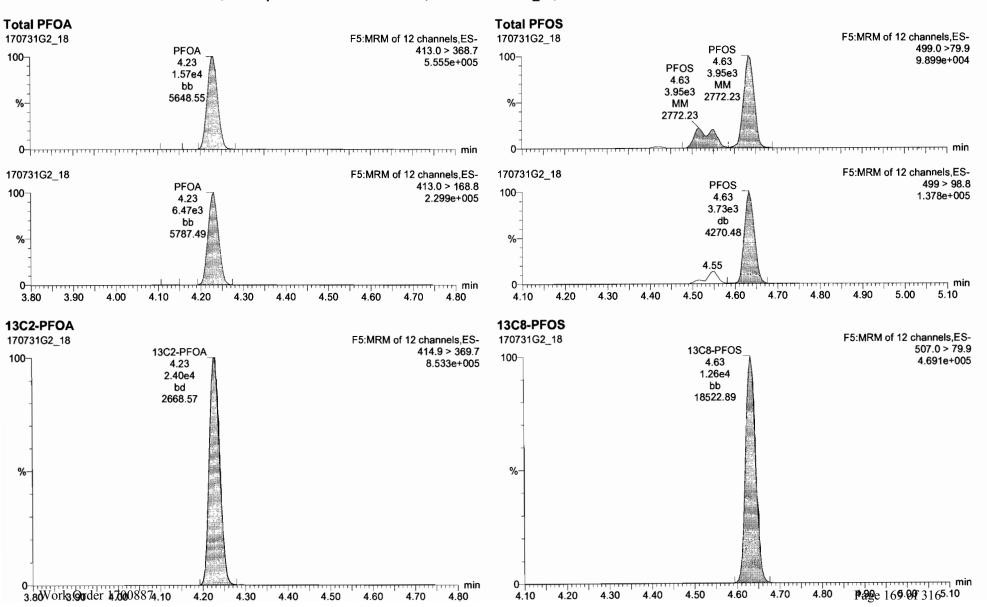



Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170731G2\170731G2-18.qld

Last Altered: Printed:

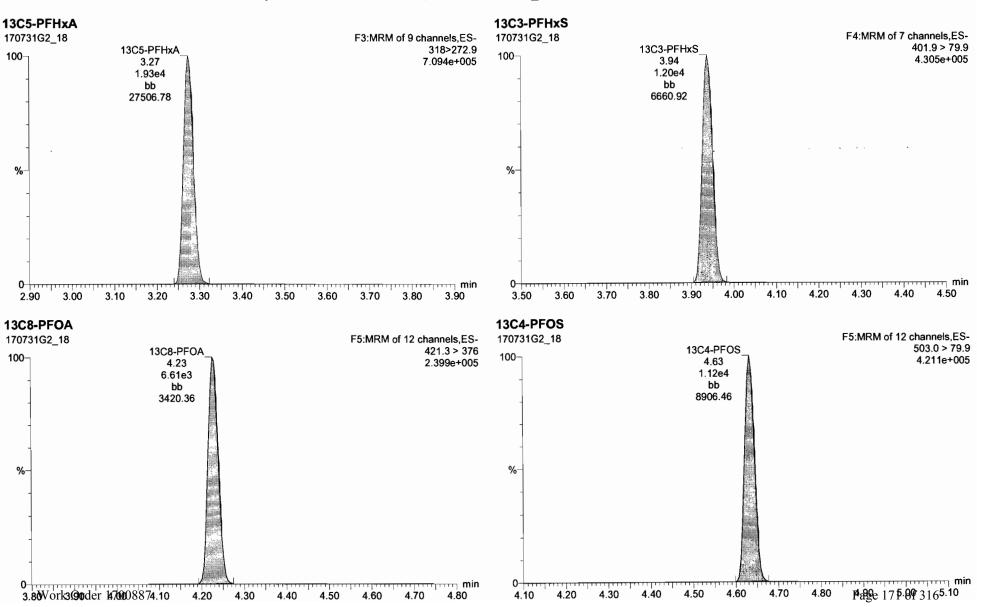

Monday, July 31, 2017 13:41:38 Pacific Daylight Time Monday, July 31, 2017 16:59:33 Pacific Daylight Time



Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-18.qld

Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time Printed: Monday, July 31, 2017 16:59:33 Pacific Daylight Time




Page 5 of 6

Vista Analytical Laboratory Q1

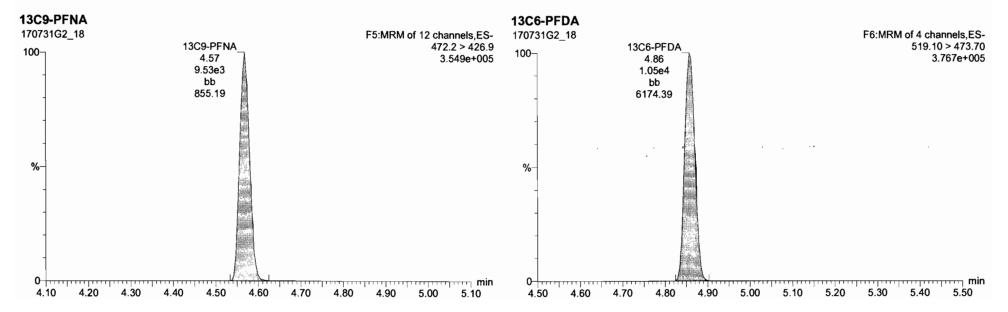
Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-18.qld

Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time Printed: Monday, July 31, 2017 16:59:33 Pacific Daylight Time



**Quantify Sample Report** 

MassLynx 4.1 SCN815


Page 6 of 6

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-18.qld

Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time Printed: Monday, July 31, 2017 16:59:33 Pacific Daylight Time

# ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G2\_18, Date: 31-Jul-2017, Time: 13:08:18, Instrument: , Lab: , User:



Work Order 1700887 Page 172 of 316

# INITIAL CALIBRATION

Work Order 1700887 Page 173 of 316

MassLynx 4.1 SCN815

Page 1 of 14

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.PRO\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb\_27\_Jul\_2017\_14:48:06

Compound name: PFBA

Correlation coefficient: r = 0.999824,  $r^2 = 0.999647$ 

Calibration curve: 0.747533 \* x + 0.048007

Response type: Internal Std ( Ref 11 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Cone | RT <sup>™</sup> | Resp   | IS Resp | Conc. | %Dev | RRF   |
|---|--------------|-----------|-----------------|--------|---------|-------|------|-------|
| 1 | 1 170727G1_2 | 0.250     | 1.67            | 3.78e2 | 2.10e4  | 0.238 | -5.0 | 0.903 |
| 2 | 2 170727G1_3 | 0.500     | 1.68            | 7.43e2 | 2.27e4  | 0.483 | -3.4 | 0.818 |
| 3 | 3 170727G1_4 | 1.00      | 1.68            | 1.40e3 | 2.13e4  | 1.04  | 3.7  | 0.823 |
| 4 | 4 170727G1_5 | 2.00      | 1.67            | 2.90e3 | 2.25e4  | 2.09  | 4.3  | 0.804 |
| 5 | 5 170727G1_6 | 5.00      | 1.68            | 6.65e3 | 2.07e4  | 5.30  | 5.9  | 0.801 |
| 6 | 6 170727G1_7 | 10.0      | 1.67            | 1.45e4 | 2.55e4  | 9.44  | -5.6 | 0.710 |
| 7 | 7 170727G1_8 | 50.0      | 1.68            | 6.31e4 | 2.11e4  | 49.9  | -0.2 | 0.747 |
| 8 | 8 170727G1_9 | 100       | 1.68            | 1.32e5 | 2.19e4  | 100   | 0.3  | 0.750 |

YOU 7127117

Compound name: PFPeA

Correlation coefficient: r = 0.999667, r^2 = 0.999334

Calibration curve: 1.10054 \* x + 0.0486908

Response type: Internal Std ( Ref 13 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

|         | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|---------|--------------|-----------|------|--------|---------|-------|------|------|
| 1       | 1 170727G1_2 | 0.250     | 2.62 | 1.86e2 | 7.64e3  | 0.233 | -6.8 | 1.22 |
| 2       | 2 170727G1_3 | 0.500     | 2.63 | 3.85e2 | 8.33e3  | 0.481 | -3.8 | 1.16 |
| 3       | 3 170727G1_4 | 1.00      | 2.63 | 7.66e2 | 7.75e3  | 1.08  | 7.8  | 1.23 |
| 4       | 4 170727G1_5 | 2.00      | 2.63 | 1.54e3 | 8.54e3  | 2.01  | 0.5  | 1.13 |
| 5       | 5 170727G1_6 | 5.00      | 2.63 | 3.71e3 | 7.82e3  | 5.34  | 6.8  | 1.18 |
| 6       | 6 170727G1_7 | 10.0      | 2.63 | 7.58e3 | 9.10e3  | 9.42  | -5.8 | 1.04 |
| 7.016.6 | 7 170727G1_8 | 50.0      | 2.63 | 3.27e4 | 7.23e3  | 51.2  | 2.5  | 1.13 |
| 8       | 8 170727G1_9 | 100       | 2.62 | 6.37e4 | 7.31e3  | 98.9  | -1.1 | 1.09 |

Work Order 1700887 Page 174 of 316

MassLynx 4.1 SCN815

Page 2 of 14

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

**Compound name: PFBS** 

Correlation coefficient: r = 0.999365,  $r^2 = 0.998731$ 

Calibration curve: 1.60766 \* x + 0.593256

Response type: Internal Std ( Ref 12 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

| 512 11 12 2000                                | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev  | RRF  |
|-----------------------------------------------|--------------|-----------|------|--------|---------|-------|-------|------|
| <b>1</b> ************************************ | 1 170727G1_2 | 0.250     | 2.91 | 1.56e2 | 4.70e3  |       |       | 1.66 |
| 2                                             | 2 170727G1_3 | 0.500     | 2.91 | 5.18e2 | 4.48e3  | 0.531 | 6.1   | 2.89 |
| 3                                             | 3 170727G1_4 | 1.00      | 2.91 | 7.48e2 | 4.63e3  | 0.886 | -11.4 | 2.02 |
| 4                                             | 4 170727G1_5 | . 2.00    | 2.91 | 1.51e3 | 5.33e3  | 1.83  | -8.6  | 1.77 |
| 5                                             | 5 170727G1_6 | 5.00      | 2.91 | 3.40e3 | 4.48e3  | 5.53  | 10.7  | 1.90 |
| 6                                             | 6 170727G1_7 | 10.0      | 2.91 | 7.34e3 | 5.40e3  | 10.2  | 1.9   | 1.70 |
| 7 202000                                      | 7 170727G1_8 | 50.0      | 2.91 | 2.94e4 | 4.38e3  | 51.7  | 3.4   | 1.67 |
| 8                                             | 8 170727G1_9 | 100       | 2.91 | 5.18e4 | 4.10e3  | 97.8  | -2.2  | 1.58 |

Compound name: PFHxA

Correlation coefficient: r = 0.999065,  $r^2 = 0.998131$ 

Calibration curve: 1.89981 \* x + 0.153363

Response type: Internal Std ( Ref 14 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc.  | %Dev  | RRF  |
|---|--------------|-----------|------|--------|---------|--------|-------|------|
| 1 | 1 170727G1_2 | 0.250     | 3.28 | 2.81e2 | 5.77e3  | 0.240  | -4.0  | 2.44 |
| 2 | 2 170727G1_3 | 0.500     | 3.28 | 5.54e2 | 7.04e3  | 0.436  | -12.7 | 1.97 |
| 3 | 3 170727G1_4 | 1.00      | 3.28 | 1.13e3 | 6.35e3  | . 1.09 | 8.6   | 2.22 |
| 4 | 4 170727G1_5 | 2.00      | 3.28 | 2.22e3 | 6.86e3  | 2.04   | 2.2   | 2.02 |
| 5 | 5 170727G1_6 | 5.00      | 3.28 | 5.20e3 | 5.84e3  | 5.78   | 15.6  | 2.23 |
| 6 | 6 170727G1_7 | 10.0      | 3.28 | 1.11e4 | 7.89e3  | 9.21   | -7.9  | 1.77 |
| 7 | 7 170727G1_8 | 50.0      | 3.28 | 4.46e4 | 6.09e3  | 48.2   | -3.7  | 1.83 |
| 8 | 8 170727G1_9 | 100       | 3.29 | 8.84e4 | 5.71e3  | 102    | 1.8   | 1.94 |

Work Order 1700887 Page 175 of 316

MassLynx 4.1 SCN815

Page 3 of 14

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: r = 0.999666, r^2 = 0.999332

Calibration curve: 1.94658 \* x + 0.2548

Response type: Internal Std ( Ref 15 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev  | RRF  |
|---|--------------|-----------|------|--------|---------|-------|-------|------|
| 1 | 1 170727G1_2 | 0.250     | 3.81 | 3.78e2 | 7.45e3  | 0.195 | -22.1 | 2.54 |
| 2 | 2 170727G1_3 | 0.500     | 3.82 | 8.08e2 | 8.06e3  | 0.513 | 2.6   | 2.51 |
| 3 | 3 170727G1_4 | 1.00      | 3.81 | 1.65e3 | 8.77e3  | 1.08  | 7.5   | 2.35 |
| 4 | 4 170727G1_5 | 2.00      | 3.81 | 3.13e3 | 8.92e3  | 2.13  | 6.3   | 2.20 |
| 5 | 5 170727G1_6 | 5.00      | 3.81 | 7.12e3 | 8.20e3  | 5.45  | 9.0   | 2.17 |
| 6 | 6 170727G1_7 | 10.0      | 3.81 | 1.60e4 | 1.05e4  | 9.60  | -4.0  | 1.89 |
| 7 | 7 170727G1_8 | 50.0      | 3.81 | 6.42e4 | 8.09e3  | 50.8  | 1.7   | 1.98 |
| 8 | 8 170727G1_9 | 100       | 3.81 | 1.21e5 | 7.84e3  | 99.0  | -1.0  | 1.93 |

Compound name: PFHxS

Correlation coefficient: r = 0.999617, r^2 = 0.999233

Calibration curve: 1.77848 \* x + 0.109682

Response type: Internal Std ( Ref 16 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Conc | , ed. RT | Resp   | , IS Resp | Conc. | %Dev | RRF  |
|---|--------------|-----------|----------|--------|-----------|-------|------|------|
| 1 | 1 170727G1_2 | 0.250     | 3.94     | 1.62e2 | 3.88e3    | 0.232 | -7.1 | 2.09 |
| 2 | 2 170727G1_3 | 0.500     | 3.95     | 4.30e2 | 4.68e3    | 0.584 | 16.7 | 2.30 |
| 3 | 3 170727G1_4 | 1.00      | 3.94     | 6.02e2 | 4.35e3    | 0.911 | -8.9 | 1.73 |
| 4 | 4 170727G1_5 | 2.00      | 3.94     | 1.37e3 | 4.63e3    | 2.02  | 1.2  | 1.85 |
| 5 | 5 170727G1_6 | 5.00      | 3.94     | 3.35e3 | 4.52e3    | 5.15  | 3.0  | 1.85 |
| 6 | 6 170727G1_7 | 10.0      | 3.94     | 7.31e3 | 5.48e3    | 9.31  | -6.9 | 1.67 |
| 7 | 7 170727G1_8 | 50.0      | 3.94     | 3.04e4 | 4.15e3    | 51.4  | 2.8  | 1.83 |
| 8 | 8 170727G1_9 | 100       | 3.94     | 5.94e4 | 4.21e3    | 99.1  | -0.9 | 1.76 |

Work Order 1700887 Page 176 of 316

Page 4 of 14

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: r = 0.998786, r^2 = 0.997574

Calibration curve: 0.797511 \* x + 0.0924786

Response type: Internal Std ( Ref 17 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev  | RRF   |
|---|--------------|-----------|------|--------|---------|-------|-------|-------|
| 1 | 1 170727G1_2 | 0.250     | 4.24 | 3.42e2 | 1.63e4  | 0.213 | -15.0 | 1.05  |
| 2 | 2 170727G1_3 | 0.500     | 4.24 | 7.66e2 | 1.67e4  | 0.602 | 20.4  | 1.14  |
| 3 | 3 170727G1_4 | 1.00      | 4.23 | 1.34e3 | 1.73e4  | 1.10  | 10.0  | 0.969 |
| 4 | 4 170727G1_5 | 2.00      | 4.24 | 2.75e3 | 1.86e4  | 2.21  | 10.3  | 0.926 |
| 5 | 5 170727G1_6 | 5.00      | 4.24 | 7.23e3 | 1.80e4  | 6.16  | 23.3  | 1.00  |
| 6 | 6 170727G1_7 | 10.0      | 4.24 | 1.44e4 | 2.24e4  | 9.96  | -0.4  | 0.804 |
| 7 | 7 170727G1_8 | 50.0      | 4.24 | 5.59e4 | 1.77e4  | 49.4  | -1.3  | 0.789 |
| 8 | 8 170727G1_9 | 100       | 4.24 | 1.14e5 | 1.80e4  | 99.2  | -0.8  | 0.792 |

Compound name: PFNA

Coefficient of Determination: R^2 = 0.999639

Calibration curve:  $-0.00237877 * x^2 + 2.32641 * x + 0.0752635$ Response type: Internal Std ( Ref 18 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

|               | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|---------------|--------------|-----------|------|--------|---------|-------|------|------|
| 1 manufaction | 1 170727G1_2 | 0.250     | 4.58 | 2.70e2 | 4.96e3  | 0.260 | 4.1  | 2.72 |
| 2             | 2 170727G1_3 | 0.500     | 4.58 | 6.08e2 | 6.55e3  | 0.466 | -6.7 | 2.32 |
| 3             | 3 170727G1_4 | 1.00      | 4.58 | 1.08e3 | 5.92e3  | 0.954 | -4.6 | 2.29 |
| 4             | 4 170727G1_5 | 2.00      | 4.58 | 2.72e3 | 6.93e3  | 2.08  | 4.0  | 2.45 |
| 5 (50) (6     | 5 170727G1_6 | 5.00      | 4.58 | 6.11e3 | 6.11e3  | 5.37  | 7.3  | 2.50 |
| 6             | 6 170727G1_7 | 10.0      | 4.58 | 1.31e4 | 7.36e3  | 9.60  | -4.0 | 2.22 |
| 7 "Xniii      | 7 170727G1_8 | 50.0      | 4.58 | 6.15e4 | 6.96e3  | 50.0  | -0.0 | 2.21 |
| 8 - Maria Lin | 8 170727G1_9 | 100       | 4.58 | 1.22e5 | 7.32e3  | 100   | 0.0  | 2.09 |

Work Order 1700887 Page 177 of 316

Quantify Compound Summary Report MassLynx 4.1 SCN815 Page 5 of 14

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFOS

Correlation coefficient: r = 0.999145,  $r^2 = 0.998292$ 

Calibration curve: 0.470087 \* x + 0.0287104

Response type: Internal Std ( Ref 20 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF   |
|---|--------------|-----------|------|--------|---------|-------|------|-------|
| 1 | 1 170727G1_2 | 0.250     | 4.64 | 6.12e1 | 5.46e3  | 0.237 | -5.3 | 0.560 |
| 2 | 2 170727G1_3 | 0.500     | 4.64 | 1.27e2 | 6.34e3  | 0.472 | -5.5 | 0.502 |
| 3 | 3 170727G1_4 | 1.00      | 4.64 | 2.59e2 | 6.56e3  | 0.990 | -1.0 | 0.494 |
| 4 | 4 170727G1_5 | 2.00      | 4.64 | 5.73e2 | 7.61e3  | 1.94  | -2.9 | 0.471 |
| 5 | 5 170727G1_6 | 5.00      | 4.64 | 1.51e3 | 7.06e3  | 5.61  | 12.2 | 0.533 |
| 6 | 6 170727G1_7 | 10.0      | 4.64 | 3.08e3 | 8.09e3  | 10.1  | 0.6  | 0.476 |
| 7 | 7 170727G1_8 | 50.0      | 4.64 | 1.54e4 | 7.84e3  | 52.4  | 4.7  | 0.493 |
| 8 | 8 170727G1_9 | 100       | 4.64 | 3.11e4 | 8.50e3  | 97.1  | -2.9 | 0.457 |

Compound name: PFDA

Coefficient of Determination: R^2 = 0.999346

Calibration curve: -0.000179878 \* x^2 + 0.198072 \* x + 0.02746 Response type: Internal Std ( Ref 19 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

| mediantial | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc  | %Dev  | RRF   |
|------------|--------------|-----------|------|--------|---------|-------|-------|-------|
| 1          | 1 170727G1_2 | 0.250     | 4.87 | 4.13e1 | 8.28e3  | 0.176 | -29.6 | 0.249 |
| 2          | 2 170727G1_3 | 0.500     | 4.87 | 1.24e2 | 1.08e4  | 0.592 | 18.3  | 0.289 |
| 3          | 3 170727G1_4 | 1.00      | 4.87 | 1.85e2 | 1.06e4  | 0.967 | -3.3  | 0.219 |
| 4          | 4 170727G1_5 | 2.00      | 4.87 | 4.71e2 | 1.25e4  | 2.24  | 11.8  | 0.235 |
| 5          | 5 170727G1_6 | 5.00      | 4.87 | 9.70e2 | 1.15e4  | 5.23  | 4.5   | 0.212 |
| 6          | 6 170727G1_7 | 10.0      | 4.87 | 1.93e3 | 1.22e4  | 9.95  | -0.5  | 0.198 |
| 7          | 7 170727G1_8 | 50.0      | 4.87 | 1.03e4 | 1.38e4  | 49.2  | -1.7  | 0.187 |
| 8          | 8 170727G1_9 | 100       | 4.87 | 2.06e4 | 1.42e4  | 100   | 0.5   | 0.181 |

Work Order 1700887 Page 178 of 316

Quantify Compound Summary Report MassLynx 4.1 SCN815 Page 6 of 14

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C3-PFBA

Response Factor: 1.18261

RRF SD: 0.0351574, Relative SD: 2.97286

Response type: Internal Std ( Ref 21 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|---|--------------|-----------|------|--------|---------|-------|------|------|
| 1 | 1 170727G1_2 | 12.5      | 1.67 | 2.10e4 | 1.77e4  | 12.5  | 0.2  | 1.18 |
| 2 | 2 170727G1_3 | 12.5      | 1.67 | 2.27e4 | 1.84e4  | 13.1  | 4.6  | 1.24 |
| 3 | 3 170727G1_4 | 12.5      | 1.67 | 2.13e4 | 1.76e4  | 12.8  | 2.6  | 1.21 |
| 4 | 4.170727G1_5 | 12.5      | 1.67 | 2.25e4 | 1.91e4  | 12.5  | -0.2 | 1.18 |
| 5 | 5 170727G1_6 | 12.5      | 1.67 | 2.07e4 | 1.79e4  | 12.3  | -1.9 | 1.16 |
| 6 | 6 170727G1_7 | 12.5      | 1.67 | 2.55e4 | 2.11e4  | 12.8  | 2.0  | 1.21 |
| 7 | 7 170727G1_8 | 12.5      | 1.67 | 2.11e4 | 1.85e4  | 12.1  | -3.5 | 1.14 |
| 8 | 8 170727G1_9 | 12.5      | 1.67 | 2.19e4 | 1.93e4  | 12.0  | -3.8 | 1.14 |

Compound name: 13C3-PFBS Response Factor: 0.262761

RRF SD: 0.0164175, Relative SD: 6.24805

Response type: Internal Std ( Ref 22 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|                           | # Name       | Std. Conc | RT   | Resp   | - IS Resp | Conc | %Dev  | RRF   |
|---------------------------|--------------|-----------|------|--------|-----------|------|-------|-------|
| Aprilla April 2007 11 (1) | 1 170727G1_2 | 12.5      | 2.91 | 4.70e3 | 1.73e4    | 12.9 | 3.2   | 0.271 |
| 2                         | 2 170727G1_3 | 12.5      | 2.91 | 4.48e3 | 1.90e4    | 11.2 | -10.1 | 0.236 |
| 3                         | 3 170727G1_4 | 12.5      | 2.91 | 4.63e3 | 1.62e4    | 13.6 | 8.6   | 0.285 |
| 4                         | 4 170727G1_5 | 12.5      | 2.91 | 5.33e3 | 1.95e4    | 13.0 | 4.2   | 0.274 |
| 5                         | 5 170727G1_6 | 12.5      | 2.91 | 4.48e3 | 1.70e4    | 12.5 | 0.1   | 0.263 |
| 6                         | 6 170727G1_7 | 12.5      | 2.91 | 5.40e3 | 2.04e4    | 12.6 | 0.8   | 0.265 |
| 7                         | 7 170727G1_8 | 12.5      | 2.91 | 4.38e3 | 1.64e4    | 12.7 | 1.4   | 0.266 |
| 8                         | 8 170727G1_9 | 12.5      | 2.91 | 4.10e3 | 1.70e4    | 11.5 | -8.1  | 0.241 |

Work Order 1700887 Page 179 of 316

Quantify Compound Summary Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q2

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.446443

RRF SD: 0.0151073, Relative SD: 3.38392

Response type: Internal Std (Ref 22), Area \* (IS Conc. / IS Area)

Curve type: RF

Dataset:

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF   |
|---|--------------|-----------|------|--------|---------|-------|------|-------|
| 1 | 1 170727G1_2 | 12.5      | 2.63 | 7.64e3 | 1.73e4  | 12.3  | -1.2 | 0.441 |
| 2 | 2 170727G1_3 | 12.5      | 2.63 | 8.33e3 | 1.90e4  | 12.3  | -1.6 | 0.439 |
| 3 | 3 170727G1_4 | 12.5      | 2.63 | 7.75e3 | 1.62e4  | 13.4  | 7.0  | 0.478 |
| 4 | 4 170727G1_5 | 12.5      | 2.63 | 8.54e3 | 1.95e4  | 12.3  | -1.6 | 0.439 |
| 5 | 5 170727G1_6 | 12.5      | 2.63 | 7.82e3 | 1.70e4  | 12.9  | 2.9  | 0.459 |
| 6 | 6 170727G1_7 | 12.5      | 2.63 | 9.10e3 | 2.04e4  | 12.5  | -0.1 | 0.446 |
| 7 | 7 170727G1_8 | 12.5      | 2.63 | 7.23e3 | 1.64e4  | 12.3  | -1.5 | 0.440 |
| 8 | 8 170727G1_9 | 12.5      | 2.62 | 7.31e3 | 1.70e4  | 12.0  | -3.7 | 0.430 |

Compound name: 13C2-PFHxA

Response Factor: 0.360561

RRF SD: 0.0226683, Relative SD: 6.28695

Response type: Internal Std ( Ref 22 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|               | #Name        | Std. Conc | RT   | Resp   | IS Resp         | Conc. | %Dev | RRF   |
|---------------|--------------|-----------|------|--------|-----------------|-------|------|-------|
| 1             | 1 170727G1_2 | 12.5      | 3.28 | 5.77e3 | 1.73e4          | 11.5  | -7.6 | 0.333 |
| 2             | 2 170727G1_3 | 12.5      | 3.28 | 7.04e3 | 1.90e4          | 12.9  | 3.0  | 0.372 |
| 3             | 3 170727G1_4 | 12.5      | 3.28 | 6.35e3 | 1.62e4          | 13.6  | 8.6  | 0.391 |
| 4             | 4 170727G1_5 | 12.5      | 3.28 | 6.86e3 | 1.95e4          | 12.2  | -2.2 | 0.353 |
| 5             | 5 170727G1_6 | 12.5      | 3.28 | 5.84e3 | 1.70e4          | 11.9  | -5.0 | 0.343 |
| 6             | 6 170727G1_7 | 12.5      | 3.28 | 7.89e3 | 2.04e4          | 13.4  | 7.3  | 0.387 |
| 7 (1) (1) (1) | 7 170727G1_8 | 12.5      | 3.28 | 6.09e3 | 1. <b>6</b> 4e4 | 12.8  | 2.7  | 0.370 |
| 8             | 8 170727G1_9 | 12.5      | 3.28 | 5.71e3 | 1.70e4          | 11.6  | -6.8 | 0.336 |

Work Order 1700887 Page 180 of 316

Page 7 of 14

Quantify Compound Summary Report MassLynx 4.1 SCN815 Page 8 of 14

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C4-PFHpA

Response Factor: 0.475457

RRF SD: 0.0400935, Relative SD: 8.43262

Response type: Internal Std ( Ref 22 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|                                         | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev  | RRF   |
|-----------------------------------------|--------------|-----------|------|--------|---------|-------|-------|-------|
| 1                                       | 1 170727G1_2 | 12.5      | 3.81 | 7.45e3 | 1.73e4  | 11.3  | -9.6  | 0.430 |
| 2                                       | 2 170727G1_3 | 12.5      | 3.81 | 8.06e3 | 1.90e4  | 11.2  | -10.6 | 0.425 |
| 3                                       | 3 170727G1_4 | 12.5      | 3.81 | 8.77e3 | 1.62e4  | 14.2  | 13.6  | 0.540 |
| 4 : : : : : : : : : : : : : : : : : : : | 4 170727G1_5 | 12.5      | 3.81 | 8.92e3 | 1.95e4  | 12.0  | -3.6  | 0.458 |
| 5                                       | 5 170727G1_6 | 12.5      | 3.81 | 8.20e3 | 1.70e4  | 12.7  | 1.2   | 0.481 |
| 6                                       | 6 170727G1_7 | 12.5      | 3.81 | 1.05e4 | 2.04e4  | 13.6  | 8.5   | 0.516 |
| 7                                       | 7 170727G1_8 | 12.5      | 3.81 | 8.09e3 | 1.64e4  | 12.9  | 3.4   | 0.492 |
| 8                                       | 8 170727G1_9 | 12.5      | 3.81 | 7.84e3 | 1.70e4  | 12.1  | -3.0  | 0.461 |

Compound name: 18O2-PFHxS

Response Factor: 0.41062

RRF SD: 0.0152633, Relative SD: 3.71715

Response type: Internal Std ( Ref 23 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF   |
|---|--------------|-----------|------|--------|---------|-------|------|-------|
| 1 | 1 170727G1_2 | 12.5      | 3.94 | 3.88e3 | 9.33e3  | 12.7  | 1.3  | 0.416 |
| 2 | 2 170727G1_3 | 12.5      | 3.94 | 4.68e3 | 1.09e4  | 13.1  | 4.9  | 0.431 |
| 3 | 3 170727G1_4 | 12.5      | 3.94 | 4.35e3 | 1.09e4  | 12.1  | -3.3 | 0.397 |
| 4 | 4 170727G1_5 | 12.5      | 3.94 | 4.63e3 | 1.19e4  | 11.8  | -5.4 | 0.388 |
| 5 | 5 170727G1_6 | 12.5      | 3.94 | 4.52e3 | 1.07e4  | 12.8  | 2.7  | 0.422 |
| 6 | 6 170727G1_7 | 12.5      | 3.94 | 5.48e3 | 1.30e4  | 12.8  | 2.5  | 0.421 |
| 7 | 7 170727G1_8 | 12.5      | 3.94 | 4.15e3 | 1.05e4  | 12.0  | -3.9 | 0.395 |
| 8 | 8 170727G1_9 | 12.5      | 3.94 | 4.21e3 | 1.01e4  | 12.6  | 1.1  | 0.415 |

Work Order 1700887 Page 181 of 316

MassLynx 4.1 SCN815

Page 9 of 14

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 2.84292

RRF SD: 0.169045, Relative SD: 5.94617

Response type: Internal Std ( Ref 24 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|---|--------------|-----------|------|--------|---------|-------|------|------|
| 1 | 1 170727G1_2 | 12.5      | 4.23 | 1.63e4 | 5.56e3  | 12.9  | 3.2  | 2.94 |
| 2 | 2 170727G1_3 | 12.5      | 4.24 | 1.67e4 | 6.24e3  | 11.8  | -5.6 | 2.68 |
| 3 | 3 170727G1_4 | 12.5      | 4.24 | 1.73e4 | 6.06e3  | 12.5  | 0.3  | 2.85 |
| 4 | 4 170727G1_5 | 12.5      | 4.24 | 1.86e4 | 6.19e3  | 13.2  | 5.6  | 3.00 |
| 5 | 5 170727G1_6 | 12.5      | 4.23 | 1.80e4 | 5.76e3  | 13.8  | 10.1 | 3.13 |
| 6 | 6 170727G1_7 | 12.5      | 4.24 | 2.24e4 | 8.45e3  | 11.6  | -7.0 | 2.64 |
| 7 | 7 170727G1_8 | 12.5      | 4.24 | 1.77e4 | 6.39e3  | 12.2  | -2.5 | 2.77 |
| 8 | 8 170727G1_9 | 12.5      | 4.24 | 1.80e4 | 6.59e3  | 12.0  | -4.1 | 2.73 |

Compound name: 13C5-PFNA

Response Factor: 0.853546

RRF SD: 0.0383372, Relative SD: 4.49152

Response type: Internal Std ( Ref 25 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|                       | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF   |
|-----------------------|--------------|-----------|------|--------|---------|-------|------|-------|
| Landan and the second | 1 170727G1_2 | 12.5      | 4.58 | 4.96e3 | 5.69e3  | 12.8  | 2.1  | 0.872 |
| 2                     | 2 170727G1_3 | 12.5      | 4.58 | 6.55e3 | 7.13e3  | 13.5  | 7.6  | 0.919 |
| 3                     | 3 170727G1_4 | 12.5      | 4.58 | 5.92e3 | 7.07e3  | 12.3  | -1.9 | 0.838 |
| 4                     | 4 170727G1_5 | 12.5      | 4.58 | 6.93e3 | 8.26e3  | 12.3  | -1.7 | 0.839 |
| 5                     | 5 170727G1_6 | 12.5      | 4.57 | 6.11e3 | 6.89e3  | 13.0  | 3.8  | 0.886 |
| 6                     | 6 170727G1_7 | 12.5      | 4.58 | 7.36e3 | 9.28e3  | 11.6  | -7.0 | 0.794 |
| 7 80                  | 7 170727G1_8 | 12.5      | 4.58 | 6.96e3 | 8.18e3  | 12.5  | -0.3 | 0.851 |
| 8                     | 8 170727G1_9 | 12.5      | 4.58 | 7.32e3 | 8.82e3  | 12.2  | -2.8 | 0.830 |

Work Order 1700887 Page 182 of 316

Quantify Compound Summary Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 1.74189

RRF SD: 0.0344803, Relative SD: 1.97948

Response type: Internal Std ( Ref 27 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

| Market 1 | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|----------|--------------|-----------|------|--------|---------|-------|------|------|
| 4        | 1 170727G1_2 | 12.5      | 4.87 | 8.28e3 | 4.70e3  | 12.6  | 1.0  | 1.76 |
| 2        | 2 170727G1_3 | 12.5      | 4.87 | 1.08e4 | 6.26e3  | 12.3  | -1.4 | 1.72 |
| 3        | 3 170727G1_4 | 12.5      | 4.87 | 1.06e4 | 6.00e3  | 12.7  | 1.3  | 1.76 |
| 4        | 4 170727G1_5 | . 12.5    | 4.87 | 1.25e4 | 7.21e3  | 12.5  | -0.1 | 1.74 |
| 5        | 5 170727G1_6 | 12.5      | 4.87 | 1.15e4 | 6.64e3  | 12.4  | -0.8 | 1.73 |
| 6        | 6 170727G1_7 | 12.5      | 4.87 | 1.22e4 | 7.25e3  | 12.0  | -3.7 | 1.68 |
| 7        | 7 170727G1_8 | 12.5      | 4.87 | 1.38e4 | 7.73e3  | 12.8  | 2.8  | 1.79 |
| 8        | 8 170727G1_9 | 12.5      | 4.87 | 1.42e4 | 8.08e3  | 12.6  | 0.9  | 1.76 |

Compound name: 13C8-PFOS

Response Factor: 0.927146

RRF SD: 0.0309514, Relative SD: 3.33836

Response type: Internal Std ( Ref 26 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

| TO THE MAN          | # Name       | Std. Conc | » × RT | Resp   | IS Resp | Conc. | %Dev | RRE   |
|---------------------|--------------|-----------|--------|--------|---------|-------|------|-------|
| According to a con- | 1 170727G1_2 | 12.5      | 4.64   | 5.46e3 | 6.02e3  | 12.2  | -2.1 | 0.907 |
| 2                   | 2 170727G1_3 | 12.5      | 4.64   | 6.34e3 | 6.85e3  | 12.5  | -0.1 | 0.927 |
| 3                   | 3 170727G1_4 | 12.5      | 4.64   | 6.56e3 | 7.35e3  | 12.0  | -3.7 | 0.893 |
| 4 seeds together    | 4 170727G1_5 | 12.5      | 4.64   | 7.61e3 | 8.50e3  | 12.1  | -3.4 | 0.895 |
| 5                   | 5 170727G1_6 | 12.5      | 4.64   | 7.06e3 | 7.46e3  | 12.8  | 2.1  | 0.947 |
| 6                   | 6 170727G1_7 | 12.5      | 4.64   | 8.09e3 | 8.74e3  | 12.5  | -0.2 | 0.925 |
| 7                   | 7 170727G1_8 | 12.5      | 4.64   | 7.84e3 | 8.39e3  | 12.6  | 0.7  | 0.934 |
| 8                   | 8 170727G1_9 | 12.5      | 4.64   | 8.50e3 | 8.61e3  | 13.3  | 6.6  | 0.988 |

Work Order 1700887 Page 183 of 316

Page 10 of 14

MassLynx 4.1 SCN815

Page 11 of 14

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std ( Ref 21 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|---|--------------|-----------|------|--------|---------|-------|------|------|
| 1 | 1 170727G1_2 | 12.5      | 1.66 | 1.77e4 | 1.77e4  | 12.5  | 0.0  | 1.00 |
| 2 | 2 170727G1_3 | 12.5      | 1.67 | 1.84e4 | 1.84e4  | 12.5  | 0.0  | 1.00 |
| 3 | 3 170727G1_4 | 12.5      | 1.67 | 1.76e4 | 1.76e4  | 12.5  | 0.0  | 1.00 |
| 4 | 4 170727G1_5 | . 12.5    | 1.67 | 1.91e4 | 1.91e4  | 12.5  | 0.0  | 1.00 |
| 5 | 5 170727G1_6 | 12.5      | 1.68 | 1.79e4 | 1.79e4  | 12.5  | 0.0  | 1.00 |
| 6 | 6 170727G1_7 | 12.5      | 1.67 | 2.11e4 | 2.11e4  | 12.5  | 0.0  | 1.00 |
| 7 | 7 170727G1_8 | 12.5      | 1.67 | 1.85e4 | 1.85e4  | 12.5  | 0.0  | 1.00 |
| 8 | 8 170727G1_9 | 12.5      | 1.67 | 1.93e4 | 1.93e4  | 12.5  | 0.0  | 1.00 |

Compound name: 13C5-PFHxA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std ( Ref 22 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

| eleter gloongest of the self- | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|-------------------------------|--------------|-----------|------|--------|---------|-------|------|------|
| 1                             | 1 170727G1_2 | 12.5      | 3.28 | 1.73e4 | 1.73e4  | 12.5  | 0.0  | 1.00 |
| 2                             | 2 170727G1_3 | 12.5      | 3.28 | 1.90e4 | 1.90e4  | 12.5  | 0.0  | 1.00 |
| 3                             | 3 170727G1_4 | 12.5      | 3.28 | 1.62e4 | 1.62e4  | 12.5  | 0.0  | 1.00 |
| 4                             | 4 170727G1_5 | 12.5      | 3.28 | 1.95e4 | 1.95e4  | 12.5  | 0.0  | 1.00 |
| 5                             | 5 170727G1_6 | 12.5      | 3.28 | 1.70e4 | 1.70e4  | 12.5  | 0.0  | 1.00 |
| 6                             | 6 170727G1_7 | 12.5      | 3.28 | 2.04e4 | 2.04e4  | 12.5  | 0.0  | 1.00 |
| 7                             | 7 170727G1_8 | 12.5      | 3.28 | 1.64e4 | 1.64e4  | 12.5  | 0.0  | 1.00 |
| 8                             | 8 170727G1_9 | 12.5      | 3.28 | 1.70e4 | 1.70e4  | 12.5  | 0.0  | 1.00 |

Work Order 1700887 Page 184 of 316

Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q2

rnx 4.1 SCN815 Page 12 of 14

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std ( Ref 23 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

| (1) 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | # Name       | Std. Conc | iguat <b>'RT</b> | Resp   | IS Resp | Conc | %Dev | RRF  |
|------------------------------------------------|--------------|-----------|------------------|--------|---------|------|------|------|
| 1                                              | 1 170727G1_2 | 12.5      | 3.94             | 9.33e3 | 9.33e3  | 12.5 | 0.0  | 1.00 |
| 2                                              | 2 170727G1_3 | 12.5      | 3.94             | 1.09e4 | 1.09e4  | 12.5 | 0.0  | 1.00 |
| 3                                              | 3 170727G1_4 | 12.5      | 3.94             | 1.09e4 | 1.09e4  | 12.5 | 0.0  | 1.00 |
| 4                                              | 4 170727G1_5 | 1,2.5     | 3.94             | 1.19e4 | 1.19e4  | 12.5 | 0.0  | 1.00 |
| 5                                              | 5 170727G1_6 | 12.5      | 3.94             | 1.07e4 | 1.07e4  | 12.5 | 0.0  | 1.00 |
| 6                                              | 6 170727G1_7 | 12.5      | 3.94             | 1.30e4 | 1.30e4  | 12.5 | 0.0  | 1.00 |
| 7                                              | 7 170727G1_8 | 12.5      | 3.94             | 1.05e4 | 1.05e4  | 12.5 | 0.0  | 1.00 |
| 8                                              | 8 170727G1_9 | 12.5      | 3.94             | 1.01e4 | 1.01e4  | 12.5 | 0.0  | 1.00 |

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std ( Ref 24 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|---|--------------|-----------|------|--------|---------|-------|------|------|
| 1 | 1 170727G1_2 | 12.5      | 4.23 | 5.56e3 | 5.56e3  | 12.5  | 0.0  | 1.00 |
| 2 | 2 170727G1_3 | 12.5      | 4.24 | 6.24e3 | 6.24e3  | 12.5  | 0.0  | 1.00 |
| 3 | 3 170727G1_4 | 12.5      | 4.23 | 6.06e3 | 6.06e3  | 12.5  | 0.0  | 1.00 |
| 4 | 4 170727G1_5 | 12.5      | 4.23 | 6.19e3 | 6.19e3  | 12.5  | 0.0  | 1.00 |
| 5 | 5 170727G1_6 | 12.5      | 4.23 | 5.76e3 | 5.76e3  | 12.5  | 0.0  | 1.00 |
| 6 | 6 170727G1_7 | 12.5      | 4.24 | 8.45e3 | 8.45e3  | 12.5  | 0.0  | 1.00 |
| 7 | 7 170727G1_8 | 12.5      | 4.24 | 6.39e3 | 6.39e3  | 12.5  | 0.0  | 1.00 |
| 8 | 8 170727G1_9 | 12.5      | 4.24 | 6.59e3 | 6.59e3  | 12.5  | 0.0  | 1.00 |

Work Order 1700887 Page 185 of 316

MassLynx 4.1 SCN815

Page 13 of 14

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

## Compound name: 13C9-PFNA

Response Factor: 1

RRF SD: 4.19625e-017, Relative SD: 4.19625e-015

Response type: Internal Std ( Ref 25 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # Name        | Std. Conc | RT   | Resp   | IS Resp | Conc | %Dev | RRF  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------|--------|---------|------|------|------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 170727G1_2  | 12.5      | 4.57 | 5.69e3 | 5.69e3  | 12.5 | 0.0  | 1.00 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 170727G1_3  | 12.5      | 4.58 | 7.13e3 | 7.13e3  | 12.5 | 0.0  | 1.00 |
| 3. A. A. P. P. A. A. P. P. A. | 3 170727G1_4  | 12.5      | 4.58 | 7.07e3 | 7.07e3  | 12.5 | 0.0  | 1.00 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 170727G1_5. | 12.5      | 4.58 | 8.26e3 | 8.26e3  | 12.5 | 0.0  | 1.00 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 170727G1_6  | 12.5      | 4.57 | 6.89e3 | 6.89e3  | 12.5 | -0.0 | 1.00 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 170727G1_7  | 12.5      | 4.58 | 9.28e3 | 9.28e3  | 12.5 | 0.0  | 1.00 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 170727G1_8  | 12.5      | 4.58 | 8.18e3 | 8.18e3  | 12.5 | 0.0  | 1.00 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 170727G1_9  | 12.5      | 4.57 | 8.82e3 | 8.82e3  | 12.5 | 0.0  | 1.00 |

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 5.93439e-017, Relative SD: 5.93439e-015

Response type: Internal Std ( Ref 26 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|   | # Name       | Std. Conc. | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|---|--------------|------------|------|--------|---------|-------|------|------|
| 1 | 1 170727G1_2 | 12.5       | 4.64 | 6.02e3 | 6.02e3  | 12.5  | 0.0  | 1.00 |
| 2 | 2 170727G1_3 | 12.5       | 4.64 | 6.85e3 | 6.85e3  | 12.5  | 0.0  | 1.00 |
| 3 | 3 170727G1_4 | 12.5       | 4.64 | 7.35e3 | 7.35e3  | 12.5  | 0.0  | 1.00 |
| 4 | 4 170727G1_5 | 12.5       | 4.64 | 8.50e3 | 8.50e3  | 12.5  | 0.0  | 1.00 |
| 5 | 5 170727G1_6 | 12.5       | 4.64 | 7.46e3 | 7.46e3  | 12.5  | 0.0  | 1.00 |
| 6 | 6 170727G1_7 | 12.5       | 4.64 | 8.74e3 | 8.74e3  | 12.5  | -0.0 | 1.00 |
| 7 | 7 170727G1_8 | 12.5       | 4.64 | 8.39e3 | 8.39e3  | 12.5  | -0.0 | 1.00 |
| 8 | 8 170727G1_9 | 12.5       | 4.64 | 8.61e3 | 8.61e3  | 12.5  | 0.0  | 1.00 |

Work Order 1700887 Page 186 of 316

Quantify Compound Summary Report MassLynx 4.1 SCN815 Page 14 of 14

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std ( Ref 27 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

| and the second | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|----------------|--------------|-----------|------|--------|---------|-------|------|------|
| 1              | 1 170727G1_2 | 12.5      | 4.87 | 4.70e3 | 4.70e3  | 12.5  | 0.0  | 1.00 |
| 2              | 2 170727G1_3 | 12.5      | 4.87 | 6.26e3 | 6.26e3  | 12.5  | 0.0  | 1.00 |
| 3              | 3 170727G1_4 | 12.5      | 4.87 | 6.00e3 | 6.00e3  | 12.5  | 0.0  | 1.00 |
| 4              | 4 170727G1_5 | 12.5      | 4.87 | 7.21e3 | 7.21e3  | 12.5  | 0.0  | 1.00 |
| 5              | 5 170727G1_6 | 12.5      | 4.87 | 6.64e3 | 6.64e3  | 12.5  | 0.0  | 1.00 |
| 6              | 6 170727G1_7 | 12.5      | 4.87 | 7.25e3 | 7.25e3  | 12.5  | 0.0  | 1.00 |
| 7              | 7 170727G1_8 | 12.5      | 4.87 | 7.73e3 | 7.73e3  | 12.5  | 0.0  | 1.00 |
| 8              | 8 170727G1_9 | 12.5      | 4.87 | 8.08e3 | 8.08e3  | 12.5  | 0.0  | 1.00 |

Work Order 1700887

MassLynx 4.1 SCN815

Page 1 of 1

Dataset:

Untitled

Last Altered: Printed:

Thursday, July 27, 2017 15:00:56 Pacific Daylight Time Thursday, July 27, 2017 15:01:11 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

| Name           | ID                            | Acq.Date           | Acq.Time |
|----------------|-------------------------------|--------------------|----------|
| 1 170727G1_1   | IPA                           | 27-Jul-17          | 11:32:09 |
| 2 170727G1_2   | ST170727G1-1 PFC CS-2 17G2714 | 27-Jul <b>-</b> 17 | 11:44:22 |
| 3 170727G1_3   | ST170727G1-2 PFC CS-1 17G2715 | 27-Jul-17          | 11:56:54 |
| 4 170727G1_4   | ST170727G1-3 PFC CS0 17G2716  | 27-Jul-17          | 12:09:31 |
| 5 170727G1_5   | ST170727G1-4 PFC CS1 17G2717  | 27-Jul-17          | 12:21:58 |
| 6 170727G1_6   | ST170727G1-5 PFC CS2 17G2718  | 27-Jul-17          | 12:34:32 |
| 7 170727G1_7   | ST170727G1-6 PFC CS3 17G2719  | 27-Jul-17          | 12:47:11 |
| 8 170727G1_8   | ST170727G1-7 PFC CS4 17G2720  | 27-Jul-17          | 12:59:35 |
| 9 170727G1_9   | ST170727G1-8 PFC CS5 17G2721  | 27-Jul-17          | 13:12:08 |
| 10 170727G1_10 | IPA                           | 27-Jul-17          | 13:24:41 |
| 11 170727G1_11 | SS170727G1-1 PFC SSS 17G2713  | 27-Jul-17          | 13:37:14 |
| 12 170727G1_12 | IPA                           | 27-Jul-17          | 13:49:43 |

Work Order 1700887

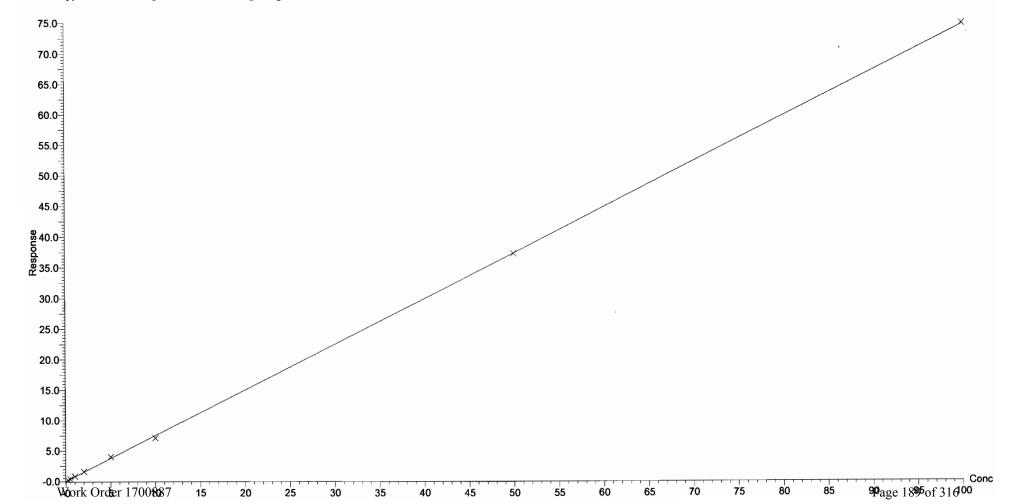
Page 1 of 10

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17


Calibration: U:\G1.PRO\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

Correlation coefficient: r = 0.999824,  $r^2 = 0.999647$ 

Calibration curve: 0.747533 \* x + 0.048007

Response type: Internal Std ( Ref 11 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



**Quantify Calibration Report** Vista Analytical Laboratory Q1

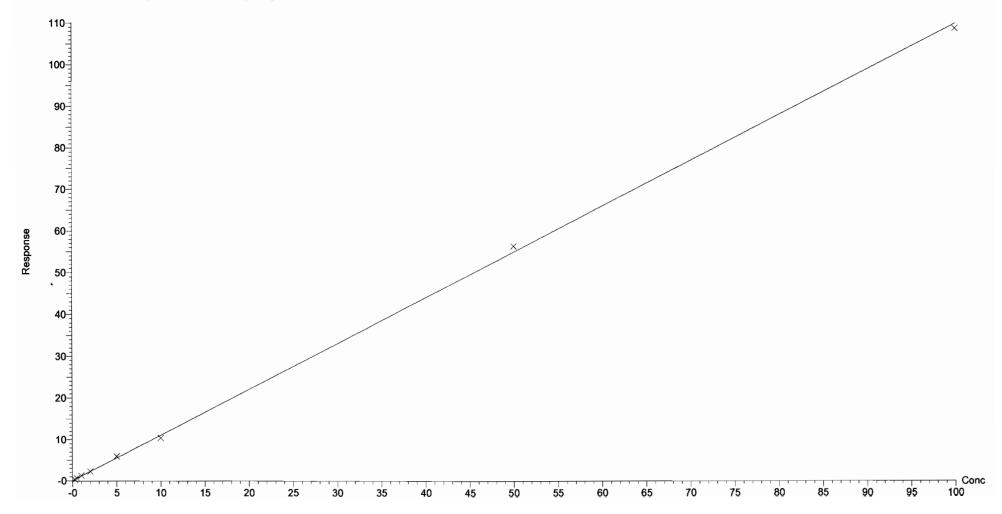
MassLynx 4.1 SCN815

Page 2 of 10

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:


Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFPeA

Correlation coefficient: r = 0.999667, r^2 = 0.999334

Calibration curve: 1.10054 \* x + 0.0486908

Response type: Internal Std ( Ref 13 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



Work Order 1700887

Page 190 of 316

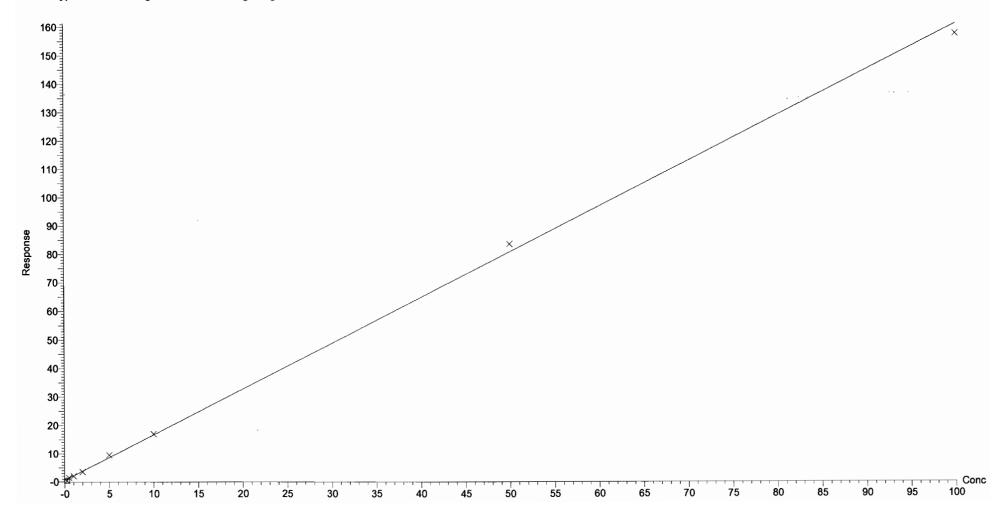
MassLynx 4.1 SCN815

Page 3 of 10

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered: Printed:


Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: r = 0.999365, r^2 = 0.998731

Calibration curve: 1.60766 \* x + 0.593256

Response type: Internal Std ( Ref 12 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



Work Order 1700887

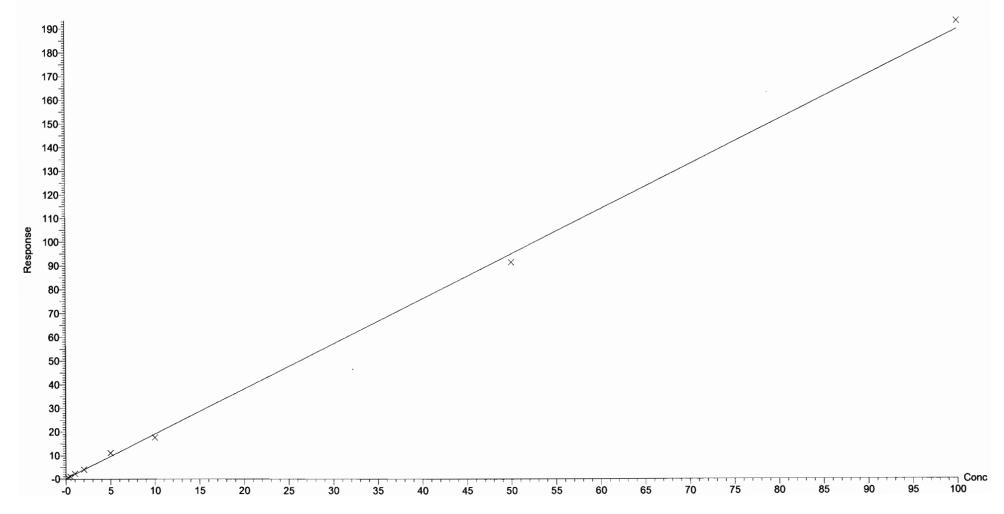
Page 4 of 10

Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:


Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: r = 0.999065, r^2 = 0.998131

Calibration curve: 1.89981 \* x + 0.153363

Response type: Internal Std ( Ref 14 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

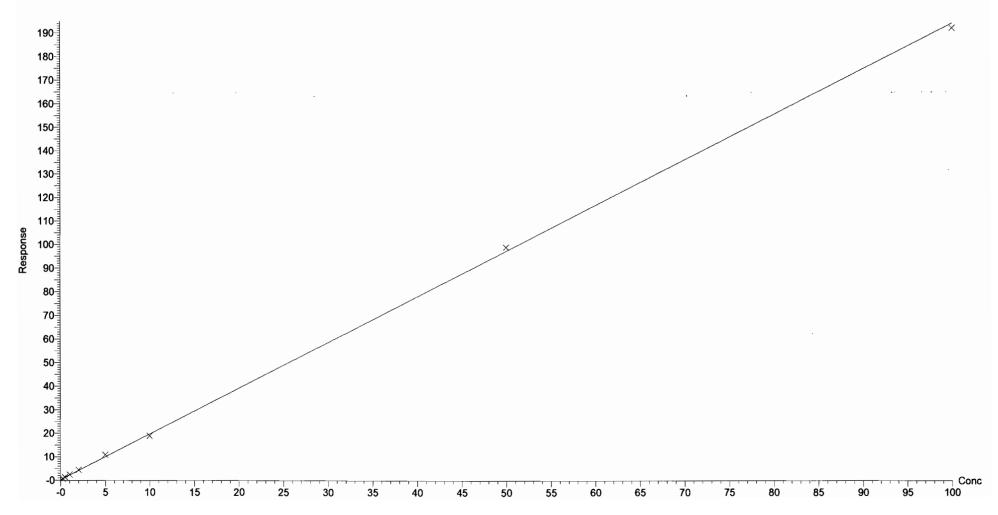


Work Order 1700887

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:


Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: r = 0.999666,  $r^2 = 0.999332$ 

Calibration curve: 1.94658 \* x + 0.2548

Response type: Internal Std ( Ref 15 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



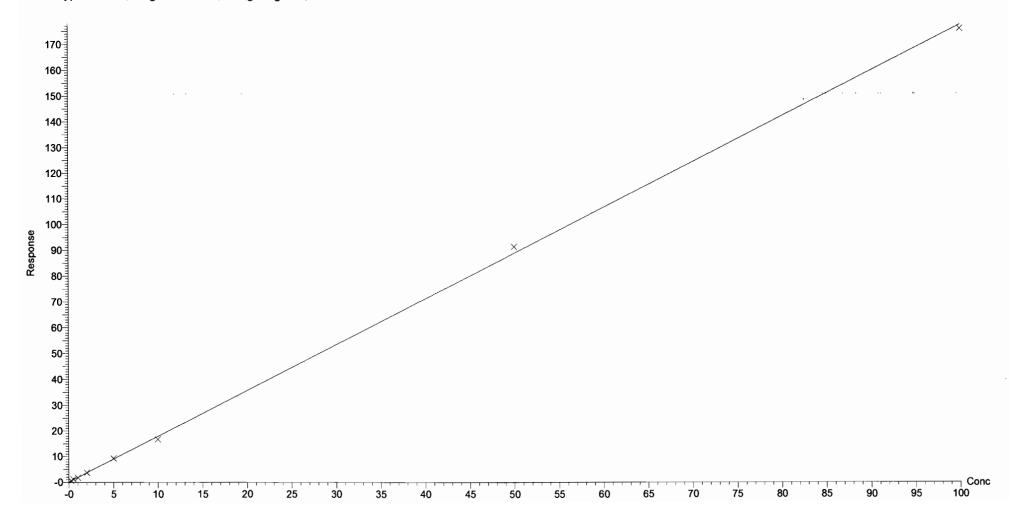
**Quantify Calibration Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815

Page 6 of 10

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:


Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFHxS

Correlation coefficient: r = 0.999617,  $r^2 = 0.999233$ 

Calibration curve: 1.77848 \* x + 0.109682

Response type: Internal Std ( Ref 16 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



**Quantify Calibration Report** 

MassLynx 4.1 SCN815

Page 7 of 10

Vista Analytical Laboratory Q1

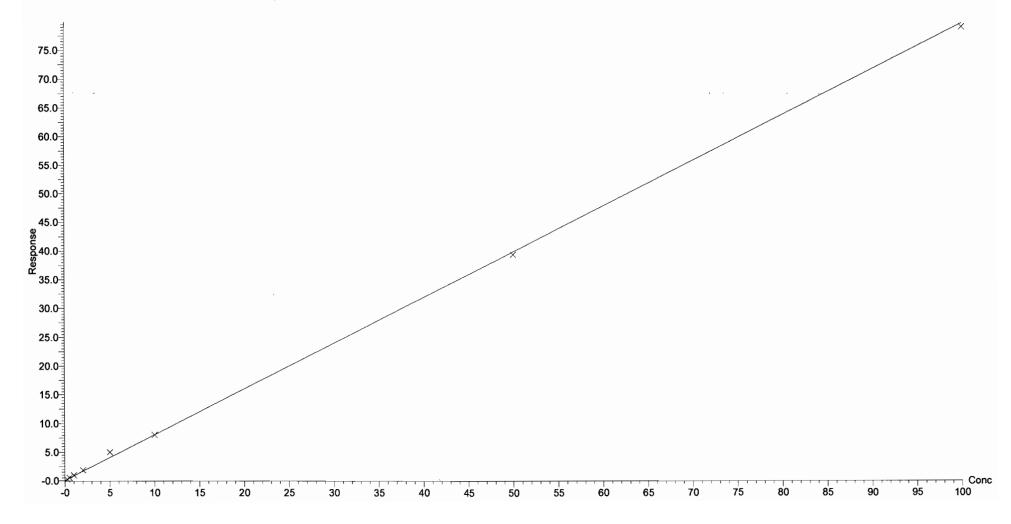
Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed:


Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: r = 0.998786,  $r^2 = 0.997574$ 

Calibration curve: 0.797511 \* x + 0.0924786

Response type: Internal Std ( Ref 17 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None



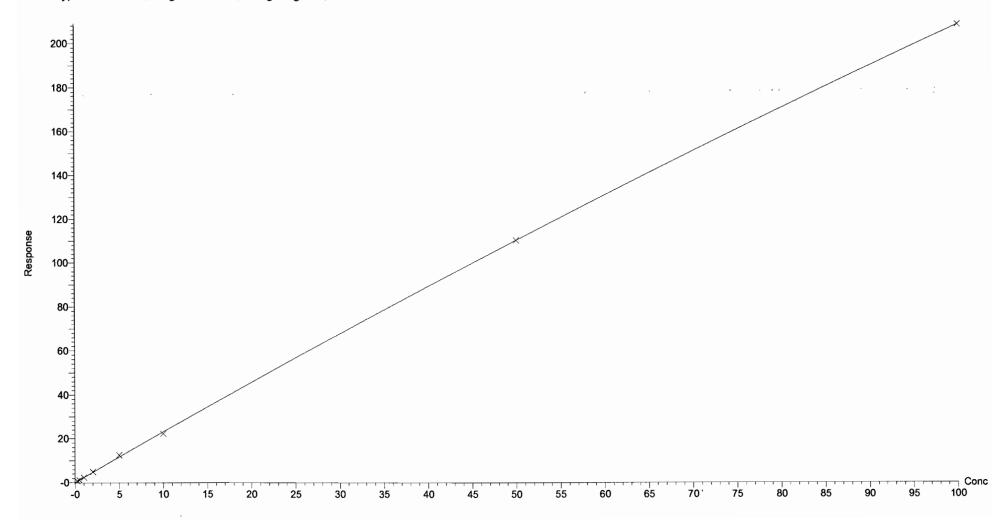
Work Order 1700887

**Quantify Calibration Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815

Page 8 of 10

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld


Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFNA

Coefficient of Determination: R^2 = 0.999639

Calibration curve: -0.00237877 \* x^2 + 2.32641 \* x + 0.0752635 Response type: Internal Std ( Ref 18 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None



Work Order 1700887

Page 196 of 316

**Quantify Calibration Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815

Page 9 of 10

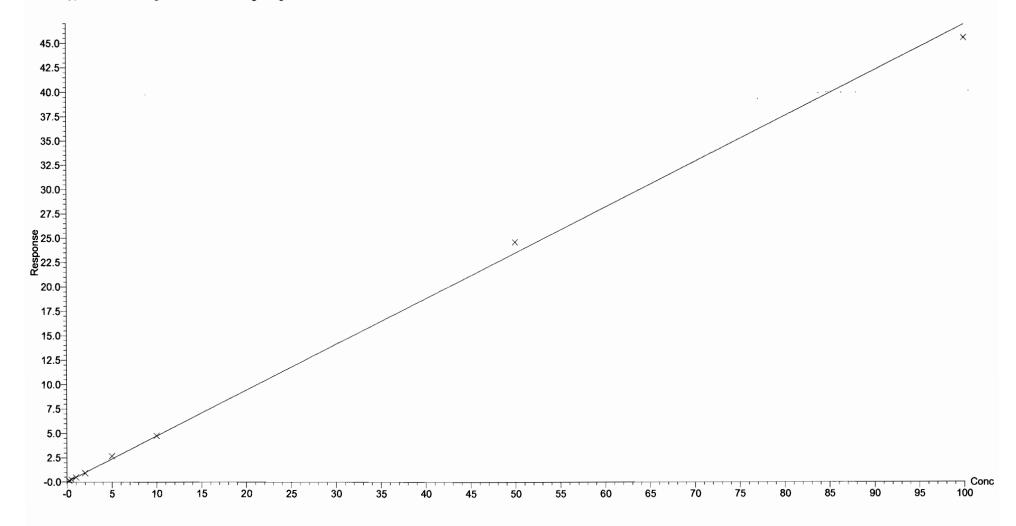
Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed:


Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFOS

Correlation coefficient: r = 0.999145,  $r^2 = 0.998292$ 

Calibration curve: 0.470087 \* x + 0.0287104

Response type: Internal Std ( Ref 20 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



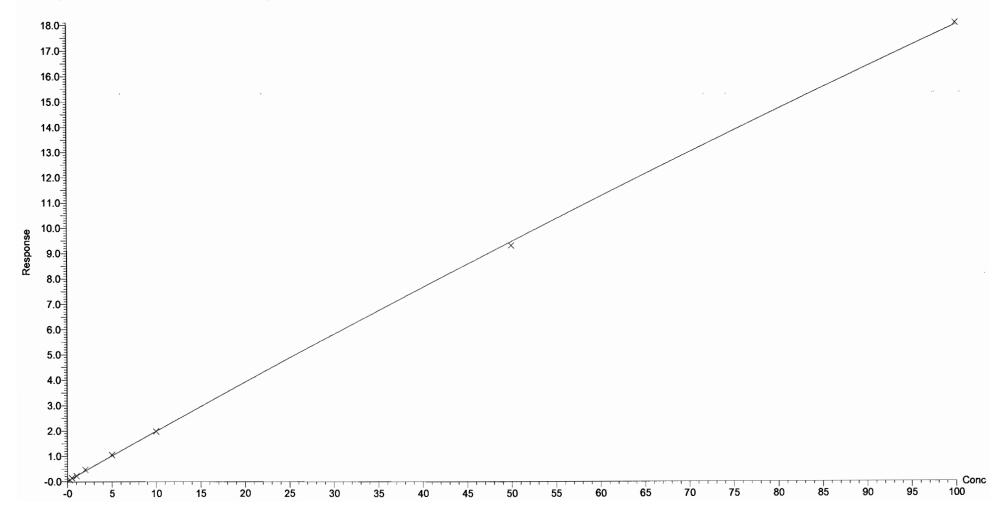
MassLynx 4.1 SCN815

Page 10 of 10

viola i araiyiisai Laborat

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:


Dataset:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

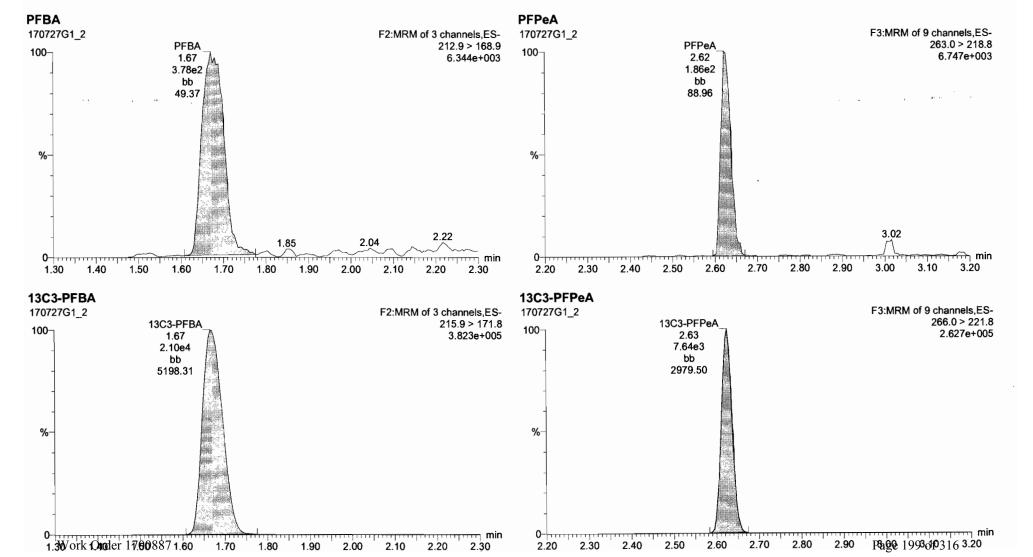
Compound name: PFDA

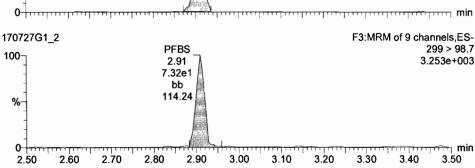
Coefficient of Determination: R^2 = 0.999346

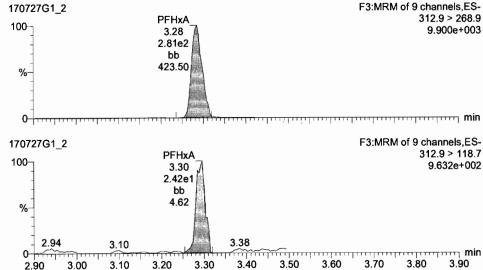
Calibration curve:  $-0.000179878 * x^2 + 0.198072 * x + 0.02746$ Response type: Internal Std ( Ref 19 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None



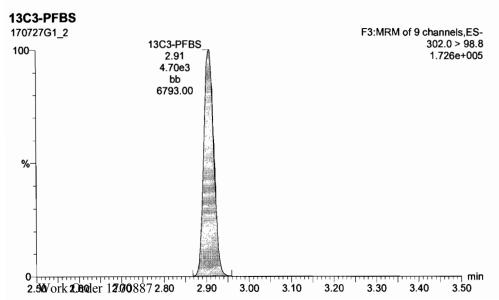
Page 1 of 56

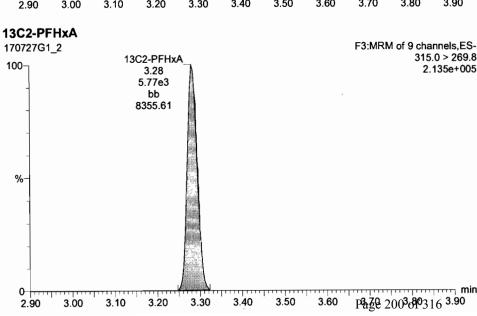

Dataset:


U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld


Last Altered: Printed: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17


Calibration: U:\G1.PRO\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

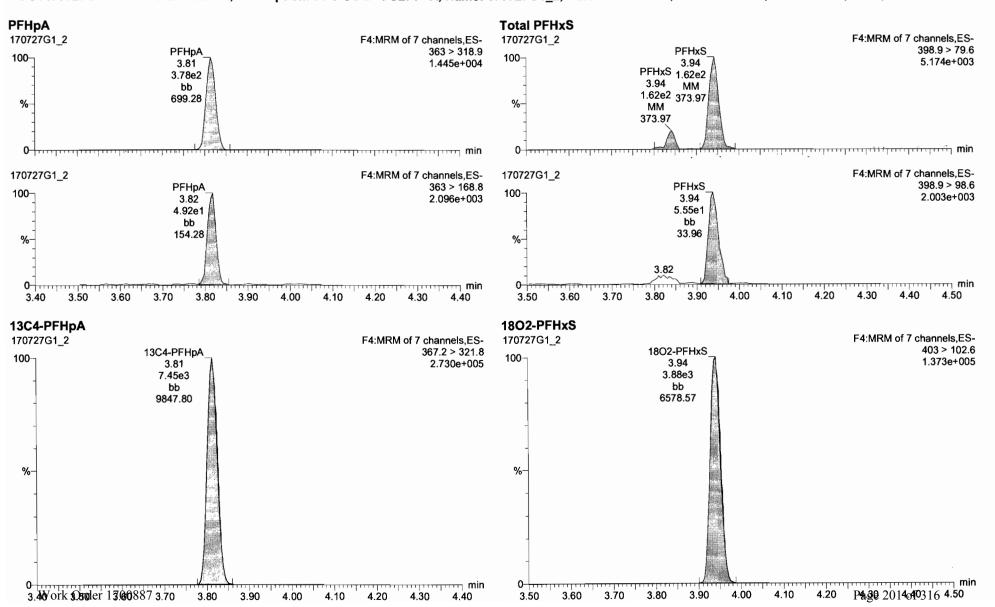







Page 2 of 56



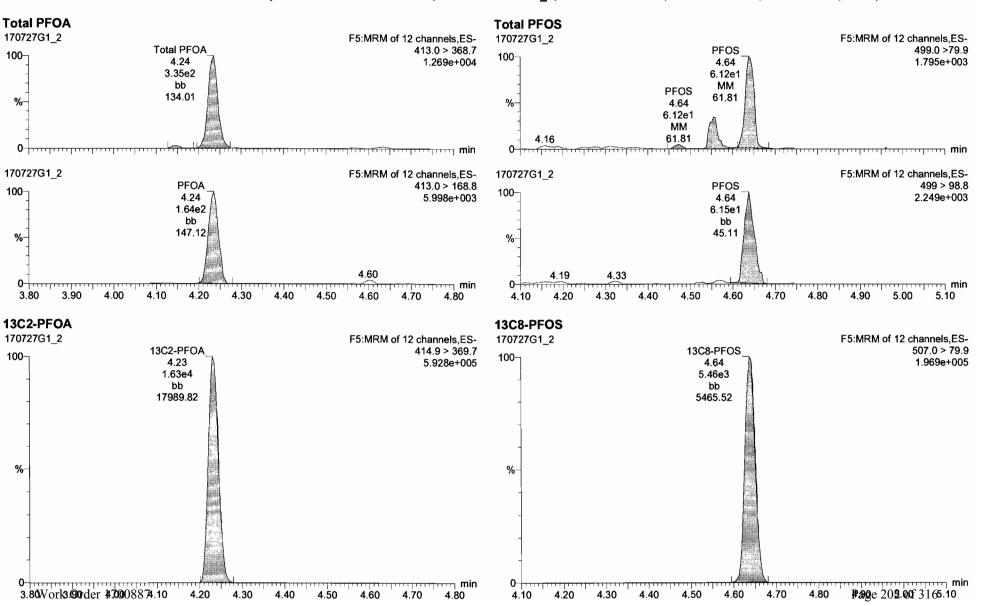



Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

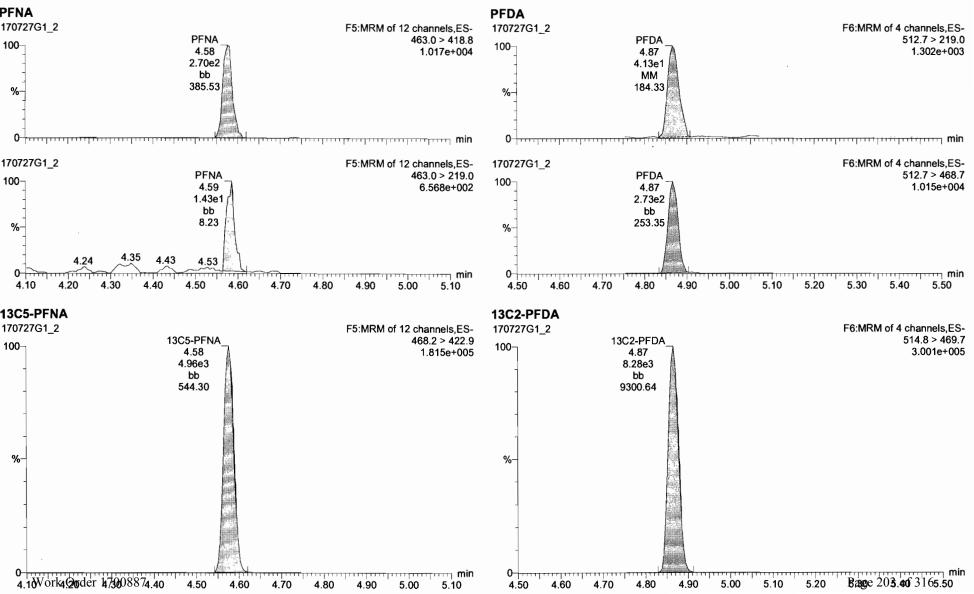
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:


Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



**Quantify Sample Report** MassLynx 4.1 SCN815 Page 6 of 56 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1\_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User: 13C5-PFHxA 13C3-PFHxS 170727G1 2 F4:MRM of 7 channels, ES-F3:MRM of 9 channels, ES-170727G1\_2 13C3-PFHxS 401.9 > 79.9 13C5-PFHxA 318>272.9 100-100-3.465e+005 3.28 6.720e+005 3.94 1.73e4 9.33e3 bb bb 18156.87 2786.53 3.90 4.00 4.10 4.20 4.40 3.00 3.30 3.50 3.60 3.80 4.30 2.90 3.20 3.40 3.60 3.70 3.80 3.90 3.50 3.70 13C8-PFOA 13C4-PFOS F5:MRM of 12 channels, ES-170727G1\_2 F5:MRM of 12 channels, ES-170727G1\_2 13C4-PFOS 503.0 > 79.9 13C8-PFOA 421.3 > 376 100-100-2.202e+005 4.23 2.006e+005 4.64 5.56e3 6.02e3 bb bb 5255.80 5026.99

4.30

4.20

4.10

4.40

4.50

4.60

4.70

4.80

3.86Work3@oder 1470008874.10

4.40

4.30

4.50

4.60

4.70

4.80

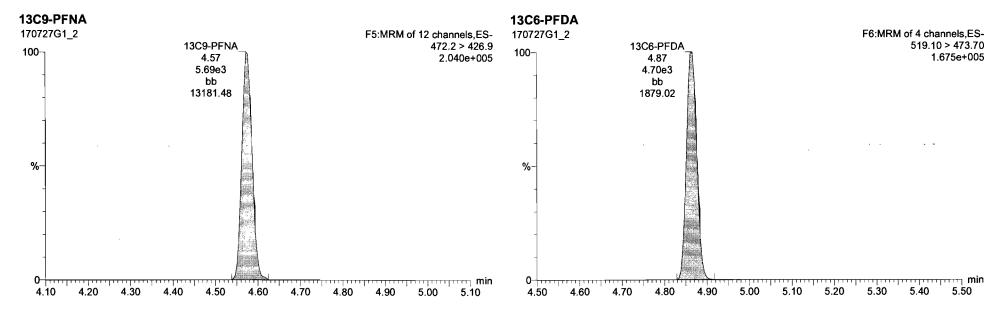
4.50

Page 2045.00 3165.10

MassLynx 4.1 SCN815

Page 7 of 56

Vista Analytical Laboratory Q1


Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered: Printed:

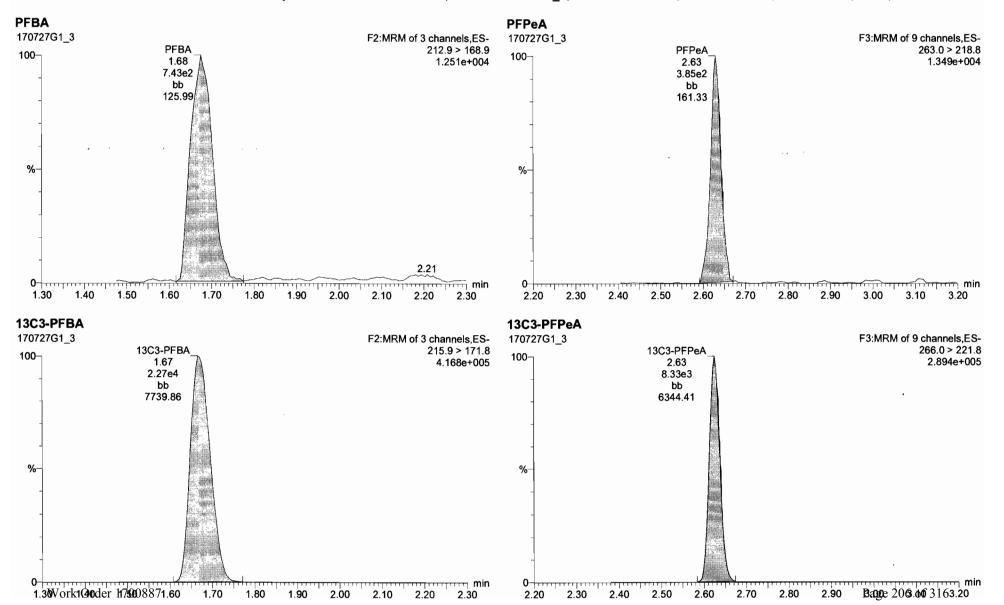
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

#### ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1\_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:



Work Order 1700887 Page 205 of 316

Page 8 of 56

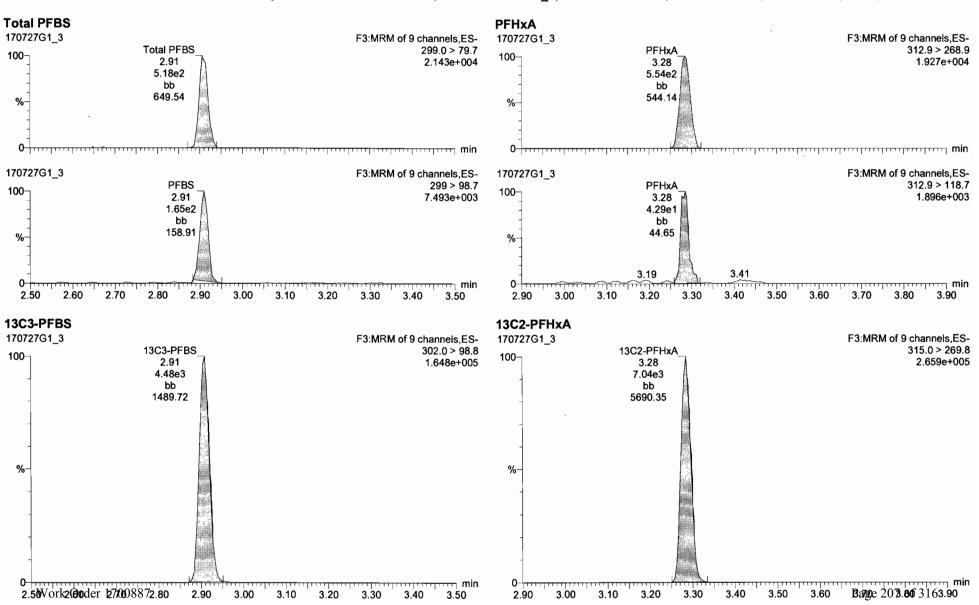

viola / irialytical Easorato

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

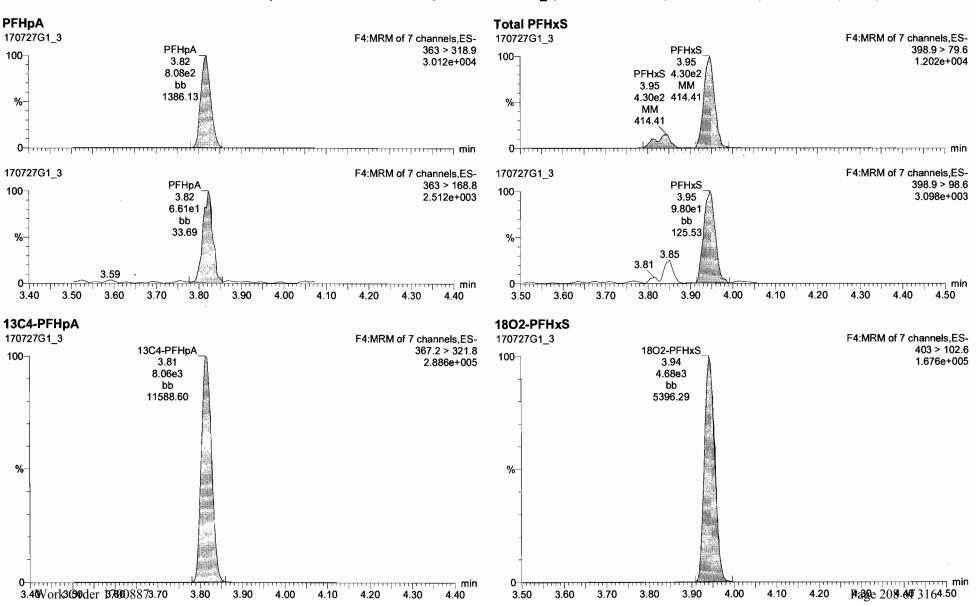



Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:

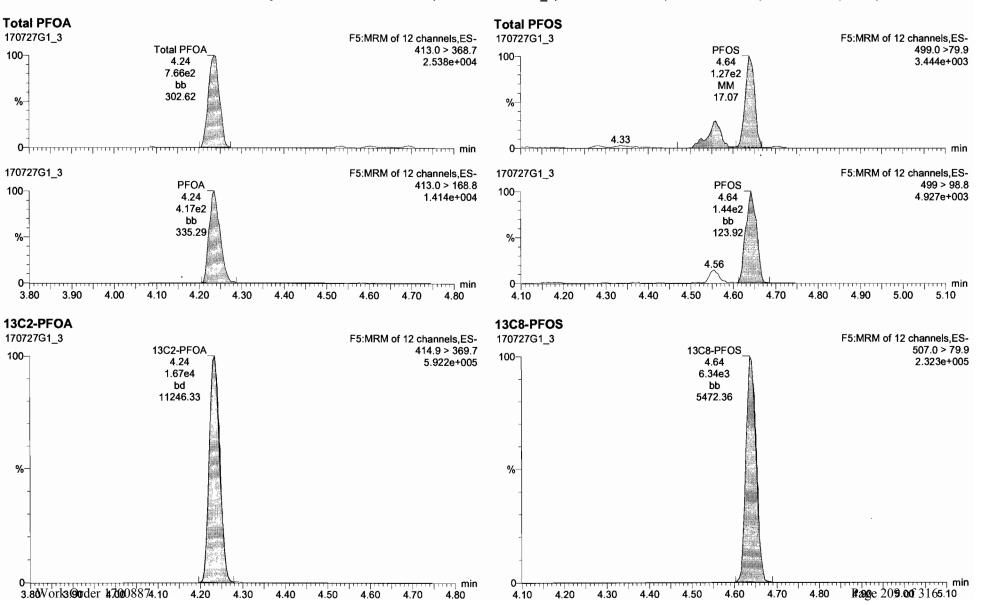
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



**Quantify Sample Report** 

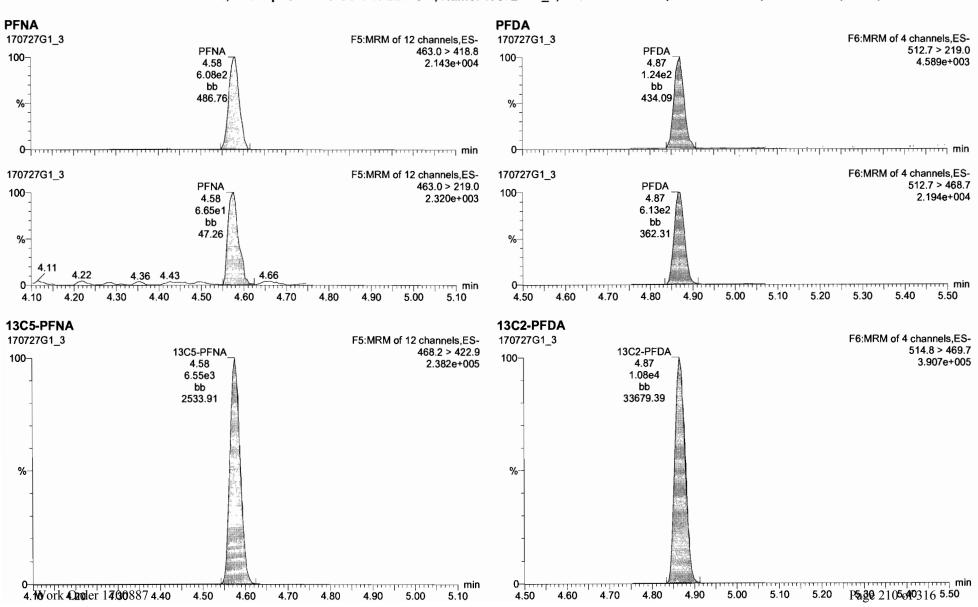

MassLynx 4.1 SCN815

Page 11 of 56

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:

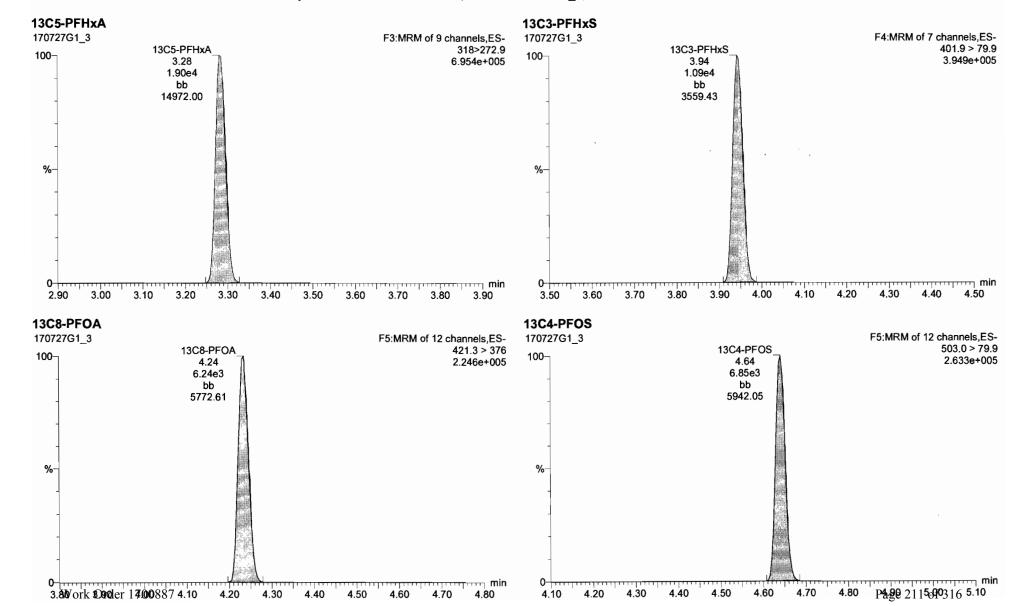
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Page 13 of 56


Vista Analytical Laboratory Q1

Dataset:

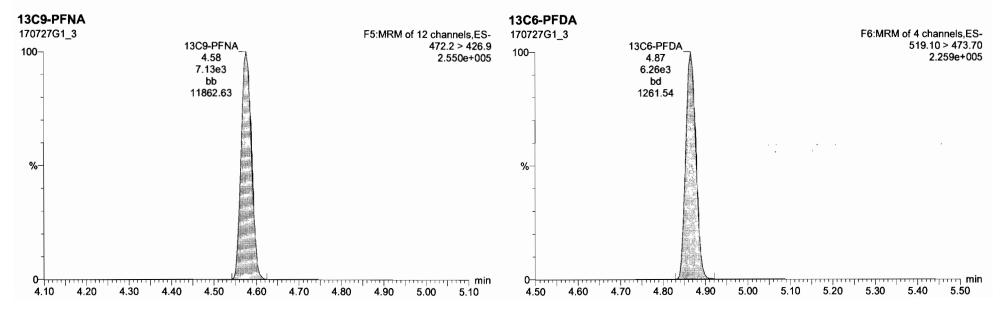
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Dataset:


U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

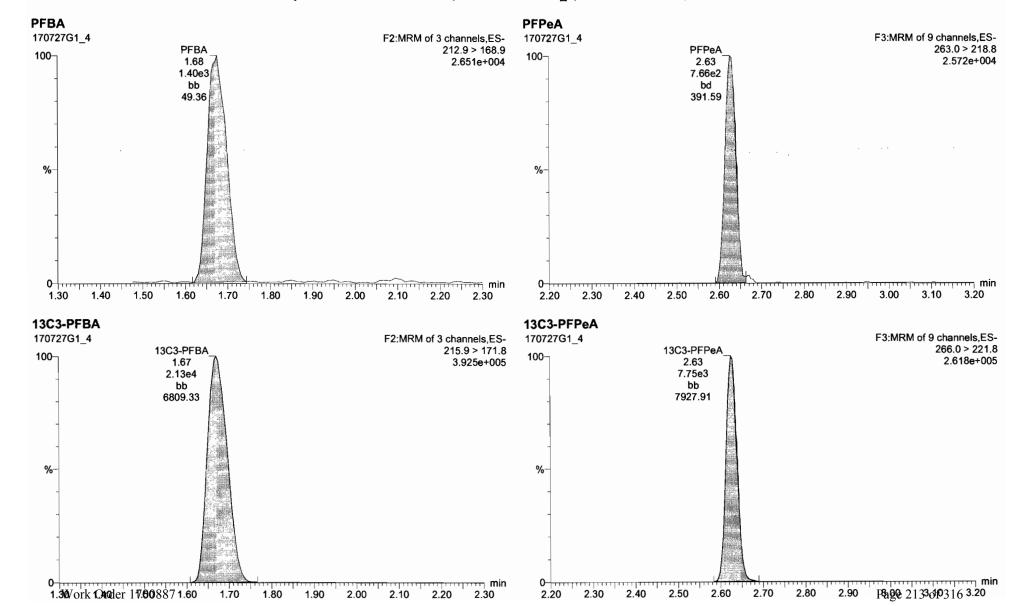
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

#### ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1\_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:



Work Order 1700887

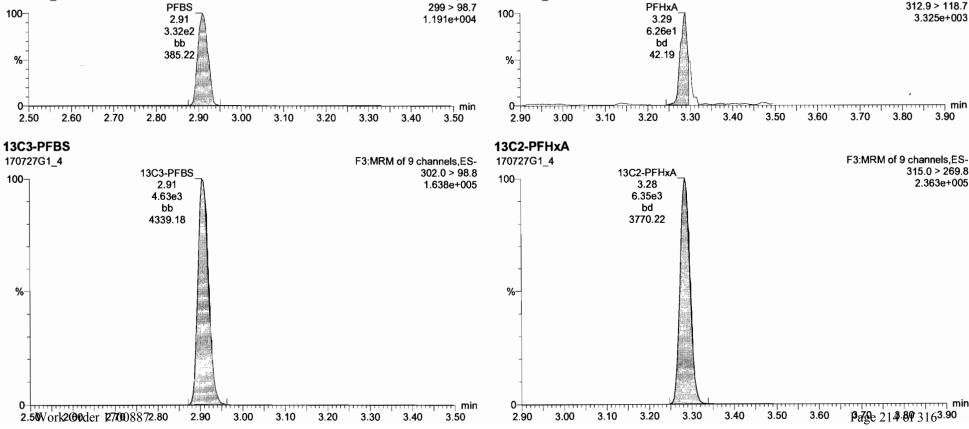
Page 15 of 56


Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time


Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Page 16 of 56

312.9 > 268.9

4.562e+004



**Quantify Sample Report** Page 17 of 56 MassLynx 4.1 SCN815 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1\_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User: **PFHpA Total PFHxS** 170727G1\_4 F4:MRM of 7 channels.ES-F4:MRM of 7 channels, ES-170727G1 4 398.9 > 79.6 **PFHpA** 363 > 318.9 **PFHxS** 100-100-1.866e+004 6.144e+004 3.94 3.81 PFHxS 6.02e2 1.65e3 MM bb 6.02e2 857.82 3.94 2288.05 MM 857.82 170727G1\_4 170727G1\_4 F4:MRM of 7 channels, ES-F4:MRM of 7 channels.ES-**PFHxS** 398.9 > 98.6 **PFHpA** 363 > 168.8 100 ¬ 100 ¬ 3.82 8.427e+003 3.95 6.453e+003 2.29e2 1.88e2 bb bb 588.03 142.81 % 3.82 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 3.80 3.60 3.40 3.50 3.60 3.70 3.90 4.00 4.10 4.20 4.30 4.40 3.50 3.70 13C4-PFHpA 18O2-PFHxS F4:MRM of 7 channels, ES-170727G1\_4 F4:MRM of 7 channels, ES-170727G1\_4 18O2-PFHxS 403 > 102.6 13C4-PFHpA 367.2 > 321.8 100 100-1.639e+005 3.81 3.225e+005 3.94 8.77e3 4.35e3 bb bb 14539.06 11966.85

3.50

4.40

3.60

3.70

3.80

3.90

4.00

4.10

4.20

Plage 215 6 3164.50

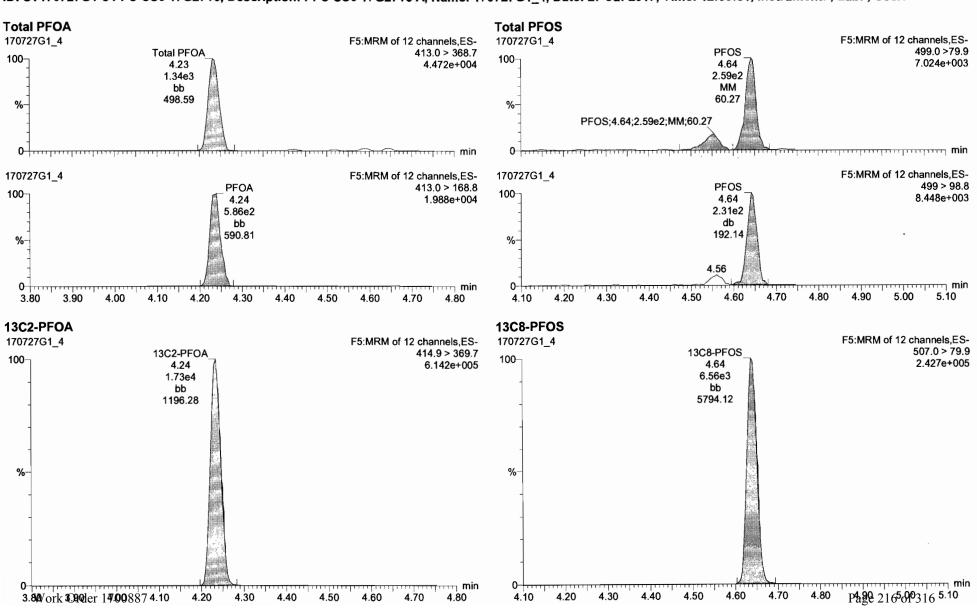
3.40Work3@oder B76008873.70

3.80

3.90

4.00

4.10

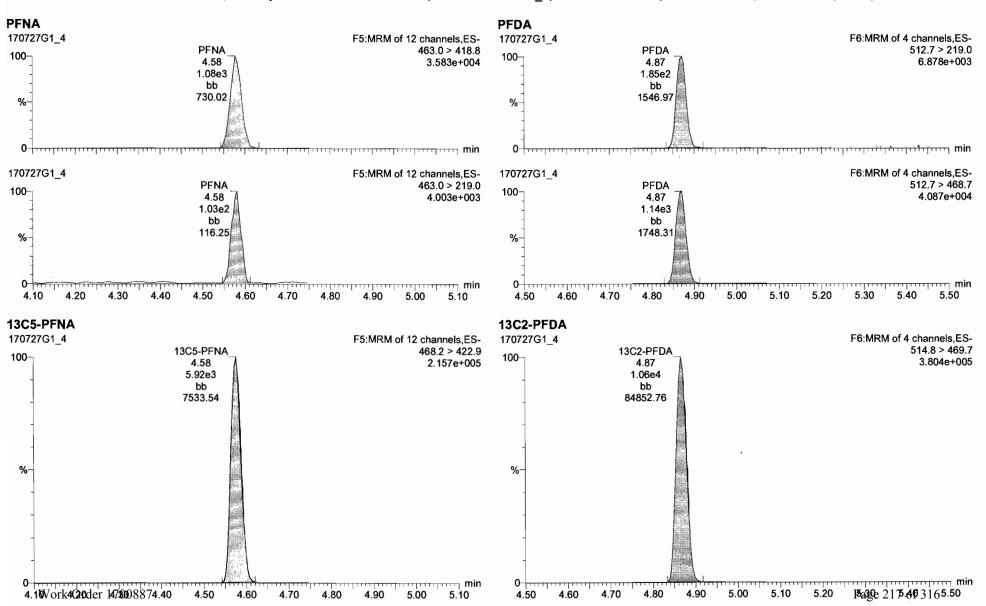

4.20

Dataset:

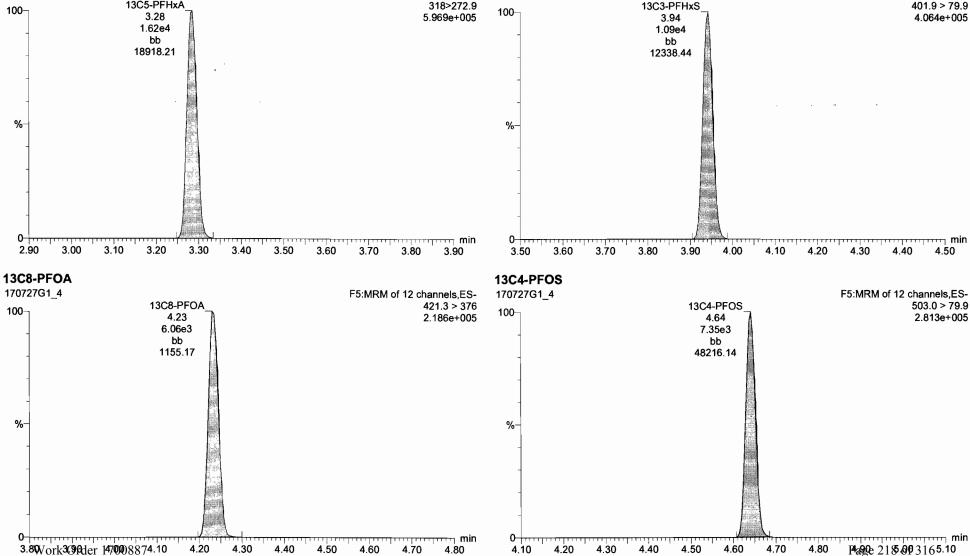
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:


U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered: Printed: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Page 20 of 56



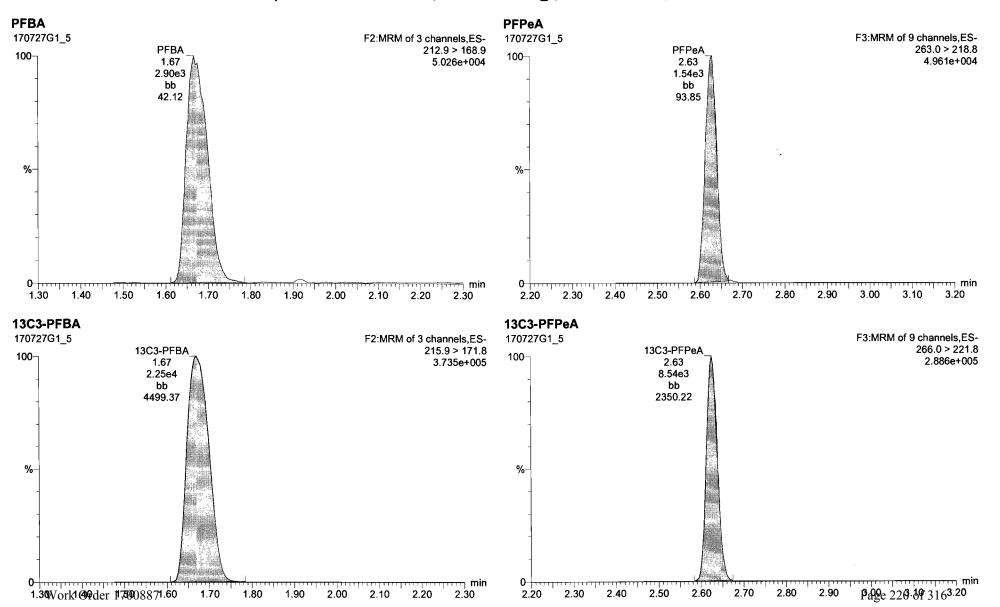
Page 21 of 56


Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

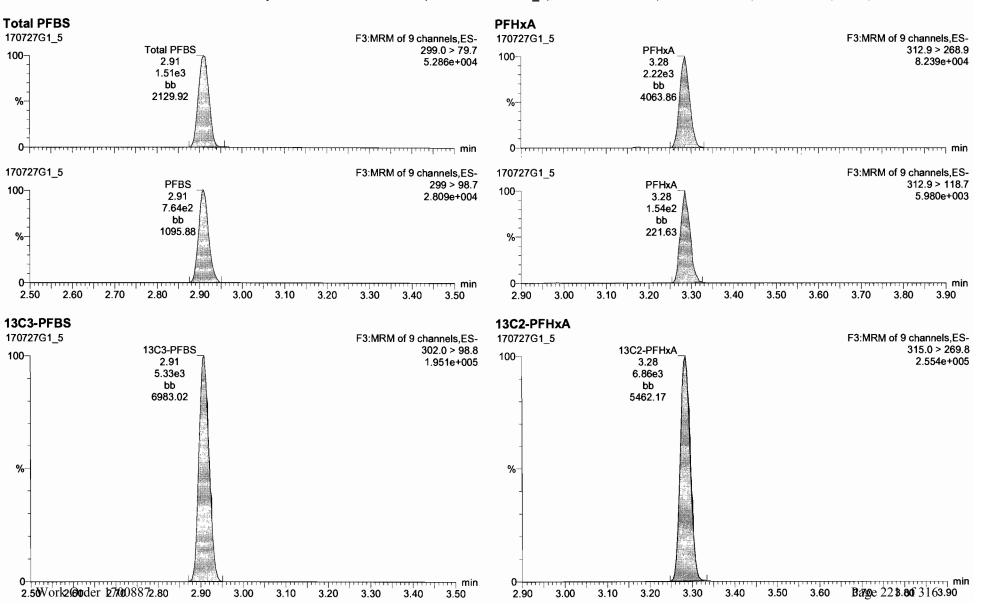

#### ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1\_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:



Work Order 1700887

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

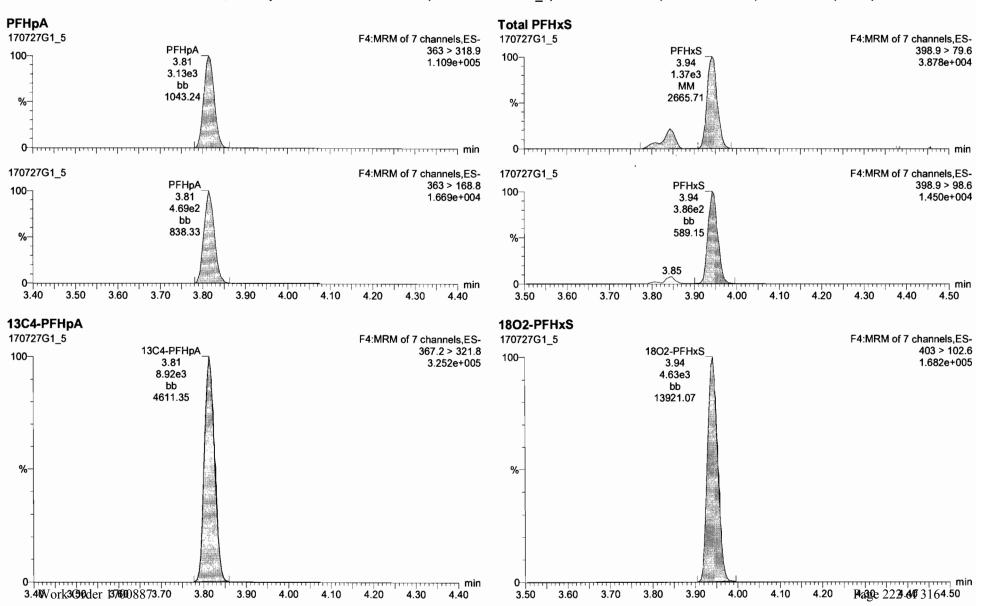
Last Altered: Printed:

Dataset:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Page 24 of 56

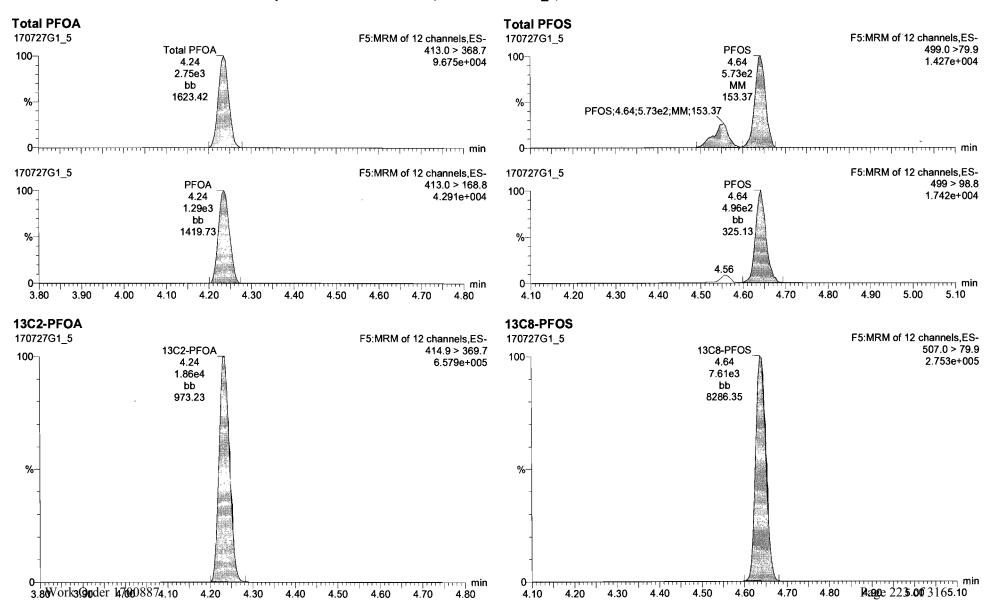

Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

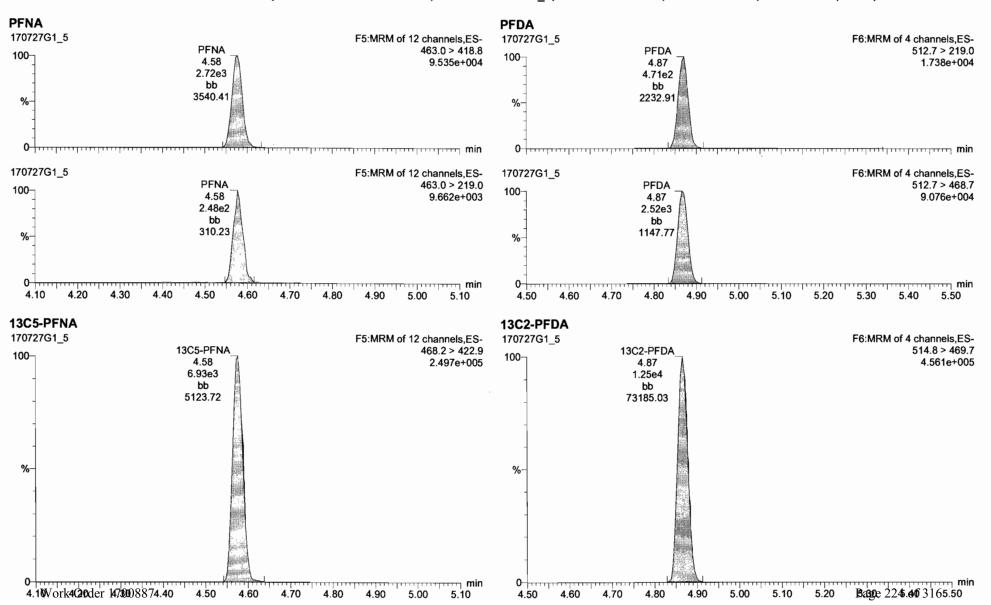



Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:

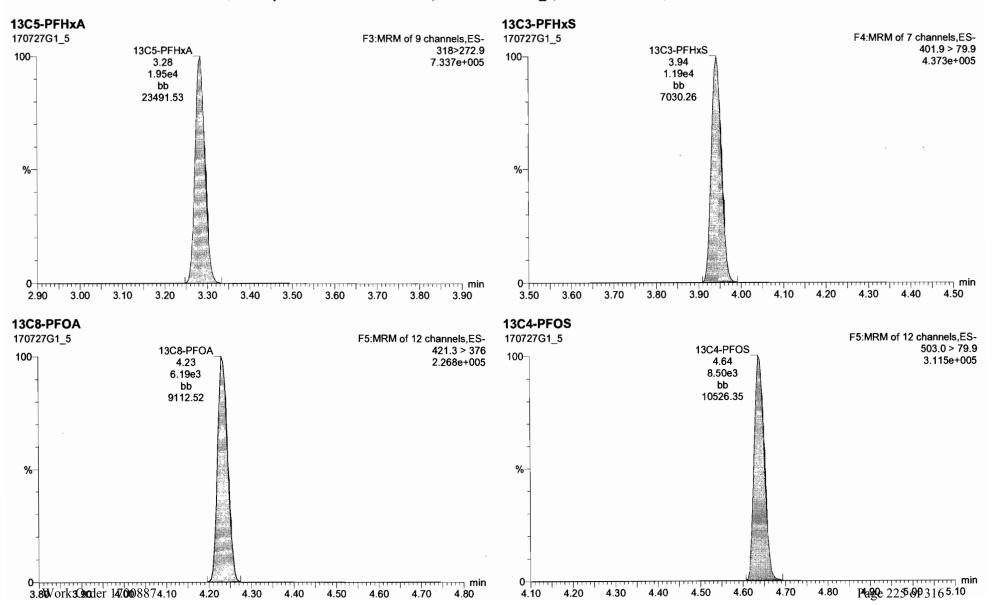
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



**Quantify Sample Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815


Page 27 of 56

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

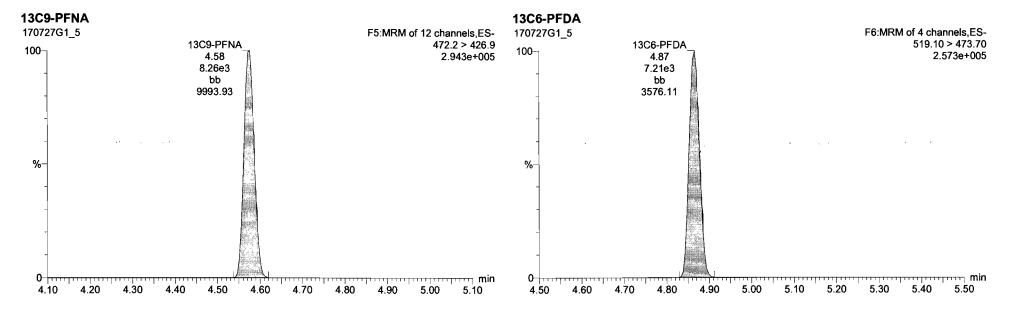
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



MassLynx 4.1 SCN815

Page 28 of 56

Vista Analytical Laboratory Q1


Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

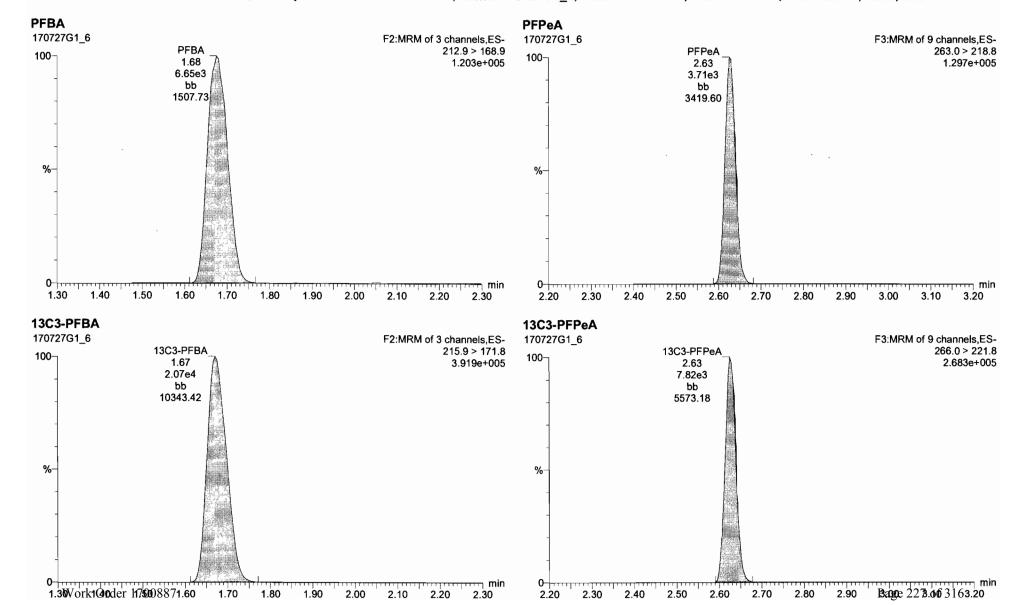
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1\_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:



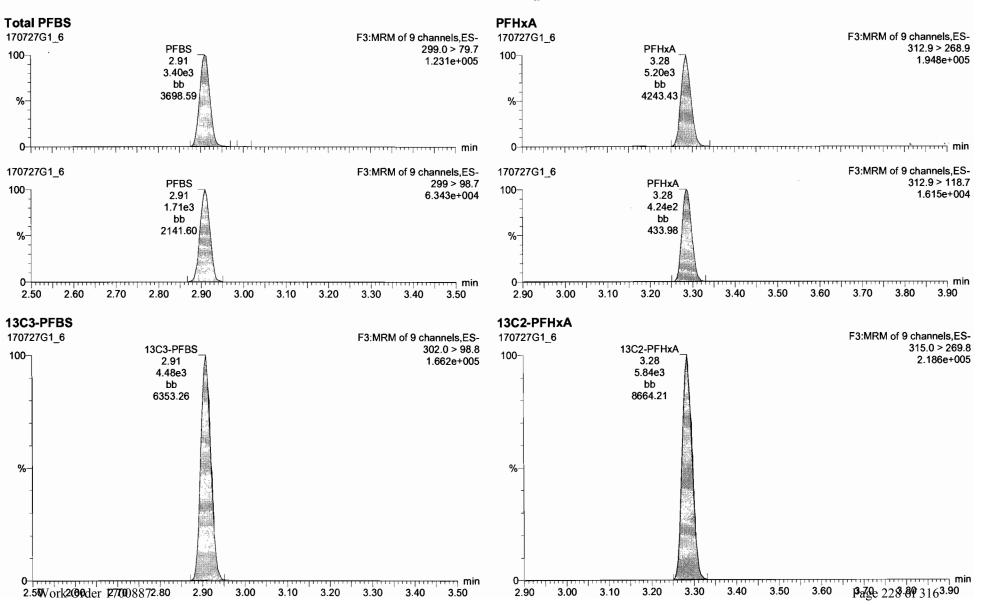
Work Order 1700887 Page 226 of 316

Page 29 of 56


viola / livalytical East.

Dataset:

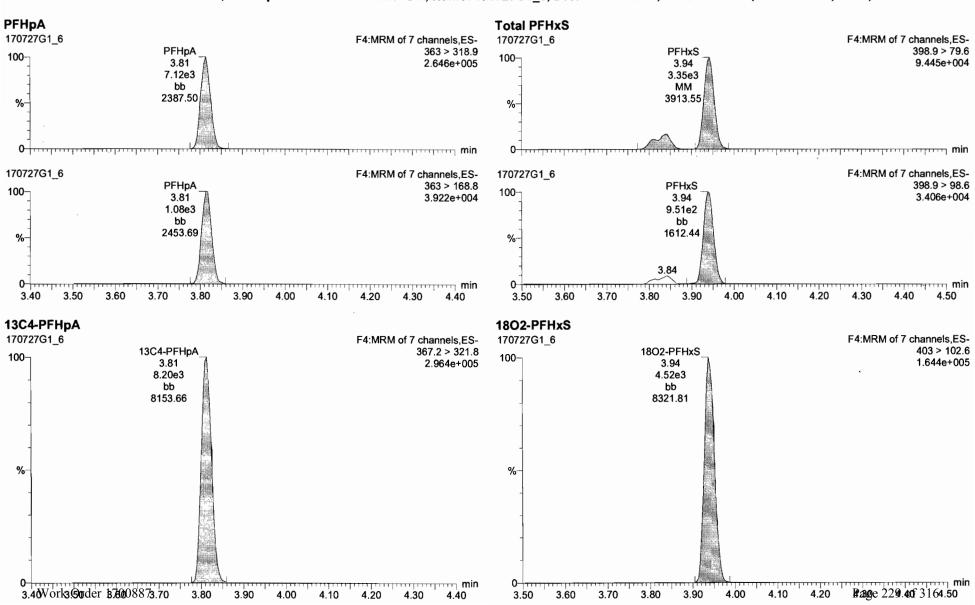
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld


Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

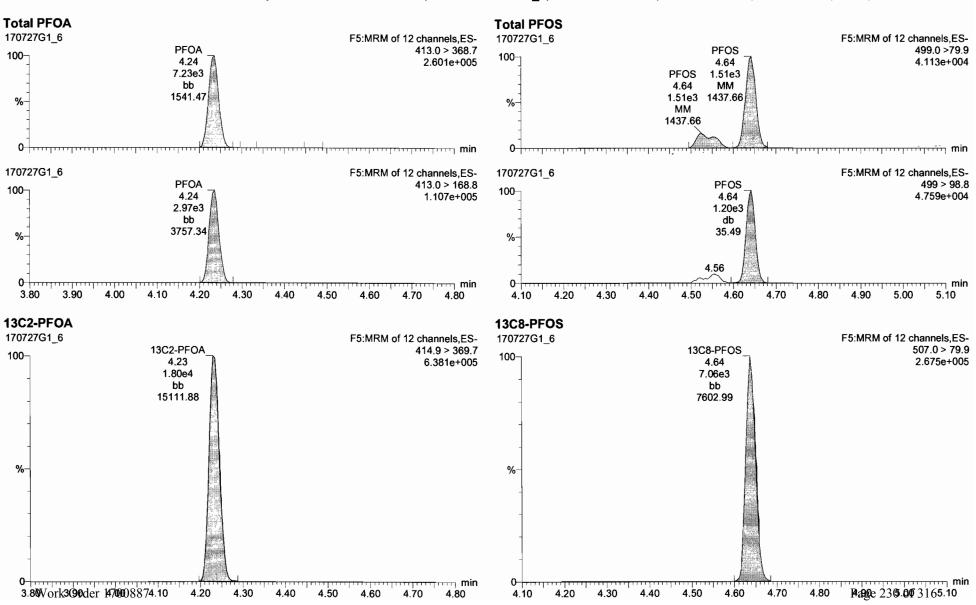


Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld


Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Dataset:


U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

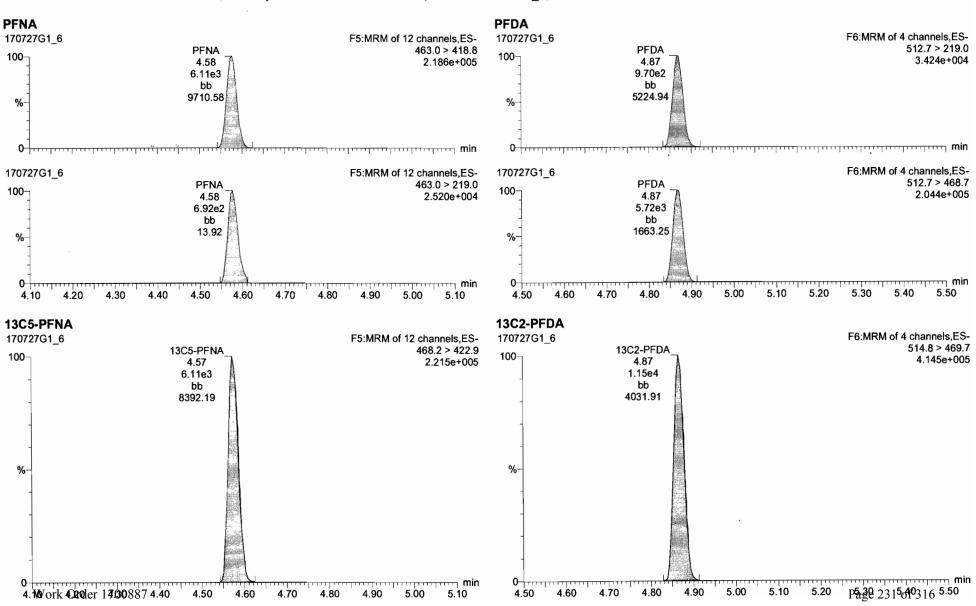
Last Altered: Printed: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

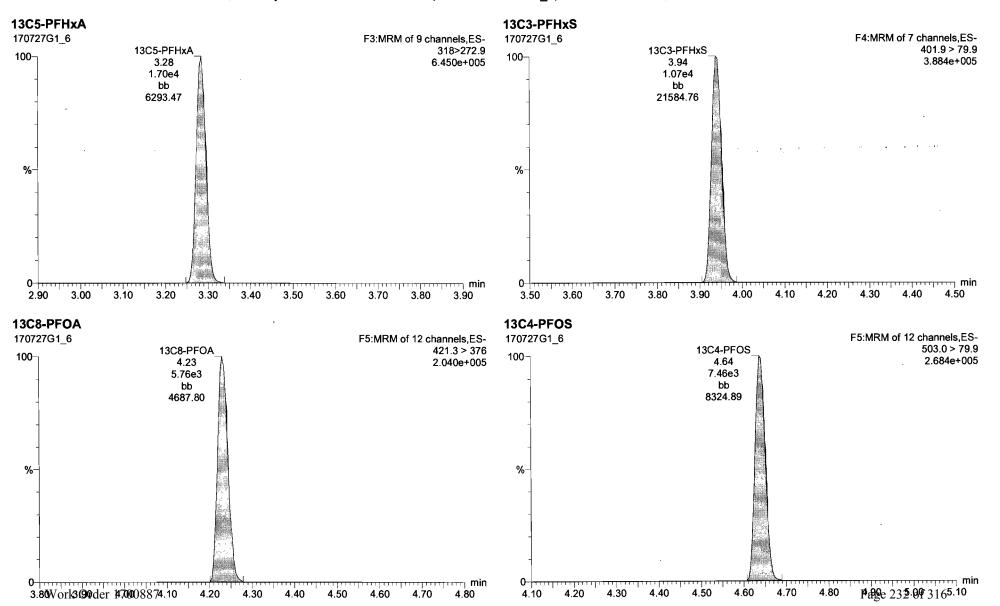



Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time


Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



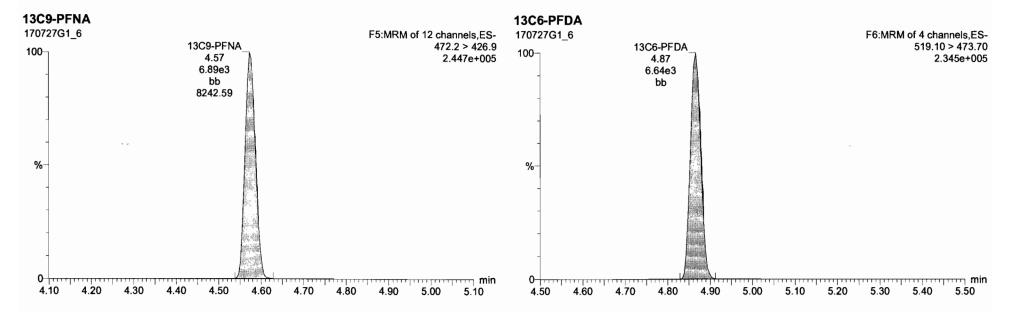
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Dataset:


U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

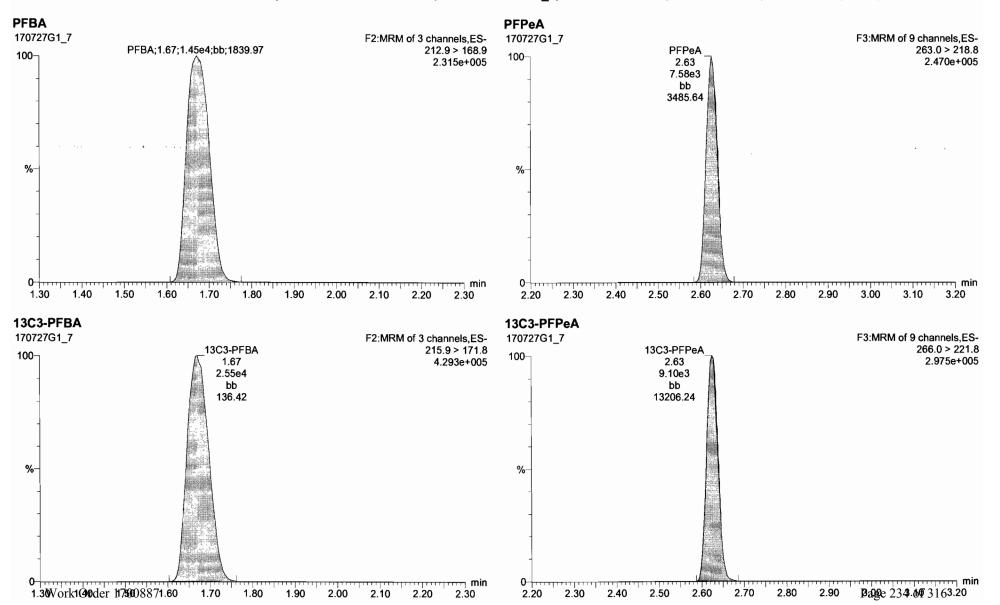
Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

# ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1\_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:



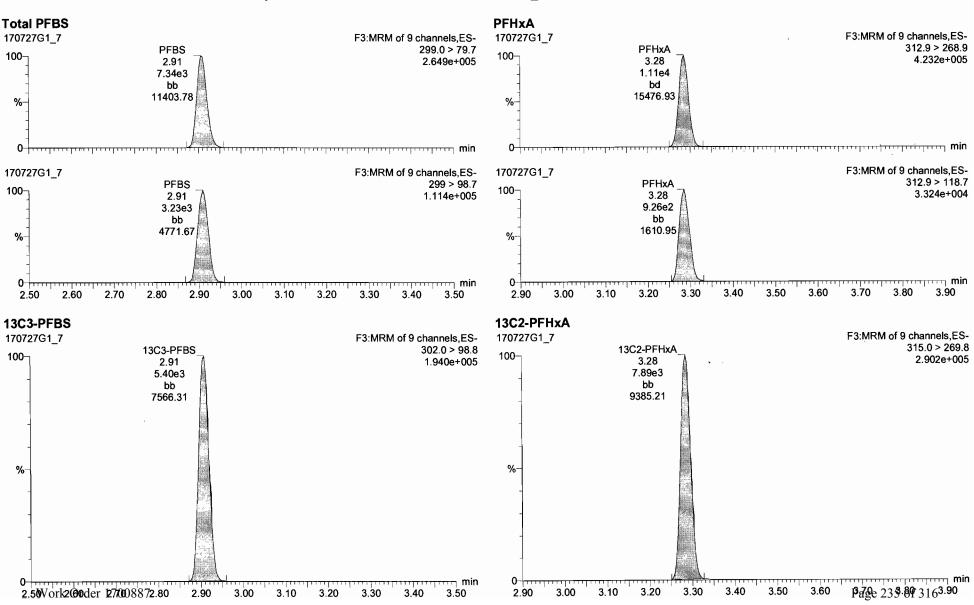

Work Order 1700887 Page 233 of 316

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered: Printed:

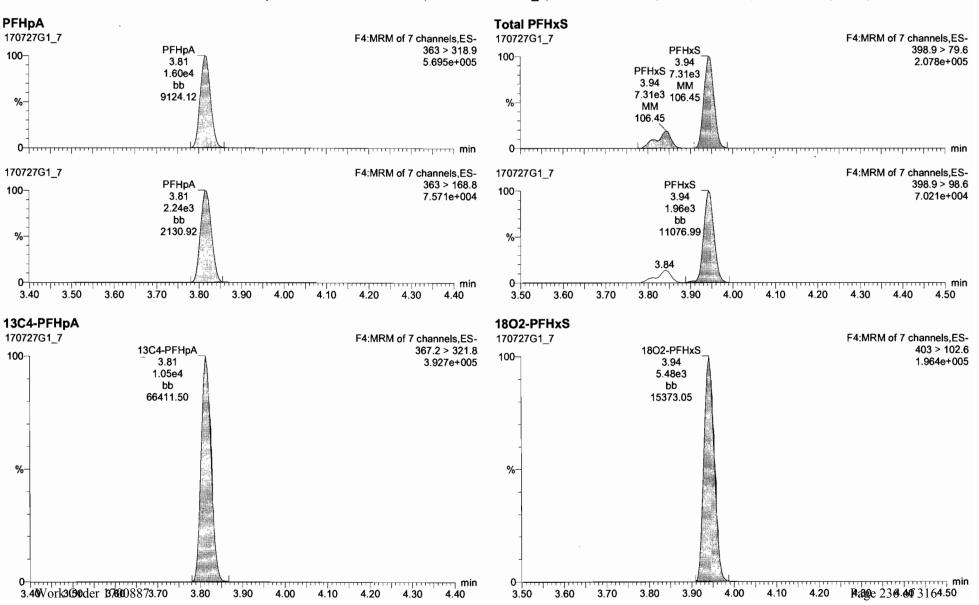
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

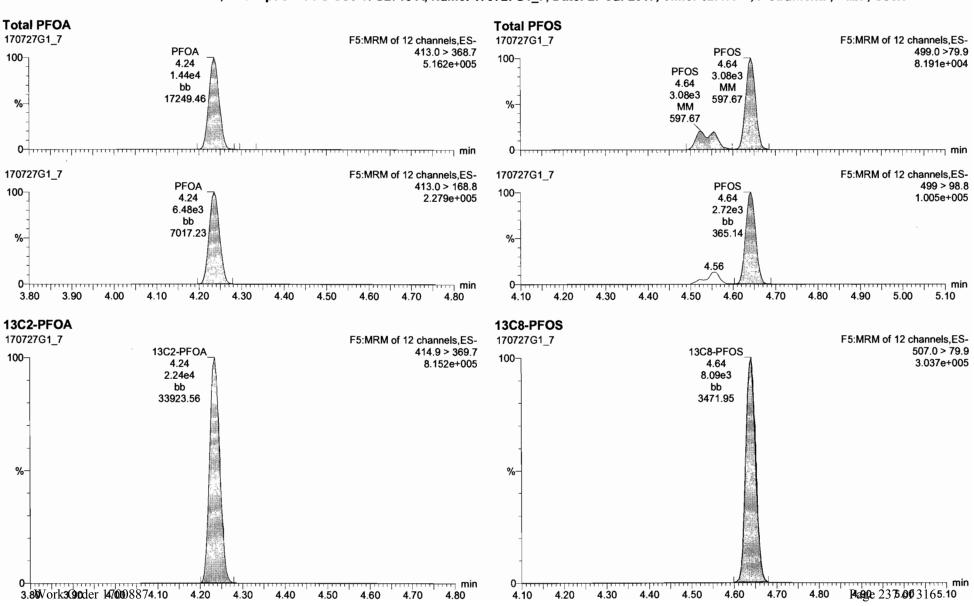

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



,

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



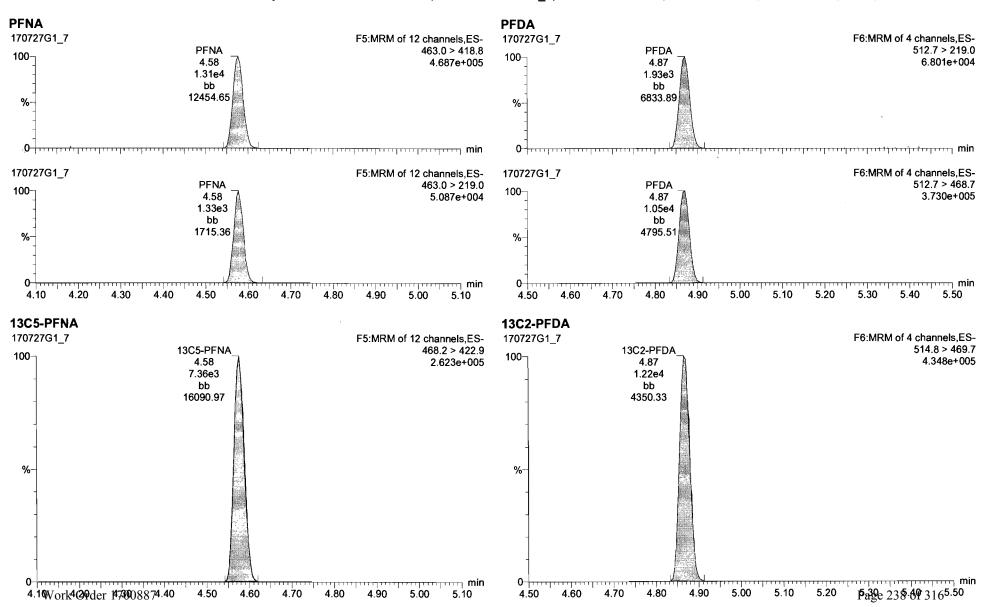

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

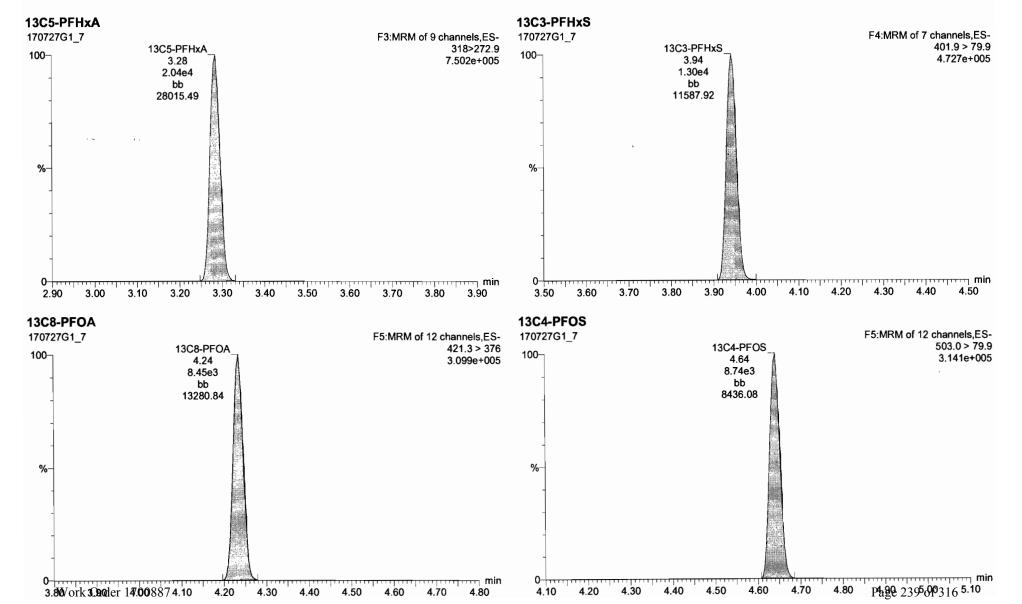
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:


Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



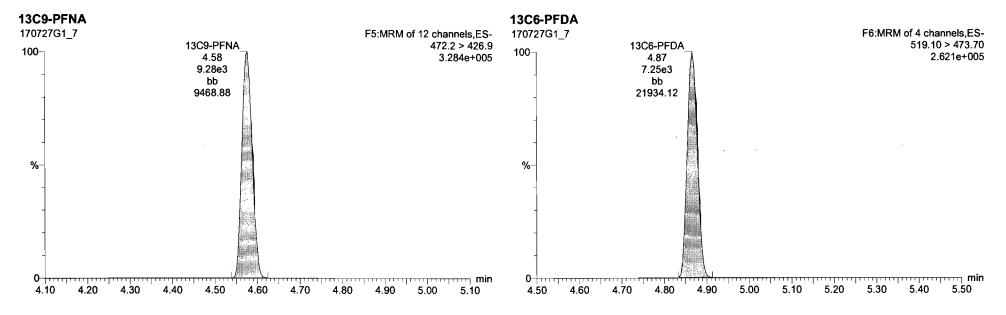
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Dataset:

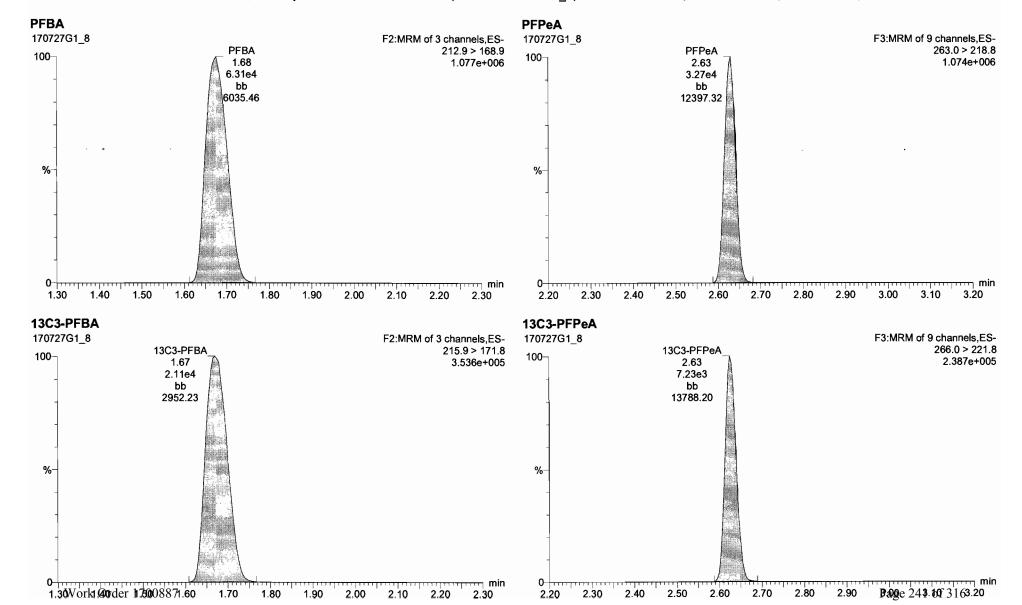
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld


Last Altered:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed:

Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

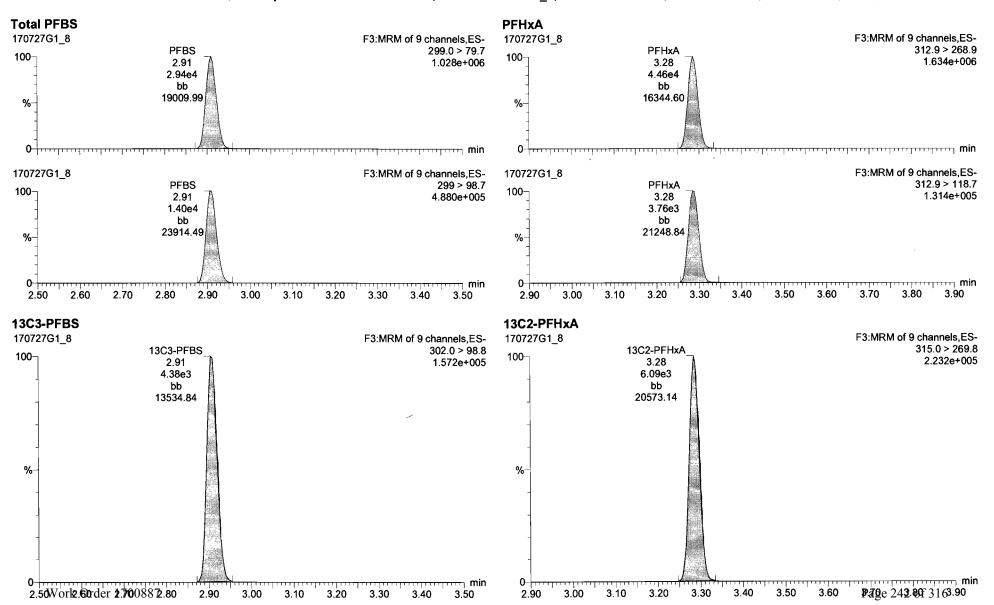

## ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1\_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:



Work Order 1700887 Page 240 of 316

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

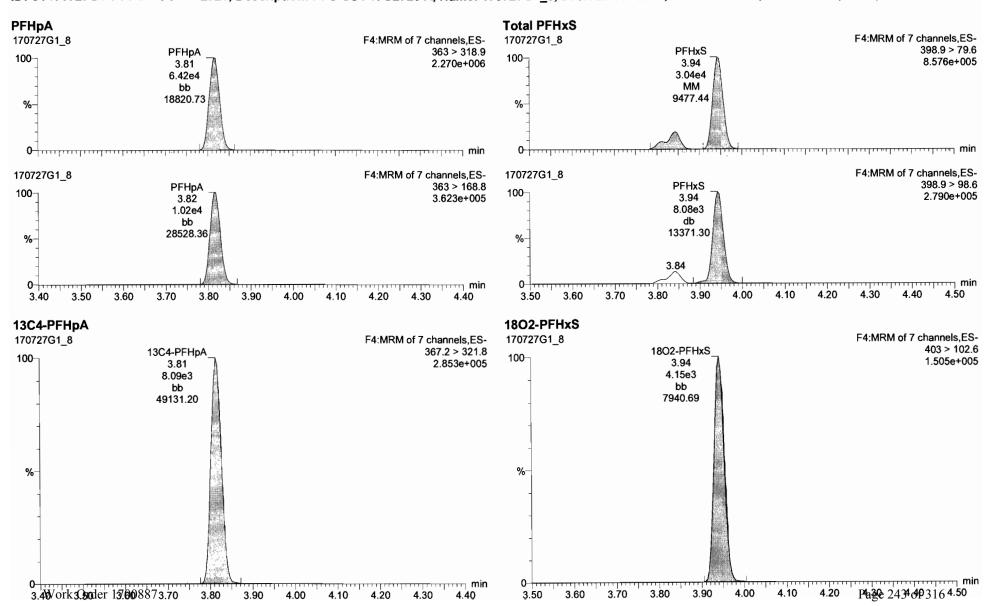



Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

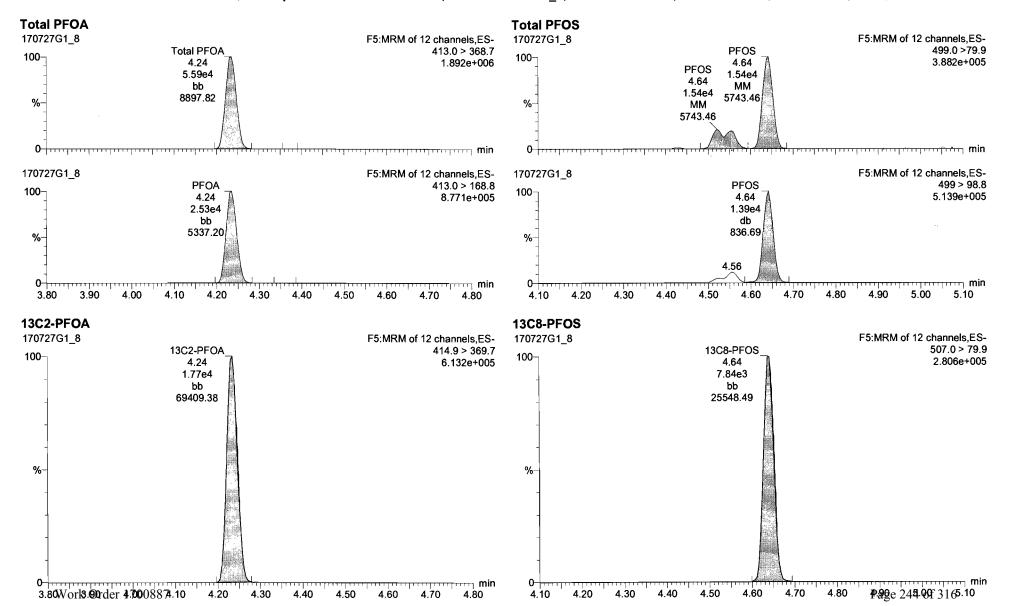
Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld


Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



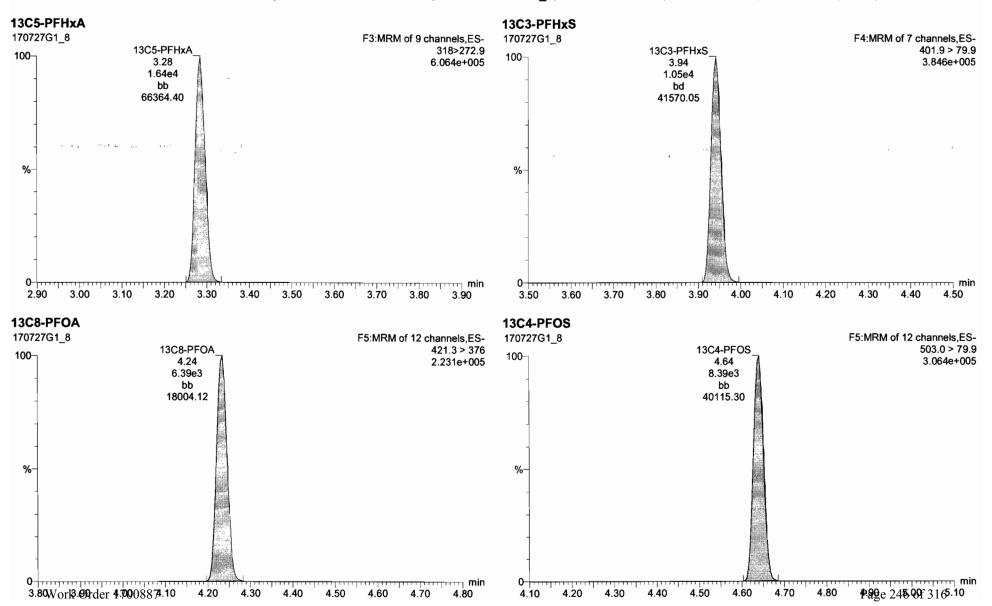
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.gld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



#### 170727G1 8 F5:MRM of 12 channels, ES-170727G1\_8 F6:MRM of 4 channels, ES-**PFNA** 463.0 > 219.0 PFDA 512.7 > 468.7 100-100 4.58 2.284e+005 4.87 2.113e+006 6.30e3 6.04e4 bb bb 29890.55 11719.63 %-4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 5.50 13C5-PFNA 13C2-PFDA 170727G1\_8 170727G1\_8 F6:MRM of 4 channels, ES-F5:MRM of 12 channels.ES-13C5-PFNA 13C2-PFDA 514.8 > 469.7 468.2 > 422.9 100-100-4.924e+005 4.58 2.491e+005 4.87 6.96e3 1.38e4 bb bb 36021.36 15289.37 Page 245.49 3165.50 4.10Work4@Order #73008874.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20

Page 47 of 56


F6:MRM of 4 channels, ES-

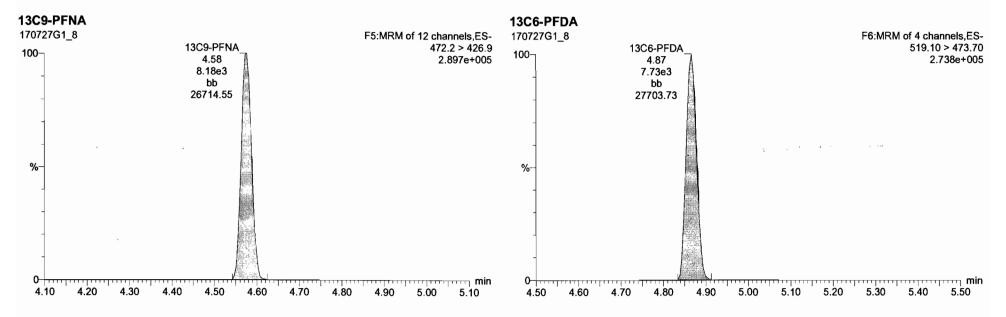
512.7 > 219.0

3.620e+005

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

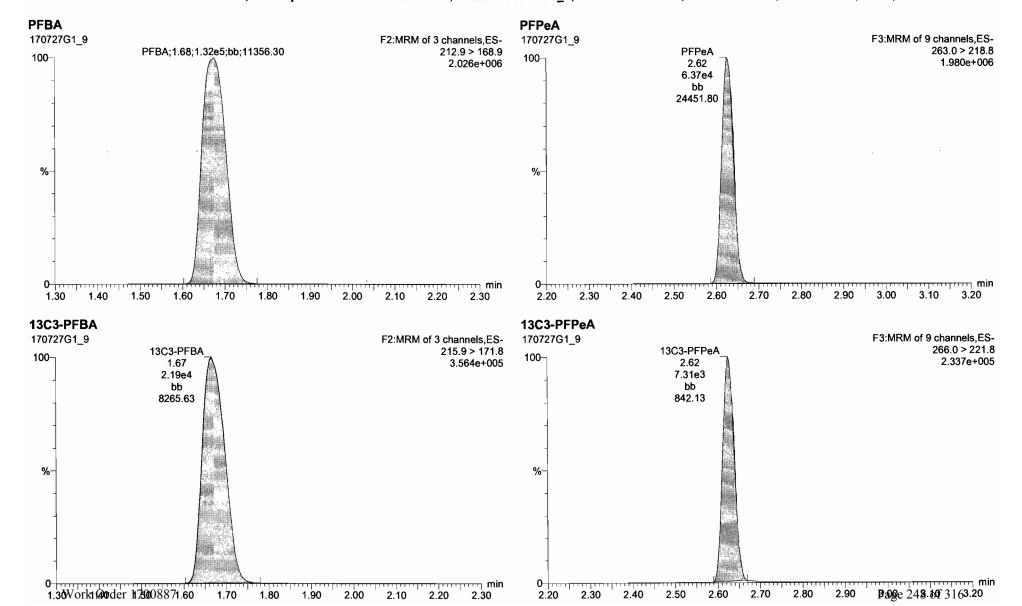



Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

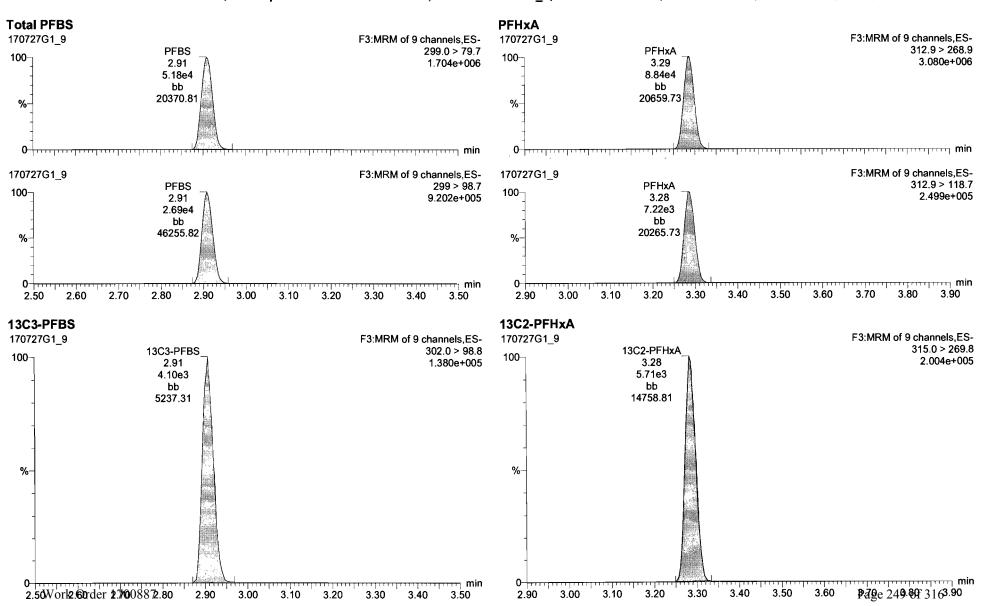

# ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1\_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:



Work Order 1700887 Page 247 of 316

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

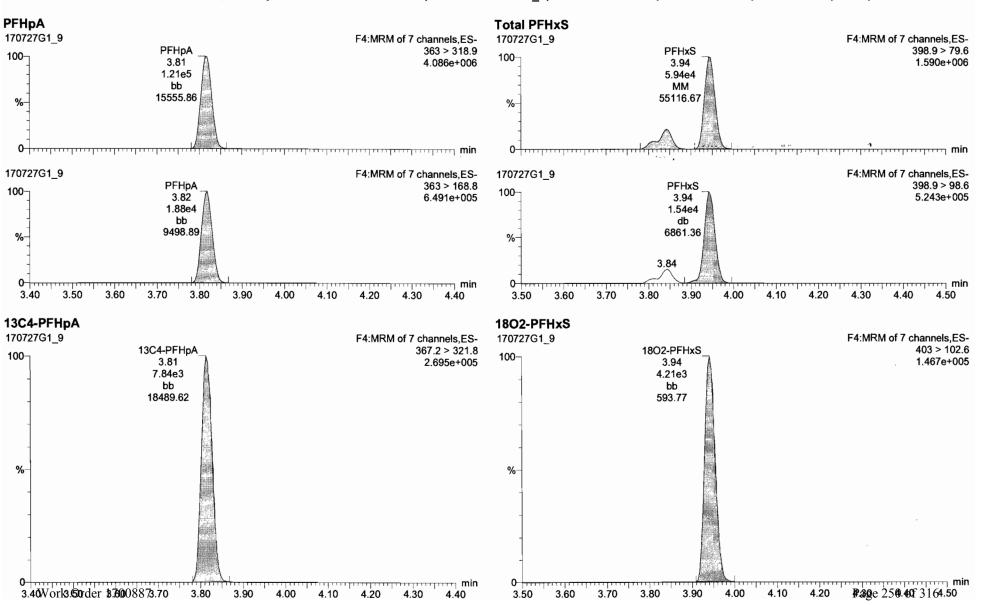
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

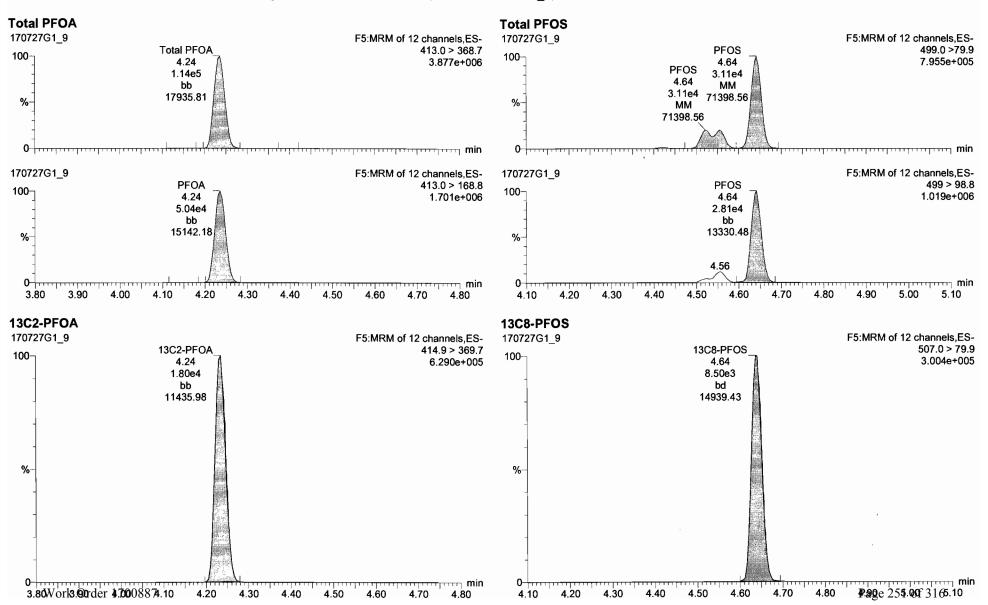

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



viola / litaly libal Zazbitato

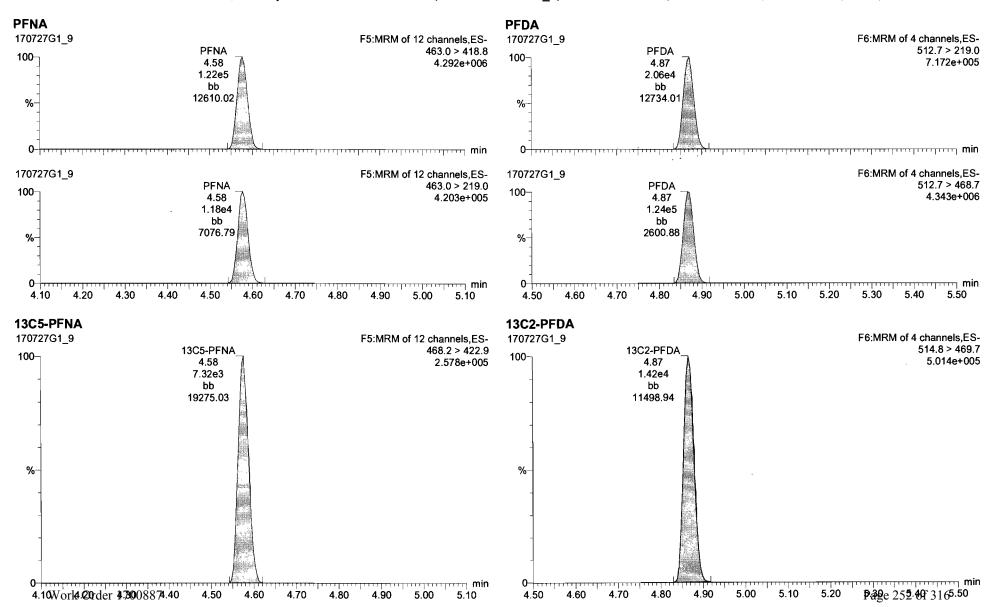
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

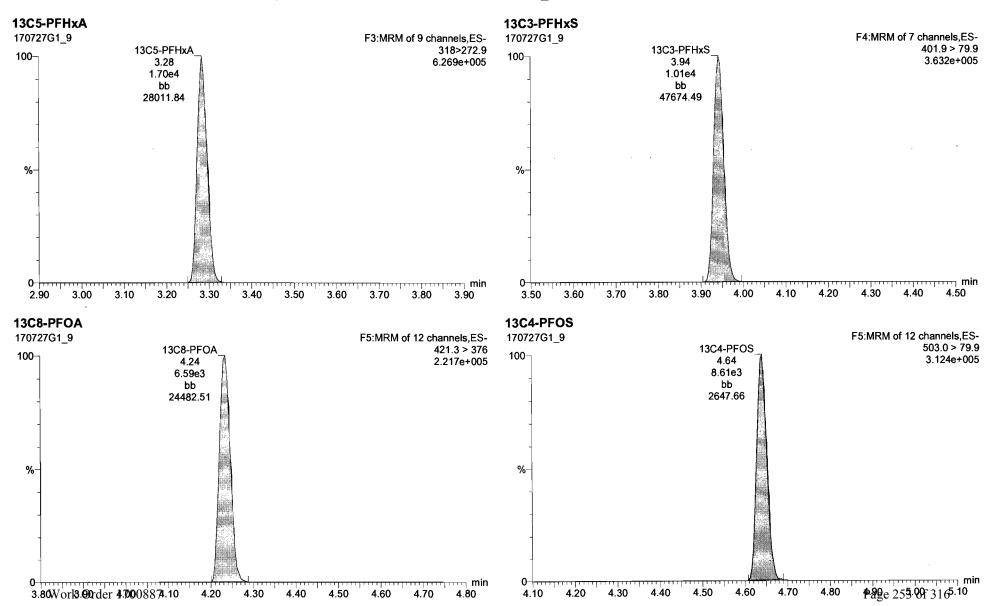

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time



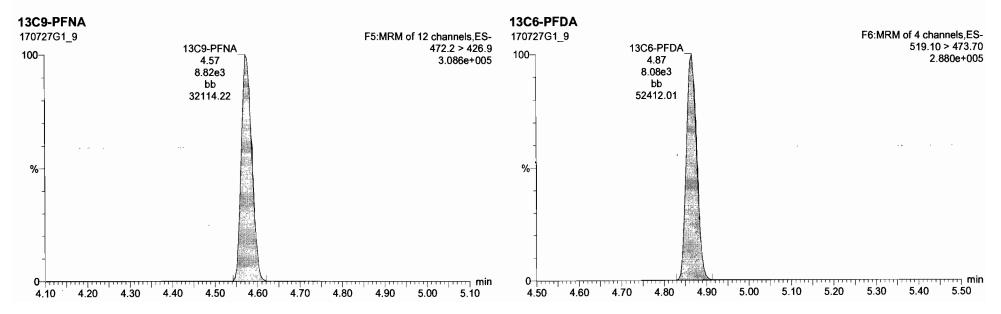

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time




Quantify Sample Report MassLynx 4.1 SCN815 Page 56 of 56

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

# ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1\_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:



Work Order 1700887 Page 254 of 316

**Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815

Page 1 of 1

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-11.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:54:17 Pacific Daylight Time Thursday, July 27, 2017 14:55:09 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06

Name: 170727G1\_11, Date: 27-Jul-2017, Time: 13:37:14, ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713

| CRE Salphia Mark | # Name        | Trace         | Response | JS Resp | RRF   | Wt/Vol | RT Transference | Conc | %Rec  |              |                           |     |
|------------------|---------------|---------------|----------|---------|-------|--------|-----------------|------|-------|--------------|---------------------------|-----|
| 10               | 1 PFBA        | 212.9 > 168.9 | 1.32e4   | 2.05e4  |       | 1.000  | 1.67            | 10.7 | 107.1 | 70-130       |                           |     |
| 2                | 2 PFPeA       | 263.0 > 218.8 | 7.15e3   | 7.69e3  |       | 1.000  | 2.63            | 10.5 | 105.2 | ]            |                           |     |
| 3                | 3 PFBS        | 299.0 > 79.7  | 5.63e3   | 4.75e3  |       | 1.000  | 2.91            | 8.84 | 88.4  |              |                           |     |
| 4                | 4 PFHxA       | 312.9 > 268.9 | 1.00e4   | 6.50e3  |       | 1.000  | 3.29            | 10.1 | 101.0 | 1            | <br>,                     |     |
| 5                | 5 PFHpA       | 363 > 318.9   | 1.41e4   | 8.41e3  |       | 1.000  | 3.82            | 10.7 | 106.6 | ļ            |                           |     |
| 6                | 6 PFHxS       | 398.9 > 79.6  | 6.09e3   | 4.53e3  |       | 1.000  | 3.95            | 9.38 | 93.8  |              |                           |     |
| 7                | 7 PFOA        | 413.0 > 368.7 | 1.28e4   | 1.85e4  |       | 1.000  | 4.24            | 10.7 | 107.3 |              | 1,001 7/27/17             | -   |
| 8                | 8 PFNA        | 463.0 > 418.8 | 1.13e4   | 5.97e3  |       | 1.000  | 4.58            | 10.3 | 102.8 | 1            | Acres                     |     |
| 9                | 9 PFOS        | 499.0 >79.9   | 2.54e3   | 7.28e3  |       | 1.000  | 4.64            | 9.20 | 92.0  | ĺ            | YOU H27117<br>VAC<br>7/27 |     |
| 10               | 10 PFDA       | 512.7 > 219.0 | 1.65e3   | 1.13e4  |       | 1.000  | 4.87            | 9.14 | 91.4  | $\checkmark$ | VAU                       |     |
| 11               | 11 13C3-PFBA  | 215.9 > 171.8 | 2.05e4   | 1.93e4  | 1.183 | 1.000  | 1.67            | 11.3 | 90.1  |              | - 127                     | 1   |
| 12               | 12 13C3-PFBS  | 302.0 > 98.8  | 4.75e3   | 1.63e4  | 0.263 | 1.000  | 2.91            | 13.8 | 110.7 |              | 7/21                      | 1.1 |
| 13               | 13 13C3-PFPeA | 266.0 > 221.8 | 7.69e3   | 1.63e4  | 0.446 | 1.000  | 2.63            | 13.2 | 105.3 |              | •                         | •   |
| 14               | 14 13C2-PFHxA | 315.0 > 269.8 | 6.50e3   | 1.63e4  | 0.361 | 1.000  | 3.29            | 13.8 | 110.2 |              |                           |     |
| 15               | 15 13C4-PFHpA | 367.2 > 321.8 | 8.41e3   | 1.63e4  | 0.475 | 1.000  | 3.82            | 13.5 | 108.3 |              |                           |     |
| 16               | 16 18O2-PFHxS | 403 > 102.6   | 4.53e3   | 1.12e4  | 0.411 | 1.000  | 3.95            | 12.3 | 98.2  |              |                           |     |
| 17 . Mahalaya    | 17 13C2-PFOA  | 414.9 > 369.7 | 1.85e4   | 6.32e3  | 2.843 | 1.000  | 4.24            | 12.9 | 103.1 |              |                           |     |
| 18               | 18 13C5-PFNA  | 468.2 > 422.9 | 5.97e3   | 7.44e3  | 0.854 | 1.000  | 4.58            | 11.7 | 94.0  |              |                           |     |
| 19               | 19 13C2-PFDA  | 514.8 > 469.7 | 1.13e4   | 6.36e3  | 1.742 | 1.000  | 4.87            | 12.8 | 102.1 |              |                           |     |
| 20               | 20 13C8-PFOS  | 507.0 > 79.9  | 7.28e3   | 7.78e3  | 0.927 | 1.000  | 4.64            | 12.6 | 100.9 |              |                           |     |
| 21               | 21 13C4-PFBA  | 216.9 > 171.8 | 1.93e4   | 1.93e4  | 1.000 | 1.000  | 1.67            | 12.5 | 100.0 |              |                           |     |
| 22               | 22 13C5-PFHxA | 318>272.9     | 1.63e4   | 1.63e4  | 1.000 | 1.000  | 3.28            | 12.5 | 100.0 |              |                           |     |
| 23               | 23 13C3-PFHxS | 401.9 > 79.9  | 1.12e4   | 1.12e4  | 1.000 | 1.000  | 3.95            | 12.5 | 100.0 |              |                           |     |
| 24               | 24 13C8-PFOA  | 421.3 > 376   | 6.32e3   | 6.32e3  | 1.000 | 1.000  | 4.24            | 12.5 | 100.0 |              |                           |     |
| 25               | 25 13C9-PFNA  | 472.2 > 426.9 | 7.44e3   | 7.44e3  | 1.000 | 1.000  | 4.58            | 12.5 | 100.0 |              |                           |     |
| 26               | 26 13C4-PFOS  | 503.0 > 79.9  | 7.78e3   | 7.78e3  | 1.000 | 1.000  | 4.64            | 12.5 | 100.0 |              |                           |     |
| 27               | 27 13C6-PFDA  | 519.10 > 47   | 6.36e3   | 6.36e3  | 1.000 | 1.000  | 4.87            | 12.5 | 100.0 |              |                           |     |

Work Order 1700887 Page 255 of 316

**Quantify Sample Report** 

MassLynx 4.1 SCN815

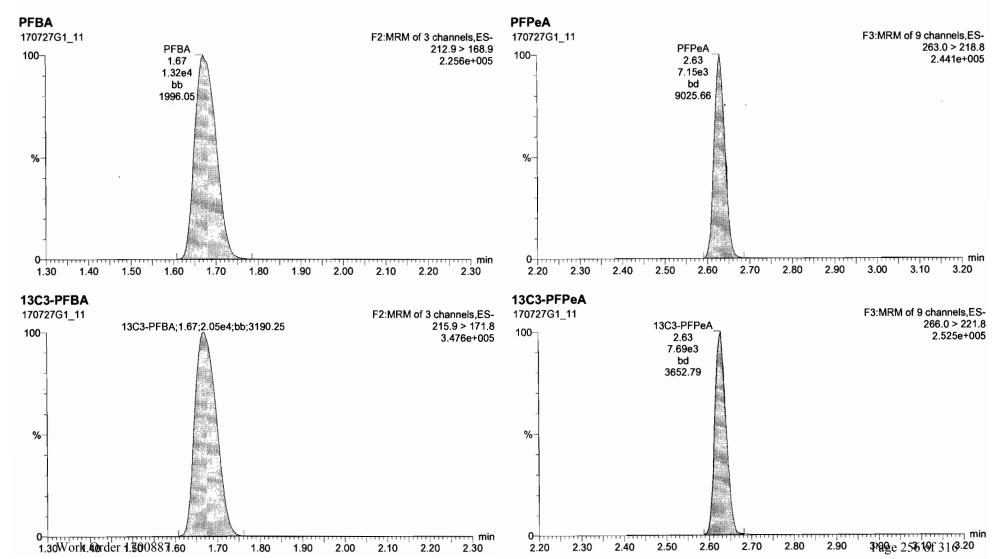
Page 1 of 7

Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-11.qld

Last Altered:


Thursday, July 27, 2017 14:54:17 Pacific Daylight Time

Printed:

Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_14or16\_2trans\_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-27-17\_L16\_2Trans\_A\_NEW.cdb 27 Jul 2017 14:48:06



2.90

3.00

2.50Worl2.60rder 2.7008872.80

2.90

3.00

3.10

3.20

3.30

3.40

3.50

3.20

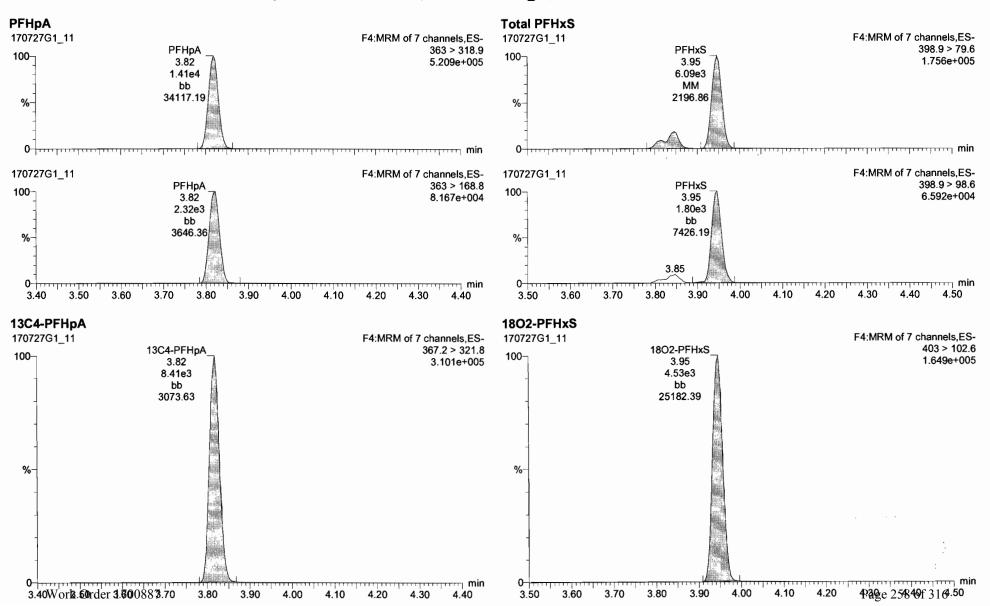
3.30

3.40

3.50

3.60

Page 253/89f 3163.90

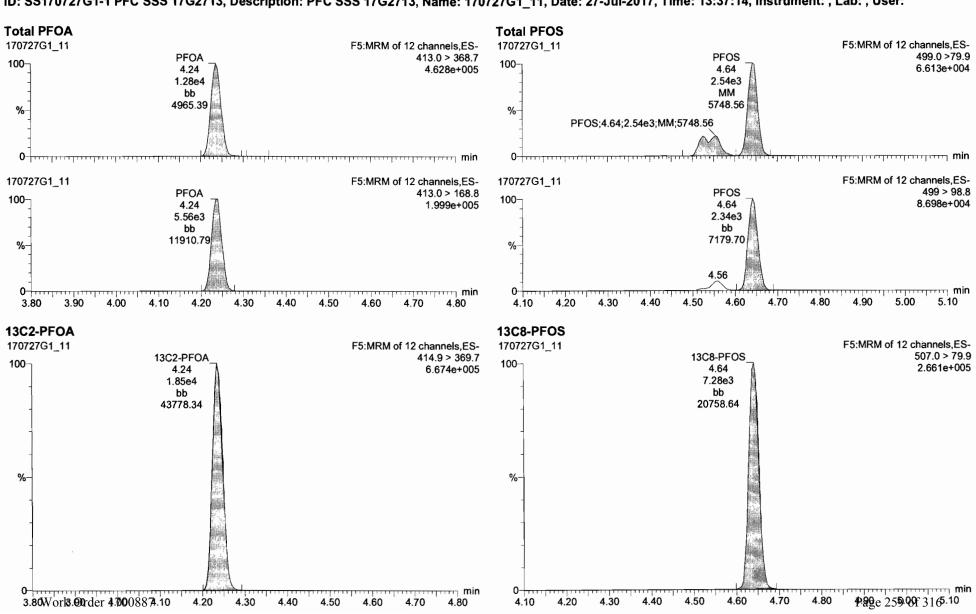

3.10

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-11.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:54:17 Pacific Daylight Time Thursday, July 27, 2017 14:54:55 Pacific Daylight Time




Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-11.qld

Last Altered: Printed:

Thursday, July 27, 2017 14:54:17 Pacific Daylight Time Thursday, July 27, 2017 14:54:55 Pacific Daylight Time



**Quantify Sample Report** MassLynx 4.1 SCN815 Page 5 of 7 Vista Analytical Laboratory Q1 U:\G1.PRO\Results\2017\170727G1\170727G1-11.qld Dataset: Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time Thursday, July 27, 2017 14:54:55 Pacific Daylight Time Printed: ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1\_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User: **PFNA PFDA** 170727G1\_11 170727G1 11 F5:MRM of 12 channels.ES-F6:MRM of 4 channels, ES-**PFNA** 463.0 > 418.8 **PFDA** 512.7 > 219.0 100-100-4.58 4.179e+005 4.87 5.846e+004 1.13e4 1.65e3 bb bb 2397.52 16383.74 % 170727G1\_11 F5:MRM of 12 channels, ES-170727G1\_11 F6:MRM of 4 channels, ES-**PFNA** 512.7 > 468.7 463.0 > 219.0 **PFDA** 100-100-4.58 3.942e+004 3.633e+005 4.87 1.10e3 1.00e4 bb bb 2723.36 4261.31 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.90 5.00 5.10 5.30 5.40 4.80 4.90 4.50 4.60 4.70 4.80 5.20 5.50 5.00 5.10 13C5-PFNA 13C2-PFDA 170727G1\_11 170727G1 11 F6:MRM of 4 channels, ES-F5:MRM of 12 channels.ES-13C5-PFNA 13C2-PFDA 514.8 > 469.7 468.2 > 422.9 100-100-3.956e+005 4.58 2.142e+005 4.87 5.97e3 1.13e4 bb bb 8232.78 20078.64 %-

4.10Work.20rder41.30008847.40

4.50

4.60

4.70

4.80

4.90

5.00

5.10

4.60

4.50

4.70

4.80

4.90

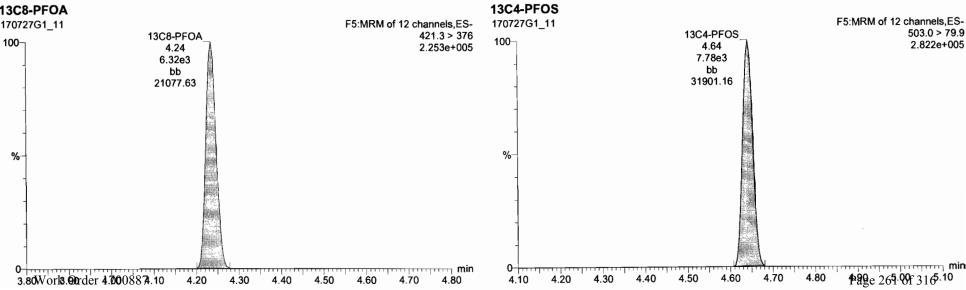
5.00

5.10

5.20

**5P30**ge 26040 f 316.50

**Quantify Sample Report** MassLynx 4.1 SCN815 Vista Analytical Laboratory Q1 U:\G1.PRO\Results\2017\170727G1\170727G1-11.qld Dataset: Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time Thursday, July 27, 2017 14:54:55 Pacific Daylight Time Printed: ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1\_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User: 13C3-PFHxS 13C5-PFHxA F4:MRM of 7 channels, ES-170727G1\_11 F3:MRM of 9 channels, ES-170727G1\_11 13C5-PFHxA 318>272.9 13C3-PFHxS 100-100-5.873e+005 3.95 3.28 1.12e4 1.63e4 bb bb 58514.37 7899.08 %-3.50 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 3.10 3.20 3.30 3.40 3.60 3.70 3.80 3.90 2.90 3.00 13C4-PFOS 13C8-PFOA 170727G1\_11 170727G1\_11 F5:MRM of 12 channels, ES-13C8-PFOA 421.3 > 376 13C4-PFOS 100-100-4.64 2.253e+005 4.24 7.78e3 6.32e3 bb bb 31901.16 21077.63


Page 6 of 7

401.9 > 79.9

4.071e+005

4.40

4.50



**Quantify Sample Report** 

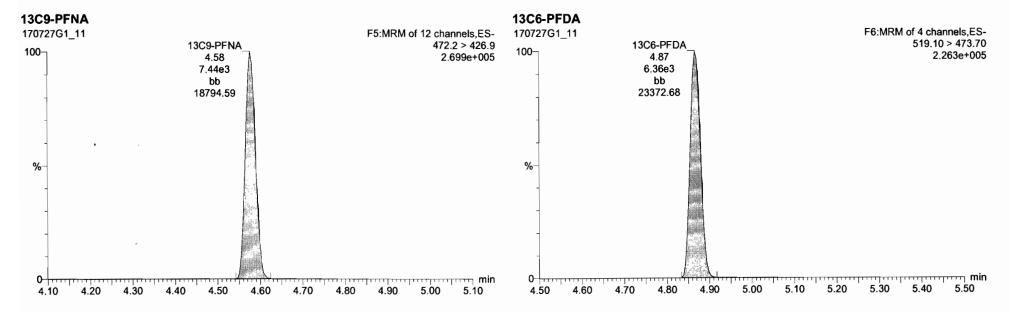
MassLynx 4.1 SCN815

Page 7 of 7

Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170727G1\170727G1-11.qld


Last Altered:

Thursday, July 27, 2017 14:54:17 Pacific Daylight Time

Printed:

Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

# ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1\_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:



Work Order 1700887

**Quantify Compound Summary Report** Vista Analytical Laboratory Q2

MassLynx 4.1 SCN815

Page 1 of 8

Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.ald

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Method: U:\G1.PRO\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.PRO\CurveDB\C18 VAL-PFC Q1 7-28-17 B 2Trans NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

Correlation coefficient: r = 0.999923,  $r^2 = 0.999847$ 

Calibration curve: 1.21764 \* x + 0.142512

Response type: Internal Std ( Ref 9 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

| ara ar cardaranin | # Name       | Std. Conc | RI   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|-------------------|--------------|-----------|------|--------|---------|-------|------|------|
| 1                 | 1 170728G1_2 | 0.250     | 4.60 | 8.11e2 | 2.39e4  | 0.231 | -7.4 | 1.70 |
| 2                 | 2 170728G1_3 | 0.500     | 4.60 | 1.43e3 | 2.42e4  | 0.489 | -2.3 | 1.47 |
| 3                 | 3 170728G1_4 | 1.00      | 4.59 | 2.68e3 | 2.52e4  | 0.976 | -2.4 | 1.33 |
| 4                 | 4 170728G1_5 | 2.00      | 4.60 | 3.04e3 | 1.39e4  | 2.14  | 6.9  | 1.37 |
| 5                 | 5 170728G1_6 | 5.00      | 4.60 | 1.20e4 | 2.31e4  | 5.22  | 4.3  | 1.30 |
| 6                 | 6 170728G1_7 | 10.0      | 4.60 | 2.24e4 | 2.24e4  | 10.1  | 1.5  | 1.25 |
| 7                 | 7 170728G1_8 | 50.0      | 4.60 | 9.72e4 | 2.00e4  | 49.9  | -0.3 | 1.22 |
| 8                 | 8 170728G1_9 | 100       | 4.60 | 1.68e5 | 1.73e4  | 99.7  | -0.3 | 1.22 |

m 7/31/17

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.999599

Calibration curve: -0.0288624 \* x^2 + 29.2151 \* x + 0.0851315 Response type: Internal Std ( Ref 10 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

| """""""" | # Name       | Std. Conc | RT   | Resp   | IS Resp | ∴ Conc. | %Dev  | RRF  |
|----------|--------------|-----------|------|--------|---------|---------|-------|------|
| 1 . 1    | 1 170728G1_2 | 0.250     | 4.97 | 4.35e2 | 7.62e3  | 0.315   | 25.8  | 37.1 |
| 2        | 2 170728G1_3 | 0.500     | 4.97 | 4.93e2 | 6.79e3  | 0.401   | -19.8 | 23.6 |
| 3        | 3 170728G1_4 | 1.00      | 4.97 | 1.20e3 | 7.24e3  | 0.920   | -8.0  | 26.9 |
| 4        | 4 170728G1_5 | 2.00      | 4.97 | 1.56e3 | 4.15e3  | 2.09    | 4.6   | 30.5 |
| 5        | 5 170728G1_6 | 5.00      | 4.98 | 5.72e3 | 6.62e3  | 4.82    | -3.5  | 28.1 |
| 6        | 6 170728G1_7 | 10.0      | 4.98 | 1.13e4 | 6.31e3  | 10.0    | 0.5   | 29.1 |
| 7        | 7 170728G1_8 | 50.0      | 4.97 | 5.31e4 | 6.17e3  | 50.3    | 0.6   | 27.9 |
| 8        | 8 170728G1_9 | 100       | 4.97 | 9.12e4 | 5.64e3  | 99.8    | -0.2  | 26.3 |

Work Order 1700887 Page 263 of 316

Page 2 of 8

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

**Compound name: PFDS** 

Coefficient of Determination: R^2 = 0.999845

Calibration curve:  $0.00050466 * x^2 + 0.454912 * x + -0.0161039$ Response type: Internal Std ( Ref 11 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF   |
|---|--------------|-----------|------|--------|---------|-------|------|-------|
| 1 | 1 170728G1_2 | 0.250     | 5.14 | 2.55e2 | 3.18e4  | 0.256 | 2.3  | 0.401 |
| 2 | 2 170728G1_3 | 0.500     | 5.14 | 5.53e2 | 3.12e4  | 0.522 | 4.4  | 0.443 |
| 3 | 3 170728G1_4 | 1.00      | 5.13 | 1.10e3 | 3.15e4  | 0.992 | -0.8 | 0.436 |
| 4 | 4 170728G1_5 | 2.00      | 5.14 | 1.16e3 | 1.71e4  | 1.89  | -5.3 | 0.423 |
| 5 | 5 170728G1_6 | 5.00      | 5.14 | 5.41e3 | 3.10e4  | 4.80  | -4.0 | 0.436 |
| 6 | 6 170728G1_7 | 10.0      | 5.14 | 1.16e4 | 3.06e4  | 10.4  | 3.7  | 0.475 |
| 7 | 7 170728G1_8 | 50.0      | 5.14 | 4.81e4 | 2.51e4  | 49.9  | -0.2 | 0.479 |
| 8 | 8 170728G1_9 | 100_      | 5.14 | 8.47e4 | 2.10e4  | 100   | 0.0  | 0.505 |

Compound name: PFUnA

Correlation coefficient: r = 0.999740, r^2 = 0.999481

Calibration curve: 0.950369 \* x + 0.261679

Response type: Internal Std ( Ref 11 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Conc | T RT | Resp   | IS Resp | Conc. | %Dev  | RRF   |
|---|--------------|-----------|------|--------|---------|-------|-------|-------|
| 1 | 1 170728G1_2 | 0.250     | 5.10 | 1.12e3 | 3.18e4  | 0.187 | -25.2 | 1.76  |
| 2 | 2 170728G1_3 | 0.500     | 5.10 | 1.99e3 | 3.12e4  | 0.563 | 12.6  | 1.59  |
| 3 | 3 170728G1_4 | 1.00      | 5.10 | 3.01e3 | 3.15e4  | 0.982 | -1.8  | 1.19  |
| 4 | 4 170728G1_5 | 2.00      | 5.10 | 3.37e3 | 1.71e4  | 2.32  | 16.0  | 1.23  |
| 5 | 5 170728G1_6 | 5.00      | 5.11 | 1.25e4 | 3.10e4  | 5.03  | 0.5   | 1.01  |
| 6 | 6 170728G1_7 | 10.0      | 5.11 | 2.34e4 | 3.06e4  | 9.78  | -2.2  | 0.956 |
| 7 | 7 170728G1_8 | 50.0      | 5.11 | 9.65e4 | 2.51e4  | 50.3  | 0.6   | 0.961 |
| 8 | 8 170728G1_9 | 100       | 5.11 | 1.59e5 | 2.10e4  | 99.6  | -0.4  | 0.949 |

Work Order 1700887 Page 264 of 316

Page 3 of 8

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.999066

Calibration curve: -0.0319951 \* x^2 + 17.7619 \* x + -1.1299 Response type: Internal Std ( Ref 12 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp         | Conc. | %Dev  | RRF  |
|---|--------------|-----------|------|--------|-----------------|-------|-------|------|
| 1 | 1 170728G1_2 | 0.250     | 5.10 | 1.67e2 | 9.15e3          | 0.230 | -7.9  | 11.8 |
| 2 | 2 170728G1_3 | 0.500     | 5.10 | 4.69e2 | 8.77e3          | 0.554 | 10.7  | 17.4 |
| 3 | 3 170728G1_4 | 1.00      | 5.10 | 9.50e2 | 8.60e3          | 1.08  | 7.7   | 18.0 |
| 4 | 4 170728G1_5 | 2.00      | 5.10 | 1.01e3 | 5.41e3          | 1.78  | -11.0 | 15.2 |
| 5 | 5 170728G1_6 | 5.00      | 5.10 | 4.06e3 | 8.08 <b>e</b> 3 | 4.70  | -6.0  | 16.3 |
| 6 | 6 170728G1_7 | 10.0      | 5.10 | 8.84e3 | 7.73e3          | 10.7  | 7.4   | 18.6 |
| 7 | 7 170728G1_8 | 50.0      | 5.10 | 3.22e4 | 6.56e3          | 49.4  | -1.3  | 16.0 |
| 8 | 8 170728G1_9 | 100       | 5.10 | 5.05e4 | 5.62e3          | 100   | 0.3   | 14.6 |

Compound name: PFDoA

Correlation coefficient: r = 0.999801, r^2 = 0.999601 Calibration curve: 0.121673 \* x + 0.000589951

Response type: Internal Std ( Ref 13 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

| 274 PAPE | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev  | RRF   |
|----------|--------------|-----------|------|--------|---------|-------|-------|-------|
| 1        | 1 170728G1_2 | 0.250     | 5.34 | 1.06e2 | 4.00e4  | 0.268 | 7.4   | 0.133 |
| 2        | 2 170728G1_3 | 0.500     | 5.34 | 1.68e2 | 3.98e4  | 0.429 | -14.2 | 0.106 |
| 3 🖟      | 3 170728G1_4 | 1.00      | 5.33 | 3.50e2 | 3.87e4  | 0.924 | -7.6  | 0.113 |
| 4        | 4 170728G1_5 | 2.00      | 5.34 | 4.94e2 | 2.34e4  | 2.17  | 8.3   | 0.132 |
| 5.       | 5 170728G1_6 | 5.00      | 5.34 | 2.00e3 | 4.03e4  | 5.09  | 1.7   | 0.124 |
| 6        | 6 170728G1_7 | 10.0      | 5.34 | 3.90e3 | 3.82e4  | 10.5  | 4.9   | 0.128 |
| 7        | 7 170728G1_8 | 50.0      | 5.34 | 1.59e4 | 3.26e4  | 50.2  | 0.4   | 0.122 |
| 8        | 8 170728G1_9 | 100       | 5.34 | 2.62e4 | 2.71e4  | 99.2  | -0.8  | 0.121 |

Work Order 1700887 Page 265 of 316

Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: PFTrDA

Correlation coefficient: r = 0.999657,  $r^2 = 0.999315$ 

Calibration curve: 1.21286 \* x + -0.015692

Response type: Internal Std ( Ref Multiple ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF  |
|---|--------------|-----------|------|--------|---------|-------|------|------|
| 1 | 1 170728G1_2 | 0.250     | 5.54 | 9.84e2 | 0.00e0  | 0.261 | 4.3  | 1.20 |
| 2 | 2 170728G1_3 | 0.500     | 5.54 | 2.09e3 | 0.00e0  | 0.536 | 7.3  | 1.27 |
| 3 | 3 170728G1_4 | 1.00      | 5.54 | 3.83e3 | 0.00e0  | 0.970 | -3.0 | 1.16 |
| 4 | 4 170728G1_5 | 2.00      | 5.54 | 4.37e3 | 0.00e0  | 1.98  | -1.0 | 1.19 |
| 5 | 5 170728G1_6 | 5.00      | 5.55 | 2.00e4 | 0.00e0  | 5.06  | 1.3  | 1.23 |
| 6 | 6 170728G1_7 | 10.0      | 5.54 | 3.43e4 | 0.00e0  | 9.02  | -9.8 | 1.09 |
| 7 | 7 170728G1_8 | 50.0      | 5.54 | 1.63e5 | 0.00e0  | 50.0  | 0.0  | 1.21 |
| 8 | 8 170728G1_9 | 100       | 5.54 | 2.78e5 | 0.00e0  | 101   | 0.9  | 1.22 |

Compound name: PFTeDA

Correlation coefficient: r = 0.998269, r^2 = 0.996541

Calibration curve: 0.904178 \* x + 0.15515

Response type: Internal Std ( Ref 14 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

| A TEACH | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev  | RRF   |
|---------|--------------|-----------|------|--------|---------|-------|-------|-------|
| 1       | 1 170728G1_2 | 0.250     | 5.72 | 1.15e3 | 4.19e4  | 0.208 | -17.0 | 1.37  |
| 2       | 2 170728G1_3 | 0.500     | 5.72 | 2.48e3 | 4.23e4  | 0.637 | 27.4  | 1.46  |
| 3 P     | 3 170728G1_4 | 1.00      | 5.72 | 4.25e3 | 4.37e4  | 1.17  | 17.3  | 1.22  |
| 4       | 4 170728G1_5 | 2.00      | 5.72 | 4.03e3 | 2.24e4  | 2.32  | 15.8  | 1.12  |
| 5       | 5 170728G1_6 | 5.00      | 5.72 | 1.83e4 | 4.14e4  | 5.94  | 18.9  | 1.11  |
| 6       | 6 170728G1_7 | 10.0      | 5.72 | 3.20e4 | 4.03e4  | 10.8  | 8.1   | 0.993 |
| 7       | 7 170728G1_8 | 50.0      | 5.72 | 1.27e5 | 3.47e4  | 50.4  | 0.9   | 0.915 |
| 8       | 8 170728G1_9 | 100       | 5.72 | 2.08e5 | 2.96e4  | 97.2  | -2.8  | 0.881 |

Work Order 1700887 Page 266 of 316

Quantify Compound Summary Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: 13C8-PFOSA

Response Factor: 1.14586

RRF SD: 0.0797179, Relative SD: 6.95702

Response type: Internal Std ( Ref 15 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|                     | # Name         | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev         | RRE       |
|---------------------|----------------|-----------|------|--------|---------|-------|--------------|-----------|
| to the beautiful to | 1 170728G1_2   | 12.5      | 4.59 | 2.39e4 | 2.03e4  | 12.9  | 2.9          | 1.18      |
| 2                   | 2 170728G1_3   | 12.5      | 4.59 | 2.42e4 | 2.24e4  | 11.8  | <b>-</b> 5.7 | 1.08      |
| 3                   | 3 170728G1_4   | 12.5      | 4.59 | 2.52e4 | 2.02e4  | 13.6  | 8.8          | 1.25      |
| 4                   | '4' 170728G1_5 | 12.5      | 4.59 | 1.39e4 | 1.26e4  | 12.0  | -3.7         | , , ,1.10 |
| 5                   | 5 170728G1_6   | 12.5      | 4.60 | 2.31e4 | 2.24e4  | 11.3  | -9.9         | 1.03      |
| 6                   | 6 170728G1_7   | 12.5      | 4.60 | 2.24e4 | 1.91e4  | 12.8  | 2.4          | 1.17      |
| 7                   | 7 170728G1_8   | 12.5      | 4.60 | 2.00e4 | 1.82e4  | 12.0  | -4.0         | 1.10      |
| 8                   | 8 170728G1_9   | 12.5      | 4.60 | 1.73e4 | 1.38e4  | 13.7  | 9.3          | 1.25      |

Compound name: d3-N-MeFOSAA

Response Factor: 0.0263732

RRF SD: 0.0028797, Relative SD: 10.919

Response type: Internal Std ( Ref 15 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|       | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev  | RRF    |
|-------|--------------|-----------|------|--------|---------|-------|-------|--------|
| 15000 | 1 170728G1_2 | 163       | 4.97 | 7.62e3 | 2.03e4  | 178   | 9.6   | 0.0289 |
| 2     | 2 170728G1_3 | 163       | 4.97 | 6.79e3 | 2.24e4  | 144   | -11.7 | 0.0233 |
| 3     | 3 170728G1_4 | 163       | 4.97 | 7.24e3 | 2.02e4  | 170   | 4.4   | 0.0275 |
| 4     | 4 170728G1_5 | 163       | 4.97 | 4.15e3 | 1.26e4  | 157   | -3.6  | 0.0254 |
| 5     | 5 170728G1_6 | 163       | 4.97 | 6.62e3 | 2.24e4  | 140   | -13.6 | 0.0228 |
| 6     | 6 170728G1_7 | 163       | 4.97 | 6.31e3 | 1.91e4  | 157   | -3.6  | 0.0254 |
| 7     | 7 170728G1_8 | 163       | 4.97 | 6.17e3 | 1.82e4  | 161   | -0.8  | 0.0262 |
| 8     | 8 170728G1_9 | 163       | 4.97 | 5.64e3 | 1.38e4  | 194   | 19.4  | 0.0315 |

Work Order 1700887 Page 267 of 316

Page 5 of 8

Quantify Compound Summary Report MassLynx 4.1 SCN815 Page 6 of 8

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: 13C2-PFUnA

Response Factor: 1.47077

RRF SD: 0.0998621, Relative SD: 6.78977

Response type: Internal Std ( Ref 15 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

| and the later and | # Name         | Std. Conc | RT   | Resp   | IS Resp | _ ,∉Conc. | %Dev | RRF  |
|-------------------|----------------|-----------|------|--------|---------|-----------|------|------|
| Tale or goldeline | 1 170728G1_2   | 12.5      | 5.10 | 3.18e4 | 2.03e4  | 13.3      | 6.6  | 1.57 |
| 2                 | 2 170728G1_3   | 12.5      | 5.10 | 3.12e4 | 2.24e4  | 11.8      | -5.5 | 1.39 |
| 3                 | 3 170728G1_4   | 12.5      | 5.10 | 3.15e4 | 2.02e4  | 13.2      | 5.9  | 1.56 |
| 4                 | . 4 170728G1_5 | 12.5      | 5.10 | 1.71e4 | 1.26e4  | 11.5      | -7.6 | 1.36 |
| 5                 | 5 170728G1_6   | 12.5      | 5.11 | 3.10e4 | 2.24e4  | 11.8      | -5.6 | 1.39 |
| 6.000             | 6 170728G1_7   | 12.5      | 5.10 | 3.06e4 | 1.91e4  | 13.6      | 8.8  | 1.60 |
| 7                 | 7 170728G1_8   | 12.5      | 5.10 | 2.51e4 | 1.82e4  | 11.7      | -6.0 | 1.38 |
| 8                 | 8 170728G1_9   | 12.5      | 5.11 | 2.10e4 | 1.38e4  | 12.9      | 3.4  | 1.52 |

Compound name: d5-N-EtFOSAA

Response Factor: 0.0310895

RRF SD: 0.00247479, Relative SD: 7.96021

Response type: Internal Std ( Ref 15 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|                                          | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev  | RRF    |
|------------------------------------------|--------------|-----------|------|--------|---------|-------|-------|--------|
| 1 10 10 10 10 10 10 10 10 10 10 10 10 10 | 1 170728G1_2 | 163       | 5.09 | 9.15e3 | 2.03e4  | 182   | 11.7  | 0.0347 |
| 2                                        | 2 170728G1_3 | 163       | 5.09 | 8.77e3 | 2.24e4  | 157   | -3.2  | 0.0301 |
| 3                                        | 3 170728G1_4 | 163       | 5.09 | 8.60e3 | 2.02e4  | 171   | 5.2   | 0.0327 |
| 4                                        | 4 170728G1_5 | 163       | 5.09 | 5.41e3 | 1.26e4  | 173   | 6.5   | 0.0331 |
| 5                                        | 5 170728G1_6 | 163       | 5.10 | 8.08e3 | 2.24e4  | 145   | -10.6 | 0.0278 |
| 6                                        | 6 170728G1_7 | 163       | 5.09 | 7.73e3 | 1.91e4  | 163   | 0.1   | 0.0311 |
| 7                                        | 7 170728G1_8 | 163       | 5.09 | 6.56e3 | 1.82e4  | 145   | -10.6 | 0.0278 |
| 8.1111111111111111111111111111111111111  | 8 170728G1_9 | 163       | 5.09 | 5.62e3 | 1.38e4  | 164   | 0.9   | 0.0314 |

Work Order 1700887 Page 268 of 316

Quantify Compound Summary Report MassLynx 4.1 SCN815 Page 7 of 8

Vista Analytical Laboratory Q2

Dataset: U:\G1.PR0\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: 13C2-PFDoA

Response Factor: 1.88683

RRF SD: 0.0900852, Relative SD: 4.77443

Response type: Internal Std ( Ref 15 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|       | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRF    |
|-------|--------------|-----------|------|--------|---------|-------|------|--------|
| 1,000 | 1 170728G1_2 | 12.5      | 5.34 | 4.00e4 | 2.03e4  | 13.1  | 4.6  | 1.97   |
| 2     | 2 170728G1_3 | 12.5      | 5.34 | 3.98e4 | 2.24e4  | 11.8  | -5.9 | 1.77   |
| 3     | 3 170728G1_4 | 12.5      | 5.34 | 3.87e4 | 2.02e4  | 12.7  | 1.5  | 1.91   |
| 4     | 4 170728G1_5 | 12.5      | 5.34 | 2.34e4 | 1.26e4  | 12.3  | -1.4 | , 1.86 |
| 5     | 5 170728G1_6 | 12.5      | 5.34 | 4.03e4 | 2.24e4  | 11.9  | -4.5 | 1.80   |
| 6     | 6 170728G1_7 | 12.5      | 5.33 | 3.82e4 | 1.91e4  | 13.3  | 6.1  | 2.00   |
| 7     | 7 170728G1_8 | 12.5      | 5.33 | 3.26e4 | 1.82e4  | 11.9  | -4.7 | 1.80   |
| 8     | 8 170728G1_9 | 12.5      | 5.33 | 2.71e4 | 1.38e4  | 13.1  | 4.4  | 1.97   |

Compound name: 13C2-PFTeDA

Response Factor: 1.9899

RRF SD: 0.148011, Relative SD: 7.43812

Response type: Internal Std ( Ref 15 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|             | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev  | RRF  |
|-------------|--------------|-----------|------|--------|---------|-------|-------|------|
| 1 1412 1416 | 1 170728G1_2 | 12.5      | 5.72 | 4.19e4 | 2.03e4  | 13.0  | 3.8   | 2.07 |
| 2           | 2 170728G1_3 | 12.5      | 5.72 | 4.23e4 | 2.24e4  | 11.9  | -5.1  | 1.89 |
| 3           | 3 170728G1_4 | 12.5      | 5.72 | 4.37e4 | 2.02e4  | 13.6  | 8.5   | 2.16 |
| 4           | 4 170728G1_5 | 12.5      | 5.72 | 2.24e4 | 1.26e4  | 11.2  | -10.5 | 1.78 |
| 5           | 5 170728G1_6 | 12.5      | 5.72 | 4.14e4 | 2.24e4  | 11.6  | -6.9  | 1.85 |
| 6           | 6 170728G1_7 | 12.5      | 5.72 | 4.03e4 | 1.91e4  | 13.3  | 6.2   | 2.11 |
| 7           | 7 170728G1_8 | 12.5      | 5.72 | 3.47e4 | 1.82e4  | 12.0  | -3.8  | 1.91 |
| 8           | 8 170728G1_9 | 12.5      | 5.72 | 2.96e4 | 1.38e4  | 13.5  | 7.9   | 2.15 |

Work Order 1700887 Page 269 of 316

Quantify Compound Summary Report MassLynx 4.1 SCN815 Page 8 of 8

Vista Analytical Laboratory Q2

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time

Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: 13C7-PFUnA

Response Factor: 1

RRF SD: 4.19625e-017, Relative SD: 4.19625e-015

Response type: Internal Std ( Ref 15 ), Area \* ( IS Conc. / IS Area )

Curve type: RF

|   | # Name       | Std. Conc | RT   | Resp   | IS Resp | Conc. | %Dev | RRE  |
|---|--------------|-----------|------|--------|---------|-------|------|------|
| 1 | 1 170728G1_2 | 12.5      | 5.10 | 2.03e4 | 2.03e4  | 12.5  | 0.0  | 1.00 |
| 2 | 2 170728G1_3 | 12.5      | 5.10 | 2.24e4 | 2.24e4  | 12.5  | 0.0  | 1.00 |
| 3 | 3 170728G1_4 | 12.5      | 5.10 | 2.02e4 | 2.02e4  | 12.5  | 0.0  | 1.00 |
| 4 | 4 170728G1_5 | 12.5      | 5.10 | 1.26e4 | 1.26e4  | 12.5  | 0.0  | 1.00 |
| 5 | 5 170728G1_6 | 12.5      | 5.11 | 2.24e4 | 2.24e4  | 12.5  | 0.0  | 1.00 |
| 6 | 6 170728G1_7 | 12.5      | 5.10 | 1.91e4 | 1.91e4  | 12.5  | 0.0  | 1.00 |
| 7 | 7 170728G1_8 | 12.5      | 5.10 | 1.82e4 | 1.82e4  | 12.5  | 0.0  | 1.00 |
| 8 | 8 170728G1_9 | 12.5      | 5.10 | 1.38e4 | 1.38e4  | 12.5  | -0.0 | 1.00 |

Work Order 1700887

**Quantify Compound Summary Report** Vista Analytical Laboratory VG-11

MassLynx 4.1 SCN815

Page 1 of 1

Dataset:

Untitled

Last Altered: Printed: Monday, July 31, 2017 08:52:52 Pacific Daylight Time Monday, July 31, 2017 08:56:26 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.PRO\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

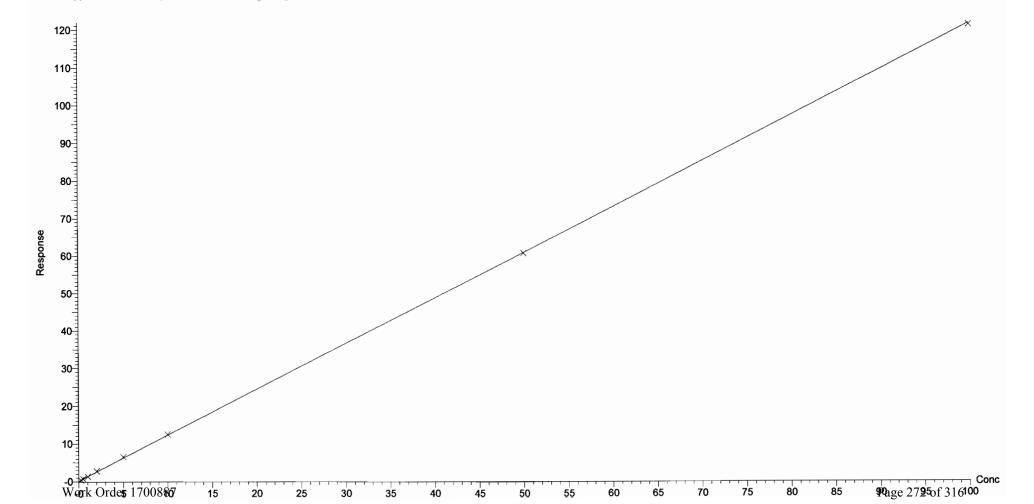
|     | Name        | , dD =                        | Acq.Date  | Acq.Time |
|-----|-------------|-------------------------------|-----------|----------|
| 1   | 170728G1_1  | IPA                           | 28-Jul-17 | 16:05:47 |
| 2   | 170728G1_2  | ST170728G1-1 PFC CS-2 17G2824 | 28-Jul-17 | 16:18:24 |
| 3   | 170728G1_3  | ST170728G1-2 PFC CS-1 17G2825 | 28-Jul-17 | 16:30:58 |
| 4   | 170728G1_4  | ST170728G1-3 PFC CS0 17G2826  | 28-Jul-17 | 16:43:33 |
| 5 * | 170728G1_5  | ST170728G1-4 PFC CS1 17G2827  | 28-Jul-17 | 16:56:09 |
| 6   | 170728G1_6  | ST170728G1-5 PFC CS2 17G2828  | 28-Jul-17 | 17:09:04 |
| 7   | 170728G1_7  | ST170728G1-6 PFC CS3 17G2829  | 28-Jul-17 | 17:21:42 |
| 8   | 170728G1_8  | ST170728G1-7 PFC CS4 17G2830  | 28-Jul-17 | 17:34:20 |
| 9   | 170728G1_9  | ST170728G1-8 PFC CS5 17G2831  | 28-Jul-17 | 17:47:02 |
| 10  | 170728G1_10 | IPA                           | 28-Jul-17 | 17:59:40 |
| 11  | 170728G1_11 | SS170728G1-1 PFC SSS 17G2823  | 28-Jul-17 | 18:12:17 |
| 12  | 170728G1_12 | IPA                           | 28-Jul-17 | 18:24:50 |

Work Order 1700887

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Method: U:\G1.PRO\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03


Calibration: U:\G1.PRO\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

Correlation coefficient: r = 0.999923,  $r^2 = 0.999847$ 

Calibration curve: 1.21764 \* x + 0.142512

Response type: Internal Std ( Ref 9 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



MassLynx 4.1 SCN815

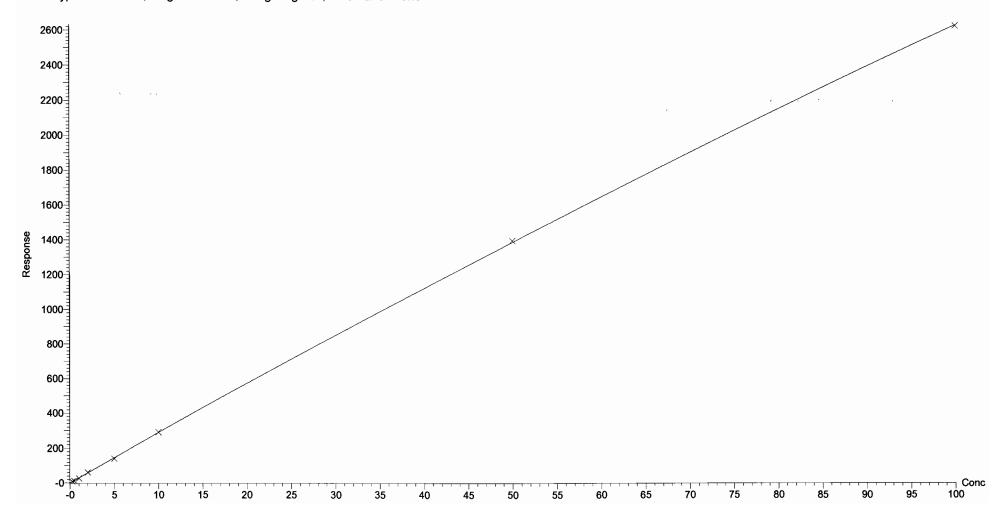
Page 2 of 8

Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time


Printed:

Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.999599

Calibration curve: -0.0288624 \* x^2 + 29.2151 \* x + 0.0851315 Response type: Internal Std ( Ref 10 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None



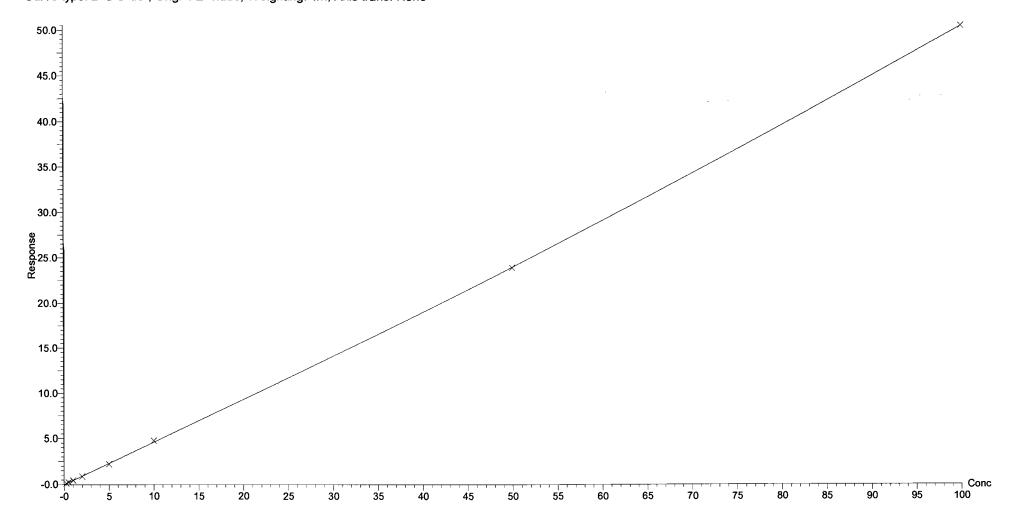
Work Order 1700887

Page 273 of 316

MassLynx 4.1 SCN815

Page 3 of 8

Vista Analytical Laboratory Q1


Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFDS

Coefficient of Determination: R<sup>2</sup> = 0.999845

Calibration curve: 0.00050466 \* x^2 + 0.454912 \* x + -0.0161039 Response type: Internal Std ( Ref 11 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None



Work Order 1700887

**Quantify Calibration Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815

Page 4 of 8

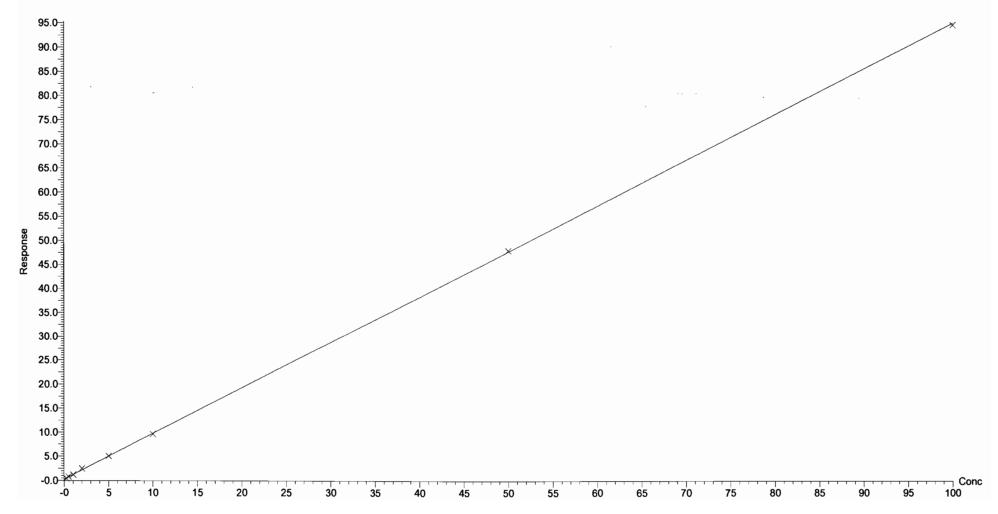
Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time

Printed:


Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFUnA

Correlation coefficient: r = 0.999740,  $r^2 = 0.999481$ 

Calibration curve: 0.950369 \* x + 0.261679

Response type: Internal Std ( Ref 11 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



Work Order 1700887

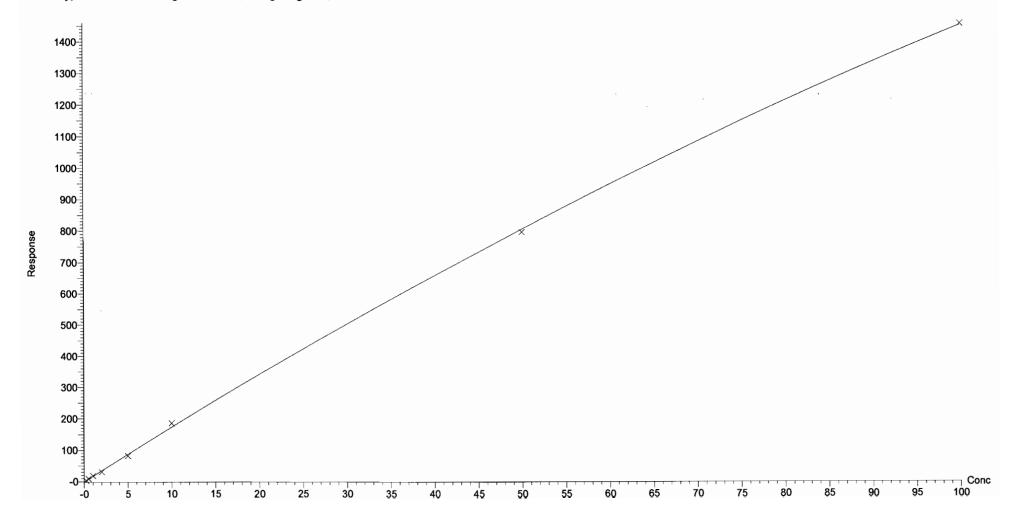
Page 275 of 316

MassLynx 4.1 SCN815

Page 5 of 8

Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld


Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.999066

Calibration curve: -0.0319951 \* x^2 + 17.7619 \* x + -1.1299 Response type: Internal Std ( Ref 12 ), Area \* ( IS Conc. / IS Area ) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None



Work Order 1700887

Quantify Calibration Report Vista Analytical Laboratory Q1

MassLynx 4.1 SCN815

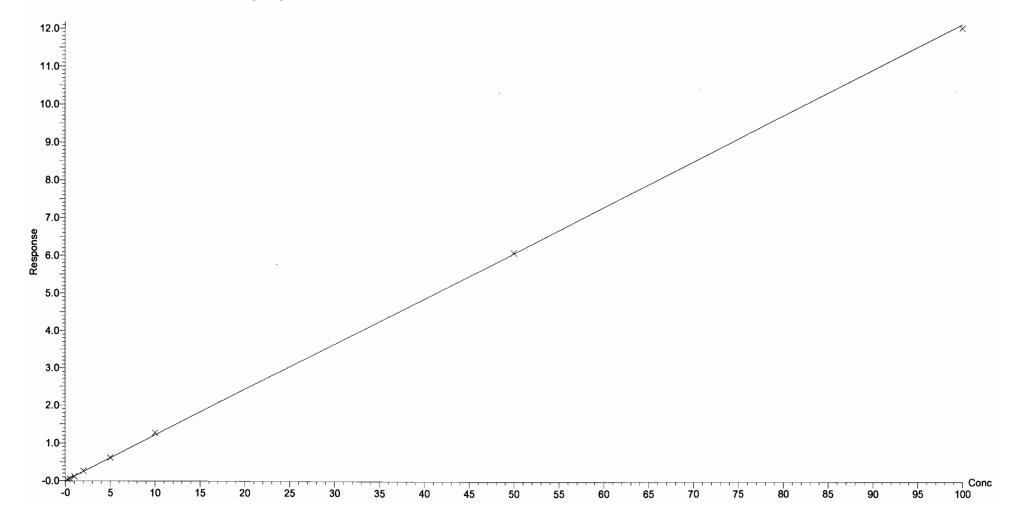
Page 6 of 8

Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time


Printed:

Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFDoA

Correlation coefficient: r = 0.999801,  $r^2 = 0.999601$ Calibration curve: 0.121673 \* x + 0.000589951

Response type: Internal Std ( Ref 13 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



**Quantify Calibration Report** Vista Analytical Laboratory Q1

MassLynx 4.1 SCN815

Page 7 of 8

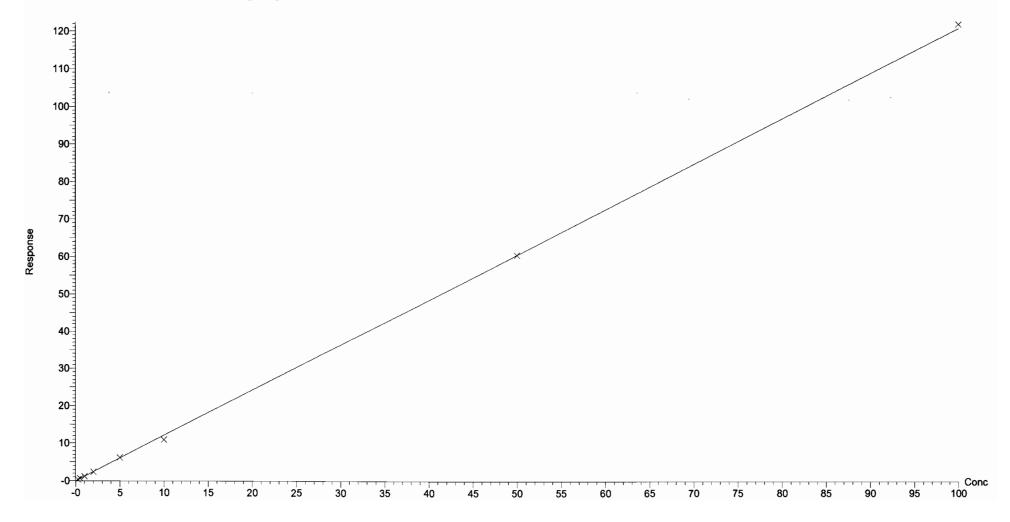
Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time

Printed:


Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFTrDA

Correlation coefficient: r = 0.999657,  $r^2 = 0.999315$ 

Calibration curve: 1.21286 \* x + -0.015692

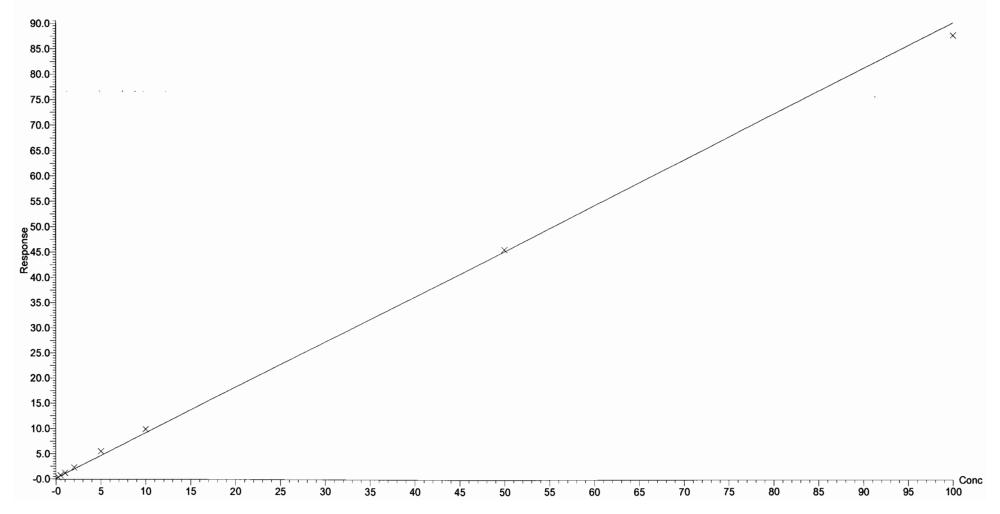
Response type: Internal Std ( Ref Multiple ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



Work Order 1700887

Page 278 of 316

Dataset: U:\G1.PR0\Results\2017\170728G1\170728G1-CRV.qld


Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFTeDA

Correlation coefficient: r = 0.998269, r^2 = 0.996541

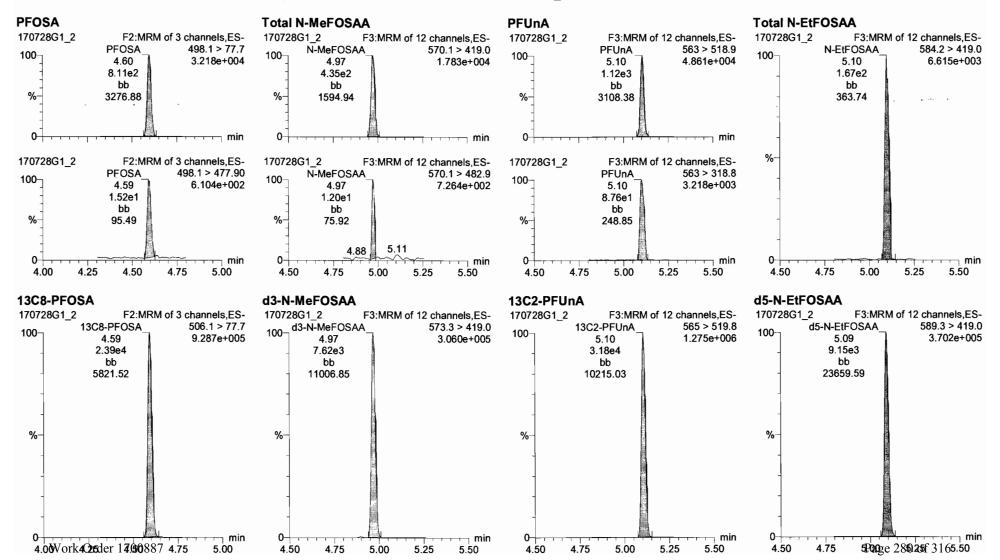
Calibration curve: 0.904178 \* x + 0.15515

Response type: Internal Std ( Ref 14 ), Area \* ( IS Conc. / IS Area ) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None



Work Order 1700887

Dataset:


U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

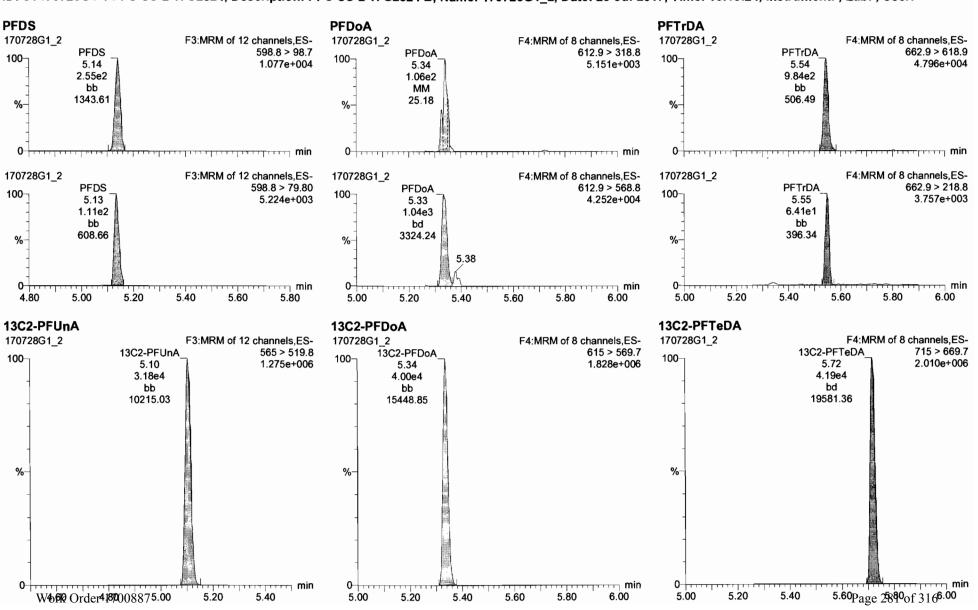
Last Altered: Printed: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

Method: U:\G1.PRO\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.PRO\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: ST170728G1-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824 B, Name: 170728G1\_2, Date: 28-Jul-2017, Time: 16:18:24, Instrument: , Lab: , User:




Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

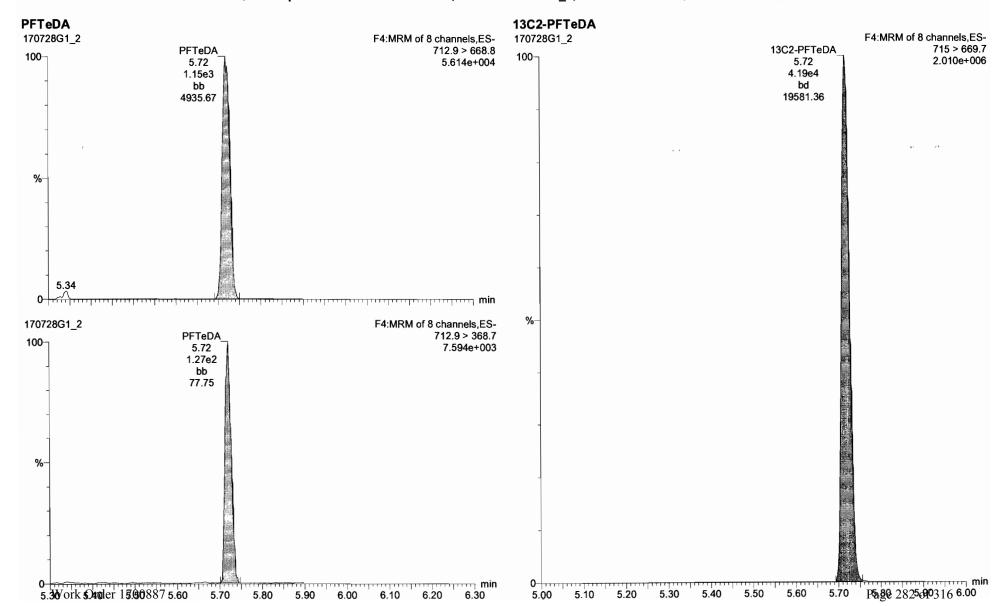
Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

#### ID: ST170728G1-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824 B, Name: 170728G1 2, Date: 28-Jul-2017, Time: 16:18:24, Instrument: , Lab: , User:



Page 3 of 32

Vista Analytical Laboratory Q1


Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

### ID: ST170728G1-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824 B, Name: 170728G1\_2, Date: 28-Jul-2017, Time: 16:18:24, Instrument: , Lab: , User:



5P40ge 285.45f 3165.50

%-

4.50 Work 4055ler 174060887 4.65

4.70

4.75

4.80

4.85

4.90

4.95

5.00

5.05

5.10

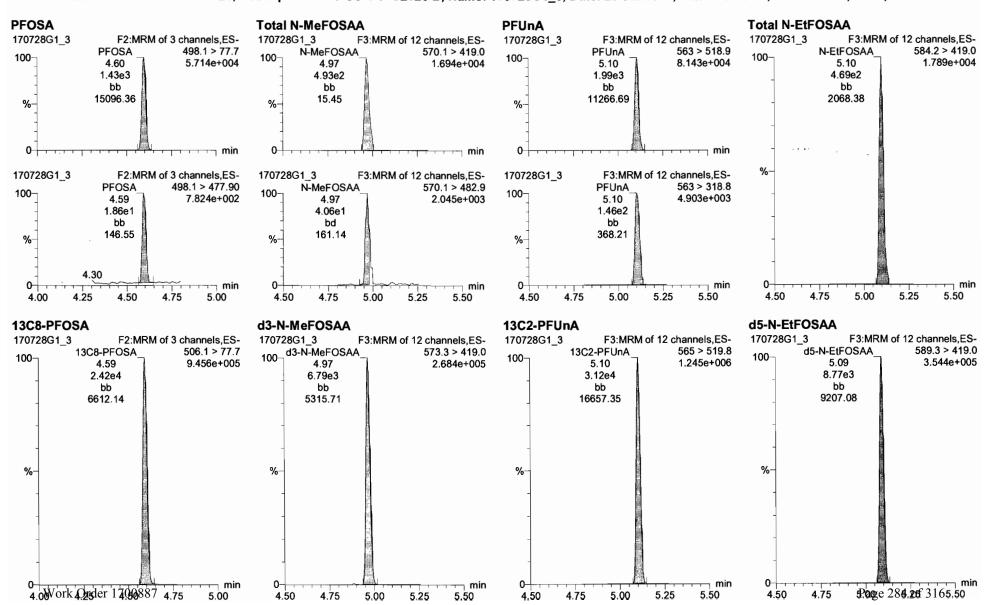
5.15

5.20

5.25

5.30

5.35


Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

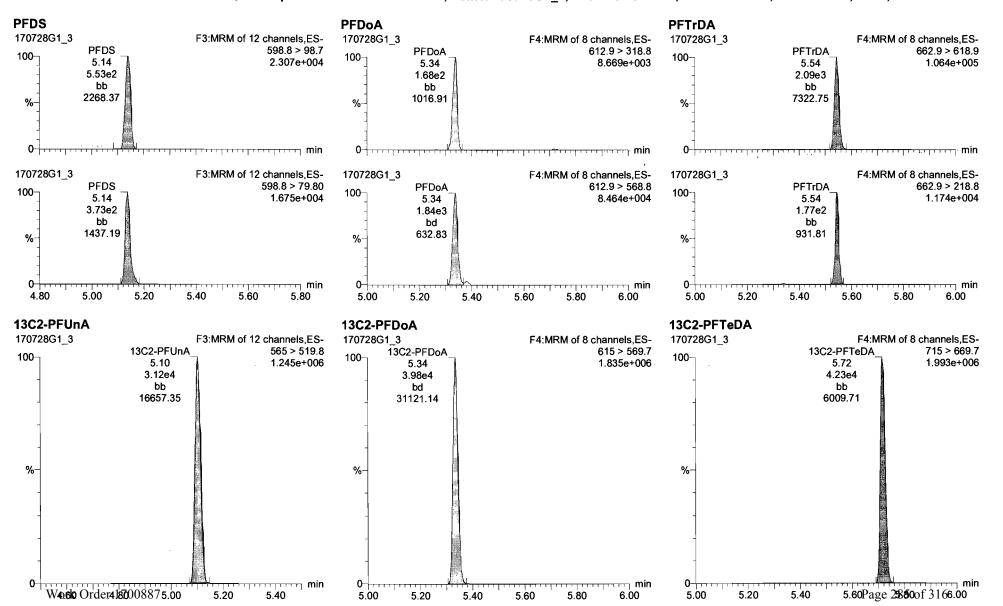
Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825 B, Name: 170728G1 3, Date: 28-Jul-2017, Time: 16:30:58, Instrument: , Lab: , User:



Dataset:


U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

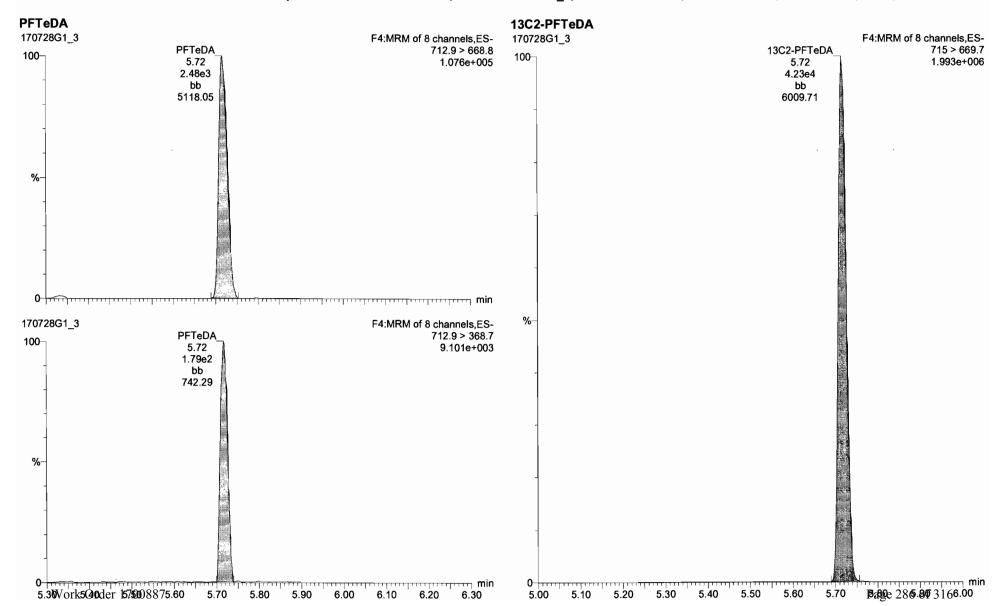
Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time

Monday, July 31, 2017 08:50:08 Pacific Daylight Time

# ID: ST170728G1-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825 B, Name: 170728G1\_3, Date: 28-Jul-2017, Time: 16:30:58, Instrument: , Lab: , User:




Page 7 of 32

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

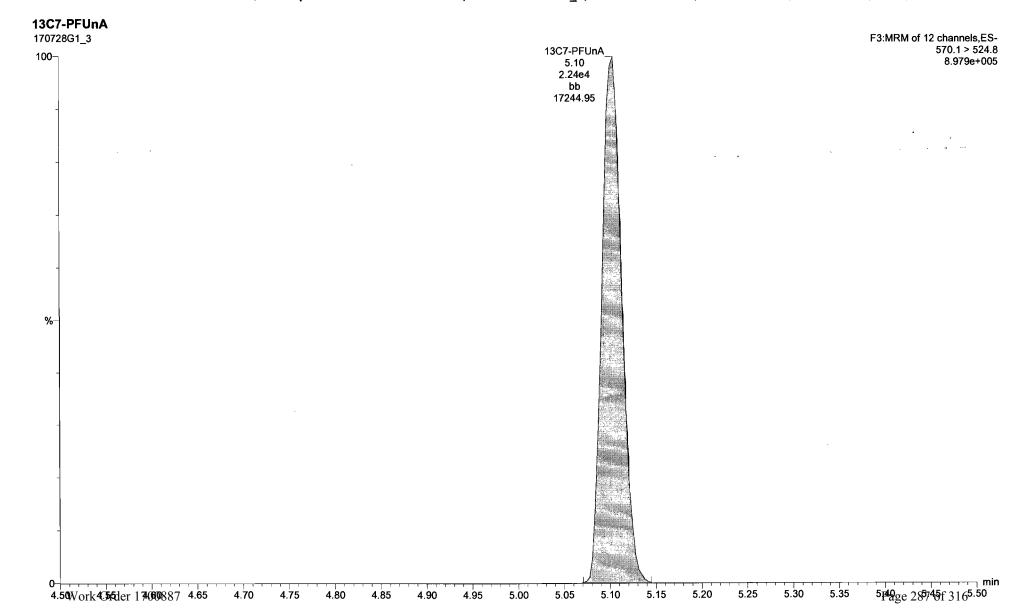
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

#### ID: ST170728G1-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825 B, Name: 170728G1 3, Date: 28-Jul-2017, Time: 16:30:58, Instrument: , Lab: , User:



Page 8 of 32

Vista Analytical Laboratory Q1


Dataset:

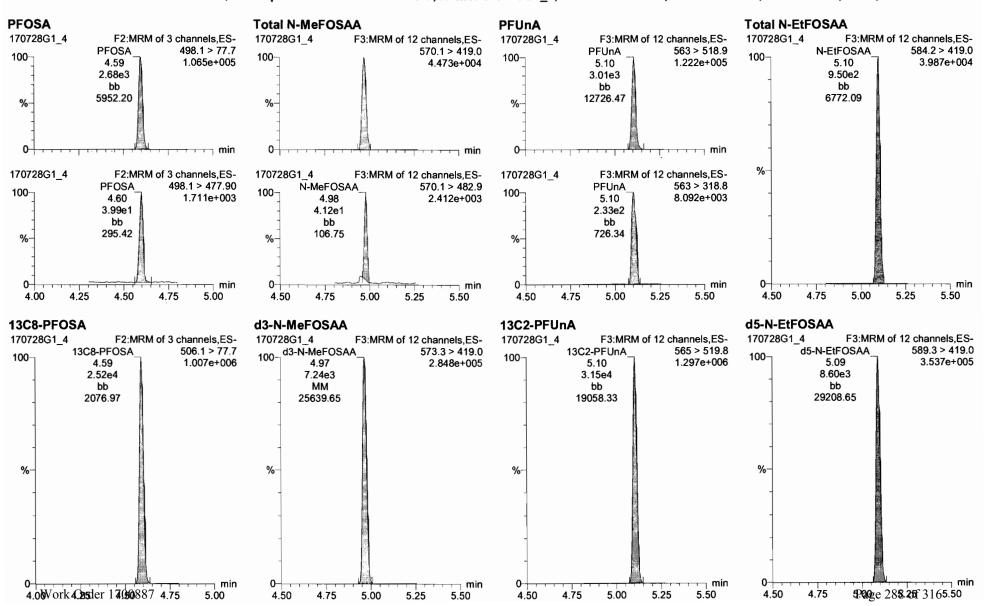
U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825 B, Name: 170728G1\_3, Date: 28-Jul-2017, Time: 16:30:58, Instrument: , Lab: , User:




Dataset:

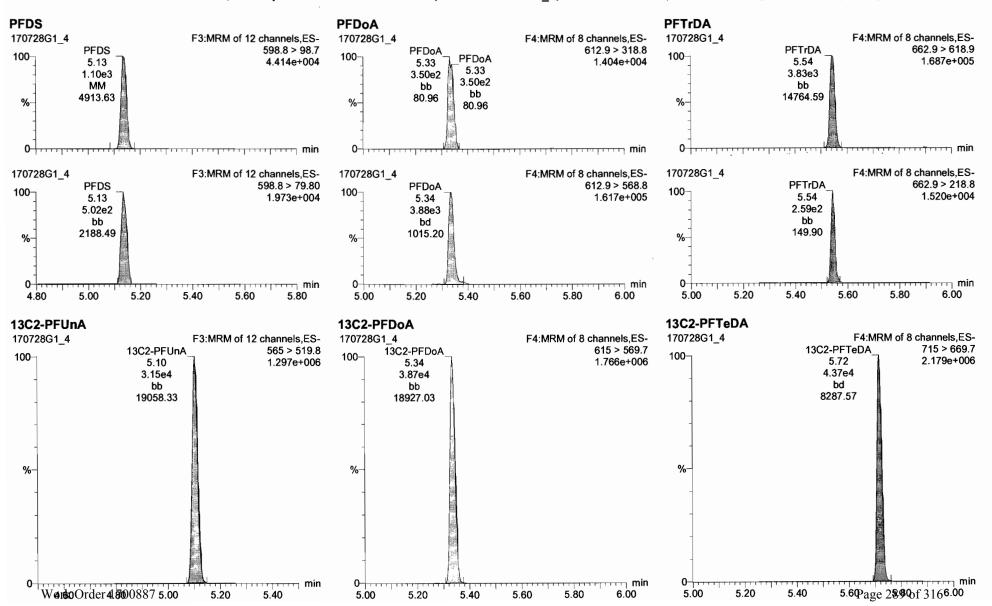
U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-3 PFC CS0 17G2826, Description: PFC CS 0 17G2826 B, Name: 170728G1\_4, Date: 28-Jul-2017, Time: 16:43:33, Instrument: , Lab: , User:




Dataset:

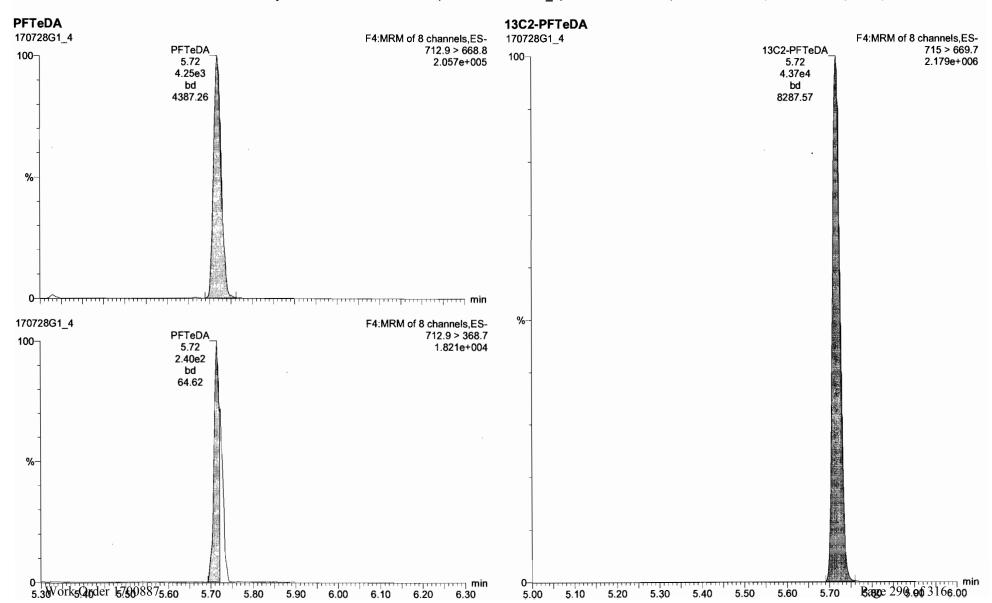
U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.gld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

### ID: ST170728G1-3 PFC CS0 17G2826, Description: PFC CS 0 17G2826 B, Name: 170728G1 4, Date: 28-Jul-2017, Time: 16:43:33, Instrument: , Lab: , User:




Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-3 PFC CS0 17G2826, Description: PFC CS 0 17G2826 B, Name: 170728G1\_4, Date: 28-Jul-2017, Time: 16:43:33, Instrument: , Lab: , User:



5.00

4.95

5.05

5.10

5.20

5.15

5.25

4.50 Vork 40 steler 1740 60887 4.65

4.70

4.75

4.80

4.85

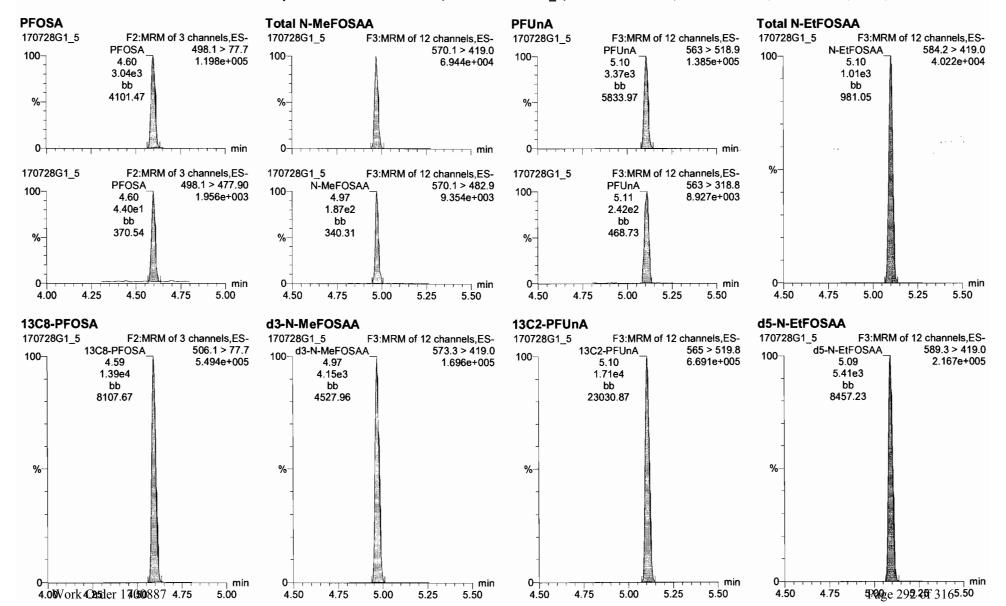
4.90

5Page 295.45f 3165.50

5.35

5.30

Dataset:


U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.ald

Last Altered:

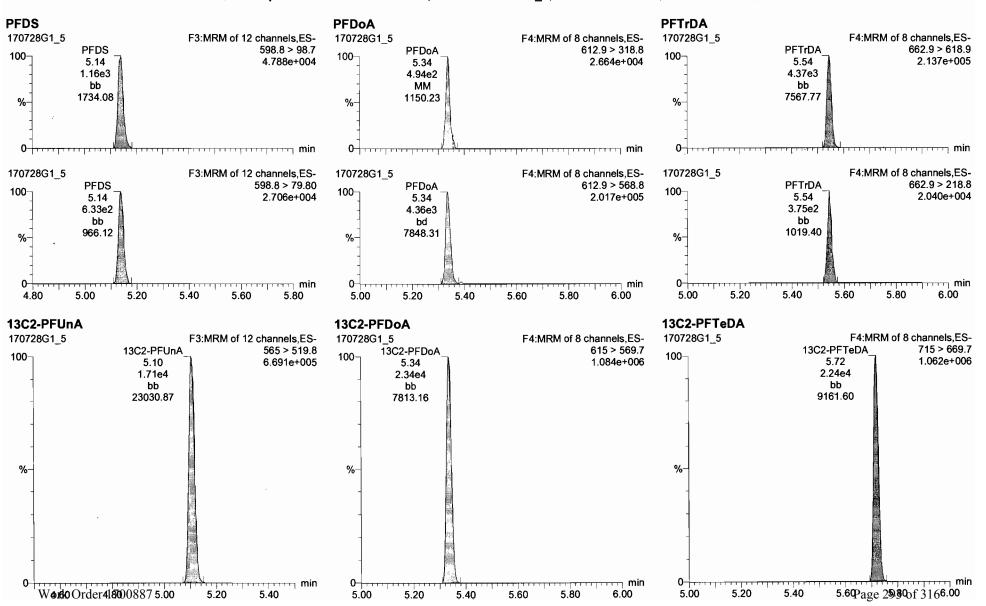
Monday, July 31, 2017 08:37:52 Pacific Daylight Time

Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

# ID: ST170728G1-4 PFC CS1 17G2827, Description: PFC CS1 17G2827 B, Name: 170728G1\_5, Date: 28-Jul-2017, Time: 16:56:09, Instrument: , Lab: , User:



Dataset:


U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time

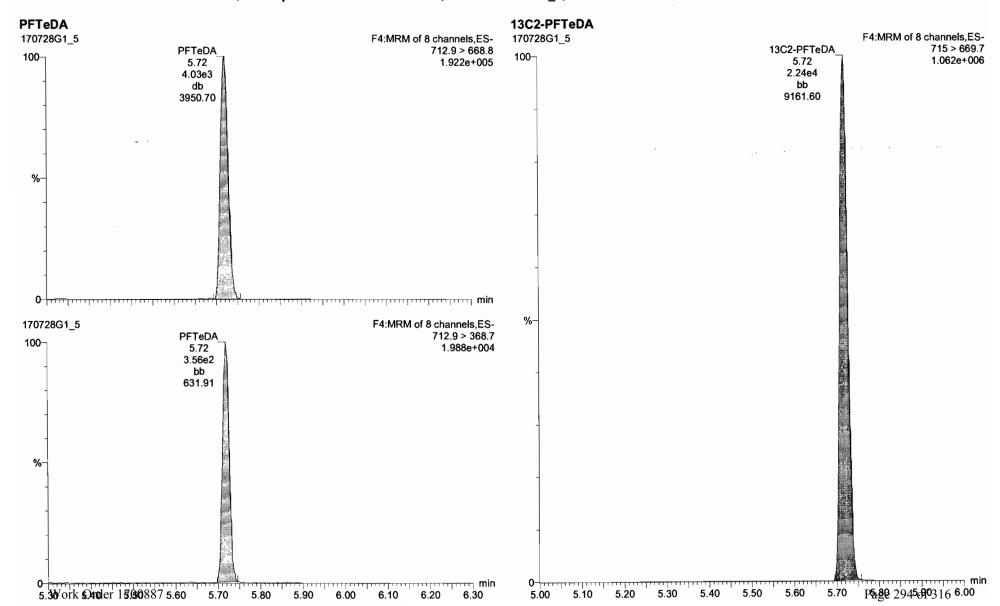
Monday, July 31, 2017 08:50:08 Pacific Daylight Time

#### ID: ST170728G1-4 PFC CS1 17G2827, Description: PFC CS1 17G2827 B, Name: 170728G1 5, Date: 28-Jul-2017, Time: 16:56:09, Instrument: , Lab: , User:



Page 15 of 32

Vista Analytical Laboratory Q1


Dataset:

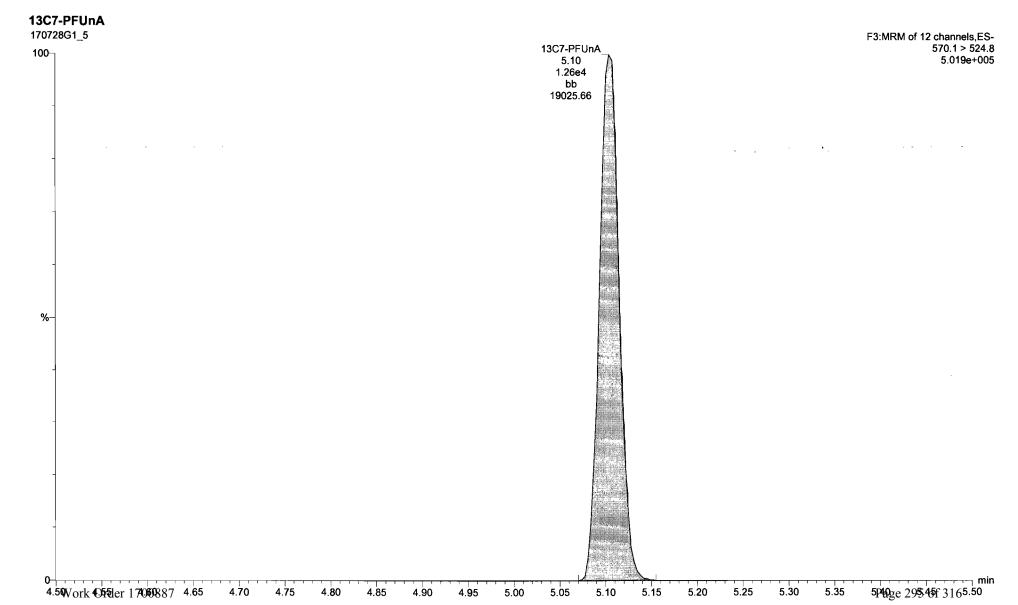
U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-4 PFC CS1 17G2827, Description: PFC CS1 17G2827 B, Name: 170728G1\_5, Date: 28-Jul-2017, Time: 16:56:09, Instrument: , Lab: , User:

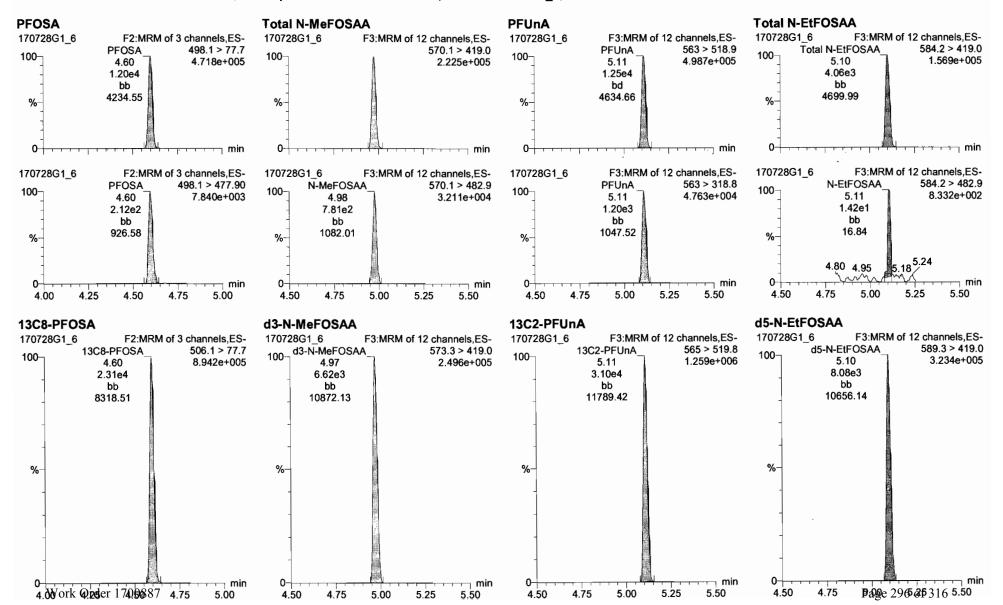



Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time


ID: ST170728G1-4 PFC CS1 17G2827, Description: PFC CS1 17G2827 B, Name: 170728G1\_5, Date: 28-Jul-2017, Time: 16:56:09, Instrument: , Lab: , User:

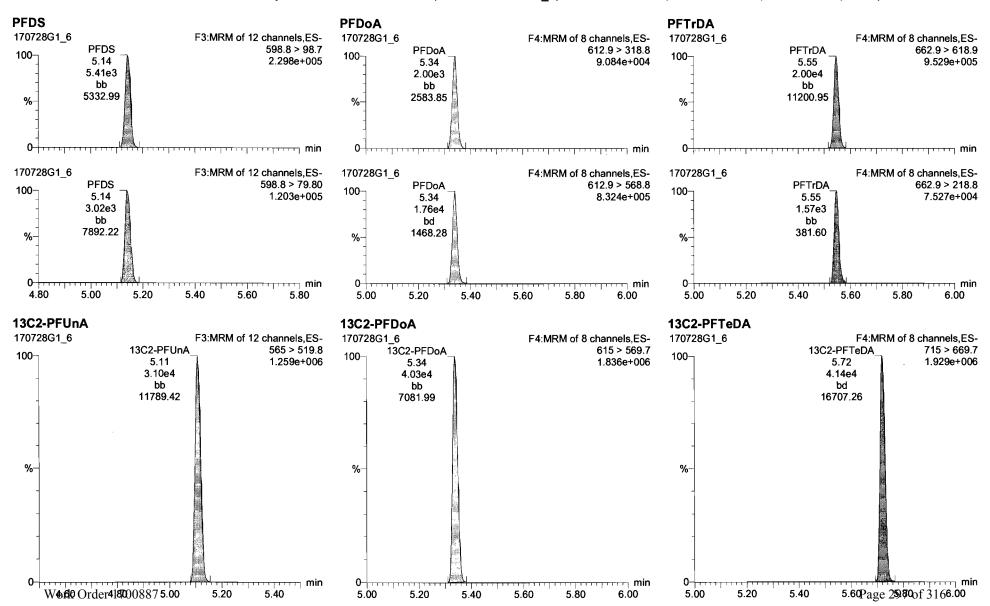


Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qid

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-5 PFC CS2 17G2828, Description: PFC CS2 17G2828 B, Name: 170728G1\_6, Date: 28-Jul-2017, Time: 17:09:04, Instrument: , Lab: , User:

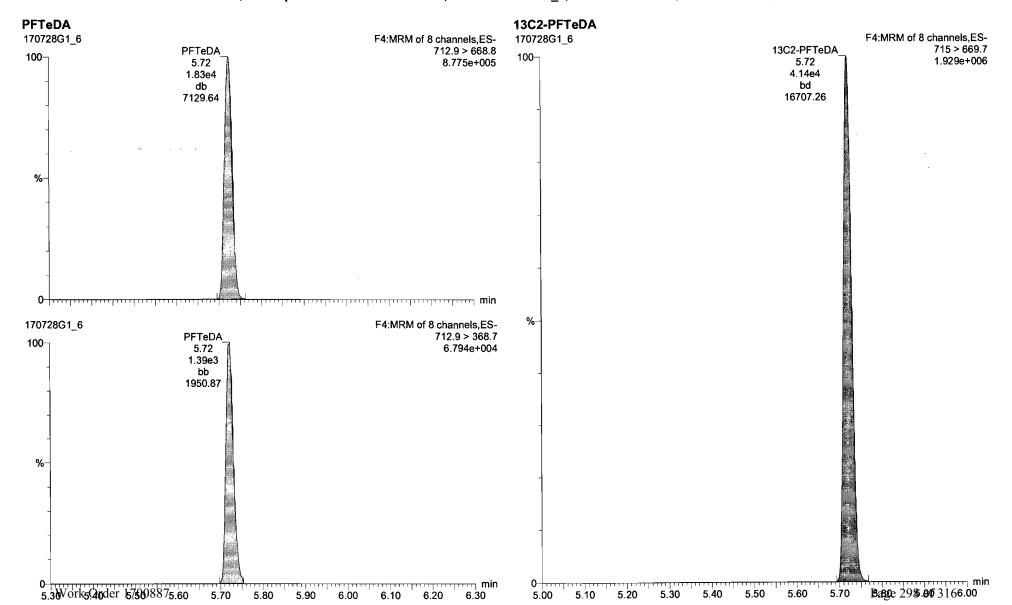



Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

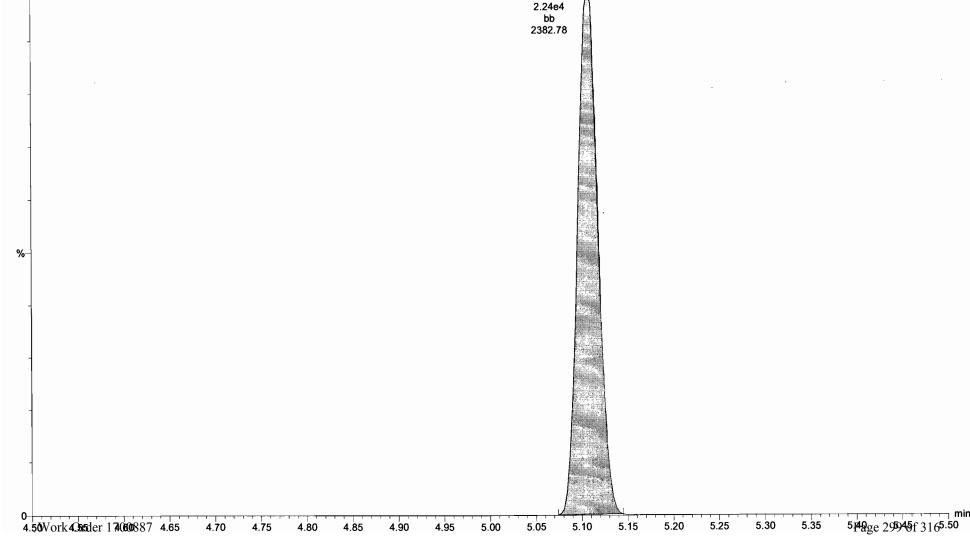
Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time


# ID: ST170728G1-5 PFC CS2 17G2828, Description: PFC CS2 17G2828 B, Name: 170728G1\_6, Date: 28-Jul-2017, Time: 17:09:04, Instrument: , Lab: , User:



Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time


ID: ST170728G1-5 PFC CS2 17G2828, Description: PFC CS2 17G2828 B, Name: 170728G1\_6, Date: 28-Jul-2017, Time: 17:09:04, Instrument: , Lab: , User:

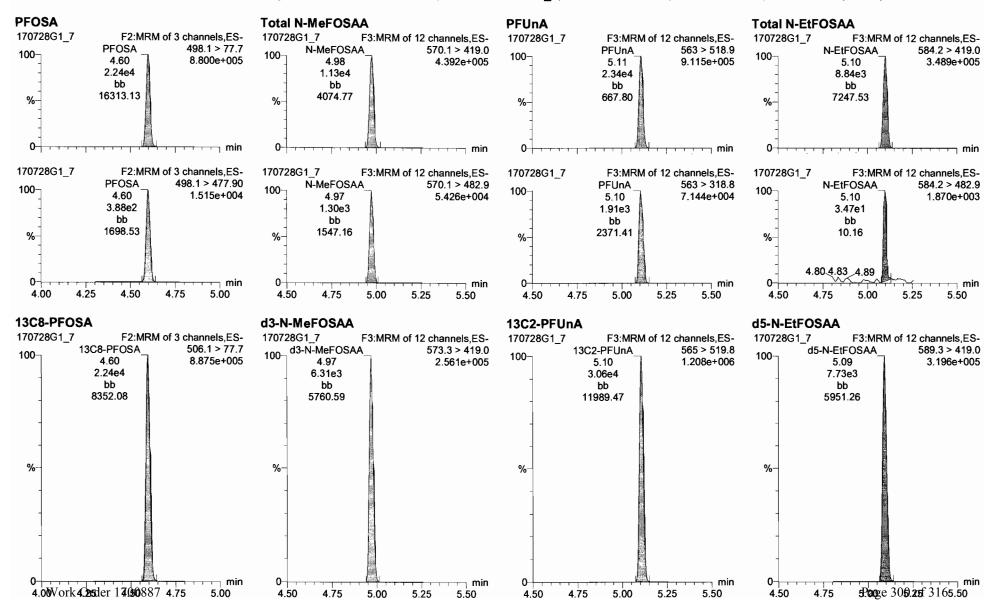


Page 20 of 32

570.1 > 524.8

8.888e+005

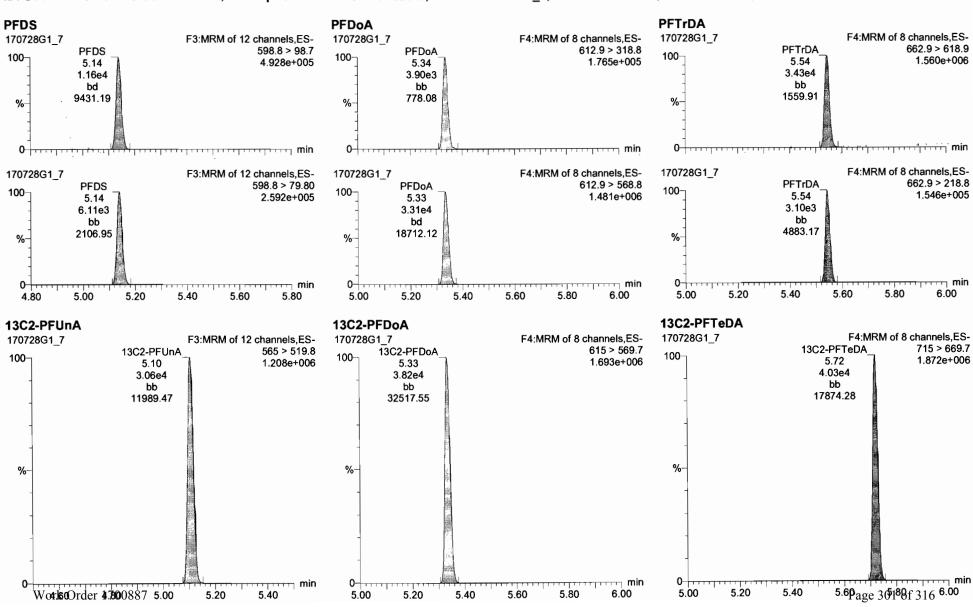



Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed: Monday, July 31, 2017 08:37:52 Pacific Daylight Time

Monday, July 31, 2017 08:50:08 Pacific Daylight Time

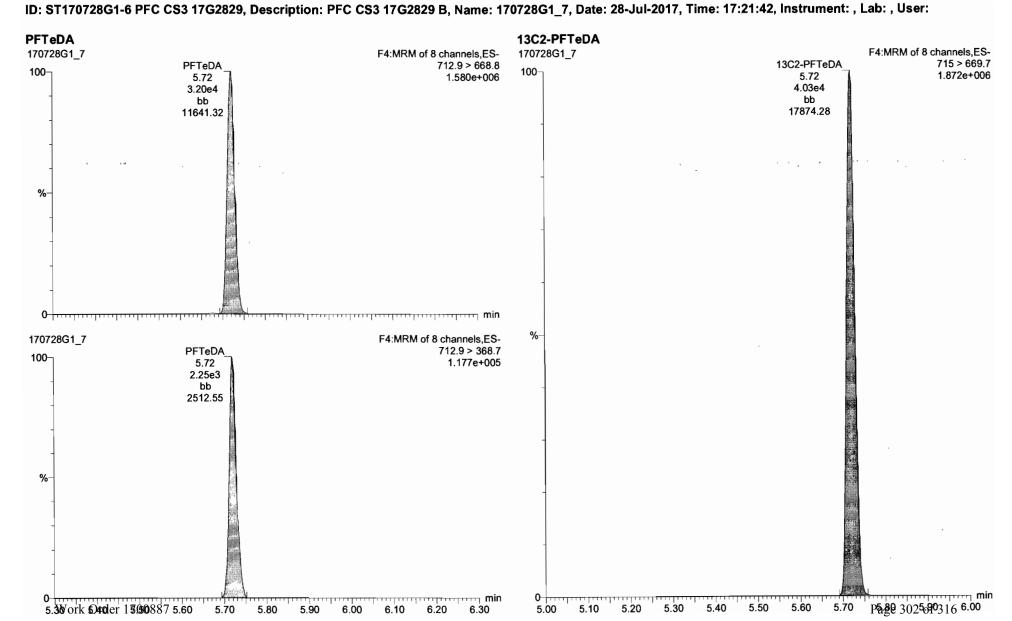

# ID: ST170728G1-6 PFC CS3 17G2829, Description: PFC CS3 17G2829 B, Name: 170728G1\_7, Date: 28-Jul-2017, Time: 17:21:42, Instrument: , Lab: , User:



Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

# ID: ST170728G1-6 PFC CS3 17G2829, Description: PFC CS3 17G2829 B, Name: 170728G1\_7, Date: 28-Jul-2017, Time: 17:21:42, Instrument: , Lab: , User:




Page 23 of 32

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Last Altered: Monday, July 31, 2017 08:50:08 Pacific Daylight Time Printed:



5.10

5.15

5.20

5.25

5.30

5.35

5P40ge 305.45f 3165.50

4.5 Work Ostsler 17060887 4.65

4.75

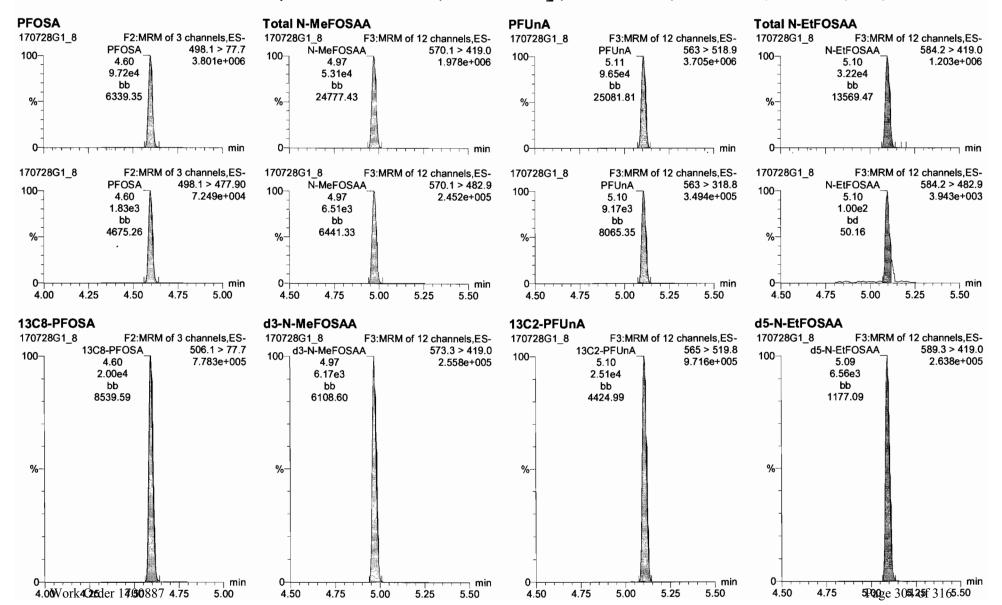
4.70

4.80

4.85

4.90

4.95

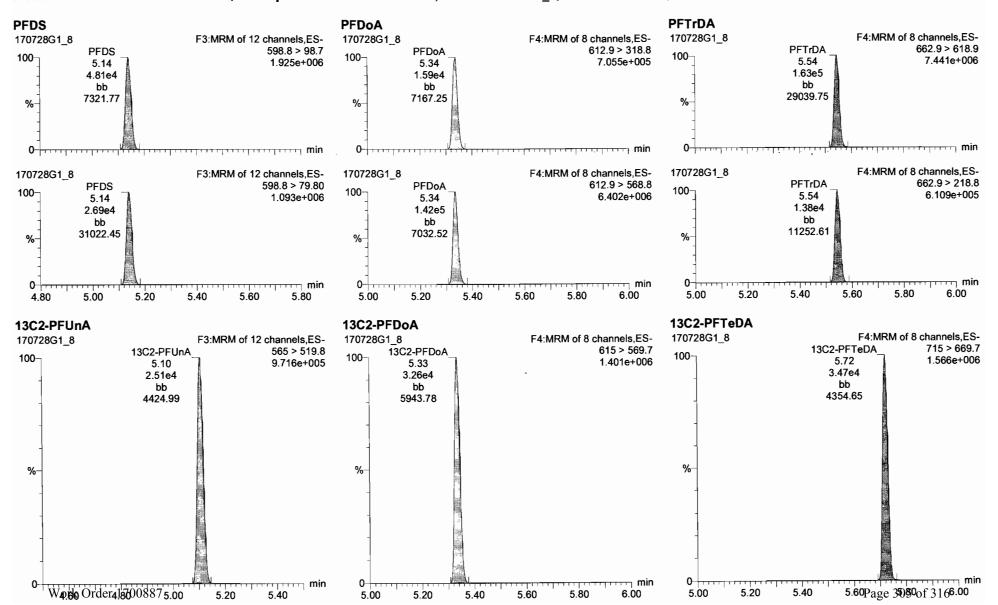

5.00

5.05

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-7 PFC CS4 17G2830, Description: PFC CS4 17G2830 B, Name: 170728G1\_8, Date: 28-Jul-2017, Time: 17:34:20, Instrument: , Lab: , User:




Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

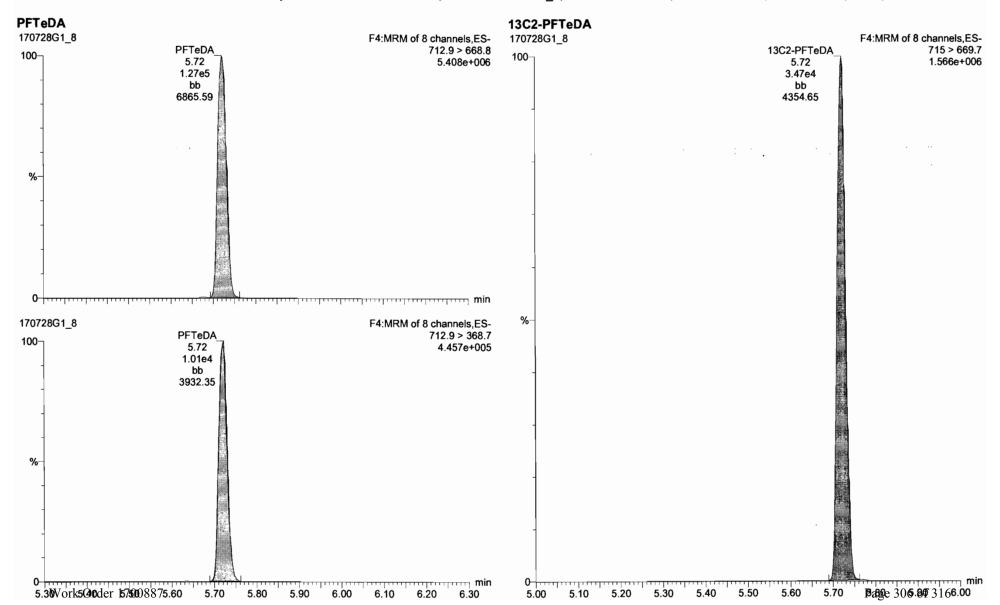
ID: ST170728G1-7 PFC CS4 17G2830, Description: PFC CS4 17G2830 B, Name: 170728G1\_8, Date: 28-Jul-2017, Time: 17:34:20, Instrument: , Lab: , User:



Page 27 of 32

Vista Analytical Laboratory Q1

Dataset:


U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.gld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time

ed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

## ID: ST170728G1-7 PFC CS4 17G2830, Description: PFC CS4 17G2830 B, Name: 170728G1\_8, Date: 28-Jul-2017, Time: 17:34:20, Instrument: , Lab: , User:



5p40ge 305/45f 3165.50

5.35

5.20

5.25

5.30

5.15

5.10

5.00

4.95

5.05

4.90

4.50 Work Of 5ler 174060887 4.65

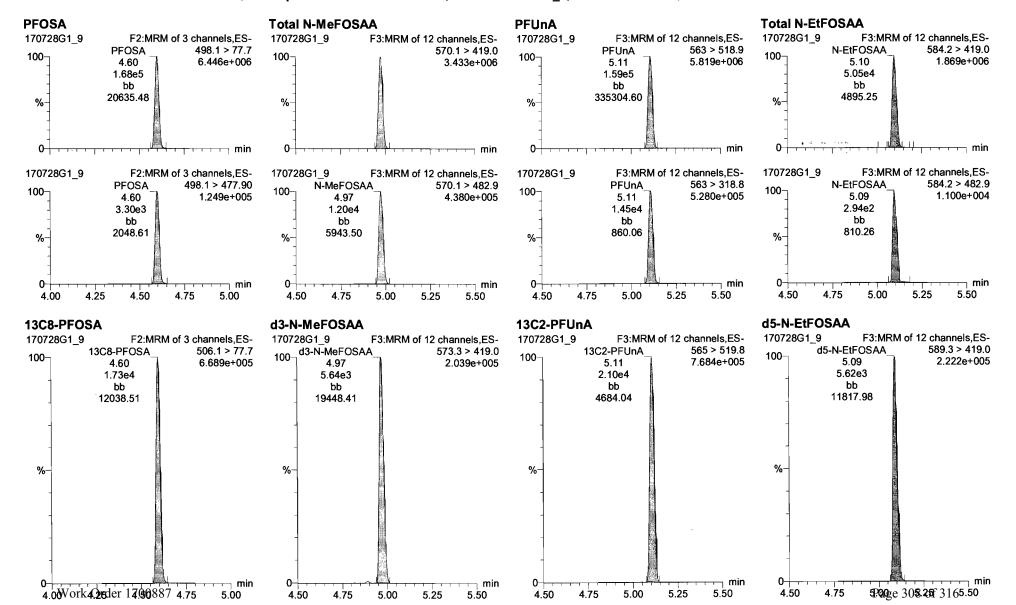
4.70

4.75

4.80

4.85

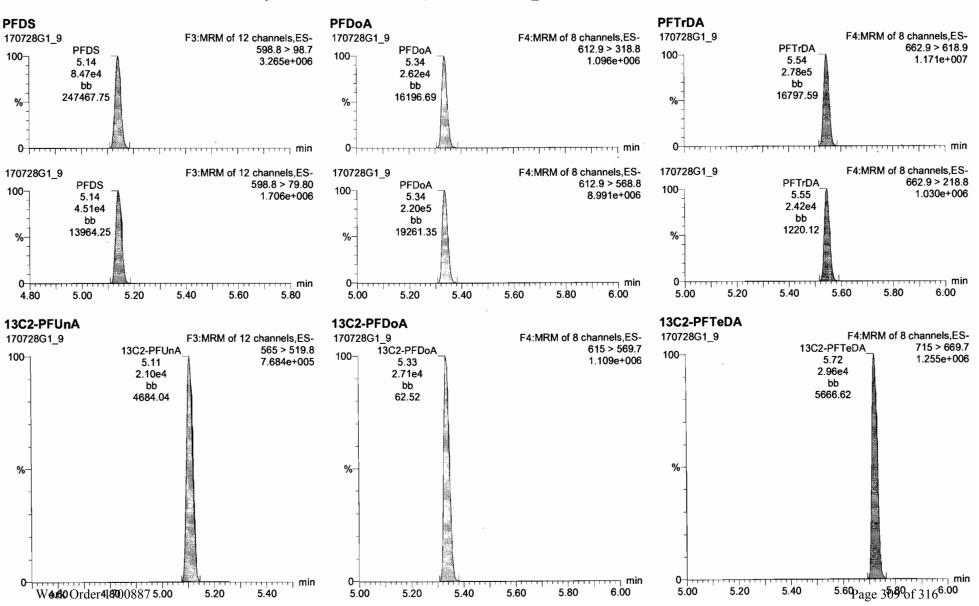
Dataset:


U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.gld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time

Monday, July 31, 2017 08:50:08 Pacific Daylight Time


#### ID: ST170728G1-8 PFC CS5 17G2831, Description: PFC CS5 17G2831 B, Name: 170728G1 9, Date: 28-Jul-2017, Time: 17:47:02, Instrument: , Lab: , User:

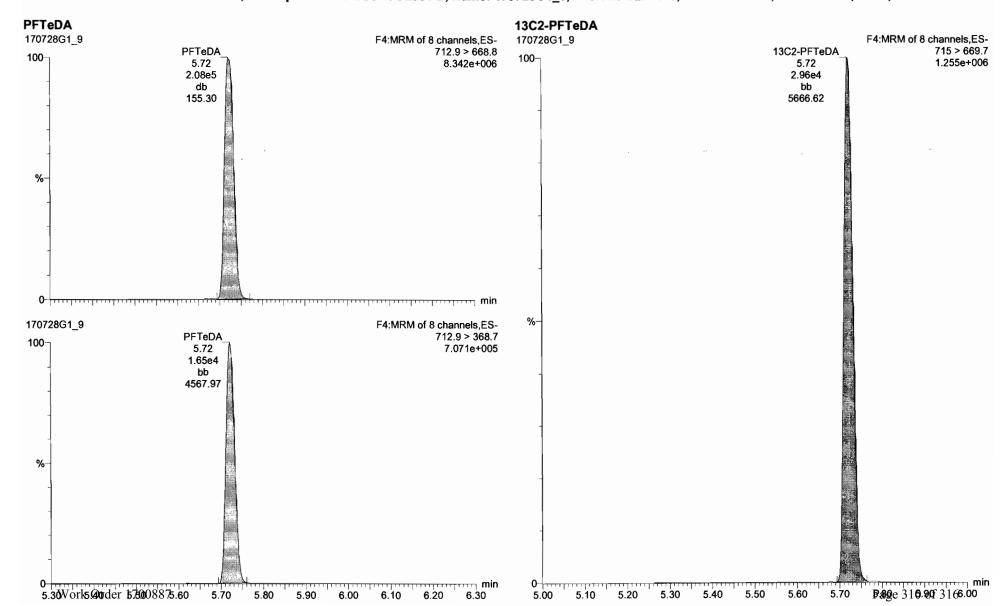


Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.gld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

## ID: ST170728G1-8 PFC CS5 17G2831, Description: PFC CS5 17G2831 B, Name: 170728G1\_9, Date: 28-Jul-2017, Time: 17:47:02, Instrument: , Lab: , User:




Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-8 PFC CS5 17G2831, Description: PFC CS5 17G2831 B, Name: 170728G1\_9, Date: 28-Jul-2017, Time: 17:47:02, Instrument: , Lab: , User:



MassLynx 4.1 SCN815 **Quantify Sample Report** Page 32 of 32 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld Monday, July 31, 2017 08:37:52 Pacific Daylight Time Last Altered: Monday, July 31, 2017 08:50:08 Pacific Daylight Time Printed: ID: ST170728G1-8 PFC CS5 17G2831, Description: PFC CS5 17G2831 B, Name: 170728G1\_9, Date: 28-Jul-2017, Time: 17:47:02, Instrument: , Lab: , User: 13C7-PFUnA 170728G1\_9 F3:MRM of 12 channels, ES-13C7-PFUnA 100~ 5.10 1.38e4 bb 1640.05

5.05

5.00

5.10

5.15

5.20

5.25

5.30

5.35

4.50 Work 40 steer 1740 80 887 4.65

4.70

4.75

4.80

4.85

4.90

4.95

570.1 > 524.8

5140ge 315.45f 3165.50

5.295e+005

Quantify Sample Summary Report Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815

Page 1 of 1

Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-11.qld

Last Altered:

Monday, July 31, 2017 08:57:52 Pacific Daylight Time

Printed: Monday, July 31, 2017 08:58:52 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

Name: 170728G1\_11, Date: 28-Jul-2017, Time: 18:12:17, ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17G2823 B

| GENERAL SERVICE | # Name          | Trace         | Response | IS Resp | RRF   | Wt/Vol | RT   | Conc. | %Rec  |          |
|-----------------|-----------------|---------------|----------|---------|-------|--------|------|-------|-------|----------|
| 1               | 1 PFOSA         | 498.1 > 77.7  | 2.03e4   | 2.21e4  |       | 1.000  | 4.60 | 9.32  | 93.2  | 70-130   |
| 2               | 2 N-MeFOSAA     | 570.1 > 419.0 | 1.00e4   | 6.76e3  |       | 1.000  | 4.98 | 8.33  | 83.3  | <b>\</b> |
| 3               | 3 PFDS          | 598.8 > 98.7  | 9.53e3   | 2.79e4  |       | 1.000  | 5.14 | 9.34  | 93.4  |          |
| 4               | 4 PFUnA         | 563 > 518.9   | 2.08e4   | 2.79e4  |       | 1.000  | 5.11 | 9.55  | 95.5  |          |
| 5               | 5 N-EtFOSAA     | 584.2 > 419.0 | 7.19e3   | 7.64e3  |       | 1.000  | 5.10 | 8.82  | 88.2  |          |
| 6               | 6 PFDoA         | 612.9 > 318.8 | 3.57e3   | 3.74e4  |       | 1.000  | 5.34 | 9.79  | 97.9  |          |
| 7               | 7 PFTrDA        | 662.9 > 618.9 | 3.40e4   | 0.00e0  |       | 1.000  | 5.54 | 9.17  | 91.7  | Į.       |
| 8               | 8 PFTeDA        | 712.9 > 668.8 | 3.05e4   | 3.91e4  |       | 1.000  | 5.72 | 10.6  | 106.3 | <b>1</b> |
| 9               | 9 13C8-PFOSA    | 506.1 > 77.7  | 2.21e4   | 1.86e4  | 1.146 | 1.000  | 4.60 | 13.0  | 103.8 |          |
| 10              | 10 d3-N-MeFOSAA | 573.3 > 419.0 | 6.76e3   | 1.86e4  | 0.026 | 1.000  | 4.97 | 172   | 106.1 |          |
| 11              | 11 13C2-PFUnA   | 565 > 519.8   | 2.79e4   | 1.86e4  | 1.471 | 1.000  | 5.11 | 12.7  | 101.9 |          |
| 12              | 12 d5-N-EtFOSAA | 589.3 > 419.0 | 7.64e3   | 1.86e4  | 0.031 | 1.000  | 5.09 | 165   | 101.8 |          |
| 13              | 13 13C2-PFDoA   | 615 > 569.7   | 3.74e4   | 1.86e4  | 1.887 | 1.000  | 5.34 | 13.3  | 106.7 |          |
| 14              | 14 13C2-PFTeDA  | 715 > 669.7   | 3.91e4   | 1.86e4  | 1.990 | 1.000  | 5.72 | 13.2  | 105.6 |          |
| 15              | 15 13C7-PFUnA   | 570.1 > 524.8 | 1.86e4   | 1.86e4  | 1.000 | 1.000  | 5.10 | 12.5  | 100.0 |          |

Da 7/3/17

Work Order 1700887

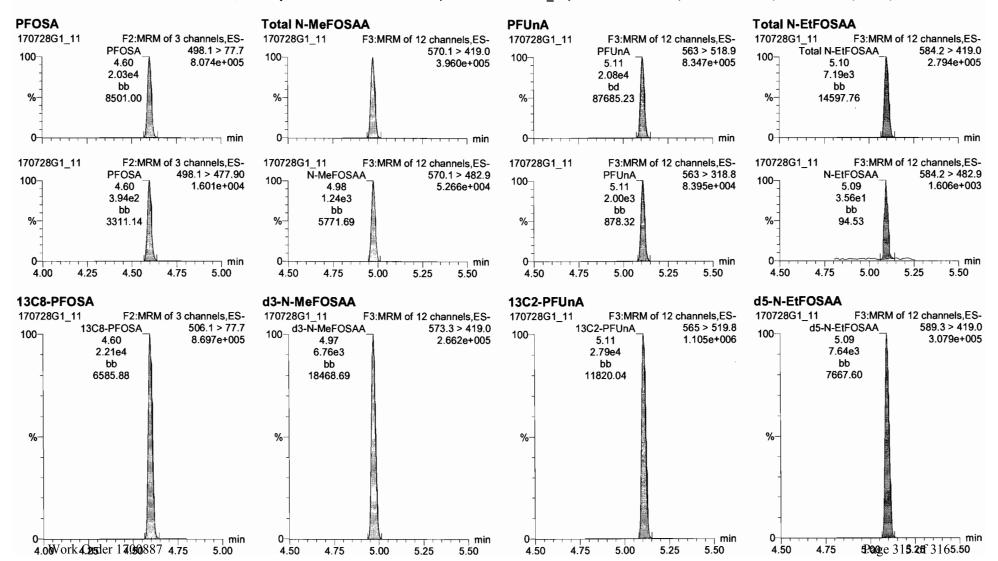
Page 1 of 4

Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-11.ald

Last Altered:

Monday, July 31, 2017 08:57:52 Pacific Daylight Time


Printed:

Monday, July 31, 2017 08:58:38 Pacific Daylight Time

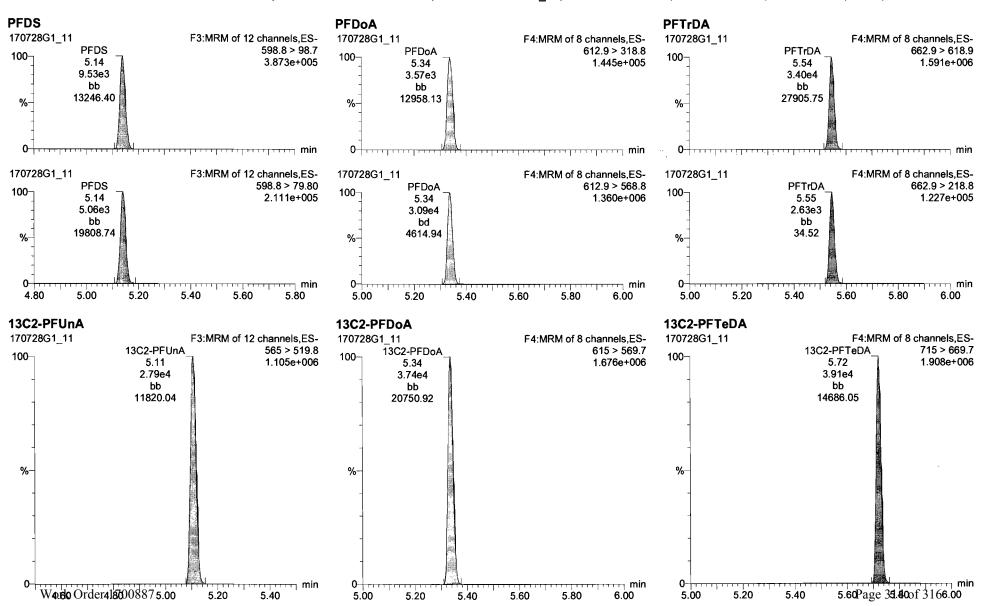
Method: U:\G1.pro\MethDB\PFAS\_B\_2TRAN\_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18\_VAL-PFC\_Q1\_7-28-17\_B\_2Trans\_NEW.cdb 31 Jul 2017 08:37:52

ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17G2823 B, Name: 170728G1\_11, Date: 28-Jul-2017, Time: 18:12:17, Instrument: , Lab: , User:



Dataset:


U:\G1.PRO\Results\2017\170728G1\170728G1-11.qld

Last Altered: Printed:

Monday, July 31, 2017 08:57:52 Pacific Daylight Time

Monday, July 31, 2017 08:58:38 Pacific Daylight Time

## ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17G2823 B, Name: 170728G1\_11, Date: 28-Jul-2017, Time: 18:12:17, Instrument: , Lab: , User:

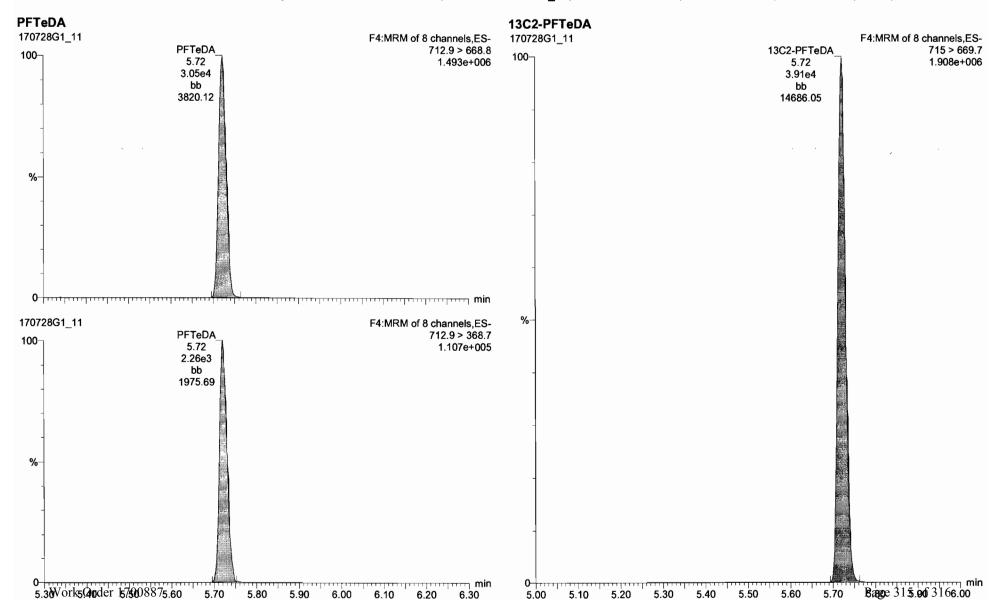


Page 3 of 4

Vista Analytical Laboratory Q1

Dataset:

U:\G1.PRO\Results\2017\170728G1\170728G1-11.qld


Last Altered:

Monday, July 31, 2017 08:57:52 Pacific Daylight Time

Printed:

Monday, July 31, 2017 08:58:38 Pacific Daylight Time

# ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17G2823 B, Name: 170728G1\_11, Date: 28-Jul-2017, Time: 18:12:17, Instrument: , Lab: , User:



**Quantify Sample Report** MassLynx 4.1 SCN815 Page 4 of 4 Vista Analytical Laboratory Q1 U:\G1.PRO\Results\2017\170728G1\170728G1-11.qld Dataset: Last Altered: Monday, July 31, 2017 08:57:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:58:38 Pacific Daylight Time ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17G2823 B, Name: 170728G1\_11, Date: 28-Jul-2017, Time: 18:12:17, Instrument: , Lab: , User: 13C7-PFUnA 170728G1\_11 F3:MRM of 12 channels, ES-570.1 > 524.8 13C7-PFUnA 100¬ 7.302e+005 5.10 1.86e4 bb 8657.46 0 4.5 Work Offeler 1700887 4.65 5. Page 316.43f 3165.50 5.30 5.35 5.15 5.20 5.25 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10

```
"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t
est_type","cas_rn","chemical_name","result_value","result_error_delta","result_type_code","reportable_result","detect_
flag", "lab qualifiers", "organic yn", "method detection limit", "reporting detection limit", "quantatation limit", "result u
nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me
asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik
e recovery", "qc rpd", "qc spike lcl", "qc spike ucl", "qc rpd cl", "qc spike status", "qc dup spike status", "qc rpd sta
tus"
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","11:15","N","NA","000","375-73-
., .,, .,, .,, .,,
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","11:15","N","NA","000","307-24-
4", "PERFLUOROHEXANOIC ACID
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","11:15","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","11:15","N","NA","000","355-46-
4"."PERFLUOROHEXANESULFONIC ACID
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","11:15","N","NA","000","335-67-
1", "PERFLUOROOCTANOIC ACID
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","11:15","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","11:15","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
.... .... .... ....
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","11:15","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","15:06","N","NA","000","2355-31-
nn nn nn nn nn
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","15:06","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","15:06","N","NA","000","2991-50-
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","15:06","N","NA","000","307-55-
1"."PERFLUORODODECANOIC ACID
1111 1111 1111
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","15:06","N","NA","000","72629-94-
```

```
",",",","
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","15:06","N","NA","000","376-06-
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","11:15","N","NA","000","13C3-PFBS","13C3-
PFBS","105","","IS","Yes","Y","","","","","","PCT_REC","","","","100","105","105","105","","","","","",""50","150","",""
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","11:15","N","NA","000","13C2-PFHxA","13C2-
PFHxA","94.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","94.0","94.0","94.0","","","","","","50","150","
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","11:15","N","NA","000","13C4-PFHpA","13C4-
PFHpA","99.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","99.5","99.5","99.5","","","","","","50","150","
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","11:15","N","NA","000","18O2-PFHxS","18O2-
PFHxS","94.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","94.1","94.1","","","","","","","50","150","
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","11:15","N","NA","000","13C2-PFOA","13C2-
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","11:15","N","NA","000","13C8-PFOS","13C8-
PFOS","88.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","88.6","88.6","88.6","","","","","","50","150","",
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","11:15","N","NA","000","13C5-PFNA","13C5-
PFNA","84.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","84.4","84.4","","","","","","","50","150",""
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","11:15","N","NA","000","13C2-PFDA","13C2-
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","15:06","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","58.5","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","58.5","58.5","58.5","","","","","50","15
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","15:06","N","NA","000","13C2-PFUnA","13C2-
PFUnA","59.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","59.3","59.3","59.3","","","","","50","150","
.. ... ... ...
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","15:06","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","59.3","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","59.3","59.3","","","","","","","150","150
"IRPSite 6-GW-06GW01-20170712","537 MOD","07/31/17","15:06","N","NA","000","13C2-PFDoA","13C2-
PFDoA","52.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","52.0","52.0","52.0","","","","","50","150","
"IRPSite 6-GW-06GW01-20170712","537_MOD","07/31/17","15:06","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","50.2","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","50.2","50.2","","","","","","","50","150"
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","375-73-
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","307-24-
4", "PERFLUOROHEXANOIC ACID
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
```

```
, , , ,
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","335-67-
1","PERFLUOROOCTANOIC ACID
nin , nn , nn , nn
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
ù,"",""
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","2355-31-
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","2991-50-
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","307-55-
1"."PERFLUORODODECANOIC ACID
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","72629-94-
",",",","
"IRPSite 6-GW-06GW02-20170712","537 MOD","07/31/17","15:19","N","NA","000","376-06-
, , , ,
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","13C3-PFBS","13C3-
PFBS","123","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","123","123","","","","","","","50","150","",""
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","13C2-PFHxA","13C2-
PFHxA","97.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","97.9","97.9","97.9","","","","","","50","150","
"IRPSite 6-GW-06GW02-20170712","537 MOD","07/31/17","11:27","N","NA","000","13C4-PFHpA","13C4-
PFHpA","99.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","99.2","99.2","99.2","","","","","50","150","
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","18O2-PFHxS","18O2-
PFHxS","95.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","95.5","95.5","","","","","","","50","150","
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","13C2-PFOA","13C2-
```

```
PFOA","90.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","90.4","90.4","90.4","","","","","","150","150",""
 , , ,
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","13C8-PFOS","13C8-
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","13C5-PFNA","13C5-
PFNA","89.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.4","89.4","","","","","","","","50","150",""
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","11:27","N","NA","000","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13
PFDA","81.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","81.6","81.6","81.6","","","","","","50","150",""
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","65.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","65.1","65.1","","","","","","","50","15
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PF
PFUnA","67.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","67.4","67.4","67.4","","","","","","50","150","
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","66.6","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","66.6","66.6","66.6","","","","","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","13C2-PFDoA","13C2-
PFDoA","64.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","64.3","64.3","64.3","","","","","","50","150","
"IRPSite 6-GW-06GW02-20170712","537_MOD","07/31/17","15:19","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","51.1","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","51.1","51.1","","","","","","","50","150"
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","375-73-
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","307-24-
4","PERFLUOROHEXANOIC ACID
"IRPSite 6-GW-FRB01-20170712","537 MOD","07/31/17","11:40","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
ù,"","",
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","355-46-
4"."PERFLUOROHEXANESULFONIC ACID
1111 1111 1111
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","335-67-
1","PERFLUOROOCTANOIC ACID
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
, nn, nn
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
```

```
ñ 1111 1111
"IRPSite 6-GW-FRB01-20170712","537 MOD","07/31/17","15:32","N","NA","000","2355-31-
, , , , ,
"IRPSite 6-GW-FRB01-20170712", "537_MOD", "07/31/17", "15:32", "N", "NA", "000", "2058-94-
8", "PERFLUOROUNDECANOIC ACID
1111 1111 1111
"IRPSite 6-GW-FRB01-20170712","537 MOD","07/31/17","15:32","N","NA","000","2991-50-
... ... ... ... ...
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","15:32","N","NA","000","307-55-
1","PERFLUORODODECANOIC ACID
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","15:32","N","NA","000","72629-94-
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","15:32","N","NA","000","376-06-
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","13C3-PFBS","13C3-
PFBS","106","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","106","106","106","","","","","","","50","150","",""
"IRPSite 6-GW-FRB01-20170712","537 MOD","07/31/17","11:40","N","NA","000","13C2-PFHxA","13C2-
PFHxA","101","","IS","Yes","Y","","","","","","PCT_REC","","","","100","101","101","","","","","","","50","150","",
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","13C4-PFHpA","13C4-
PFHpA","88.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","88.2","88.2","88.2","","","","","","50","150","
"IRPSite 6-GW-FRB01-20170712","537 MOD","07/31/17","11:40","N","NA","000","18O2-PFHxS","18O2-
PFHxS","94.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","94.7","94.7","94.7","","","","","","50","150","
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C2-PFOA","13C
PFOA","87.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","87.7","87.7","87.7","","","","","","50","150",""
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","11:40","N","NA","000","13C8-PFOS","13C8-
PFOS","107","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","107","107","","","","","","","","50","150","",""
"IRPSite 6-GW-FRB01-20170712","537 MOD","07/31/17","11:40","N","NA","000","13C5-PFNA","13C5-
PFNA","94.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","94.4","94.4","94.4","","","","","","150",""
"IRPSite 6-GW-FRB01-20170712","537 MOD","07/31/17","11:40","N","NA","000","13C2-PFDA","13C2-
PFDA","80.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","80.5","80.5","80.5","","","","","","50","150",""
nn nn nn
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","15:32","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","63.0","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","63.0","63.0","63.0","","","","","50","15
0","","",""
"IRPSite 6-GW-FRB01-20170712", "537 MOD", "07/31/17", "15:32", "N", "NA", "000", "13C2-PFUnA", "13C2-
PFUnA","66.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","66.7","66.7","66.7","","","","","","","50","150","
.. ... ... ...
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","15:32","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","55.7","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","55.7","55.7","","","","","","150
```

```
, , , ,
"IRPSite 6-GW-FRB01-20170712","537_MOD","07/31/17","15:32","N","NA","000","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFD
PFDoA","66.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","66.2","66.2","66.2","","","","","","50","150","
.. ... ... ...
"IRPSite 6-GW-FRB01-20170712", "537_MOD", "07/31/17", "15:32", "N", "NA", "000", "13C2-PFTeDA", 
PFTeDA","59.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","59.0","59.0","","","","","","","150"
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","375-73-
"" "" "" ""
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","307-24-
4", "PERFLUOROHEXANOIC ACID
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
ii iiii iiii iiii iiii
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","335-67-
1", "PERFLUOROOCTANOIC ACID
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","375-95-
1","PERFLUORONONANOIC ACID
nn nn nn nn
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
11 1111 1111
"Site 33-GW-33GW01-20170712","537 MOD","07/31/17","15:44","N","NA","000","2355-31-
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","15:44","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","15:44","N","NA","000","2991-50-
... ... ... ... ...
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","15:44","N","NA","000","307-55-
1", "PERFLUORODODECANOIC ACID
11 1111 1111 1111
"Site 33-GW-33GW01-20170712","537 MOD","07/31/17","15:44","N","NA","000","72629-94-
```

```
.. ... ... ... ...
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","15:44","N","NA","000","376-06-
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","13C3-PFBS","13C3-
PFBS","110","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","110","110","","","","","","","50","150","",""
 *****
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","13C2-PFHxA","13C2-
PFHxA","95.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","95.7","95.7","95.7","","","","","","150","
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","13C4-PFHpA","13C4-
PFHpA","99.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","99.8","99.8","99.8","","","","","","50","150","
", ", ", "
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","18O2-PFHxS","18O2-
PFHxS","93.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","93.3","93.3","","","","","","","50","150","
.. ... ... ...
  , , ,
"Site 33-GW-33GW01-20170712", "537 MOD", "07/31/17", "11:52", "N", "NA", "000", "13C2-PFOA", "13
PFOA","88.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","88.9","88.9","88.9","","","","","","","150",""
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8-PFOS","13C8
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","11:52","N","NA","000","13C5-PFNA","13C5-
PFNA","83.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","83.7","83.7","83.7","","","","","","150",""
"Site 33-GW-33GW01-20170712", "537_MOD", "07/31/17", "11:52", "N", "NA", "000", "13C2-PFDA", "13
PFDA","81.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","81.1","81.1","81.1","","","","","","50","150",""
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","15:44","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","65.7","","IS","Yes","Y","","Y","","","PCT_REC","","","","","100","65.7","65.7","","","","","","50","15
"Site 33-GW-33GW01-20170712","537 MOD","07/31/17","15:44","N","NA","000","13C2-PFUnA","13C2-
PFUnA","70.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","70.9","70.9","70.9","","","","","","50","150","
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","15:44","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","63.8","","IS","Yes","Y","","","","","","PCT_REC","","","","100","63.8","63.8","63.8","","","","","","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","15:44","N","NA","000","13C2-PFDoA","13C2-
PFDoA","68.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","68.6","68.6","68.6","","","","","","50","150","
n nn nn nú
"Site 33-GW-33GW01-20170712","537_MOD","07/31/17","15:44","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","58.5","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","58.5","58.5","58.5","","","","","50","150"
"Building 110-GW-110GW01-20170712","537 MOD","07/31/17","12:05","N","NA","000","375-73-
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:05","N","NA","000","307-24-
4"."PERFLUOROHEXANOIC ACID
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:05","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
```

11 1111 1111 1111 1111

```
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:05","N","NA","000","355-46-
4"."PERFLUOROHEXANESULFONIC ACID
iin iiii iiii iiii
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:05","N","NA","000","335-67-
1", "PERFLUOROOCTANOIC ACID
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:43","N","NA","DL1","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
11 1111
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:05","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
1111 1111 1111
"Building 110-GW-110GW01-20170712","537 MOD","07/31/17","12:05","N","NA","000","335-76-
2", "PERFLUORODECANOIC ACID
"Building 110-GW-110GW01-20170712","537 MOD","07/31/17","15:57","N","NA","000","2355-31-
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","15:57","N","NA","000","2058-94-
8", "PERFLUOROUNDECANOIC ACID
1111 1111 1111
"Building 110-GW-110GW01-20170712","537 MOD","07/31/17","15:57","N","NA","000","2991-50-
, , , ,
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","15:57","N","NA","000","307-55-
1", "PERFLUORODODECANOIC ACID
11 1111 1111 1111
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","15:57","N","NA","000","72629-94-
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","15:57","N","NA","000","376-06-
"Building 110-GW-110GW01-20170712", "537_MOD", "07/31/17", "12:05", "N", "NA", "000", "13C3-PFBS", "13C3-PFBS
PFBS","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","103","103","103","","","","","","50","150","",""
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:05","N","NA","000","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C
PFHxA","92.3","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","92.3","92.3","","","","","","","50","150","
11 1111 1111 1111
"Building 110-GW-110GW01-20170712", "537_MOD", "07/31/17", "12:05", "N", "NA", "000", "13C4-PFHpA", 
PFHpA","93.1","","IS","Yes","Y","","Y","","","PCT_REC","","","","","100","93.1","93.1","","","","","","","50","150","
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:05","N","NA","000","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFHxS","18O2-PFTTS","18O2-PFTTS","18O2-PFTTS","18O2-PFTTS","18O2-PFTTS","18O2-PFTTS","18O2-PFTTS","18O2-PFTTS","18O2-PFTTS","18O
PFHxS","91.2","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","91.2","91.2","","","","","","","50","150","
.. ... ... ...
"Building 110-GW-110GW01-20170712","537 MOD","07/31/17","12:05","N","NA","000","13C2-PFOA","13C2-
PFOA", "88.3", "", "IS", "Yes", "Y", "", "", "", "PCT_REC", "", "", "", "100", "88.3", "88.3", "88.3", "", "", "", "", "", "50", "150", ""
```

```
"Building 110-GW-110GW01-20170712", "537_MOD", "07/31/17", "12:43", "N", "NA", "DL1", "13C8-PFOS", "13C8-PFOS
PFOS","101","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","100","101","101","101","","","","","","","50","150","",
"", "",
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:05","N","NA","000","13C5-PFNA","13C5-
PFNA","76.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","76.1","76.1","76.1","","","","","","50","150",""
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","12:05","N","NA","000","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA"
PFDA","73.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","73.8","73.8","","","","","","","50","150",""
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","15:57","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","57.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","57.3","57.3","","","","","","50","15
0","","","",""
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","15:57","N","NA","000","13C2-PFUnA","13C2-
PFUnA","59.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","59.6","59.6","59.6","","","","","","50","150","
"Building 110-GW-110GW01-20170712", "537_MOD", "07/31/17", "15:57", "N", "NA", "000", "d5-EtFOSAA", 
EtFOSAA","65.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","65.2","65.2","","","","","","150","150
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","15:57","N","NA","000","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDoA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C2-PFDOA","13C
PFDoA","58.5","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","58.5","58.5","58.5","","","","","","50","150","
"Building 110-GW-110GW01-20170712","537_MOD","07/31/17","15:57","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","53.3","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","53.3","53.3","","","","","","","50","150"
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","375-73-
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","307-24-
4", "PERFLUOROHEXANOIC ACID
, , , ,
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","375-85-
9", "PERFLUOROHEPTANOIC ACID
"IRPSite 6-GW-06FD01-20170712","537 MOD","07/31/17","12:30","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
n nn nn nú nín
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","335-67-
1","PERFLUOROOCTANOIC ACID
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","1763-23-
1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","375-95-
1", "PERFLUORONONANOIC ACID
, , , ,
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","335-76-
2","PERFLUORODECANOIC ACID
```

```
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","16:09","N","NA","000","2355-31-
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","16:09","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
"IRPSite 6-GW-06FD01-20170712","537 MOD","07/31/17","16:09","N","NA","000","2991-50-
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","16:09","N","NA","000","307-55-
1", "PERFLUORODODECANOIC ACID
11 1111 1111 1111
"IRPSite 6-GW-06FD01-20170712","537 MOD","07/31/17","16:09","N","NA","000","72629-94-
, , , ,
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","16:09","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.891","5.90","9.44","NG_L","NG_L","","","","","","","","","","","",
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","13C3-PFBS","13C3-
PFBS","116","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","116","116","","","","","","","","50","150","",""
"IRPSite 6-GW-06FD01-20170712","537 MOD","07/31/17","12:30","N","NA","000","13C2-PFHxA","13C2-
PFHxA","103","","IS","Yes","Y","","","","","","PCT_REC","","","","100","103","103","","","","","","","50","150","",
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","13C4-PFHpA","13C4-
"IRPSite 6-GW-06FD01-20170712","537 MOD","07/31/17","12:30","N","NA","000","18O2-PFHxS","18O2-
PFHxS","93.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","93.8","93.8","93.8","","","","","","50","150","
"IRPSite 6-GW-06FD01-20170712","537 MOD","07/31/17","12:30","N","NA","000","13C2-PFOA","13C2-
PFOA","99.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","99.9","99.9","99.9","","","","","","50","150",""
, , , ,
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","12:30","N","NA","000","13C8-PFOS","13C8-
"IRPSite 6-GW-06FD01-20170712","537 MOD","07/31/17","12:30","N","NA","000","13C5-PFNA","13C5-
PFNA","90.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","90.7","90.7","90.7","","","","","","150",""
"IRPSite 6-GW-06FD01-20170712","537 MOD","07/31/17","12:30","N","NA","000","13C2-PFDA","13C2-
PFDA","87.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","87.0","87.0","87.0","","","","","","","50","150",""
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","16:09","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","59.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","59.7","59.7","","","","","","","50","15
0","","","",
"IRPSite 6-GW-06FD01-20170712", "537 MOD", "07/31/17", "16:09", "N", "NA", "000", "13C2-PFUnA", "13C
PFUnA","69.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","69.0","69.0","69.0","","","","","","50","150","
.. ... ... ...
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","16:09","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","66.6","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","66.6","66.6","66.6","","","","","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150","150
```

```
",",",
"IRPSite 6-GW-06FD01-20170712","537_MOD","07/31/17","16:09","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","50.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","50.9","50.9","","","","","","","50","150"
"B7G0079-BLK1","537 MOD","07/31/17","11:02","N","NA","000","375-73-
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
```````````
"B7G0079-BLK1","537 MOD","07/31/17","11:02","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC
ACID
ñ 1111 1111 111Í
"B7G0079-BLK1","537 MOD","07/31/17","11:02","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
, ,
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
nin nn nní
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
.. .... ....
"B7G0079-BLK1","537_MOD","07/31/17","14:54","N","NA","000","2355-31-
"B7G0079-BLK1","537_MOD","07/31/17","14:54","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
"B7G0079-BLK1","537_MOD","07/31/17","14:54","N","NA","000","2991-50-
"B7G0079-BLK1","537_MOD","07/31/17","14:54","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
"B7G0079-BLK1","537 MOD","07/31/17","14:54","N","NA","000","72629-94-
"B7G0079-BLK1","537_MOD","07/31/17","14:54","N","NA","000","376-06-
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","13C3-PFBS","13C3-
```

```
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","13C2-PFHxA","13C2-
PFHxA","87.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","87.3","87.3","87.3","","","","","","50","150","
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","13C4-PFHpA","13C4-
PFHpA","86.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","86.9","86.9","86.9","","","","","","50","150","
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","18O2-PFHxS","18O2-
PFHxS","92.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","92.3","92.3","92.3","","","","","","50","150","
"B7G0079-BLK1","537 MOD","07/31/17","11:02","N","NA","000","13C2-PFOA","13C2-
PFOA","85.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","85.3","85.3","85.3","","","","","","","150",""
, , ,
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","13C8-PFOS","13C8-
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","13C5-PFNA","13C5-
PFNA","91.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","91.2","91.2","91.2","","","","","","150",""
, , ,
"B7G0079-BLK1","537_MOD","07/31/17","11:02","N","NA","000","13C2-PFDA","13C2-
PFDA","76.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","76.5","76.5","76.5","","","","","","50","150",""
"B7G0079-BLK1","537_MOD","07/31/17","14:54","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","50.5","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","50.5","50.5","","","","","","50","15
0","","",""
"B7G0079-BLK1","537\_MOD","07/31/17","14:54","N","NA","000","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUnA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFUNA","13C2-PFU
PFUnA","59.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","59.0","59.0","59.0","","","","","","50","150","
" " " " " " "
"B7G0079-BLK1","537_MOD","07/31/17","14:54","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","50.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","50.3","50.3","","","","","","50","150
"B7G0079-BLK1","537_MOD","07/31/17","14:54","N","NA","000","13C2-PFDoA","13C2-
PFDoA","56.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","56.4","56.4","56.4","","","","","","50","150","
"B7G0079-BLK1","537_MOD","07/31/17","14:54","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","45.1","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","45.1","45.1","","","","","","50","15
0","","+","",""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","375-73-
5","PFBS","74.1","","TRG","Yes","Y","","Y","1.79","5.00","8.00","NG_L","NG_L","","","","80.0","74.1","92.6","","",
"","","","70","130","","","",""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
"","","","70","130","","","","",""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","87.0","","TRG","Yes","Y","","Y","0.591","5.00","8.00","NG_L","NG_L","","","","80.0","87.0","109","",""
,"","","","70","130","","","",""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC
ACID
,"","","","70","130","","","","",""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","90.3","","TRG","Yes","Y","","Y","0.651","5.00","8.00","NG_L","NG_L","","","","80.0","90.3","113","","","",""
","","","70","130","","","",""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
```

```
"70","130","","","",""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
"","","","70","130","","","",""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","77.5","","TRG","Yes","Y","","Y","1.49","5.00","8.00","NG_L","NG_L","","","","80.0","77.5","96.9","","","",""
","","","70","130","","","","",""
"B7G0079-BS1","537_MOD","07/31/17","14:11","N","NA","000","2355-31-
9","MeFOSAA","94.5","","TRG","Yes","Y","","Y","1.65","5.00","8.00","NG_L","NG_L","","","","80.0","94.5","118",
"","","","","","70","130","","","","",""
"B7G0079-BS1","537_MOD","07/31/17","14:11","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
"","","","70","130","","","",""
"B7G0079-BS1","537_MOD","07/31/17","14:11","N","NA","000","2991-50-
6","EtFOSAA","82.3","","TRG","Yes","Y","","Y","1.37","5.00","8.00","NG_L","NG_L","","","","80.0","82.3","103","
","","","","","70","130","","","",""
"B7G0079-BS1","537_MOD","07/31/17","14:11","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","79.7","","TRG","Yes","Y","","9.792","5.00","8.00","NG_L","NG_L","","","","80.0","79.7","99.7","","
","","","","70","130","","","",""
"B7G0079-BS1","537_MOD","07/31/17","14:11","N","NA","000","72629-94-
8","PFTrDA","75.3",","TRG","Yes","Y","","Y","0.494","5.00","8.00","NG_L","NG_L","","","","80.0","75.3","94.1","
","","","","60","130","","","",""
"B7G0079-BS1","537_MOD","07/31/17","14:11","N","NA","000","376-06-
1111 1111
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","13C2-PFHxA","13C2-
PFHxA","93.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","93.6","93.6","93.6","","","","","","50","150","
" "" "" ""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","13C4-PFHpA","13C4-
PFHpA","86.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","86.2","86.2","86.2","","","","","","50","150","
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","18O2-PFHxS","18O2-
PFHxS","88.3","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","88.3","88.3","","","","","","","50","150","
", ", ",
"B7G0079-BS1","537 MOD","07/31/17","10:37","N","NA","000","13C2-PFOA","13C2-
PFOA","90.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","90.4","90.4","90.4","","","","","","150","150",""
, , ,
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","13C8-PFOS","13C8-
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","13C5-PFNA","13C5-
PFNA","91.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","91.2","91.2","91.2","","","","","","50","150",""
"B7G0079-BS1","537_MOD","07/31/17","10:37","N","NA","000","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PF
PFDA","76.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","76.4","76.4","76.4","","","","","","50","150",""
"B7G0079-BS1","537_MOD","07/31/17","14:11","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","52.0","","IS","Yes","Y","","Y","","","PCT_REC","","","","100","52.0","52.0","","","","","","50","15
"B7G0079-BS1","537_MOD","07/31/17","14:11","N","NA","000","13C2-PFUnA","13C2-
```

```
PFUnA","61.6","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","61.6","61.6","","","","","","","50","150","
```

"B7G0079-BS1","537\_MOD","07/31/17","14:11","N","NA","000","d5-EtFOSAA","d5-

EtFOSAA","56.7","","IS","Yes","Y","","","","","","PCT\_REC","","","","","100","56.7","56.7","56.7","","","","","150","150

"B7G0079-BS1","537\_MOD","07/31/17","14:11","N","NA","000","13C2-PFDoA","13C2-

"B7G0079-BS1","537\_MOD","07/31/17","14:11","N","NA","000","13C2-PFTeDA","13C2-

PFTeDA", "36.3", "", "IS", "Yes", "Y", "H", "Y", "", "", "PCT\_REC", "", "", "", "", "100", "36.3", "36.3", "", "", "", "", "", "", "", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150", "150",

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AMEC Foster Wheeler, Inc. 7376 SW Durham Road Portland, OR 97224 Attn: Ms. Medora Hackler August 8, 2017

SUBJECT: White Oak, Data Validation

Dear Ms. Hackler,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on August 2, 2017. Attachment 1 is a summary of the samples that were reviewed for each analysis.

# **LDC Project #39198:**

SDG # Fraction

1700803, 1700804, 1700887 Perfluorinated Alkyl Acids

The data validation was performed under Stage 2B & 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for Initial Assessment of Perf-fluorinated Compounds or Per-and Polyfluoralkyl Substances Sites at Various Base Realignment and Closure Installations, June 2017
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1, 2017
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review, January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

Project Manager/Senior Chemist

|        | 946 pages-SF  |               |                    |    |           |      |     |    |     |     |    |     | A   | ttach | men  | ıt 1  |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|--------|---------------|---------------|--------------------|----|-----------|------|-----|----|-----|-----|----|-----|-----|-------|------|-------|----|-----|----|------|-----|-----|-------|-----|------------|---|---|----------|----------|---|---|-------------|---------|---|-----------|
|        | Client Select | Stage 2B      | /4                 |    | LD        | C #3 | 391 | 98 | (AN | IEC | Fo | ste | r W | /he   | eler | · - S | an | Die | go | , C/ | 4/\ | Whi | ite ( | Dak | <b>(</b> ) |   |   |          |          |   |   |             |         |   |           |
| LDC    | SDG#          | DATE<br>REC'D | (1)<br>DATE<br>DUE |    | As<br>37) |      |     |    |     |     | 1  |     | 1   |       |      |       |    |     | 1  |      | 1   |     | 1     |     |            |   |   |          |          |   |   |             |         |   |           |
| Matrix | :: Water/Soil | •             | •                  | W  | S         | W    | S   | W  | S   | W   | S  | W   | S   | W     | S    | W     | S  | W   | S  | W    | S   | W   | S     | W   | S          | W | S | W        | S        | W | S | W           | S       | W | S         |
| Α      | 1700803       |               | 08/09/17           |    | 0         |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   | <u> </u>    | Ш       | Ш |           |
| В      | 1700804       | 08/02/17      | 08/09/17           | 8  | 0         |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   | <u> </u> |          |   |   |             | igsqcup | Ш |           |
| В      | 1700804       | 08/02/17      | 08/09/17           | 1  | 0         |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             | Ш       | Ш |           |
| С      | 1700887       | 08/02/17      | 08/09/17           | 4  | 0         |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          | <u> </u> |   |   | $\bigsqcup$ | Ш       | Ш |           |
| С      | 1700887       | 08/02/17      | 08/09/17           | 1  | 0         |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   | <u> </u> | <u> </u> |   |   | <u> </u>    | Ш       | Ш |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             | Ш       | Ш |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | Ш |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | Ш |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | Ш |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | Ш |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   | <u> </u> |          |   |   |             |         | Ш |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | Ш |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | Ш |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | П |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         |   |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | П |           |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | П | $\Box$    |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   | П           |         | П | $\exists$ |
|        |               |               |                    |    |           |      |     |    |     |     |    |     |     |       |      |       |    |     |    |      |     |     |       |     |            |   |   |          |          |   |   |             |         | 一 |           |
| Total  | J/PG          |               |                    | 19 | 0         | 0    | 0   | 0  | 0   | 0   | 0  | 0   | 0   | 0     | 0    | 0     | 0  | 0   | 0  | 0    | 0   | 0   | 0     | 0   | 0          | 0 | 0 | 0        | 0        | 0 | 0 | 0           | 0       | 0 | 19        |

# Laboratory Data Consultants, Inc. Data Validation Report

**Project/Site Name:** 

White Oak

**LDC Report Date:** 

August 4, 2017

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 2B

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1700803

| Sample Identification          | Laboratory Sample Identification | Matrix | Collection<br>Date |
|--------------------------------|----------------------------------|--------|--------------------|
| IRPSite7-GW-46GW205-20170628   | 1700803-03                       | Water  | 06/28/17           |
| IRPSite7-GW-FD01-20170628      | 1700803-04                       | Water  | 06/28/17           |
| IRPSite7-GW-07GW202-20170628   | 1700803-05                       | Water  | 06/28/17           |
| IRPSite5-GW-04GW81S-20170628   | 1700803-08                       | Water  | 06/28/17           |
| IRPSite5-GW-04GW80-20170628    | 1700803-09                       | Water  | 06/28/17           |
| IRPSite5-GW-04GW80-20170628MS  | 1700803-09MS                     | Water  | 06/28/17           |
| IRPSite5-GW-04GW80-20170628MSD | 1700803-09MSD                    | Water  | 06/28/17           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling and Analysis Plan) for Initial Assessment of Perf-fluorinated Compounds (PFCS) or Per- and Polyfluoralkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

#### II. LC/MS Instrument Performance Check

Instrument performance check was performed prior to initial calibration.

#### III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination ( $r^2$ ) were greater than or equal to 0.990.

For each calibration point, the percent differences (%D) of its true value were less than or equal to 30.0% for all compounds with the following exceptions:

| Date     | Standard  | Compound | %D    | Associated<br>Samples         | Flag                 | - A or P |
|----------|-----------|----------|-------|-------------------------------|----------------------|----------|
| 07/10/17 | ICAL-CS02 | PFDoA    | -56.9 | All samples in SDG<br>1700803 | UJ (all non-detects) | P        |
| 07/10/17 | ICAL-CS2  | PFDoA    | +36.9 | All samples in SDG<br>1700803 | NA                   | -        |

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

#### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

#### VI. Field Blanks

Samples IRPSite7-GW-FRB01-20170628 and IRPSite5-GW-FRB01-20170628 were identified as field rinsate blanks. No contaminants were found.

Samples EB01 and EB02 were identified as equipment blanks. No contaminants were found.

Sample SB01 was identified as a source blank. No contaminants were found.

# VII. Surrogates

Surrogates were not performed for this SDG.

## VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

| Spike ID<br>(Associated Samples)                                | Compound | MS (%R)<br>(Limits) | MSD (%R)<br>(Limits) | Flag | A or P |
|-----------------------------------------------------------------|----------|---------------------|----------------------|------|--------|
| IRPSite5-GW-04GW80-20170628MS/MSD (IRPSite5-GW-04GW80-20170628) | PFDoA    | -                   | 185 (70-130)         | NA   | -      |

Relative percent differences (RPD) were within QC limits with the following exceptions:

| Spike ID<br>(Associated Samples)                                   | Compound        | RPD<br>(Limits)          | Flag | A or P |
|--------------------------------------------------------------------|-----------------|--------------------------|------|--------|
| IRPSite5-GW-04GW80-20170628MS/MSD<br>(IRPSite5-GW-04GW80-20170628) | PFDoA<br>PFTrDA | 66.2 (≤30)<br>70.1 (≤30) | NA   | -      |

# IX. Ongoing Precision Recovery Samples

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

## X. Field Duplicates

Samples IRPSite7-GW-46GW205-20170628 and IRPSite7-GW-FD01-20170628 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

|          | Concentrati                  | on (ng/L)                 |                 |                         |                 |        |  |
|----------|------------------------------|---------------------------|-----------------|-------------------------|-----------------|--------|--|
| Compound | IRPSite7-GW-46GW205-20170628 | IRPSite7-GW-FD01-20170628 | RPD<br>(Limits) | Differences<br>(Limits) | Flag            | A or P |  |
| PFBS     | 6.05                         | 2.48                      | -               | 3.57 (≤8.49)            | -               | -      |  |
| PFHpA    | 2.92                         | 4.95                      | -               | 2.03 (≤8.49)            | -               | -      |  |
| PFHxS    | 7.69                         | 20.2                      | -               | 12.51 (≤8.49)           | J (all detects) | А      |  |
| PFOA     | 7.05                         | 15.2                      | -               | 8.15 (≤8.49)            | -               | -      |  |
| PFOS     | 6.07                         | 22.6                      | -               | 16.53 (≤8.49)           | J (all detects) | Α      |  |
| PFHxA    | 5.30U                        | 8.15                      | <u>.</u>        | 2.85 (≤8.49)            | -               | _      |  |
| PFNA     | 5.30U                        | 1.02                      | •               | 4.28 (≤8.49)            | -               | -      |  |

# XI. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

| Sample                       | Internal<br>Standards                                                       | Area (Limits)                  | Affected<br>Compound      | Flag                                                                 | A or P |
|------------------------------|-----------------------------------------------------------------------------|--------------------------------|---------------------------|----------------------------------------------------------------------|--------|
| IRPSite7-GW-46GW205-20170628 | <sup>13</sup> C₂-PFDoA<br><sup>13</sup> C₂-PFTeDA                           | 4.20 (50-150)<br>4.90 (50-150) | PFDoA<br>PFTrDA<br>PFTeDA | UJ (all non-detects)<br>UJ (all non-detects)<br>UJ (all non-detects) | Р      |
| IRPSite7-GW-FD01-20170628    | <sup>13</sup> C <sub>2</sub> -PFDoA<br><sup>13</sup> C <sub>2</sub> -PFTeDA | 19.4 (50-150)<br>9.60 (50-150) | PFDoA<br>PFTrDA<br>PFTeDA | UJ (all non-detects)<br>UJ (all non-detects)<br>UJ (all non-detects) | Р      |
| IRPSite7-GW-07GW202-20170628 | <sup>13</sup> C <sub>2</sub> -PFDoA<br><sup>13</sup> C <sub>2</sub> -PFTeDA | 31.2 (50-150)<br>20.1 (50-150) | PFDoA<br>PFTrDA<br>PFTeDA | UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)       | Р      |
| IRPSite5-GW-04GW81S-20170628 | <sup>13</sup> C₂-PFDoA<br><sup>13</sup> C₂-PFTeDA                           | 10.7 (50-150)<br>25.6 (50-150) | PFDoA<br>PFTrDA<br>PFTeDA | UJ (all non-detects)<br>UJ (all non-detects)<br>UJ (all non-detects) | Р      |
| IRPSite5-GW-04GW80-20170628  | <sup>13</sup> C <sub>2</sub> -PFDoA<br><sup>13</sup> C <sub>2</sub> -PFTeDA | 36.6 (50-150)<br>26.3 (50-150) | PFDoA<br>PFTrDA<br>PFTeDA | UJ (all non-detects)<br>UJ (all non-detects)<br>UJ (all non-detects) | Р      |

## XII. Compound Quantitation

The laboratory limit of quantitation (LOQ) and limit of detection (LOD) with no moisture or dilution are higher than the QAPP LOQ and LOD.

The laboratory detection limit (DL) with no moisture or dilution for PFOS is higher than the QAPP DL.

Raw data were not reviewed for Stage 2B validation.

## XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

# XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

#### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to initial calibration %D, field duplicate differences, and internal standards area, data were qualified as estimated in five samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

White Oak Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1700803

| Sample                                                                                                                                                   | Compound                  | Flag                                                                 | A or P | Reason                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|--------|---------------------------|
| IRPSite7-GW-46GW205-20170628<br>IRPSite7-GW-FD01-20170628<br>IRPSite7-GW-07GW202-20170628<br>IRPSite5-GW-04GW81S-20170628<br>IRPSite5-GW-04GW80-20170628 | PFDoA                     | UJ (all non-detects)                                                 | Р      | Initial calibration (%D)  |
| IRPSite7-GW-46GW205-20170628<br>IRPSite7-GW-FD01-20170628                                                                                                | PFHxS<br>PFOS             | J (all detects)<br>J (all detects)                                   | Α      | Field duplicates (RPD)    |
| IRPSite7-GW-46GW205-20170628<br>IRPSite7-GW-FD01-20170628<br>IRPSite7-GW-07GW202-20170628<br>IRPSite5-GW-04GW81S-20170628<br>IRPSite5-GW-04GW80-20170628 | PFDoA<br>PFTrDA<br>PFTeDA | UJ (all non-detects)<br>UJ (all non-detects)<br>UJ (all non-detects) | Р      | Internal standards (area) |

## White Oak Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1700803

No Sample Data Qualified in this SDG

**VALIDATION COMPLETENESS WORKSHEET** LDC #: 39198A96

SDG #: 1700803

Stage 2B

Laboratory: Vista Analytical Laboratory

METHOD: LCMS Perfluorinated Alkyl Acids (EPA Method 537)

2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |     | Comments                              |
|-------|----------------------------------------|-----|---------------------------------------|
| l.    | Sample receipt/Technical holding times | A   |                                       |
| 11.   | LC/MS Instrument performance check     | A   | · · · · · · · · · · · · · · · · · · · |
| 111.  | Initial calibration/ICV                | A A | RSD = \$20/0.7, 39, 104 = 30/0        |
| IV.   | Continuing calibration                 | -0  | RSD < 30/0. 7, 39, 104 < 30/0         |
| V.    | Laboratory Blanks                      | A   | /                                     |
| VI.   | Field blanks                           | ND  | \$=1. 23=2.10, FB=6,T                 |
| VII.  | Surrogate spikes                       | 0   |                                       |
| VIII. | Matrix spike/Matrix spike duplicates   | w   |                                       |
| IX.   | Laboratory control samples             | A   | OPR                                   |
| X.    | Field duplicates                       | W   | D=3+4                                 |
| XI.   | Internal standards                     | M   |                                       |
| XII.  | Compound quantitation RL/LOQ/LODs      | TW  |                                       |
| XIII. | Target compound identification         | N   |                                       |
| XIV.  | System performance                     | N   |                                       |
| XV.   | Overall assessment of data             | A   |                                       |

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

|                | Client ID                      | Lab ID        | Matrix | Date     |
|----------------|--------------------------------|---------------|--------|----------|
| 1              | 3B01                           | 1700803-01    | Water  | 06/28/17 |
| 2              | EB01                           | 1700803-02    | Water  | 06/28/17 |
| 3/1            | IRPSite7-GW-46GW205-20170628   | 1700803-03    | Water  | 06/28/17 |
| 4              | IRPSite7-GW-FD01-20170628      | 1700803-04    | Water  | 06/28/17 |
| 5              | IRPSite7-GW-07GW202-20170628   | 1700803-05    | Water  | 06/28/17 |
| 6              | IRPSite7-GW-FRB01-20170628     | 1700803-06    | Water  | 06/28/17 |
| 7              | IRPSite5-GW-FRB01-20170628     | 1700803-07    | Water  | 06/28/17 |
| <sub>8</sub> 1 | IRPSite5-GW-04GW81S-20170628   | 1700803-08    | Water  | 06/28/17 |
| 9              | IRPSite5-GW-04GW80-20170628    | 1700803-09    | Water  | 06/28/17 |
| 10-            | EB02                           | 1700803-10    | Water  | 06/28/17 |
| 11             | IRPSite5-GW-04GW80-20170628MS  | 1700803-09MS  | Water  | 06/28/17 |
| 12             | IRPSite5-GW-04GW80-20170628MSD | 1700803-09MSD | Water  | 06/28/17 |
| 13             |                                |               | 0 +15  |          |

+ 30% for each cultivation pt. and 50

## TARGET COMPOUND WORKSHEET

#### METHOD: PFOS/PFOAs

| METHOD: PFOS/PFOAS                       |  |   |   |
|------------------------------------------|--|---|---|
| A. Perfluorohexanoic agid (PFHxA)        |  |   |   |
| B. Perfluoroheptanoic acid (PFHpA)       |  |   |   |
| C. Perfluorooctanoic acid (PFOA)         |  |   |   |
| D. Perfluorononanoc acid (PFNA)          |  |   |   |
| E. Perfluorodecanoic acid (PFDA)         |  |   | · |
| F. Perfluoroundecanoic acid (PFUnA)      |  |   |   |
| G. Perfluorodo ecanoic acid (PFDoA)      |  | · |   |
| H. Perfluorotyldecanoic acid (PFTriA)    |  |   |   |
| I. Perfluorotetradecanoic acid (PFTeA)   |  |   |   |
| J. Perfluorobutanesulfonic acid (PFBS)   |  |   |   |
| K. Perfluor hexanesulfonic acid (PFHxS)  |  |   |   |
| L. Perfluorpheptanesulfonic acid (PFHpS) |  |   |   |
| M. Perfluorooctanesulfonic acid (PFOS)   |  |   |   |
| N.Perfluorpdecanesulfonic acid (PFDS)    |  |   |   |
| O. Perflucrooctane Sulfonamide (FOSA)    |  | · |   |
| P. Perflugrobutanoic acid (PFBA)         |  |   |   |
| Q. Perliuorepentanoic acis (PFPeA)       |  |   |   |
| R. 6:2FTS                                |  |   |   |
| S. 8:2FTS                                |  |   |   |
|                                          |  |   |   |
|                                          |  |   |   |
|                                          |  |   |   |
|                                          |  |   |   |
|                                          |  |   |   |
|                                          |  |   |   |
|                                          |  |   |   |

## LDC #:39198 A 96

## **VALIDATION FINDINGS WORKSHEET Initial Calibration**

| Page:_        | <u>/</u> of/ |
|---------------|--------------|
| Reviewer:_    | 9            |
| 2nd Reviewer: | F            |

**METHOD:** LCMS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory perform a 5 point calibration prior to sample analysis? Did the initial calibration meet the curve fit acceptance criteria of  $\geq$  0.990? Were all percent relative standard deviations (%RSD)  $\leq$  20%? X/N N/A

Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?

| Ť (IV    | 1     | vvere an analytes within | 70-10070 of percent | T = 100 (%D) ≤30% of        | Then true value for each | T Standard !       | 1              |
|----------|-------|--------------------------|---------------------|-----------------------------|--------------------------|--------------------|----------------|
| #        | Date  | Standard ID              | Compound            | Finding %RSD/r <sup>2</sup> | Finding %D               | Associated Samples | Qualifications |
|          | 10/17 | 1CAL-C502<br>V C52       | PFDOA               | 6.                          | -56.9<br>+36.9           | All (NO)           | YW/AP          |
|          | , ,   | 1 052                    | · L                 |                             | +36.9                    |                    | Itels/AP       |
|          |       |                          |                     |                             |                          |                    | 7              |
|          |       |                          |                     |                             |                          |                    |                |
| <b></b>  |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             | 1                        | I I                |                |
| <u> </u> |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
| -        |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |
|          |       |                          |                     |                             |                          |                    |                |

LDC #: 39198A 96

## VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates/Duplicates

Page: /of/ Reviewer: 9 2nd Reviewer: \_\_\_\_\_\_

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?

N/A Was a MS/MSD analyzed every 20 samples of each matrix?

(N/N/A) Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

Were all duplicate sample relative percent differences (RPD) or differences within QC limits?

| Ė          |          | vvere all duplicate sar |                 |                   |                    |                        |                    |                |
|------------|----------|-------------------------|-----------------|-------------------|--------------------|------------------------|--------------------|----------------|
| #          | Date     | MS/MSD/DUP ID           | Compound        | MS<br>%R (Limits) | MSD<br>%R (Limits) | RPD<br>(Limits)        | Associated Samples | Qualifications |
|            |          | 11/12                   | PFDOA           |                   | 185(TO-130)        |                        | a (ND)             | Slets &        |
|            |          | , ,                     | PFDOA           |                   |                    | 66.2 ( < 30)           |                    |                |
|            |          |                         | PFDOA<br>PFTYDA |                   |                    | 66.2 ( ≤ 30)<br>70.1 V |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
| ļ          |          |                         |                 |                   |                    |                        |                    |                |
| ļ          |          |                         |                 |                   |                    |                        |                    |                |
| <b> </b> - |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
| -          |          | <u> </u>                |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
| <b> </b>   |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
| ļ          |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
| <u> </u>   |          |                         |                 |                   |                    |                        |                    |                |
|            |          |                         |                 |                   |                    |                        |                    |                |
| ļ          |          |                         |                 |                   |                    |                        |                    |                |
| <b> </b>   | $\vdash$ |                         |                 |                   |                    |                        |                    |                |
| <u> </u>   | <u> </u> |                         |                 |                   |                    | <u> </u>               |                    |                |

LDC#:39198A96

## VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

METHOD: PFCs (Method 537 mod)

|          | Concentration (ng/L) |      | (≤30) |            |         |         |
|----------|----------------------|------|-------|------------|---------|---------|
| Compound | 3                    | 4    | RPD   | Difference | Limits  | Qual    |
| J        | 6.05                 | 2.48 |       | 3.57       | ≤8.49   |         |
| В        | 2.92                 | 4.95 |       | 2.03       | ≤8.49   |         |
| К        | 7.69                 | 20.2 |       | 12.51      | ≤8.49 – | det=/A  |
| С        | 7.05                 | 15.2 |       | 8.15       | ≤8.49   |         |
| м        | 6.07                 | 22.6 |       | 16.53      | ≤8.49 ~ | slots A |
| А        | 5.30U                | 8.15 |       | 2.85       | ≤8.49   | /       |
| D        | 5.30U                | 1.02 |       | 4.28       | ≤8.49   |         |

LDC #:39198A96

## VALIDATION FINDINGS WORKSHEET Internal Standards

**METHOD: LC/MS PFCs** 

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were all internal standard area counts within 50-150% limits?

YN/N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

|          |      |            | Internal    | as within +/- 30 seconds of the retention |                                       |                |
|----------|------|------------|-------------|-------------------------------------------|---------------------------------------|----------------|
| #        | Date | Sample ID  | Standard    | Area (Limits)                             | RT (Limits)                           | Qualifications |
|          |      | B740014-BH |             |                                           |                                       | VILLE (PFDO)   |
|          |      |            | 13CZ-PFTEDA | 11.3 V                                    |                                       | N (PFTE.DA     |
|          |      |            |             |                                           |                                       | (HTYD)         |
|          |      | , , , ,    |             |                                           |                                       |                |
|          |      | BT4054-B41 | 13CZ-PFDOA  | 14.0 (50-150)<br>39.8 V                   |                                       | VH PPDOA       |
|          |      |            | BC2-PFTeDA  | 39.8 V                                    |                                       | (PFTODA        |
|          |      |            |             |                                           |                                       | LAFTYDA        |
|          |      |            |             | <u> </u>                                  |                                       |                |
|          |      |            |             |                                           |                                       | *              |
|          |      | 3          | 13C2-DFD0A  |                                           |                                       | VILLE (NO)     |
| <u></u>  |      |            | 13C2-PFTeDA | 4.90 (50-150)                             |                                       |                |
|          |      |            |             |                                           |                                       |                |
|          |      | 4          |             | 9.60                                      |                                       |                |
|          |      |            |             | 9.60                                      |                                       |                |
|          |      |            |             |                                           | · · · · · · · · · · · · · · · · · · · |                |
|          | ···· | 5          |             | 3,2                                       |                                       |                |
|          |      |            |             | 20.                                       |                                       |                |
|          |      |            |             |                                           |                                       |                |
|          |      | 8          |             | 10.7                                      |                                       |                |
|          |      |            |             | 256                                       |                                       |                |
| <u> </u> |      | 182        |             |                                           |                                       |                |
|          |      | 9          |             | 36.6                                      |                                       | /              |
|          |      |            | ν̈́         | 26.3                                      |                                       | V              |
| $\dashv$ |      | 11 (NS)    |             | 28.8                                      |                                       | No anal        |
| -+       |      | 11 (M-)    |             | 12.2                                      |                                       | No unax        |
| -        |      |            |             | (                                         |                                       |                |

(\* PFDOA, PFTODA, PFTEDA)

LDC#:39198A96

## VALIDATION FINDINGS WORKSHEET Internal Standards

| Page:         | <del>2_</del> of_ <del>-2</del> |
|---------------|---------------------------------|
| Reviewer:     | 9                               |
| 2nd Reviewer: | A                               |

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN/N/A Were all internal standard area counts within 50-150% limits?

Y N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

| #       | Date | Sample ID | lata and l  | Area (Limits)                    |  | Qualifications |
|---------|------|-----------|-------------|----------------------------------|--|----------------|
|         |      | 12(NS)    | 13C2-PF.DOA | Area (Limits) 20.8 (50-150) 12.2 |  | No and         |
|         |      | <u> </u>  | 13C2-DFTEDA | 12.2                             |  | d              |
| <b></b> |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             | <u> </u>                         |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         | l    |           |             |                                  |  | <u> </u>       |
| ļ       |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |
|         |      |           |             |                                  |  |                |

## **VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs**

| Page: _       |    |
|---------------|----|
| Reviewer:     | 0- |
| 2nd Reviewer: | 5  |

METHOD: LC/MS PFCs

| Diagon ( |             | auglifications | bolow for all | questions answered | UNIU I | Not applicable | augationa . | ara identified | OO !!N!/A!! |
|----------|-------------|----------------|---------------|--------------------|--------|----------------|-------------|----------------|-------------|
| ricase ; | <b>≻</b> ⊽⊂ | qualifications | DEIOW IOI AII | questions answered | 17     | NOT applicable | questions   | are identified | as IV/A.    |

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

| # | Date | Sample ID | Finding                                                   | Qualifications |
|---|------|-----------|-----------------------------------------------------------|----------------|
|   |      | All       | Lab rerported LOD/LOQ > LOD/LOQ in the QAPP               | Text           |
|   |      |           |                                                           |                |
|   |      | All       | The DL for PFOS = 0.807 ng/L, DL in the QAPP = 0.305 ng/L | Text           |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           | · · · · · · · · · · · · · · · · · · ·                     |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |

| Comments: | See sample calculation verification worksheet for recalculations |
|-----------|------------------------------------------------------------------|
|           |                                                                  |
|           |                                                                  |

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

White Oak

**LDC Report Date:** 

August 4, 2017

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 2B & 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1700804

|                                | Laboratory Sample |        | Collection |
|--------------------------------|-------------------|--------|------------|
| Sample Identification          | Identification    | Matrix | Date       |
| IRPSite7-GW-07GW41-20170629    | 1700804-01        | Water  | 06/29/17   |
| IRPSite5-GW-05GW01-20170629    | 1700804-02        | Water  | 06/29/17   |
| IRPSite5-GW-FD01-20170629      | 1700804-03        | Water  | 06/29/17   |
| IRPSite33-GW-11MW204D-20170629 | 1700804-05        | Water  | 06/29/17   |
| IRPSite33-GW-11MW204S 20170629 | 1700804-06        | Water  | 06/29/17   |
| Bldg 110-GW-11MW205D-20170629  | 1700804-07        | Water  | 06/29/17   |
| Bldg 110-GW-11MW205S 20170629  | 1700804-09        | Water  | 06/29/17   |
| IRPSite7-GW-07GW102 20170629** | 1700804-10**      | Water  | 06/29/17   |
| IRPSite5-GW-04GW82-20170629    | 1700804-11        | Water  | 06/29/17   |

<sup>\*\*</sup>Indicates sample underwent Stage 4 validation

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling and Analysis Plan) for Initial Assessment of Perf-fluorinated Compounds (PFCS) or Per- and Polyfluoralkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

#### II. LC/MS Instrument Performance Check

Instrument performance check was performed prior to initial calibration.

#### III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

For each calibration point, the percent differences (%D) of its true value were less than or equal to 30.0% for all compounds with the following exceptions:

| Date     | Standard  | Compound | %D    | Associated<br>Samples         | Flag                 | A or P |
|----------|-----------|----------|-------|-------------------------------|----------------------|--------|
| 07/10/17 | ICAL-CS02 | PFDoA    | -56.9 | All samples in SDG<br>1700804 | UJ (all non-detects) | Р      |
| 07/10/17 | ICAL-CS2  | PFDoA    | +36.9 | All samples in SDG<br>1700804 | NA                   | _      |

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds with the following exceptions:

| Date     | Standard    | Compound | %D    | Associated<br>Samples      | Flag | A or P |
|----------|-------------|----------|-------|----------------------------|------|--------|
| 07/13/17 | 170713M1_20 | PFDoA    | +98.0 | All samples in SDG 1700804 | NA   | -      |

| Date     | Standard    | Compound | %D   | Associated<br>Samples       | Flag | A or P |
|----------|-------------|----------|------|-----------------------------|------|--------|
| 07/13/17 | 170713M1_35 | PFDoA    | +135 | IRPSite5-GW-04GW82-20170629 | NA   | -      |

### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

#### VI. Field Blanks

Samples IRPSite7-GW-FRB01-20170628, IRPSite5-GW-FRB01-20170628 (both from SDG 1700803), IRPSite33-GW-FRB01-20170629, and Bldg 110-GW-FRB01 20170629 were identified as field rinsate blanks. No contaminants were found.

Sample SB01 (from SDG 1700803) was identified as a source blank. No contaminants were found.

#### VII. Surrogates

Surrogates were not performed for this SDG.

## VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### IX. Ongoing Precision Recovery Samples

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

#### X. Field Duplicates

Samples IRPSite5-GW-05GW01-20170629 and IRPSite5-GW-FD01-20170629 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

|          | Concentra                   | tion (ng/L)               |                 |                         |      |        |
|----------|-----------------------------|---------------------------|-----------------|-------------------------|------|--------|
| Compound | IRPSite5-GW-05GW01-20170629 | IRPSite5-GW-FD01-20170629 | RPD<br>(Limits) | Differences<br>(Limits) | Flag | A or P |
| PFHxA    | 6.98                        | 6.86                      | -               | 0.12 (≤8.88)            | -    | -      |
| PFHpA    | 3.96                        | 3.17                      | -               | 0.79 (≤8.88)            | -    | -      |

|          | Concentrat                  |                           |                 |                         |      |        |
|----------|-----------------------------|---------------------------|-----------------|-------------------------|------|--------|
| Compound | IRPSite5-GW-05GW01-20170629 | IRPSite5-GW-FD01-20170629 | RPD<br>(Limits) | Differences<br>(Limits) | Flag | A or P |
| PFHxS    | 61.1                        | 64.9                      | 6 (≤30)         | -                       | -    | -      |
| PFOA     | 48.8                        | 51.3                      | 5 (≤30)         | -                       | -    | -      |
| PFOS     | 205                         | 199                       | 3 (≤30)         | -                       | -    | -      |
| PFNA     | 3.24                        | 2.82                      | -               | 0.42 (≤8.88)            | -    | -      |
| PFBS     | 5.43U                       | 2.30                      | -               | 3.13 (≤8.88)            | -    | -      |

#### XI. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

| Sample                         | Internal<br>Standards               | Area (Limits) | Affected<br>Compound | Flag                                         | A or P |
|--------------------------------|-------------------------------------|---------------|----------------------|----------------------------------------------|--------|
| IRPSite5-GW-05GW01-20170629    | <sup>13</sup> C <sub>2</sub> -PFDoA | 37.4 (50-150) | PFDoA<br>PFTriA      | UJ (all non-detects)<br>UJ (all non-detects) | Р      |
| IRPSite33-GW-11MW204D-20170629 | <sup>13</sup> C <sub>2</sub> -PFDoA | 37.4 (50-150) | PFDoA<br>PFTriA      | UJ (all non-detects)<br>UJ (all non-detects) | Р      |
| Bidg 110-GW-11MW205D-20170629  | <sup>13</sup> C₂-PFDoA              | 41.4 (50-150) | PFDoA<br>PFTriA      | UJ (all non-detects)<br>UJ (all non-detects) | Р      |
| IRPSite5-GW-04GW82-20170629    | ¹³C₂-PFDoA                          | 37.0 (50-150) | PFDoA<br>PFTriA      | UJ (all non-detects)<br>UJ (all non-detects) | Р      |

#### XII. Compound Quantitation

The laboratory limit of quantitation (LOQ) and limit of detection (LOD) with no moisture or dilution are higher than the QAPP LOQ and LOD.

The laboratory detection limit (DL) with no moisture or dilution for PFOS is higher than the QAPP DL.

All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

### XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

## XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to initial calibration %D and internal standards area, data were qualified as estimated in nine samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

White Oak
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1700804

| Sample                                                                                                                                                                                                                                                                                         | Compound        | Flag                                         | A or P | Reason                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|--------|---------------------------|
| IRPSite7-GW-07GW41-20170629<br>IRPSite5-GW-05GW01-20170629<br>IRPSite5-GW-FD01-20170629<br>IRPSite33-GW-11MW204D-20170629<br>IRPSite33-GW-11MW204S 20170629<br>Bldg 110-GW-11MW205D-20170629<br>Bldg 110-GW-11MW205S 20170629<br>IRPSite7-GW-07GW102 20170629**<br>IRPSite5-GW-04GW82-20170629 | PFDoA           | UJ (all non-detects)                         | Р      | Initial calibration (%D)  |
| IRPSite5-GW-05GW01-20170629<br>IRPSite33-GW-11MW204D-20170629<br>Bldg 110-GW-11MW205D-20170629<br>IRPSite5-GW-04GW82-20170629                                                                                                                                                                  | PFDoA<br>PFTriA | UJ (all non-detects)<br>UJ (all non-detects) | P      | Internal standards (area) |

## White Oak

Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1700804

No Sample Data Qualified in this SDG

LDC #: 39198B96 VALIDATION COMPLETENESS WORKSHEET SDG #: 1700804 Stage 2B/4

Laboratory: Vista Analytical Laboratory

METHOD: LCMS Perfluorinated Alkyl Acids (EPA Method 537)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|          | Validation Area                        |               | Comments                                                      |
|----------|----------------------------------------|---------------|---------------------------------------------------------------|
| <u> </u> | Sample receipt/Technical holding times | 1             |                                                               |
| 11.      | LC/MS Instrument performance check     | A             |                                                               |
| 111.     | Initial calibration/ICV                | WA            | \$50 ≤ 20%. 1. 70 \$ 38%, 10 × 38%                            |
| IV.      | Continuing calibration                 | W             | ecv = 30/0                                                    |
| V.       | Laboratory Blanks                      | A             |                                                               |
| VI.      | Field blanks                           | ND            | FRB=4,8,IRPSite7-GW-FRB01-20170628,IRPSite5-GW-FRB01-20170628 |
| VII.     | Surrogate spikes                       | N             | \$3-5B01 (1700803)                                            |
| VIII.    | Matrix spike/Matrix spike duplicates   | $\mathcal{N}$ | <i>49</i>                                                     |
| IX.      | Laboratory control samples             | A             | OPR                                                           |
| Χ.       | Field duplicates                       | w             | 0=2+3                                                         |
| XI.      | Internal standards                     | W             |                                                               |
| XII.     | Compound quantitation RL/LOQ/LODs      | w             | Not reviewed for Stage 2B validation                          |
| XIII.    | Target compound identification         | <b>A</b>      | Not reviewed for Stage 2B validation                          |
| XIV.     | System performance                     | $\triangle$   | Not reviewed for Stage 2B validation                          |
| XV.      | Overall assessment of data             | A             |                                                               |

Note: A = Acceptable

N = Not provided/applicable

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

SW = See worksheet
\*\* Indicates sample underwent Stage 4 validation

|    | Client ID                                          | Lab ID       | Matrix | Date       |
|----|----------------------------------------------------|--------------|--------|------------|
| 1  | IRPSite7-GW-07GW41-20170629                        | 1700804-01   | Water  | 06/29/17   |
| 2  | IRPSite5-GW-05GW01-20170629                        | 1700804-02   | Water  | 06/29/17   |
| 3  | IRPSite5-GW-FD01-20170629                          | 1700804-03   | Water  | 06/29/17   |
| 4  | IRPSite33 GW FRB01-20170629                        | 1700804-04   | Water  | 06/29/17   |
| 5  | IRPSite33-GW-11MW204D-20170629                     | 1700804-05   | Water  | 06/29/17   |
| 6  | IRPSite33-GW-11MW204S <del>-</del> 20170629        | 1700804-06   | Water  | 06/29/17   |
| 7  | Bldg 110-GW-11MW205D-20170629                      | 1700804-07   | Water  | 06/29/17   |
| 8  | Bidg 110-GW-FRB01-20170629                         | 1700804-08   | Water  | 06/29/17 - |
| 9  | Bldg 110-GW-11MW205S-20170629                      | 1700804-09   | Water  | 06/29/17   |
| 10 | IRPSite7-GW-07GW102-20170629**                     | 1700804-10** | Water  | 06/29/17   |
| 11 | IRPSite5-GW-04GW82-20170629 2 <del>0170629 -</del> | 1700804-11   | Water  | 06/29/17   |
| 12 |                                                    |              |        |            |
| 13 |                                                    |              |        |            |



### VALIDATION FINDINGS CHECKLIST

|     | Page:     | <b>/</b> of | >        |
|-----|-----------|-------------|----------|
|     | Reviewer: | 9           |          |
| 2nd | Reviewer: |             | <u>5</u> |
|     |           |             |          |

Method: LCMS (EPA Method 537)

| Validation Area                                                                                                                                                                | Yes | No     | NA       | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----------|-------------------|
| I. Technical holding times                                                                                                                                                     |     | 10 Mg. |          |                   |
| Were all technical holding times met?                                                                                                                                          |     |        |          |                   |
| Was cooler temperature criteria met?                                                                                                                                           |     |        |          |                   |
| II. LC/MS Instrument performance check                                                                                                                                         |     |        |          |                   |
| Were the instrument performance reviewed and found to be within the specified criteria?                                                                                        |     |        |          |                   |
| Were all samples analyzed within the 12 hour clock criteria?                                                                                                                   |     |        |          |                   |
| Illa, Initial calibration                                                                                                                                                      |     |        |          |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                     |     |        |          |                   |
| Were all percent relative standard deviations (%RSD) ≤ 20%?                                                                                                                    |     |        |          |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of $\geq$ 0.990?                                                          |     |        |          |                   |
| Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard                                                            |     |        |          |                   |
| IIIb. Initial Calibration Verification                                                                                                                                         |     | 44     | 125      |                   |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                                                                  |     | •      |          |                   |
| Were all percent differences (%D) ≤ 30%?                                                                                                                                       |     |        |          |                   |
| IV. Continuing calibration                                                                                                                                                     |     |        |          |                   |
| Was a continuing calibration analyzed daily?                                                                                                                                   |     |        |          |                   |
| Were all percent differences (%D) of the continuing calibration ≤ 30%?                                                                                                         |     |        |          |                   |
| V. Laboratory Blanks                                                                                                                                                           |     |        |          |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                                                               |     |        |          |                   |
| Was a laboratory blank analyzed for each matrix and concentration?                                                                                                             |     |        |          |                   |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.                                                             |     | /      |          |                   |
| VI. Field blanks                                                                                                                                                               |     |        |          |                   |
| Were field blanks identified in this SDG?                                                                                                                                      |     | -      |          |                   |
| Were target compounds detected in the field blanks?                                                                                                                            |     |        |          |                   |
| VIII. Matrix spike/Matrix spike duplicates                                                                                                                                     |     |        |          |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |     |        | _        |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |     |        | /        |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |     |        |          |                   |
| IX. Laboratory control samples                                                                                                                                                 |     |        | ı        |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                              |     |        | <u> </u> |                   |



### VALIDATION FINDINGS CHECKLIST

| <u> 구of                                   </u> |
|------------------------------------------------|
| 9_                                             |
| 17                                             |
|                                                |

| Validation Area                                                                                                                       | Yes | No      | NA    | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Was an LCS analyzed per extraction batch?                                                                                             | 163 | NO      | IVA   | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                      |     | /       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X. Field duplicates                                                                                                                   |     |         | du ja | The state of the s |
| Were field duplicate pairs identified in this SDG?                                                                                    | /   |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were target compounds detected in the field duplicates?.                                                                              |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XI. Internal standards                                                                                                                |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were internal standard area counts within <u>+</u> 50% of the associated calibration standard?                                        |     | /       |       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XII. Compound quantitation                                                                                                            |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?         |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIII. Target compound identification                                                                                                  |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?                                                        |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                             |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were chromatogram peaks verified and accounted for?                                                                                   |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIV. System performance                                                                                                               |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| System performance was found to be acceptable.                                                                                        |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIII. Overall assessment of data                                                                                                      |     | A Shirt |       | The state of the s |
| Overall assessment of data was found to be acceptable.                                                                                | /   |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## **TARGET COMPOUND WORKSHEET**

#### METHOD: PFOS/PFOAs

| METHOD: PFOS/PFOAS                       |   |   |   |
|------------------------------------------|---|---|---|
| A. Perfluorohexanoic acid (PFHxA)        |   |   |   |
| B. Perluoroheptanojc acid (PFHpA)        |   |   |   |
| C. Perfluorooctano/c acid (PFOA)         |   |   |   |
| D. Perfluorononaroic acid (PFNA)         |   | · |   |
| E. Perfluorodecanoic acid (PFDA)         |   |   |   |
| F. Perfluoroundecanoic acid (PFUnA)      |   |   |   |
| G. Perfluorpriodecanoic acid (PFDoA)     |   |   |   |
| H. Perfluoro ridecanoic acid (PFTriA)    |   |   |   |
| I. Perfluorotetradecanoic acid (PFTeA)   |   |   |   |
| J. Perfluorobutanesulfonic acid (PFBS)   |   |   |   |
| K. Perfluorohexanesulfonic acid (PFHxS)  |   |   |   |
| L. Perfluoroheplanesulfonic acid (PFHpS) |   |   |   |
| M. Perfluorooctanesulfonic acid (PFOS)   |   |   |   |
| N/Perfluorodecanesulfonic acid (PFDS)    |   |   |   |
| φ. Perfluorooctane Sulfonamide (FOSA)    |   |   |   |
| P. Perfluorobutanoid acid (PFBA)         |   |   |   |
| Q. Perfluoropentanoid acis (PFPeA)       | · |   | , |
| R. 6:2FTS                                |   |   |   |
| S. 8:2FTS                                |   |   |   |
|                                          |   |   |   |
|                                          |   |   |   |
|                                          |   |   |   |
|                                          |   |   |   |
|                                          |   |   |   |
|                                          |   |   |   |
|                                          |   |   |   |



## VALIDATION FINDINGS WORKSHEET Initial Calibration

| Page:_        | <u></u> |
|---------------|---------|
| Reviewer:_    | 9_      |
| 2nd Reviewer: | <u></u> |

**METHOD: LCMS PFCs** 

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

MN/A Did the laboratory perform a 5 point calibration prior to sample analysis?

 $\frac{\text{Y N N/A}}{\text{N N/A}}$  Did the initial calibration meet the curve fit acceptance criteria of  $\geq 0.990$ ?

Y\_N\_N/A Were all percent relative standard deviations (%RSD) ≤ 20%?

Y(N) N/A Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?

|   | IN/A |             |          | differences (76D) 53076 01  |                |                    |                |
|---|------|-------------|----------|-----------------------------|----------------|--------------------|----------------|
| # | Date | Standard ID | Compound | Finding %RSD/r <sup>2</sup> | Finding %D     | Associated Samples | Qualifications |
|   | TOST | (CAL-C502   | - PFDOA  |                             | -56.9<br>+36.9 | All (ND)           | 1/41/7         |
|   | / /  | V C52       | V        |                             | +36.9          | ,                  | Solds/P        |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    | <u> </u>       |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |
|   |      |             |          |                             |                |                    |                |



## **VALIDATION FINDINGS WORKSHEET Continuing Calibration**

| Page:_        | <b></b> of |
|---------------|------------|
| Reviewer:     | <b>Q</b>   |
| 2nd Reviewer: | 15         |

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". WA N/A Was a continuing calibration standard analyzed after every 10 injections for each instrument? Y N N/A

Were all continuing calibration percent differences (%D) ≤30 %?

| # | Date     | Standard ID | Compound                              | Finding %D<br>(Limit: <u>&lt;</u> 30.0%) | Finding RRF<br>(Limit: ) | Associated Samples | Qualifications |
|---|----------|-------------|---------------------------------------|------------------------------------------|--------------------------|--------------------|----------------|
|   | 7/13/17  | 170713H1_20 | PFDOA                                 | + 48.0                                   |                          | AII (NO)           | Jolots/A =     |
|   |          |             |                                       |                                          |                          |                    | + + +          |
|   | 7/12/17  | 17071341-35 | PFOOA                                 | +135                                     |                          | 11 (ND)            | *              |
|   |          |             | · · · · · · · · · · · · · · · · · · · |                                          |                          |                    | * grad PTOOA-  |
|   |          |             |                                       |                                          |                          |                    | PFTVD          |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             | <u></u>                               | -                                        |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   | <u> </u> |             |                                       |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |
|   |          |             | <u> </u>                              |                                          |                          |                    |                |
|   |          |             |                                       |                                          |                          |                    |                |

LDC#: <u>3919</u>8B96

## VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

METHOD: PFCs (Method 537 mod)

|          | Concentration (ng/L) |      | (≤30) |            |        |      |
|----------|----------------------|------|-------|------------|--------|------|
| Compound | 2                    | 3    | RPD   | Difference | Limits | Qual |
| А        | 6.98                 | 6.86 |       | 0.12       | ≤8.88  |      |
| В        | 3.96                 | 3.17 |       | 0.79       | ≤8.88  |      |
| к        | 61.1                 | 64.9 | 6     |            |        |      |
| С        | 48.8                 | 51.3 | 5     |            |        |      |
| М        | 205                  | 199  | 3     |            |        |      |
| D        | 3.24                 | 2.82 |       | 0.42       | ≤8.88  |      |
| J        | 5.43U                | 2.30 |       | 3.13       | ≤8.88  |      |



## VALIDATION FINDINGS WORKSHEET Internal Standards

| Page:_        | <u>    (                                </u> |
|---------------|----------------------------------------------|
| Reviewer:     | q-                                           |
| 2nd Reviewer: | 77                                           |
|               | *                                            |

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN/A Were all internal standard area counts within 50-150% limits?

YN N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

|               | Y N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? |           |                      |               |             |                |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|---------------|-------------|----------------|--|
| #             | Date                                                                                                                                            | Sample ID | Internal<br>Standard | Area (Limits) | RT (Limits) | Qualifications |  |
|               |                                                                                                                                                 | 2(ND)     | 13C2-PFDOA           | 37.4 (50 +50) |             | JMA (4.H)      |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 | 5 CNDI    |                      | 31.4          |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 | 7 (NB     |                      | 41.4          |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 | (ND)      | V                    | 37.0          |             | <u> </u>       |  |
| <b></b>       |                                                                                                                                                 |           |                      |               |             | <u> </u>       |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |
| <del>  </del> |                                                                                                                                                 |           |                      |               |             |                |  |
|               |                                                                                                                                                 |           |                      |               |             |                |  |

LDC #: 39198**8**96

## VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

| Page: _       |    |
|---------------|----|
| Reviewer:     | 0- |
| 2nd Reviewer: | F  |
|               |    |

**METHOD: LC/MS PFCs** 

| Please s | see qualifications | below for all o | questions answered ' | "N". Not applicable | questions are | identified as "N/A". |
|----------|--------------------|-----------------|----------------------|---------------------|---------------|----------------------|
|          |                    |                 |                      |                     |               |                      |

Y N N/A
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

| # | Date | Sample ID | Finding                                                   | Qualifications |
|---|------|-----------|-----------------------------------------------------------|----------------|
|   |      | All       | Lab rerported LOD/LOQ > LOD/LOQ in the QAPP               | Text           |
|   |      | All       | The DL for PFOS = 0.807 ng/L, DL in the QAPP = 0.305 ng/L | Text           |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |

| Comments: | See sample calculation verification worksheet for recalculations |  |
|-----------|------------------------------------------------------------------|--|
|           |                                                                  |  |
|           |                                                                  |  |



## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: / of / Reviewer: / 2nd Reviewer: /

Method: LC/MS/MS PFCs

| Calibration | 01     | 0        | Otendend | (Y)        | (X)           |
|-------------|--------|----------|----------|------------|---------------|
| Date        | System | Compound | Standard | Response   | Concentration |
| 7/10/2017   | Q4     | PFBS     | 0        | 0.4380675  | 0.25          |
|             |        |          | s1       | 1.1565725  | 0.50          |
|             |        |          | s2       | 1.8657437  | 1.00          |
|             |        |          | s3       | 4.9570275  | 2.00          |
|             |        |          | s4       | 9.7347175  | 5.00          |
|             |        |          | s5       | 22.092078  | 10.00         |
|             |        |          | s6       | 112.84108  | 50.00         |
|             |        |          | s7       | 230.883470 | 100.00        |

| Regression Output                  | Reported <sup>77</sup> |           |
|------------------------------------|------------------------|-----------|
| Constant                           | -0.636769              | -0.143808 |
| Std Err of Y Est                   |                        |           |
| R Squared                          | 0.999849               | 0.998952  |
| Degrees of Freedom                 |                        |           |
| X Coefficient(s)                   | 2.305558               | 2.282190  |
| Std Err of Coef.                   |                        |           |
| Correlation Coefficient            | 0.999925               |           |
| Coefficient of Determination (r^2) | 0.999849               | 0.998952  |

\* 1/x W+

LDC #: 39198B96

## VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

| · Page:_       |    |
|----------------|----|
| Reviewer:_     | 9  |
| 2nd Reviewer:_ | F7 |

| •       |    |        |     |
|---------|----|--------|-----|
| WETHOD: | GC | V HPLC | /MS |
|         |    |        |     |

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

| # | Standard ID | Calibration<br>Date | Compound | Average CF(Ical)/<br>CCV Conc. | Reported  CF/Conc, CCV | Recalculated  CF/Conc.  CCV | Reported<br>%D | Recalculated<br>%D |
|---|-------------|---------------------|----------|--------------------------------|------------------------|-----------------------------|----------------|--------------------|
| 1 | 170713ML2   | 7/13/17             | PFBS     | 0.50                           | 0.610                  | 0.611                       | 22.0           | 22./               |
|   |             | ,                   |          |                                |                        |                             | ·              |                    |
|   |             |                     |          |                                |                        |                             |                |                    |
| 2 |             |                     |          | ·                              |                        |                             |                |                    |
|   |             |                     |          |                                |                        |                             |                | ·                  |
|   |             |                     |          |                                |                        |                             |                |                    |
| 3 | , .         |                     |          |                                |                        | •                           |                |                    |
|   |             |                     |          |                                |                        |                             |                |                    |
|   |             |                     |          |                                |                        |                             |                | ·.                 |
| 4 |             |                     | :        |                                |                        |                             |                |                    |
|   |             |                     |          |                                |                        |                             |                |                    |
|   |             |                     |          |                                |                        |                             |                |                    |

| Comments:   | Refer to Continuing | Calibration finding | is worksheet for l | ist of qualifications | and associated s | amples when repo | rted results do not | agree within | <u>10.0% oʻ</u> | <u>f the</u> |
|-------------|---------------------|---------------------|--------------------|-----------------------|------------------|------------------|---------------------|--------------|-----------------|--------------|
| ecalculated | results.            |                     |                    |                       | •                |                  |                     |              |                 |              |
|             |                     |                     |                    |                       |                  |                  |                     |              |                 |              |
|             |                     |                     |                    |                       |                  |                  |                     |              | <del></del>     |              |

LDC #: 39193B96

## **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

| Page:_        | _of          |
|---------------|--------------|
| Reviewer:     | <del>9</del> |
| 2nd Reviewer: | 17           |

| METHOD: | GC | _/HPLC         | MS |
|---------|----|----------------|----|
| METHOD: | GC | <u> </u> ✓HPLC | ME |

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = I SSCLCS - SSCLCSD I \* 2/(SSCLCS + SSCLCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples:

|                              | S    | Spike        | Spiked       | Sample   | Lo       | cs       | LC        | SD       | LCS/     | LCSD    |
|------------------------------|------|--------------|--------------|----------|----------|----------|-----------|----------|----------|---------|
| Compound                     | (n   | dded<br>S/ム) | Conce<br>( N | ntration | Percent  | Recovery | Percent F | Recovery | R        | PD      |
|                              | LCS  | LCSD         | LCS          | LCSD     | Reported | Recalc.  | Reported  | Recalc.  | Reported | Recalc. |
| Gasoline (8015)              |      |              |              |          |          |          |           |          |          |         |
| Diesel (8015)                |      |              |              |          |          |          |           |          |          |         |
| Benzene (8021B)              |      |              |              |          |          |          |           |          |          |         |
| Methane (RSK-175)            |      |              |              |          |          |          |           |          |          |         |
| 2,4-D (8151)                 |      |              |              |          |          |          |           |          |          |         |
| Dinoseb (8151)               |      |              |              |          |          |          |           |          |          |         |
| Naphthalene (8310)           |      |              |              |          | ,        |          |           |          |          |         |
| Anthracene (8310)            |      |              |              |          |          |          |           |          |          |         |
| HMX (8330)                   |      |              |              |          |          |          |           |          |          |         |
| 2,4,6-Trinitrotoluene (8330) |      |              |              |          |          |          |           |          |          |         |
| ф <del>Т</del> ВS            | 80.0 | NA           | 65,5         | NA       | 81.9     | 81.9     |           |          |          |         |
|                              |      |              |              |          |          | ,        |           |          |          |         |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 39/98B96

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page: _       | <u> </u> |
|---------------|----------|
| Reviewer:     | 7        |
| 2nd Reviewer: | 5        |

METHOD: \_\_GC V HPLC MS

Y N N/A Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10% of the reported results?

| Concentration= | (A)(Fv)(Df)           |
|----------------|-----------------------|
| (F             | RF)(Vs or Ws)(%S/100) |

A= Area or height of the compound to be measured

Fv= Final Volume of extract

Df= Dilution Factor

RF= Average response factor of the compound

In the initial calibration

Vs= Initial volume of the sample

Ws= Initial weight of the sample

%S= Percent Solid

Example:

Sample ID. 16 Compound Name PFBS

Concentration =  $\frac{870 \times 12^5}{4620} \pm 0.143808$  (1)

= 9.05 n3/c

| # | Sample ID | Compound | Reported<br>Concentrations | Recalculated Results Concentrations ( ) | Qualifications |
|---|-----------|----------|----------------------------|-----------------------------------------|----------------|
|   | 10        | PFBS     | 9.06                       |                                         |                |
|   |           |          |                            |                                         |                |
|   |           |          |                            |                                         |                |
|   |           |          |                            |                                         |                |
|   |           |          |                            |                                         |                |

| omments: | <br> |  |
|----------|------|--|
|          |      |  |
|          |      |  |

## **VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs**

| Page: _       | /of /    |
|---------------|----------|
| Reviewer:     | <u> </u> |
| 2nd Reviewer: | <b>5</b> |
|               | / /      |

METHOD: LC/MS PFCs

| Please see      | aualifications | helow for all | augetione anewardd | "N" | Not applicable (  | rupetione are  | identified as "N/A". |
|-----------------|----------------|---------------|--------------------|-----|-------------------|----------------|----------------------|
| ATTENDIO COCC 1 | quamications   | DCIOW IOI all | questions answered |     | TYOU APPRICABLE V | aucononio ai c | identifica as in/A.  |

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

| # | Date | Sample ID | Finding                                                   | Qualifications |
|---|------|-----------|-----------------------------------------------------------|----------------|
|   |      | All       | Lab rerported LOD/LOQ > LOD/LOQ in the QAPP               | Text           |
|   |      | All       | The DL for PFOS = 0.807 ng/L, DL in the QAPP = 0.305 ng/L | Text           |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |

| Comments: _ | See sample calculation | verification worksheet f | for recalculations |  |  |
|-------------|------------------------|--------------------------|--------------------|--|--|
|             |                        |                          |                    |  |  |
|             |                        |                          |                    |  |  |

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

White Oak

LDC Report Date:

August 4, 2017

Parameters:

Perfluorinated Alkyl Acids

Validation Level:

Stage 2B & 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1700887

| Sample Identification             | Laboratory Sample Identification | Matrix | Collection<br>Date |
|-----------------------------------|----------------------------------|--------|--------------------|
| IRPSite 6-GW-06GW01-20170712      | 1700887-01                       | Water  | 07/12/17           |
| IRPSite 6-GW-06GW02-20170712      | 1700887-02                       | Water  | 07/12/17           |
| Site 33-GW-33GW01-20170712        | 1700887-04                       | Water  | 07/12/17           |
| Building110-GW-110GW01-20170712** | 1700887-05**                     | Water  | 07/12/17           |
| IRPSite 6-GW-06FD01-20170712      | 1700887-06                       | Water  | 07/12/17           |

<sup>\*\*</sup>Indicates sample underwent Stage 4 validation

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling and Analysis Plan) for Initial Assessment of Perf-fluorinated Compounds (PFCS) or Per- and Polyfluoralkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

### I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

#### II. LC/MS Instrument Performance Check

Instrument performance check was performed prior to initial calibration.

#### III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

For each calibration point, the percent differences (%D) of its true value were less than or equal to 30.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

#### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

#### VI. Field Blanks

Samples IRPSite33-GW-FRB01-20170629, Bldg 110-GW-FRB01 20170629 (both from SDG 1700804), and IRPSite 6-GW-FRB01-20170712 were identified as field rinsate blanks. No contaminants were found.

Sample SB01 (from SDG 1700803) was identified as a source blank. No contaminants were found.

## VII. Surrogates

Surrogates were not performed for this SDG.

## VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

## IX. Ongoing Precision Recovery Samples

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

## X. Field Duplicates

Samples IRPSite 6-GW-06GW02-20170712 and IRPSite 6-GW-06FD01-20170712 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

|          | Concentra                    |                              |                 |                         |          |        |
|----------|------------------------------|------------------------------|-----------------|-------------------------|----------|--------|
| Compound | IRPSite 6-GW-06GW02-20170712 | IRPSite 6-GW-06FD01-20170712 | RPD<br>(Limits) | Differences<br>(Limits) | Flag     | A or P |
| PFBS     | 21.8                         | 21.7                         | 0 (≤30)         | -                       | -        | -      |
| PFHxA    | 20.0                         | 17.6                         | 13 (≤30)        | -                       | <u>-</u> | -      |
| PFHpA    | 10.3                         | 9.00                         | -               | 1.3 (≤10.1)             | -        | -      |
| PFHxS    | 6.18                         | 5.70                         | -               | 0.48 (≤10.1)            | -        | -      |
| PFOA     | 20.1                         | 20.6                         | 2 (≤30)         | -                       | -        | -      |
| PFOS     | 16.5                         | 13.5                         | 20 (≤30)        | -                       | -        | -      |
| PFNA     | 3.81                         | 2.80                         | -               | 1.01 (≤10.1)            | -        | -      |

#### XI. Internal Standards

All internal standard areas and retention times were within QC limits.

### XII. Compound Quantitation

The laboratory limit of quantitation (LOQ) and limit of detection (LOD) with no moisture or dilution are higher than the QAPP LOQ and LOD.

The laboratory detection limit (DL) with no moisture or dilution for PFOS is higher than the QAPP DL.

All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

#### White Oak

Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1700887

No Sample Data Qualified in this SDG

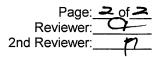
White Oak Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1700887

No Sample Data Qualified in this SDG

| DG #<br>abora | t:1700887<br>atory:Vista Analytical Laboratory                                                                 | St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | age 2B/4        | SS WORKSHEE                                          |                    | Date: <b>8/3</b> , Page:/of Reviewer: |
|---------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------|--------------------|---------------------------------------|
| he sa         | IOD: LCMS Perfluorinated Alkyl Acids (<br>amples listed below were reviewed for e<br>tion findings worksheets. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,               | dation areas. Valida                                 | ition findings are | noted in attache                      |
|               | Validation Area                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Com                                                  | ments              |                                       |
| l.            | Sample receipt/Technical holding times                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                                      |                    |                                       |
| II.           | LC/MS Instrument performance check                                                                             | <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                                      | <u> </u>           |                                       |
| III.          | Initial calibration/ICV                                                                                        | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RSOS            | 20/0. Y ? Tol                                        | <307°.             | CV=380                                |
| IV.           | Continuing calibration                                                                                         | $\triangleleft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COV             | €300                                                 |                    |                                       |
| V.            | Laboratory Blanks                                                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | <i>Z</i>                                             |                    |                                       |
| VI.           | Field blanks                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FRB=3,IRPSit    | e33-GW-FRB01-201706                                  | 629,Bldg 110-GW-F  | RB01 20170629 <b>(1</b> 7             |
| VII.          | Surrogate spikes                                                                                               | Δ/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>53</b> 00 51 | 30/(170080                                           | 3)                 |                                       |
| VIII.         | Matrix spike/Matrix spike duplicates                                                                           | Λ/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05              |                                                      |                    |                                       |
| IX.           | Laboratory control samples                                                                                     | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OPR             |                                                      |                    |                                       |
| Χ.            | Field duplicates W D=2+5                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                      |                    |                                       |
| XI.           | Internal standards                                                                                             | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                                      |                    |                                       |
| XII.          | Compound quantitation RL/LOQ/LODs                                                                              | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not reviewed    | for Stage 2B validation                              |                    |                                       |
| XIII.         | Target compound identification                                                                                 | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | for Stage 2B validation                              |                    |                                       |
| XIV.          | System performance                                                                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | for Stage 2B validation                              | ·····              |                                       |
| XV.           | Overall assessment of data                                                                                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                                      | <del></del>        |                                       |
| ote:          | N = Not provided/applicable R = R                                                                              | No compoundations at the second secon | s detected      | D = Duplicate<br>TB = Trip blank<br>EB = Equipment b | OTHER              | ırce blank<br>:                       |
|               | Client ID                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Lab ID                                               | Matrix             | Date                                  |
|               | IRPSite 6-GW-06GW01-20170712                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00            | 1700887-01                                           | Water              | 07/12/17                              |
| <u> </u>      | IRPSite 6-GW-06GW02-20170712                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1700887-02                                           | Water              | 07/12/17                              |
|               | IRPSite 6-GW-FRB01-20170712                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1700887-03                                           | Water              | 07/12/17                              |
| ;             | Site 33-GW-33GW01-20170712                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1700887-04                                           | Water              | 07/12/17                              |
|               | Building110-GW-110GW01-20170712**                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1700887-05**                                         | Water              | 07/12/17                              |
| - 1           | IRPSite 6-GW-06FD01-20170712                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1700887-06                                           | Water              | 07/12/17                              |
|               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                      |                    |                                       |
|               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                      |                    |                                       |
| otes:         |                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - T             |                                                      |                    |                                       |
| $\perp$       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                      |                    |                                       |
| 1             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                      |                    | ···                                   |
| $\bot$        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                      | ,                  |                                       |
| - 1           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1             |                                                      |                    |                                       |



#### VALIDATION FINDINGS CHECKLIST


Page: /of Z Reviewer: 9 2nd Reviewer: 11

Method: LCMS (EPA Method 537)

| Validation Area                                                                                                                                                                | Yes | No    | NA       | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------|-------------------|
| I. Technical holding times                                                                                                                                                     |     |       | The Land |                   |
| Were all technical holding times met?                                                                                                                                          |     |       |          |                   |
| Was cooler temperature criteria met?                                                                                                                                           |     |       |          |                   |
| II. LC/MS Instrument performance check                                                                                                                                         |     |       |          |                   |
| Were the instrument performance reviewed and found to be within the specified criteria?                                                                                        |     |       |          |                   |
| Were all samples analyzed within the 12 hour clock criteria?                                                                                                                   |     |       |          |                   |
| IIIa. Initial calibration                                                                                                                                                      |     |       |          | The second second |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                     |     |       |          |                   |
| Were all percent relative standard deviations (%RSD) ≤ 20%?                                                                                                                    |     |       |          |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of $\geq$ 0.990?                                                          |     |       |          |                   |
| Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard                                                            |     |       |          |                   |
| IIIb. Initial Calibration Verification                                                                                                                                         |     | H 4   |          |                   |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                                                                  |     |       |          |                   |
| Were all percent differences (%D) ≤ 30%?                                                                                                                                       |     |       |          |                   |
| IV. Continuing calibration                                                                                                                                                     |     |       |          |                   |
| Was a continuing calibration analyzed daily?                                                                                                                                   |     |       |          |                   |
| Were all percent differences (%D) of the continuing calibration ≤ 30%?                                                                                                         |     |       |          |                   |
| V. Laboratory Blanks                                                                                                                                                           |     | 0.612 | 6.44     |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                                                               |     |       |          |                   |
| Was a laboratory blank analyzed for each matrix and concentration?                                                                                                             | /   |       |          |                   |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.                                                             |     |       |          |                   |
| VI. Field blanks                                                                                                                                                               |     |       |          |                   |
| Were field blanks identified in this SDG?                                                                                                                                      |     | (     |          |                   |
| Were target compounds detected in the field blanks?                                                                                                                            |     |       | 1        |                   |
| VIII. Matrix spike/Matrix spike duplicates                                                                                                                                     |     |       |          |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |     |       |          |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |     |       | /        |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |     |       | /        |                   |
| IX. Laboratory control samples                                                                                                                                                 |     |       |          |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                              |     |       |          |                   |



### VALIDATION FINDINGS CHECKLIST



|                                                                                                                                       |     |    | <u> </u>     |                   |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|----|--------------|-------------------|
| Validation Area                                                                                                                       | Yes | No | NA           | Findings/Comments |
| Was an LCS analyzed per extraction batch?                                                                                             |     |    |              |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                      |     |    |              |                   |
| X. Field duplicates                                                                                                                   |     | 44 |              |                   |
| Were field duplicate pairs identified in this SDG?                                                                                    |     | •  |              |                   |
| Were target compounds detected in the field duplicates?.                                                                              |     |    |              |                   |
| XI. Internal standards                                                                                                                |     |    | ele<br>Viria |                   |
| Were internal standard area counts within <u>+</u> 50% of the associated calibration standard?                                        |     | \  |              |                   |
| XII. Compound quantitation                                                                                                            |     |    |              |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?         |     |    |              |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |     |    |              |                   |
| XIII. Target compound identification                                                                                                  |     |    |              |                   |
| Were relative retention times (RRT's) within $\pm$ 0.06 RRT units of the standard?                                                    |     |    |              |                   |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                             |     |    |              |                   |
| Were chromatogram peaks verified and accounted for?                                                                                   |     |    |              |                   |
| XIV. System performance                                                                                                               |     |    |              |                   |
| System performance was found to be acceptable.                                                                                        |     | 1  |              |                   |
| XIII. Overall assessment of data                                                                                                      |     |    |              |                   |
| Overall assessment of data was found to be acceptable.                                                                                |     |    |              |                   |

#### TARGET COMPOUND WORKSHEET

#### METHOD: PFOS/PFOAs

| METHOD: PFOS/PFOAs                       |  |  |
|------------------------------------------|--|--|
| A. Perfluorohexanoie acid (PFHxA)        |  |  |
| B. Perfluoroheptanoic acid (PFHpA)       |  |  |
| C. Perfluorooctanoic acid (PFOA)         |  |  |
| D. Perfluorononanoic acid (PFNA)         |  |  |
| E. Perfluorodecanoic acid (PFDA)         |  |  |
| F. Perfluoroundecanoic acid (PFUnA)      |  |  |
| G. Perfluorododecanoic acid (PFDoA)      |  |  |
| H. Perfluorotridecanoic acid (PFTriA)    |  |  |
| I. Perfluorotetradecanoic acid (PFTeA)   |  |  |
| J. Perfluorobutanesulfonic acid (PFBS)   |  |  |
| K. Perfluorohexanesulfonic acid (PFHxS)  |  |  |
| L. Perfluoroneptanesulfonic acid (PFHpS) |  |  |
| M. Perfluorooctanesulfonic acid (PFOS)   |  |  |
| N.Perfluorodecanesulfonic acid (PFDS)    |  |  |
| O. Perfluprooctane Sulfonamide (FOSA)    |  |  |
| P. Perflyorobutanoic acid (PFBA)         |  |  |
| Q. Perfluoropentanoie acie (PFPeA)       |  |  |
| R. 6:2FTS                                |  |  |
| S. 8:2FTS                                |  |  |
|                                          |  |  |
|                                          |  |  |
|                                          |  |  |
|                                          |  |  |
|                                          |  |  |
|                                          |  |  |
|                                          |  |  |

LDC#:<u>39198</u>c96

## VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

| Page: <u>/</u> of <u>/</u> |  |
|----------------------------|--|
| Reviewer:                  |  |
| 2nd Reviewer: 77           |  |

METHOD: PFCs (Method 537 mod)

|          | Concentration (ng/L) |      | (≤30) |            |        | _    |
|----------|----------------------|------|-------|------------|--------|------|
| Compound | 2                    | 6    | RPD   | Difference | Limits | Qual |
| J        | 21.8                 | 21.7 | 0     |            |        |      |
| А        | 20.0                 | 17.6 | 13    |            |        |      |
| В        | 10.3                 | 9.00 |       | 1.3        | ≤10.1  |      |
| к        | 6.18                 | 5.70 |       | 0.48       | ≤10.1  |      |
| С        | 20.1                 | 20.6 | 2     |            |        |      |
| М        | 16.5                 | 13.5 | 20    |            |        |      |
| D        | 3.81                 | 2.80 |       | 1.01       | ≤10.1  |      |

### **VALIDATION FINDINGS WORKSHEET Internal Standards**

| Page:_       | <u>_/</u> of_/ |
|--------------|----------------|
| Reviewer:    | 9              |
| nd Reviewer: | M              |

METHOD: LC/MS PFCs

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YNA

Were all internal standard area counts within 50-150% limits?

TY)N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

| # | Date | Sample ID <b>B75-0079-B44</b> |              | Area (Limits)               | RT (Limits) | Qualifications |
|---|------|-------------------------------|--------------|-----------------------------|-------------|----------------|
|   |      | B740079-BH                    | 13C2-47 TEDA | Area (Limits) 45.1 (SO-150) |             | WHY COFTEDA    |
|   |      |                               | 1            |                             |             | / / ' ' '      |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
| ļ |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
| - |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |
|   |      |                               |              |                             |             |                |



### VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

| Page:         | <u></u> of |
|---------------|------------|
| Reviewer:     | J.         |
| 2nd Reviewer: | FI         |
|               |            |

METHOD: LC/MS PFCs

| "Please see qualifications below for all questions answered "N". Not applicable questions are identified as |
|-------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------|

Y N N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Y N N/A Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

| # | Date | Sample ID | Finding                                                   | Qualifications |
|---|------|-----------|-----------------------------------------------------------|----------------|
|   |      | All       | Lab rerported LOD/LOQ > LOD/LOQ in the QAPP               | Text           |
|   |      |           |                                                           |                |
|   |      | All       | The DL for PFOS = 0.807 ng/L, DL in the QAPP = 0.305 ng/L | Text           |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |
|   |      |           |                                                           |                |

| Comments: | See sample calculation | verification worksheet | for recalculations |  |  |  |
|-----------|------------------------|------------------------|--------------------|--|--|--|
|           |                        |                        |                    |  |  |  |
|           |                        |                        |                    |  |  |  |



## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: / of ~ Reviewer: ~ 2nd Reviewer: \_\_\_\_\_\_

Method: LC/MS/MS PFCs

| Calibration |        |          |          | (Y)        | (X)           |
|-------------|--------|----------|----------|------------|---------------|
| Date        | System | Compound | Standard | Response   | Concentration |
| 7/27/2017   | Q2     | PFBS     | s1       | 1.4453125  | 0.50          |
| 1           |        |          | s2       | 2.0194375  | 1.00          |
|             |        |          | s3       | 3.541275   | 2.00          |
|             |        |          | s4       | 9.4866062  | 5.00          |
|             |        |          | s5       | 16.99074   | 10.00         |
|             |        |          | s6       | 83.904108  | 50.00         |
|             |        |          | s7       | 157.926820 | 100.00        |

**Regression Output** 

| Rei | port | ed |
|-----|------|----|
|-----|------|----|

| Constant                           | 1.183817 | 0.593256 |
|------------------------------------|----------|----------|
| Std Err of Y Est                   |          |          |
| R Squared                          | 0.999221 | 0.998731 |
| Degrees of Freedom                 |          |          |
|                                    |          |          |
| X Coefficient(s)                   | 1.584733 | 1.607660 |
| Std Err of Coef.                   |          |          |
|                                    |          |          |
| Correlation Coefficient            | 0.999611 |          |
| Coefficient of Determination (r^2) | 0.999221 | 0.998731 |

LDC#: 39198c96

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: LC/MS/MS PFCs

| Calibration |        |          |          | (Y)       | (X)           |
|-------------|--------|----------|----------|-----------|---------------|
| Date        | System | Compound | Standard | Response  | Concentration |
| 7/28/2017   | Q2     | PFDoA    | 0        | 0.0331250 | 0.25          |
|             |        |          | s1       | 0.0527637 | 0.50          |
|             |        |          | s2       | 0.1130487 | 1.00          |
|             |        |          | s3       | 0.266025  | 2.00          |
|             |        |          | s4       | 0.6203462 | 5.00          |
|             |        |          | s5       | 1.2761775 | 10.00         |
|             |        |          | s6       | 6.096625  | 50.00         |
|             |        |          | s7       | 12.084870 | 100.00        |

**Regression Output** 

| Re | po | rte | d |
|----|----|-----|---|
|----|----|-----|---|

|                                    |          | · · · · · · · · · · · · · · · · · · · |
|------------------------------------|----------|---------------------------------------|
| Constant                           | 0.017917 | 0.000590                              |
| Std Err of Y Est                   |          |                                       |
| R Squared                          | 0.999957 | 0.999601                              |
| Degrees of Freedom                 |          |                                       |
| X Coefficient(s)                   | 0.120887 | 0.121673                              |
| Std Err of Coef.                   |          |                                       |
| Correlation Coefficient            | 0.999979 |                                       |
| Coefficient of Determination (r^2) | 0.999957 | 0.999601                              |
|                                    |          |                                       |

## **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification**

| Page:          | of |
|----------------|----|
| Reviewer:      | Q  |
| 2nd Reviewer:_ | 97 |

| METHOD: GC | V | _HPLC/MS_ |
|------------|---|-----------|
|------------|---|-----------|

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. CF - CF)/ave. CF ·CF = A/C

Where: ave. CF = initial calibration average CF CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

| # | Standard ID | Calibration<br>Date       | Compound | Average CF(Ical)/<br>CCV Conc. | Reported  CF/Conc.  CCV | Recalculated  CF/Conc.  CCV | Reported<br>%D | Recalculated<br>%D |
|---|-------------|---------------------------|----------|--------------------------------|-------------------------|-----------------------------|----------------|--------------------|
| 1 | 170131424   | <del>484</del><br>7/31/17 | PFBS     | 1.000                          | 0.876                   | 0.879                       | 13.4           | />./               |
| 2 | 170BA12     | 7/31/17                   | PFDOA    | 0.500                          | 0.375                   | 0.375                       | 24.9           | 25.0               |
|   |             |                           |          |                                |                         |                             |                |                    |
| 3 |             |                           |          |                                |                         |                             |                |                    |
| 4 |             |                           |          |                                |                         |                             |                |                    |
|   |             |                           |          |                                |                         |                             |                |                    |

| Comments:    | Refer to Continuing | <u>, Calibration fi</u> | <u>indings worksheet fo</u> | or list of qualification | ons and associated | samples when r | <u>reported results do no</u> | ot agree within ' | <u>10.0% of the</u> |
|--------------|---------------------|-------------------------|-----------------------------|--------------------------|--------------------|----------------|-------------------------------|-------------------|---------------------|
| recalculated | results.            |                         |                             |                          | •                  |                |                               |                   |                     |
|              |                     |                         |                             |                          | •                  |                |                               |                   |                     |
|              |                     |                         |                             |                          |                    | <del></del>    |                               |                   |                     |

LDC#:39193C96

## VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

| Page:          | $\angle$ of_ | $\angle$ |
|----------------|--------------|----------|
| Reviewer:_     | 9            |          |
| 2nd Reviewer:_ | 7            | <u> </u> |

| METHOD: | <br>GC | <u>/</u> H | PLC/ | MS |
|---------|--------|------------|------|----|
|         |        |            | _    |    |

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = I SSCLCS - SSCLCSD I \* 2/(SSCLCS + SSCLCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: B74079-BS/

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S    | pike        | Spiked | Sample    | LCS       |                  | LCSD     |                  | LCS/LCSD |         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|--------|-----------|-----------|------------------|----------|------------------|----------|---------|--|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (V)  | dded<br>S/A | Conce  | entration | Percent I | Percent Recovery |          | Percent Recovery |          | RPD     |  |
| A second control of the second control of th | LCS  | LCSD        | LCS    | LCSD      | Reported  | Recalc.          | Reported | Recalc.          | Reported | Recalc. |  |
| Gasoline (8015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |             |        |           |           |                  |          |                  |          |         |  |
| Diesel (8015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |             |        |           |           |                  |          |                  |          |         |  |
| Benzene (8021B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |             |        |           |           |                  |          |                  |          |         |  |
| Methane (RSK-175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |             |        |           |           |                  |          |                  |          |         |  |
| 2,4-D (8151)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |             |        |           |           |                  |          |                  |          |         |  |
| Dinoseb (8151)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |             |        |           |           |                  |          |                  |          |         |  |
| Naphthalene (8310)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |             |        |           |           |                  |          |                  |          |         |  |
| Anthracene (8310)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |             |        |           |           |                  |          |                  |          |         |  |
| HMX (8330)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |             |        |           |           |                  |          |                  |          |         |  |
| 2,4,6-Trinitrotoluene (8330)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |             |        |           |           |                  |          |                  |          |         |  |
| PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.0 | NA          | 74.1   | NA        | 92.5      | 92.6             |          |                  |          |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |             |        | •         |           |                  |          |                  |          |         |  |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#39198096

# VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

| Page: _       | $\angle$ of $\_$ |   |
|---------------|------------------|---|
| Reviewer:     | 9                | _ |
| 2nd Reviewer: | F                | 2 |

METHOD: \_\_GC V HPLC /MS

| M | N | N/A |
|---|---|-----|
| Y | M | N/A |
|   |   |     |

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10% of the reported results?

| Concentr    | ation= (A)(Fv)(Df)                       |  |
|-------------|------------------------------------------|--|
|             | (RF)(Vs or Ws)(%S/100)                   |  |
| A= Area     | or height of the compound to be measured |  |
| Fv= Final   | Volume of extract                        |  |
| Df= Diluti  | on Factor                                |  |
| RF= Avera   | ge response factor of the compound       |  |
| In the      | initial calibration                      |  |
| Vs= Initial | volume of the sample                     |  |
| Ws= Initial | weight of the sample                     |  |
| %S= Perce   | nt Solid                                 |  |

| Example:            |                      |            |  |
|---------------------|----------------------|------------|--|
| Sample ID. 3        | Compound Name        | 4FBS       |  |
| Concentration = 3.7 | 40/e3x/2.5<br>148.e3 | -0.593256) |  |
| ()                  | 1.60766) (           | (0.118)    |  |
| = 39                | 3.1 ns/c             |            |  |

| # | Sample ID | Compound | Reported<br>Concentrations | Recalculated Results Concentrations ( ) | Qualifications |
|---|-----------|----------|----------------------------|-----------------------------------------|----------------|
|   | 5         | 9FBS     | 39.2                       |                                         |                |
|   |           |          |                            |                                         |                |
|   |           |          |                            |                                         |                |
|   |           |          |                            |                                         |                |
|   |           |          |                            |                                         |                |
|   |           |          |                            |                                         |                |
|   |           |          |                            |                                         |                |
|   |           |          |                            |                                         |                |

| mments: |   |  |
|---------|---|--|
|         | • |  |

LDC#:39198

### EDD POPULATION COMPLETENESS WORKSHEET

| Date: 8/7/1               | • |
|---------------------------|---|
| Page: 1 of 1              |   |
| 2 <sup>nd</sup> Reviewer: |   |

|       | EDD Process                                                                                                |           | Comments/Action |
|-------|------------------------------------------------------------------------------------------------------------|-----------|-----------------|
| I.    | EDD Completeness                                                                                           | -         |                 |
| Ia.   | - All methods present?                                                                                     | 4         |                 |
| Ib.   | - All samples present/match report?                                                                        | 'Y        |                 |
| lc.   | - All reported analytes present?                                                                           | 4         |                 |
| Id.   | 10% or 100% verification of EDD?                                                                           | 4         |                 |
|       |                                                                                                            | 12 July 1 |                 |
| II.   | EDD Preparation/Entry                                                                                      | -         |                 |
| IIa.  | - Carryover U/J?                                                                                           | _         |                 |
| IIb.  | - Reason Codes used? If so, note which codes.                                                              | 4         | client          |
| IIc.  | - Additional Information (QC Level, Validator, Validated Y/N, etc.)                                        | Ч         |                 |
|       |                                                                                                            |           |                 |
| III.  | Reasonableness Checks                                                                                      | -         |                 |
| IIIa. | - Do all qualified ND results have ND qualifier (e.g. UJ)?                                                 | 4         |                 |
| IIIb. | - Do all qualified detect results have detect qualifier (e.g. J)?                                          | 4         |                 |
| IIIc. | - If reason codes are used, do all qualified results have reason code field populated, and vice versa?     | 4         |                 |
| IIId. | -Does the detect flag require changing for blank qualifier? If so, are all U results marked ND?            | +         |                 |
| IIIe. | - Do blank concentrations in report match EDD where data was qualified due to blank contamination?         | _         |                 |
| IIIf. | - Were multiple results reported due to dilutions/reanalysis? If so, were results qualified appropriately? | +         |                 |
| IIIg. | -Are there any discrepancies between the data packet and the EDD?                                          | N         |                 |

| Notes: | *see discrepancy sheet |  |
|--------|------------------------|--|
|        |                        |  |

| INSTALLATION_ID | SITE_NAME        | LOCATION_NAME | LOCATION_TYPE | LOCATION_TYPE_DESC | COORD_X    | COORD_Y   | SAMPLE_NAME                      | SAMPLE_MATRIX | SAMPLE_MATRIX_DESC | COLLECT_DATE | ANALYTICAL_METHOD_GRP_DESC | SDG     |
|-----------------|------------------|---------------|---------------|--------------------|------------|-----------|----------------------------------|---------------|--------------------|--------------|----------------------------|---------|
|                 |                  |               |               |                    |            |           |                                  |               |                    |              |                            |         |
| WHITE_OAK_NSWC  | SITE 00011 - TBC | 110GW01       | WLM           | Monitoring Well    | -76.980793 | 39.039437 | BUILDING 110-GW-110GW01-20170712 | WG            | Ground water       | 12-Jul-17    | Perfluoroalkyl Compounds   | 1700887 |
|                 |                  |               |               |                    |            |           |                                  |               |                    |              |                            |         |
| WHITE_OAK_NSWC  | SITE 00046 - TBC | 06GW02        | WLM           | Monitoring Well    | -76.954145 | 39.042818 | IRPSITE 6-GW-06FD01-20170712     | WG            | Ground water       | 12-Jul-17    | Perfluoroalkyl Compounds   | 1700887 |
|                 |                  |               |               |                    |            |           |                                  |               |                    |              |                            |         |
| WHITE_OAK_NSWC  | SITE 00046 - TBC | 06GW01        | WLM           | Monitoring Well    | -76.954427 | 39.042814 | IRPSITE 6-GW-06GW01-20170712     | WG            | Ground water       | 12-Jul-17    | Perfluoroalkyl Compounds   | 1700887 |
|                 |                  |               |               |                    |            |           |                                  |               |                    |              |                            |         |
| WHITE_OAK_NSWC  | SITE 00046 - TBC | 06GW02        | WLM           | Monitoring Well    | -76.954145 | 39.042818 | IRPSITE 6-GW-06GW02-20170712     | WG            | Ground water       | 12-Jul-17    | Perfluoroalkyl Compounds   | 1700887 |
|                 |                  |               |               |                    |            |           |                                  |               |                    |              |                            |         |
| WHITE_OAK_NSWC  | SITE 00011 - TBC | 33GW01        | WLM           | Monitoring Well    | -76.982534 | 39.038288 | SITE 33-GW-33GW01-20170712       | WG            | Ground water       | 12-Jul-17    | Perfluoroalkyl Compounds   | 1700887 |

\*Coordinate system is WGS 1984 UTM Zone 14N (Meters)

\*Coordinate system is WGS 1984 UTM Zone 14N (Meters)

\*Coordinate system is WGS 1984 UTM Zone 14N (Meters)

\*Coordinate system is WGS 1984 UTM Zone 14N (Meters)

\*Coordinate system is WGS 1984 UTM Zone 14N (Meters)