Groundwater Sample Results, Level 2 Laboratory Report, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1601451 Marine Corps Air Station Yuma Yuma, Arizona November 2019 December 19, 2016 #### Vista Work Order No. 1601451 Mr. Curtis Moss AMEC Foster Wheeler 9210 Sky Park Court Suite 200 San Diego, CA 92123 Dear Mr. Moss, Enclosed are the amended results for the sample set received at Vista Analytical Laboratory on November 15, 2016. This sample set was analyzed on a rush turn-around time, under your Project Name 'MCAS Yuma, AZ TO 105'. Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team. Sincerely, Martha Maier Laboratory Director Kanenjopez for Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista. Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com ### Vista Work Order No. 1601451 Case Narrative ### **Sample Condition on Receipt:** Ten aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. This report was amended on December 19, 2016 to correct the sample IDs to "OUA1" to match the Chain of Custody. #### **Analytical Notes:** #### **Modified EPA Method 537** The aqueous samples were extracted and analyzed for PFOA, PFOS and PFBS using Modified EPA Method 537. ### **Holding Times** The samples were extracted and analyzed within the method hold times. ### **Quality Control** The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria. A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria The labeled standard recoveries for all QC and field samples were within the QAPP acceptance criteria. As requested, an MS/MSD was performed on sample "OUAI-HS03-20161114". # Table of Contents | Case Narrative | 1 | |---------------------|----| | Table of Contents | 3 | | Sample Inventory | 4 | | Analytical Results. | 5 | | Qualifiers | 19 | | Certifications | 20 | | Sample Receipt | 23 | # **Sample Inventory Report** | Vista
Sample ID | Client
Sample ID | | Sampled | Received | Components/Containers | |--------------------|---------------------|--------|-----------------|-----------------|-----------------------| | 1601451-01 | SB01-20161114 | | 14-Nov-16 14:00 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-02 | EB01-20161114 | | 14-Nov-16 14:30 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-03 | OUA1-MW13-20161114 | | 14-Nov-16 08:15 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-04 | OUA1-MW37-20161114 | | 14-Nov-16 09:00 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-05 | OUA1-MW37A-20161114 | | 14-Nov-16 09:05 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-06 | OUA1-HS03-20161114 | MS/MSD | 14-Nov-16 10:00 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | 1601451-07 | OUA1-MW19-20161114 | | 14-Nov-16 11:10 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-08 | OUA1-MW18-20161114 | | 14-Nov-16 11:45 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-09 | OUA1-MW08-20161114 | | 14-Nov-16 12:45 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-10 | OUA1-MW06-20161114 | | 14-Nov-16 13:50 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | Vista Project: 1601451 Client Project: MCAS Yuma, AZ TO 105 ### ANALYTICAL RESULTS | Sample ID: | Method Blank | | | | | | Modif | ied EPA Mo | ethod 537 | | |------------|--------------------|------------------------------|------------------------|--------|------------|------------------------------|---------------------------------|-------------|-----------|------------| | | Aqueous
0.125 L | QC Batch:
Date Extracted: | B6K0143
22-Nov-2016 | 5 7:59 | | Lab Sample:
Date Analyzed | B6K0143-BLK1
27-Nov-16 15:44 | Column: BEI | H C18 | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifiers | Labeled Sta | ındard | %R | LCL-UCL | Qualifiers | | PFBS | ND | 1.79 | 4.00 | 8.00 | | IS 13C3-PF | BS | 116 | 60 - 150 | | | PFOA | ND | 0.651 | 2.00 | 8.00 | | IS 13C2-PF | OA | 97.1 | 60 - 150 | | | PFOS | ND | 0.807 | 0.900 | 8.00 | | IS 13C8-PF | OS | 90.0 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 6 of 24 | Sample ID: OPR | | | | | | Modified | EPA Method 537 | |---|-----------------------------|--------------------------|--------|----------|--|-------------|----------------| | Matrix: Aqueous
Sample Size: 0.125 L | QC Batch:
Date Extracted | B6K0143
l: 22-Nov-201 | 6 7:59 | | Lab Sample: B6K0143-BS1 Date Analyzed: 27-Nov-16 14:41 Colum | nn: BEH C18 | | | Analyte | Amt Found (ng/L) | Spike Amt | %R | Limits | Labeled Standard | %R | LCL-UCL | | PFBS | 78.9 | 80.0 | 98.6 | 60 - 130 | IS 13C3-PFBS | 116 | 60 - 150 | | PFOA | 86.0 | 80.0 | 107 | 70 - 130 | IS 13C2-PFOA | 106 | 60 - 150 | | PFOS | 74.4 | 80.0 | 93.0 | 70 - 130 | IS 13C8-PFOS | 126 | 60 - 150 | LCL-UCL - Lower control limit - upper control limit Work Order 1601451 Revision 1 Page 7 of 24 | Sample ID: | SB01-20161114 | | | | | | | Modifie | ed EPA Me | ethod 537 | |------------------------------|----------------------|-------|--------------|---------|----------|----------|----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | L | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ole: 1601451-01 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.122 L | | QC Batcl | n: B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected:
Location: | 14-Nov-2016 14:00 | | | | | Date Ana | lyzed: 27-Nov-16 19:44 Col | umn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | ND | 1.83 | 4.10 | 8.17 | | IS | 13C3-PFBS | 122 | 60 - 150 | | | PFOA | ND | 0.665 | 2.05 | 8.17 | | IS | 13C2-PFOA | 106 | 60 - 150 | | | PFOS | ND | 0.824 | 0.922 | 8.17 | | IS | 13C8-PFOS | 124 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 8 of 24 | Sample ID: | EB01-20161114 | | | | | | | Modific | ed EPA Mo | ethod 537 | |------------------------------|----------------------|-------|--------------|---------|----------|----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | L | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Samp | ble: 1601451-02 | Date Received: | 15-Nov-201 | 16 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.126 L | | QC Batch | : B6K0143 | Date Extracted: | 22-Nov-201 | 16 7:59 | | Date Collected:
Location: | 14-Nov-2016 14:30 | | | | | Date Ana | lyzed: 27-Nov-16 19:57 Colu | umn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Oualifie | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | ND | 1.77 | 3.97 | 7.91 | Quanne | IS | 13C3-PFBS | 113 | 60 - 150 | Qualifiers | | PFOA | ND | 0.644 | 1.98 | 7.91 | | IS | 13C2-PFOA | 99.7 | 60 - 150 | | | PFOS | ND | 0.798 | 0.893 | 7.91 | | IS | 13C8-PFOS | 107 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 9 of 24 | Sample ID: | OUA1-MW13-20161114 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|----------|----------|------------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | I | Laborato | ry Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab San | nple: 1601451-03 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.130 L | | QC Bate | ch: B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected: | 14-Nov-2016 8:15 | | | | | Date An | alyzed: 27-Nov-16 20:09 Colu | ımn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualific | ers | Labeled Standard | %R | LCL-UCL |
Qualifiers | | PFBS | 275 | 1.71 | 3.85 | 7.66 | | IS | 13C3-PFBS | 128 | 60 - 150 | | | PFOA | 62.5 | 0.624 | 1.92 | 7.66 | | IS | 13C2-PFOA | 98.0 | 60 - 150 | | | PFOS | 71.6 | 0.773 | 0.865 | 7.66 | | IS | 13C8-PFOS | 122 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 10 of 24 | Sample ID: | OUA1-MW37-20161114 | | | | | | | Modifie | ed EPA Me | ethod 537 | |-----------------|----------------------|-------|--------------|---------|---------|-----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | [] | Laborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ole: 1601451-04 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.131 L | | QC Batcl | n: B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected: | 14-Nov-2016 9:00 | | | | | Date Ana | lyzed: 27-Nov-16 20:22 Col- | umn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifi | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 145 | 1.71 | 3.82 | 7.64 | | IS | 13C3-PFBS | 130 | 60 - 150 | | | PFOA | 26.2 | 0.622 | 1.91 | 7.64 | | IS | 13C2-PFOA | 100 | 60 - 150 | | | PFOS | 25.0 | 0.771 | 0.859 | 7.64 | | IS | 13C8-PFOS | 129 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 11 of 24 | Sample ID: | OUA1-MW37A-20161114 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|--------|---------|-------------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | | Laborat | ory Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sa | mple: 1601451-05 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.130 L | | QC Ba | tch: B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected: | 14-Nov-2016 9:05 | | | | | Date A | nalyzed: 27-Nov-16 20:34 Colu | ımn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualif | iers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 139 | 1.72 | 3.85 | 7.67 | | 15 | S 13C3-PFBS | 133 | 60 - 150 | | | PFOA | 28.9 | 0.624 | 1.92 | 7.67 | | IS | S 13C2-PFOA | 109 | 60 - 150 | | | PFOS | 27.8 | 0.774 | 0.865 | 7.67 | | 15 | S 13C8-PFOS | 114 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 12 of 24 | Sample ID: | OUA1-HS03-20161114 | | | | | | | Modifie | ed EPA Me | ethod 537 | |-----------------|----------------------|-------|--------------|---------|---------|-----------|----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | I | Laborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Samp | ole: 1601451-06 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.130 L | | QC Batch | : B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected: | 14-Nov-2016 10:00 | | | | | Date Ana | lyzed: 27-Nov-16 20:47 Col | umn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifi | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 289 | 1.72 | 3.85 | 7.70 | | IS | 13C3-PFBS | 137 | 60 - 150 | | | PFOA | 36.3 | 0.627 | 1.92 | 7.70 | | IS | 13C2-PFOA | 98.4 | 60 - 150 | | | PFOS | ND | 0.777 | 0.865 | 7.70 | | IS | 13C8-PFOS | 117 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 13 of 24 | Matrix Spike Re | atrix Spike Results | | | | | | | | | | | | Mod | ified EPA | Meth | od 537 | |---|--|--------------------|----------|-------------|---------------------|---------------------------------------|------|--------------|-------------|---------------|---|------------------|----------|------------------|-----------|-------------| | Source Client ID:
Source LabNumber:
Matrix:
Sample Size: | OUA1-HS03-
1601451-06
Aqueous
0.126/0.127 L | | | | ` | Date Extracted: 22-Nov-2016 7:59 Date | | | | | Lab Sample: B6K0143-MS1/B6K0143-MSD1 Date Analyzed: 27-Nov-16 21:00 Column: BEH C18 27-Nov-16 21:12 Column: BEH C18 | | | | | | | Analyte | | Spike-MS
(ng/L) | MS
%R | MS
Qual. | Spike-MSD
(ng/L) | MSD
%R | RPD | MSD
Qual. | %R
Limit | %RPD
Limit | | Labeled Standard | MS
%R | MS
Qualifiers | MSD
%R | MS
Qual. | | PFBS | | 79.3 | 98.0 | | 78.9 | 99.0 | 1.02 | | 60 - 130 | 25 | IS | 13C3-PFBS | 140 | | 138 | | | PFOA | | 79.3 | 97.5 | | 78.9 | 100 | 2.53 | | 70 - 130 | 25 | IS | 13C2-PFOA | 104 | | 101 | | | PFOS | | 79.3 | 86.5 | | 78.9 | 87.7 | 1.38 | | 70 - 130 | 25 | IS | 13C8-PFOS | 118 | | 117 | | When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 14 of 24 | Sample ID: | OUA1-MW19-20161114 | | | | | | | Modifie | ed EPA Mo | ethod 537 | |------------------------------|----------------------|-------|--------------|---------|-----------|----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | La | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water |] | Lab Sam | ole: 1601451-07 | Date Received: | 15-Nov-201 | 16 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.131 L | (| QC Batcl | B6K0143 | Date Extracted: | 22-Nov-201 | 16 7:59 | | Date Collected:
Location: | 14-Nov-2016 11:10 | | | |] | Date Ana | lyzed: 27-Nov-16 21:25 Colu | ımn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifier | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 14.6 | 1.71 | 3.82 | 7.65 | | IS | 13C3-PFBS | 137 | 60 - 150 | | | PFOA | 79.3 | 0.623 | 1.91 | 7.65 | | IS | 13C2-PFOA | 103 | 60 - 150 | | | PFOS | 106 | 0.772 | 0.859 | 7.65 | | IS | 13C8-PFOS | 121 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 15 of 24 | Sample ID: | OUA1-MW18-20161114 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|---------------------------|-------|---------------|---------|---------|-------------------------------------|------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | I | Laborator | y Data | | | | | Name: | Name: AMEC Foster Wheeler | | Matrix: Water | | | Lab Sam | ple: 1601451-08 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.124 L | | QC Batch: B6K0143 | | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected: | 14-Nov-2016 11:45 | | | | | Date Analyzed: 27-Nov-16 21:37 Colu | | ımn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifi | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 12.1 | 1.80 | 4.03 | 8.06 | | IS | 13C3-PFBS | 128 | 60 - 150 | | | PFOA | 2.58 | 0.656 | 2.02 | 8.06 | J | IS | 13C2-PFOA | 108 | 60 - 150 | | | PFOS | 12.2 | 0.813 | 0.907 | 8.06 | | IS | 13C8-PFOS | 111 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 16 of 24 | Client Data | | | Sample Data | | I | Laborator | y Data | | | | |-----------------|----------------------|-------|--------------|---------|----------|-----------|----------------------------|-----------------|-----------|------------| | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601451-09 | Date Received: | 15-Nov-20 | 16 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.126 L | | QC Batc | h: B6K0143 | Date Extracted: | 22-Nov-20 | 16 7:59 | | Date Collected: | 14-Nov-2016 12:45 | | | | | Date Ana | alyzed: 27-Nov-16 22:28 Co | olumn: BEH C18 | | | | Location: | | | | | | | 28-Nov-16 10:22 Co | olumn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualific | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 2540 | 8.85 | 19.8 | 39.5 | D | IS | 13C3-PFBS | 135 | 60 - 150 | D | | PFOA | 145 | 0.643 | 1.98 | 7.91 | | IS | 13C2-PFOA | 108 | 60 - 150 | | | PFOS | 13.6 | 0.798 | 0.893 | 7.91 | | IS | 13C8-PFOS | 134 | 60 - 150 | | **Sample ID: OUA1-MW08-20161114** RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear
and branched isomers. **Modified EPA Method 537** Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 17 of 24 | Sample ID: | OUA1-MW06-20161114 | | | | | | | Modific | ed EPA Mo | ethod 537 | |------------------------------|----------------------|-------|--------------|---------|----------|----------|-----------------------------|----------------|------------|------------| | Client Data | | | Sample Data | | L | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601451-10 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.123 L | _ QC | | n: B6K0143 | Date Extracted | 22-Nov-201 | 6 7:59 | | Date Collected:
Location: | 14-Nov-2016 13:50 | | | | | Date Ana | lyzed: 27-Nov-16 22:41 Colu | umn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 121 | 1.82 | 4.07 | 8.15 | | IS | 13C3-PFBS | 118 | 60 - 150 | | | PFOA | 113 | 0.663 | 2.03 | 8.15 | | IS | 13C2-PFOA | 106 | 60 - 150 | | | PFOS | 4.38 | 0.822 | 0.915 | 8.15 | J | IS | 13C8-PFOS | 102 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 18 of 24 ### **DATA QUALIFIERS & ABBREVIATIONS** B This compound was also detected in the method blank. D Dilution E The associated compound concentration exceeded the calibration range of the instrument. H Recovery and/or RPD was outside laboratory acceptance limits. I Chemical Interference J The amount detected is below the Reporting Limit/LOQ. M Estimated Maximum Possible Concentration. (CA Region 2 projects only) * See Cover Letter **Conc.** Concentration NA Not applicable ND Not Detected TEQ Toxic Equivalency Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight. # **CERTIFICATIONS** | Accrediting Authority | Certificate Number | |---|--------------------| | California Department of Health – ELAP | 2892 | | DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005 | 3091.01 | | Florida Department of Health | E87777 | | Hawaii Department of Health | N/A | | Louisiana Department of Environmental Quality | 01977 | | Maine Department of Health | 2014022 | | Nevada Division of Environmental Protection | CA004132015-1 | | New Jersey Department of Environmental Protection | CA003 | | New York Department of Health | 11411 | | Oregon Laboratory Accreditation Program | 4042-004 | | Pennsylvania Department of Environmental Protection | 012 | | South Carolina Department of Health | 87002001 | | Texas Commission on Environmental Quality | T104704189-15-6 | | Virginia Department of General Services | 7923 | | Washington Department of Ecology | C584 | | Wisconsin Department of Natural Resources | 998036160 | Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request ### **NELAP Accredited Test Methods** | MATRIX: Air | | | | | | | | | |--|--------|--|--|--|--|--|--|--| | Description of Test | Method | | | | | | | | | Determination of Polychlorinated p-Dioxins & Polychlorinated | EPA 23 | | | | | | | | | Dibenzofurans | | | | | | | | | | MATRIX: Biological Tissue | | |--|-------------| | Description of Test | Method | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by | EPA 1699 | | HRGC/HRMS | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by | EPA 8280A/B | | GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | MATRIX: Drinking Water | | | | | | | | |--|----------|--|--|--|--|--|--| | Description of Test | Method | | | | | | | | 2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS | EPA 1613 | | | | | | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | | | | | | | MATRIX: Non-Potable Water | | | | | | | | | | |---|-------------|--|--|--|--|--|--|--|--| | Description of Test | Method | | | | | | | | | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | | | | | | | | | Dilution GC/HRMS | | | | | | | | | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | | | | | | | | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | | | | | | | | | by GC/HRMS | | | | | | | | | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS | EPA 1699 | | | | | | | | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | | | | | | | | | Dioxin by GC/HRMS | EPA 613 | | | | | | | | | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated | EPA 8280A/B | | | | | | | | | | Dibenzofurans by GC/HRMS | | | | | | | | | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | | | | | | | | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | | | | | | | | | MATRIX: Solids | | |---|-----------| | Description of Test | Method | | Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS | EPA 1613 | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | | | |---|-------------|--|--|--| | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | | | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | | | | by GC/HRMS | | | | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | | | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated | EPA 8280A/B | | | | | Dibenzofurans by GC/HRMS | | | | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | | | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | | | # Vista Analytical 1104 Windfield Way El Dorado Hills, CA 95762 CHAIN OF CUSTODY RECORD DATE: 11/14/2016 - B | TEL: 916-673-1520 Vista | | | | | | | PM: | Karen | Lop | ez | 16 | 011 | 15 | 1 | 000 | , PAGE | _ | - 1 | L | | OF _ | | 1 | | _ | |---|---------------------------|---------|-------|-----|---------|------------|----------|----------------------------------|-----------------------------|----------------|------------|-------------|-------------|------|-----|--------------------|-----|-----|------------------------|---|----------|-------------|----------|----------|----------| | AMEC Foster Wheeler E & I, Inc. ADDRESS: 2210 Sky Park Court CITY: San Diego, CA 92123 TEL: 503.639.3400 TURNAROUND TIME SAME DAY SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) RWQCB REPORTING ARCHIVE SAMPLES UNTIL | | | | | | | PRO M | CAS Y JECT CON edora PLER(S): (5 | uma
tact:
Hacl | , AZ
(ler/I | TC
Mari | 105
na N | 5
/litch | iell | | ED AN | | | TC
CON
NG
LAB | NO.:
D 10 :
NTRAC
6247 | 5 | ::
2-D-2 | | | | | LAB
USE
ONLY | SAMPLE ID | DATE | PLING | Mar | - | *Conf | QC Level | PFOA, PFOS,
a
(U.S. EPA 537 | 5301-20161114 | 4/14/16 | 14:00 | V | V | 2 | | × | | | | | | | | | - | | \vdash | | | _ | \dashv | \dashv | \dashv | | | EBO1-2016 1114 | | 14:30 | | \perp | 2 | | × | _ | | | | | | | | - | | | - | | \dashv | \dashv | \dashv | \dashv | | | OUA1 - MV13 - 20161114 | | 9:15 | | - | 2 | | X | | | | | | | | | | | \vdash | | | \dashv | \dashv | \dashv | _ | | | 00 Al - MW37 - 20161114 | | 9,00 | | - | 2 | | × | | | | | | | | | | | | | | _ | \dashv | \dashv | \dashv | | | 00 Al - MW37A -20161114 | | 9.05 | | | 2 | | X | | | | | | | | | _ | | | | | \dashv | \dashv | \dashv | \dashv | | | OUA1- HS03-20161114 | | 10:00 | | | 6 | | × | | M | S | | M | S | D | | | | | | | _ | _ | \dashv | \perp | | | OUA1 - MW19-2016 1114 | | 11:10 | | | 2 | | X | | | | | | | | | _ | | \square | | | \dashv | \perp | \dashv | | | | 00 A1 - MW 18 - 2016 1114 | | 11:45 | | | 2 | V | × | | | | | | | | | | | | | | _ | \perp | \perp | | | | OUAI - MY08 - 2016 11 14 | | 12:45 | | | 2 | | × | OUAI - MW06-2016 11 14 | A | 13:50 | | 9 | 2 | | X | | | | | | | | | | | | | | | | | | | Relinquished by: (Signature) | | | | | ture) / | Carrier Ti | racking | Numi | ber | 09 | 52 | . (| 94 | -3 | | Date | /14 | // | 6 | Time: | 6:3 | 30 | | | | | Relinquished by: (Signature) FedEx Received by: (Signature) Received by: (Signature) | | | | | 30 | Me | | 7.32 725 | | | | | | | | Date
11
Date | 151 | ſ | , | Time: | 159 | | | | | ### SAMPLE LOG-IN CHECKLIST | | , | . 1 - | _ | | | | Analytical | Laborato | | | | |---|---------------|----------------------------------|----------------|--------------|-----------------|-------|------------|----------|--|--|--| | Vista Project #: | 14 | 0145 | | | TAT | Sto | | | | | | | | Date/Time | | Initials: | | on: 4)R-D | | | | | | | | Samples Arrival: | 11/15/16 | 1048 | PX | B | ack: NA | | | | | | | | | Date/Time | | Initials: | | Location | 1: U | 1R-2 | 7 | | | | | Logged In: | 11/15/16 | 1303 | UBLB | ZUW | Shelf/Rack: A 4 | | | | | | | | Delivered By: | FedEx |) UPS | Ha | and
vered | Oth | ner | | | | | | | Preservation: | (Ice) | В | lue Ice | Di | y Ice | | None | | | | | | Temp °C: 0.3 | (uncorrected | motor II |). ID | 1 | | | | | | | | | Temp °C: ∅. ΄ (uncorrected) Temp °C: ∅. Û (corrected) Temp °C: ∅. Û (corrected) Time: 1/0 Û Probe used: Yes□ No世 | | | | | | | | | | | | | | | | mmmm | mmmm | mmmm | 1450 | | | | | | | | | | | | | YES | NO | NA | | | | | Adequate Sample | Volume Rece | ived? | | | | V/ | | | | | | | Holding Time Acce | ptable? | | | | | -/ | | | | | | | Shipping Container | r(s) Intact? | | | | | V | | | | | | | Shipping Custody S | Seals Intact? | | | | | V | | | | | | | Shipping Documen | tation Presen | t? | | 4 | | V | | | | | | | Airbill | Trk# & | 310109 | 52 19 | 743 | *** | 1 | | | | | | | Sample Container | Intact? | | | | | | | | | | | | Sample Custody S | eals Intact? | | | | | / | | | | | | | Chain of Custody / | Sample Docu | ımentation P | resent? | | | | | Į | | | | | COC Anomaly/San | nple Acceptar | ce Form cor | npleted? | | | | / | | | | | | If Chlorinated or Dr | | | | | | | | | | | | | Preservation Docui | mented: | Na ₂ S ₂ C |) ₃ | Trizma | | Yes | No ′ | NA | | | | | Shipping Container | - | Vista | Client | Reta | ain Re | eturn | Disp | ose | | | | Comments: December 19, 2016 #### Vista Work Order No. 1601451 Mr. Curtis Moss AMEC Foster Wheeler 9210 Sky Park Court Suite 200 San Diego, CA 92123 Dear Mr. Moss, Enclosed are the amended results for the sample set received at Vista Analytical Laboratory on November 15, 2016. This sample set was analyzed on a rush turn-around time, under your Project Name 'MCAS Yuma, AZ TO 105'. Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team. Sincerely, Martha Maier Laboratory Director Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista. Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com ### Vista Work Order No. 1601451 Case Narrative ### **Sample Condition on Receipt:** Ten aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. This report was amended on December 19, 2016 to correct the sample IDs to "OUA1" to match the Chain of Custody. #### **Analytical Notes:** #### **Modified EPA Method 537** The aqueous samples were extracted and analyzed for PFOA, PFOS and PFBS using Modified EPA Method 537. ### **Holding Times** The samples were extracted and analyzed within the method hold times. ### **Quality Control** The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria. A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria The labeled standard recoveries for all QC and field samples were within the QAPP acceptance criteria. As requested, an MS/MSD was performed on sample "OUAI-HS03-20161114". # Table of Contents | Case Narrative | 1 | |--|-----| | Table of Contents | 3 | | Sample Inventory | 4 | | Analytical Results. | 5 | | Qualifiers | 19 | | Certifications | 20 | | Sample Receipt. | 23 | | Extraction Information. | 26 | | Sample Data - Modified EPA Method 537. | 31 | | Continuing Calibration. | 79 | | Initial Calibration. | 129 | # **Sample Inventory Report** | Vista
Sample ID | Client
Sample ID | | Sampled | Received | Components/Containers | |--------------------|---------------------|--------|-----------------|-----------------|-----------------------| | 1601451-01 | SB01-20161114 | | 14-Nov-16 14:00 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-02 | EB01-20161114 | | 14-Nov-16 14:30 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-03 | OUA1-MW13-20161114 | | 14-Nov-16 08:15 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-04 | OUA1-MW37-20161114 | | 14-Nov-16 09:00 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-05 | OUA1-MW37A-20161114 | | 14-Nov-16 09:05 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-06 | OUA1-HS03-20161114 | MS/MSD | 14-Nov-16 10:00 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | | | MS/MSD | | | HDPE Bottle, 125 mL | | 1601451-07 | OUA1-MW19-20161114 | | 14-Nov-16 11:10 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-08 | OUA1-MW18-20161114 | | 14-Nov-16 11:45 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-09 | OUA1-MW08-20161114 | | 14-Nov-16 12:45 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | | 1601451-10 | OUA1-MW06-20161114 | | 14-Nov-16 13:50 | 15-Nov-16 10:48 | HDPE Bottle, 125 mL | | | | | | | HDPE Bottle, 125 mL | Vista Project: 1601451 Client Project: MCAS Yuma, AZ TO 105 ### ANALYTICAL RESULTS | Sample ID: | Method Blank | | | | Modif | ied EPA Mo | ethod 537 | | | | |------------|--------------------|------------------------------|------------------------|--------|------------|---|-----------|------|----------|------------| | | Aqueous
0.125 L | QC Batch:
Date Extracted: | B6K0143
22-Nov-2016 | 5 7:59 | | Lab Sample: B6K0143-BLK1 Date Analyzed: 27-Nov-16 15:44 Column: BEH C18 | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifiers | Labeled St | andard | %R | LCL-UCL | Qualifiers | | PFBS | ND | 1.79 | 4.00 | 8.00 | | IS 13C3-PI | BS | 116 | 60 - 150 | | | PFOA | ND | 0.651 | 2.00 | 8.00 | | IS 13C2-PI | OA | 97.1 | 60 - 150 | | | PFOS | ND | 0.807 | 0.900 | 8.00 | | IS 13C8-PI | FOS | 90.0 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 6 of 223 | Sample ID: OPR | | | | | Modified | EPA Method 537 | | |---|-----------------------------|--------------------------|--------|----------|--|----------------|----------| | Matrix: Aqueous
Sample Size: 0.125 L | QC Batch:
Date Extracted | B6K0143
l: 22-Nov-201 | 6 7:59 | | Lab Sample: B6K0143-BS1 Date Analyzed: 27-Nov-16 14:41 Colum | nn: BEH C18 | | | Analyte | Amt Found (ng/L) | Spike Amt | %R | Limits | Labeled Standard | %R | LCL-UCL | | PFBS | 78.9 | 80.0 | 98.6 | 60 - 130 | IS 13C3-PFBS | 116 | 60 - 150 | | PFOA | 86.0 | 80.0 | 107 | 70 - 130 | IS 13C2-PFOA | 106 | 60 - 150 | | PFOS | 74.4 | 80.0 | 93.0 | 70 - 130 | IS 13C8-PFOS | 126 | 60 - 150 | LCL-UCL - Lower control limit - upper control limit Work Order 1601451 Revision 1 Page 7 of 223
 Client Data | | | Sample Data | | Lab | orator | y Data | | | | |-----------------|----------------------|-------|--------------|---------|------------|---------|---------------------------|-----------------|-----------|------------| | Name: | AMEC Foster Wheeler | | Matrix: | Water | La | b Samp | ole: 1601451-01 | Date Received: | 15-Nov-20 | 16 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.122 L | QQ | Batch | B6K0143 | Date Extracted: | 22-Nov-20 | 16 7:59 | | Date Collected: | 14-Nov-2016 14:00 | | | | Da | ite Ana | lyzed: 27-Nov-16 19:44 Co | olumn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifiers | | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | ND | 1.83 | 4.10 | 8.17 | | IS | 13C3-PFBS | 122 | 60 - 150 | | | PFOA | ND | 0.665 | 2.05 | 8.17 | | IS | 13C2-PFOA | 106 | 60 - 150 | | | PFOS | ND | 0.824 | 0.922 | 8.17 | | IS | 13C8-PFOS | 124 | 60 - 150 | | **Sample ID: SB01-20161114** RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. **Modified EPA Method 537** Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 8 of 223 | Sample ID: | EB01-20161114 | | | | | | | Modific | ed EPA Mo | ethod 537 | |------------------------------|----------------------|-------|--------------|---------|-----------|----------|-----------------------------|----------------|------------|------------| | Client Data | | | Sample Data | | La | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | I | Lab Sam | ole: 1601451-02 | Date Received: | 15-Nov-201 | 16 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.126 L | | QC Batcl | n: B6K0143 | Date Extracted | 22-Nov-201 | 16 7:59 | | Date Collected:
Location: | 14-Nov-2016 14:30 | | | | I | Date Ana | lyzed: 27-Nov-16 19:57 Colu | ımn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifier | :s | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | ND | 1.77 | 3.97 | 7.91 | | IS | 13C3-PFBS | 113 | 60 - 150 | | | PFOA | ND | 0.644 | 1.98 | 7.91 | | IS | 13C2-PFOA | 99.7 | 60 - 150 | | | PFOS | ND | 0.798 | 0.893 | 7.91 | | IS | 13C8-PFOS | 107 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 9 of 223 | Sample ID: | OUA1-MW13-20161114 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|----------|----------|------------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | I | Laborato | ry Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sar | nple: 1601451-03 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.130 L | | QC Bat | ch: B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected: | 14-Nov-2016 8:15 | | | | | Date Ar | alyzed: 27-Nov-16 20:09 Colu | ımn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualific | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 275 | 1.71 | 3.85 | 7.66 | | IS | 13C3-PFBS | 128 | 60 - 150 | | | PFOA | 62.5 | 0.624 | 1.92 | 7.66 | | IS | 13C2-PFOA | 98.0 | 60 - 150 | | | PFOS | 71.6 | 0.773 | 0.865 | 7.66 | | IS | 13C8-PFOS | 122 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 10 of 223 | Sample ID: | OUA1-MW37-20161114 | | | | | | | Modifie | ed EPA Me | ethod 537 | |-----------------|----------------------|-------|--------------|---------|--------|-----------|----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | | Laborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601451-04 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.131 L | | QC Batcl | n: B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected: | 14-Nov-2016 9:00 | | | | | Date Ana | lyzed: 27-Nov-16 20:22 Col | umn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualif | iers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 145 | 1.71 | 3.82 | 7.64 | | IS | 13C3-PFBS | 130 | 60 - 150 | | | PFOA | 26.2 | 0.622 | 1.91 | 7.64 | | IS | 13C2-PFOA | 100 | 60 - 150 | | | PFOS | 25.0 | 0.771 | 0.859 | 7.64 | | IS | 13C8-PFOS | 129 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 11 of 223 | Sample ID: | OUA1-MW37A-20161114 | | | | | | | | Modifie | d EPA Me | thod 537 | |------------------------------|----------------------|-------|--------------|---------|-------|-------|--------|----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | | Labo | ratory | Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab | Samp | le: 1601451-05 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.130 L | | QC | Batch | B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected:
Location: | 14-Nov-2016 9:05 | | | | | Date | e Anal | yzed: 27-Nov-16 20:34 Colu | mn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Quali | fiers | | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 139 | 1.72 | 3.85 | 7.67 | | | IS | 13C3-PFBS | 133 | 60 - 150 | | | PFOA | 28.9 | 0.624 | 1.92 | 7.67 | | | IS | 13C2-PFOA | 109 | 60 - 150 | | | PFOS | 27.8 | 0.774 | 0.865 | 7.67 | | | IS | 13C8-PFOS | 114 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 12 of 223 | Sample ID: | OUA1-HS03-20161114 | | | | | | | Modifie | ed EPA Mo | ethod 537 | |-----------------|----------------------|-------|--------------|---------|----------|-----------|------------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | L | Laborator | ry Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601451-06 | Date Received: | 15-Nov-201 | 16 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.130 L | | QC Batc | h: B6K0143 | Date Extracted: | 22-Nov-201 | 16 7:59 | | Date Collected: | 14-Nov-2016 10:00 | | | | | Date Ana | alyzed: 27-Nov-16 20:47 Colu | ımn: BEH C18 | | | | Location: | | | | 1.00 | | | | A/ P | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 289 | 1.72 | 3.85 | 7.70 | | IS | 13C3-PFBS | 137 | 60 - 150 | | | PFOA | 36.3 | 0.627 | 1.92 | 7.70 | | IS | 13C2-PFOA | 98.4 | 60 - 150 | | | PFOS | ND | 0.777 | 0.865 | 7.70 | | IS | 13C8-PFOS | 117 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 13 of 223 | Matrix Spike Re | esults | | | | | | | | | | | | | Mod | ified EPA | Meth | od 537 | |---|--|--------------------|----------|-------------|---------------------|-----------|------|--------------|-------------|------------------|--------------------|---|-----------|----------|------------------|-----------|-------------| | Source Client ID:
Source LabNumber:
Matrix:
Sample Size: | OUA1-HS03-
1601451-06
Aqueous
0.126/0.127 L | | | | 1 ` | | | | | Lab Sa
Date A | imple:
nalyzed: | B6K0143-MS1/B6K01
27-Nov-16 21:00 Colu
27-Nov-16 21:12 Colu | mn: BEH C | | | | | | Analyte | | Spike-MS
(ng/L) | MS
%R | MS
Qual. | Spike-MSD
(ng/L) | MSD
%R | RPD | MSD
Qual. | %R
Limit | %RPD
Limit | I | Labeled Sta | ndard | MS
%R | MS
Qualifiers | MSD
%R | MS
Qual. | | PFBS | | 79.3 | 98.0 | | 78.9 | 99.0 | 1.02 | | 60 - 130 | 25 | IS | 13C3-PF | BS | 140 | | 138 | | | PFOA | | 79.3 | 97.5 | | 78.9 | 100 | 2.53 | | 70 - 130 | 25 | IS | 13C2-PF | OA | 104 | | 101 | | | PFOS | | 79.3 | 86.5 | | 78.9 | 87.7 | 1.38 | | 70 - 130 | 25 | IS | 13C8-PF | OS | 118 | | 117 | | When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 14 of 223 | Sample ID: | OUA1-MW19-20161114 | | | | | | | Modifie | ed EPA Me | ethod 537 | |-----------------|----------------------|-------|--------------|---------|----------|-----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | I | Laborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ole: 1601451-07 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.131 L | | QC Batch | n: B6K0143 |
Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected: | 14-Nov-2016 11:10 | | | | | Date Ana | lyzed: 27-Nov-16 21:25 Col- | umn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualific | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 14.6 | 1.71 | 3.82 | 7.65 | | IS | 13C3-PFBS | 137 | 60 - 150 | | | PFOA | 79.3 | 0.623 | 1.91 | 7.65 | | IS | 13C2-PFOA | 103 | 60 - 150 | | | PFOS | 106 | 0.772 | 0.859 | 7.65 | | IS | 13C8-PFOS | 121 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 15 of 223 | Sample ID: | OUA1-MW18-20161114 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|----------|----------|----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | L | aborator | Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Samp | de: 1601451-08 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.124 L | | QC Batch | : B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected: | 14-Nov-2016 11:45 | | | | | Date Ana | yzed: 27-Nov-16 21:37 Colu | umn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 12.1 | 1.80 | 4.03 | 8.06 | | IS | 13C3-PFBS | 128 | 60 - 150 | | | PFOA | 2.58 | 0.656 | 2.02 | 8.06 | J | IS | 13C2-PFOA | 108 | 60 - 150 | | | PFOS | 12.2 | 0.813 | 0.907 | 8.06 | | IS | 13C8-PFOS | 111 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 16 of 223 | Client Data | | | Sample Data | | La | aborator | y Data | | | | |-----------------|----------------------|-------|--------------|---------|-----------|----------|---------------------------|-----------------|-----------|------------| | Name: | AMEC Foster Wheeler | | Matrix: | Water | I | Lab Samp | ole: 1601451-09 | Date Received: | 15-Nov-20 | 16 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.126 L | | QC Batch | B6K0143 | Date Extracted: | 22-Nov-20 | 16 7:59 | | Date Collected: | 14-Nov-2016 12:45 | | | | I | Date Ana | lyzed: 27-Nov-16 22:28 Co | olumn: BEH C18 | | | | Location: | | | | | | | 28-Nov-16 10:22 Co | olumn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifier | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 2540 | 8.85 | 19.8 | 39.5 | D | IS | 13C3-PFBS | 135 | 60 - 150 | D | | PFOA | 145 | 0.643 | 1.98 | 7.91 | | IS | 13C2-PFOA | 108 | 60 - 150 | | | PFOS | 13.6 | 0.798 | 0.893 | 7.91 | | IS | 13C8-PFOS | 134 | 60 - 150 | | **Sample ID: OUA1-MW08-20161114** RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. **Modified EPA Method 537** Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 17 of 223 | Sample ID: | OUA1-MW06-20161114 | | | | | | | Modifie | ed EPA Mo | ethod 537 | |------------------------------|----------------------|-------|--------------|---------|----------|----------|-----------------------------|-----------------|------------|--------------| | Client Data | | | Sample Data | | L | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601451-10 | Date Received: | 15-Nov-201 | 6 10:48 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.123 L | | QC Batcl | n: B6K0143 | Date Extracted: | 22-Nov-201 | 6 7:59 | | Date Collected:
Location: | 14-Nov-2016 13:50 | | | | | Date Ana | lyzed: 27-Nov-16 22:41 Colu | umn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Oualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 121 | 1.82 | 4.07 | 8.15 | Quinnit | IS | 13C3-PFBS | 118 | 60 - 150 | Quantities 5 | | PFOA | 113 | 0.663 | 2.03 | 8.15 | | IS | 13C2-PFOA | 106 | 60 - 150 | | | PFOS | 4.38 | 0.822 | 0.915 | 8.15 | J | IS | 13C8-PFOS | 102 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601451 Revision 1 Page 18 of 223 ### **DATA QUALIFIERS & ABBREVIATIONS** B This compound was also detected in the method blank. D Dilution E The associated compound concentration exceeded the calibration range of the instrument. H Recovery and/or RPD was outside laboratory acceptance limits. I Chemical Interference J The amount detected is below the Reporting Limit/LOQ. M Estimated Maximum Possible Concentration. (CA Region 2 projects only) * See Cover Letter **Conc.** Concentration NA Not applicable ND Not Detected TEQ Toxic Equivalency Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight. # **CERTIFICATIONS** | Accrediting Authority | Certificate Number | |---|--------------------| | California Department of Health – ELAP | 2892 | | DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005 | 3091.01 | | Florida Department of Health | E87777 | | Hawaii Department of Health | N/A | | Louisiana Department of Environmental Quality | 01977 | | Maine Department of Health | 2014022 | | Nevada Division of Environmental Protection | CA004132015-1 | | New Jersey Department of Environmental Protection | CA003 | | New York Department of Health | 11411 | | Oregon Laboratory Accreditation Program | 4042-004 | | Pennsylvania Department of Environmental Protection | 012 | | South Carolina Department of Health | 87002001 | | Texas Commission on Environmental Quality | T104704189-15-6 | | Virginia Department of General Services | 7923 | | Washington Department of Ecology | C584 | | Wisconsin Department of Natural Resources | 998036160 | Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request # **NELAP Accredited Test Methods** | MATRIX: Air | | |--|--------| | Description of Test | Method | | Determination of Polychlorinated p-Dioxins & Polychlorinated | EPA 23 | | Dibenzofurans | | | MATRIX: Biological Tissue | | |--|-------------| | Description of Test | Method | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by | EPA 1699 | | HRGC/HRMS | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by | EPA 8280A/B | | GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | MATRIX: Drinking Water | | |--|----------| | Description of Test | Method | | 2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS | EPA 1613 | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | MATRIX: Non-Potable Water | | |---|-------------| | Description of Test | Method | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS | EPA 1699 | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Dioxin by GC/HRMS | EPA 613 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated | EPA 8280A/B | | Dibenzofurans by GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | MATRIX: Solids | | |---|-----------| | Description of Test | Method | | Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS | EPA 1613 | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | |---|-------------| | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated | EPA 8280A/B | | Dibenzofurans by GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | #### Vista Analytical El Dorado Hills, CA 95762 1104 Windfield Way CHAIN OF CUSTODY RECORD DATE: 11/14/2016 - B OBC PAGE: Vista PM: Karen Lopez TEL: 916-673-1520 LABORATORY CLIENT: CLIENT PROJECT NAME / NUMBI AMEC Foster Wheeler E & I, Inc. MCAS Yuma, AZ TO 105 TO 105 PROJECT CONTACT: CONTRACT NO .: 9210 Sky Park Court N62473-12-D-2012 Medora
Hackler/Marina Mitchell SAMPLER(S): (SIGNATURE) LAB USE ONLY San Diego, CA 92123 E-MAIL Ulf Rute 503,639,3400 medora.hackler@amecfw.com marina.mitchell@amecfw.com TURNAROUND TIME REQUESTED ANALYSIS SAME DAY 24 HR 48HR 72 HR 5 DAYS X 10 DAYS SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) RWQCB REPORTING ARCHIVE SAMPLES UNTIL and PFBS SPECIAL INSTRUCTIONS Mod.) PFOA, PFOS, a (U.S. EPA 537 P *Cong SAMPLING USE SAMPLE ID DATE TIME ONLY 5301-2016 11 14 11/14/16 14:00 W EB01-2016 1114 14:30 2 X OUAI - MY13 - 20761114 8:15 2 OUAI - MW37-20161114 9:00 2 X 01) AI - MY 37A -20161114 9.05 X MS 0 OUA1- HS03 - 20161114 10: Un X M OUA1 - MW19-2016 1114 11:10 2 00 A1 - MY 18 - 2016 1114 11:45 V 2 X OUAI - MY08 - 2016 11 14 12:45 2 × V OUAI - MW06-2016 11 14 13:50 2 Received by: (Signature) / Carrier Tracking Number Relinquished by: (Signature) 4/14/16 8101 0952 1943 16:30 FedEx Relinquished by: (Signature) Received by: (Signature) Received by: (Signature) Relinquished by: (Signature) # SAMPLE LOG-IN CHECKLIST | | | . 1 | | | | | | | Analytical | Laborato | |--|---|---|--|------------|----------|-------|---------------|---------|------------|----------| | Vista Project #: | | QO14 | 51 | | | TA | T | 5+0 | | | | | Date/Time | | | Initials: | | Locat | tion: | 4)18 | 2-7 | | | Samples Arrival: | 11/15/16 | 104 | 8 | Pal | 3 | Shelf | /Racl | k:/\ | A | | | | Date/Time | | | Initials: | | Locat | tion: | W | R-2 | } | | Logged In: | 11/15/16 | 13 | 03 | UBJB V | ZUN | Shelf | /Racl | k: | 74 | | | Delivered By: | FedEx | UPS | S | On Trac | DHL | . [| Han
Delive | | Oth | ner | | Preservation: | Ice |) | Blu | e Ice | Dr | y Ice | | | None | | | Temp °C: 0.3 | (uncorrect | ed) Time | : 1/ | 100 | | Thern | nome | otor IF |). ID | 1 | | Temp °C: Ø⋅Ø | (corrected | _{d)} Prob | e use | d: Yes□ | No₫ | THEII | HOHIE | eter it |), II\- | 1 | | | | mmmm | mm | mmmm | mmm | mmm | | | | | | | | | | | | | | YES | NO | NA | | Adequate Sample \ | Volume Rec | eived? | | | | | - | V | | | | Holding Time Acce | ptable? | | | | | | _ | | | | | Shipping Container | (s) Intact? | *************************************** | | | | | | V | | | | Shipping Custody S | Seals Intact? |) | | | | | | V | | | | Shipping Documen | tation Prese | nt? | | | | | | V | | | | Airbill | Trk# (| 31010 | 296 | 52 19 | 43 | | | / | | | | Sample Container | Intact? | | 2 | | | | | | | | | Sample Custody S | eals Intact? | | | | | | | / | | | | Chain of Custody / Sample Documentation Present? | | | | | | | L | | | | | COC Anomaly/San | COC Anomaly/Sample Acceptance Form completed? | | | | | | | | / | | | If Chlorinated or Dr | inking Wate | r Samples | , Acce | ptable Pre | servatio | n? | | | | | | Preservation Docur | mented: | Na | ₂ S ₂ O ₃ | | Trizma | | | Yes | No 7 | NA | | Shipping Container | | Vista | Container Vista Client Retain Re | | | | | | Disp | ose | Comments: # **EXTRACTION INFORMATION** #### **Process Sheet** Workorder: 1601451 Prep Expiration: 11/28/2016 Client: AMEC Foster Wheeler Workorder Due: 29-Nov-16 00:00 TAT: 14 Method: 537 PFAS DOD (LOQ as mRL) Version: PFOA, PFOS, and PFBS only Matrix: Aqueous Prep Batch: BUKOI43 Prep Data Entered: Initial Sequence: S6K0071 | LabSampleID | Recon ClientSampleID | Date Received | Location | Comments | |-------------|----------------------|-----------------|----------|----------| | 1601451-01 | SB01-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | _ | | 1601451-02 | EB01-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | | | 1601451-03 | OUAI-MW13-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | | | 1601451-04 | OUAI-MW37-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | | | 1601451-05 | OUAI-MW37A-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | | | 1601451-06 | OUAI-HS03-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | MS/MSD | | 1601451-07 | OUAI-MW19-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | | | 1601451-08 | OUAI-MW18-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | | | 1601451-09 | OUAI-MW08-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | | | 1601451-10 | OUAI-MW06-20161114 | 15-Nov-16 10:48 | WR-2 A-4 | | WO Comments: DoD MS/MSD per analytical batch Vista PM:Martha Maier Vial Box ID: Turkey Sample Reconciled By:_ Page 1 of 1 # **Percent Solids** Balance ID: HPMS -1 Project:___ B4K0143 | | Chemist | · v/ | Chemist: VA | Che | emist/C |)ate | |---|-------------|--|---|--------------|--------------|------| | | Date | | Date: | 1 | | | | | Time | | Time: | an | 11/21 | //U | | Sample ID | Boat Wt. | Sample + Boat
Wt. | Residue +
Boat Wt. | pH
before | pH*
after | CI | | 1401451-01 A | | | 1 | 5 | 20 | G | | -02 | | | | 5 | 70 | 0 | | -03 | | | | 7 | 2 | 0 | | -04 | • | | | ナ | Z.® | 0 | | -05 | | | | 7 | 2 | 0 | | -06 4 | 1 | | | 7 | 2 | 0 | | -ou B | | , | | 7 | 2 | ٥ | | -04 (| | , , , , , , , | | 7 | 2 | 0 | | -07.A | | | / | 7 | 2 | 0 | | -08 | | | | 7 | 2 | 0 | | -01 | | Oh/ | | 7 | 2 | Ø . | | V -10 4 | | | · | 7 | 29 | 0 | | 1001481-01 A | | | | 5 | 2 | 0 | | an 11/2/11/2 - OZ | <u>.</u> | | | 7 | 2 | 0 | | -03 | | | | 7 | 2 | 0 | | -01 | / | | | 7 | 23 | 0 | | -05 | | | | 7 | Z (B | 0 | | -06 | | | | 7 | 2 | 0 | | -07 | | | | 2 | 2 | 0 | | V -00 V | | | | 7 | Z (3) | O | | Procedure: Tare the balance. Record Boat Weight. Add 2 - 10 g of sample. Record Wet Wt. + Boat Dry in oven overnight a | Wt. | Notes: (B) H adjusted through 2 drops of Hd. am 4/21/16 (B) H adjusted with 3 drops of Hd. am 11/21/16 X > H adjusted with 3 drops of Hd. am 11/21/16 | | | | | | Tare the balance. Record Residue + Boat | | Methods 8280, | 613, 1613, 8290, 1614 – j
PCN – pH 2-3 | bH <9 | olids rmh 5 | | # **Percent Solids** | | | Chemist:
Date: | | Chemist: NA Date: | | emist/D | | |-----------------------------|---|-------------------|----------------------|-------------------|------------------|-----------|---------| | | | Time: | Sample + Boat | | pH | pH* | CI | | ample ID | | | Wt. | Boat Wt. | before | after 2.5 | | | 1601461 | -09A | | on upilly | | 7 | 20 | | | <u>&</u> | -10 6 | | | | 2 | 20 | 0 | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | ٠. | 3 | | | | | | | | | , | | | | | | | | | a | ,A. (1) | | | <u></u> | | | | - | | | | | | | | | | | _ | | | | | | <u> </u> | ŀ | | | | | | | | · | | | | | Add 2 - 1 | balance.
oat Weight.
0 g of sample.
Vet Wt. + Boat | Wt. | Notes:
ByH adjust | d with 4 days of | Hei.en | | lø | Methods 1668/PCN - pH 2-3 NCASI 551 - pH 1 %Solids rmh 5/2011 Record Residue + Boat Wt. #### PREPARATION BENCH SHEET | N # a dual no | Aqueous | |---------------|---------| | VIAITIX: | Aduenus | | | | | Method: 537 PFA | S DOD | (LOO as | s mRL | |-----------------|-------|---------|-------| |-----------------|-------|---------|-------| | B6K0143 | | |---------|--| | | | Chemist: G. Mendinda Prep Date/Time: 21-Nov-16-09:44* 22-Nov-16 07:59 # Prepared using: LCMS - SPE Extraction-LCMS | | | | | | | | Clas | 60122 | | | | |------|----------------------------|--------------------|----------------|----------------|------------|-------------------------|------------|---------------|---------------------|-------------------|----------| | С | VISTA
Sample ID | Bottle +
Sample | Bottle
Only | Sample
Amt. | | IS/NS
IEM/WIT | S | SPE | | RS
CHEM/WIT | r | | | · | (g) | (g) | (L) | | DATE | | | | DATE | | | | B6K0143-BLK1 | NA | 2 | (0.125) | <u>O</u> m | Amsc 11/22/14 | <i>Q</i> n | 11/22/14 | an | INT | 11/22/14 | | | B6K0143-BSZ1 K | τ | 4 | T | | | | | _ | | | | | B6K0143-MS1
1601451-06 | 153.02 | 24.97 | 0.(2405 | | | | | | | | | | B6K0143-MSD1
1601451-06 | 153.68 | 24.87 | 0.12481 | | | | | | | | | | 1601451-01 | 149.37 | 27.01 | 0.12236 | / | | | | | | | | | 1601451-02 | 154.71 | 28.29 | 0.12642 | | | | | | | | | | 1601451-03 | 157.59 | 27.11 | 6.13048 V | / | | | | | | | | | 1601451-04 | 157.07 | 27.04 | 0.13083 4 | 7 | | | | | | | | | 1601451-05 | 157.41 | 27.04 | 0.13037 1 | 7 | | | | | , | | | | 1601451-06 | 156.82 | 26.97 | 0.12985 1 | , | | | | | | | | | 1601451-07 | 157.69 | 27.03 | 0.130661 | <i>,</i> | | | | | | | | | 1601451-08 | 151.13 | 27.04 | 0.12409 | , | | | | | | | | | 1601451-09 | 153.49 | 27.02 | 0.12647 | | | | | | | | | | 1601451-10 | 150.01 | 27.30 | 0.12271 | | | | | | | | | | 1601461-01 | 155.95 | 27.36 | 0.12859 | | | | | | | | | | 1601461-02 | 155.07 | 27.12 | 0.12795 | | 1 | | <u> </u> | | <u> </u> | | | IS N | ame | NS Name | RS Name | | SPE C | Chem: Strata XA | مى 33س | 2004 (GAL Che | ck Out:
mist/Dat | e: O M (1) | 4114 | | | 401, 2005 to | 1671001,102 | ارملاا | 105 (102 | | OLV: 0.5% NH, OH | | -meath Che | ck In: | | | | | 10 F 20x 1 ft ve | | -tare i | 110000 | | Volume(s) | | Che | mist/Dat | e: ompt | | | | | | | | 1 | · oramo(o) | | Bal | ance ID: | HOUS-C | 1 | Comments: Assume 1 g = 1 mL #### PREPARATION BENCH SHEET Matrix: Aqueous Method: 537 PFAS DOD (LOO as mRL) | B6K0143 | | |---------|--| | | | Chemist: G Mendivla Prep Date/Time: 21-Nov-16.09:44 72-Nov-16 09:59 Prepared using: LCMS - SPE Extraction-LCMS | | | | | | | C6K0122 | | |---|--------------------|---------------------------|-----------------------|-----------------------|---------------------------|-------------|------------------------| |
С | VISTA
Sample ID | Bottle +
Sample
(g) | Bottle
Only
(g) | Sample
Amt.
(L) | IS/NS
CHEM/WIT
DATE | SPE | RS
CHEM/WIT
DATE | | | 1601461-03 | 156.72 | 27.04 | 0.12948 | on Amor upally | on 11/22/14 | On INJ 11/22/16 | | | 1601461-04 | 15455 | 27.13 | 0.12742 | 1 | | | | | 1601461-05 | 153.06 | 27.04 | 0.12402 | | | | | | 1601461-06 | 154.20 | 27.11 | 0.12709 | | | | | | 1601461-07 | 149.12 | 27.08 | 0.12204 | | | | | Щ | 1601461-08 | 156.62 | 26.96 | 0.12966 | | | | | | 1601461-09 | 147-01 | 27.10 | 0.11991 | | | | | | 1601461-10 | 155.92 | 27.02 | 0.12890 | | | | | | | | | | | | 10m | | IS Name NS Name | RS Name | SPE Chem: Stata WALL 33um 2007/61 | Check Out: Chemist/Date: | |------------------|---------|-----------------------------------|---| | (U77404) 1671401 | | Final Volume(s) | Check In: Chemist/Date: Balance ID: ITPUS-89 | Comments: Assume 1 g = 1 mL # **SAMPLE DATA – MODIFIED EPA METHOD 537** Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-12.qld Last Altered: Monday, November 28, 2016 10:26:23 AM Pacific Standard Time Printed: Monday, November 28, 2016 10:26:36 AM Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: B6K0143-BLK1 Method Blank 0.125, Description: Method Blank, Name: 161127G1_12, Date: 27-Nov-2016, Time: 15:44:49 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 4.069e0 | 6.265e3 | | 0.125 | 3.08 | 0.687 | | | 2 | 8 PFOA | 413 > 368.7 | 2.161e2 | 1.671e4 | | 0.125 | 4.36 | 0.621 | | | 3 | 10 PFOS | 499 > 79.9 | | 5.022e3 | | 0.125 | | | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 6.265e3 | 1.794e4 | 0.302 | 0.125 | 3.08 | 116 | 116 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 4.621e3 | 1.794e4 | 0.620 | 0.125 | 3.44 | 41.6 | 104 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.167e4 | 9.450e3 | 1.139 | 0.125 | 3.95 | 108 | 108 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 4.901e3 | 9.450e3 | 0.449 | 0.125 | 4.07 | 115 | 115 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 2.814e3 | 4.173e3 | 1.073 | 0.125 | 4.31 | 62.8 | 62.8 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 1.671e4 | 7.609e3 | 2.262 | 0.125 | 4.36 | 97.1 | 97.1 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 5.022e3 | 5.914e3 | 0.944 | 0.125 | 4.76 | 90.0 | 90.0 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 7.812e3 | 9.213e3 | 1.082 | 0.125 | 4.69 | 78.4 | 78.4 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 6.302e3 | 8.233e3 | 1.019 | 0.125 | 5.00 | 75.1 | 75.1 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 2.883e3 | 4.173e3 | 0.569 | 0.125 | 4.97 | 121 | 121 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.706e4 | 1.706e4 | 1.000 | 0.125 | 1.84 | 100 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 4.173e3 | 4.173e3 | 1.000 | 0.125 | 3.35 | 100 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.794e4 | 1.794e4 | 1.000 | 0.125 | 3.44 | 100 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 9.450e3 | 9.450e3 | 1.000 | 0.125 | 4.07 | 100 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 7.609e3 | 7.609e3 | 1.000 | 0.125 | 4.35 | 100 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 5.914e3 | 5.914e3 | 1.000 | 0.125 | 4.76 | 100 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 4.901e3 | | 0.125 | | 0.687 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 1.671e4 | | 0.125 | | 0.621 | | | 22 | 37 Total PFOS | 499 > 79.9 | | 5.022e3 | | 0.125_ | | | | Rev'd: MM 11/28/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 32 of 223 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-12.qld Last Altered: Monday, November 28, 2016 10:26:23 AM Pacific Standard Time Printed: Monday, November 28, 2016 10:26:36 AM Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: B6K0143-BLK1 Method Blank 0.125, Description: Method Blank, Name: 161127G1 12, Date: 27-Nov-2016, Time: 15:44:49, Instrument: , Lab: , User: **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-12.qld Last Altered: Monday, November 28, 2016 10:26:23 AM Pacific Standard Time Printed: Monday, November 28, 2016 10:26:36 AM Pacific Standard Time #### ID: B6K0143-BLK1 Method Blank 0.125, Description: Method Blank, Name: 161127G1_12, Date: 27-Nov-2016, Time: 15:44:49, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-7.qld Last Altered: Monday, November 28, 2016 10:16:33 AM Pacific Standard Time Monday, November 28, 2016 10:18:02 AM Pacific Standard Time Printed: $Method: U: \G1.pro \MethDB \PFAS_A_FULL_LINEAR.mdb \ 28 \ Nov \ 2016 \ 07:43:22$ Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: B6K0143-BS1 OPR 0.125, Description: OPR, Name: 161127G1_7, Date: 27-Nov-2016, Time: 14:41:38 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|----------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 8.109e3 | 5.781e3 | | 0.125 | 3.08 | 78.9 | 98.6 | | 2 | 8 PFOA | 413 > 368.7 | 1.208e4 | 1.547e4 | | 0.125 | 4.35 | 86.0 | 107 | | 3 | 10 PFOS | 499 > 79.9 | 3.619e3 | 5.956e3 | | 0.125 | 4.76 | 74.4 | 93.0 | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 5.781e3 | 1.648e4 | 0.302 | 0.125 | 3.07 | 116 | 116 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 4.459e3 | 1.648e4 | 0.620 | 0.125 | 3.44 | 43.7 | 109 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.141e4 | 9.012e3 | 1.139 | 0.125 | 3.95 | 111 | 111 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 4.635e3 | 9.012e3 | 0.449 | 0.125 | 4.07 | 114 | 114 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 2.560e3 | 4.814e3 | 1.073 | 0.125 | 4.31 | 49.5 | 49.5 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 1.547e4 | 6.437e3 | 2.262 | 0.125 | 4.35 | 106 | 106 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 5.956e3 | 5.026e3 | 0.944 | 0.125 | 4.76 | 126 | 126 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 8.214e3 | 7.663e3 | 1.082 | 0.125 | 4.69 | 99.1 | 99.1 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 5.428e3 | 6.784e3 | 1.019 | 0.125 | 5.00 | 78.5 | 78.5 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 2.978e3 | 4.814e3 | 0.569 | 0.125 | 4.97 | 109 | 109 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.586e4 | 1.586e4 | 1.000 | 0.125 | 1.85 | 100 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 4.814e3 | 4.814e3 | 1.000 | 0.125 | 3.34 | 100 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.648e4 | 1.648e4 | 1.000 | 0.125 | 3.44 | 100 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 9.012e3 | 9.012e3 | 1.000 | 0.125 | 4.07 | 100 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 6.437e3 | 6.437e3 | 1.000 | 0.125 | 4.35 | 100 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 5.026e3 | 5.026e3 | 1.000 | 0.125 | 4.76 | 100 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 4.635e3 | | 0.125 | | 78.9 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 1.547e4 | | 0.125 | | 86.0 | | | 22 | 37_Total PFOS | 499 > 79.9 | | 5.956e3_ | - | 0.125 | | 74.4_ | | Rev'd: MM 11/28/16 AMSC 11-28-16 Page 35 of 223 Work Order 1601451 Revision 1 Vista Analytical Laboratory Q1 **Quantify Sample Report** Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-7.qld Last Altered: Monday, November 28, 2016 10:16:33 AM Pacific Standard Time Printed: Monday, November 28, 2016 10:18:02 AM Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: B6K0143-BS1 OPR 0.125, Description: OPR, Name: 161127G1_7, Date: 27-Nov-2016, Time: 14:41:38, Instrument: , Lab: , User: **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-7.qld Last Altered: Monday, November 28, 2016 10:16:33 AM Pacific Standard Time Printed: Monday, November 28, 2016 10:18:02 AM Pacific Standard Time #### ID: B6K0143-BS1 OPR 0.125, Description: OPR, Name: 161127G1_7, Date: 27-Nov-2016, Time: 14:41:38, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-31.qld Last Altered: Monday, November 28, 2016 13:56:05 Pacific Standard Time Printed: Monday, November 28, 2016 13:57:42 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-01 SB01-20161114 0.12236, Description: SB01-20161114, Name: 161127G1_31, Date: 27-Nov-2016, Time: 19:44:30 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 6.662e0 | 6.743e3 | | 0.122 | 3.09 | 0.721 | | | 2 | 8 PFOA | 413 > 368.7 | 2.107e2 | 1.822e4 | | 0.122 | 4.36 | 0.480 | | | 3 | 10 PFOS | 499 > 79.9 | | 6.101e3 | | 0.122 | | | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 6.743e3 | 1.824e4 | 0.302 | 0.122 | 3.08 | 125 | 122 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 4.835e3 | 1.824e4 | 0.620 | 0.122 | 3.45 | 43.7 | 107 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.225e4 | 1.008e4 | 1.139 | 0.122 | 3.96 | 109 | 107 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 5.182e3 | 1.008e4 | 0.449 | 0.122 | 4.07 | 117 | 114 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 2.232e3 | 4.773e3 | 1.073 | 0.122 | 4.31 | 44.5 | 43.6 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 1.822e4 | 7.611e3 | 2.262 | 0.122 | 4.36 | 108 | 106 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 6.101e3 | 5.215e3 | 0.944 | 0.122 | 4.76 | 127 | 124 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 8.015e3 | 8.204e3 | 1.082 | 0.122 | 4.70 | 92.2 | 90.3 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 7.470e3 | 7.857e3 | 1.019 | 0.122 | 5.00 | 95.3 | 93.3 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 3.090e3 | 4.773e3 | 0.569 | 0.122 | 4.97 | 116 | 114 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.699e4 |
1.699e4 | 1.000 | 0.122 | 1.85 | 102 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 4.773e3 | 4.773e3 | 1.000 | 0.122 | 3.35 | 102 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.824e4 | 1.824e4 | 1.000 | 0.122 | 3.45 | 102 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.008e4 | 1.008e4 | 1.000 | 0.122 | 4.07 | 102 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 7.611e3 | 7.611e3 | 1.000 | 0.122 | 4.36 | 102 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 5.215e3 | 5.215e3 | 1.000 | 0.122 | 4.76 | 102 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 5.182e3 | | 0.122 | | 0.721 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 1.822e4 | | 0.122 | | 0.480 | | | 22 | 37 Total PFOS | 499 > 79.9 | | 6.101e3 | | 0.122 | | | | Rev'd: MM 11/28/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 38 of 223 Quantify Sample Report Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-31.qld Last Altered: Monday, November 28, 2016 13:56:05 Pacific Standard Time Printed: Monday, November 28, 2016 13:57:42 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-01 SB01-20161114 0.12236, Description: SB01-20161114, Name: 161127G1_31, Date: 27-Nov-2016, Time: 19:44:30, Instrument: , Lab: , User: **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-31.qld Last Altered: Monday, November 28, 2016 13:56:05 Pacific Standard Time Printed: Monday, November 28, 2016 13:57:42 Pacific Standard Time ID: 1601451-01 SB01-20161114 0.12236, Description: SB01-20161114, Name: 161127G1_31, Date: 27-Nov-2016, Time: 19:44:30, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-32.qld Last Altered: Monday, November 28, 2016 14:00:18 Pacific Standard Time Printed: Monday, November 28, 2016 14:01:02 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-02 EB01-20161114 0.12642, Description: EB01-20161114, Name: 161127G1_32, Date: 27-Nov-2016, Time: 19:57:06 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 4.195e0 | 6.307e3 | | 0.126 | 3.09 | 0.680 | | | 2 | 8 PFOA | 413 > 368.7 | 1.579e2 | 1.637e4 | | 0.126 | 4.36 | 0.254 | | | 3 | 10 PFOS | 499 > 79.9 | | 5.225e3 | | 0.126 | | | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 6.307e3 | 1.854e4 | 0.302 | 0.126 | 3.08 | 111 | 113 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 4.579e3 | 1.854e4 | 0.620 | 0.126 | 3.45 | 39.4 | 99.6 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.200e4 | 9.998e3 | 1.139 | 0.126 | 3.96 | 104 | 105 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 4.357e3 | 9.998e3 | 0.449 | 0.126 | 4.07 | 95.9 | 97.0 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 2.812e3 | 4.540e3 | 1.073 | 0.126 | 4.31 | 57.1 | 57.7 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 1.637e4 | 7.261e3 | 2.262 | 0.126 | 4.36 | 98.5 | 99.7 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 5.225e3 | 5.178e3 | 0.944 | 0.126 | 4.76 | 106 | 107 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 7.625e3 | 8.490e3 | 1.082 | 0.126 | 4.70 | 82.1 | 83.0 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 4.903e3 | 6.551e3 | 1.019 | 0.126 | 5.00 | 72.6 | 73.4 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 1.724e3 | 4.540e3 | 0.569 | 0.126 | 4.97 | 66.0 | 66.7 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.673e4 | 1.673e4 | 1.000 | 0.126 | 1.85 | 98.9 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 4.540e3 | 4.540e3 | 1.000 | 0.126 | 3.35 | 98.9 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.854e4 | 1.854e4 | 1.000 | 0.126 | 3.45 | 98.9 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 9.998e3 | 9.998e3 | 1.000 | 0.126 | 4.07 | 98.9 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 7.261e3 | 7.261e3 | 1.000 | 0.126 | 4.36 | 98.9 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 5.178e3 | 5.178e3 | 1.000 | 0.126 | 4.76 | 98.9 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 4.357e3 | | 0.126 | | 0.680 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 1.637e4 | | 0.126 | | 0.254 | | | 22 | 37_Total PFOS | 499 > 79.9 | _ | 5.225e3 | _ | 0.126 | _ | _ | | Rev'd: MM 11/28/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 41 of 223 #### Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-32.qld Last Altered: Monday, November 28, 2016 14:00:18 Pacific Standard Time Printed: Monday, November 28, 2016 14:01:02 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-02 EB01-20161114 0.12642, Description: EB01-20161114, Name: 161127G1_32, Date: 27-Nov-2016, Time: 19:57:06, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-32.qld Last Altered: Monday, November 28, 2016 14:00:18 Pacific Standard Time Printed: Monday, November 28, 2016 14:01:02 Pacific Standard Time #### ID: 1601451-02 EB01-20161114 0.12642, Description: EB01-20161114, Name: 161127G1_32, Date: 27-Nov-2016, Time: 19:57:06, Instrument: , Lab: , User: Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-33.qld Last Altered: Monday, November 28, 2016 14:03:13 Pacific Standard Time Monday, November 28, 2016 14:04:14 Pacific Standard Time Printed: Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-03 OUAl-MW13-20161114 0.13048, Description: OUAl-MW13-20161114, Name: 161127G1_33, Date: 27-Nov-2016, Time: 20:09:41 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 2.994e4 | 6.050e3 | | 0.130 | 3.08 | 265 | | | 2 | 8 PFOA | 413 > 368.7 | 1.074e4 | 2.098e4 | | 0.130 | 4.35 | 53.7 | | | 3 | 10 PFOS | 499 > 79.9 | 2.067e3 | 8.345e3 | | 0.130 | 4.76 | 30.0 | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 6.050e3 | 1.565e4 | 0.302 | 0.130 | 3.08 | 123 | 128 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 4.015e3 | 1.565e4 | 0.620 | 0.130 | 3.44 | 39.7 | 104 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.376e4 | 1.151e4 | 1.139 | 0.130 | 3.96 | 101 | 105 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 5.097e3 | 1.151e4 | 0.449 | 0.130 | 4.07 | 94.4 | 98.6 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 3.724e3 | 6.106e3 | 1.073 | 0.130 | 4.31 | 54.5 | 56.8 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.098e4 | 9.469e3 | 2.262 | 0.130 | 4.36 | 93.8 | 98.0 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 8.345e3 | 7.249e3 | 0.944 | 0.130 | 4.76 | 117 | 122 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 1.103e4 | 1.057e4 | 1.082 | 0.130 | 4.70 | 92.4 | 96.5 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 7.021e3 | 9.686e3 | 1.019 | 0.130 | 5.00 | 68.1 | 71.1 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 5.232e3 | 6.106e3 | 0.569 | 0.130 | 4.97 | 144 | 151 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.582e4 | 1.582e4 | 1.000 | 0.130 | 1.85 | 95.8 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 6.106e3 | 6.106e3 | 1.000 | 0.130 | 3.35 | 95.8 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.565e4 | 1.565e4 | 1.000 | 0.130 | 3.44 | 95.8 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.151e4 | 1.151e4 | 1.000 | 0.130 | 4.07 | 95.8 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 9.469e3 | 9.469e3 | 1.000 | 0.130 | 4.35 | 95.8 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 7.249e3 | 7.249e3 | 1.000 | 0.130 | 4.76 | 95.8 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 5.097e3 | | 0.130 | | 275 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.098e4 | | 0.130 | | 62.5 | | | 22 | 37_Total PFOS | 499 > 79.9 | | 8.345e3 | _ | 0.130_ | | 71.6_ | | Rev'd: MM 11/28/16 AMSC 11-28-16 Page 44 of 223 Work Order 1601451 Revision 1 **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-33.qld Last Altered: Monday, November 28, 2016 14:03:13 Pacific Standard Time Printed: Monday, November 28, 2016 14:04:14 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-03 OUAl-MW13-20161114 0.13048, Description: OUAl-MW13-20161114, Name: 161127G1_33, Date: 27-Nov-2016, Time: 20:09:41, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-33.qld Last Altered: Monday, November 28, 2016 14:03:13 Pacific Standard Time Monday, November 28, 2016 14:04:14 Pacific Standard Time ID: 1601451-03 OUAl-MW13-20161114 0.13048, Description: OUAl-MW13-20161114, Name: 161127G1_33, Date: 27-Nov-2016, Time: 20:09:41, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-34.qld Last Altered: Monday, November 28, 2016 3:06:05 PM Pacific Standard Time Printed: Monday, November 28, 2016 3:06:15 PM Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-04 OUAl-MW37-20161114 0.13083, Description: OUAl-MW37-20161114, Name: 161127G1_34, Date: 27-Nov-2016, Time: 20:22:16 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|----------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 1.634e4 | 6.281e3 | | 0.131 | 3.08 | 139 | | | 2 | 8 PFOA | 413 > 368.7 | 4.663e3 | 2.174e4 | | 0.131 | 4.36 | 22.0 | | | 3 | 10 PFOS | 499 > 79.9 | 6.546e2 | 7.849e3 | | 0.131 | 4.76 | 11.1 | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 6.281e3 | 1.603e4 | 0.302 | 0.131 | 3.08 | 124 | 130 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 4.339e3 |
1.603e4 | 0.620 | 0.131 | 3.44 | 41.7 | 109 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.365e4 | 1.072e4 | 1.139 | 0.131 | 3.96 | 107 | 112 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 5.742e3 | 1.072e4 | 0.449 | 0.131 | 4.07 | 114 | 119 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 4.775e3 | 4.424e3 | 1.073 | 0.131 | 4.31 | 96.1 | 101 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.174e4 | 9.605e3 | 2.262 | 0.131 | 4.35 | 95.6 | 100 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 7.849e3 | 6.434e3 | 0.944 | 0.131 | 4.76 | 124 | 129 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 9.858e3 | 9.740e3 | 1.082 | 0.131 | 4.70 | 89.4 | 93.5 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 7.391e3 | 9.109e3 | 1.019 | 0.131 | 4.99 | 76.1 | 79.6 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 3.492e3 | 4.424e3 | 0.569 | 0.131 | 4.97 | 133 | 139 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.546e4 | 1.546e4 | 1.000 | 0.131 | 1.85 | 95.5 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 4.424e3 | 4.424e3 | 1.000 | 0.131 | 3.35 | 95.5 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.603e4 | 1.603e4 | 1.000 | 0.131 | 3.44 | 95.5 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.072e4 | 1.072e4 | 1.000 | 0.131 | 4.07 | 95.5 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 9.605e3 | 9.605e3 | 1.000 | 0.131 | 4.36 | 95.5 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 6.434e3 | 6.434e3 | 1.000 | 0.131 | 4.76 | 95.5 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 5.742e3 | | 0.131 | | 145 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.174e4 | | 0.131 | | 26.2 | | | 22 | 37 Total PFOS | 499 > 79.9 | _ | 7.849e3_ | | 0.131 | | 25.0 | | Rev'd: MM 11/28/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 47 of 223 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-34.qld Last Altered: Monday, November 28, 2016 3:06:05 PM Pacific Standard Time Printed: Monday, November 28, 2016 3:06:15 PM Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-04 OUAI-MW37-20161114 0.13083, Description: OUAI-MW37-20161114, Name: 161127G1 34, Date: 27-Nov-2016, Time: 20:22:16, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-34.qld Last Altered: Monday, November 28, 2016 3:06:05 PM Pacific Standard Time Printed: Monday, November 28, 2016 3:06:15 PM Pacific Standard Time ID: 1601451-04 OUAl-MW37-20161114 0.13083, Description: OUAl-MW37-20161114, Name: 161127G1_34, Date: 27-Nov-2016, Time: 20:22:16, Instrument: , Lab: , User: Page 1 of 1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-35.qld Last Altered: Monday, November 28, 2016 14:08:09 Pacific Standard Time Printed: Monday, November 28, 2016 14:09:00 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-05 OUAl-MW37A-20161114 0.13037, Description: OUAl-MW37A-20161114, Name: 161127G1_35, Date: 27-Nov-2016, Time: 20:34:53 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|----------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 1.539e4 | 6.190e3 | | 0.130 | 3.08 | 134 | | | 2 | 8 PFOA | 413 > 368.7 | 5.028e3 | 2.061e4 | | 0.130 | 4.36 | 25.2 | | | 3 | 10 PFOS | 499 > 79.9 | 6.758e2 | 7.367e3 | | 0.130 | 4.76 | 12.1 | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 6.190e3 | 1.539e4 | 0.302 | 0.130 | 3.08 | 128 | 133 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 4.194e3 | 1.539e4 | 0.620 | 0.130 | 3.45 | 42.2 | 110 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.310e4 | 1.066e4 | 1.139 | 0.130 | 3.96 | 104 | 108 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 5.568e3 | 1.066e4 | 0.449 | 0.130 | 4.07 | 111 | 116 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 3.278e3 | 4.799e3 | 1.073 | 0.130 | 4.31 | 61.0 | 63.6 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.061e4 | 8.332e3 | 2.262 | 0.130 | 4.36 | 105 | 109 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 7.367e3 | 6.858e3 | 0.944 | 0.130 | 4.76 | 109 | 114 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 1.054e4 | 1.039e4 | 1.082 | 0.130 | 4.70 | 89.9 | 93.8 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 7.696e3 | 8.703e3 | 1.019 | 0.130 | 5.00 | 83.2 | 86.8 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 2.836e3 | 4.799e3 | 0.569 | 0.130 | 4.97 | 99.6 | 104 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.491e4 | 1.491e4 | 1.000 | 0.130 | 1.85 | 95.9 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 4.799e3 | 4.799e3 | 1.000 | 0.130 | 3.35 | 95.9 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.539e4 | 1.539e4 | 1.000 | 0.130 | 3.45 | 95.9 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.066e4 | 1.066e4 | 1.000 | 0.130 | 4.07 | 95.9 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 8.332e3 | 8.332e3 | 1.000 | 0.130 | 4.36 | 95.9 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 6.858e3 | 6.858e3 | 1.000 | 0.130 | 4.76 | 95.9 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 5.568e3 | | 0.130 | | 139 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.061e4 | | 0.130 | | 28.9 | | | 22 | 37 Total PFOS | 499 > 79.9 | | 7.367e3_ | | 0.130_ | | 27.8_ | | Rev'd: MM 11/28/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 50 of 223 **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-35.qld Last Altered: Monday, November 28, 2016 14:08:09 Pacific Standard Time Printed: Monday, November 28, 2016 14:09:00 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-05 OUAl-MW37A-20161114 0.13037, Description: OUAl-MW37A-20161114, Name: 161127G1_35, Date: 27-Nov-2016, Time: 20:34:53, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-35.qld Last Altered: Monday, November 28, 2016 14:08:09 Pacific Standard Time Printed: Monday, November 28, 2016 14:09:00 Pacific Standard Time ID: 1601451-05 OUAl-MW37A-20161114 0.13037, Description: OUAl-MW37A-20161114, Name: 161127G1_35, Date: 27-Nov-2016, Time: 20:34:53, Instrument: , Lab: , User: MassLynx 4.1 SCN815 Page 1 of 1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-36.qld Last Altered: Monday, November 28, 2016 14:10:47 Pacific Standard Time Monday, November 28, 2016 14:11:22 Pacific Standard Time Printed: Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-06 OUAl-HS03-20161114 0.12985, Description: OUAl-HS03-20161114, Name: 161127G1_36, Date: 27-Nov-2016, Time: 20:47:29 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|----------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 3.155e4 | 6.109e3 | | 0.130 | 3.08 | 278 | | | 2 | 8 PFOA | 413 > 368.7 | 5.780e3 | 2.130e4 | | 0.130 | 4.36 | 28.2 | | | 3 | 10 PFOS | 499 > 79.9 | | 7.497e3 | | 0.130 | | | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 6.109e3 | 1.476e4 | 0.302 | 0.130 | 3.08 | 132 | 137 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 3.867e3 | 1.476e4 | 0.620 | 0.130 | 3.45 | 40.7 | 106 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.450e4 | 1.108e4 | 1.139 | 0.130 | 3.96 | 111 | 115 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 5.591e3 | 1.108e4 | 0.449 | 0.130 | 4.07 | 108 | 112 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 4.356e3 | 5.684e3 | 1.073 | 0.130 | 4.31 | 68.7 | 71.4 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.130e4 | 9.572e3 | 2.262 | 0.130 | 4.36 | 94.7 | 98.4 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 7.497e3 | 6.794e3 | 0.944 | 0.130 | 4.76 | 113 | 117 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 1.030e4 | 9.528e3 | 1.082 | 0.130 | 4.70 | 96.2 | 99.9 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 8.091e3 | 9.857e3 | 1.019 | 0.130 | 5.00 | 77.5 | 80.5 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 4.074e3 | 5.684e3 | 0.569 | 0.130 | 4.97 | 121 | 126 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.328e4 | 1.328e4 | 1.000 | 0.130 | 1.85 | 96.3 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 5.684e3 | 5.684e3 | 1.000 | 0.130 | 3.35 | 96.3 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.476e4 | 1.476e4 | 1.000 | 0.130 | 3.45 | 96.3 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.108e4 | 1.108e4 | 1.000 | 0.130 | 4.08 | 96.3 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 9.572e3 | 9.572e3 | 1.000 | 0.130 | 4.36 | 96.3 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 6.794e3 | 6.794e3 | 1.000 | 0.130 | 4.76 | 96.3 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 5.591e3 | | 0.130 | | 289 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.130e4 | | 0.130 | | 36.3 | | | 22 | 37_Total PFOS | 499 > 79.9 | - | 7.497e3_ | _ | 0.130 | | - | | Rev'd: MM 11/28/16 AMSC 11-28-16 Page 53 of 223 Work Order 1601451 Revision 1 **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-36.qld Last Altered: Monday, November 28, 2016 14:10:47 Pacific Standard Time Printed: Monday, November 28, 2016 14:11:22 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-06 OUAI-HS03-20161114 0.12985, Description: OUAI-HS03-20161114, Name: 161127G1_36, Date: 27-Nov-2016, Time: 20:47:29, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-36.qld Last Altered: Monday, November 28, 2016 14:10:47 Pacific Standard Time Monday, November 28, 2016 14:11:22 Pacific Standard Time ID: 1601451-06 OUAl-HS03-20161114 0.12985, Description: OUAl-HS03-20161114, Name: 161127G1_36, Date: 27-Nov-2016, Time: 20:47:29, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-37.qld Last Altered: Monday, November 28, 2016 14:13:28 Pacific Standard Time Printed: Monday, November 28, 2016 14:13:43 Pacific Standard Time Method:
U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: B6K0143-MS1 Matrix Spike 0.12605, Description: Matrix Spike, Name: 161127G1_37, Date: 27-Nov-2016, Time: 21:00:07 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 3.864e4 | 6.028e3 | | 0.126 | 3.08 | 355 | | | 2 | 8 PFOA | 413 > 368.7 | 2.060e4 | 2.140e4 | | 0.126 | 4.35 | 105 | | | 3 | 10 PFOS | 499 > 79.9 | 4.103e3 | 7.273e3 | | 0.126 | 4.76 | 68.6 | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 6.028e3 | 1.430e4 | 0.302 | 0.126 | 3.08 | 138 | 140 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 3.921e3 | 1.430e4 | 0.620 | 0.126 | 3.45 | 43.9 | 111 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.427e4 | 1.149e4 | 1.139 | 0.126 | 3.96 | 108 | 109 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 5.372e3 | 1.149e4 | 0.449 | 0.126 | 4.07 | 103 | 104 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 4.390e3 | 5.586e3 | 1.073 | 0.126 | 4.31 | 72.6 | 73.2 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.140e4 | 9.058e3 | 2.262 | 0.126 | 4.35 | 104 | 104 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 7.273e3 | 6.509e3 | 0.944 | 0.126 | 4.76 | 117 | 118 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 9.754e3 | 1.103e4 | 1.082 | 0.126 | 4.70 | 81.0 | 81.7 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 7.408e3 | 9.117e3 | 1.019 | 0.126 | 4.99 | 79.1 | 79.7 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 3.737e3 | 5.586e3 | 0.569 | 0.126 | 4.97 | 117 | 118 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.259e4 | 1.259e4 | 1.000 | 0.126 | 1.86 | 99.2 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 5.586e3 | 5.586e3 | 1.000 | 0.126 | 3.35 | 99.2 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.430e4 | 1.430e4 | 1.000 | 0.126 | 3.45 | 99.2 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.149e4 | 1.149e4 | 1.000 | 0.126 | 4.07 | 99.2 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 9.058e3 | 9.058e3 | 1.000 | 0.126 | 4.35 | 99.2 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 6.509e3 | 6.509e3 | 1.000 | 0.126 | 4.76 | 99.2 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 5.372e3 | | 0.126 | | 366 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.140e4 | | 0.126 | | 114 | | | 22 | 37 Total PFOS | 499 > 79.9 | | 7.273e3 | | 0.126 | | 68.6 | | Work Order 1601451 Revision 1 Page 56 of 223 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-37.gld Last Altered: Monday, November 28, 2016 14:13:28 Pacific Standard Time Printed: Monday, November 28, 2016 14:13:43 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: B6K0143-MS1 Matrix Spike 0.12605, Description: Matrix Spike, Name: 161127G1_37, Date: 27-Nov-2016, Time: 21:00:07, Instrument: , Lab: , User: Vista Analytical Laboratory Q1 **Quantify Sample Report** Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-37.qld Last Altered: Monday, November 28, 2016 14:13:28 Pacific Standard Time Printed: Monday, November 28, 2016 14:13:43 Pacific Standard Time ## ID: B6K0143-MS1 Matrix Spike 0.12605, Description: Matrix Spike, Name: 161127G1_37, Date: 27-Nov-2016, Time: 21:00:07, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-38.qld Last Altered: Monday, November 28, 2016 14:16:21 Pacific Standard Time Printed: Monday, November 28, 2016 14:16:29 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: B6K0143-MSD1 Matrix Spike Dup 0.12681, Description: Matrix Spike Dup, Name: 161127G1_38, Date: 27-Nov-2016, Time: 21:12:45 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|----------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 3.685e4 | 5.692e3 | | 0.127 | 3.08 | 357 | | | 2 | 8 PFOA | 413 > 368.7 | 2.053e4 | 2.076e4 | | 0.127 | 4.35 | 108 | | | 3 | 10 PFOS | 499 > 79.9 | 3.892e3 | 6.983e3 | | 0.127 | 4.76 | 67.4 | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 5.692e3 | 1.368e4 | 0.302 | 0.127 | 3.08 | 136 | 138 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 3.615e3 | 1.368e4 | 0.620 | 0.127 | 3.45 | 42.1 | 107 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.326e4 | 1.159e4 | 1.139 | 0.127 | 3.96 | 99.0 | 100 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 5.497e3 | 1.159e4 | 0.449 | 0.127 | 4.07 | 104 | 106 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 4.769e3 | 5.120e3 | 1.073 | 0.127 | 4.31 | 85.6 | 86.8 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.076e4 | 9.056e3 | 2.262 | 0.127 | 4.35 | 99.9 | 101 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 6.983e3 | 6.329e3 | 0.944 | 0.127 | 4.76 | 115 | 117 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 8.903e3 | 9.539e3 | 1.082 | 0.127 | 4.70 | 85.0 | 86.3 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 7.113e3 | 9.384e3 | 1.019 | 0.127 | 4.99 | 73.3 | 74.4 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 3.450e3 | 5.120e3 | 0.569 | 0.127 | 4.97 | 117 | 118 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.299e4 | 1.299e4 | 1.000 | 0.127 | 1.86 | 98.6 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 5.120e3 | 5.120e3 | 1.000 | 0.127 | 3.35 | 98.6 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.368e4 | 1.368e4 | 1.000 | 0.127 | 3.45 | 98.6 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.159e4 | 1.159e4 | 1.000 | 0.127 | 4.07 | 98.6 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 9.056e3 | 9.056e3 | 1.000 | 0.127 | 4.35 | 98.6 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 6.329e3 | 6.329e3 | 1.000 | 0.127 | 4.76 | 98.6 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 5.497e3 | | 0.127 | | 367 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.076e4 | | 0.127 | | 115 | | | 22 | 37_Total PFOS | 499 > 79.9 | _ | 6.983e3_ | | 0.127_ | | 69.2 | | Rev'd: MM 11/29/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 59 of 223 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-38.qld Last Altered: Monday, November 28, 2016 14:16:21 Pacific Standard Time Printed: Monday, November 28, 2016 14:16:29 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: B6K0143-MSD1 Matrix Spike Dup 0.12681, Description: Matrix Spike Dup, Name: 161127G1_38, Date: 27-Nov-2016, Time: 21:12:45, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-38.qld Last Altered: Monday, November 28, 2016 14:16:21 Pacific Standard Time Printed: Monday, November 28, 2016 14:16:29 Pacific Standard Time ## ID: B6K0143-MSD1 Matrix Spike Dup 0.12681, Description: Matrix Spike Dup, Name: 161127G1_38, Date: 27-Nov-2016, Time: 21:12:45, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-39.qld Last Altered: Monday, November 28, 2016 14:18:32 Pacific Standard Time Printed: Monday, November 28, 2016 14:18:42 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-07 OUAl-MW19-20161114 0.13066, Description: OUAl-MW19-20161114, Name: 161127G1_39, Date: 27-Nov-2016, Time: 21:25:23 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 1.949e3 | 7.451e3 | | 0.131 | 3.07 | 14.6 | | | 2 | 8 PFOA | 413 > 368.7 | 1.652e4 | 2.312e4 | | 0.131 | 4.35 | 75.2 | | | 3 | 10 PFOS | 499 > 79.9 | 4.165e3 | 8.247e3 | | 0.131 | 4.75 | 59.4 | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 7.451e3 | 1.801e4 | 0.302 | 0.131 | 3.07 | 131 | 137 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 4.869e3 | 1.801e4 | 0.620 | 0.131 | 3.44 | 41.7 | 109 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.450e4 | 1.428e4 | 1.139 | 0.131 | 3.95 | 85.3 | 89.2 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 6.751e3 | 1.428e4 | 0.449 | 0.131 | 4.07 | 101 | 105 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 4.133e3 | 6.020e3 | 1.073 | 0.131 | 4.31 | 61.2 | 64.0 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.312e4 | 9.969e3 | 2.262 | 0.131 | 4.35 | 98.1 | 103 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 8.247e3 | 7.205e3 | 0.944 | 0.131 | 4.75 | 116 | 121 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 1.095e4 | 1.106e4 | 1.082 | 0.131 | 4.69 | 87.5 | 91.5 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 8.399e3 | 1.003e4 | 1.019 | 0.131 | 4.99 | 78.6 | 82.1 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 4.926e3 | 6.020e3 | 0.569 | 0.131 | 4.96 | 138 | 144 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.636e4 | 1.636e4 | 1.000 | 0.131 | 1.84 | 95.7 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 6.020e3 | 6.020e3 | 1.000 | 0.131 | 3.35 | 95.7 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.801e4 | 1.801e4 | 1.000 | 0.131 | 3.44 | 95.7 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.428e4 | 1.428e4 | 1.000 | 0.131 | 4.07 | 95.7 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 9.969e3 | 9.969e3 | 1.000 | 0.131 | 4.35 | 95.7 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 7.205e3 | 7.205e3 | 1.000 | 0.131 | 4.75 | 95.7 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 6.751e3 | | 0.131 | | 14.6 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.312e4 | | 0.131 | | 79.3 | | | 22 | 37 Total PFOS | 499 > 79.9 | | 8.247e3 | | 0.131 | | 106 | | Rev'd: MM 11/28/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 62 of 223 Vista Analytical Laboratory Q1 **Quantify Sample Report** Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-39.qld Last Altered: Monday, November 28, 2016 14:18:32 Pacific Standard Time Printed: Monday, November 28, 2016 14:18:42 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-07 OUAl-MW19-20161114 0.13066,
Description: OUAl-MW19-20161114, Name: 161127G1_39, Date: 27-Nov-2016, Time: 21:25:23, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-39.qld Last Altered: Monday, November 28, 2016 14:18:32 Pacific Standard Time Printed: Monday, November 28, 2016 14:18:42 Pacific Standard Time ID: 1601451-07 OUAl-MW19-20161114 0.13066, Description: OUAl-MW19-20161114, Name: 161127G1_39, Date: 27-Nov-2016, Time: 21:25:23, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-40.qld Last Altered: Monday, November 28, 2016 14:20:11 Pacific Standard Time Printed: Monday, November 28, 2016 14:20:21 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-08 OUAl-MW18-20161114 0.12409, Description: OUAl-MW18-20161114, Name: 161127G1_40, Date: 27-Nov-2016, Time: 21:37:58 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 1.333e3 | 7.701e3 | | 0.124 | 3.08 | 10.4 | | | 2 | 8 PFOA | 413 > 368.7 | 7.245e2 | 2.382e4 | | 0.124 | 4.35 | 2.58 | | | 3 | 10 PFOS | 499 > 79.9 | 3.573e2 | 7.390e3 | | 0.124 | 4.76 | 7.44 | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 7.701e3 | 1.990e4 | 0.302 | 0.124 | 3.08 | 129 | 128 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 5.185e3 | 1.990e4 | 0.620 | 0.124 | 3.45 | 42.4 | 105 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.528e4 | 1.294e4 | 1.139 | 0.124 | 3.96 | 104 | 104 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 6.839e3 | 1.294e4 | 0.449 | 0.124 | 4.07 | 118 | 118 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 4.217e3 | 6.703e3 | 1.073 | 0.124 | 4.31 | 59.1 | 58.6 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.382e4 | 9.791e3 | 2.262 | 0.124 | 4.35 | 108 | 108 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 7.390e3 | 7.072e3 | 0.944 | 0.124 | 4.76 | 112 | 111 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 1.095e4 | 1.059e4 | 1.082 | 0.124 | 4.70 | 96.3 | 95.6 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 8.785e3 | 1.080e4 | 1.019 | 0.124 | 5.00 | 80.4 | 79.8 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 3.744e3 | 6.703e3 | 0.569 | 0.124 | 4.97 | 98.9 | 98.2 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.657e4 | 1.657e4 | 1.000 | 0.124 | 1.85 | 101 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 6.703e3 | 6.703e3 | 1.000 | 0.124 | 3.35 | 101 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.990e4 | 1.990e4 | 1.000 | 0.124 | 3.44 | 101 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.294e4 | 1.294e4 | 1.000 | 0.124 | 4.07 | 101 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 9.791e3 | 9.791e3 | 1.000 | 0.124 | 4.35 | 101 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 7.072e3 | 7.072e3 | 1.000 | 0.124 | 4.76 | 101 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 6.839e3 | | 0.124 | | 12.1 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.382e4 | | 0.124 | | 2.58 | | | 22 | 37_Total PFOS | 499 > 79.9 | _ | 7.390e3 | _ | 0.124 | _ | 12.2_ | | Rev'd: MM 11/28/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 65 of 223 **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-40.qld Last Altered: Monday, November 28, 2016 14:20:11 Pacific Standard Time Printed: Monday, November 28, 2016 14:20:21 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-08 OUAl-MW18-20161114 0.12409, Description: OUAl-MW18-20161114, Name: 161127G1_40, Date: 27-Nov-2016, Time: 21:37:58, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-40.qld Last Altered: Monday, November 28, 2016 14:20:11 Pacific Standard Time Printed: Monday, November 28, 2016 14:20:21 Pacific Standard Time ID: 1601451-08 OUAl-MW18-20161114 0.12409, Description: OUAl-MW18-20161114, Name: 161127G1_40, Date: 27-Nov-2016, Time: 21:37:58, Instrument: , Lab: , User: • Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-44.qld Last Altered: Monday, November 28, 2016 14:22:03 Pacific Standard Time Printed: Monday, November 28, 2016 14:22:25 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-09 OUAl-MW08-20161114 0.12647, Description: OUAl-MW08-20161114, Name: 161127G1_44, Date: 27-Nov-2016, Time: 22:28:25 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 1.760e5 | 3.522e3 | | 0.126 | 3.09 | 2760 | E | | 2 | 8 PFOA | 413 > 368.7 | 2.682e4 | 2.212e4 | | 0.126 | 4.36 | 132 | | | 3 | 10 PFOS | 499 > 79.9 | 3.145e2 | 8.718e3 | | 0.126 | 4.77 | 5.84 | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 3.522e3 | 8.437e3 | 0.302 | 0.126 | 3.08 | 137 | 138 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 2.435e3 | 8.437e3 | 0.620 | 0.126 | 3.45 | 46.0 | 116 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.238e4 | 8.787e3 | 1.139 | 0.126 | 3.96 | 122 | 124 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 4.247e3 | 8.787e3 | 0.449 | 0.126 | 4.08 | 106 | 108 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 5.769e3 | 5.733e3 | 1.073 | 0.126 | 4.31 | 92.7 | 93.8 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.212e4 | 9.031e3 | 2.262 | 0.126 | 4.36 | 107 | 108 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 8.718e3 | 6.911e3 | 0.944 | 0.126 | 4.76 | 132 | 134 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 1.021e4 | 1.069e4 | 1.082 | 0.126 | 4.71 | 87.3 | 88.3 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 7.545e3 | 9.389e3 | 1.019 | 0.126 | 5.00 | 77.9 | 78.8 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 3.846e3 | 5.733e3 | 0.569 | 0.126 | 4.98 | 117 | 118 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.067e4 | 1.067e4 | 1.000 | 0.126 | 1.85 | 98.8 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 5.733e3 | 5.733e3 | 1.000 | 0.126 | 3.36 | 98.8 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 8.437e3 | 8.437e3 | 1.000 | 0.126 | 3.45 | 98.8 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 8.787e3 | 8.787e3 | 1.000 | 0.126 | 4.08 | 98.8 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 9.031e3 | 9.031e3 | 1.000 | 0.126 | 4.36 | 98.8 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 6.911e3 | 6.911e3 | 1.000 | 0.126 | 4.77 | 98.8 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 4.247e3 | | 0.126 | | 2840 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.212e4 | | 0.126 | | 145 | | | 22 | 37 Total PFOS | 499 > 79.9 | | 8.718e3 | | 0.126 | | 13.6 | | Rev'd: MM 11/28/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 68 of 223 Vista Analytical Laboratory Q1 **Quantify Sample Report** Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-44.qld Last Altered: Monday, November 28, 2016 14:22:03 Pacific Standard Time Printed: Monday, November 28, 2016 14:22:25 Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-09 OUAl-MW08-20161114 0.12647, Description: OUAl-MW08-20161114, Name: 161127G1_44, Date: 27-Nov-2016, Time: 22:28:25, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-44.qld Last Altered: Monday, November 28, 2016 14:22:03 Pacific Standard Time Printed: Monday, November 28, 2016 14:22:25 Pacific Standard Time ID: 1601451-09 OUAl-MW08-20161114 0.12647, Description: OUAl-MW08-20161114, Name: 161127G1_44, Date: 27-Nov-2016, Time: 22:28:25, Instrument: , Lab: , User: Quantify Sample Summary Report MassLynx 4.1 Page 1 of 1 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161128G1\161128G1-8.qld Last Altered: Monday, November 28, 2016 14:14:09 Pacific Standard Time Monday, November 28, 2016 14:15:33 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-09@5X OUAI-MW08-20161114 0.12647, Description: OUAI-MW08-20161114, Name: 161128G1_8, Date: 28-Nov-2016, Time: 10:22:38 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |---|---------------|---------------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 4.994e4 | 1.117e3 | | 0.126 | 3.11 | 2470 | | | 2 | 16 13C3-PFBS | 302.0 > 98.8 | 1.117e3 | 2.744e3 | 0.302 | 0.126 | 3.10 | 133 | 135 | | 3 | 28 13C5-PFHxA | 318.0 > 272.9 | 2.744e3 | 2.744e3 | 1.000 | 0.126 | 3.48 | 98.8 | 100 | | 4 | 34 Total PFBS | 299 > 79.7 | | 1.079e3 | | 0.126 | | 2540 | | Rev'd: MM 11/28/16 AC 11/28/16 Work Order 1601451 Revision 1 Page 71 of 223 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161128G1\161128G1-8.gld Last Altered: Monday, November 28, 2016 14:14:09 Pacific Standard Time Printed: Monday, November 28, 2016 14:15:33 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-09@5X OUAI-MW08-20161114 0.12647, Description: OUAI-MW08-20161114, Name: 161128G1_8, Date: 28-Nov-2016, Time: 10:22:38, Instrument: , Lab: , User: Rev'd: MM 11/28/16 AC 11/28/16 Work Order 1601451 Revision 1 Page 72 of 223 Rev'd: MM 11/28/16 AC 11/28/16 Work Order 1601451 Revision 1 Page 73 of 223 Page 2 of 3 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161128G1\161128G1-8.qld Last Altered: Monday, November 28, 2016 14:14:09 Pacific Standard Time Monday, November 28, 2016 14:15:33 Pacific Standard Time ID: 1601451-09@5X OUAl-MW08-20161114 0.12647, Description: OUAl-MW08-20161114, Name: 161128G1_8, Date: 28-Nov-2016, Time: 10:22:38, Instrument: , Lab: , User: Rev'd: MM 11/28/16 AC 11/28/16 Work Order 1601451 Revision 1 Page 74 of 223 Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2016\161128G1\161128G1-8.qld Last Altered: Monday, November 28, 2016 14:14:09 Pacific Standard Time Monday, November 28, 2016 14:15:33 Pacific Standard Time ID: 1601451-09@5X OUAl-MW08-20161114 0.12647, Description: OUAl-MW08-20161114, Name: 161128G1_8, Date: 28-Nov-2016, Time: 10:22:38, Instrument: , Lab: , User: Rev'd: MM 11/28/16 AC 11/28/16 Work Order 1601451 Revision 1 Page 75 of 223 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-45.qld Last Altered: Monday, November 28, 2016 2:30:57 PM Pacific Standard Time Printed: Monday, November 28, 2016 2:31:06 PM Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-10 OUAl-MW06-20161114 0.12271, Description: OUAl-MW06-20161114, Name: 161127G1_45, Date: 27-Nov-2016, Time: 22:41:00 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|---------------|-----------|----------|----------|--------|------|-------|------| | 1 | 3 PFBS | 299 > 79.7 | 1.457e4 | 7.071e3 | | 0.123 | 3.08 | 118 | | | 2 | 8 PFOA | 413 > 368.7 | 2.200e4 | 2.800e4 | | 0.123 | 4.36 | 88.1 | | | 3 | 10 PFOS | 499 > 79.9 | 8.017e1 | 1.141e4 | | 0.123 | 4.76 | 2.48 | | | 4 | 16 13C3-PFBS | 302.0 > 98.8 | 7.071e3 | 1.991e4 | 0.302 | 0.123 | 3.08 | 120 | 118 | | 5 | 17 13C2-PFHxA | 315 > 269.8 | 5.055e3 | 1.991e4 | 0.620 | 0.123 | 3.44 | 41.7 | 102 | | 6 | 18 13C4-PFHpA | 367.2 > 321.8 | 1.496e4 | 1.233e4 | 1.139 | 0.123 | 3.96 | 109 | 107 | | 7 | 19 18O2-PFHxS | 403 > 102.6 | 6.153e3 | 1.233e4 | 0.449 | 0.123 | 4.07 | 113 | 111 | | 8 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 5.309e3 | 1.063e4 | 1.073 | 0.123 | 4.31 | 47.4 | 46.5 | | 9 | 21 13C2-PFOA | 414.9 > 369.7 | 2.800e4 | 1.169e4 | 2.262 | 0.123 | 4.36 | 108 | 106 | | 10 | 22 13C8-PFOS | 507.0 > 79.9 | 1.141e4 | 1.183e4 | 0.944 | 0.123 | 4.76 | 104 | 102 | | 11 | 23 13C5-PFNA | 468.2 > 422.9 | 1.532e4 | 1.522e4 | 1.082 | 0.123 | 4.70 | 94.8 | 93.0 | | 12 | 24 13C2-PFDA | 515.1 > 469.9 | 1.450e4 | 1.749e4 | 1.019 | 0.123 | 5.00 | 82.9 | 81.4 | | 13 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 9.377e3 | 1.063e4 | 0.569 | 0.123 | 4.97 | 158 | 155 | | 14 | 26 13C4-PFBA | 217 > 171.8 | 1.635e4 | 1.635e4 | 1.000 | 0.123 | 1.85 | 102 | 100 | | 15 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 1.063e4 | 1.063e4 | 1.000 | 0.123 | 3.35 | 102 | 100 | | 16 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.991e4 | 1.991e4 | 1.000 | 0.123 | 3.44 | 102 | 100 | | 17 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.233e4 | 1.233e4 | 1.000 | 0.123 | 4.07 | 102 | 100 | | 18 | 30 13C8-PFOA | 421.3 > 376 | 1.169e4 | 1.169e4 | 1.000 | 0.123 | 4.35 | 102 | 100 | | 19 | 31 13C4-PFOS | 503.0 > 79.9 | 1.183e4 | 1.183e4 | 1.000 | 0.123 | 4.76 | 102 | 100 | | 20 | 34 Total PFBS | 299 > 79.7 | | 6.153e3 | | 0.123 | | 121 | | | 21 | 36 Total PFOA | 413 > 368.7 | | 2.800e4 | | 0.123 | | 113 | | | 22 | 37 Total PFOS | 499 > 79.9 | _ | 1.141e4_ | _ | 0.123 | | 4.38 | | Rev'd: MM 11/28/16 AMSC 11-28-16 Work Order 1601451 Revision 1 Page 76 of 223 Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-45.qld Last Altered: Monday, November 28, 2016 2:30:57 PM Pacific Standard Time Printed: Monday, November 28, 2016 2:31:06 PM Pacific Standard Time Method: U:\G1.pro\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ID: 1601451-10 OUAI-MW06-20161114 0.12271, Description: OUAI-MW06-20161114, Name: 161127G1_45, Date: 27-Nov-2016, Time: 22:41:00, Instrument: , Lab: , User: Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-45.qld Last Altered: Monday, November 28, 2016 2:30:57 PM Pacific Standard Time Printed: Monday, November 28, 2016 2:31:06 PM Pacific Standard Time ID: 1601451-10 OUAl-MW06-20161114 0.12271, Description: OUAl-MW06-20161114, Name: 161127G1_45, Date: 27-Nov-2016, Time: 22:41:00, Instrument: , Lab: , User: ## CONTINUING CALIBRATION MassLynx 4.1 Page 1 of 2 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-2.qld Last Altered: Printed: Monday, November 28, 2016 08:47:38 Pacific Standard Time Monday, November 28, 2016 08:49:43 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161127G1_2, Date: 27-Nov-2016, Time: 13:38:36, ID: ST161127G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | . EGene | #-Name | Trace | Response . | IS Resp | RRF · | Wt/Vol: | RT: | Conc. | %Rec | | | |---------------|-----------------------------|---------------|------------|---------|-------|---------|------|-------|-------|----------|----------------------| | 1 | 1 PFBA | 213.1 > 168.8 | 2.21e4 | 2.36e4 | • | 1.000 | 1.89 | 23.8 | 95.3 | 75-125 | | | 2 | 2 PFPeA | 263.1 > 218.9 | 1.86e4 | 8.49e3 | | 1.000 | 2.82 | 27.4 | 109.5 | 1 6 | | | 3:0 man : | 3 PFBS | 299 > 79.7 | 2.12e4 | 6.08e3 | | 1.000 | 3.07 | 24.4 | 97.7 | | | | 4 | 4 PFHxA | 313.2 > 268.9 | 1.51e4 | 4.94e3 | | 1.000 | 3.43 | 25.6 | 102.2 | | | | 5 | 5 PFHpA | 363 > 318.9 | 4.13e4 | 1.31e4 | | 1.000 | 3.95 | 25.4 | 101.5 | | | | 6 | 6 PFHxS | 398.9 > 79.6 | 1.88e4 | 5.62e3 | | 1.000 | 4.07 | 24.3 | 97.1 | | | | 7 | 7 6:2 FTS | 427.1 > 407 | 5.03e3 | 5.19e3 | | 1.000 | 4.30 | 27.1 | 108.3 | | | | 8 | 8 PFOA | 413 > 368.7 | 4.13e4 | 2.16e4 | | 1.000 | 4.35 | 26.5 | 105.9 | | | | 9.00 | 9 PFHpS | 449 > 98.7 | 4.58e3 | 2.16e4 | | 1.000 | 4.43 | 29.0 | 115.9 | | | | 10 | 10 PFOS | 499 > 79.9 | 1.36e4 | 6.69e3 | | 1.000 | 4.75 | 30.7 | 122.7 | | 11/20/110
PH pall | | 11 | 11 PFNA | 463 > 418.8 | 3.52e4 | 1.12e4 | | 1.000 | 4.69 | 24.0 | 96.0 | | W 1110 | | 12 | 12 PFDA | 513 > 468.8 | 9.61e3 | 7.22e3 | | 1.000 | 5.00 | 27.9 | 111.7 | a 4 | 11/00/10 | | 13 | 13 8:2 FTS | 527 > 506.9 | 3.30e3 | 3.23e3 | | 1.000 | 4.97 | 26.0 | 104.2 | | 11/201 | | 14 | 14 13C3-PFBA | 216.1 > 171.8 | 2.36e4 | 1.76e4 | 1.205 | 1.000 | 1.88 | 14.0 | 111.7 | 60-150 | , | | 15 | 15 13C3-PFPeA | 266>221.8 | 8.49e3 | 1.91e4 | 0.448 | 1.000 | 2.82 | 12.4 | 99.2 | | 6h 111 | | 16 | 16 13C3-PFBS | 302.0 > 98.8 | 6.08e3 | 1.91e4 | 0.302 | 1.000 | 3.07 | 13.2 | 105.3 | | 1, 12811. | | 17 | 17 13C2-PFHxA | 315 > 269.8 | 4.94e3 | 1.91e4 | 0.620 | 1.000 | 3.43 | 5.22 | 104.4 | | 111 | | 18 ; | 18 13C4-PFHpA | 367.2 > 321.8 | 1.31e4 | 1.21e4 | 1.139 | 1.000 | 3.95 | 11.9 | 95.5 | | | | | 19 18O2-PFHxS | 403 > 102.6 | 5.62e3 | 1.21e4 | 0.449 | 1.000 | 4.06 | 12.9 | 103.6 | \ | | | 20 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 5.19e3 | 5.06e3 | 1.073 | 1.000 | 4.31 | 12.0 | 95.7 | 40-150 | | | 21 | 21 13C2-PFOA | 414.9 > 369.7 | 2.16e4 | 1.07e4 | 2.262 | 1.000 | 4.35 | 11.2 | 89.6 | 60-150 | | | 22 | 22 13C8-PFOS | 507.0 > 79.9 | 6.69e3 | 7.41e3 | 0.944 | 1.000 | 4.75 | 12.0 | 95.7 | V | | | 23 | 23 13C5-PFNA | 468.2 > 422.9 | 1.12e4 | 1.02e4 | 1.082 | 1.000 | 4.69 | 12.7 | 101.4 | 50-150 | | | 24 | 24 13C2-PFDA | 515.1 > 469.9 | 7.22e3 | 8.08e3 | 1.019 | 1.000 | 5.00 | 11.0 | 87.7 | 60-150 | | | 25 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 3.23e3 | 5.06e3 | 0.569 | 1.000 | 4.97 | 14.0 | 112.3 | 40-150 | | | 26 | 26 13C4-PFBA | 217 > 171.8 | 1.76e4 | 1.76e4 | 1.000 | 1.000 | 1.88 | 12.5 | 100.0 | | | | 27 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 5.06e3 | 5.06e3 | 1.000 | 1.000 | 3.34 | 12.5 | 100.0 | | | | 28 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.91e4 | 1.91e4 | 1.000 | 1.000 | 3.43 | 12.5 | 100.0 | | | | | 29 13C3-PFHxS | 401.9 > 79.9 | 1.21e4 | 1.21e4 | 1.000 | 1.000 | 4.06 | 12.5 | 100.0 | | | | 30 | 30 13C8-PFOA | 421.3 > 376 | 1.07e4 | 1.07e4 | 1.000 | 1.000 | 4.35 | 12.5 | 100.0 | | | | 31 rdor 16014 | 31 13C4-PFOS
51-Revision | 503.0 > 79.9 | 7.41e3 | 7.41e3 | 1.000 | 1.000_ | 4.75 | 12.5 | 100.0 | | | Page 80 of 223 **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 Page 2 of 2 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-2.qld Last Altered: Monday, November 28, 2016 08:47:38 Pacific Standard Time Printed: Monday, November 28, 2016 08:49:43 Pacific Standard Time Name: 161127G1_2, Date: 27-Nov-2016, Time: 13:38:36, ID: ST161127G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | : #-Name | Trace | Response - | IS Resp | RRF : | Wt/Vol; | RT; | Conc. | %Rec | |--|---------------|------------|---------|-------|---------|------|-------|-------| | 32 13C9-PFNA | 472.2 > 426.9 | 1.02e4 | 1.02e4 | 1.000 | 1.000 | 4.69 | 12.5 | 100.0 | | 32 ; 32 13C9-PFNA
33 ; 33 13C6-PFDA | 519.1 > 473.7 | 8.08e3 | 8.08e3 | 1.000 | 1.000 | 5.00 | 12.5 | 100.0 | Work Order 1601451 Revision 1 Page 81 of 223 MassLynx 4.1 Page 1 of 2 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 09:04:49 Pacific Standard Time Monday, November 28, 2016 09:06:19 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Compound name: PFBA | 25.72.73 | Name | (ID | 'Acq Date | -Acq.Time | |----------|----------------|--|-----------|-----------| | 1 | ;161127G1_1 | IPA | 27-Nov-16 | 13:25:59 | | 2 | ; 161127G1_2 | ST161127G1-1 PFC CS3.5 16K2701 | 27-Nov-16 | 13:38:36 | | 3 | , 161127G1_3 | IPA | 27-Nov-16 | 13:51:12 | | 4 | √ 161127G1_4 | B6K0123-BS1 OPR 0.125 | 27-Nov-16 | 14:03:49 | | 5 | √161127G1_5 | B6K0142-BS1 OPR 1 | 27-Nov-16 | 14:16:25 | | 6 | √161127G1_6 | B6K0142-BSD1 LCS Dup 1 | 27-Nov-16 | 14:29:02 | | 7 | 161127G1_7 | B6K0143-BS1 OPR 0.125 | 27-Nov-16 | 14:41:38 | | 8 | ्रे 161127G1_8 | B6K0146-BS1 OPR 0.125 | 27-Nov-16 | 14:54:16 | | 9 | | IPA . | 27-Nov-16 | 15:06:54 | | 10 | 161127G1_10 | B6K0123-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:19:32 | | 11 | 161127G1_11 | B6K0142-BLK1 Method Blank 1 | 27-Nov-16 | 15:32:11 | | 12 | 161127G1_12 | B6K0143-BLK1 Method Blank 0.125 | 27-Nov-16 |
15:44:49 | | 13 | 161127G1_13 | B6K0146-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:57:25 | | 14 | -161127G1_14 | 1601395-08RE2 EB-26SW04_161101 0.13015 | 27-Nov-16 | 16:10:00 | | 15 | 161127G1_15 | 1601395-11RE2 FB-26SW04_161101 0.12796 | 27-Nov-16 | 16:22:37 | | 16 | 161127G1_16 | 1601416-01 TW-2C 0.12384 | 27-Nov-16 | 16:35:13 | | 17 | ;161127G1_17 | 1601414-12 PFAS-SED01-110116 7.13 | 27-Nov-16 | 16:47:51 | | 18 | ;161127G1_18 | 1601414-13 PFAS-SED02-110116 1.6 | 27-Nov-16 | 17:00:28 | | 19 | ;161127G1_19 | 1601414-14 PFAS-SED03-110116 1.55 | 27-Nov-16 | 17:13:07 | | 20 | 5161127G1_20 | 1601414-15 PFAS-SED04-110216 1.41 | 27-Nov-16 | 17:25:45 | | 21 | 161127G1_21 | B6K0142-MS1 Matrix Spike 1.42 | 27-Nov-16 | 17:38:20 | | 22 | 161127G1_22 | B6K0142-MSD1 Matrix Spike Dup 1.56 | 27-Nov-16 | 17:50:56 | | 23 | :161127G1_23 | 1601414-16 PFAS-SED05-110216 1.36 | 27-Nov-16 | 18:03:31 | | 24 | 161127G1_24 | 1601414-17 PFAS-SED06-110216 1.39 | 27-Nov-16 | 18:16:08 | | 25 | ं; 161127G1_25 | 1601414-18 PFAS-SED07-110216 1.12 | 27-Nov-16 | 18:28:44 | | 26 | ;; 161127G1_26 | IPA | 27-Nov-16 | 18:41:22 | | 27 | ,161127G1_27 | ST161127G1-2 PFC CS3.5 16K2701 | 27-Nov-16 | 18:53:59 | | 28 | 161127G1_28 | IPA | 27-Nov-16 | 19:06:35 | | 29 | 161127G1_29 | 1601414-19 PFAS-SED08-110216 1.24 | 27-Nov-16 | 19:19:13 | | 30 | 161127G1_30 | 1601414-20 PFAS-SED-DUP1-110216 1.36 | 27-Nov-16 | 19:31:52 | | 31 | 161127G1_31 | 1601451-01 SB01-20161114 0.12236 | 27-Nov-16 | 19:44:30 | Work Order 1601451 Revision 1 Page 82 of 223 Dataset: Untitled Monday, November 28, 2016 09:04:49 Pacific Standard Time Monday, November 28, 2016 09:06:19 Pacific Standard Time Last Altered: Printed: ## Compound name: PFBA | | Name | ID | Acq Date | Acq.Time | |----|---------------|--|-----------|----------| | 32 | ,161127G1_32 | 1601451-02 EB01-20161114 0.12642 | 27-Nov-16 | 19:57:06 | | 33 | , 161127G1_33 | 1601451-03 OUAI-MW13-20161114 0.13048 | 27-Nov-16 | 20:09:41 | | 34 | .161127G1_34 | 1601451-04 OUAI-MW37-20161114 0.13083 | 27-Nov-16 | 20:22:16 | | 35 | 161127G1_35 | 1601451-05 OUAI-MW37A-20161114 0.13037 | 27-Nov-16 | 20:34:53 | | 36 | 161127G1_36 | 1601451-06 OUAI-HS03-20161114 0.12985 | 27-Nov-16 | 20:47:29 | | 37 | 161127G1_37 | B6K0143-MS1 Matrix Spike 0.12605 | 27-Nov-16 | 21:00:07 | | 38 | 161127G1_38 | B6K0143-MSD1 Matrix Spike Dup 0.12681 | 27-Nov-16 | 21:12:45 | | 39 | 161127G1_39 | 1601451-07 OUAI-MW19-20161114 0.13066 | 27-Nov-16 | 21:25:23 | | 40 | , 161127G1_40 | 1601451-08 OUAI-MW18-20161114 0.12409 | 27-Nov-16 | 21:37:58 | | 41 | ,161127G1_41 | IPA | 27-Nov-16 | 21:50:34 | | 42 | ,161127G1_42 | ST161127G1-3 PFC CS3.5 16K2701 | 27-Nov-16 | 22:03:12 | | 43 | 161127G1_43 | IPA | 27-Nov-16 | 22:15:47 | | 44 | 5161127G1_44 | 1601451-09 OUAI-MW08-20161114 0.12647 | 27-Nov-16 | 22:28:25 | | 45 | {161127G1_45 | 1601451-10 OUAI-MW06-20161114 0.12271 | 27-Nov-16 | 22:41:00 | | 46 | 161127G1_46 | 1601461-01 EB02-20161115 0.12859 | 27-Nov-16 | 22:53:37 | | 47 | 161127G1_47 | 1601461-02 OUAI-MW14-20161115 0.12795 | 27-Nov-16 | 23:06:13 | | 48 | 161127G1_48 | 1601461-03 OUAI-MW15-20161115 0.12968 | 27-Nov-16 | 23:18:51 | | 49 | ,161127G1_49 | 1601461-04 OUAI-MW07-20161115 0.12742 | 27-Nov-16 | 23:31:28 | | 50 | [161127G1_50 | 1601461-05 OUAI-MW23-20161115 0.12602 | 27-Nov-16 | 23:44:07 | | 51 | \$161127G1_51 | 1601461-06 OUAI-MW55-20161115 0.12709 | 27-Nov-16 | 23:56:41 | | 52 | 161127G1_52 | 1601461-07 OUAI-MW55A-20161115 0.12204 | 28-Nov-16 | 00:09:16 | | 53 | 161127G1_53 | 1601461-08 OUAI-MW27-20161115 0.12966 | 28-Nov-16 | 00:21:52 | | 54 | 161127G1_54 | IPA | 28-Nov-16 | 00:34:30 | | 55 | 161127G1_55 | ST161127G1-4 PFC CS3.5 16K2701 | 28-Nov-16 | 00:47:08 | | 56 | 161127G1_56 | IPA | 28-Nov-16 | 00:59:43 | Work Order 1601451 Revision 1 Page 83 of 223 | | LC Ca | libratio | n Standar | ds Review Ch | necklis | <u>د</u> _ رح | <u> </u> | | | |-----------------|--------------|----------|-----------|-----------------------------|----------------|-------------------|----------------------------|--------------------------|-------------------------| | | | • | iON Ratio | Concentration | C-Cals
Name | Sign
Date | Correct
I-Cal | Manaul
Integrations | N/A | | Calibration ID: | ST16112761-1 | _ L(M)H | *** | Ø | | | | | | | Calibration ID: | -2 | _ L (M)H | ф | $ \mathbf{P}_{\mathbf{E}} $ | | | | | ф | | Calibration ID: | | LMH- | ф | Ø | ď | | | | ф | | Calibration ID: | -4 | L WH | | 1 6 | Ø | Ø | | | | | Calibration ID: | | LMH | | | | | | | . 🔲 | | Calibration ID: | | LMH
- | | | | | | | | | Calibration ID: | | LMH | | | | | | | | | Calibration ID: | | LMH | | | | | | | | | Calibration ID: | | LMH | | | | | · | | | | Calibration ID: | | LMH | | | | | | | | | | | | | | | Full Ma | ıss Cal. E |)ate: 11/21 | 114 | | Reviewed By: | PW 11 28 H | | | | | Commo
AN
BN | ents:
lot use
Jot us | ed for 6:2
ed for 8:2 | FTS
FTS
ACU/20/16 | Page 84 of 223 Work Order 1601451 Revision 1 Dataset: Untitled Last Altered: Monday, November 28, 2016 08:41:38 Pacific Standard Time Printed: Monday, November 28, 2016 08:43:58 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161127G1_2, Date: 27-Nov-2016, Time: 13:38:36, ID: ST161127G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Work Order 1601451 Revision 1 Page 86 of 223 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 08:41:38 Pacific Standard Time Monday, November 28, 2016 08:43:58 Pacific Standard Time Name: 161127G1_2, Date: 27-Nov-2016, Time: 13:38:36, ID: ST161127G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Vista Analytical Laboratory Q1 4.50 4.00 5.00 5.50 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 08:41:38 Pacific Standard Time Monday, November 28, 2016 08:43:58 Pacific Standard Time Name: 161127G1_2, Date: 27-Nov-2016, Time: 13:38:36, ID: ST161127G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A 0- 4.00 min 6.00 5.00 4.50 5.50 min 6.00 Work Order 1601451 Revision 1 Page 88 of 223 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-27.qld Last Altered: Printed: Monday, November 28, 2016 08:51:10 Pacific Standard Time Monday, November 28, 2016 08:51:39 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161127G1_27, Date: 27-Nov-2016, Time: 18:53:59, ID: ST161127G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | 16 130
17 17 130 | PeA 263.1 = 269 > 16 | > 268.9 1.70e4
318.9 4.73e4
> 79.6 2.14e4 | 2.61e4
9.90e3
6.66e3
5.47e3
1.55e4
6.35e3 | | 1.000
1.000
1.000
1.000 | 1.90
2.83
3.08
3.44 | 23.9
25.9
26.2
26.0 | 95.6 75-125
103.7
104.7 | (1) Not used for 6:2 FTS. | |---|--|--|--|-------|----------------------------------|------------------------------|------------------------------|-------------------------------|----------------------------| | 3 3 PFE 4 4 PFH 5 5 PFH 6 6 PFH 7 7 6:2 8 8 PFC 9 9 PFH 10 10 PFC 11 11 PFN 12 12 PFC 13 13 8:2 14 14 130 15 15 130 16 16 130 | BS 299 > 1
HxA 313.2 = 1
HpA 363 > 3
HxS 398.9 = 1
2 FTS 427.1 = 1
FOA 413 > 3
HpS 449 > 9 | 79.7 2.49e4
> 268.9 1.70e4
318.9 4.73e4
> 79.6 2.14e4 | 6.66e3
5.47e3
1.55e4 | | 1.000
1.000 | 3.08 | 26.2 | 104.7 | mont used for | | 4 PFF 5 PFF 6 PFF 7 7 6:2 8 PFC 9 PFF 10 PFC 11 11 PFF 12 12 PFC 13 13 8:2 14 14 130 15 15 130 16 16 130 17 17 130 | HxA 313.2 = 2 | > 268.9 1.70e4
318.9 4.73e4
> 79.6 2.14e4 | 5.47e3
1.55e4 | | 1.000 | | | | mount used for | | 5 PFH
6 6 PFH
7 7 6:2
8 PFC
9 9 PFH
10 10 PFC
11 11 PFN
12 12 PFC
13 13 8:2
14 14 130
15 15 130
16 16 130
17 17 130 | HpA 363 > 3
HxS 398.9 3
PFTS 427.1 3
FOA 413 > 3
HpS 449 > 9 | 318.9 4.73e4
> 79.6 2.14e4 | 1.55e4 | | | 3.44 | 26.0 | 400 0 | | | 6 6 PFH 7 7 6:2 8 8 PFC 9 9 PFH 10 10 PFC 11 11 PFN 12 12 PFC 13 13 8:2 14 14 130 15 15 130 16 16 130 | HxS 398.9 2
PFTS 427.1 2
FOA 413 > 3
HpS 449 > 9 | > 79.6 2.14e4 | | | 4.000 | | 20.0 | 103.8 | 1001 00000 | | 7 6:2
8 8 PFC
9 9 PFF
10 10 PFC
11 11 PFN
12 12 PFC
13 13 8:2
14 14 130
15 15 130
16 16 130 | 2 FTS 427.1 2
FOA 413 > 3
FHpS 449 > 9 | | 6.35e3 | | 1.000 | 3.96 | 24.6 | 98.4 | 6.2 FTS. | | 8 PFC 9 PFF 10 10 PFC 11 11 PFF 12 12 PFC 13 13 8:2 14 14 130 15 15 130 16 16 130 | OA 413 > 3
HpS 449 > 9 | > 407 5.22e3 | | | 1.000 | 4.07 | 24.4 | 97.8 | | | 9 PFF 10 10 PFC 11 11 PFN 12 12 PFC 13 13 8:2 14 14 130 15 15 130 16 16 130 | HpS 449 > 9 | | 4.32e3 | | 1.000 | 4.31 | 33.2 | 132.7(A) | | | 10 PFC
11 11 PFC
12 PFC
13 13 8:2
14 14 130
15 130
16 130
17 130 | • | 368.7 5.01e4 | 2.64e4 | | 1.000 | 4.36 | 26.3 | 105.1 | | | 11 11 PFN 12 PFC 13 13 8:2 14 14 130 15 15 130 16 16 130 17 17 130 | OS 499 >7 | 98.7 3.63e3 | 2.64e4 | | 1.000 | 4.44 | 18.9 | 75.6 | ACIONINA | | 12 12 PFI 13 13 8:2 14 14 130 15 15 15 130 16 16 17 17 130 | | 79.9 1.18e4 | 7.15e3 | | 1.000 | 4.76 | 25.0 | 99.8 | ACIDOILO
PLJ
IIPOILO | | 13 8:2
14 14 130
15 15 130
16 16 130
17 17 130 | NA 463 > 4 | 418.8 3.90e4 | 1.20e4 | | 1.000 | 4.70 | 24.9 | 99.8 | | | 14 130
15 15 130
16 130
17 17 130 | DA 513 > 4 | 468.8 8.67e3 | 7.48e3 | | 1.000 | 5.00 | 24.3 | 97.3 | DI.J | | 15 130
16 16
130
17 14 17 130 | 2 FTS 527 > 9 | 506.9 3.56e3 | 4.10e3 | | 1.000 | 4.97 | 22.1 | 88.3 | Talk | | 16 130
17 17 130 | C3-PFBA 216.1 | > 171.8 2.61e4 | 2.03e4 | 1.205 | 1.000 | 1.90 | 13.3 | 106.6 60-150 | IIBBIL | | 17 130 | C3-PFPeA 266>2 | 21.8 9.90e3 | 2.19e4 | 0.448 | 1.000 | 2.83 | 12.6 | 101.2 | | | Mr. July 1 | C3-PFBS 302.0 : | > 98.8 6.66e3 | 2.19e4 | 0.302 | 1.000 | 3.08 | 12.6 | 100.8 | | | 10 120 | C2-PFHxA 315 > 2 | 269.8 5.47e3 | 2.19e4 | 0.620 | 1.000 | 3.44 | 5.04 | 100.9 | | | 10 | C4-PFHpA 367.2 | > 321.8 1.55e4 | 1.46e4 | 1.139 | 1.000 | 3.96 | 11.7 | 93.6 | | | 19 : 19 180 | O2-PFHxS 403 > 1 | 102.6 6.35e3 | 1.46e4 | 0.449 | 1.000 | 4.07 | 12.1 | 97.0 | | | 20 130 | C2-6:2 FTS 429.1 | > 408.9 4.32e3 | 6.03e3 | 1.073 | 1.000 | 4.31 | 8.34 | 66.7 40-150 | | | 21 130 | C2-PFOA 414.9 | > 369.7 2.64e4 | 1.13e4 | 2.262 | 1.000 | 4.36 | 13.0 | 103.6 60-150 | | | 22 130 | C8-PFOS 507.0 | > 79.9 7.15e3 | 6.96e3 | 0.944 | 1.000 | 4.76 | 13.6 | 108.8 | | | 23 130 | C5-PFNA 468.2 | > 422.9 1.20e4 | 1.15e4 | 1.082 | 1.000 | 4.70 | 12.0 | 96.0 50-150 | | | 24 130 | C2-PFDA 515.1 | > 469.9 7.48e3 | 8.60e3 | 1.019 | 1.000 | 5.00 | 10.7 | 85.3 60-152 | | | 25 25 130 | C2-8:2 FTS 529.1 | > 508.7 4.10e3 | 6.03e3 | 0.569 | 1.000 | 4.97 | 14.9 | 119.6 40-150 | | | 26 | C4-PFBA 217 > 1 | 171.8 2.03e4 | 2.03e4 | 1.000 | 1.000 | 1.89 | 12.5 | 100.0 | | | 27 . 27 130 | C2_4:2 ETS 220.2 | > 308.9 6.03e3 | 6.03e3 | 1.000 | 1.000 | 3.35 | 12.5 | 100.0 | | | 28 130 | 02 -4 .2 F 13 329.2 | > 272.9 2.19e4 | 2.19e4 | 1.000 | 1.000 | 3.44 | 12.5 | 100.0 | | | 29 130 | | > 79.9 1.46e4 | 1.46e4 | 1.000 | 1.000 | 4.07 | 12.5 | 100.0 | | | 30 130 | | 1.4004 | | | | | | | | | 31 130
Order 1601451-Re | C5-PFHxA 318.0 | | 1.13e4 | 1.000 | 1.000 | 4.36 | 12.5 | 100.0 | | Page 89 of 223 Quantify Sample Summary Report MassLynx 4.1 Page 2 of 2 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-27.qld Last Altered: Monday, November 28, 2016 08:51:10 Pacific Standard Time Printed: Monday, November 28, 2016 08:51:39 Pacific Standard Time Name: 161127G1_27, Date: 27-Nov-2016, Time: 18:53:59, ID: ST161127G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | | ; #-Name | Trace | Response | IS Resp | RRF; | Wt/Vol; | RT: | Conc.; | %Rec | |----|----------------|---------------|----------|---------|-------|---------|------|--------|-------| | 32 | 32 13C9-PFNA | 472.2 > 426.9 | 1.15e4 | 1.15e4 | 1.000 | 1.000 | 4.70 | 12.5 | 100.0 | | 33 | ; 33 13C6-PFDA | 519.1 > 473.7 | 8.60e3 | 8.60e3 | 1.000 | 1.000 | 5.00 | 12.5 | 100.0 | Work Order 1601451 Revision 1 Page 90 of 223 Vista Analytical Laboratory VG-9 Dataset: Untitled Last Altered: Monday, November 28, 2016 09:04:49 Pacific Standard Time Printed: Monday, November 28, 2016 09:06:19 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ## Compound name: PFBA | (1 | Name | D | :Acq.Date | -Acq.Time | |---|-------------|--|-----------|-----------| | 1 | 161127G1_1 | IPA | 27-Nov-16 | 13:25:59 | | 2 | 161127G1_2 | ST161127G1-1 PFC CS3.5 16K2701 | 27-Nov-16 | 13:38:36 | | 3 | 161127G1_3 | IPA | 27-Nov-16 | 13:51:12 | | 4 :1 | 161127G1_4 | B6K0123-BS1 OPR 0.125 | 27-Nov-16 | 14:03:49 | | 5 | 161127G1_5 | B6K0142-BS1 OPR 1 | 27-Nov-16 | 14:16:25 | | 6 | 161127G1_6 | B6K0142-BSD1 LCS Dup 1 | 27-Nov-16 | 14:29:02 | | 7 | 161127G1_7 | B6K0143-BS1 OPR 0.125 | 27-Nov-16 | 14:41:38 | | 8 | 161127G1_8 | B6K0146-BS1 OPR 0.125 | 27-Nov-16 | 14:54:16 | | 9 | 161127G1_9 | IPA . | 27-Nov-16 | 15:06:54 | | 10 .1 | 161127G1_10 | B6K0123-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:19:32 | | 11 | 161127G1_11 | B6K0142-BLK1 Method Blank 1 | 27-Nov-16 | 15:32:11 | | 12 | 161127G1_12 | B6K0143-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:44:49 | | 13 | 161127G1_13 | B6K0146-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:57:25 | | 14 | 161127G1_14 | 1601395-08RE2 EB-26SW04_161101 0.13015 | 27-Nov-16 | 16:10:00 | | 15 | 161127G1_15 | 1601395-11RE2 FB-26SW04_161101 0.12796 | 27-Nov-16 | 16:22:37 | | 16 | 161127G1_16 | 1601416-01 TW-2C 0.12384 | 27-Nov-16 | 16:35:13 | | 17 | 161127G1_17 | 1601414-12 PFAS-SED01-110116 7.13 | 27-Nov-16 | 16:47:51 | | 18 | 161127G1_18 | 1601414-13 PFAS-SED02-110116 1.6 | 27-Nov-16 | 17:00:28 | | 19 | 161127G1_19 | 1601414-14 PFAS-SED03-110116 1.55 | 27-Nov-16 | 17:13:07 | | 20 | 161127G1_20 | 1601414-15 PFAS-SED04-110216 1.41 | 27-Nov-16 | 17:25:45 | | 21 | 161127G1_21 | B6K0142-MS1 Matrix Spike 1.42 | 27-Nov-16 | 17:38:20 | | 22 | 161127G1_22 | B6K0142-MSD1 Matrix Spike Dup 1.56 | 27-Nov-16 | 17:50:56 | | 23 | 161127G1_23 | 1601414-16 PFAS-SED05-110216 1.36 | 27-Nov-16 | 18:03:31 | | 24 | 161127G1_24 | 1601414-17 PFAS-SED06-110216 1.39 | 27-Nov-16 | 18:16:08 | | 等品层口位下的进行方面的1284cm264cm264cm264cm264cm264cm264cm264cm26 | 161127G1_25 | 1601414-18 PFAS-SED07-110216 1.12 | 27-Nov-16 | 18:28:44 | | Schuldure on Mercial of Total arrange. | 161127G1_26 | IPA | 27-Nov-16 | 18:41:22 | | 27 | 161127G1_27 | ST161127G1-2 PFC CS3.5 16K2701 | 27-Nov-16 | 18:53:59 | | 28 | 161127G1_28 | IPA | 27-Nov-16 | 19:06:35 | | 29 | 161127G1_29 | 1601414-19 PFAS-SED08-110216 1.24 | 27-Nov-16 | 19:19:13 | | 30 | 161127G1_30 | 1601414-20 PFAS-SED-DUP1-110216 1.36 | 27-Nov-16 | 19:31:52 | | 31 7 | 161127G1_31 | 1601451-01 SB01-20161114 0.12236 | 27-Nov-16 | 19:44:30 | Work Order 1601451 Revision 1 Page 91 of 223 MassLynx 4.1 Page 2 of 2 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 09:04:49 Pacific Standard Time Monday, November 28, 2016 09:06:19 Pacific Standard Time ## Compound name: PFBA | | ; Name | ; ID | 'Acq.Date | -Acq.Time | |----|--|--|-----------|-----------| | 32 | ; 161127G1_32 | 1601451-02 EB01-20161114 0.12642 | 27-Nov-16 | 19:57:06 | | 33 | ; 161127G1_33 | 1601451-03 OUAI-MW13-20161114 0.13048 | 27-Nov-16 | 20:09:41 | | 34 | . 161127G1_34 | 1601451-04 OUAI-MW37-20161114 0.13083 | 27-Nov-16 | 20:22:16 | | 35 | ₹ 161127G1_35 | 1601451-05 OUAI-MW37A-20161114 0.13037 | 27-Nov-16 | 20:34:53 | | 36 | 🥳 161127G1_36 | 1601451-06 OUAI-HS03-20161114 0.12985 | 27-Nov-16 | 20:47:29 | | 37 | ुं 161127G1_37 | B6K0143-MS1 Matrix Spike 0.12605 | 27-Nov-16 | 21:00:07 | | 38 | 161127G1_38 | B6K0143-MSD1 Matrix Spike Dup 0.12681 | 27-Nov-16 | 21:12:45 | | 39 | 161127G1_39 | 1601451-07 OUAI-MW19-20161114 0.13066 | 27-Nov-16 | 21:25:23 | | 40 | ੍ਹੈ; 161127G1_40 | 1601451-08 OUAI-MW18-20161114 0.12409 | 27-Nov-16 | 21:37:58 | | 41 | ; 161127G1_41 | IPA | 27-Nov-16 | 21:50:34 | | 42 | 3 161127G1_42 | ST161127G1-3 PFC CS3.5 16K2701 | 27-Nov-16 | 22:03:12 | | 43 | 📈 161127G1_43 | IPA | 27-Nov-16 | 22:15:47 | | 44 | 7 161127G1_44 | 1601451-09 OUAI-MW08-20161114 0.12647 | 27-Nov-16 | 22:28:25 | | 45 | ∰ 161127G1_45 | 1601451-10 OUAI-MW06-20161114 0.12271 | 27-Nov-16 | 22:41:00 | | 46 | 161127G1_46 | 1601461-01 EB02-20161115 0.12859 | 27-Nov-16 | 22:53:37 | | 47 | 161127G1_47 | 1601461-02 OUAI-MW14-20161115 0.12795 | 27-Nov-16 | 23:06:13 | | 48 | 161127G1_48 | 1601461-03 OUAI-MW15-20161115 0.12968 | 27-Nov-16 | 23:18:51 | | 49 | ुँ; 161127G1_49 | 1601461-04 OUAI-MW07-20161115 0.12742 | 27-Nov-16 | 23:31:28 | | 50 |
\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\exittin}\$}\\ \\text{\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | 1601461-05 OUAI-MW23-20161115 0.12602 | 27-Nov-16 | 23:44:07 | | 51 | 🤃 161127G1_51 | 1601461-06 OUAI-MW55-20161115 0.12709 | 27-Nov-16 | 23:56:41 | | 52 | 🎼 161127G1_52 | 1601461-07 OUAI-MW55A-20161115 0.12204 | 28-Nov-16 | 00:09:16 | | 53 | ∰161127G1_53 | 1601461-08 OUAI-MW27-20161115 0.12966 | 28-Nov-16 | 00:21:52 | | 54 | € 161127G1_54 | IPA | 28-Nov-16 | 00:34:30 | | 55 | ्रि: 161127G1_55 | ST161127G1-4 PFC CS3.5 16K2701 | 28-Nov-16 | 00:47:08 | | 56 | : 161127G1_56 | IPA | 28-Nov-16 | 00:59:43 | Work Order 1601451 Revision 1 Page 92 of 223 Quantify Sample Report Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 08:45:05 Pacific Standard Time Monday, November 28, 2016 08:45:08 Pacific Standard Time MassLynx 4.1 Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161127G1_27, Date: 27-Nov-2016, Time: 18:53:59, ID: ST161127G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 93 of 223 Dataset: Untitled Last Altered: Monday, November 28, 2016 08:45:05 Pacific Standard Time Printed: Monday, November 28, 2016 08:45:08 Pacific Standard Time #### Name: 161127G1 27, Date: 27-Nov-2016, Time: 18:53:59, ID: ST161127G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 94 of 223 Page 3 of 4 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 08:45:05 Pacific Standard Time Monday, November 28, 2016 08:45:08 Pacific Standard Time Name: 161127G1_27, Date: 27-Nov-2016, Time: 18:53:59, ID: ST161127G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 95 of 223 Dataset: Untitled Last Altered: Monday, November 28, 2016 08:45:05 Pacific Standard Time Printed: Monday, November 28, 2016 08:45:08 Pacific Standard Time ### Name: 161127G1_27, Date: 27-Nov-2016, Time: 18:53:59, ID: ST161127G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 96 of 223 **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 Page 1 of 2 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-42.qld Last Altered: Printed: Monday, November 28, 2016 08:57:14 Pacific Standard Time Monday, November 28, 2016 08:57:57 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161127G1_42, Date: 27-Nov-2016, Time: 22:03:12, ID: ST161127G1-3 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | #-Name | :Trace | Response - | IS Resp | RRF : | Wt/Vol: | RT: | Conc. | %Rec | | | |----------------------------|-------------------|------------|---------|-------|---------|------|--------|-------|-----------|--| | 1 PFBA | 213.1 > 168.8 | 2.47e4 | 2.55e4 | | 1.000 | 1.90 | 24.7 | | 15-125 | | | 2 PFPeA | 263.1 > 218.9 | 2.02e4 | 9.84e3 | | 1.000 | 2.83 | 25.7 | 102.7 | | | | 3 PFBS | 299 > 79.7 | 2.48e4 | 6.78e3 | | 1.000 | 3.09 | 25.6 | 102.5 | | | | 4 PFHxA | 313.2 > 268.9 | 1.75e4 | 5.38e3 | | 1.000 | 3.45 | 27.2 | 108.7 | | | | 5 PFHpA | 363 > 318.9 | 4.83e4 | 1.52e4 | | 1.000 | 3.96 | 25.7 | 102.9 | | (A) Not used for 8:2FTS. | | 6 PFHxS | 398.9 > 79.6 | 2.15e4 | 6.51e3 | | 1.000 | 4.08 | 24.0 | 96.1 | | Q. D. ETC | | 7 7 6:2 FTS | 427.1 > 407 | 5.90e3 | 5.80e3 | | 1.000 | 4.31 | 28.3 | 113.3 | | 6,7612. | | 8 PFOA | 413 > 368.7 | 4.73e4 | 2.39e4 | | 1.000 | 4.36 | 27.4 | 109.4 | | | | 9 PFHpS | 449 > 98.7 | 4.57e3 | 2.39e4 | | 1.000 | 4.44 | 26.2 | 104.8 | | 1 | | 0 , 10 PFOS | 499 >79.9 | 9.31e3 | 6.18e3 | | 1.000 | 4.76 | 22.8 | 91.1 | | AC 11/20/10 PL 11/28/16 | | 11 FNA | 463 > 418.8 | 3.65e4 | 1.18e4 | | 1.000 | 4.70 | 23.7 | 94.8 | | | | 12 : 12 PFDA | 513 > 468.8 | 7.77e3 | 6.63e3 | | 1.000 | 5.00 | 24.6 | 98.5 | | , | | 13 8:2 FTS | 527 > 506.9 | 1.99e3 | 2.92e3 | | 1.000 | 4.97 | 17.2 (| 68.7 | | بلاء الم | | 4 · · · · · · · 14 13C3-PF | BA 216.1 > 171.8 | 2.55e4 | 1.99e4 | 1.205 | 1.000 | 1.90 | 13.2 | 106.0 | 00-150 | 11/28/10 | | 15 13C3-PF | PeA 266>221.8 | 9.84e3 | 2.16e4 | 0.448 | 1.000 | 2.83 | 12.7 | 101.9 | | | | 16 13C3-PF | BS 302.0 > 98.8 | 6.78e3 | 2.16e4 | 0.302 | 1.000 | 3.09 | 13.0 | 104.0 | | | | 17 13C2-PF | HxA 315 > 269.8 | 5.38e3 | 2.16e4 | 0.620 | 1.000 | 3.45 | 5.03 | 100.7 | | | | 18 13C4-PF | HpA 367.2 > 321.8 | 1.52e4 | 1.41e4 | 1.139 | 1.000 | 3.96 | 11.8 | 94.3 | | | | 19 18O2-PF | HxS 403 > 102.6 | 6.51e3 | 1.41e4 | 0.449 | 1.000 | 4.07 | 12.8 | 102.6 | 4 | | | 20 13C2-6:2 | FTS 429.1 > 408.9 | 5.80e3 | 5.93e3 | 1.073 | 1.000 | 4.31 | 11.4 | 91.3 | 10-150 | | | 21 13C2-PF | OA 414.9 > 369.7 | 2.39e4 | 1.11e4 | 2.262 | 1.000 | 4.36 | 11.9 | | 00-150 | | | 22 13C8-PF | OS 507.0 > 79.9 | 6.18e3 | 5.29e3 | 0.944 | 1.000 | 4.76 | 15.5 | 123.6 | \bigvee | | | 23 13C5-PF | NA 468.2 > 422.9 | 1.18e4 | 1.10e4 | 1.082 | 1.000 | 4.70 | 12.4 | 99.2 | 50-150 | | | 24 13C2-PF | DA 515.1 > 469.9 | 6.63e3 | 7.35e3 | 1.019 | 1.000 | 5.00 | 11.1 | 88.5 | 20-150 | | | 25 25 13C2-8:2 | FTS 529.1 > 508.7 | 2.92e3 | 5.93e3 | 0.569 | 1.000 | 4.97 | 10.8 | 86.8 | f0-150 | | | 26 13C4-PF | BA 217 > 171.8 | 1.99e4 | 1.99e4 | 1.000 | 1.000 | 1.90 | 12.5 | 100.0 | | | | 27 : 27 13C2-4:2 | FTS 329.2 > 308.9 | 5.93e3 | 5.93e3 | 1.000 | 1.000 | 3.36 | 12.5 | 100.0 | | | | 28 13C5-PF | HxA 318.0 > 272.9 | 2.16e4 | 2.16e4 | 1.000 | 1.000 | 3.45 | 12.5 | 100.0 | | | | 29 13C3-PF | HxS 401.9 > 79.9 | 1.41e4 | 1.41e4 | 1.000 | 1.000 | 4.08 | 12.5 | 100.0 | | | | 30 13C8-PF | OA 421.3 > 376 | 1.11e4 | 1.11e4 | 1.000 | 1.000 | 4.36 | 12.5 | 100.0 | | | | 31 13C4-PF | | 5.29e3 | 5.29e3 | 1.000 | 1.000 | 4.76 | 12.5 | 100.0 | | To the state of th | | Order 1601451 Revisio | n
1 | | | | | | | | | Page | Page 97 of 223 Quantify Sample Summary Report MassLynx 4.1 Page 2 of 2 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-42.qld Last Altered: Monday, November 28, 2016 08:57:14 Pacific Standard Time Printed: Monday, November 28, 2016 08:57:57 Pacific Standard Time Name: 161127G1_42, Date: 27-Nov-2016, Time: 22:03:12, ID: ST161127G1-3 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | : #- | Name | Trace . | Response | IS Resp : | RRF : | Wt/Vol; | RT; | Con | c.; %Rec | |---------|-----------|---------------|----------|-----------|-------|---------|------|-----|----------| | 32 32 | 13C9-PFNA | 472.2 > 426.9 | | 1.10e4 | | | 4.70 | 12 | | | 33 , 33 | 13C6-PFDA | 519.1 > 473.7 | 7.35e3 | 7.35e3 | 1.000 | 1.000 | 5.00 | 12 | .5 100.0 | Work Order 1601451 Revision 1 Page 98 of 223 Vista Analytical Laboratory VG-9 Dataset: Untitled Last Altered: Monday, November 28, 2016 09:04:49 Pacific Standard Time Printed: Monday, November 28, 2016 09:06:19 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ## Compound name: PFBA | . Name | (ID) | :Acq.Date | Acq.Time | |-----------------------------------|--|-----------|----------| | 1 | IPA | 27-Nov-16 | 13:25:59 | | 2 ;161127G1_2 | ST161127G1-1 PFC CS3.5 16K2701 | 27-Nov-16 | 13:38:36 | | 3 | IPA | 27-Nov-16 | 13:51:12 | | 4 161127G1_4 | B6K0123-BS1 OPR 0.125 | 27-Nov-16 | 14:03:49 | | 5 161127G1_5 | B6K0142-BS1 OPR 1 | 27-Nov-16 | 14:16:25 | | 6 161127G1_6 | B6K0142-BSD1 LCS Dup 1 | 27-Nov-16 | 14:29:02 | | 7 161127G1_7 | B6K0143-BS1 OPR 0.125 | 27-Nov-16 | 14:41:38 | | 8 161127G1_8 | B6K0146-BS1 OPR 0.125 | 27-Nov-16 | 14:54:16 | | 9 11 11 127G1_9 | IPA . | 27-Nov-16 | 15:06:54 | | 10 (161127G1_10 | B6K0123-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:19:32 | | 11 ;161127G1_11 | B6K0142-BLK1 Method Blank 1 | 27-Nov-16 | 15:32:11 | | 12 161127G1_12 | B6K0143-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:44:49 | | 13 161127G1_13 | B6K0146-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:57:25 | | 14 161127G1_14 | 1601395-08RE2 EB-26SW04_161101 0.13015 | 27-Nov-16 | 16:10:00 | | 15 161127G1_15 | 1601395-11RE2 FB-26SW04_161101 0.12796 | 27-Nov-16 | 16:22:37 | | 16 161127G1_16 | 1601416-01 TW-2C 0.12384 | 27-Nov-16 | 16:35:13 | | 17 161127G1_17 | 1601414-12 PFAS-SED01-110116 7.13 | 27-Nov-16 | 16:47:51 | | 18 , 161127G1_18 | 1601414-13 PFAS-SED02-110116 1.6 | 27-Nov-16 | 17:00:28 | | 19 ; 161127G1_19 | 1601414-14 PFAS-SED03-110116 1.55 | 27-Nov-16 | 17:13:07 | | 20 161127G1_20 | 1601414-15 PFAS-SED04-110216 1.41 | 27-Nov-16 | 17:25:45 | | 21 161127G1_21 | B6K0142-MS1 Matrix Spike 1.42 | 27-Nov-16 | 17:38:20 | | 22 (1) 161127G1_22 | B6K0142-MSD1 Matrix Spike Dup 1.56 | 27-Nov-16 | 17:50:56 | | 23 161127G1_23 | 1601414-16 PFAS-SED05-110216 1.36 | 27-Nov-16 | 18:03:31 | | 24 161127G1_24 | 1601414-17 PFAS-SED06-110216 1.39 | 27-Nov-16 | 18:16:08 | | 25 161127G1_25 | 1601414-18 PFAS-SED07-110216 1.12 | 27-Nov-16 | 18:28:44 | | 26 , , , , , , 161127G1_26 | IPA | 27-Nov-16 | 18:41:22 | | 27 [161127G1_27 | ST161127G1-2 PFC CS3.5 16K2701 | 27-Nov-16 | 18:53:59 | | 28 161127G1_28 | IPA | 27-Nov-16 | 19:06:35 | | 29 161127G1_29 | 1601414-19 PFAS-SED08-110216 1.24 | 27-Nov-16 | 19:19:13 | | 30 161127G1_30 | 1601414-20 PFAS-SED-DUP1-110216 1.36 | 27-Nov-16 | 19:31:52 | | 31 161127G1_31 | 1601451-01 SB01-20161114 0.12236 | 27-Nov-16 | 19:44:30 | Work Order 1601451 Revision 1 Page 99 of 223 MassLynx 4.1 Page 2 of 2 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 09:04:49 Pacific Standard Time Monday, November 28, 2016 09:06:19 Pacific Standard Time ## Compound name: PFBA | : Name | ID . | 'Acq.Date | -Acq.Time | |------------------|--|-----------|-----------| | 32 161127G1_32 | 1601451-02 EB01-20161114 0.12642 | 27-Nov-16 | 19:57:06 | | 33 161127G1_33 | 1601451-03 OUAI-MW13-20161114 0.13048 | 27-Nov-16 | 20:09:41 | | 34 ,161127G1_34 | 1601451-04 OUAI-MW37-20161114 0.13083 | 27-Nov-16 | 20:22:16 | | 35 161127G1_35 | 1601451-05 OUAI-MW37A-20161114 0.13037 | 27-Nov-16 | 20:34:53 | | 36 161127G1_36 | 1601451-06 OUAI-HS03-20161114 0.12985 | 27-Nov-16 | 20:47:29 | | 37 61127G1_37 | B6K0143-MS1 Matrix Spike 0.12605 | 27-Nov-16 | 21:00:07 | | 38 161127G1_38 | B6K0143-MSD1 Matrix Spike Dup 0.12681 | 27-Nov-16 | 21:12:45 | | 39 161127G1_39 | 1601451-07 OUAI-MW19-20161114 0.13066 | 27-Nov-16 | 21:25:23 | | 40 ; 161127G1_40 | 1601451-08 OUAI-MW18-20161114 0.12409 | 27-Nov-16 | 21:37:58 | | 41 , 161127G1_41 | IPA | 27-Nov-16 | 21:50:34 | | 42 | ST161127G1-3 PFC CS3.5 16K2701 | 27-Nov-16 | 22:03:12 | | 43 161127G1_43 | IPA | 27-Nov-16 | 22:15:47 | | 44 161127G1_44 | 1601451-09 OUAI-MW08-20161114 0.12647 | 27-Nov-16 | 22:28:25 | | 45 61127G1_45 | 1601451-10 OUAI-MW06-20161114 0.12271 | 27-Nov-16 | 22:41:00 | | 46 161127G1_46 | 1601461-01 EB02-20161115 0.12859 | 27-Nov-16 | 22:53:37 | | 47 161127G1_47 | 1601461-02 OUAI-MW14-20161115 0.12795 | 27-Nov-16 | 23:06:13 | | 48 1127G1_48 | 1601461-03 OUAI-MW15-20161115 0.12968 | 27-Nov-16 | 23:18:51 | | 49 ; 161127G1_49 | 1601461-04 OUAI-MW07-20161115 0.12742 | 27-Nov-16 | 23:31:28 | | 50 , 161127G1_50 | 1601461-05 OUAI-MW23-20161115 0.12602 | 27-Nov-16 | 23:44:07 | | 51 161127G1_51 | 1601461-06 OUAI-MW55-20161115 0.12709 | 27-Nov-16 | 23:56:41 | | 52 161127G1_52 | 1601461-07 OUAI-MW55A-20161115 0.12204 | 28-Nov-16 | 00:09:16 | | 53 161127G1_53 | 1601461-08 OUAI-MW27-20161115 0.12966 | 28-Nov-16 | 00:21:52 | | 54 161127G1_54 | IPA | 28-Nov-16 | 00:34:30 | | 55 161127G1_55 | ST161127G1-4 PFC CS3.5 16K2701 | 28-Nov-16 | 00:47:08 | | 56 161127G1_56 | IPA | 28-Nov-16 | 00:59:43 | Work Order 1601451 Revision 1 Page 100 of 223 Dataset: Untitled Last Altered: Monday, November 28, 2016 08:45:47 Pacific Standard Time Printed: Monday, November 28, 2016 08:45:50 Pacific Standard Time Name: 161127G1_42, Date: 27-Nov-2016, Time: 22:03:12, ID: ST161127G1-3 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 08:45:47 Pacific Standard Time Monday, November 28, 2016 08:45:50 Pacific Standard Time Work Order 1601451 Revision 1 Page 102 of 223 Page 3 of 4 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 08:45:47 Pacific Standard Time Monday, November 28, 2016 08:45:50 Pacific Standard Time Name: 161127G1_42, Date: 27-Nov-2016, Time: 22:03:12, ID: ST161127G1-3 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 103 of 223 Work Order 1601451 Revision 1 Page 104 of 223 **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 Page 1 of 2 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-55.qld Last Altered: Printed: Monday, November 28, 2016 08:59:45 Pacific Standard Time Monday, November 28, 2016 09:01:03 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161127G1_55, Date: 28-Nov-2016, Time: 00:47:08, ID: ST161127G1-4 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | #-Name | Trace | Response | - IS Resp : | RRF: | Wt/Vol: | RT: | Conc.: %Rec | | |--------------------------|---------------|----------|-------------|-------|---------|------|---|------| | 1 PFBA | 213.1 > 168.8 | 2.42e4 | 2.53e4 | | 1.000 | 1.92 | 24.3 97.2 75-12-5 | | | 2 PFPeA | 263.1 > 218.9 | 1.99e4 | 1.02e4 | | 1.000 | 2.84 | 24.5 98.1 | | | 3 | 299 > 79.7 | 2.53e4 | 6.78e3 | | 1.000 | 3.09 | 26.1 104.6 | | | 4 PFHxA | 313.2 > 268.9 | 1.70e4 | 5.74e3 | | 1.000 | 3.46 | 24.7 98.9 | | | 5 7 FHpA | 363 > 318.9 | 5.10e4 | 1.57e4 | | 1.000 | 3.97 | 26.2 104.6 | | | 6 FFHxS | 398.9 > 79.6 | 2.29e4 | 6.42e3 | | 1.000 | 4.08 | 25.9 103.7 (A) NOT USEA TO | 7 | | 7 6:2 FTS | 427.1 > 407 | 5.53e3 | 6.13e3 | | 1.000 | 4.32 | 26.2 104.6
25.9 103.7
25.4 101.5
25.4 101.7
24.8 99.2
23.1 92.4 | | | 8 PFOA | 413 > 368.7 | 4.94e4 | 2.69e4 | | 1.000 | 4.37 | 25.4 101.7 | | | 9 PFHpS | 449 > 98.7 | 4.87e3 | 2.69e4 | | 1.000 | 4.45 | 24.8 99.2 A Whodite | | | 10 PFOS | 499 >79.9 | 9.40e3 | 6.15e3 | | 1.000 | 4.77 | 23.1 92.4 | | | 11 ; 11 PFNA | 463 > 418.8 | 3.62e4 | 1.12e4 | | 1.000 | 4.71 | 24.7 98.8 | | | 12 PFDA | 513 > 468.8 | 5.67e3 | 5.34e3 | | 1.000 | 5.00 | 22.3 89.2 | Ų | | 13 13 8:2 FTS | 527 > 506.9 | 1.91e3 | 1.41e3 | | 1.000 | 4.98 | 34.9(1)139.6 | | | 14 13C3-PFBA | 216.1 > 171.8 | 2.53e4 | 2.00e4 | 1.205 | 1.000 | 1.91 | 13.1 105.2 00,-150 | | | 15 13C3-PFPeA | 266>221.8 | 1.02e4 | 2.26e4 | 0.448 | 1.000 | 2.84 | 12.6 100.5 | | | 16 13C3-PFBS | 302.0 > 98.8 | 6.78e3 | 2.26e4 | 0.302 | 1.000 | 3.09 | 24.7 98.8
22.3 89.2
34.9 139.6
13.1 105.2
12.6 100.5
12.4 99.3
5.12 102.5 | | | 17 13C2-PFHxA | 315 > 269.8 | 5.74e3 | 2.26e4 | 0.620 | 1.000 | 3.46 | 5.12 102.5 IN 28 K | | | 18 13C4-PFHpA | 367.2 > 321.8 | 1.57e4 | 1.41e4 | 1.139 | 1.000 | 3.97 | 12.2 97.9 | | | 19 | 403 > 102.6 | 6.42e3 | 1.41e4 | 0.449 | 1.000 | 4.08 | 12.6 101.1 | | | 20 13C2-6:2 FTS | 429.1 > 408.9 | 6.13e3 | 6.08e3 | 1.073 | 1.000 | 4.32 | 11.7 93.9 40-150 | | | 21 13C2-PFOA | 414.9 > 369.7 | 2.69e4 | 1.11e4 | 2.262 | 1.000 | 4.37 | 13.4 107.060-150 | | | 22 13C8-PFOS | 507.0 > 79.9 | 6.15e3 | 5.86e3 | 0.944 | 1.000 | 4.77 | 13.9 111.2 | | | 23 13C5-PFNA | 468.2 > 422.9 | 1.12e4 | 1.12e4 | 1.082 | 1.000 | 4.71 | 11.5 92.4 50~150 | | | 24 13C2-PFDA | 515.1 > 469.9 | 5.34e3 | 5.68e3 | 1.019 | 1.000 | 5.00 | 11.5 92.3 60~150 | | | 25 13C2-8:2 FTS | 529.1 > 508.7 | 1.41e3 | 6.08e3 | 0.569 | 1.000 | 4.98 | 5.08 40.6 40-150 | | | 26 13C4-PFBA | 217 > 171.8 | 2.00e4 | 2.00e4 | 1.000 | 1.000 | 1.91 | 12.5 100.0 | | | 27 13C2-4:2 FTS |
329.2 > 308.9 | 6.08e3 | 6.08e3 | 1.000 | 1.000 | 3.36 | 12.5 100.0 | | | 28 13C5-PFHxA | 318.0 > 272.9 | 2.26e4 | 2.26e4 | 1.000 | 1.000 | 3.46 | 12.5 100.0 | | | 29 13C3-PFHxS | 401.9 > 79.9 | 1.41e4 | 1.41e4 | 1.000 | 1.000 | 4.08 | 12.5 100.0 | | | 30 13C8-PFOA | 421.3 > 376 | 1.11e4 | 1.11e4 | 1.000 | 1.000 | 4.37 | 12.5 100.0 | | | 31 13C4-PFOS | 503.0 > 79.9 | 5.86e3 | 5.86e3 | 1.000 | 1.000 | 4.77 | 12.5 100.0 | | | Order 1601451 Revision 1 | _ | | _ | | | | Pa | ge 1 | Page 105 of 223 Quantify Sample Summary Report MassLynx 4.1 Page 2 of 2 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161127G1\161127G1-55.qld Last Altered: Monday, November 28, 2016 08:59:45 Pacific Standard Time Printed: Monday, November 28, 2016 09:01:03 Pacific Standard Time Name: 161127G1_55, Date: 28-Nov-2016, Time: 00:47:08, ID: ST161127G1-4 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | | #-Name | Trace - | Response | - IS Resp ; | RRF : | Wt/Vol; | RT: | Conc.; | %Rec | |------|--------------|---------------|----------|-------------|-------|---------|------|--------|-------| | 32 | 32 13C9-PFNA | 472.2 > 426.9 | 1.12e4 | 1.12e4 | 1.000 | 1.000 | 4.71 | 12.5 | 100.0 | | 33 : | 33 13C6-PFDA | 519.1 > 473.7 | 5.68e3 | 5.68e3 | 1.000 | 1.000 | 5.00 | 12.5 | 100.0 | Work Order 1601451 Revision 1 Page 106 of 223 Vista Analytical Laboratory VG-9 Dataset: Untitled Last Altered: Monday, November 28, 2016 09:04:49 Pacific Standard Time Printed: Monday, November 28, 2016 09:06:19 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 #### Compound name: PFBA | | 'Name | , ID | 'Acq.Date | -Acq.Time | |----|-------------------|--|-----------|-----------| | 1 | 161127G1 1 | IPA | 27-Nov-16 | 13:25:59 | | 2 | 161127G1 2 | ST161127G1-1 PFC CS3.5 16K2701 | 27-Nov-16 | 13:38:36 | | 3 | . 161127G1_3 | IPA | 27-Nov-16 | 13:51:12 | | 4 | 161127G1 4 | B6K0123-BS1 OPR 0.125 | 27-Nov-16 | 14:03:49 | | 5 | 161127G1 5 | B6K0142-BS1 OPR 1 | 27-Nov-16 | 14:16:25 | | 6 | . –
161127G1 6 | B6K0142-BSD1 LCS Dup 1 | 27-Nov-16 | 14:29:02 | | 7 | 161127G1 7 | B6K0143-BS1 OPR 0.125 | 27-Nov-16 | 14:41:38 | | 8 | 161127G1_8 | B6K0146-BS1 OPR 0.125 | 27-Nov-16 | 14:54:16 | | 9 | 161127G1_9 | IPA | 27-Nov-16 | 15:06:54 | | 10 | ,161127G1_10 | B6K0123-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:19:32 | | 11 | 161127G1_11 | B6K0142-BLK1 Method Blank 1 | 27-Nov-16 | 15:32:11 | | 12 | 161127G1_12 | B6K0143-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:44:49 | | 13 | -
161127G1_13 | B6K0146-BLK1 Method Blank 0.125 | 27-Nov-16 | 15:57:25 | | 14 | 161127G1_14 | 1601395-08RE2 EB-26SW04_161101 0.13015 | 27-Nov-16 | 16:10:00 | | 15 | 161127G1_15 | 1601395-11RE2 FB-26SW04_161101 0.12796 | 27-Nov-16 | 16:22:37 | | 16 | 161127G1_16 | 1601416-01 TW-2C 0.12384 | 27-Nov-16 | 16:35:13 | | 17 | 161127G1_17 | 1601414-12 PFAS-SED01-110116 7.13 | 27-Nov-16 | 16:47:51 | | 18 | , 161127G1_18 | 1601414-13 PFAS-SED02-110116 1.6 | 27-Nov-16 | 17:00:28 | | 19 | .161127G1_19 | 1601414-14 PFAS-SED03-110116 1.55 | 27-Nov-16 | 17:13:07 | | 20 | 161127G1_20 | 1601414-15 PFAS-SED04-110216 1.41 | 27-Nov-16 | 17:25:45 | | 21 | -161127G1_21 | B6K0142-MS1 Matrix Spike 1.42 | 27-Nov-16 | 17:38:20 | | 22 | 161127G1_22 | B6K0142-MSD1 Matrix Spike Dup 1.56 | 27-Nov-16 | 17:50:56 | | 23 | 161127G1_23 | 1601414-16 PFAS-SED05-110216 1.36 | 27-Nov-16 | 18:03:31 | | 24 | 161127G1_24 | 1601414-17 PFAS-SED06-110216 1.39 | 27-Nov-16 | 18:16:08 | | 25 | 161127G1_25 | 1601414-18 PFAS-SED07-110216 1.12 | 27-Nov-16 | 18:28:44 | | 26 | 161127G1_26 | IPA | 27-Nov-16 | 18:41:22 | | 27 | ,161127G1_27 | ST161127G1-2 PFC CS3.5 16K2701 | 27-Nov-16 | 18:53:59 | | 28 | 161127G1_28 | IPA | 27-Nov-16 | 19:06:35 | | 29 | -161127G1_29 | 1601414-19 PFAS-SED08-110216 1.24 | 27-Nov-16 | 19:19:13 | | 30 | 161127G1_30 | 1601414-20 PFAS-SED-DUP1-110216 1.36 | 27-Nov-16 | 19:31:52 | | 31 | 161127G1_31 | 1601451-01 SB01-20161114 0.12236 | 27-Nov-16 | 19:44:30 | Work Order 1601451 Revision 1 Page 107 of 223 Untitled Dataset: Last Altered: Monday, November 28, 2016 09:04:49 Pacific Standard Time Monday, November 28, 2016 09:06:19 Pacific Standard Time Printed: ## Compound name: PFBA | | :Name | ·ID | : Acq.Date | -Acq.Time | |----|------------------|--|------------|-----------| | 32 | } 161127G1_32 | 1601451-02 EB01-20161114 0.12642 | 27-Nov-16 | 19:57:06 | | 33 | ; 161127G1_33 | 1601451-03 OUAI-MW13-20161114 0.13048 | 27-Nov-16 | 20:09:41 | | 34 | ; 161127G1_34 | 1601451-04 OUAI-MW37-20161114 0.13083 | 27-Nov-16 | 20:22:16 | | 35 | :161127G1_35 | 1601451-05 OUAI-MW37A-20161114 0.13037 | 27-Nov-16 | 20:34:53 | | 36 | 761127G1_36 | 1601451-06 OUAI-HS03-20161114 0.12985 | 27-Nov-16 | 20:47:29 | | 37 | | B6K0143-MS1 Matrix Spike 0.12605 | 27-Nov-16 | 21:00:07 | | 38 | ် 161127G1_38 | B6K0143-MSD1 Matrix Spike Dup 0.12681 | 27-Nov-16 | 21:12:45 | | 39 | 161127G1_39 | 1601451-07 OUAI-MW19-20161114 0.13066 | 27-Nov-16 | 21:25:23 | | 40 | ्रै 161127G1_40 | 1601451-08 OUAI-MW18-20161114 0.12409 | 27-Nov-16 | 21:37:58 | | 41 | ៊្លី;161127G1_41 | IPA | 27-Nov-16 | 21:50:34 | | 42 | 3 161127G1_42 | ST161127G1-3 PFC CS3.5 16K2701 | 27-Nov-16 | 22:03:12 | | 43 | 43 161127G1_43 | IPA | 27-Nov-16 | 22:15:47 | | 44 | 161127G1_44 | 1601451-09 OUAI-MW08-20161114 0.12647 | 27-Nov-16 | 22:28:25 | | 45 | ₹161127G1_45 | 1601451-10 OUAI-MW06-20161114 0.12271 | 27-Nov-16 | 22:41:00 | | 46 | 161127G1_46 | 1601461-01 EB02-20161115 0.12859 | 27-Nov-16 | 22:53:37 | | 47 | 161127G1_47 | 1601461-02 OUAI-MW14-20161115 0.12795 | 27-Nov-16 | 23:06:13 | | 48 | ្នំ 161127G1_48 | 1601461-03 OUAI-MW15-20161115 0.12968 | 27-Nov-16 | 23:18:51 | | 49 | : 161127G1_49 | 1601461-04 OUAI-MW07-20161115 0.12742 | 27-Nov-16 | 23:31:28 | | 50 | 161127G1_50 | 1601461-05 OUAI-MW23-20161115 0.12602 | 27-Nov-16 | 23:44:07 | | 51 | 161127G1_51 | 1601461-06 OUAI-MW55-20161115 0.12709 | 27-Nov-16 | 23:56:41 | | 52 | 161127G1_52 | 1601461-07 OUAI-MW55A-20161115 0.12204 | 28-Nov-16 | 00:09:16 | | 53 | 161127G1_53 | 1601461-08 OUAI-MW27-20161115 0.12966 | 28-Nov-16 | 00:21:52 | | 54 | 161127G1_54 | IPA | 28-Nov-16 | 00:34:30 | | 55 | 161127G1_55 | ST161127G1-4 PFC CS3.5 16K2701 | 28-Nov-16 | 00:47:08 | | 56 | 161127G1_56 | IPA | 28-Nov-16 | 00:59:43 | Work Order 1601451 Revision 1 Page 108 of 223 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 08:46:03 Pacific Standard Time Monday, November 28, 2016 08:46:06 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161127G1_55, Date: 28-Nov-2016, Time: 00:47:08, ID: ST161127G1-4 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 109 of 223 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 08:46:03 Pacific Standard Time Monday, November 28, 2016 08:46:06 Pacific Standard Time Name: 161127G1_55, Date: 28-Nov-2016, Time: 00:47:08, ID: ST161127G1-4 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 110 of 223 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 08:46:03 Pacific Standard Time Monday, November 28, 2016 08:46:06 Pacific Standard Time Name: 161127G1_55, Date: 28-Nov-2016, Time: 00:47:08, ID: ST161127G1-4 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Page 111 of 223 Work Order 1601451 Revision 1 MassLynx 4.1 Page 4 of 4 Dataset: Untitled Last Altered: Monday, November 28, 2016 08:46:03 Pacific Standard Time Printed: Monday, November 28, 2016 08:46:06 Pacific Standard Time ### Name: 161127G1_55, Date: 28-Nov-2016, Time: 00:47:08, ID: ST161127G1-4 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 112 of 223 **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 Page 1 of 2 Dataset: U:\G1.PRO\Results\2016\161128G1\161128G1-2.qld Last Altered: Printed: Monday, November 28, 2016 14:09:35 Pacific Standard Time Monday, November 28, 2016 14:10:53 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161128G1_2, Date: 28-Nov-2016, Time: 09:06:57, ID: ST161128G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | | #-Name | Trace | Response | IS Resp | RRF · | Wt/Vol | RT: | Conc. | %Rec | | | |----|-----------------------------------|---------------|----------|---------|-------|--------|------|-------|-----------------|----------|---| | 1 | 1 PFBA | 213.1 > 168.8 | 2.05e4 | 2.15e4 | | 1.000 | 1.94 | 24.2 | 96.9 | 15-125 | | | 2 | ; 2 PFPeA | 263.1 > 218.9 | 1.83e4 | 9.71e3 | | 1.000 | 2.86 | 23.6 | 94.6 | 1 1 | | | 3 | , 3 PFBS | 299 > 79.7 | 2.33e4 | 6.37e3 | | 1.000 | 3.11 | 25.6 | 102.6 | | | | 4 | 4 PFHxA | 313.2 > 268.9 | 1.51e4 | 5.03e3 | | 1.000 | 3.48 | 25.1 | 100.5 | | | | 5 | 5 PFHpA | 363 > 318.9 | 4.45e4 | 1.41e4 | | 1.000 | 3.98 | 25.5 | 102.1 | | | | 6 | → 6 PFHxS | 398.9 > 79.6 | 2.14e4 | 5.93e3 | | 1.000 | 4.09 | 26.2 | 104.8 | | a light for (in Ti | | 7 | 7 6:2 FTS | 427.1 > 407 | 5.20e3 | 4.30e3 | | 1.000 | 4.33 | 33.2 | ()132.9 | | (A) NOT USECT TO CO. ZF | | 8 | € 8 PFOA | 413 > 368.7 | 4.99e4 | 2.61e4 | | 1.000 | 4.37 | 26.5 | 105.8 | | or PEDA. | | 9 | ় 9 PFHpS | 449 > 98.7 | 5.15e3 | 2.61e4 | | 1.000 | 4.46 | 27.0 | 108.1 | | 1.10 | | 10 | , 10 PFOS | 499 >79.9 | 1.32e4 | 9.10e3 | | 1.000 | 4.77 | 21.9 | 87.5 | | 100000011U | | 11 | : 11 PFNA | 463 > 418.8 | 4.02e4 | 1.20e4 | | 1.000 | 4.71 | 25.7 | 102.6 | | PO (() DO () | | 12 | : 12 PFDA | 513 > 468.8 | 7.46e3 | 9.32e3 | | 1.000 | 5.01 | 16.8 | (Þ) 67.2 | | | | 13 | - 13 8:2 FTS | 527 >
506.9 | 2.93e3 | 3.14e3 | | 1.000 | 4.99 | 23.8 | 95.2 | | A Not used for 6:2FT or PFDA. AC 11/28/10 Amsc 11/29/16 | | 14 | 14 13C3-PFBA | 216.1 > 171.8 | 2.15e4 | 1.66e4 | 1.205 | 1.000 | 1.94 | 13.5 | 107.7 | 60-150 | mmsc III | | 15 | 15 13C3-PFPeA | 266>221.8 | 9.71e3 | 2.03e4 | 0.448 | 1.000 | 2.86 | 13.4 | 107.2 | | William | | 16 | 16 13C3-PFBS | 302.0 > 98.8 | 6.37e3 | 2.03e4 | 0.302 | 1.000 | 3.10 | 13.0 | 104.1 | | | | 17 | : 17 13C2-PFHxA | 315 > 269.8 | 5.03e3 | 2.03e4 | 0.620 | 1.000 | 3.48 | 5.01 | 100.2 | | | | 18 | , 18 13C4-PFHpA | 367.2 > 321.8 | 1.41e4 | 1.34e4 | 1.139 | 1.000 | 3.98 | 11.6 | 92.5 | | | | 19 | 🕻 19 18O2-PFHxS | 403 > 102.6 | 5.93e3 | 1.34e4 | 0.449 | 1.000 | 4.09 | 12.3 | 98.6 | | | | 20 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 4.30e3 | 5.16e3 | 1.073 | 1.000 | 4.33 | 9.70 | | 40-150 | | | 21 | 21 13C2-PFOA | 414.9 > 369.7 | 2.61e4 | 9.60e3 | 2.262 | 1.000 | 4.37 | 15.0 | 120.2 | 60-150 | | | 22 | 22 13C8-PFOS | 507.0 > 79.9 | 9.10e3 | 7.82e3 | 0.944 | 1.000 | 4.77 | 15.4 | 123.2 | V | | | | 23 13C5-PFNA | 468.2 > 422.9 | 1.20e4 | 1.15e4 | 1.082 | 1.000 | 4.71 | 12.1 | 96.8 | 50-150 | | | 24 | 24 13C2-PFDA | 515.1 > 469.9 | 9.32e3 | 8.79e3 | 1.019 | 1.000 | 5.01 | 13.0 | 104.1 | 40-150 | | | 25 | ੈ: 25 13C2-8:2 FTS | 529.1 > 508.7 | 3.14e3 | 5.16e3 | 0.569 | 1.000 | 4.99 | 13.4 | 106.9 | 40-150 | | | 26 | . 26 13C4-PFBA | 217 > 171.8 | 1.66e4 | 1.66e4 | 1.000 | 1.000 | 1.94 | 12.5 | 100.0 | | | | 27 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 5.16e3 | 5.16e3 | 1.000 | 1.000 | 3.38 | 12.5 | 100.0 | | | | 28 | 28 13C5-PFHxA | 318.0 > 272.9 | 2.03e4 | 2.03e4 | 1.000 | 1.000 | 3.48 | 12.5 | 100.0 | | | | 29 | 29 13C3-PFHxS | 401.9 > 79.9 | 1.34e4 | 1.34e4 | 1.000 | 1.000 | 4.09 | 12.5 | 100.0 | | | | 30 | 30 13C8-PFOA | 421.3 > 376 | 9.60e3 | 9.60e3 | 1.000 | 1.000 | 4.37 | 12.5 | 100.0 | | | | 31 | , 31 13C4-PFOS
1451 Revision 1 | 503.0 > 79.9 | 7.82e3 | 7.82e3 | 1.000 | 1.000 | 4.77 | 12.5 | 100.0 | | Page 113 | Page 113 of 223 Quantify Sample Summary Report MassLynx 4.1 Page 2 of 2 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161128G1\161128G1-2.qld Last Altered: Monday, November 28, 2016 14:09:35 Pacific Standard Time Printed: Monday, November 28, 2016 14:10:53 Pacific Standard Time Name: 161128G1_2, Date: 28-Nov-2016, Time: 09:06:57, ID: ST161128G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | William Filtrania and American | #-Name | Trace | Response | IS Resp ; | RRF; | Mt/Vol; | RT; | Conc.; | %Rec | |--------------------------------|-------------|---------------|----------|-----------|-------|---------|------|--------|-------| | 32 : 3 | 2 13C9-PFNA | 472.2 > 426.9 | 1.15e4 | 1.15e4 | 1.000 | 1.000 | 4.71 | 12.5 | 100.0 | | 32 3
33 3 | 3 13C6-PFDA | 519.1 > 473.7 | 8.79e3 | 8.79e3 | 1.000 | 1.000 | 5.01 | 12.5 | 100.0 | Work Order 1601451 Revision 1 Page 114 of 223 **Quantify Compound Summary Report** MassLynx 4.1 Page 1 of 1 Vista Analytical Laboratory VG-9 Dataset: Untitled Last Altered: Printed: Tuesday, November 29, 2016 07:55:03 Pacific Standard Time Tuesday, November 29, 2016 07:55:40 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 #### Compound name: PFBA | Name | ZID . | | Acq.Date . | Acq.Time | |----------------|--------------------------|-------------------------|------------|----------| | 1 ,161128G1_ | 1 IPA | | 28-Nov-16 | 08:54:20 | | 2 [161128G1_ | 2 ST161128G1-1 PFC | CS3.5 16K2701 | 28-Nov-16 | 09:06:57 | | 3 | 3 IPA | | 28-Nov-16 | 09:19:33 | | 4 161128G1_ | 4 B6K0165-BS1 OPR | 0.125 | 28-Nov-16 | 09:32:10 | | 5 161128G1_ | 5 IPA | | 28-Nov-16 | 09:44:45 | | 6 (161128G1_ | 6 B6K0165-BLK1 Meth | od Blank 0.125 | 28-Nov-16 | 09:57:24 | | 7 161128G1_ | 7 1601433-16@5X WU | JRTS-VAS11022-27-30 0 | 28-Nov-16 | 10:10:00 | | 8 ;161128G1_ | 8 1601451-09@5X OU | AI-MW08-20161114 0.12 | 28-Nov-16 | 10:22:38 | | 9 ; 161128G1_ | 9 1601461-09 OUAI-M | W25-20161115 0.11991 | 28-Nov-16 | 10:35:17 | | 10 ,161128G1_ | 10 1601461-10 OUAI-M | W11-20161115 0.1289 | 28-Nov-16 | 10:47:53 | | 11 , 161128G1_ | 11 1601460-01 Outfall-5 | 5 (420-113272-1) 0.125 | 28-Nov-16 | 11:00:31 | | 12 | 12 1601460-02 Outfall-4 | 4 (420-113272-2) 0.125 | 28-Nov-16 | 11:13:09 | | 13 161128G1_ | 13 1601460-03 Outfall-7 | 7 (420-113272-4) 0.125 | 28-Nov-16 | 11:25:46 | | 14 161128G1_ | 14 1601460-04 Outfall-6 | 6 (420-113272-5) 0.125 | 28-Nov-16 | 11:38:24 | | 15 161128G1_ | .15 1601460-05 Outfall-9 | 9A (420-113272-6) 0.125 | 28-Nov-16 | 11:51:02 | | 16 761128G1_ | 16 1601460-06 Outfall-9 | 9B (420-113272-7) 0.125 | 28-Nov-16 | 12:03:41 | | 17 161128G1_ | 17 IPA | | 28-Nov-16 | 12:16:16 | | 18 , 161128G1_ | 18 ST161128G1-2 PFC | CS3.5 16K2701 | 28-Nov-16 | 12:28:54 | | 19 | .19 IPA | | 28-Nov-16 | 12:41:29 | Work Order 1601451 Revision 1 Page 115 of 223 # LC Calibration Standards Review Checklist ______ | | | | ION Ratio | Concentration | C-Cals
Name | Sign
Date | Correct
I-Cai | Manaul
Integrations | NA | |-----------------|---------------|----------|-----------|---------------|----------------|--------------|------------------|------------------------|-----| | Calibration ID: | ST16112861-1 | L M H | MATE | | | | U | U | 口 | | Calibration ID: | -2 | LMH | | | U | | | Ø | 1 | | Calibration ID: | | LMH | | | | | | | | | Calibration ID: | | LMH
- | | | | | | | | | Calibration ID: | | LMH | | | | | | | | | Calibration ID: | | LMH | | | | | | | | | Calibration ID: | | LMH
- | | | | | | | | | Calibration ID: | | LMH | | | | | | | | | Calibration ID: | | LMH | | | | | | | | | Calibration ID: | | LMH | | | | | | | | | | | | | | | Fuli Ma | ıss Cal. [| Date: 11 21 | 116 | | | | | | | | Commo | ents: | | | | Reviewed By: | AWGU 11 29 14 | | | | | | | | , | Page 1 of 4 Dataset: Untitled 3.50 3.00 4.00 4.50 5.00 Last Altered: Printed: Monday, November 28, 2016 13:58:40 Pacific Standard Time Monday, November 28, 2016 13:59:40 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS A FULL LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16 FULL A.cdb 22 Nov 2016 15:25:21 Name: 161128G1 2, Date: 28-Nov-2016, Time: 09:06:57, ID: ST161128G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 117 of 223 4.00 4.50 5.00 3.50 3.00 3.50 3.00 4.00 4.50 5.00 Dataset: Untitled Last Altered: Monday, November 28, 2016 13:58:40 Pacific Standard Time Printed: Monday, November 28, 2016 13:59:40 Pacific Standard Time Work Order 1601451 Revision 1 Page 118 of 223 MassLynx 4.1 Page 3 of 4 Dataset: Untitled Last Altered: Monday, November 28, 2016 13:58:40 Pacific Standard Time Printed: Monday, November 28, 2016 13:59:40 Pacific Standard Time Name: 161128G1_2, Date: 28-Nov-2016, Time: 09:06:57, ID: ST161128G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 119 of 223 Dataset: Untitled Last Altered: Monday, November 28, 2016 13:58:40 Pacific Standard Time Printed: Monday, November 28, 2016 13:59:40 Pacific Standard Time ## Name: 161128G1_2, Date: 28-Nov-2016, Time: 09:06:57, ID: ST161128G1-1 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Page 1 of 2 Dataset: U:\G1.PRO\Results\2016\161128G1\161128G1-18.qld Last Altered: Printed: Monday, November 28, 2016 14:03:31 Pacific Standard Time Monday, November 28, 2016 14:05:16 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161128G1_18, Date: 28-Nov-2016, Time: 12:28:54, ID: ST161128G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | | #-Name | Trace | Response | IS Resp | RRF: | Wt/Vol: | RT: | Conc. | %Rec | | | |------------|-------------------------------|---------------|----------|---------|-------|---------|------|--------|-------|--------------|-------------------------| | 1 | 1 PFBA | 213.1 > 168.8 | 1.96e4 | 2.03e4 | | 1.000 | 1.95 | 24.6 | 98.6 | 75-125 | | | 2 | 2 PFPeA | 263.1 > 218.9 | 1.75e4 | 8.38e3 | | 1.000 | 2.86 | 26.1 | 104.4 | | | | 3 | 3 PFBS | 299 > 79.7 | 2.34e4 | 6.31e3 | | 1.000 | 3.11 | 26.0 | 104.0 | ì | | | 4 | 4 PFHxA | 313.2 > 268.9 | 1.51e4 | 4.38e3 | | 1.000 | 3.48 | 28.8 | 115.1 | | | | 5 | 5 PFHpA | 363 > 318.9 | 4.54e4 | 1.46e4 | | 1.000 | 3.99 | 25.1 | 100.4 | | | | | 6 PFHxS | 398.9 > 79.6 | 2.07e4 | 6.06e3 | | 1.000 | 4.10 | 24.8 | 99.2 | | | | 7 Santario | 7 6:2 FTS | 427.1 > 407 | 5.86e3 | 5.18e3 | | 1.000 | 4.33 | 31.2 | 124.8 | | | | 3 | 8 PFOA | 413 > 368.7 | 4.86e4 | 2.57e4 | | 1.000 | 4.38 | 26.2 | 104.7 | į | | | 9 | 9 PFHpS | 449 > 98.7 | 4.91e3 | 2.57e4 | | 1.000 | 4.46 | 26.1 | 104.6 | | | | io · | 10 PFOS | 499 >79.9 | 1.15e4 | 8.98e3 | | 1.000 | 4.77 | 19.4 | 77.7 | | A \(\tau_1 \) | | 11 | 11 PFNA | 463 > 418.8 | 3.80e4 | 1.32e4 | | 1.000 | 4.71 | 22.0 | 87.9 | 1 | 11/20/14
AMS C 11/29 | | 2 | 12 PFDA | 513 > 468.8 | 9.07e3 | 7.56e3 | | 1.000 | 5.01 | 25.2 | 100.8 | 1. | ' hally | | | 13 8:2 FTS | 527 > 506.9 | 3.14e3 | 2.64e3 | | 1.000 | 4.99 | 30.4 | 121.6 | \checkmark | 11,50,1 | | 4 | 14 13C3-PFBA | 216.1 > 171.8 | 2.03e4 | 1.61e4 | 1.205 | 1.000 | 1.95 | 13.0 | 104.4 | 60-150 | . (0) | | 5 | 15 13C3-PFPeA | 266>221.8 | 8.38e3 | 1.85e4 | 0.448 | 1.000 | 2.86 | 12.6 | 101.0 | 1 | 1110 | | 6 | 16 13C3-PFBS | 302.0 > 98.8 | 6.31e3 | 1.85e4 | 0.302 | 1.000 | 3.11 | 14.1 | 112.7 | ŀ | AMD | | 7 | 17 13C2-PFHxA | 315 > 269.8 | 4.38e3 | 1.85e4 | 0.620 | 1.000 | 3.48 | 4.76 | 95.3 | 1 | · | | | 18 13C4-PFHpA | 367.2 > 321.8 | 1.46e4 | 1.33e4 | 1.139 | 1.000 | 3.98 | 12.1 | 96.9 | | | | 19 | 19 18O2-PFHxS | 403 > 102.6 | 6.06e3 | 1.33e4 | 0.449 | 1.000 | 4.09 | 12.7 | 101.7 | J | | | 0 | 20 13C2-6:2 FTS | 429.1 > 408.9 | 5.18e3 | 5.16e3 | 1.073 | 1.000 | 4.33 | 11.7 | 93.6 | 40-150 | | | 21 | 21 13C2-PFOA | 414.9 > 369.7 | 2.57e4 | 1.22e4 | 2.262 | 1.000 | 4.38 | 11.7 | 93.5 |
60-150 | | | 22 | 22 13C8-PFOS | 507.0 > 79.9 | 8.98e3 | 7.71e3 | 0.944 | 1.000 | 4.77 | 15.4 | 123.3 | \checkmark | | | | 23 13C5-PFNA | 468.2 > 422.9 | 1.32e4 | 1.25e4 | 1.082 | 1.000 | 4.71 | 12.3 | 98.0 | 50-150 | | | 24 | 24 13C2-PFDA | 515.1 > 469.9 | 7.56e3 | 9.70e3 | 1.019 | 1.000 | 5.01 | 9.56 | 76.4 | 60-150 | | | 25 | 25 13C2-8:2 FTS | 529.1 > 508.7 | 2.64e3 | 5.16e3 | 0.569 | 1.000 | 4.99 | . 11.3 | | 40-150 | | | 26 | 26 13C4-PFBA | 217 > 171.8 | 1.61e4 | 1.61e4 | 1.000 | 1.000 | 1.94 | 12.5 | 100.0 | | | | 27 | 27 13C2-4:2 FTS | 329.2 > 308.9 | 5.16e3 | 5.16e3 | 1.000 | 1.000 | 3.38 | 12.5 | 100.0 | | | | 28 | 28 13C5-PFHxA | 318.0 > 272.9 | 1.85e4 | 1.85e4 | 1.000 | 1.000 | 3.48 | 12.5 | 100.0 | | | | 29 : | 29 13C3-PFHxS | 401.9 > 79.9 | 1.33e4 | 1.33e4 | 1.000 | 1.000 | 4.09 | 12.5 | 100.0 | | | | 30 : | 30 13C8-PFOA | 421.3 > 376 | 1.22e4 | 1.22e4 | 1.000 | 1.000 | 4.38 | 12.5 | 100.0 | | | | 31 | 31 13C4-PFOS
ST Revision I | 503.0 > 79.9 | 7.71e3 | 7.71e3 | 1.000 | 1.000 | 4.77 | 12.5 | 100.0 | | | Page 121 of 223 Quantify Sample Summary Report MassLynx 4.1 Page 2 of 2 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161128G1\161128G1-18.qld Last Altered: Monday, November 28, 2016 14:03:31 Pacific Standard Time Printed: Monday, November 28, 2016 14:05:16 Pacific Standard Time #### Name: 161128G1_18, Date: 28-Nov-2016, Time: 12:28:54, ID: ST161128G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A | | #-Name | Trace | . Response | IS Resp | RRF: | Wt/Vol: | RT: | Conc. | %Rec | |------|--------|---------------|------------|---------|-------|---------|------|-------|-------| | 32 | | 472.2 > 426.9 | 1.25e4 | 1.25e4 | 1.000 | 1.000 | 4.71 | 12.5 | 100.0 | | 33 : | | 519.1 > 473.7 | 9.70e3 | 9.70e3 | 1.000 | 1.000 | 5.01 | 12.5 | 100.0 | Work Order 1601451 Revision 1 Page 122 of 223 MassLynx 4.1 Page 1 of 1 Vista Analytical Laboratory VG-9 Untitled Dataset: Last Altered: Tuesday, November 29, 2016 07:55:03 Pacific Standard Time Tuesday, November 29, 2016 07:55:40 Pacific Standard Time Printed: Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 ## Compound name: PFBA | Name | ;ID | Acq.Date . | Acq.Time | |------------------|--|------------|----------| | 1 161128G1_1 | IPA | 28-Nov-16 | 08:54:20 | | 2 ,161128G1_2 | ST161128G1-1 PFC CS3.5 16K2701 | 28-Nov-16 | 09:06:57 | | 3 , 161128G1_3 | IPA | 28-Nov-16 | 09:19:33 | | 4 161128G1_4 | B6K0165-BS1 OPR 0.125 | 28-Nov-16 | 09:32:10 | | 5 161128G1_5 | IPA | 28-Nov-16 | 09:44:45 | | 6 161128G1_6 | B6K0165-BLK1 Method Blank 0.125 | 28-Nov-16 | 09:57:24 | | 7 161128G1_7 | 1601433-16@5X WURTS-VAS11022-27-30 0 | 28-Nov-16 | 10:10:00 | | 8 161128G1_8 | 1601451-09@5X OUAI-MW08-20161114 0.12 | 28-Nov-16 | 10:22:38 | | 9 161128G1_9 | 1601461-09 OUAI-MW25-20161115 0.11991 | 28-Nov-16 | 10:35:17 | | 10 , 161128G1_10 | 1601461-10 OUAI-MW11-20161115 0.1289 | 28-Nov-16 | 10:47:53 | | 11 ,161128G1_11 | 1601460-01 Outfall-5 (420-113272-1) 0.125 | 28-Nov-16 | 11:00:31 | | 12 161128G1_12 | 1601460-02 Outfall-4 (420-113272-2) 0.125 | 28-Nov-16 | 11:13:09 | | 13 161128G1_13 | 1601460-03 Outfall-7 (420-113272-4) 0.125 | 28-Nov-16 | 11:25:46 | | 14 161128G1_14 | 1601460-04 Outfall-6 (420-113272-5) 0.125 | 28-Nov-16 | 11:38:24 | | 15 161128G1_15 | 1601460-05 Outfall-9A (420-113272-6) 0.125 | 28-Nov-16 | 11:51:02 | | 16 161128G1_16 | 1601460-06 Outfall-9B (420-113272-7) 0.125 | 28-Nov-16 | 12:03:41 | | 17 161128G1_17 | IPA | 28-Nov-16 | 12:16:16 | | 18 , 161128G1_18 | ST161128G1-2 PFC CS3.5 16K2701 | 28-Nov-16 | 12:28:54 | | 19 ,161128G1_19 | IPA | 28-Nov-16 | 12:41:29 | Page 123 of 223 Work Order 1601451 Revision 1 Page 1 of 4 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 14:00:45 Pacific Standard Time Monday, November 28, 2016 14:00:56 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 28 Nov 2016 07:43:22 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC Q1_11-22-16 FULL A.cdb 22 Nov 2016 15:25:21 Name: 161128G1_18, Date: 28-Nov-2016, Time: 12:28:54, ID: ST161128G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 124 of 223 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 14:00:45 Pacific Standard Time Monday, November 28, 2016 14:00:56 Pacific Standard Time Name: 161128G1_18, Date: 28-Nov-2016, Time: 12:28:54, ID: ST161128G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 125 of 223 Work Order 1601451 Revision 1 Page 126 of 223 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 14:00:45 Pacific Standard Time Monday, November 28, 2016 14:00:56 Pacific Standard Time Name: 161128G1_18, Date: 28-Nov-2016, Time: 12:28:54, ID: ST161128G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 127 of 223 MassLynx 4.1 Page 4 of 4 Dataset: Untitled Last Altered: Printed: Monday, November 28, 2016 14:00:45 Pacific Standard Time Monday, November 28, 2016 14:00:56 Pacific Standard Time Name: 161128G1_18, Date: 28-Nov-2016, Time: 12:28:54, ID: ST161128G1-2 PFC CS3.5 16K2701, Description: PFC CS3.5 16K2701 A Work Order 1601451 Revision 1 Page 128 of 223 # INITIAL CALIBRATION Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 22 Nov 2016 14:48:05 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Compound name: PFBA Correlation coefficient: r = 0.999216, $r^2 = 0.998432$ Calibration curve: 0.492927 * x + -0.0410615 Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | ARMININE. | #-Name | - Std. Conc - | RT: | Resp | IS Resp | Conc. | ; RRF | %Dev | |-----------|---------------|---------------|------|--------|---------|-------|-------|-------| | 1 : | 1 161122G2_2 | 0.500 | 1.93 | 4.29e2 | 2.07e4 | 0.608 | 0.518 | 21.7 | | 2 : | 2 161122G2_3 | 1.00 | 1.93 | 7.79e2 | 2.25e4 | 0.959 | 0.432 | -4.1 | | 3 : | 3 161122G2_4 | 2.00 | 1.93 | 1.63e3 | 2.32e4 | 1.86 | 0.439 | -6.8 | | 4 | 4 161122G2_5 | 5.00 | 1.93 | 3.55e3 | 2.31e4 | 3.97 | 0.383 | -20.6 | | 5 | 5 161122G2_6 | 10.0 | 1.93 | 8.96e3 | 2.17e4 | 10.6 | 0.516 | 5.6 | | 6 | 6 161122G2_7 | 25.0 | 1.93 | 1.94e4 | 1.87e4 | 26.4 | 0.519 | 5.5 | | 7 | 7 161122G2_8 | 50.0 | 1.93 | 3.75e4 | 1.90e4 | 50.0 | 0.492 | 0.0 | | 8 | 8 161122G2_9 | 75.0 | 1.93 | 5.74e4 | 1.98e4 | 73.5 | 0.482 | -2.0 | | 9 | 9 161122G2_10 | 100 | 1.93 | 7.24e4 | 1.83e4 | 101 | 0.496 | 0.7 | Compound name: PFPeA Correlation coefficient: r = 0.999341, $r^2 = 0.998683$ Calibration curve: 1.00273 * x + -0.119981 Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | 25. AGR. | ; #-Name | - Std. Conc - | , a sa K di | Resp | IS Resp | Conc. | : RRF | %Dev | |----------|--|---------------|------------------------|--------|---------|-------|-------|-------| | 1 | iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | 0.500 | 2.85 | 3.66e2 | 9.28e3 | 0.611 | 0.986 | 22.2 | | 2 | 2 161122G2_3 | 1.00 | 2.85 | 6.80e2 | 9.67e3 | 0.996 | 0.879 | -0.4 | | 3 | 3 161122G2_4 | 2.00 | 2.86 | 1.32e3 | 9.90e3 | 1.79 | 0.836 | -10.6 | | 4 | 4 161122G2_5 | 5.00 | 2.85 | 3.20e3 | 1.02e4 | 4.02 | 0.782 | -19.6 | | 5 | 5 161122G2_6 | 10.0 | 2.85 | 8.05e3 | 9.55e3 | 10.6 | 1.05 | 6.4 | | 6 | 6 161122G2_7 | 25.0 | 2.85 | 1.68e4 | 8.18e3 | 25.7 | 1.03 | 2.7 | | 7 | 7 161122G2_8 | 50.0 | 2.85 | 3.26e4 | 8.27e3 | 49.3 | 0.986 | -1.5 | | 8 | 8 161122G2_9 | 75.0 | 2.85 | 4.96e4 | 8.14e3 | 76.0 | 1.01 | 1.4 | | Work Or | der 1601943611222G2-10 | 100 | 2.85 | 5.76e4 | 7.23e3 | 99.5 | 0.996 | -0.5 | 11/22/16 CS 45 \$ 5 excluded from 6:2FTS regression. Page 130 of 223 Dataset: Printed: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: PFBS Correlation coefficient: r = 0.999283, $r^2 = 0.998566$ Calibration curve: 1.79216 * x + -0.145672 Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | | #-Name | Std. Conc - | RT: | Resp | : IS Resp | Conc. | : RRF: | %Dev | |-----|---------------|-------------|------|--------|-----------|-------|--------|-------| | 1 | 1 161122G2_2 | 0.500 | 3.10 | 4.84e2 | 6.26e3 | 0.620 | 1.93 | 24.1 | | 2 | 2 161122G2_3 | 1.00 | 3.10 | 8.53e2 | 6.27e3 | 1.03 | 1.70 | 3.1 | | 3 | 3 161122G2_4 | 2.00 | 3.10 | 1.59e3 | 6.78e3 | 1.72 | 1.47 | -14.0 | | 4 | 4 161122G2_5 | 5.00 | 3.10 | 4.15e3 | 7.36e3 | 4.01 | 1.41 | -19.7 | | 5 | 5 161122G2_6 | 10.0 | 3.10 | 9.73e3 | 6.40e3 | 10.7 | 1.90 | 7.0 | | 6 | 6 161122G2_7 | 25.0 | 3.10 | 2.06e4 | 5.76e3 | 25.0 | 1.79 | -0.1 | | 7 | 7 161122G2_8 | 50.0 | 3.10 | 3.75e4 | 5.35e3 | 48.9 | 1.75 | -2.2 | | 8 | 8 161122G2_9 | 75.0 | 3.10 | 5.77e4 | 5.29e3 | 76.2 | 1.82 | 1.6 | | 9 : | 9 161122G2_10 | 100 | 3.10 | 7.03e4 | 4.89e3 | 100 | 1.80 | 0.4 | Compound name: PFHxA Correlation coefficient: r = 0.999245, r^2 = 0.998491 Calibration curve: 0.598427 * x + 0.0095449 Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | | #-Name | Std. Conc | ŘŤ: | Resp | IS Resp | Conc | RRF: | %Dev | |-----------------------|---------------|-----------|------|--------|---------|-------|-------|-------| | 1 - 1 - 1 - 1 - 1 | 1 161122G2_2 | 0.500 | 3.47 | 3.91e2 | 5.21e3 | 0.612 | 0.751 | 22.3 | | 2 | 2 161122G2_3 | 1.00 | 3.47 | 6.55e2 | 5.44e3 | 0.989 | 0.602 | -1.1 |
 3 | 3 161122G2_4 | 2.00 | 3.47 | 1.13e3 | 5.54e3 | 1.69 | 0.512 | -15.3 | | 4 | 4 161122G2_5 | 5.00 | 3.47 | 2.82e3 | 5.55e3 | 4.23 | 0.508 | -15.5 | | 5 | 5 161122G2_6 | 10.0 | 3.47 | 6.63e3 | 5.30e3 | 10.4 | 0.625 | 4.3 | | 6 | 6 161122G2_7 | 25.0 | 3.47 | 1.40e4 | 4.52e3 | 25.9 | 0.621 | 3.6 | | 7. ((()))(())(())(()) | 7 161122G2_8 | 50.0 | 3.47 | 2.69e4 | 4.31e3 | 52.1 | 0.624 | 4.2 | | 8 | 8 161122G2_9 | 75.0 | 3.47 | 4.00e4 | 4.48e3 | 74.5 | 0.594 | -0.7 | | 9 | 9 161122G2_10 | 100 | 3.47 | 4.95e4 | 4.22e3 | 98.0 | 0.587 | -2.0 | Work Order 1601451 Revision 1 Page 131 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: PFHpA Correlation coefficient: r = 0.999639, $r^2 = 0.999279$ Calibration curve: 1.55279 * x + -0.138431 Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | Chinal Brack val. | #-Name | - Std. Conc | RT: | Resp | : IS Resp | Conc. | RRF: | %Dev | |-------------------|---------------|-------------|------|--------|-----------|-------|------|-------| | 1.00 | 1 161122G2_2 | 0.500 | 3.98 | 9.73e2 | 1.51e4 | 0.608 | 1.61 | 21.5 | | 2 | 2 161122G2_3 | 1.00 | 3.98 | 1.74e3 | 1.58e4 | 0.979 | 1.38 | -2.1 | | 3 | 3 161122G2_4 | 2.00 | 3.98 | 3.68e3 | 1.71e4 | 1.82 | 1.34 | -9.2 | | 4 | 4 161122G2_5 | 5.00 | 3.98 | 8.49e3 | 1.63e4 | 4.28 | 1.30 | -14.3 | | 5 | 5 161122G2_6 | 10.0 | 3.98 | 2.03e4 | 1.60e4 | 10.3 | 1.58 | 3.0 | | 6 | 6 161122G2_7 | 25.0 | 3.98 | 4.48e4 | 1.42e4 | 25.4 | 1.57 | 1.7 | | 7 | 7 161122G2_8 | 50.0 | 3.98 | 8.30e4 | 1.36e4 | 49.2 | 1.52 | -1.7 | | 8 | 8 161122G2_9 | 75.0 | 3.98 | 1.27e5 | 1.35e4 | 75.5 | 1.56 | 0.7 | | 9 | 9 161122G2_10 | 100 | 3.98 | 1.54e5 | 1.23e4 | 100 | 1.56 | 0.4 | Compound name: PFHxS Correlation coefficient: r = 0.998761, $r^2 = 0.997524$ Calibration curve: 1.72095 * x + -0.0266266 Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | #-Name | - Std. Conc - | RT | Resp | : IS Resp | Conc. | RRF | %Dev | |-------------|---------------|------|--------|-----------|-------|------|-------| | 1 161122G | 2_2 0.500 | 4.09 | 4.64e2 | 6.01e3 | 0.576 | 1.93 | 15.3 | | 2 161122G | 2_3 1.00 | 4.09 | 8.63e2 | 6.30e3 | 1.01 | 1.71 | 1.1 | | 3 | 2_4 2.00 | 4.09 | 1.70e3 | 7.02e3 | 1.78 | 1.51 | -11.2 | | 4 161122G | 2_5 5.00 | 4.09 | 3.79e3 | 6.33e3 | 4.36 | 1.49 | -12.8 | | 5 161122G | 2_6 10.0 | 4.09 | 8.81e3 | 6.15e3 | 10.4 | 1.79 | 4.1 | | 6 161122G | 2_7 25.0 | 4.09 | 2.00e4 | 5.33e3 | 27.2 | 1.87 | 8.9 | | 7 7 161122G | 2_8 50.0 | 4.09 | 3.53e4 | 5.46e3 | 47.1 | 1.62 | -5.9 | | 8 161122G | 2_9 75.0 | 4.09 | 5.41e4 | 5.36e3 | 73.4 | 1.68 | -2.2 | | 9 161122G | 2_10 100 | 4.09 | 7.00e4 | 4.95e3 | 103 | 1.77 | 2.7 | Work Order 1601451 Revision 1 Page 132 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time ## Compound name: 6:2 FTS Coefficient of Determination: R^2 = 0.978941 Calibration curve: $0.00135992 * x^2 + 0.414129 * x + -0.114975$ Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x^2, Axis trans: None | | #-Name | - Std. Conc - | RT. | Resp | : IS Resp | Conc | RRF: | %Dev | |-------|---------------|---------------|------|--------|-----------|-------|-------|-------| | 1 | 1 161122G2_2 | 0.500 | 4.33 | 4.92e1 | 6.03e3 | 0.523 | 0.204 | 4.6 | | 2 : | 2 161122G2_3 | 1.00 | 4.33 | 1.34e2 | 6.29e3 | 0.919 | 0.267 | -8.1 | | 3 | 3 161122G2_4 | 2.00 | 4.33 | 3.55e2 | 6.05e3 | 2.03 | 0.366 | 1.7 | | 4 | 4 161122G2_5 | 5.00 | 4.32 | 9.08e2 | 6.94e3 | 4.17 | 0.327 | -16.6 | | 5 😑 😽 | 5 161122G2_6 | 10.0 | 4.32 | 1.95e3 | 5.43e3 | 10.7 | 0.449 | 7.3 | | 6 | 6 161122G2_7 | 25.0 | 4.32 | 5.91e3 | 5.54e3 | 29.6 | 0.534 | 18.5 | | 7 | 7 161122G2_8 | 50.0 | 4.32 | 9.32e3 | 5.35e3 | 45.9 | 0.436 | -8.1 | | 8 | 8 161122G2_9 | 75.0 | 4.32 | 1.61e4 | 7.05e3 | 58.2 | 0.381 | -22.5 | | 9 | 9 161122G2_10 | 100 | 4.32 | 2.02e4 | 6.58e3 | 74.5 | 0.383 | -25.5 | # Compound name: PFOA Correlation coefficient: r = 0.999524, $r^2 = 0.999048$ Calibration curve: 0.899906 * x + 0.0917344 Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | #-Name | - Std. Conc | RT: | Resp | IS Resp | Conc. | RRF | %Dev | |----------------|--------------|------|--------|---------|-------|-------|-------| | 1 161122G2_2 | 0.500 | 4.37 | 1.09e3 | 2.40e4 | 0.527 | 1.13 | 5.5 | | 2 161122G2_3 | 1.00 | 4.37 | 2.24e3 | 2.87e4 | 0.983 | 0.976 | -1.7 | | 3 3 161122G2_4 | 2.00 | 4.37 | 4.08e3 | 2.79e4 | 1.93 | 0.915 | -3.4 | | 4 161122G2_5 | 5.00 | 4.37 | 9.24e3 | 2.85e4 | 4.40 | 0.811 | -11.9 | | 5 161122G2_6 | 10.0 | 4.37 | 2.04e4 | 2.60e4 | 10.8 | 0.982 | 8.1 | | 6 161122G2_7 | 25.0 | 4.37 | 4.59e4 | 2.44e4 | 26.0 | 0.941 | 4.2 | | 7 161122G2_8 | 50.0 | 4.37 | 8.53e4 | 2.35e4 | 50.3 | 0.908 | 0.7 | | 8 161122G2_9 | 7 5.0 | 4.37 | 1.30e5 | 2.38e4 | 75.6 | 0.908 | 8.0 | | 9 161122G2_10 | 100 | 4.37 | 1.53e5 | 2.17e4 | 97.9 | 0.882 | -2.1 | Work Order 1601451 Revision 1 Page 133 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time #### Compound name: PFHpS Correlation coefficient: r = 0.997800, r^2 = 0.995604 Calibration curve: 0.0921515 * x + -0.0228444 Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | | #-Name | - Std. Conc | ŘŤ∷ | Resp | IS Resp | Conc. | ; RRF; | %Dev | |----------|---------------|-------------|------|--------|---------|-------|--------|-------| | | 1 161122G2_2 | 0.500 | 4.45 | 5.82e1 | 2.40e4 | 0.577 | 0.0606 | 15.3 | | 2 | 2 161122G2_3 | 1.00 | 4.45 | 1.24e2 | 2.87e4 | 0.834 | 0.0540 | -16.6 | | 3 | 3 161122G2_4 | 2.00 | 4.45 | 3.98e2 | 2.79e4 | 2.18 | 0.0892 | 9.2 | | 4 | 4 161122G2_5 | 5.00 | 4.45 | 9.47e2 | 2.85e4 | 4.76 | 0.0832 | -4.8 | | 5 | 5 161122G2_6 | 10.0 | 4.45 | 1.65e3 | 2.60e4 | 8.86 | 0.0794 | -11.4 | | 6 | 6 161122G2_7 | 25.0 | 4.45 | 5.10e3 | 2.44e4 | 28.6 | 0.105 | 14.5 | | 7 | 7 161122G2_8 | 50.0 | 4.45 | 8.06e3 | 2.35e4 | 46.8 | 0.0858 | -6.4 | | 8 | 8 161122G2_9 | 75.0 | 4.45 | 1.27e4 | 2.38e4 | 72.8 | 0.0891 | -3.0 | | 9 | 9 161122G2_10 | 100 | 4.45 | 1.64e4 | 2.17e4 | 103 | 0.0948 | 3.1 | #### Compound name: PFOS Correlation coefficient: r = 0.996761, $r^2 = 0.993532$ Calibration curve: 0.83439 * x + -0.165838 Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | | #-Name | - Std. Conc | RT | Resp | IS Resp - | Conc. | ; RRF; | %Dev | |---|---------------|-------------|------|--------|-----------|-------|--------|-------| | | 1 161122G2_2 | 0.500 | 4.78 | 1.21e2 | 5.26e3 | 0.543 | 0.574 | 8.5 | | 2 | 2 161122G2_3 | 1.00 | 4.77 | 3.67e2 | 7.35e3 | 0.947 | 0.624 | -5.3 | | 3 | 3 161122G2_4 | 2.00 | 4.77 | 8.56e2 | 8.95e3 | 1.63 | 0.598 | -18.4 | | 4 | 4 161122G2_5 | 5.00 | 4.77 | 2.17e3 | 6.87e3 | 4.93 | 0.790 | -1.4 | | 5 | 5 161122G2_6 | 10.0 | 4.77 | 4.69e3 | 7.23e3 | 9.90 | 0.810 | -1.0 | | 6 | 6 161122G2_7 | 25.0 | 4.77 | 1.42e4 | 6.95e3 | 30.8 | 1.02 | 23.3 | | 7 | 7 161122G2_8 | 50.0 | 4.78 | 1.92e4 | 5.80e3 | 49.9 | 0.830 | -0.1 | | 8 | 8 161122G2_9 | 75.0 | 4.77 | 3.52e4 | 7.19e3 | 73.6 | 0.817 | -1.8 | | 9 | 9 161122G2_10 | 100 | 4.77 | 4.44e4 | 6.93e3 | 96.1 | 0.800 | -3.9 | Work Order 1601451 Revision 1 Page 134 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: PFNA Correlation coefficient: r = 0.997674, $r^2 = 0.995354$ Calibration curve: 1.64181 * x + -0.17063 Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | All pro- | #-Name | - Std. Conc - | RT: | Resp | IS Resp | Conc. | RRF: | %Dev | |----------|---------------|---------------|------|--------|---------|-------|------|-------| | 1 : | 1 161122G2_2 | 0.500 | 4.72 | 5.63e2 | 1.06e4 | 0.509 | 1.33 | 1.7 | | 2 | 2 161122G2_3 | 1.00 | 4.71 | 1.61e3 | 1.33e4 | 1.02 | 1.51 | 2.5 | | 3 | 3 161122G2_4 | 2.00 | 4.71 | 3.31e3 | 1.23e4 | 2.16 | 1.68 | 7.8 | | 4 | 4 161122G2_5 | 5.00 | 4.71 | 7.19e3 | 1.28e4 | 4.37 | 1.40 | -12.5 | | 5 | 5 161122G2_6 | 10.0 | 4.71 | 1.72e4 | 1.33e4 | 10.0 | 1.63 | 0.1 | | 6 | 6 161122G2_7 | 25.0 | 4.71 | 4.06e4 | 1.21e4 | 25.6 | 1.67 | 2.3 | | 7 | 7 161122G2_8 | 50.0 | 4.71 | 6.88e4 | 1.04e4 | 50.5 | 1.65 | 1.0 | | 8 | 8 161122G2_9 | 75.0 | 4.71 | 1.10e5 | 1.23e4 | 68.0 | 1.49 | -9.3 | | 9 | 9 161122G2_10 | 100 | 4.71 | 1.49e5 | 1.07e4 | 106 | 1.74 | 6.3 | Compound name: PFDA Correlation coefficient: r = 0.998669, r^2 = 0.997340 Calibration curve: 0.596457 * x + -0.0200723 Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | | #-Name | - Std. Conc - | RT: | Resp | IS Resp | Conc. | : RRF; | %Dev | |-----|---------------|---------------|------|--------|---------|-------|--------|-------| | 1 ; | 1 161122G2_2 | 0.500 | 5.01 | 1.30e2 | 6.01e3 | 0.486 | 0.540 | -2.7 | | 2 | 2 161122G2_3 | 1.00 | 5.01 | 3.72e2 | 8.51e3 | 0.949 | 0.546 | -5.1 | | 3 : | 3 161122G2_4 | 2.00 | 5.01 | 8.65e2 | 8.73e3 | 2.11 | 0.620 | 5.6 | | 4 | 4 161122G2_5 | 5.00 | 5.01 | 1.70e3 | 8.07e3 | 4.44 | 0.526 | -11.1 | | 5 | 5 161122G2_6 | 10.0 | 5.01 | 3.83e3 | 7.02e3 |
11.5 | 0.683 | 14.8 | | 6 · | 6 161122G2_7 | 25.0 | 5.01 | 1.25e4 | 1.01e4 | 26.1 | 0.622 | 4.4 | | 7 | 7 161122G2_8 | 50.0 | 5.01 | 1.45e4 | 6.60e3 | 46.1 | 0.550 | -7.7 | | 8 | 8 161122G2_9 | 75.0 | 5.01 | 3.19e4 | 8.88e3 | 75.4 | 0.599 | 0.5 | | 9 | 9 161122G2_10 | 100 | 5.01 | 4.34e4 | 8.96e3 | 101 | 0.605 | 1.5 | Work Order 1601451 Revision 1 Page 135 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: 8:2 FTS Coefficient of Determination: R^2 = 0.984052 Calibration curve: $-0.000479329 * x^2 + 0.502189 * x + 0.00235356$ Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | • | #-Name | - Std. Conc | RT 🥌 | Resp | : IS Resp | - Conc. | RRF; | %Dev | |-----|---------------|-------------|------|--------|-----------|---------|-------|-------| | 1 | 1 161122G2_2 | 0.500 | 4.99 | 4.13e1 | 2.12e3 | 0.479 | 0.486 | -4.1 | | 2 : | 2 161122G2_3 | 1.00 | 4.99 | 1.45e2 | 3.66e3 | 0.984 | 0.496 | -1.6 | | 3 | 3 161122G2_4 | 2.00 | 4.99 | 2.64e2 | 2.69e3 | 2.44 | 0.613 | 22.1 | | 4 | 4 161122G2_5 | 5.00 | 4.99 | 4.56e2 | 2.74e3 | 4.16 | 0.416 | -16.8 | | 5 | 5 161122G2_6 | 10.0 | 4.99 | 1.14e3 | 3.15e3 | 9.07 | 0.452 | -9.3 | | 6 | 6 161122G2_7 | 25.0 | 4.99 | 4.23e3 | 3.62e3 | 29.9 | 0.584 | 19.7 | | 7 | 7 161122G2_8 | 50.0 | 4.99 | 4.24e3 | 2.69e3 | 40.8 | 0.394 | -18.4 | | 8 | 8 161122G2_9 | 75.0 | 4.99 | 1.23e4 | 3.97e3 | 84.1 | 0.518 | 12.1 | | 9 : | 9 161122G2_10 | 100 | 4.99 | 1.62e4 | 4.58e3 | 96.8 | 0.441 | -3.2 | Compound name: 13C3-PFBA Response Factor: 1.20506 RRF SD: 0.0553973, Relative SD: 4.59706 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc - | RT: | Resp | IS Resp | Conc. | RRF | %Dev | |---|---------------|---------------|------|--------|---------|-------|------|------| | 1 | 1 161122G2_2 | 12.5 | 1.93 | 2.07e4 | 1.76e4 | 12.2 | 1.18 | -2.2 | | 2 | 2 161122G2_3 | 12.5 | 1.93 | 2.25e4 | 1.85e4 | 12.6 | 1.22 | 1.0 | | 3 | 3 161122G2_4 | 12.5 | 1.93 | 2.32e4 | 1.80e4 | 13.4 | 1.29 | 7.0 | | 4 | 4 161122G2_5 | 12.5 | 1.93 | 2.31e4 | 1.91e4 | 12.6 | 1.21 | 0.8 | | 5 | 5 161122G2_6 | 12.5 | 1.93 | 2.17e4 | 1.69e4 | 13.3 | 1.29 | 6.8 | | 6 | 6 161122G2_7 | 12.5 | 1.93 | 1.87e4 | 1.58e4 | 12.3 | 1.18 | -2.0 | | 7 | 7 161122G2_8 | 12.5 | 1.93 | 1.90e4 | 1.64e4 | 12.1 | 1.16 | -3.6 | | 8 | 8 161122G2_9 | 12.5 | 1.93 | 1.98e4 | 1.66e4 | 12.4 | 1.20 | -0.7 | | 9 | 9 161122G2_10 | 12.5 | 1.93 | 1.83e4 | 1.63e4 | 11.6 | 1.12 | -7.1 | Work Order 1601451 Revision 1 Page 136 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: 13C3-PFPeA Response Factor: 0.447597 RRF SD: 0.0175301, Relative SD: 3.9165 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF | Approximately and the second | #-Name | - Std Conc - | RT | Resp | IS Resp | Conc. | RRF: | %Dev | |------------------------------|---------------|--------------|------|--------|---------|-------|-------|------| | 1 | 1 161122G2_2 | 12.5 | 2.85 | 9.28e3 | 2.07e4 | 12.5 | 0.448 | 0.1 | | 2 | 2 161122G2_3 | 12.5 | 2.85 | 9.67e3 | 2.17e4 | 12.4 | 0.445 | -0.6 | | 3 | 3 161122G2_4 | 12.5 | 2.85 | 9.90e3 | 2.11e4 | 13.1 | 0.469 | 4.8 | | 4 | 4 161122G2_5 | 12.5 | 2.85 | 1.02e4 | 2.20e4 | 13.0 | 0.466 | 4.1 | | 5 | 5 161122G2_6 | 12.5 | 2.85 | 9.55e3 | 2.15e4 | 12.4 | 0.445 | -0.6 | | 6 | 6 161122G2_7 | 12.5 | 2.85 | 8.18e3 | 1.89e4 | 12.1 | 0.434 | -3.1 | | 7 | 7 161122G2_8 | 12.5 | 2.85 | 8.27e3 | 1.78e4 | 13.0 | 0.465 | 3.9 | | 8 | 8 161122G2_9 | 12.5 | 2.85 | 8.14e3 | 1.84e4 | 12.4 | 0.443 | -1.0 | | 9 | 9 161122G2_10 | 12.5 | 2.85 | 7.23e3 | 1.75e4 | 11.6 | 0.414 | -7.5 | Compound name: 13C3-PFBS Response Factor: 0.302055 RRF SD: 0.0171236, Relative SD: 5.66905 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc | RT∷ | Resp | IS Resp | Conc. | ; RRF: % | Dev | |---|---------------|-------------|------|--------|---------|-------|----------|------| | 1 | 1 161122G2_2 | 12.5 | 3.10 | 6.26e3 | 2.07e4 | 12.5 | 0.302 | 0.1 | | 2 | 2 161122G2_3 | 12.5 | 3.10 | 6.27e3 | 2.17e4 | 11.9 | 0.288 | -4.6 | | 3 | 3 161122G2_4 | 12.5 | 3.10 | 6.78e3 | 2.11e4 | 13.3 | 0.321 | 6.4 | | 4 | 4 161122G2_5 | 12.5 | 3.10 | 7.36e3 | 2.20e4 | 13.8 | 0.335 | 10.8 | | 5 | 5 161122G2_6 | 12.5 | 3.10 | 6.40e3 | 2.15e4 | 12.3 | 0.298 | -1.4 | | 6 | 6 161122G2_7 | 12.5 | 3.10 | 5.76e3 | 1.89e4 | 12.6 | 0.306 | 1.1 | | 7 | 7 161122G2_8 | 12.5 | 3.10 | 5.35e3 | 1.78e4 | 12.5 | 0.301 | -0.4 | | 8 | 8 161122G2_9 | 12.5 | 3.10 | 5.29e3 | 1.84e4 | 11.9 | 0.288 | -4.7 | | 9 | 9 161122G2_10 | 12.5 | 3.10 | 4.89e3 | 1.75e4 | 11.6 | 0.280 | -7.3 | Work Order 1601451 Revision 1 Page 137 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time ### Compound name: 13C2-PFHxA Response Factor: 0.619528 RRF SD: 0.0178176, Relative SD: 2.876 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc - | RT: | Resp | IS Resp | Conc. | r RRF | %Dev | |-----|---------------|---------------|------|--------|---------|-------|-------|------| | 1 : | 1 161122G2_2 | 5.00 | 3.47 | 5.21e3 | 2.07e4 | 5.07 | 0.628 | 1.4 | | 2 | 2 161122G2_3 | 5.00 | 3.47 | 5.44e3 | 2.17e4 | 5.05 | 0.626 | 1.0 | | 3 | 3 161122G2_4 | 5.00 | 3.47 | 5.54e3 | 2.11e4 | 5.29 | 0.656 | 5.9 | | 4 | 4 161122G2_5 | 5.00 | 3.47 | 5.55e3 | 2.20e4 | 5.09 | 0.631 | 1.8 | | 5 | 5 161122G2_6 | 5.00 | 3.47 | 5.30e3 | 2.15e4 | 4.98 | 0.617 | -0.4 | | 6 | 6 161122G2_7 | 5.00 | 3.47 | 4.52e3 | 1.89e4 | 4.83 | 0.598 | -3.4 | | 7 | 7 161122G2_8 | 5.00 | 3.47 | 4.31e3 | 1.78e4 | 4.89 | 0.606 | -2.2 | | 8 | 8 161122G2_9 | 5.00 | 3.47 | 4.48e3 | 1.84e4 | 4.92 | 0.610 | -1.5 | | 9 [| 9 161122G2_10 | 5.00 | 3.47 | 4.22e3 | 1.75e4 | 4.87 | 0.603 | -2.6 | # Compound name: 13C4-PFHpA Response Factor: 1.13869 RRF SD: 0.046436, Relative SD: 4.078 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc - | RT. | Resp | ; IS Resp - | Conc. | RRF; | %Dev | |-----|---------------|---------------|------|--------|-------------|-------|------|------| | 1 | 1 161122G2_2 | 12.5 | 3.98 | 1.51e4 | 1.32e4 | 12.6 | 1.14 | 0.5 | | 2 ; | 2 161122G2_3 | 12.5 | 3.97 | 1.58e4 | 1.36e4 | 12.7 | 1.16 | 1.9 | | 3 | 3 161122G2_4 | 12.5 | 3.98 | 1.71e4 | 1.42e4 | 13.2 | 1.21 | 5.8 | | 4 | 4 161122G2_5 | 12.5 | 3.97 | 1.63e4 | 1.48e4 | 12.1 | 1.10 | -3.3 | | 5 | 5 161122G2_6 | 12.5 | 3.97 | 1.60e4 | 1.44e4 | 12.2 | 1.11 | -2.4 | | 6 | 6 161122G2_7 | 12.5 | 3.97 | 1.42e4 | 1.23e4 | 12.7 | 1.16 | 1.7 | | 7 ; | 7 161122G2_8 | 12.5 | 3.97 | 1.36e4 | 1.16e4 | 12.8 | 1.17 | 2.7 | | 8 | 8 161122G2_9 | 12.5 | 3.97 | 1.35e4 | 1.17e4 | 12.7 | 1.15 | 1.3 | | 9 | 9 161122G2_10 | 12.5 | 3.97 | 1.23e4 | 1.18e4 | 11.5 | 1.05 | -8.2 | Work Order 1601451 Revision 1 Page 138 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time # Compound name: 18O2-PFHxS Response Factor: 0.449434 RRF SD: 0.0241405, Relative SD: 5.37132 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc | RT: | Resp | IS Resp | Conc | : RRF: | %Dev | |-----|---------------|-------------|------|--------|---------|------|--------|------| | 1 : | 1 161122G2_2 | 12.5 | 4.09 | 6.01e3 | 1.32e4 | 12.6 | 0.455 | 1.1 | | 2 ; | 2 161122G2_3 | 12.5 | 4.09 | 6.30e3 | 1.36e4 | 12.9 | 0.463 | 3.1 | | 3 | 3 161122G2_4 | 12.5 | 4.09 | 7.02e3 | 1.42e4 | 13.7 | 0.494 | 9.8 | | 4 | 4 161122G2_5 | 12.5 | 4.09 | 6.33e3 | 1.48e4 | 11.9 | 0.428 | -4.8 | | 5 | 5 161122G2_6 | 12.5 | 4.09 | 6.15e3 | 1.44e4 | 11.9 | 0.427 | -5.0 | | 6 | 6 161122G2_7 | 12.5 | 4.09 | 5.33e3 | 1.23e4 | 12.1 | 0.434 | -3.4 | | 7 | 7 161122G2_8 | 12.5 | 4.08 | 5.46e3 | 1.16e4 | 13.0 | 0.468 | 4.2 | | 8 | 8 161122G2_9 | 12.5 | 4.09 | 5.36e3 | 1.17e4 | 12.7 | 0.456 | 1.5 | | 9 | 9 161122G2_10 | 12.5 | 4.09 | 4.95e3 | 1.18e4 | 11.7 | 0.420 | -6.6 | #### Compound name: 13C2-6:2 FTS Response Factor: 1.07309 RRF SD: 0.0967215, Relative SD: 9.01333 Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: RF | A | #-Name | - Std. Conc | RT: | Resp | IS Resp | Conc. | ; RRF: | %Dev | |-----|---------------|-------------|------|--------|---------|-------|--------|-------| | 1 : | 1 161122G2_2 | 12.5 | 4.33 | 6.03e3 | 5.89e3 | 11.9 | 1.02 | -4.5 | | 2 | 2 161122G2_3 | 12.5 | 4.33 | 6.29e3 | 5.82e3 | 12.6 | 1.08 | 0.7 | | 3 : | 3 161122G2_4 | 12.5 | 4.33 | 6.05e3 | 5.56e3 | 12.7 | 1.09 | 1.3 | | 4 : | 4 161122G2_5 | 12.5 | 4.32 | 6.94e3 | 5.84e3 | 13.8 | 1.19 | 10.8 | | 5 | 5 161122G2_6 | 12.5 | 4.32 | 5.43e3 | 5.76e3 | 11.0 | 0.942 | -12.2 | | 6 | 6 161122G2_7 | 12.5 | 4.32 | 5.54e3 | 4.77e3 | 13.5 | 1.16 | 8.2 | | 7 | 7 161122G2_8 | 12.5 | 4.32 | 5.35e3 | 5.78e3 | 10.8 | 0.925 | -13.8 | | 8 | 8 161122G2_9 | 12.5 | 4.32 | 7.05e3 | 5.95e3 | 13.8 | 1.18 | 10.3 | | 9 | 9 161122G2_10 | 12.5 | 4.32 | 6.58e3 | 6.18e3 | 12.4 | 1.06 | -0.8 | Work Order 1601451 Revision 1 Page 139 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: 13C2-PFOA Response Factor: 2.26193 RRF SD: 0.103705, Relative SD: 4.58481 Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | Std.
Conc | RT: | Resp | IS Resp | Conc. | RRF; | %Dev | |-----|---------------|-----------|------|--------|---------|-------|------|------| | 1 | 1 161122G2_2 | 12.5 | 4.37 | 2.40e4 | 1.14e4 | 11.7 | 2.12 | -6.4 | | 2 | 2 161122G2_3 | 12.5 | 4.37 | 2.87e4 | 1.22e4 | 13.0 | 2.36 | 4.4 | | 3 | 3 161122G2_4 | 12.5 | 4.37 | 2.79e4 | 1.22e4 | 12.6 | 2.28 | 0.8 | | 4 | 4 161122G2_5 | 12.5 | 4.37 | 2.85e4 | 1.19e4 | 13.3 | 2.40 | 6.0 | | 5 | 5 161122G2_6 | 12.5 | 4.37 | 2.60e4 | 1.12e4 | 12.9 | 2.33 | 3.0 | | 6 | 6 161122G2_7 | 12.5 | 4.37 | 2.44e4 | 1.17e4 | 11.5 | 2.09 | -7.7 | | 7 | 7 161122G2_8 | 12.5 | 4.37 | 2.35e4 | 1.03e4 | 12.6 | 2.28 | 0.9 | | 8 | 8 161122G2_9 | 12.5 | 4.37 | 2.38e4 | 1.06e4 | 12.4 | 2.24 | -1.2 | | 9 : | 9 161122G2_10 | 12.5 | 4.37 | 2.17e4 | 9.56e3 | 12.5 | 2.27 | 0.2 | Compound name: 13C8-PFOS Response Factor: 0.943547 RRF SD: 0.0953243, Relative SD: 10.1028 Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc | RT: | Resp | IS Resp | Conc. | ; RRF; | %Dev | |------|---------------|-------------|------|--------|---------|-------|--------|------| | 1 | 1 161122G2_2 | 12.5 | 4.77 | 5.26e3 | 6.09e3 | 11.4 | 0.863 | -8.5 | | 2 | 2 161122G2_3 | 12.5 | 4.77 | 7.35e3 | 8.00e3 | 12.2 | 0.918 | -2.7 | | 3 : | 3 161122G2_4 | 12.5 | 4.77 | 8.95e3 | 7.63e3 | 15.5 | 1.17 | 24.2 | | 4 | 4 161122G2_5 | 12.5 | 4.77 | 6.87e3 | 7.71e3 | 11.8 | 0.892 | -5.5 | | 5 | 5 161122G2_6 | 12.5 | 4.77 | 7.23e3 | 7.12e3 | 13.5 | 1.02 | 7.6 | | 6 | 6 161122G2_7 | 12.5 | 4.77 | 6.95e3 | 7.59e3 | 12.1 | 0.917 | -2.9 | | 7:45 | 7 161122G2_8 | 12.5 | 4.77 | 5.80e3 | 6.40e3 | 12.0 | 0.906 | -4.0 | | 8 | 8 161122G2_9 | 12.5 | 4.77 | 7.19e3 | 7.90e3 | 12.1 | 0.910 | -3.5 | | 9 | 9 161122G2_10 | 12.5 | 4.77 | 6.93e3 | 7.73e3 | 11.9 | 0.898 | -4.9 | Work Order 1601451 Revision 1 Page 140 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: 13C5-PFNA Response Factor: 1.08198 RRF SD: 0.109173, Relative SD: 10.0901 Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc | RT. | Resp | IS Resp | Conc. | : RRF: | %Dev | |-------------------------|---------------|-------------|------|--------|---------|-------|--------|-------| | 1 marine and the second | 1 161122G2_2 | 12.5 | 4.71 | 1.06e4 | 9.86e3 | 12.4 | 1.07 | -0.7 | | 2 | 2 161122G2_3 | 12.5 | 4.71 | 1.33e4 | 1.10e4 | 14.0 | 1.21 | 11.8 | | 3 | 3 161122G2_4 | 12.5 | 4.71 | 1.23e4 | 1.19e4 | 12.0 | 1.04 | -4.3 | | 4 | 4 161122G2_5 | 12.5 | 4.71 | 1.28e4 | 1.06e4 | 14.0 | 1.21 | 12.3 | | 5 | 5 161122G2_6 | 12.5 | 4.71 | 1.33e4 | 1.18e4 | 13.0 | 1.13 | 4.1 | | 6 | 6 161122G2_7 | 12.5 | 4.71 | 1.21e4 | 1.04e4 | 13.4 | 1.16 | 7.4 | | 7.000.000 | 7 161122G2_8 | 12.5 | 4.71 | 1.04e4 | 1.14e4 | 10.5 | 0.909 | -16.0 | | 8 | 8 161122G2_9 | 12.5 | 4.71 | 1.23e4 | 1.16e4 | 12.3 | 1.07 | -1.4 | | 9 | 9 161122G2_10 | 12.5 | 4.71 | 1.07e4 | 1.14e4 | 10.8 | 0.938 | -13.3 | Compound name: 13C2-PFDA Response Factor: 1.01921 RRF SD: 0.0876435, Relative SD: 8.59913 Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc - | ŔŢ | Resp | ; IS Resp | Conc. | ; RRF; | %Dev | |---|---------------|---------------|------|--------|-----------|-------|--------|-------| | 1 | 1 161122G2_2 | 12.5 | 5.01 | 6.01e3 | 6.35e3 | 11.6 | 0.947 | -7.1 | | 2 | 2 161122G2_3 | 12.5 | 5.01 | 8.51e3 | 9.85e3 | 10.6 | 0.864 | -15.2 | | 3 | 3 161122G2_4 | 12.5 | 5.01 | 8.73e3 | 8.39e3 | 12.8 | 1.04 | 2.1 | | 4 | 4 161122G2_5 | 12.5 | 5.01 | 8.07e3 | 7.46e3 | 13.3 | 1.08 | 6.1 | | 5 | 5 161122G2_6 | 12.5 | 5.01 | 7.02e3 | 6.59e3 | 13.1 | 1.07 | 4.5 | | 6 | 6 161122G2_7 | 12.5 | 5.01 | 1.01e4 | 9.85e3 | 12.5 | 1.02 | 0.3 | | 7 | 7 161122G2_8 | 12.5 | 5.01 | 6.60e3 | 5.70e3 | 14.2 | 1.16 | 13.6 | | 8 | 8 161122G2_9 | 12.5 | 5.01 | 8.88e3 | 8.46e3 | 12.9 | 1.05 | 2.9 | | 9 | 9 161122G2_10 | 12.5 | 5.01 | 8.96e3 | 9.48e3 | 11.6 | 0.945 | -7.3 | Work Order 1601451 Revision 1 Page 141 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: 13C2-8:2 FTS Response Factor: 0.568768 RRF SD: 0.137212, Relative SD: 24.1245 Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: RF | | ; #-Name | - Std. Conc - | RT: | Resp | IS Resp | Conc. | ; RRF; | %Dev | |---|---------------|---------------|------|--------|---------|-------|--------|-------| | 1 | 1 161122G2_2 | 12.5 | 4.99 | 2.12e3 | 5.89e3 | 7.93 | 0.361 | -36.6 | | 2 | 2 161122G2_3 | 12.5 | 4.99 | 3.66e3 | 5.82e3 | 13.8 | 0.629 | 10.6 | | 3 | 3 161122G2_4 | 12.5 | 4.99 | 2.69e3 | 5.56e3 | 10.6 | 0.483 | -15.1 | | 4 | 4 161122G2_5 | 12.5 | 4.99 | 2.74e3 | 5.84e3 | 10.3 | 0.468 | -17.7 | | 5 | 5 161122G2_6 | 12.5 | 4.99 | 3.15e3 | 5.76e3 | 12.0 | 0.546 | -4.1 | | 6 | 6 161122G2_7 | 12.5 | 4.99 | 3.62e3 | 4.77e3 | 16.7 | 0.759 | 33.4 | | 7 | 7 161122G2_8 | 12.5 | 4.99 | 2.69e3 | 5.78e3 | 10.2 | 0.466 | -18.0 | | 8 | 8 161122G2_9 | 12.5 | 4.99 | 3.97e3 | 5.95e3 | 14.7 | 0.667 | 17.3 | | 9 | 9 161122G2_10 | 12.5 | 4.99 | 4.58e3 | 6.18e3 | 16.3 | 0.740 | 30.1 | Compound name: 13C4-PFBA Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF | Apole 52 C | #-Name | Std. Conc - | RT: | Resp | IS Resp | Conc. | RRF; | %Dev | |------------|---------------|-------------|------|--------|---------|-------|------|------| | 1 | 1 161122G2_2 | 12.5 | 1.93 | 1.76e4 | 1.76e4 | 12.5 | 1.00 | 0.0 | | 2 | 2 161122G2_3 | 12.5 | 1.92 | 1.85e4 | 1.85e4 | 12.5 | 1.00 | 0.0 | | 3 | 3 161122G2_4 | 12.5 | 1.93 | 1.80e4 | 1.80e4 | 12.5 | 1.00 | 0.0 | | 4 | 4 161122G2_5 | 12.5 | 1.93 | 1.91e4 | 1.91e4 | 12.5 | 1.00 | 0.0 | | 5 | 5 161122G2_6 | 12.5 | 1.93 | 1.69e4 | 1.69e4 | 12.5 | 1.00 | 0.0 | | 6 | 6 161122G2_7 | 12.5 | 1.93 | 1.58e4 | 1.58e4 | 12.5 | 1.00 | 0.0 | | 7 | 7 161122G2_8 | 12.5 | 1.93 | 1.64e4 | 1.64e4 | 12.5 | 1.00 | 0.0 | | 8 | 8 161122G2_9 | 12.5 | 1.93 | 1.66e4 | 1.66e4 | 12.5 | 1.00 | 0.0 | | 9 | 9 161122G2_10 | 12.5 | 1.92 | 1.63e4 | 1.63e4 | 12.5 | 1.00 | 0.0 | Work Order 1601451 Revision 1 Page 142 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time ## Compound name: 13C2-4:2 FTS Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc | RT: | Resp | IS Resp | Conc. | : RRF: | %Dev | |---|---------------|-------------|------|--------|---------|-------|--------|------| | 1 : : : : : : : : : : : : : : : : : : : | 1 161122G2_2 | 12.5 | 3.37 | 5.89e3 | 5.89e3 | 12.5 | 1.00 | 0.0 | | 2 : | 2 161122G2_3 | 12.5 | 3.37 | 5.82e3 | 5.82e3 | 12.5 | 1.00 | 0.0 | | 3 | 3 161122G2_4 | 12.5 | 3.37 | 5.56e3 | 5.56e3 | 12.5 | 1.00 | 0.0 | | 4 | 4 161122G2_5 | 12.5 | 3.38 | 5.84e3 | 5.84e3 | 12.5 | 1.00 | 0.0 | | 5 | 5 161122G2_6 | 12.5 | 3.38 | 5.76e3 | 5.76e3 | 12.5 | 1.00 | 0.0 | | 6 | 6 161122G2_7 | 12.5 | 3.38 | 4.77e3 | 4.77e3 | 12.5 | 1.00 | 0.0 | | 7 | 7 161122G2_8 | 12.5 | 3.38 | 5.78e3 | 5.78e3 | 12.5 | 1.00 | 0.0 | | 8 ; | 8 161122G2_9 | 12.5 | 3.38 | 5.95e3 | 5.95e3 | 12.5 | 1.00 | 0.0 | | 9 : : : : : | 9 161122G2_10 | 12.5 | 3.38 | 6.18e3 | 6.18e3 | 12.5 | 1.00 | 0.0 | # Compound name: 13C5-PFHxA Response Factor: 1 RRF SD: 3.92523e-017, Relative SD: 3.92523e-015 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF | : | #-Name | - Std Conc | RT | Resp | IS Resp | Conc. | ŘŘÉ; | %Dev | |-----------|---------------|------------|------|--------|---------|-------|------|------| | 1 : : : : | 1 161122G2_2 | 12.5 | 3.47 | 2.07e4 | 2.07e4 | 12.5 | 1.00 | 0.0 | | 2 | 2 161122G2_3 | 12.5 | 3.46 | 2.17e4 | 2.17e4 | 12.5 | 1.00 | 0.0 | | 3 : | 3 161122G2_4 | 12.5 | 3.47 | 2.11e4 | 2.11e4 | 12.5 | 1.00 | 0.0 | | 4 | 4 161122G2_5 | 12.5 | 3.47 | 2.20e4 | 2.20e4 | 12.5 | 1.00 | 0.0 | | 5 | 5 161122G2_6 | 12.5 | 3.47 | 2.15e4 | 2.15e4 | 12.5 | 1.00 | 0.0 | | 6 | 6 161122G2_7 | 12.5 | 3.47 | 1.89e4 | 1.89e4 | 12.5 | 1.00 | 0.0 | | 7 | 7 161122G2_8 | 12.5 | 3.47 | 1.78e4 | 1.78e4 | 12.5 | 1.00 | 0.0 | | 8 ; | 8 161122G2_9 | 12.5 | 3.47 | 1.84e4 | 1.84e4 | 12.5 | 1.00 | -0.0 | | 9 ; | 9 161122G2_10 | 12.5 | 3.47 | 1.75e4 | 1.75e4 | 12.5 | 1.00 | 0.0 | Work Order 1601451 Revision 1 Page 143 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: 13C3-PFHxS Response Factor: 1 RRF SD: 7.85046e-017, Relative SD: 7.85046e-015 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | Std. Conc | RT: | Resp | IS Resp | Conc. | RRF: | %Dev | |---------|---------------|-----------|------|--------|---------|-------|------|------| | 1 | 1 161122G2_2 | 12.5 | 4.09 | 1.32e4 | 1.32e4 | 12.5 | 1.00 | 0.0 | | 2 ; | 2 161122G2_3 | 12.5 | 4.09 | 1.36e4 | 1.36e4 | 12.5 | 1.00 | 0.0 | | 3 | 3 161122G2_4 | 12.5 | 4.09 | 1.42e4 | 1.42e4 | 12.5 | 1.00 | 0.0 | | 4 : : : | 4 161122G2_5 | 12.5 | 4.09 | 1.48e4 | 1.48e4 | 12.5 | 1.00 | 0.0 | | 5 | 5 161122G2_6 | 12.5 | 4.09 | 1.44e4 | 1.44e4 | 12.5 | 1.00 | 0.0 | | 6 | 6 161122G2_7 | 12.5 | 4.09 | 1.23e4 | 1.23e4 | 12.5 | 1.00 | 0.0 | | 7 | 7 161122G2_8 | 12.5 | 4.09 | 1.16e4 | 1.16e4 | 12.5 | 1.00 | 0.0 | | 8 | 8 161122G2_9 | 12.5 | 4.09 | 1.17e4 | 1.17e4 | 12.5 | 1.00 | 0.0 | | 9 | 9 161122G2_10 | 12.5 | 4.09 | 1.18e4 | 1.18e4 | 12.5 | 1.00 | 0.0 | Compound name: 13C8-PFOA Response Factor: 1 RRF SD:
0, Relative SD: 0 Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc | RŤ | Resp | IS Resp | Conc. | RRF | %Dev | |-----|---------------|-------------|------|--------|---------|-------|------|------| | 1 | 1 161122G2_2 | 12.5 | 4.37 | 1.14e4 | 1.14e4 | 12.5 | 1.00 | 0.0 | | 2 | 2 161122G2_3 | 12.5 | 4.37 | 1.22e4 | 1.22e4 | 12.5 | 1.00 | 0.0 | | 3 | 3 161122G2_4 | 12.5 | 4.37 | 1.22e4 | 1.22e4 | 12.5 | 1.00 | 0.0 | | 4 : | 4 161122G2_5 | 12.5 | 4.37 | 1.19e4 | 1.19e4 | 12.5 | 1.00 | 0.0 | | 5 | 5 161122G2_6 | 12.5 | 4.37 | 1.12e4 | 1.12e4 | 12.5 | 1.00 | 0.0 | | 6 | 6 161122G2_7 | 12.5 | 4.37 | 1.17e4 | 1.17e4 | 12.5 | 1.00 | 0.0 | | 7 | 7 161122G2_8 | 12.5 | 4.37 | 1.03e4 | 1.03e4 | 12.5 | 1.00 | 0.0 | | 8 | 8 161122G2_9 | 12.5 | 4.37 | 1.06e4 | 1.06e4 | 12.5 | 1.00 | 0.0 | | 9 ; | 9 161122G2_10 | 12.5 | 4.37 | 9.56e3 | 9.56e3 | 12.5 | 1.00 | 0.0 | Work Order 1601451 Revision 1 Page 144 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time Compound name: 13C4-PFOS Response Factor: 1 RRF SD: 7.85046e-017, Relative SD: 7.85046e-015 Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: RF | | #-Name | - Std. Conc - | RT: | Resp | IS Resp | Conc. | RRF; | %Dev | |---|---------------|---------------|------|--------|---------|-------|------|------| | 1 | 1 161122G2_2 | 12.5 | 4.78 | 6.09e3 | 6.09e3 | 12.5 | 1.00 | 0.0 | | 2 | 2 161122G2_3 | 12.5 | 4.77 | 8.00e3 | 8.00e3 | 12.5 | 1.00 | 0.0 | | 3 | 3 161122G2_4 | 12.5 | 4.78 | 7.63e3 | 7.63e3 | 12.5 | 1.00 | 0.0 | | 4 | 4 161122G2_5 | 12.5 | 4.77 | 7.71e3 | 7.71e3 | 12.5 | 1.00 | 0.0 | | 5 | 5 161122G2_6 | 12.5 | 4.77 | 7.12e3 | 7.12e3 | 12.5 | 1.00 | 0.0 | | 6 | 6 161122G2_7 | 12.5 | 4.77 | 7.59e3 | 7.59e3 | 12.5 | 1.00 | 0.0 | | 7 | 7 161122G2_8 | 12.5 | 4.78 | 6.40e3 | 6.40e3 | 12.5 | 1.00 | 0.0 | | 8 | 8 161122G2_9 | 12.5 | 4.77 | 7.90e3 | 7.90e3 | 12.5 | 1.00 | 0.0 | | 9 | 9 161122G2_10 | 12.5 | 4.77 | 7.73e3 | 7.73e3 | 12.5 | 1.00 | 0.0 | Compound name: 13C9-PFNA Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area) Curve type: RF | | ; #-Name | Std. Conc - | ŘŤ. | Resp | IS Resp | Conc. | RRF; | %Dev | |---|----------------|-------------|------|--------|---------|-------|------|------| | 1 | ; 1 161122G2_2 | 12.5 | 4.71 | 9.86e3 | 9.86e3 | 12.5 | 1.00 | 0.0 | | 2 | ; 2 161122G2_3 | 12.5 | 4.71 | 1.10e4 | 1.10e4 | 12.5 | 1.00 | 0.0 | | 3 | ; 3 161122G2_4 | 12.5 | 4.71 | 1.19e4 | 1.19e4 | 12.5 | 1.00 | 0.0 | | 4 | 4 161122G2_5 | 12.5 | 4.71 | 1.06e4 | 1.06e4 | 12.5 | 1.00 | 0.0 | | 5 | 5 161122G2_6 | 12.5 | 4.71 | 1.18e4 | 1.18e4 | 12.5 | 1.00 | 0.0 | | 6 | 6 161122G2_7 | 12.5 | 4.71 | 1.04e4 | 1.04e4 | 12.5 | 1.00 | 0.0 | | 7 | 7 161122G2_8 | 12.5 | 4.71 | 1.14e4 | 1.14e4 | 12.5 | 1.00 | 0.0 | | 8 | 8 161122G2_9 | 12.5 | 4.71 | 1.16e4 | 1.16e4 | 12.5 | 1.00 | 0.0 | | 9 | 9 161122G2_10 | 12.5 | 4.71 | 1.14e4 | 1.14e4 | 12.5 | 1.00 | 0.0 | Work Order 1601451 Revision 1 Page 145 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:27:47 Pacific Standard Time ## Compound name: 13C6-PFDA Response Factor: 1 RRF SD: 3.92523e-017, Relative SD: 3.92523e-015 Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area) Curve type: RF | tom. | #-Name | - Std. Conc - | RT; | Resp | IS Resp | Conc. | ; RRF; | %Dev | |-------------|---------------|---------------|------|--------|---------|-------|--------|------| | Pale Ligari | 1 161122G2_2 | 12.5 | 5.01 | 6.35e3 | 6.35e3 | 12.5 | 1.00 | 0.0 | | 2 | 2 161122G2_3 | 12.5 | 5.01 | 9.85e3 | 9.85e3 | 12.5 | 1.00 | 0.0 | | 3 | 3 161122G2_4 | 12.5 | 5.01 | 8.39e3 | 8.39e3 | 12.5 | 1.00 | 0.0 | | 4 | 4 161122G2_5 | 12.5 | 5.01 | 7.46e3 | 7.46e3 | 12.5 | 1.00 | 0.0 | | 5 | 5 161122G2_6 | 12.5 | 5.01 | 6.59e3 | 6.59e3 | 12.5 | 1.00 | 0.0 | | 6 | 6 161122G2_7 | 12.5 | 5.01 | 9.85e3 | 9.85e3 | 12.5 | 1.00 | 0.0 | | 7.5-20-25 | 7 161122G2_8 | 12.5 | 5.01 | 5.70e3 | 5.70e3 | 12.5 | 1.00 | 0.0 | | 8 | 8 161122G2_9 | 12.5 | 5.01 | 8.46e3 | 8.46e3 | 12.5 | 1.00 | -0.0 | | 9 | 9 161122G2_10 | 12.5 | 5.01 | 9.48e3 | 9.48e3 | 12.5 | 1.00 | 0.0 | Work Order 1601451 Revision 1 Page 146 of 223 U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Dataset: Printed: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 22 Nov 2016 14:48:05 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Compound name: PFBA Correlation coefficient: r = 0.999216, r^2 = 0.998432 Calibration curve: 0.492927 * x + -0.0410615 Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Quantify Calibration Report MassLynx 4.1 Page 2 of 13 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: PFPeA Correlation coefficient: r = 0.999341, $r^2 = 0.998683$ Calibration curve: 1.00273 * x + -0.119981 Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601451 Revision 1 Page 148 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Printed: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: PFBS Correlation coefficient: r = 0.999283, r^2 = 0.998566 Calibration curve: 1.79216 * x + -0.145672 Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601451 Revision 1 Page 149 of 223 Quantify Calibration Report Vista Analytical Laboratory Q1 MassLynx 4.1 Page 4 of 13 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Printed: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: PFHxA Correlation coefficient: r = 0.999245, $r^2 = 0.998491$ Calibration curve: 0.598427 * x + 0.0095449 Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601451 Revision 1 Page 150 of 223 Quantify Calibration Report MassLynx 4.1 Vista Analytical Laboratory Q1 Page 5 of 13 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.gld Last Altered: Printed: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: PFHpA Correlation coefficient: r = 0.999639, r^2 = 0.999279 Calibration curve: 1.55279 * x + -0.138431 Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601451 Revision 1 Page 151 of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Printed: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: PFHxS Correlation coefficient: r = 0.998761, $r^2 = 0.997524$ Calibration curve: 1.72095 * x + -0.0266266 Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601451 Revision 1 Page 152 of 223 Page 7 of 13 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Printed: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: 6:2 FTS Coefficient of Determination: R^2 = 0.978941 Calibration curve: 0.00135992 * x^2 + 0.414129 * x + -0.114975 Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x^2, Axis trans: None Work Order 1601451 Revision 1 Page 153 of 223 Quantify Calibration Report MassLynx 4.1 Page 8 of 13 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: PFOA Correlation coefficient: r = 0.999524, $r^2 = 0.999048$ Calibration curve: 0.899906 * x + 0.0917344 Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601451 Revision 1 Page 154 of 223 MassLynx 4.1 Page 9 of 13 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.gld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: PFHpS Correlation coefficient: r = 0.997800, r^2 = 0.995604 Calibration curve: 0.0921515 * x + -0.0228444 Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601451 Revision 1 Page 155 of 223 Page 10 of 13 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: PFOS Correlation coefficient: r = 0.996761, $r^2 = 0.993532$ Calibration curve: 0.83439 * x + -0.165838 Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601451 Revision 1 Page 156
of 223 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-CRV.qld Last Altered: Printed: Tuesday, November 22, 2016 15:25:21 Pacific Standard Time Tuesday, November 22, 2016 15:26:22 Pacific Standard Time Compound name: PFNA Correlation coefficient: r = 0.997674, $r^2 = 0.995354$ Calibration curve: 1.64181 * x + -0.17063 Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601451 Revision 1 Page 157 of 223 Work Order 1601451 Revision 1 Page 158 of 223 Page 159 of 223 Work Order 1601451 Revision 1 Quantify Compound Summary Report MassLynx 4.1 Page 1 of 1 Vista Analytical Laboratory VG-9 Untitled Dataset: Last Altered: Tuesday, November 22, 2016 15:08:21 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:09:10 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 22 Nov 2016 14:48:20 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 14:59:27 ### Compound name: PFBA | Name | ID S | :Acq Date -Acq Time | |----------------|--------------------------------|---------------------| | 161122G2_1 | IPA | 22-Nov-16 09:47:54 | | 2 161122G2_2 | ST161122G2-2 PFC CS-1 16K1705 | 22-Nov-16 10:00:32 | | 3 , 161122G2_3 | ST161122G2-3 PFC CS0 16K1706 | 22-Nov-16 10:13:07 | | 4 161122G2_4 | ST161122G2-4 PFC CS1 16K1707 | 22-Nov-16 10:25:42 | | 5 161122G2_5 | ST161122G2-5 PFC CS2 16K1708 | 22-Nov-16 10:38:18 | | 6 161122G2_6 | ST161122G2-6 PFC CS3 16K1709 | 22-Nov-16 10:50:54 | | 7 161122G2_7 | ST161122G2-7 PFC CS3.5 16K1710 | 22-Nov-16 11:03:32 | | 8 161122G2_8 | ST161122G2-8 PFC CS4 16K1711 | 22-Nov-16 11:16:11 | | 9 161122G2_9 | ST161122G2-9 PFC CS4.5 16K1712 | 22-Nov-16 11:28:50 | | 10 161122G2_10 | ST161122G2-10 PFC CS5 16K1713 | 22-Nov-16 11:41:28 | | 11 | IPA | 22-Nov-16 11:54:03 | | 12 161122G2_12 | SS161122G2-1 PFC SS 16K2201 | 22-Nov-16 12:06:50 | | 13 161122G2_13 | IPA | 22-Nov-16 12:19:32 | Work Order 1601451 Revision 1 Page 160 of 223 rista Arialyticai Labi Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 22 Nov 2016 14:48:05 Calibration: 22 Nov 2016 14:43:00 Name: 161122G2_2, Date: 22-Nov-2016, Time: 10:00:32, ID: ST161122G2-2 PFC CS-1 16K1705, Description: PFC CS-1 16K1705 A Work Order 1601451 Revision 1 Page 161 of 223 Page 2 of 45 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_2, Date: 22-Nov-2016, Time: 10:00:32, ID: ST161122G2-2 PFC CS-1 16K1705, Description: PFC CS-1 16K1705 A Work Order 1601451 Revision 1 Page 162 of 223 Work Order 1601451 Revision 1 Page 163 of 223 Quantify Sample Report MassLynx 4.1 Page 3 of 45 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_2, Date: 22-Nov-2016, Time: 10:00:32, ID: ST161122G2-2 PFC CS-1 16K1705, Description: PFC CS-1 16K1705 A Work Order 1601451 Revision 1 Page 164 of 223 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_2, Date: 22-Nov-2016, Time: 10:00:32, ID: ST161122G2-2 PFC CS-1 16K1705, Description: PFC CS-1 16K1705 A Work Order 1601451 Revision 1 Page 165 of 223 Work Order 1601451 Revision 1 Page 166 of 223 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time #### Name: 161122G2_2, Date: 22-Nov-2016, Time: 10:00:32, ID: ST161122G2-2 PFC CS-1 16K1705, Description: PFC CS-1 16K1705 A Work Order 1601451 Revision 1 Page 167 of 223 MassLynx 4.1 Page 6 of 45 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_3, Date: 22-Nov-2016, Time: 10:13:07, ID: ST161122G2-3 PFC CS0 16K1706, Description: PFC CS0 16K1706 A Work Order 1601451 Revision 1 Page 168 of 223 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2 3, Date: 22-Nov-2016, Time: 10:13:07, ID: ST161122G2-3 PFC CS0 16K1706, Description: PFC CS0 16K1706 A Work Order 1601451 Revision 1 Page 169 of 223 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_3, Date: 22-Nov-2016, Time: 10:13:07, ID: ST161122G2-3 PFC CS0 16K1706, Description: PFC CS0 16K1706 A Work Order 1601451 Revision 1 Page 170 of 223 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_3, Date: 22-Nov-2016, Time: 10:13:07, ID: ST161122G2-3 PFC CS0 16K1706, Description: PFC CS0 16K1706 A Work Order 1601451 Revision 1 Page 171 of 223 Work Order 1601451 Revision 1 Page 172 of 223 4.37 1.22e4 6738.21 13C6-PFDA 5.01 9.85e3 826.40 4.50 4.50 5.00 5.00 5.50 5.50 F7:MRM of 14 channels, ES- 100- %- 0- 100- %- 4.00 4.00 13C6-PFDA 161122G2 3 5.017e+005 min 5.00 472.2 > 426.9 4.355e+005 min 6.00 100- %- 3.00 13C9-PFNA 161122G2 3 100 %- 4.00 4.09 1.36e4 30482.14 4.00 5.00 4.50 5.50 F6:MRM of 16 channels, ES- 3.50 13C9-PFNA 4.71 1.10e4 476.94 4.50 100- %- 0- 4.00 4.77 8.00e3 3276.98 4.50 5.00 5.50 3.303e+005 min 6.00 4.837e+005 min 6.00 519.1 > 473.7 4.480e+005 min 6.00 Work Order 1601451 Revision 1 Page 173 of 223 Page 11 of 45 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time ## Name: 161122G2_4, Date: 22-Nov-2016, Time: 10:25:42, ID: ST161122G2-4 PFC CS1 16K1707, Description: PFC CS1 16K1707 A Work Order 1601451 Revision 1 Page 174 of 223 Quantify Sample Report MassLynx 4.1 Page 12 of 45 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_4, Date: 22-Nov-2016, Time: 10:25:42, ID: ST161122G2-4 PFC CS1 16K1707, Description: PFC CS1 16K1707 A Work Order 1601451 Revision 1 Page 175 of 223 Quantify Sample Report MassLynx 4.1 Page 13 of 45 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Work Order 1601451 Revision 1 Page 176 of 223 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_4, Date: 22-Nov-2016, Time: 10:25:42, ID: ST161122G2-4 PFC CS1 16K1707, Description: PFC CS1 16K1707 A Work Order 1601451 Revision 1 Page 178 of 223 Page 15 of 45 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_4, Date: 22-Nov-2016, Time: 10:25:42, ID: ST161122G2-4 PFC CS1 16K1707, Description: PFC CS1 16K1707 A Work Order 1601451 Revision 1 Page 179 of 223 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time #### Name: 161122G2_5, Date: 22-Nov-2016, Time: 10:38:18, ID: ST161122G2-5 PFC CS2 16K1708, Description: PFC CS2 16K1708 A Work Order 1601451 Revision 1 Page 180 of 223 Quantify Sample Report Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time MassLynx 4.1 # Name: 161122G2_5, Date: 22-Nov-2016, Time: 10:38:18, ID: ST161122G2-5 PFC CS2 16K1708, Description: PFC CS2 16K1708 A Work Order 1601451 Revision 1 Page 181 of 223 Work Order 1601451 Revision 1 Page 182 of 223 MassLynx 4.1 Page 18 of 45 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_5, Date: 22-Nov-2016, Time: 10:38:18, ID: ST161122G2-5 PFC CS2 16K1708, Description: PFC CS2 16K1708 A Work Order 1601451 Revision 1 Page 183 of 223 Page 19 of 45 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_5, Date: 22-Nov-2016, Time: 10:38:18, ID: ST161122G2-5 PFC CS2 16K1708, Description: PFC CS2 16K1708 A Work Order 1601451 Revision 1 Page 184 of 223 Work Order 1601451 Revision 1 Page 185 of 223 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_5, Date: 22-Nov-2016, Time: 10:38:18, ID: ST161122G2-5 PFC CS2 16K1708, Description: PFC CS2 16K1708 A Work Order 1601451 Revision 1 Page 186 of 223 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time ## Name: 161122G2_6, Date: 22-Nov-2016, Time: 10:50:54, ID: ST161122G2-6 PFC CS3 16K1709, Description: PFC CS3 16K1709 A Work Order 1601451 Revision 1 Page 187 of 223 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_6, Date: 22-Nov-2016, Time: 10:50:54, ID: ST161122G2-6 PFC CS3 16K1709, Description: PFC CS3 16K1709 A Page 22 of 45
Work Order 1601451 Revision 1 Page 188 of 223 MassLynx 4.1 Page 23 of 45 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_6, Date: 22-Nov-2016, Time: 10:50:54, ID: ST161122G2-6 PFC CS3 16K1709, Description: PFC CS3 16K1709 A Work Order 1601451 Revision 1 Page 189 of 223 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_6, Date: 22-Nov-2016, Time: 10:50:54, ID: ST161122G2-6 PFC CS3 16K1709, Description: PFC CS3 16K1709 A Work Order 1601451 Revision 1 Page 190 of 223 Work Order 1601451 Revision 1 Page 191 of 223 MassLynx 4.1 Page 25 of 45 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time ### Name: 161122G2_6, Date: 22-Nov-2016, Time: 10:50:54, ID: ST161122G2-6 PFC CS3 16K1709, Description: PFC CS3 16K1709 A Work Order 1601451 Revision 1 Page 192 of 223 Page 26 of 45 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time ## Name: 161122G2_7, Date: 22-Nov-2016, Time: 11:03:32, ID: ST161122G2-7 PFC CS3.5 16K1710, Description: PFC CS3.5 16K1710 A Work Order 1601451 Revision 1 Page 193 of 223 Quantify Sample Report MassLynx 4.1 Page 27 of 45 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_7, Date: 22-Nov-2016, Time: 11:03:32, ID: ST161122G2-7 PFC CS3.5 16K1710, Description: PFC CS3.5 16K1710 A Work Order 1601451 Revision 1 Page 194 of 223 Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_7, Date: 22-Nov-2016, Time: 11:03:32, ID: ST161122G2-7 PFC CS3.5 16K1710, Description: PFC CS3.5 16K1710 A Work Order 1601451 Revision 1 Page 195 of 223 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_7, Date: 22-Nov-2016, Time: 11:03:32, ID: ST161122G2-7 PFC CS3.5 16K1710, Description: PFC CS3.5 16K1710 A Work Order 1601451 Revision 1 Page 197 of 223 Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_7, Date: 22-Nov-2016, Time: 11:03:32, ID: ST161122G2-7 PFC CS3.5 16K1710, Description: PFC CS3.5 16K1710 A Work Order 1601451 Revision 1 Page 198 of 223 Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time #### Name: 161122G2_8, Date: 22-Nov-2016, Time: 11:16:11, ID: ST161122G2-8 PFC CS4 16K1711, Description: PFC CS4 16K1711 A Work Order 1601451 Revision 1 Page 199 of 223 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time ## Name: 161122G2_8, Date: 22-Nov-2016, Time: 11:16:11, ID: ST161122G2-8 PFC CS4 16K1711, Description: PFC CS4 16K1711 A Work Order 1601451 Revision 1 Page 200 of 223 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time # Name: 161122G2_8, Date: 22-Nov-2016, Time: 11:16:11, ID: ST161122G2-8 PFC CS4 16K1711, Description: PFC CS4 16K1711 A Work Order 1601451 Revision 1 Page 201 of 223 MassLynx 4.1 Page 34 of 45 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_8, Date: 22-Nov-2016, Time: 11:16:11, ID: ST161122G2-8 PFC CS4 16K1711, Description: PFC CS4 16K1711 A Work Order 1601451 Revision 1 Page 202 of 223 Work Order 1601451 Revision 1 Page 203 of 223 Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_8, Date: 22-Nov-2016, Time: 11:16:11, ID: ST161122G2-8 PFC CS4 16K1711, Description: PFC CS4 16K1711 A Work Order 1601451 Revision 1 Page 204 of 223 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_9, Date: 22-Nov-2016, Time: 11:28:50, ID: ST161122G2-9 PFC CS4.5 16K1712, Description: PFC CS4.5 16K17121 A Work Order 1601451 Revision 1 Page 205 of 223 Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_9, Date: 22-Nov-2016, Time: 11:28:50, ID: ST161122G2-9 PFC CS4.5 16K1712, Description: PFC CS4.5 16K17121 A Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_9, Date: 22-Nov-2016, Time: 11:28:50, ID: ST161122G2-9 PFC CS4.5 16K1712, Description: PFC CS4.5 16K17121 A Work Order 1601451 Revision 1 Page 207 of 223 Quantify Sample Report MassLynx 4.1 Page 39 of 45 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_9, Date: 22-Nov-2016, Time: 11:28:50, ID: ST161122G2-9 PFC CS4.5 16K1712, Description: PFC CS4.5 16K17121 A Work Order 1601451 Revision 1 Page 208 of 223 Work Order 1601451 Revision 1 Page 209 of 223 Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_9, Date: 22-Nov-2016, Time: 11:28:50, ID: ST161122G2-9 PFC CS4.5 16K1712, Description: PFC CS4.5 16K17121 A Work Order 1601451 Revision 1 Page 210 of 223 Work Order 1601451 Revision 1 Page 211 of 223 4.00 4.50 1.23e4 2222.45 3.50 %- 3.00 min 5.00 4.22e3 4451.77 4.00 4.50 3.50 % 3.00 4.95e3 16818.57 4.00 4.50 3.50 min 5.00 % 3.00 min 5.00 Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Q1 Page 42 of 45 F6:MRM of 16 channels, ES- 5.50 449 > 98.7 min 6.00 6.592e+005 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_10, Date: 22-Nov-2016, Time: 11:41:28, ID: ST161122G2-10 PFC CS5 16K1713, Description: PFC CS5 16K1713 A Work Order 1601451 Revision 1 Page 212 of 223 MassLynx 4.1 Page 43 of 45 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_10, Date: 22-Nov-2016, Time: 11:41:28, ID: ST161122G2-10 PFC CS5 16K1713, Description: PFC CS5 16K1713 A Work Order 1601451 Revision 1 Page 213 of 223 Quantify Sample Report MassLynx 4.1 Page 44 of 45 Vista Analytical Laboratory Q1 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Printed: Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Name: 161122G2_10, Date: 22-Nov-2016, Time: 11:41:28, ID: ST161122G2-10 PFC CS5 16K1713, Description: PFC CS5 16K1713 A Work Order 1601451 Revision 1 Page 214 of 223 Work Order 1601451 Revision 1 Page 215 of 223 Untitled Last Altered: Printed: Tuesday, November 22, 2016 14:43:00 Pacific Standard Time Tuesday, November 22, 2016 14:47:59 Pacific Standard Time Work Order 1601451 Revision 1 Page 216 of 223 **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 Page 1 of 2 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-12.qld Last Altered: Printed: Tuesday, November 22, 2016 15:30:24 Pacific Standard Time Tuesday, November 22, 2016 15:30:54 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 22 Nov 2016 14:48:20 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 15:25:21 Name: 161122G2_12, Date: 22-Nov-2016, Time: 12:06:50, ID: SS161122G2-1 PFC SS 16K2201, Description: PFC SS 16K2201 | ; #-Name | Trace - | Response | - IS Resp | RRF : | Wt/Vol: | RT: | Conc. | %Rec | | | |--|-------------------|----------|-----------|-------|---------|------|---------------|------------------------|------------|---| | 1 PFBA | 213.1 > 168.8 | 1.99e4 | 1.93e4 | • | 1.000 | 1.94 | 26.3 | 105.2 | 75- | 125 | | 2 PFPeA | 263.1 > 218.9 | 1.36e4 | 8.81e3 | | 1.000 | 2.85 | 19.4 | 77.4 | 1 | | | 3 : 3 PFBS | 299 > 79.7 | 1.87e4 | 6.07e3 | | 1.000 | 3.10 | 21.5 | 86.2 | | | | 4 PFHxA | 313.2 > 268.9 | 1.51e4 | 4.56e3 | | 1.000 | 3.47 | 27.6 | 110.5 | | | | 5 PFHpA | 363 > 318.9 | 4.67e4 | 1.40e4 | | 1.000 | 3.98 | 26.9 | 107.5 | | | | 6 FFHxS | 398.9 > 79.6 | 1.55e4 | 5.82e3 | | 1.000 | 4.09 | 19.4 9 | 5.8 77.7 (| 9 | | | 7 6:2 FTS | 427.1 > 407 | 4.23e3 | 5.80e3 | | 1.000 | 4.32 | 20.8 | 83.4 | | A \cap , | | 8 PFOA | 413 > 368.7 | 3.78e4 | 2.49e4 | | 1.000 | 4.37 | 21.0 | 62 83.9 | 9 | | | 9 PFHpS | 449 > 98.7 | 4.68e3 | 2.49e4 | | 1.000 | 4.45 | 25.7 | 103.0 | | ماراممار | | 10 ; 10 PFOS | 499 >79.9 | 9.75e3 | 7.54e3 | | 1.000 | 4.77 | 19.6 9 | 4.4 -78.3 (| 4) | 11 22 14
Ph
11 23 16 | | 11 : 11 PFNA | 463 > 418.8 | 4.01e4 | 1.20e4 | | 1.000 | 4.71 | 25.5 | 102.1 | ^ | رام ا | | 12 : 12 PFDA | 513 > 468.8 | 1.01e4 | 9.03e3 | | 1.000 | 5.01 | 23.6 | 94.4 | - 1 | \\\\23 <i> </i> 6 | | 13 - 13 8:2 FTS | 527 >
506.9 | 2.65e3 | 2.91e3 | | 1.000 | 4.99 | 23.2 | 92.8 | J | / | | 14 13C3-PFE | 3A 216.1 > 171.8 | 1.93e4 | 1.41e4 | 1.205 | 1.000 | 1.94 | 14.2 | 113.8 | • | | | 15 13C3-PFF | PeA 266>221.8 | 8.81e3 | 1.61e4 | 0.448 | 1.000 | 2.85 | 15.3 | 122.1 | | | | 16 13C3-PFE | 302.0 > 98.8 | 6.07e3 | 1.61e4 | 0.302 | 1.000 | 3.10 | 15.6 | 124.7 | , | a percent becomen | | 17 13C2-PFF | fxA 315 > 269.8 | 4.56e3 | 1.61e4 | 0.620 | 1.000 | 3.47 | 5.71 | 114.1 | (| A Percent recovery
based on linear
isomer only. | | 18 13C4-PFF | lpA 367.2 > 321.8 | 1.40e4 | 1.10e4 | 1.139 | 1.000 | 3.97 | 14.1 | 112.6 | | basea on livear | | 19 : 19 1802-PFF | HxS 403 > 102.6 | 5.82e3 | 1.10e4 | 0.449 | 1.000 | 4.09 | 14.8 | 118.2 | | isomer only. | | 20 13C2-6:2 | FTS 429.1 > 408.9 | 5.80e3 | 4.58e3 | 1.073 | 1.000 | 4.32 | 14.8 | 118.1 | | 100,100,011 | | 21 13C2-PF0 | DA 414.9 > 369.7 | 2.49e4 | 8.18e3 | 2.262 | 1.000 | 4.37 | 16.8 | 134.6 | | | | 22 13C8-PF0 | OS 507.0 > 79.9 | 7.54e3 | 6.29e3 | 0.944 | 1.000 | 4.77 | 15.9 | 127.2 | | | | 23 13C5-PFN | NA 468.2 > 422.9 | 1.20e4 | 9.84e3 | 1.082 | 1.000 | 4.71 | 14.1 | 113.0 | | | | 24 13C2-PF | DA 515.1 > 469.9 | 9.03e3 | 6.86e3 | 1.019 | 1.000 | 5.01 | 16.1 | 129.0 | | | | 25 13C2-8:2 | FTS 529.1 > 508.7 | 2.91e3 | 4.58e3 | 0.569 | 1.000 | 4.99 | 14.0 | 111.7 | | | | 26 13C4-PFE | 3A 217 > 171.8 | 1.41e4 | 1.41e4 | 1.000 | 1.000 | 1.94 | 12.5 | 100.0 | | | | 27 : 27 13C2-4:2 | FTS 329.2 > 308.9 | 4.58e3 | 4.58e3 | 1.000 | 1.000 | 3.38 | 12.5 | 100.0 | | | | 28 13C5-PFF | 1xA 318.0 > 272.9 | 1.61e4 | 1.61e4 | 1.000 | 1.000 | 3.47 | 12.5 | 100.0 | | | | 29 13C3-PFF | 401.9 > 79.9 | 1.10e4 | 1.10e4 | 1.000 | 1.000 | 4.09 | 12.5 | 100.0 | | | | 30 13C8-PF0 | OA 421.3 > 376 | 8.18e3 | 8.18e3 | 1.000 | 1.000 | 4.37 | 12.5 | 100.0 | | | | 31 31 13C4-PFO
Order 1601451 Revision | OŞ 503.0 > 79.9 | 6.29e3 | 6.29e3 | 1.000 | 1.000 | 4.77 | 12.5 | 100.0 | | n | | Order 1001431 Revision | - i | | - | | | | | | | Page | Page 217 of 223 Quantify Sample Summary Report MassLynx 4.1 Page 2 of 2 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-12.qld Last Altered: Tuesday, November 22, 2016 15:30:24 Pacific Standard Time Printed: Tuesday, November 22, 2016 15:30:54 Pacific Standard Time Name: 161122G2_12, Date: 22-Nov-2016, Time: 12:06:50, ID: SS161122G2-1 PFC SS 16K2201, Description: PFC SS 16K2201 | | Trace | Response | IS Resp | RRF | Wt/Vol | RT: | Conc.: %Re | |--------------|---------------|----------|---------|-------|--------|------|------------| | 32 13C9-PFNA | 472.2 > 426.9 | 9.84e3 | 9.84e3 | 1.000 | 1.000 | 4.71 | 12.5 100 | | | 519.1 > 473.7 | 6.86e3 | 6.86e3 | 1.000 | 1.000 | 5.01 | 12.5 100 | Work Order 1601451 Revision 1 Page 218 of 223 3.50 4.00 4.50 3.00 min 5.00 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-1.ald Last Altered: Printed: Tuesday, November 22, 2016 15:10:09 Pacific Standard Time Tuesday, November 22, 2016 15:11:00 Pacific Standard Time Method: U:\G1.PRO\MethDB\PFAS_A_FULL_LINEAR.mdb 22 Nov 2016 14:48:20 Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_11-22-16_FULL_A.cdb 22 Nov 2016 14:59:27 min 3.00 5.00 Name: 161122G2 12, Date: 22-Nov-2016, Time: 12:06:50, ID: SS161122G2-1 PFC SS 16K2201, Description: PFC SS 16K2201 Work Order 1601451 Revision 1 Page 219 of 223 4.00 4.50 3.50 min 5.00 0- 3.00 3.50 4.00 4.50 MassLynx 4.1 Page 2 of 5 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-1.gld Last Altered: Printed: Tuesday, November 22, 2016 15:10:09 Pacific Standard Time Tuesday, November 22, 2016 15:11:00 Pacific Standard Time Name: 161122G2_12, Date: 22-Nov-2016, Time: 12:06:50, ID: SS161122G2-1 PFC SS 16K2201, Description: PFC SS 16K2201 Work Order 1601451 Revision 1 Page 220 of 223 Page 3 of 5 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-1.qld Last Altered: Printed: Tuesday, November 22, 2016 15:10:09 Pacific Standard Time Tuesday, November 22, 2016 15:11:00 Pacific Standard Time Name: 161122G2 12, Date: 22-Nov-2016, Time: 12:06:50, ID: SS161122G2-1 PFC SS 16K2201, Description: PFC SS 16K2201 Work Order 1601451 Revision 1 Page 221 of 223 MassLynx 4.1 Page 4 of 5 _ Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-1.qld Last Altered: Printed: Tuesday, November 22, 2016 15:10:09 Pacific Standard Time Tuesday, November 22, 2016 15:11:00 Pacific Standard Time Name: 161122G2_12, Date: 22-Nov-2016, Time: 12:06:50, ID: SS161122G2-1 PFC SS 16K2201, Description: PFC SS 16K2201 Work Order 1601451 Revision 1 Page 222 of 223 Vista Analytical Laboratory Q1 Dataset: U:\G1.PRO\Results\2016\161122G2\161122G2-1.qld Last Altered: Printed: Tuesday, November 22, 2016 15:10:09 Pacific Standard Time Tuesday, November 22, 2016 15:11:00 Pacific Standard Time Name: 161122G2_12, Date: 22-Nov-2016, Time: 12:06:50, ID: SS161122G2-1 PFC SS 16K2201, Description: PFC SS 16K2201 Work Order 1601451 Revision 1 Page 223 of 223 ``` "sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t est_type","cas_rn","chemical_name","result_value","result_error_delta","result_type_code","reportable_result","detect_ flag", "lab qualifiers", "organic yn", "method detection limit", "reporting detection limit", "quantatation limit", "result u nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta tus" "SB01-20161114", "537 MOD", "11/27/16", "19:44", "N", "NA", "000", "375-73- "SB01-20161114","537_MOD","11/27/16","19:44","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID "SB01-20161114","537_MOD","11/27/16","19:44","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "SB01-20161114","537 MOD","11/27/16","19:44","N","NA","000","13C3-PFBS","13C3- PFBS","122","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","122","122","","","","","","","60","150","","" ***** "SB01-20161114","537_MOD","11/27/16","19:44","N","NA","000","13C2-PFOA","13C2- PFOA","106","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","106","106","106","","","","","","","150","","" " "" "" "SB01-20161114", "537 MOD", "11/27/16", "19:44", "N", "NA", "000", "13C8-PFOS", "13C8- PFOS","124","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","124","124","124","","","","","","","150","","" 1111 1111 "EB01-20161114", "537 MOD", "11/27/16", "19:57", "N", "NA", "000", "375-73- " "" "" "EB01-20161114","537 MOD","11/27/16","19:57","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID "EB01-20161114","537_MOD","11/27/16","19:57","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION PFBS","113","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","113","113","","","","","","","60","150","","" "EB01-20161114","537_MOD","11/27/16","19:57","N","NA","000","13C2-PFOA","13C2- PFOA","99.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","99.7","99.7","99.7","","","","","","150","" "EB01-20161114","537_MOD","11/27/16","19:57","N","NA","000","13C8-PFOS","13C8- PFOS","107","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","107","107","107","","","","","","","150","","" "OUAI-MW13-20161114","537 MOD","11/27/16","20:09","N","NA","000","375-73- "OUAI-MW13-20161114","537 MOD","11/27/16","20:09","N","NA","000","335-67-1","PERFLUOROOCTANOIC ñn nn nn ní "OUAI-MW13-20161114","537 MOD","11/27/16","20:09","N","NA","000","1763-23- 1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION ``` ``` 11 1111 "OUAI-MW13-20161114","537_MOD","11/27/16","20:09","N","NA","000","13C3-PFBS","13C3- PFBS","128","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","128","128","","","","","","","60","150","","" "OUAI-MW13-20161114","537_MOD","11/27/16","20:09","N","NA","000","13C2-PFOA","13C2- PFOA","98.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","98.0","98.0","98.0","","","","","","150","" "OUAI-MW13-20161114","537 MOD","11/27/16","20:09","N","NA","000","13C8-PFOS","13C8- PFOS","122","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","122","122","","","","","","","60","150","","" 1111 1111 "OUAI-MW37-20161114","537_MOD","11/27/16","20:22","N","NA","000","375-73- "OUAI-MW37-20161114","537_MOD","11/27/16","20:22","N","NA","000","335-67-1","PERFLUOROOCTANOIC "OUAI-MW37-20161114","537_MOD","11/27/16","20:22","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "OUAI-MW37-20161114","537_MOD","11/27/16","20:22","N","NA","000","13C3-PFBS","13C3- PFBS","130","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","130","130","","","","","","","60","150","","" "OUAI-MW37-20161114","537_MOD","11/27/16","20:22","N","NA","000","13C2-PFOA","13C2- ", ", ", "OUAI-MW37-20161114","537_MOD","11/27/16","20:22","N","NA","000","13C8-PFOS","13C8- PFOS","129","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","129","129","","","","","","","60","150","","" "OUAI-MW37A-20161114","537_MOD","11/27/16","20:34","N","NA","000","375-73- "OUAI-MW37A-20161114","537_MOD","11/27/16","20:34","N","NA","000","335-67-1","PERFLUOROOCTANOIC "OUAI-MW37A-20161114","537_MOD","11/27/16","20:34","N","NA","000","1763-23- 1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "OUAI-MW37A-20161114","537_MOD","11/27/16","20:34","N","NA","000","13C3-PFBS","13C3- PFBS","133","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","133","133","","","","","","","60","150","","" "OUAI-MW37A-20161114","537_MOD","11/27/16","20:34","N","NA","000","13C2-PFOA","13C2- PFOA","109","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","109","109","","","","","","","60","150",""," "OUAI-MW37A-20161114","537_MOD","11/27/16","20:34","N","NA","000","13C8-PFOS","13C8- PFOS","114","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","114","114","","","","","","","60","150","",""
"OUAI-HS03-20161114","537_MOD","11/27/16","20:47","N","NA","000","375-73- "OUAI-HS03-20161114","537_MOD","11/27/16","20:47","N","NA","000","335-67-1","PERFLUOROOCTANOIC ``` ``` ACID "OUAI-HS03-20161114","537_MOD","11/27/16","20:47","N","NA","000","1763-23- 1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "OUAI-HS03-20161114","537_MOD","11/27/16","20:47","N","NA","000","13C3-PFBS","13C3- PFBS","137","","IS","Yes","Y","","","","","","PCT_REC","","","","100","137","137","","","","","","","","","","" ***** "OUAI-HS03-20161114","537 MOD","11/27/16","20:47","N","NA","000","13C2-PFOA","13C2- PFOA","98.4","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","98.4","98.4","98.4","","","","","","150","" , , , , , , , "OUAI-HS03-20161114","537_MOD","11/27/16","20:47","N","NA","000","13C8-PFOS","13C8- PFOS","117","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","117","117","","","","","","","60","150","","" 1111 1111 "OUAI-MW19-20161114","537_MOD","11/27/16","21:25","N","NA","000","375-73- "OUAI-MW19-20161114","537 MOD","11/27/16","21:25","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID nn nn nn nn "OUAI-MW19-20161114","537_MOD","11/27/16","21:25","N","NA","000","1763-23- 1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "OUAI-MW19-20161114","537_MOD","11/27/16","21:25","N","NA","000","13C3-PFBS","13C3- ***** "OUAI-MW19-20161114","537 MOD","11/27/16","21:25","N","NA","000","13C2-PFOA","13C2- " "" "" "OUAI-MW19-20161114","537_MOD","11/27/16","21:25","N","NA","000","13C8-PFOS","13C8- PFOS","121","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","121","121","","","","","","","60","150","","" "OUAI-MW18-20161114","537_MOD","11/27/16","21:37","N","NA","000","375-73- , , , , , , "OUAI-MW18-20161114","537_MOD","11/27/16","21:37","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID "OUAI-MW18-20161114","537 MOD","11/27/16","21:37","N","NA","000","1763-23- 1" "HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION 11 1111 "OUAI-MW18-20161114","537_MOD","11/27/16","21:37","N","NA","000","13C3-PFBS","13C3- PFBS","128","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","128","128","","","","","","","60","150","","" ***** "OUAI-MW18-20161114", "537 MOD", "11/27/16", "21:37", "N", "NA", "000", "13C2-PFOA", "13C2- PFOA","108","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","108","108","108","","","","","","","60","150","","" 11 1111 1111 "OUAI-MW18-20161114","537 MOD","11/27/16","21:37","N","NA","000","13C8-PFOS","13C8- PFOS","111","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","111","111","","","","","","60","150","","" ``` ``` 1111 1111 "OUAI-MW08-20161114","537_MOD","11/28/16","10:22","N","NA","DL1","375-73- nn nn nn nn in "OUAI-MW08-20161114","537_MOD","11/27/16","22:28","N","NA","000","335-67-1","PERFLUOROOCTANOIC ù,"",",í" "OUAI-MW08-20161114","537_MOD","11/27/16","22:28","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION 11 1111 "OUAI-MW08-20161114","537_MOD","11/28/16","10:22","N","NA","DL1","13C3-PFBS","13C3- PFBS","135","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","135","135","","","","","","","60","150","" "OUAI-MW08-20161114","537_MOD","11/27/16","22:28","N","NA","000","13C2-PFOA","13C2- 11 1111 1111 "OUAI-MW08-20161114","537 MOD","11/27/16","22:28","N","NA","000","13C8-PFOS","13C8- PFOS","134","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","134","134","","","","","","","60","150","","" 1111 1111 "OUAI-MW06-20161114","537_MOD","11/27/16","22:41","N","NA","000","375-73- "OUAI-MW06-20161114","537_MOD","11/27/16","22:41","N","NA","000","335-67-1","PERFLUOROOCTANOIC ii iiii iiii iiii "OUAI-MW06-20161114","537_MOD","11/27/16","22:41","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION ***** "OUAI-MW06-20161114","537 MOD","11/27/16","22:41","N","NA","000","13C3-PFBS","13C3- PFBS","118","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","118","118","","","","","","","60","150","","" 1111 1111 "OUAI-MW06-20161114","537_MOD","11/27/16","22:41","N","NA","000","13C2-PFOA","13C2- PFOA","106","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","106","106","","","","","","",""60","150",""," " "" "" "OUAI-MW06-20161114","537 MOD","11/27/16","22:41","N","NA","000","13C8-PFOS","13C8- "B6K0143-BLK1","537_MOD","11/27/16","15:44","N","NA","000","375-73- ","","" "B6K0143-BLK1","537_MOD","11/27/16","15:44","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID "B6K0143-BLK1","537_MOD","11/27/16","15:44","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "B6K0143-BLK1","537_MOD","11/27/16","15:44","N","NA","000","13C2-PFOA","13C2- ``` ``` PFOA","97.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","97.1","97.1","","","","","","","60","150","" "B6K0143-BLK1","537_MOD","11/27/16","15:44","N","NA","000","13C8-PFOS","13C8- "B6K0143-BS1","537_MOD","11/27/16","14:41","N","NA","000","375-73- 5","PFBS","78.9","","TRG","Yes","Y","","Y","1.79","4.00","8.00","NG_L","NG_L","","","","80.0","78.9","98.6","","" "","","","60","130","","","","" "B6K0143-BS1","537_MOD","11/27/16","14:41","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","86.0","","TRG","Yes","Y","","Y","0.651","2.00","8.00","NG_L","NG_L","","","","80.0","86.0","107","","","","" ","","","70","130","","","","","" "B6K0143-BS1","537_MOD","11/27/16","14:41","N","NA","000","1763-23- 1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION ","74.4","","TRG","Yes","Y","","Y","0.807","0.900","8.00","NG_L","NG_L","","","","","80.0","74.4","93.0","","","","","","" ,"70","130","","","","" "B6K0143-BS1","537_MOD","11/27/16","14:41","N","NA","000","13C3-PFBS","13C3- PFBS","116","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","116","116","116","","","","","","60","150","","" "B6K0143-BS1","537 MOD","11/27/16","14:41","N","NA","000","13C2-PFOA","13C2- PFOA","106","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","106","106","106","","","","","","60","150",""," ", ", ", "B6K0143-BS1","537_MOD","11/27/16","14:41","N","NA","000","13C8-PFOS","13C8- "B6K0143-MS1","537_MOD","11/27/16","21:00","N","NA","000","375-73- 5","PFBS","366","","TRG","Yes","Y","","Y","1.78","3.97","7.93","NG_L","NG_L","","","289","79.3","366","98.0","", "","","","","60","130","","","","" "B6K0143-MS1","537 MOD","11/27/16","21:00","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","114","","TRG","Yes","Y","","Y","0.646","1.98","7.93","NG_L","NG_L","","","36.3","79.3","114","97.5","", "","","","","70","130","","","","" "B6K0143-MS1","537_MOD","11/27/16","21:00","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "","","70","130","","","","" "B6K0143-MS1","537_MOD","11/27/16","21:00","N","NA","000","13C3-PFBS","13C3- "B6K0143-MS1","537_MOD","11/27/16","21:00","N","NA","000","13C8-PFOS","13C8- "B6K0143-MSD1","537_MOD","11/27/16","21:12","N","NA","000","375-73- 5","PFBS","367","","TRG","Yes","Y","","Y","1.76","3.94","7.89","NG_L","NG_L","","","289","78.9","367","99.0","3 66","78.9","367","99.0","1.02","60","130","25","","","" "B6K0143-MSD1","537_MOD","11/27/16","21:12","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","115","","TRG","Yes","Y","","Y","0.642","1.97","7.89","NG_L","NG_L","","","36.3","78.9","115","100","1 14","78.9","115","100","2.53","70","130","25","","","" "B6K0143-MSD1","537_MOD","11/27/16","21:12","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION ","69.2","","TRG","Yes","Y","","Y","0.795","0.886","7.89","NG_L","NG_L","","","0.00","78.9","69.2","87.7","68.6"," 78.9","69.2","87.7","1.38","70","130","25","","","" "B6K0143-MSD1","537_MOD","11/27/16","21:12","N","NA","000","13C3-PFBS","13C3- ``` AMEC Foster Wheeler, Inc. 7376 SW Durham Road Portland, OR 97224 Attn: Ms. Marina Mitchell February 2, 2017 SUBJECT: MCAS Yuma, Data Validation Dear Ms. Mitchell, Enclosed are the final validation reports for the fractions listed below. These SDGs were received on December 20, 2016. Attachment 1 is a summary of the samples that were reviewed for each analysis. #### **LDC Project #37797:** SDG # Fraction 280-90987-1, 280-91067-1, 280-91122-1, 280-91192-1 1601451, 1601461, 1601464, 1601472 Volatiles, 1,4-Dioxane, Wet Chemistry, Perfluorinated Alkyl Acids The data validation was performed under Stage 2B & 4 guidelines. The analyses were validated using the following documents, as applicable to each method: - Final Addendum 3 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, February 2017 - Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, September 2015 - Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, May 2013 - Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, May 2013 - U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.0, July 2013 - USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, August 2014 - USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, August 2014 - EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014 Please feel free to contact us if you have any questions.
Sincerely, Pei Geng Project Manager/Senior Chemist 5,062 pages-SF Attachment 1 LDC #37797 (AMEC Foster Wheeler-Portland, OR / MCAS Yuma) 90/10 (client select) EDD Short CI,SO, (2) 1,4-Fe II DATE DATE VOA Dioxane PFAs NO,-N (3500рΗ REC'D LDC SDG# DUE (8260B) (8270C) (537) (9056) FE D) (9040C) w s s W s ws w s Matrix: Water/Soil 0 280-90987-1 12/20/16 01/05/17 0 12/20/16 01/05/17 1 0 0 280-90987-1 280-91067-1 12/20/16 01/05/17 8 8 0 4 0 3 12/20/16 01/05/17 1 В 280-91067-1 С 12/20/16 01/05/17 10 0 10 0 4 0 0 4 0 280-91122-1 4 0 D 280-91192-1 12/20/16 01/05/17 2 2 2 0 2 0 2 12/20/16 01/05/17 1 0 D 280-91192-1 0 G 12/20/16 01/05/17 7 0 1601451 G 1601451 12/20/16 01/05/17 н 12/20/16 01/05/17 8 0 1601461 Н 12/20/16 01/05/17 1601461 0 12/20/16 01/05/17 10 1601464 12/20/16 01/05/17 2 0 1601472 12/20/16 01/05/17 1601472 0 0 0 0 30 0 19 16 0 0 0 0 0 0 0 Total T/PG # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 6, 2017 Parameters: Volatiles Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-90987-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW13-20161114 | 280-90987-4 | Water | 11/14/16 | | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. # IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. # V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample TB01-20161114 was identified as a trip blank. No contaminants were found. Sample EB01-20161114 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 was identified as a source blank. No contaminants were found. ## VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions: | Sample | Surrogate | %R (Limits) | Affected
Compound | Flag | A or P | |---------------------|--------------------|--------------|----------------------|-----------------|--------| | OUA1-MW13-20161114 | Bromofluorobenzene | 117 (85-114) | All compounds | J (all detects) | Р | | OUA1-MW37A-20161114 | Bromofluorobenzene | 116 (85-114) | All compounds | J (all detects) | Р | # VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. # X. Field Duplicates Samples OUA1-MW37-20161114 and OUA1-MW37A-20161114 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentr | ation (ug/L) | | | | | |--------------------|--------------------|---------------------|-----------------|------------------------|------|--------| | Compound | OUA1-MW37-20161114 | OUA1-MW37A-20161114 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | 1,1-Dichloroethene | 0.76 | 0.78 | - | 0.02 (≤1.0) | - | - | | Trichloroethene | 1.7 | 1.8 | 6 (≤20) | - | - | - | #### XI. internal Standards All internal standard areas and retention times were within QC limits. ## XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ## XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ## XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to surrogate %R, data were qualified as estimated in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ## **MCAS Yuma** # Volatiles - Data Qualification Summary - SDG 280-90987-1 | Sample | Compound | Flag | A or P | Reason | |---|---------------|-----------------|--------|-----------------| |
OUA1-MW13-20161114
OUA1-MW37A-20161114 | All compounds | J (all detects) | Р | Surrogates (%R) | # **MCAS Yuma** Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG **MCAS Yuma** Volatiles - Field Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797A1 SDG #: 280-90987-1 Laboratory: Test America, Inc. Stage 2B/4 2nd Reviewer METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | ., | | | |-------|--|-------------|---------------------------------------| | | Validation Area | | Comments | | 1. | Sample receipt/Technical holding times | A | | | II. | GC/MS Instrument performance check | lacksquare | | | 111. | Initial calibration/ICV | AA | RSD=1570 Y 101=2070
CCV < 20/5070 | | IV. | Continuing calibration / Zwee | A | CCV < 20/50/0 | | V. | Laboratory Blanks | 1 | / (| | VI. | Field blanks | NO | B=1.2B=2. TB=3 | | VII. | Surrogate spikes | M | | | VIII. | Matrix spike/Matrix spike duplicates | A | | | IX. | Laboratory control samples | \triangle | 109 | | X. | Field duplicates | ay | D=5+6 | | XI. | Internal standards | \Diamond | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | 1 | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | 1 | | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |----|-----------------------|----------------|--------|----------| | 1 | SB01-20181114 | 280-90987-1 | Water | 11/14/16 | | 2 | EB01-201611114 | 280-90987-2 | Water | 11/14/16 | | 3- | TB01-201611114 | 280-90987-3 | Water | 11/14/16 | | 4 | OUAMW13-20161114 | 280-90987-4 | Water | 11/14/16 | | 5 | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | 6 | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | 7 | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | 8 | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | 9 | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | 10 | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | 11 | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | 12 | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | 13 | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | # VALIDATION FINDINGS CHECKLIST | Page:_ | 1 | of_ | 2 | |---------------|---|------------------|---| | Reviewer: | (| $\sum_{i=1}^{n}$ | _ | | 2nd Reviewer: | | T | 0 | Method: Volatiles (EPA SW 846 Method 8260B) | Validation Area | Yes | No | NA | Findings/Comments | |--|-------|-------------|-------|---| | I. Technical holding times | | | 14.27 | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. GC/MS Instrument performance check | | | | | | Were the BFB performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | L (SARCE OF | | And the second section of the second | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) \leq 38%/15% and relative response factors (RRF) \geq 0.05? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | <u></u> | | | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | 10.19 | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | , | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks were identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | | | Were all surrogate percent recovery (%R) within QC limits? | | / | | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | | | | ## VALIDATION FINDINGS CHECKLIST Page: 2 of 2 Reviewer: 2nd Reviewer: No | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|-----
--| | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | Ø |) | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | , a | The state of s | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% to +100% of the associated calibration standard? | | / | | | | Were retention times within + 30 seconds of the associated calibration standard? | | | | | | XII. Compound guantitation | | | i t | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | ĺ | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | i i | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | / | | | | # TARGET COMPOUND WORKSHEET # METHOD: VOA | A. Chloromethane | U. 1,1,2-Trichloroethane | OO 2 2 Dichlerenses | III - D. f. II | | |------------------------------|---------------------------------|-------------------------------|--|-------------------------| | A. Chloromethane | U. 1,1,2-1 richioroethane | OO. 2,2-Dichloropropane | III. n-Butylbenzene | CCCC.1-Chlorohexane | | B. Bromomethane | V. Benzene | PP. Bromochloromethane | JJJ. 1,2-Dichlorobenzene | DDDD. Isopropyl alcohol | | C. Vinyl choride | W. trans-1,3-Dichloropropene | QQ. 1,1-Dichloropropene | KKK. 1,2,4-Trichlorobenzene | EEEE. Acetonitrile | | D. Chloroethane | X. Bromoform | RR. Dibromomethane | LLL. Hexachlorobutadiene | FFFF. Acrolein | | E. Methylene chloride | Y. 4-Methyl-2-pentanone | SS. 1,3-Dichloropropane | MMM. Naphthalene | GGGG. Acrylonitrile | | F. Acetone | Z. 2-Hexanone | TT. 1,2-Dibromoethane | NNN. 1,2,3-Trichlorobenzene | HHHH. 1,4-Dioxane | | G. Carbon disulfide | AA. Tetrachloroethene | UU. 1,1,1,2-Tetrachloroethane | OOO. 1,3,5-Trichlorobenzene | IIII. Isobutyl alcohol | | H. 1,1-Dichloroethene | BB. 1,1,2,2-Tetrachloroethane | VV. Isopropylbenzene | PPP. trans-1,2-Dichloroethene | JJJJ. Methacrylonitrile | | I. 1,1-Dichloroethane | CC. Toluene | WW. Bromobenzene | QQQ. cis-1,2-Dichloroethene | KKKK. Propionitrile | | J. 1,2-Dichloroethene, total | DD. Chlorobenzene | XX. 1,2,3-Trichloropropane | RRR. m,p-Xylenes | LLLL. Ethyl ether | | K. Chloroform | EE. Ethylbenzene | YY. n-Propylbenzene | SSS. o-Xylene | MMMM. Benzyl chloride | | L. 1,2-Dichloroethane | FF. Styrene | ZZ. 2-Chlorotoluene | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | NNNN. lodomethane | | M. 2-Butanone | GG. Xylenes, total | AAA. 1,3,5-Trimethylbenzene | UUU. 1,2-Dichlorotetrafluoroethane | OOOO.1,1-Difluoroethane | | N. 1,1,1-Trichloroethane | HH. Vinyl acetate | BBB. 4-Chlorotoluene | VVV. 4-Ethyltoluene | PPPP. | | O. Carbon tetrachloride | II. 2-Chloroethylvinyl ether | CCC. tert-Butylbenzene | WWW. Ethanol | QQQQ. | | P. Bromodichloromethane | JJ. Dichlorodifluoromethane | DDD. 1,2,4-Trimethylbenzene | XXX. Di-isopropyl ether | RRRR. | | Q. 1,2-Dichloropropane | KK. Trichlorofluoromethane | EEE. sec-Butylbenzene | YYY. tert-Butanol | SSSS. | | R. cis-1,3-Dichloropropene | LL. Methyl-tert-butyl ether | FFF. 1,3-Dichlorobenzene | ZZZ. tert-Butyl alcohol | тттт. | | S. Trichloroethene | MM. 1,2-Dibromo-3-chloropropane | GGG. p-Isopropyltoluene | AAAA. Ethyl tert-butyl ether | UUUU. | | T. Dibromochloromethane | NN. Methyl ethyl ketone | HHH. 1,4-Dichlorobenzene | BBBB. tert-Amyl methyl ether | vvv. | LDC#3TATA # VALIDATION FINDINGS WORKSHEET Surrogate Spikes | Page:_ | of | |--------------|------| | Reviewer:_ | 1 | | nd Reviewer: | . DQ | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YON N/A Were all surrogate %R within QC limits? Y N/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria? | # | Date | Sample ID | Surrogate | %Recovery (Limits) | Qualifications | |---|----------|-----------|-------------|--------------------|----------------| | | | 4 | BB | 117 (85-14) | | | | | | | | 1/ | | | | 6 | BFB | 16 (1) | \ | | | | | | () | <u> </u> | | | | | | () | | | | | | | | | | | <u>,</u> | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | | <u> </u> | | | | | | () | | | | | | | | | (TOL) = Toluene-d8 (DCE) = 1,2-Dichloroethane-d4 (BFB) = Bromofluorobenzene (DFM) = Dibromofluoromethane | LDC#:377974 | | |-------------|--| |-------------|--| # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | _of | |---------------|----------| | Reviewer:_ | a | | 2nd Reviewer: | 116 | METHOD: GCMS voa (EPA SW 846 Method 8260B) | | Concentra | ation (ug/L) | (≤20) | | | _ | |----------|-----------|--------------|-------|------------|--------|------| | Compound | 5 | 6 | RPD | Difference | Limits | Qual | | н | 0.76 | 0.78 | | 0.02 | ≤1.0 | | | s | 1.7 | 1.8 | 6 | | | | V:\FIELD DUPLICATES\37797A1.wpd LDC #: 37797A1 # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | Lof 1 | |---------------|-------| | Reviewer: | 9 | | 2nd Reviewer: | No | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_v)(C_{is})/(A_{is})(C_v)$ average RRF = sum of the RRFs/number of standards A_{ν} = Area of compound, A_{is} = Area of associated internal standard C = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard %RSD = 100 * (S/X) X = Mean of the RRFs | | | | X Modifier Nation | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----------|-------------|---------------------|--|------------------|------------------|--------------------------|--------------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(10 std) | RRF
(10 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | | | S (1st internal standard) | 0.6242 | 0.6242 | 0.6492 | 0.6492 | 6.8 | 6.8 | | | ICAL | 11/25/16 | AA (2nd internal standard) | 1.8423 | 1.8423 | 1.9091 | 1.9091 | 6.9 | 6.9 | | | (VMS_H) | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd
internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 3 | | | (1st internal standard) | | | | | | | | <u> </u> | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 37797A1 # VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page: | Lof (| |----------------|-------| | Reviewer:_ | 'Q | | 2nd Reviewer:_ | SVB | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF Where: ave. RRF = initial calibration average RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard | # | Standard ID | Calibration
Date | Compound (Reference internal Standard) | Average RRF
(initial) | Reported
RRF
(CC) | Recalculated
RRF
(CC) | Reported
%D | Recalculated
%D | |------|-------------|---------------------|--|--------------------------|-------------------------|-----------------------------|----------------|--------------------| | 1_1_ | H2165 | 11/28/16 | S (1st internal standard) | 0.6492 | 0.6532 | 0.6532 | 0.6 | 0.6 | | | | | AA (2nd internal standard) | 1.9091 | 2.012 | 2.012 | 5.4 | 5.4 | | | , | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #:31(9R) # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of/_ | |---------------|------| | Reviewer: | C | | 2nd reviewer: | NB | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) | The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following o | |--| |--| % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID:_ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | 10.1 | 10.9 | 107 | 107 | 0 | | 1,2-Dichloroethane-d4 | | 9.54 | 94 | 94 | | | Toluene-d8 | | 9.87 | 97 | 97 | | | Bromofluorobenzene | d | 10.8 | 107 | 107 | d | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID:_ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | of | |--------------|----| | Reviewer: | 9 | | nd Reviewer: | Ne | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentration RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD sample: | Compound | Ad | oike
ded | Sample
Concentration | Spiked S
Concent | • | Matrix Percent R | | Matrix Spike | | | S/MSD
RPD | |--------------------|-----|-------------|-------------------------|---------------------|------|------------------|--------|--------------|--------|----------|--------------| | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | 1,1-Dichloroethene | 500 | 500 | ≥,8 | 7.81 | T.79 | 100 | 100 | 100 | 100 | 0 | 0 | | Trichloroethene | V | L | 3 ^T | 842 | 86T | 95 | 94 | 100 | 99 | 3 | 3 | | Benzene | | | | | | | | | | | | | Toluene | | | | | | | | | | | | | Chlorobenzene | L | | | | | | | | | | | | omments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree | within 10.0% | |--|--------------| | f the recalculated results. | | | | | | | | # **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | Page:_ | | |---------------|----| | Reviewer: | 9 | | 2nd Reviewer: | NB | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS ID: -280-353-24 | | | oike | Spiked Sample | | | | LCSD | | L CS/L CSD | |
--|------|-----------|---------------|-----------|-----------|----------|-----------|----------|------------|--------------| | Compound | | ded
Du | Concen
(/ | tration (| Percent R | Recovery | Percent R | tecovery | R | PD | | And the second s | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | 1,1-Dichloroethene | 5.00 | NA | 5-9 | NA | 106 | 106 | | | | | | Trichloroethene | V | 1 | 500 | d | 180 | 100 | | | | | | Benzene | | | | | | | | | | | | Toluene | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | | | Comments: | Refer to Laboratory | Control Sample findings | worksheet for list of | of qualifications and | associated sample | s when reported re | sults do not agree w | ithin 10.0% of the | |--------------|---------------------|-------------------------|-----------------------|-----------------------|-------------------|--------------------|----------------------|--------------------| | recalculated | results. | LDC #3796 # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | <u>/</u> of / | |---------------|---------------| | Reviewer: | 9 | | 2nd reviewer: | NG | | METUOD. | GC/MS VOA | /EDA | CIM QAG | Mothod | 9260D) | |------------|-----------|------|---------|----------|--------| | WIE I HOD: | GC/MS VOA | (EPA | 5VV 846 | ivietnoa | 826UB1 | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? Concentration = $(A_s)(I_s)(DF)$ $(A_{ls})(RRF)(V_o)(\%S)$ A_x = Area of the characteristic ion (EICP) for the compound to be measured A_{is} = Area of the characteristic ion (EICP) for the specific internal standard I_s = Amount of internal standard added in nanograms RRF = Relative response factor of the calibration standard. V_o = Volume or weight of sample pruged in milliliters (ml) or grams (g). Df = Dilution factor. %S = Percent solids, applicable to soils and solid matrices Example: Sample I.D. 9 ; _______: Conc. = (55/1) (15, 5) (15/15) = 1.16Mgc | Г | only. | 7 | | | T | |---|---|----------|---------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration | Calculated
Concentration
() | Qualification | | | 9 | S | 1.2 | - | *************************************** | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 6, 2017 Parameters: 1,4-Dioxane Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-90987-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW13-20161114 | 280-90987-4 | Water | 11/14/16 | | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U
(Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. # IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. ## V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB01-20161114 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 was identified as a source blank. No contaminants were found. # VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ## VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were not within the QC limits for OUA1-HS03-20161114MS/MSD. No data were qualified since the parent sample results were greater than 4X the spiked concentration. Relative percent differences (RPD) were within QC limits. # IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. ## X. Field Duplicates Samples OUA1-MW37-20161114 and OUA1-MW37A-20161114 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ug/L) | | | | | | |-------------|----------------------|---------------------|-----------------|------------------------|------|--------| | Compound | OUA1-MW37-20161114 | OUA1-MW37A-20161114 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | 1,4-Dioxane | 5.6 | 5.7 | 2 (≤20) | - | - | - | ### XI. Internal Standards All internal standard areas and retention times were within QC limits. ## XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ## XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ## **XIV. System Performance** The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. # XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. # **MCAS Yuma** 1,4-Dioxane - Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG ### **MCAS Yuma** 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG # **MCAS Yuma** 1,4-Dioxane - Field Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797A2b SDG #: 280-90987-1 Stage 2B/4 Reviewer: 2nd Reviewer: Laboratory: Test America, Inc. METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-------------|---------------------------------------| | 1. | Sample receipt/Technical holding times | A | | | II. | GC/MS Instrument performance check | 1 | | | III. | Initial calibration/ICV | A A | RSD = 1570. 101=2070 | | IV. | Continuing calibration / Znlee | A | RSDS 1570. 1eV=2070
ecV < 20/5070 | | V. | Laboratory Blanks | \triangle | | | VI. | Field blanks | NO | \$3=1. 23=2. | | VII. | Surrogate spikes | A | | | VIII. | Matrix spike/Matrix spike duplicates | w | 11/12 - 70 Raut > 4x. | | IX. | Laboratory control samples | A | 100 | | Χ | Field duplicates | M | D=4+5 | | XI. | Internal standards | \triangle | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | A | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | \triangle | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | ** Inc | licates sample underwent Stage 4 validation | Lb - Equipment old | | | |--------|---|--------------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 1_ | SB01-20161114 | 280-90987-1 | Water | 11/14/16 | | 2 | EB01-20161114 | 280-90987-2 | Water | 11/14/16 | | 3 | OUAMW13-20161114 | 280-90987-4 | Water | 11/14/16 | | 4 | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | 5 | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | 6 | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | 7 | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | 8 | OUA1-MW18-201611114** | 280-90987-9** | Water | 11/14/16 | | 9 | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | 10 | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | 11 | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | 12 | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | | 13 | | | | | # **VALIDATION FINDINGS CHECKLIST** Page: _/ of ____ Reviewer: _____ 2nd Reviewer: ______ Method: Semivolatiles (EPA SW 846 Method 8270C) | Method: Semivolatiles (EPA SVV 846 Method 8270C) | Т | 1 | | | |---|-----|----|-------------
--| | Validation Area | Yes | No | NA | Findings/Comments | | 1. Technical holding times | I | I | | T | | Were all technical holding times met? | | | <u> </u> | | | Was cooler temperature criteria met?. | | | | | | II. GC/MS Instrument performance check | ı | | | | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | / | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | | ** | Carlo Barra Carratte Carra and | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | / | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | - | | Were all percent relative standard deviations (%RSD) \leq 30%/15% and relative response factors (RRF) \geq 0.05? | | | | | | IIIb Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each ICAL for each instrument? | | | | | | Were all percent difference (%D) ≤20% or percent recoveries (%R) 80-120%? | | | | - | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | / | | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | | | 100 mg | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | - | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | ` | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | A graph of the state sta | | Were all surrogate %R within QC limits? | | | | | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | | | | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | / | | # **VALIDATION FINDINGS CHECKLIST** Page: of > 2nd Reviewer: DE | Validation Area | Yes | No | NA | Findings/Comments | |--|----------------------|--------|---|--| | VIII. Matrix spike/Matrix spike duplicates | | 34 | | The state of s | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | • | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | 1985
1985
1985 | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | Here the second of | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | | , | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | ~ | | | XII. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | (6) F- | | 1. 3. P. T. | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | *************************************** | | # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | of [| |---------------|------| | Reviewer: | 9 | | 2nd Reviewer: | DE | METHOD: GCMS svoa (EPA SW 846 Method 8270C) | | Concentration (ug/L) | | (≤20) | Difference | Limits | Qual | |-------------|----------------------|-----|-------|------------|---------|------| | Compound | 4 | 5 | RPD | Dillerence | Lillius | Quai | | 1,4-Dioxane | 5.6 | 5.7 | 2 | | | | V:\FIELD DUPLICATES\37797A2b.wpd LDC #: 37797A2b # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page: | _of | | |---------------|-----|--| | Reviewer: | D | | | 2nd Reviewer: | Ne | | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $$\label{eq:RRF} \begin{split} &RRF = (A_x)(C_{is})/(A_{is})(C_x) \\ &average \ RRF = sum \ of the \ RRFs/number \ of standards
\end{split}$$ A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard C_{is} = Mean of the RRFs %RSD = 100 * (S/X) | 701102 | | | | | | | | | | | |----------|-------------|---------------------|--|--------------------|--------------------|--------------------------|--------------------------|----------|--------------|--| | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | | | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(5000 std) | RRF
(5000 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | | 1 | ICAL | 10/14/16 | 1,4-Dioxane (1st internal standard) | 0.5594 | 0.5594 | 0.5511 | 0.5511 | 3.6 | 3.6 | | | | (SMS_G4) | | 1,2,4-Trichlorobenzene (2nd internal standard) | | | | | | | | | | | | 2,6-Dinitrotoluene (3rd internal standard) | | | | | | | | | | | | Hexachlorobenzene (4th internal standard) | | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | <u> </u> | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | | Comments: | s: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of t | he recalculated | |-----------|---|-----------------| | results. | | | | | | | | | | | LDC #: 37797A2b # **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | (cot | |---------------|------| | Reviewer: | , 0 | | 2nd Reviewer: | NG | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of associated internal standard C_v = Concentration of compound, C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|--------------------------|-------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal
Standard) | Average RRF
(initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | G4_3626 | 11/25/16 | 1,4-Dioxane (1st internal standard) | 0.5511 | 0.5008 | 0.5008 | 9.1 | 9.1 | | | | | Naphthalene (2nd internal standard) | | | | • | - | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | _ | Benzo(a)pyrene (6th internal standard) | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | _ | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | Comments: | Refer to Continuing | Calibration findings | worksheet for list of | <u>f qualifications and</u> | associated sa | <u>amples when</u> | reported results do | <u>not agree within</u> | <u>10.0% of the</u> | |--------------|---------------------|----------------------|-----------------------|-----------------------------|---------------|--------------------|---------------------|-------------------------|---------------------| | recalculated | results. | #### **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of | |---------------|-----| | Reviewer: | 9 | | 2nd reviewer: | SVZ | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID:_ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | 2500.0 | 1936.7 | 77 | 77 | 0 | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | · | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | #### **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page: | _of | |---------------|-----| | Reviewer:_ | 9_ | | 2nd Reviewer: | NE | METHOD: GC/MS PAH (EPA SW 846 Method 8270C) | The percent recoveries (%R) and Relative | : Percent Difference (RPD) of the ma | atrix spike and matrix spike dupli | icate were recalculated for th | e compounds identified below | |--|--------------------------------------|------------------------------------|--------------------------------|------------------------------| | using the following calculation: | | | | · | % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration MSDC = Matrix spike duplicate concentration | | Spike
Add a d | | Sample
Concentration | Spiked Sample | | | | Matrix | Spike | Matrix Spik | e Duplicate | MS/M | SD | |----------------------------|-----------------------------|------|-------------------------|---------------|-------|-----------|----------|-----------|----------|-------------|--------------|------|----| | Compound | (pe | Be) | (MA) | (M | tex . | Percent f | Recovery | Percent F | Recovery | RPD | | | | | | Ms | MSD | 20 to to to page | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | | | Phenol | | | | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | | | | | | Acenaphthene | | | | | | | | | | | | | | | Pentachlorophenol | | | | | | | | | | | | | | | Pyrene | | | | | | | _ | | | | | | | | 1.4-Bioxane | 9.8 | 10.0 | 68 | 74.8 | 63.6 | 66 | 69 | -46 | -44 | 16 | 16 | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% | |--| | of the recalculated results. | | | | | #### **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page:_ | of | |---------------|----| | Reviewer:_ | 0 | | 2nd Reviewer: | TO | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample
duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA) Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) | Compound | Sp
Ad
(| oike
ded
4 C) | Spike
Concentration | | ation | | I CSD Percent Recovery | | LCS/LCSD
RPD | | |----------------------------|---------------|----------------------|------------------------|------|----------|--------|------------------------|--------|-----------------|--------------| | | LCS | LCSD | LCS | LCSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | | | Acenaphthene | | | | | | | | | | | | Pentachlorophenol | | | | | | | | *** | | | | Pyrene | | · | | | | | | | | | | 1.4-Dioxone | 10.0 | NA | 6.44 | NA | at | 6+ | | | | | | | | | | | | / | Comments: | Refer to Laborator | y Control Sample/Laborat | ory Control Sample | Duplicates findings | worksheet for list | of qualifications an | nd associated sa | mples when re | portec | |--------------|----------------------|----------------------------|--------------------|---------------------|--------------------|----------------------|------------------|---------------|--------| | results do n | ot agree within 10.0 | % of the recalculated resu | ults. | | | | | | | | | | | | | | | | | | #### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | _ | _of | | | |---------------|---|-----------|----|---| | Reviewer: | | \supset | | | | 2nd reviewer: | | J | 56 | - | METHOD: GC/MS SVOA (EPA SW 846 Method 8270C) | NI | Ŋ | N/A | |----|---|-----| | Y | V | N/A | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Conce | entratio | on = $(\underline{A}_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)$
$(A_{\bullet})(RRF)(V_{\circ})(V_{\bullet})(\%S)$ | Example: | |-----------------|----------|--|------------------------------------| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D. 8, 1.4-Dioxanl | | A _{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = $(1 - 799)(4000.)(2000)()$ | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | 201(310.551) 1 1 (10/28)(1000) | | V _i | = | Volume of extract injected in microliters (ul) | =0.909 Mbc | | V_t | = | Volume of the concentrated extract in microliters (ul) | | | Df | = | Dilution Factor. | | | %S | = | Percent solids, applicable to soil and solid matrices only. | | | 2.0 | = Factor of 2 to accou | nt for GPC cleanup | | | | | |-----|------------------------|--------------------|-------|---------------------------|------------------------------------|---------------| | # | Sample ID | Compound | | Reported
Concentration | Calculated
Concentration
() | Qualification | | | 8 | 1-4-0ic | rang | 0.91 | ***** | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma LDC Report Date: January 5, 2017 Parameters: Wet Chemistry Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-90987-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | | OUA1-HS03-20161114DUP | 280-90987-7DUP | Water | 11/14/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056 Ferrous Iron by Standard Method 3500 FE D pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |----------------------|--------------|--|---|----------------------|--------| | OUA1-MW37-20161114 | рН | 52.98 hours | 48 hours | J (all detects) | Р | | OUA1-HS03-20161114 | рН | 52.05 hours | 48 hours | J (all detects) | Р | | OUA1-MW18-20161114** | рН | 50.38 hours | 48 hours | J (all detects) | Р | | OUA1-MW08-20161114 | рН | 49.48 hours | 48 hours | J (all detects) | Р | | OUA1-MW06-20161114 | рН | 48.48 hours | 48 hours | J (all detects) | Р | | OUA1-MW37-20161114 | Ferrous iron | 78.43 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW37A-20161114 | Ferrous iron | 78.35 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-HS03-20161114 | Ferrous iron | 77.43 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW18-20161114** | Ferrous iron | 75.68 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW08-20161114 | Ferrous iron | 74.68 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW06-20161114 | Ferrous iron | 73.60 hours | 48 hours | UJ (all non-detects) | Р | #### II. Initial Calibration All criteria for the initial calibration of each method were met. #### III. Continuing Calibration Continuing calibration frequency and analysis criteria were met for each method when applicable. #### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory
blanks. #### V. Field Blanks Sample EB01-20161114 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 was identified as a source blank. No contaminants were found. #### VI. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VII. Duplicates Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. #### **VIII. Laboratory Control Samples** Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Field Duplicates Samples OUA1-MW37-20161114 and OUA1-MW37A-20161114 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | | | | | |--------------|--------------------|---------------------|--------------|------|--------| | Analyte | OUA1-MW37-20161114 | OUA1-MW37A-20161114 | RPD (Limits) | Flag | A or P | | Chloride | 630 | 630 | 0 (≤20) | - | - | | Nitrate as N | 6.3 | 6.3 | 0 (≤20) | - | - | | Sulfate | 1500 | 1500 | 0 (≤20) | - | - | #### X. Sample Result Verification All sample result verifications were acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. No results were rejected in this SDG. Due to technical holding time, data were qualified as estimated in six samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. #### MCAS Yuma Wet Chemistry - Data Qualification Summary - SDG 280-90987-1 | Sample | Analyte | Flag | A or P | Reason | |---|--------------|----------------------|--------|-------------------------| | OUA1-MW37-20161114
OUA1-HS03-20161114
OUA1-MW18-20161114**
OUA1-MW08-20161114
OUA1-MW06-20161114 | рН | J (all detects) | Р | Technical holding times | | OUA1-MW37-20161114
OUA1-MW37A-20161114
OUA1-HS03-20161114
OUA1-MW18-20161114**
OUA1-MW08-20161114
OUA1-MW06-20161114 | Ferrous iron | UJ (all non-detects) | P | Technical holding times | #### **MCAS Yuma** Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG ## _ VALIDATION COMPLETENESS WORKSHEET Stage 2B/4 | Date:1/3/17 | |----------------------------| | Page: <u> </u> of <u> </u> | | Reviewer: | | 2nd Reviewer: | | | SDG #: 280-90987-1 Laboratory: Test America, Inc. LDC #: 37797A6 METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Ferrous Iron (3500-FE D) pH, (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|------|---------------------------------------| | l. | Sample receipt/Technical holding times | A OW | | | - 11 | Initial calibration | A | | | 111. | Calibration verification | A | | | IV | Laboratory Blanks | A | | | V | Field blanks | MU | SB=1 EB=Z | | VI. | Matrix Spike/Matrix Spike Duplicates | A | | | VII. | Duplicate sample analysis | À | | | VIII. | Laboratory control samples | A | LCS/0, | | IX. | Field duplicates | SW | (3,4) | | X. | Sample result verification | A | Not reviewed for Stage 2B validation. | | ΧI | Overall assessment of data | LA' | | Note: A = Ac A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |-----|-----------------------|-------------------------|--------|----------| | 1 | SB01-20161114 | 280-90987-1 | Water | 11/14/16 | | 2 | EB01-20161114 | 280-90987-2 | Water | 11/14/16 | | 3 | OUA1-MW37-201611114 | 280-90987-5 | Water | 11/14/16 | | 4 | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | 5 | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | 3 | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | 7 | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | 8 | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | 9 | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | 10 | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | 11_ | OUA1-HS03-20161114MSD | 280-90987-7 M SD | Water | 11/14/16 | | 12 | OUA1-HS03-20161114DUP | 280-90987-7DUP | Water | 11/14/16 | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16 | | | | | #### **VALIDATION FINDINGS CHECKLIST** Page: 1 of 2 Reviewer: CZ 2nd Reviewer: 1 Method: Inorganics (EPA Method See over) | Method:Inorganics (EPA Method Security | т== | | 1 | | |--|-----|--------------|----|-------------------| | Validation Area | Yes | No | NA | Findings/Comments | | I. Technical holding times | | | | | | All technical holding times were met. | P | | | | | II. Calibration | | | | | | Were all instruments calibrated daily, each set-up time? | | | ļ | | | Were the proper number of standards used? | | | | | | Were all initial calibration correlation coefficients ≥ 0.995? | | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | | | | | | Were titrant checks performed as required? (Level IV only) | | | | | | Were balance checks performed as required? (Level IV only) | | | | Ţ | | III. Blanks | | | | | | Was a method blank associated with every sample in this SDG? | | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | | , | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | | | | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | | | | | | V. Laboratory control samples | | | | | | Was an LCS anaylzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | Were performance evaluation (PE) samples performed? | | | | | | Were the performance evaluation (PE) samples within the acceptance limits? | | | I | | LDC #: 37797A6 #### **VALIDATION FINDINGS CHECKLIST** Page: Qof A Reviewer: 2nd Reviewer: | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----------|-------------------| | VII. Sample Result Verification | | | . | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | Were detection limits < RL? | | | | | | VIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | / | | | | | IX. Field duplicates | | _ | | | | Field duplicate pairs were identified in this SDG. | | | | | | Target analytes were detected in the field duplicates. | | | | | | X. Field blanks | | | | | | Field blanks were identified in this SDG. | | | | | | Target analytes were detected in the field blanks. | | / | | | LDC#:3779746 #### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: of Reviewer: 2nd reviewer: All circled methods are applicable to each sample. | Sample ID | Matrix | Parameter | |-----------|----------|---| | 3,5,7 | -q | (pH) TDS(C) F(NO3)NO2(SO4)PO4 ALK CN NH3 TKN TOC CR6+ CIO4(Jell+) | | | <u>.</u> | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | 4 | | pH TDS(C) F(NO) NO, SO) PO, ALK CN NH, TKN TOC CR6+ CIO, (TeH+) | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | 0 | | pH TDS(C) F (NO) NO2(SO4) PO4 ALK CN. NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | Q:10,11 | | PH TDS (CT) F (NO3) NO SO PO4 ALK CN' NH3 TKN TOC CR6+ CIO4 (Fe H+) | | 12 | | PH TDS (C) F (NO) NO,
SO PO ALK CN' NH, TKN TOC CR CO FETT | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CLF NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | Comments: |
 |
 | | |-----------|------|------|--| | |
 | | | LDC #: 379746 #### **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page: | of_ | | |---------------|-----|-------| | Reviewer: | CA | !
 | | 2nd reviewer: | U | _ | All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method? Y N N/A Were all cooler temperatures within validation criteria? 90400 Method: | Parameters: | | | | re | pras Iron | | |-------------------------|-------------------------|--|--|--|---|--| | Technical holding time: | | 5 | | 48 | chrs | | | Sampling | Analysis
date | Total | Qualifier | Analysis
date | Total | Qualifier | | 11/14/16 | 11/16/16 | / | | | | | | 10:00 | 1 | 52.05 | 1 | | | | | ม:45 | 14:08 | 50,38 | | | | | | 12:45 | 14:14 | 49.48 | | | | | | 13:50 | 14:19 | 48,48 | 11/14/16 | 14/7/16 | | | 11/17/16 | 78,43 | 5/15/P(NO | | | | | | | 78,35 | | | · 10:00 | V | | | | 77,43 | | | 11-45 | | | | | 75.68 | | | 12:45 | | | | | | | | 13:50 | La | | | | 73.60 | \checkmark | <u></u> | | | | | | - | Sampling date 1/14/16 | Sampling date 1/16/16 13:59 14:08 12:45 14:14 16:26 16:26 17:45 17:45 16:26 17:45
17:45 17 | Sampling date date Time (hs) Sampling date date | Sampling date Total Time (hs Qualifier 11/14/16 cat a) 13/59 52.98 5 15/79 52.98 12/45 14/19 19/ | Sampling Analysis Total Qualifier Analysis date | 1/14/16 1/14 | LDC#: 37797A6 ## VALIDATION FINDINGS WORKSHEET Field Duplicates Page: of Reviewer: 2nd Reviewer: Inorganics, Method See Cover | | Concentrati | | | | |--------------|-------------|------|-----------|--------------------------------| | Analyte | 3 | 4 | RPD (≤20) | Qualification
(Parent only) | | Chloride | 630 | 630 | 0 | | | Nitrate as N | 6.3 | 6.3 | 0 | | | Sulfate | 1500 | 1500 | 0 | | \\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\37797A6.wpd | | 37 | \mathcal{D} | AG | |--------|-----------|---------------|-----| | LDC #: | $\sim 7/$ | / L | 012 | ### Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification | Page: | _ of | <u> </u> | |------------|-------------------|----------| | Reviewer: | 9 | | | 2nd Review | _{ver} .C | | | Method: Inorganics, Method _ | See Cover_ | | |---|---------------------|--| | The correlation coefficient (r) for the | calibration of | was recalculated.Calibration date: 11/15/16 | | An initial or continuing calibration ve | erification percent | recovery (%R) was recalculated for each type of analysis using the following formula: | | %R = <u>Found X 100</u> | Where, | Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution | | True | | True = concentration of each analyte in the ICV or CCV source | | | | | | | Recalculated | Reported | Acceptable | |--------------------------|---------|----------|--------------|---------------|---------------------|-----------------------|------------| | Type of analysis | Analyte | Standard | Conc. (mg/L) | Area | r or r ² | r or r ² · | (Y/N) | | Initial calibration | | s1 | 0.0 | 0.002 | | | | | | | s2 | 0.2 | 0.046 | 0.9990 | 0.9990 | , | | | Food | s3 | 0.5 | 0.103 | | | | | | Former | s4 | 1 | 0.221 | | | | | | 10,0 | s5 | 2 | 0.432 | | | | | | | s6 | 3 | 0.609 | | | | | Calibration verification | NO3-N | CCv | 4.00 | Found
3.97 | 99 | 99 | | | Calibration verification | 804 | CCU | 100 | 100.8 | 101 | 101 | 1 | | Calibration verification | | | | | | | | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within | |--| | 0.0% of the recalculated results | | | LDC #: 377746 #### VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | Page:_ | of | 1 | |---------------|------------|---| | Reviewer: | <u>ر</u> ح | 2 | | 2nd Reviewer: | Q | _ | | | METHOD: | Inorganics, | Method | secaer | |--|---------|-------------|--------|--------| |--|---------|-------------|--------|--------| Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = \frac{Found}{True} \times 100$ Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = |S-D| \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration | Sample ID | Type of Analysis | Element | Found / S
(units) | True / D
(units) | Recalculated
%R / RPD | Reported
%R / RPD | Acceptable
(Y/N) | |-----------|---------------------------|---------|----------------------|---------------------|--------------------------|----------------------|---------------------| | LCS | Laboratory control sample | NUZN | 5.05 | 5 | 101 | 101 | 7 | | 10 | Matrix spike sample | fest | (SSR-SR) | 7,00 | 85 | 85 | | | 12 | Duplicate sample | Cl | 434 | 477 | | | 1 | | Comments: | | | | | |-----------|------|------|------|------| | | | | | | | | | | | | | |
 |
 |
 |
 | LDC #: 377C17A6 ## **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification Page: 1 of 1 Reviewer: 2nd reviewer: | METH | HOD: Inorganics, Metho | od <u>Secael</u> | | | | |--------|--|---|---------------------------|--------------------------|---------------------| | NX | N/A Have results v | ow for all questions answered "N" been reported and calculated convithin the calibrated range of the intention limits below the CRQL? | rrectly? | ns are identified as "N | /A". | | | oound (analyte) results
culated and verified usir | for <u>SO4</u>
ng the following equation: | | reported with a positi | ve detect were | | Concer | ntration = | Recalculation: | | | | | G= | 12272020x +5 | 77505 | 1594601-57 | 7503 ×50=1 | 155 Zmg | | # | Sample ID | Analyte | Reported
Concentration | Calculated concentration | Acceptable
(Y/N) | | | 7 | PH (Su | 7,3 | 7.3 | Y | | | | Cl | 3100 | 3100 | | | | | NO3-N | 9,9 | 99 | | | - | | Sal | 1600 | 1600 | | | | | Text. | Note:_ | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma LDC Report Date: January 4, 2017 Parameters: Volatiles Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91067-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification |
Matrix | Date | | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | OUA1-MW15-20161115 | 280-91067-4 | Water | 11/15/16 | | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | OUA1-MW23-20161115 | 280-91067-6 | Water | 11/15/16 | | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | OUA1-MW25-20161115 | 280-91067-10 | Water | 11/15/16 | | OUA1-MW11-20161115 | 280-91067-11 | Water | 11/15/16 | | OUA1-MW11-20161115RE | 280-91067-11RE | Water | 11/15/16 | | OUA1-MW14-20161115MS | 280-91067-3MS | Water | 11/15/16 | | OUA1-MW14-20161115MSD | 280-91067-3MSD | Water | 11/15/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met with the following exceptions: | Sample | Compound | Total Days From
Sample Collection
Until Analysis | Required Holding Time
(in Days) From Sample
Collection Until Analysis | Flag | A or P | |----------------------|---------------|--|---|---|--------| | OUA1-MW11-20161115RE | All compounds | 27 | 14 | J (all detects)
UJ (all non-detects) | А | #### **II. GC/MS Instrument Performance Check** A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample TB02-20161115 was identified as a trip blank. No contaminants were found. Sample EB02-20161115 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions: | Sample | Surrogate | %R (Limits) | Affected
Compound | Flag | A or P | |---------------------|---|------------------------------|----------------------|-----------------|--------| | OUA1-MW23-20161115 | 1,2-Dichloroethane-d4
Dibromofluoromethane | 123 (81-118)
121 (80-119) | All compounds | NA | - | | OUA1-MW55-20161115 | 1,2-Dichloroethane-d4 | 125 (81-118) | All compounds | NA | - | | OUA1-MW55A-20161115 | 1,2-Dichloroethane-d4 | 124 (81-118) | All compounds | NA | - | | OUA1-MW27-20161115 | 1,2-Dichloroethane-d4 | 121 (81-118) | All compounds | J (all detects) | Р | | OUA1-MW25-20161115 | 1,2-Dichloroethane-d4 | 125 (81-118) | All compounds | J (all detects) | Р | | OUA1-MW11-20161115 | 1,2-Dichloroethane-d4
Bromofluorobenzene | 123 (81-118)
117 (85-114) | All compounds | J (all detects) | Α | #### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions: | Spike ID
(Associated Samples) | Compound | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |--|-----------------|---------------------|----------------------|-----------------|--------| | OUA1-MW14-20161115MS/MSD
(OUA1-MW14-20161115**) | Trichloroethene | 136 (79-123) | 141 (79-123) | J (all detects) | А | | Spike ID
(Associated Samples) | Compound | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |--|------------------------|---------------------|----------------------|------|--------| | OUA1-MW14-20161115MS/MSD
(OUA1-MW14-20161115**) | cis-1,2-Dichloroethene | - | 127 (78-123) | NA | - | Relative percent differences (RPD) were within QC limits. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates Samples OUA1-MW55-20161115 and OUA1-MW55A-20161115 were identified as field duplicates. No results were detected in any of the samples. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed unusable as follows: | Sample | Compound | Flag | A or P | |----------------------|---------------|------|--------| | OUA1-MW11-20161115RE | All
compounds | R | Α | Due to surrogate %R and MS/MSD %R, data were qualified as estimated in four samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. #### MCAS Yuma Volatiles - Data Qualification Summary - SDG 280-91067-1 | Sample | Compound | Flag | A or P | Reason | |--|-----------------|-----------------|--------|--| | OUA1-MW25-20161115
OUA1-MW27-20161115 | All compounds | J (all detects) | Р | Surrogates (%R) | | OUA1-MW11-20161115 | All compounds | J (all detects) | Α | Surrogates (%R) | | OUA1-MW14-20161115** | Trichloroethene | J (all detects) | А | Matrix spike/Matrix spike duplicate (%R) | | OUA1-MW11-20161115RE | All compounds | R | Α | Overall assessment of data | #### **MCAS Yuma** Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG **MCAS Yuma** Volatiles - Field Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG ## LDC #: 37797B1 VALIDATION COMPLETENESS WORKSHEET Stage 2B/4 | Date; | 12/29/16 | |---------------|----------| | Page:_ | 6f 2 | | Reviewer: | 9_ | | 2nd Reviewer: | NZ | SDG #: 280-91067-1 Laboratory: Test America, Inc. METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|---------------------------------------| | I | Sample receipt/Technical holding times | AM | | | II. | GC/MS Instrument performance check | \Rightarrow | | | III. | Initial calibration/ICV | AA | RSO < 1570. 82 (CV = 20)0 | | IV. | Continuing calibration / Zndie | A | cal < 20/50/0 | | V. | Laboratory Blanks | A | / / | | VI. | Field blanks | ND | B=1. TB=2. SB=SB01-620161114(280 | | VII. | Surrogate spikes | W | | | VIII. | Matrix spike/Matrix spike duplicates | W | | | IX. | Laboratory control samples | A. | 105 8 | | Χ. | Field duplicates | NB | D=7+8 | | XI. | Internal standards | A | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | \bigcirc | Not reviewed for Stage 2B validation. | | XIV. | System performance | \rightarrow | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | W | | Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank OTHER: N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank ** Indicates sample underwent Stage 4 validation | _ | indice dample underwerk etage i vandation | | | | |----|---|----------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 4 | EB02-20161115 | 280-91067-1 | Water | 11/15/16 | | 2- | TB02-20161115 | 280-91067-2 | Water | 11/15/16 | | 3 | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | 4 | OUA1-MW15-20161115 | 280-91067-4 | Water | 11/15/16 | | 5 | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | 6 | OUA1-MW23-20161115 | 280-91067-6 | Water | 11/15/16 | | 7 | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | 8 | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | 9 | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | 10 | OUA1-MW25-20161115 | 280-91067-10 | Water | 11/15/16 | | 11 | OUA1-MW11-20161115 | 280-91067-11 | Water | 11/15/16 | | 12 | OUA1-MW11-20161115RE | 280-91067-11RE | Water | 11/15/16 | | 13 | OUA1-MW14-20161115MS | 280-91067-3MS | Water | 11/15/16 | | SDG
Labo | #:37797B1 | | Date: Page: Of Page: Of Page: | | | |-------------|-----------------------|--|---|----------|-------------| | | Client ID | | Lab ID | Matrix | Date | | 14 | OUA1-MW14-20161115MSD | . · · | 280-91067-3MSD | Water | 11/15/16 | | 15 | | | | | | | 16 | | | · | | | | 17 | | ······································ | | | | | 18 | | | | | | | 19 | | | | | | | Note | · | | | <u> </u> | | ### LDC#3(9(B) ## VALIDATION FINDINGS CHECKLIST | Page:_ | /of | |----------------|----------| | Reviewer:_ | <u> </u> | | 2nd Reviewer:_ | Ne | Method: Volatiles (EPA SW 846 Method 8260B) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----------|------|----|-------------------| | I. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. GC/MS Instrument performance check | | J 21 | | | | Were the BFB performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | 14 (1914) | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 36%/15% and relative response factors (RRF) ≥ 0.05? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | . ** | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | T. | 4 | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | - | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05? | | | | | | V. Laboratory Blanks | Γ | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks were identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | l | | | | | Were all surrogate percent recovery (%R) within QC limits? | | (| | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | | | | #### VALIDATION FINDINGS CHECKLIST | Page:_ | <u> →</u> of <u> →</u> | |---------------|------------------------| | Reviewer: | 9 | | 2nd Reviewer: | NZ | | Validation Area | Yes | No | NA | Findings/Comments | |--|------|---|----------------------
---| | VIII. Matrix spike/Matrix spike duplicates | | | | The state of s | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | | The second secon | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | 2.50 | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | 140 pm. 140 pm. | | Were internal standard area counts within -50% to +100% of the associated calibration standard? | | · | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | | | | XII: Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | • | | | | XIII Target compound identification | | | 111 i.e.
111 i.e. | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | 7 | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | / | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV System performance | | | | | | System performance was found to be acceptable. | | / | | | | XV Overall assessment of data | | 19 6 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | e de pare de la companya de la comp
La companya de la della companya de la della del | | Overall assessment of data was found to be acceptable. | | | | | #### TARGET COMPOUND WORKSHEET #### METHOD: VOA | A. Chloromethane | U. 1,1,2-Trichloroethane | OO. 2,2-Dichloropropane | III. n-Butylbenzene | CCCC.1-Chlorohexane | |------------------------------|---------------------------------|-------------------------------|--|-------------------------| | B. Bromomethane | V. Benzene | PP. Bromochloromethane | JJJ. 1,2-Dichlorobenzene | DDDD. Isopropyl alcohol | | C. Vinyl choride | W. trans-1,3-Dichloropropene | QQ. 1,1-Dichloropropene | KKK. 1,2,4-Trichlorobenzene | EEEE. Acetonitrile | | D. Chloroethane | X. Bromoform | RR. Dibromomethane | LLL. Hexachlorobutadiene | FFFF. Acrolein | | E. Methylene chloride | Y. 4-Methyl-2-pentanone | SS. 1,3-Dichloropropane | MMM. Naphthalene | GGGG. Acrylonitrile | | F. Acetone | Z. 2-Hexanone | TT. 1,2-Dibromoethane | NNN. 1,2,3-Trichlorobenzene | HHHH. 1,4-Dioxane | | G. Carbon disulfide | AA. Tetrachloroethene | UU. 1,1,1,2-Tetrachloroethane | OOO. 1,3,5-Trichlorobenzene | IIII. Isobutyl alcohol | | H. 1,1-Dichloroethene | BB. 1,1,2,2-Tetrachloroethane | VV. Isopropylbenzene | PPP. trans-1,2-Dichloroethene | JJJJ. Methacrylonitrile | | I. 1,1-Dichloroethane | CC. Toluene | WW. Bromobenzene | QQQ. cis-1,2-Dichloroethene | KKKK. Propionitrile | | J. 1,2-Dichloroethene, total | DD. Chlorobenzene | XX. 1,2,3-Trichloropropane | RRR. m,p-Xylenes | LLLL. Ethyl ether | | K. Chloroform | EE. Ethylbenzene | YY. n-Propylbenzene | SSS. o-Xylene | MMMM. Benzyl chloride | | L. 1,2-Dichloroethane | FF. Styrene | ZZ. 2-Chlorotoluene | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | NNNN. lodomethane | | M. 2-Butanone | GG. Xylenes, total | AAA. 1,3,5-Trimethylbenzene | UUU. 1,2-Dichlorotetrafluoroethane | OOOO.1,1-Difluoroethane | | N. 1,1,1-Trichloroethane | HH. Vinyl acetate | BBB. 4-Chlorotoluene | VVV. 4-Ethyltoluene | РРРР. | | O. Carbon tetrachloride | II. 2-Chloroethylvinyl ether | CCC. tert-Butylbenzene | WWW. Ethanol | ଦ୍ରଦ୍ର | | P. Bromodichloromethane | JJ. Dichlorodifluoromethane | DDD. 1,2,4-Trimethylbenzene | XXX. Di-isopropyl ether | RRRR. | | Q. 1,2-Dichloropropane | KK. Trichlorofluoromethane | EEE. sec-Butylbenzene | YYY. tert-Butanol | SSSS. | | R. cis-1,3-Dichloropropene | LL. Methyl-tert-butyl ether | FFF. 1,3-Dichlorobenzene | ZZZ. tert-Butyl alcohol | тттт. | | S. Trichloroethene | MM. 1,2-Dibromo-3-chloropropane | GGG. p-lsopropyltoluene | AAAA. Ethyl tert-butyl ether | UUUU. | | T. Dibromochloromethane | NN. Methyl ethyl ketone | HHH. 1,4-Dichlorobenzene | BBBB. tert-Amyl methyl ether | vvv. | #### **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page: | of | |---------------|----------| | Reviewer: | <u>a</u> | | 2nd Reviewer: | St | | All circled dates have exceeded the technical holding times. | | |--|--| | (<u>Y</u> N N/A Were all cooler temperatures within validation criteria? | | | V/N/N/A Were air hubbles > 1/4 inch or was headenace present in the viale? | | | METHOD: GC/MS VOA (EPA SW 846 Method 8260) | | | | | | | | |---|---------|-----------|---------------------------------------|---------------------------------------|---------------|--------------------|-----------| | Sample ID | Matrix | Preserved | Sampling Date | Extraction date | Analysis date | Total #
of Days | Qualifier | | 12 | W | Y | 11-15-16 | | 12-12-16 | 27 | Vava | | (dets+ND) | | | | | | | / / ` | · · · · · · · · · · · · · · · · · · · | | | , | · · · · · · · · · · · · · · · · · · · | | | | | | | <u></u> | • | | | - | | | | | | | | | | | | | | | ŀ | | | | | | | L | #### **TECHNICAL HOLDING TIME CRITERIA** Aromatic within 7 days, non-aromatic within 14 days of sample collection. Water unpreserved: Within 14 days of sample collection. Water preserved: Within 14 days of sample collection. Soil: LDC #: 3190B #### VALIDATION FINDINGS WORKSHEET Surrogate Spikes | Page:_ | of | |-------------|-----| | Reviewer: | 0 | | nd Reviewer | TUZ | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N/A Were all surrogate %R within QC limits? Y N/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria? | # | Date | Sample ID | Surrogate | %Recovery | y (I imits) | Qualifications | |---------|------|-----------|-----------|-----------|--------------|-----------------| | | | 6 | DCZ | 123 | (81-118) | Jets/P (NO) | | | | | OFM | 121 | (80-119) | ď | | | | | , | | () | A | | | | 7 | カとそ | 125 | (81-118) | Note P (NO) | | | | 0 | 7.2 | 1 1 1 | () | / 1/2 / | | | | 8 | DCE | 124 | . (| (ND) | | | | a | DCE | 121 | | (dets+ND) | | | - | | | | | | | | | 10 | DEE | 125 | () | V | | | | | | | (/) | . 0 1 () | | | | | DEZ | [] Z Z | (V) | rats/A (dob+NO) | | | | | BB | 177 | (85-11-4) | | | | | | | | | | | | | | | | () | | | | | | | | () | | | | | | | | () | | | | | | | | () | | | | | | | | () | | | | | | | | () | | | | | | | | | | | | | | | | () | | | | | | | | (| | (TOL) = Toluene-d8 (DCE) = 1,2-Dichloroethane-d4 (BFB) = Bromofluorobenzene (DFM) = Dibromofluoromethane ## VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates | Page:_ | lof / |
---------------|-------| | Reviewer: | 4 | | 2nd Reviewer: | NC | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. Was a MS/MSD analyzed every 20 samples of each matrix? YIN N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | Data | | | MS | S MSD | | | | |---------------|------|-----------|----------|--------------|--------------|--------------|--------------------|----------------| | # | Date | MS/MSD ID | Compound | %R (Limits) | %R (Limits) | RPD (Limits) | Associated Samples | Qualifications | | Ш | | 13/14 | | 136 (79-123) | H1 (79-123) | () | 3 (dets) | 1 dets A | | Ш | | , | 5 | () | 12T (78-123) | () | (NO) | | | | | | | (, , ,) | () | () , | | | | Ш | | | | () | () | () | | | | Ш | | | | () | () | () | | | | | | | | () | () | () | | | | | | | - | (' ') | () | (') | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | П | | | | () | () | () | | | | H | | | | () | () | () | | | | \vdash | | | | , , | () | () | | | | 1 | | | | () | () | () | | | | Н | | | | () | , , | , , | | | | Ш | | | | () | () | () | | | | | | | | () | () | () | | | | П | | | | () | () | () | | | | \Box | | | | () | () | () | | | | | | | | () | () | () | | | | $\ \cdot \ $ | | | | , , | , , | , , | | | | ╟┼ | | | | , , | () | , , | | | | Ш | | | | () | () | () | | | | Ш | | | | () | () | () | | | | | | | | () | () | () | | | LDC #:37(97B) # VALIDATION FINDINGS WORKSHEET Overall Assessment of Data | Page: _ | /_of_/_ | |---------------|---------| | Reviewer: | 9 | | 2nd Reviewer: | Ne | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data. Y N/A Was the overall quality and usability of the data acceptable? | # | Date | Sample ID | Compound | Finding | Qualifications | |---------|------|-----------|----------|---------|----------------| | | | 12 | AII | | R/A | | | | | | | , / | ļ | | | | | | | | 1 | | | | | | | | | | | | | | | Comments: | | | | |-----------|--|-----|--| | | | · · | | | | | | | LDC #: 37797B1 # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | <u>Lot !</u> | |--------------| | ` 4 | | _ JV6 | | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards A_x = Area of compound, A_{is} = Area of associated internal standard $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard %RSD = 100 * (S/X) X = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|------------------|------------------|--------------------------|--------------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(10 std) | RRF
(10 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | | | S (1st internal standard) | 0.3967 | 0.3967 | 0.3984 | 0.3984 | 4.1 | 4.1 | | | ICAL . | 11/23/16 | AA (2nd internal standard) | 1.2500 | 1.2500 | 1.2786 | 1.2786 | 6.1 | 6.1 | | | (VMS_G) | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 3 | : | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 37797B1 # VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page:_ | 1 of 1 | |---------------|--------| | Reviewer: | a | | 2nd Reviewer: | No | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of ass C_x = Concentration of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard | # | Standard ID | Calibration
Date | Compound (Reference internal Standard) | Average RRF
(initial) | Reported
RRF
(CC) | Recalculated
RRF
(CC) | Reported
%D | Recalculated
%D | |---|-------------|---------------------|--|--------------------------|-------------------------|-----------------------------|----------------|--------------------| | 1 | G0848 | 11/28/16 | S (1st internal standard) | 0.3984 | 0.4098 | 0.4098 | 2.8 | 2.8 | | | | | AA (2nd internal standard) | 1.2786 | 1.199 | 1.199 | 6.3 | 6.3 - | | | | | (2nd internal standard) | | | <u> </u> | | | | | | | (3rd internal standard) | | | | | | | 2 | | | (1st internal standard) | | | | | · | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of | |---------------|----| | Reviewer: | 9 | | 2nd reviewer: | N6 | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) | The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the follov | |---| |---| % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: 3 | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | 11.0 | 11.7 | 106 | 106 | 0 | | 1,2-Dichloroethane-d4 |) | 12.0 | 109 | 109 | 1 | | Toluene-d8 | | 11.9 | 108 | 108 | | | Bromofluorobenzene | <u> </u> | 11.2 | 102 | 100 | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------
-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | <u> </u> | |---------------|----------| | Reviewer: | · Q | | 2nd Reviewer: | 1/12 | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentration RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD sample: ___ | Compound | Spike
Added
(W - 2 | | Sample Spiked Sample Concentration | | Matrix Spike Percent Recovery | | Matrix Spike Duplicate Percent Recovery | | MS/MSD
RPD | | | |--------------------|--------------------------------------|-----|------------------------------------|-----|-------------------------------|----------|---|----------|---------------|----------|--------------| | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | 1,1-Dichloroethene | 500 | 500 | 1.1 | 732 | 7.53 | p4 | 124 | 128 | 128 | 3 | 3 | | Trichloroethene | $\overline{}$ | V | 14 | 822 | 846 | 136 | 136 | 141 | 41 | 3 | 3 | | Benzene | · | | | | | | | | | | | | Toluene | | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | <u> </u> | | | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated | samples when reported results do not agree within 10.0% | |--|---| | of the recalculated results. | | | | | | | | # **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | Page:_ | <u>/</u> of_/ | |---------------|---------------| | Reviewer: | Q. | | 2nd Reviewer: | N | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCS ID: 280-353386 | | | oike | Spiked Sample LCS Concentration (Percent Recovery | | s | LCSD | | LCS/LCSD. | | | |--------------------|---------|--------------|--|------|--------------------|---------|----------|------------------|----------|--------------| | Compound | Ac
ر | Ided (| | | 1 MA Dansont Brown | | Recovery | Percent Recovery | | RPD | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | 1,1-Dichloroethene | 500 | 5.00 | 5,21 | 5.28 | 104 | 104 | 106 | 106 | 1 | 1 | | Trichloroethene | V | \downarrow | 548 | 5.86 | 110 | 10 | 117 | 117 | 7 | 7 | | Benzene | | | | | | | | | | | | Toluene | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | | | Comments: | Refer to Laboratory | Control Sample findin | gs worksheet for lis | t of qualifications a | nd associated samp | les when reported re | <u>esults do not agree wi</u> | thin 10.0% of the | |--------------|---------------------|-----------------------|----------------------|-----------------------|--------------------|----------------------|-------------------------------|-------------------| | recalculated | results. | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | LDC #:3790B # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | of | |---------------|----| | Reviewer: | 0 | | 2nd reviewer: | M | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) YN N/A Were all reported results recalculated and verified for all level IV samples? Mere all recalculated results for detected target compounds agree within 10.0% of the reported results? Concentration = $\frac{(A_s)(I_s)(DF)}{(A_{ls})(RRF)(V_o)(\%S)}$ A_x = Area of the characteristic ion (EICP) for the compound to be measured A_{is} = Area of the characteristic ion (EICP) for the specific internal standard I_s = Amount of internal standard added in nanograms RRF = Relative response factor of the calibration standard. V_o = Volume or weight of sample pruged in milliliters (ml) or grams (g). Df = Dilution factor. %S = Percent solids, applicable to soils and solid matrices Example: Sample I.D. 3 Conc. = (32217)(12.5)(1) (70157)(0.3984)(1)= 1.42 H | - | only. | | | | | |---------------|-----------|----------|---------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration | Calculated
Concentration
() | Qualification | | | ろ | 5 | 1.4 | | | | | | | 1.7 | <u> </u> | - | | | | ļI | | | | | | | <u> </u> | ļ | - | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: 1,4-Dioxane Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91067-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | OUA1-MW15-20161115 | 280-91067-4 | Water | 11/15/16 | | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | OUA1-MW23-20161115 | 280-91067-6 | Water | 11/15/16 | | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | OUA1-MW25-20161115 | 280-91067-10 | Water | 11/15/16 | | OUA1-MW11-20161115 | 280-91067-11 | Water | 11/15/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## I. Sample Receipt and
Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. ## IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. ## V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB02-20161115 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. ## VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. # X. Field Duplicates Samples OUA1-MW55-20161115 and OUA1-MW55A-20161115 were identified as field duplicates. No results were detected in any of the samples. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. # XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. ## **MCAS Yuma** 1,4-Dioxane - Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** 1,4-Dioxane - Field Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG # LDC #: 37797B2b VALIDATION COMPLETENESS WORKSHEET SDG #: 280-91067-1 Stage 2B/4 Laboratory: Test America, Inc. Date: />/2/9/6 Page: / of / Reviewer: 2nd Reviewer: NG METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|--| | 1. | Sample receipt/Technical holding times | A | | | 11. | GC/MS Instrument performance check | A | | | IH. | Initial calibration/ICV | AA | RS0 < 1570. 1 CV < >0/0 CCV < 20/50/0 | | IV. | Continuing calibration Endie | | ecv = 20/50/0 | | V. | Laboratory Blanks | \forall | / / | | VI. | Field blanks | NO | ZB=1, SB=SB01-020161112 (280-909) | | VII. | Surrogate spikes | A | | | VIII. | Matrix spike/Matrix spike duplicates | A | "A ' | | IX. | Laboratory control samples | \triangle | 205 | | X. | Field duplicates | ND | D=6+T | | XI. | Internal standards | \rightarrow | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | \Rightarrow | Not reviewed for Stage 2B validation. | | XIV. | System performance | A | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | \triangle | | Note: A = Acceptable ND = No compounds detected D = Duplicate TB = Trip blank SB=Source blank OTHER: N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank EB = Equipment blank ** Indicates sample underwent Stage 4 validation | IIIG | icates sample underwent Stage 4 Validation | | | | |------|--|---------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 1 | EB02-20161115 | 280-91067-1 | Water | 11/15/16 | | 2 | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | 3 | OUA1-MW15-20161115 | 280-91067-4 | Water | 11/15/16 | | 4 | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | 5 | OUA1-MW23-20161115 | 280-91067-6 | Water | 11/15/16 | | 6 | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | 7 | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | 8 | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | 9 | OUA1-MW25-20161115 | 280-91067-10 | Water | 11/15/16 | | 10 | OUA1-MW11-20161115 | 280-91067-11 | Water | 11/15/16 | | 11 | | | | | | 12 | | | | | | 13 | | | , | | ## VALIDATION FINDINGS CHECKLIST Page: / of > Reviewer: _ Q 2nd Reviewer: _ _ V Method: Semivolatiles (EPA SW 846 Method 8270C) | Method: Semivolatiles (EPA SW 846 Method 8270C) | | | | r | |---|-----|-------------|--
--| | Validation Area | Yes | No | NA | Findings/Comments | | I. Technical holding times | 14 | , | | A CONTRACTOR OF THE STATE TH | | Were all technical holding times met? | / | | | | | Was cooler temperature criteria met?. | | | | | | II. GC/MS Instrument performance check | | | 4 | | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa: Initial calibration | | | 16 july 18 jul | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | - | / | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990? | | | / | | | Were all percent relative standard deviations (%RSD) \leq 0%/15% and relative response factors (RRF) \geq 0.05? | | | | | | IIIb Initial Calibration Verification | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Was an initial calibration verification standard analyzed after each ICAL for each instrument? | | | | | | Were all percent difference (%D) ≤20% or percent recoveries (%R) 80-120%? | | | | | | IV: Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | ` | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | | | Were all surrogate %R within QC limits? | | | | *************************************** | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | | | | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | # VALIDATION FINDINGS CHECKLIST Page: 2 of 2 Reviewer: 2nd Reviewer: 0 | Validation Area | Yes | No | NA | Findings/Comments | |--|------|---------|------|-------------------| | VIII. Matrix spike/Matrix spike duplicates | | 2 - 1 N | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | a de | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | 1 1 | | | Were field duplicate pairs identified in this SDG? | | ` | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | | | | , | | Were retention times within ± 30 seconds of the associated calibration standard? | | | - | | | XII. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data | | | 10.0 | | | Overall assessment of data was found to be acceptable. | | | | | LDC #: 37797B2b # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | <u></u> | |---------------|----------| | Reviewer:_ | <u>a</u> | | 2nd Reviewer: | DR | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $$\label{eq:RRF} \begin{split} &RRF = (A_x)(C_{is})/(A_{is})(C_x) \\ &average \ RRF = sum \ of the \ RRFs/number \ of standards \end{split}$$ A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard %RSD = 100 * (S/X) A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs, X = Mean of the RRFs | # | Standard ID | Calibration
Date | Company (Reference Internal Standard) | Reported
RRF | Recalculated RRF | Reported Average RRF | Recalculated Average RRF | Reported
%RSD | Recalculated
%RSD | |---|-------------|---------------------|--|-----------------|-------------------|-----------------------|---------------------------|------------------|----------------------| | # | | | Compound (Reference Internal Standard) | (5000 std) | (5000 std) | (initial) | (initial) | | | | 1 | ICAL | 10/14/16 | 1,4-Dioxane (1st internal standard) | 0.5594 | 0.5594 | 0.5511 | 0.5511 | 3.6 | 3.6 | | | (SMS_G4) | | 1,2,4-Trichlorobenzene (2nd internal standard) | | | | | | | | | · . | | . 2,6-Dinitrotoluene (3rd internal standard) | <u> </u> | | <u>.</u> | | | | | | | | Hexachlorobenzene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | - | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | _ | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | L | | | | | | | Comments: | Refer to Initial Calibrat | <u>ion findings worksheet</u> | for list of qualification | <u>s and associated sar</u> | nples when reported | results do not agree within | 10.0% of the recalculated | |-----------|---------------------------|-------------------------------|---------------------------|-----------------------------|---------------------|-----------------------------|---------------------------| | results | LDC #: 37797B2b # **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_
 10f_ | |---------------|------| | Reviewer:_ | | | 2nd Reviewer: | ne | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|--------------------------|-------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal
Standard) | Average RRF
(initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | G4_3626 | 11/25/16 | 1,4-Dioxane (1st internal standard) | 0.5511 | 0.5008 | 0.5008 | 9.1 | 9.1 | | | | · . | Naphthalene (2nd internal standard) | | | | | · | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | Comments: . | <u>Refer to</u> | Continuing | g Calibration t | indings work | sneet for list | or qualification | ons and asso | ciated samp | oles when repo | ortea results ac | o not agree withir | 1 10.0% of the | |--------------|-----------------|------------|-----------------|--------------|----------------|------------------|--------------|-------------|----------------|------------------|--------------------|----------------| | recalculated | results. | # VALIDATION FINDINGS WORKSHEET Surrogate Results Verification | Page: | | |----------------|----------| | Reviewer: | <u>a</u> | | 2nd reviewer:_ | NB | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) | | below using the following calculation: | |--|--| | | | | | | % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: 2 | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | 2500 P | 1816. | 73 | 73 | 0 | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | LUC#:3/19/19/19 # **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page: <u></u> _of | |-------------------| | Reviewer: | | 2nd Reviewer: | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA) Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCS/LCSD samples: 280-35 | Compound | Ad | oike
ded | Conce | nike
ntration | | CS
Recovery | | SD
Recovery | | LCSD
PD | |--|----------|----------------|-------|------------------|----------|----------------|----------|----------------|----------|--------------| | the state of s | | l [/] | | 7 | | | | l l | | T i | | | <u> </u> | LCSD | LCS | LCSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | | | Acenaphthene | | | | | | | | | | | | Pentachlorophenol | | | | | | | | | | | | Pyrene | | | | | | | | | | | | 1.4-Dioxans | 10.0 | NA | 6.44 | NA | 64 | 64 | | | | | | | | ļ | | , | | , | Comments: | Refer to Laborato | ry Control Sample/Labora | ory Control Sam | ple Duplicates fi | ndings workshee | t for list of qualific | cations and associ | ciated samples | when reported | |---------------|---------------------|----------------------------|-----------------|-------------------|-----------------|------------------------|--------------------|----------------|---------------| | results do no | ot agree within 10. | 0% of the recalculated res | ults. | | | | | | | | | • | | | | · | | | | | | | | | | | | | | | | only. # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: | /of_/ | |---------------|----------| | Reviewer: | <u>a</u> | | 2nd reviewer: | DO | METHOD: GC/MS SVOA (EPA SW 846 Method 8270C) | (X) | N | N/A | |-----|---|-----| | Y | N | N/A | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | 7 | | | | |-----------------|----------|--|--| | Conce | entratio | on = $(A_{i})(I_{s})(V_{i})(DF)(2.0)$
$(A_{is})(RRF)(V_{o})(V_{i})(%S)$ | Example: | | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D, [.4-Dioxal] | | A _{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = $(578^{22})(4000.)(2)(1071)(10)$ | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | | | V _I | = | Volume of extract injected in microliters (ul) | =3.73
M | | V_{t} | = | Volume of the concentrated extract in microliters (ul) | (| | Df | = | Dilution Factor. | | | %S | = | Percent solids, applicable to soil and solid matrices | | | 2.0 | = Factor of 2 to accou | unt for GPC cleanup | | | | |-----|------------------------|---------------------|---------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration | Calculated
Concentration
() | Qualification | | | > | 1.4-Diexane | 3.7 | ļ | | | | 1 | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Wet Chemistry Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91067-1 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | OUA1-MW14-20161115DUP | 280-91067-3DUP | Water | 11/15/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056 Ferrous Iron by Standard Method 3500 FE D pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |----------------------|--------------|--|---|----------------------|--------| | OUA1-MW14-20161115** | рН | 6 days | 48 hours | J (all detects) | Р | | OUA1-MW07-20161115 | рН | 6 days | 48 hours | J (all detects) | Р | | OUA1-MW55-20161115 | рН | 6 days | 48 hours | J (all detects) | Р | | OUA1-MW27-20161115 | рН | 6 days | 48 hours | J (all detects) | Р | | OUA1-MW14-20161115** | Ferrous iron | 55.10 hours | 48 hours | UJ (all non-detects) | P | | OUA1-MW07-20161115 | Ferrous iron | 54.60 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW55-20161115 | Ferrous iron | 52.93 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW55A-20161115 | Ferrous iron | 52.77 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW27-20161115 | Ferrous iron | 51.27 hours | 48 hours | UJ (all non-detects) | Р | #### II. Initial Calibration All criteria for the initial calibration of each method were met. # III. Continuing Calibration Continuing calibration frequency and analysis criteria were met for each method when applicable. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Analyte | Maximum
Concentration | Associated
Samples | |-----------------|---------------------|--------------------------|--------------------------------| | PB (prep blank) | Chloride
Sulfate | 0.391 mg/L
0.439 mg/L | All samples in SDG 280-91067-1 | | Blank ID | Analyte | Maximum
Concentration | Associated
Samples | |----------|-------------------------------------|--|--------------------------------| | ICB/CCB | Chloride
Nitrate as N
Sulfate | 0.424 mg/L
0.109 mg/L
0.483 mg/L | All samples in SDG 280-91067-1 | Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks. #### V. Field Blanks Sample EB02-20161115 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Analyte | Concentration | Associated
Samples | |---------------|--------------------|---------------------|------------------------|--------------------------------| | EB02-20161115 | 11/15/16 | Chloride
Sulfate | 0.39 mg/L
0.43 mg/L | All samples in SDG 280-91067-1 | Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated field blanks. #### VI. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### VII. Duplicates Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # IX. Field Duplicates Samples OUA1-MW55-20161115 and OUA1-MW55A-20161115 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | ation (mg/L) | | | | |----------|--------------------|---------------------|--------------|--------|----------| | Analyte | OUA1-MW55-20161115 | OUA1-MW55A-20161115 | RPD (Limits) | Flag | A or P | | Chloride | 520 | 520 | 0 (≤20) | -
- | - | | Sulfate | 120 | 120 | 0 (≤20) | - | <u>-</u> | # X. Sample Result Verification All sample result verifications were acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. No results were rejected in this SDG. Due to technical holding time, data were qualified
as estimated in five samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. # MCAS Yuma Wet Chemistry - Data Qualification Summary - SDG 280-91067-1 | Sample | Analyte | Flag | A or P | Reason | |---|--------------|----------------------|--------|-------------------------| | OUA1-MW14-20161115**
OUA1-MW07-20161115
OUA1-MW55-20161115
OUA1-MW27-20161115 | рН | J (all detects) | Р | Technical holding times | | OUA1-MW14-20161115** OUA1-MW07-20161115 OUA1-MW55-20161115 OUA1-MW55A-20161115 OUA1-MW27-20161115 | Ferrous iron | UJ (all non-detects) | Р | Technical holding times | # MCAS Yuma Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG # **MCAS Yuma** Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG #### | Date: 1/3/17 | | |----------------------------|---| | Page: <u>∟</u> of_ <u></u> | | | Reviewer: | | | 2nd Reviewer: | _ | Laboratory: Test America, Inc. METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Ferrous Iron (3500-FE D) pH, (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|---------------------------------------| | 1. | Sample receipt/Technical holding times | A SW | | | 11 | Initial calibration | A | | | III. | Calibration verification | A | | | IV | Laboratory Blanks | asw | < 0/. | | V | Field blanks | SW | CB=1 SB=SB01-70161114/280-90987-1) | | VI. | Matrix Spike/Matrix Spike Duplicates | \mathcal{N} | CS | | VII. | Duplicate sample analysis | A | | | VIII. | Laboratory control samples | A | US(0 | | IX. | Field duplicates | SW | (46) | | Χ. | Sample result verification | A | Not reviewed for Stage 2B validation. | | ΧI | Overall assessment of data | 1 | | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |----|-----------------------|----------------|--------|----------| | 1 | EB02-20161115 | 280-91067-1 | Water | 11/15/16 | | 2 | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | 3 | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | 4 | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | 5 | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | 6 | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | 7 | OUA1-MW14-20161115DUP | 280-91067-3DUP | Water | 11/15/16 | | 8 | | | | | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | NOIES. |
 | The second secon |
 | |--------|------|--|------| | | | 777 - 110-110-110-110-110-110-110-110-110-1 | ## **VALIDATION FINDINGS CHECKLIST** Page: 1 of 2 Reviewer: CZ 2nd Reviewer: Method: Inorganics (EPA Method See over) | Method:Inorganics (EPA Method Secovery | T | | | | |--|-----|------|----|-------------------| | Validation Area | Yes | No | NA | Findings/Comments | | I. Technical holding times | | | | | | All technical holding times were met. | | V | | | | II. Calibration | | | | | | Were all instruments calibrated daily, each set-up time? | | | | | | Were the proper number of standards used? | | | | | | Were all initial calibration correlation coefficients ≥ 0.995? | | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | | | | | | Were titrant checks performed as required? (Level IV only) | | | _ | | | Were balance checks performed as required? (Level IV only) | | | | | | III. Blanks | | | | | | Was a method blank associated with every sample in this SDG? | | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | | -· , | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | | | / | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | | | | | | V. Laboratory control samples | | | | | | Was an LCS anaylzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | Were performance evaluation (PE) samples performed? | | | | | | Were the performance evaluation (PE) samples within the acceptance limits? | | | / | | LDC #: 3798 # **VALIDATION FINDINGS CHECKLIST** Page: Qof 2 Reviewer: 2nd Reviewer: 2 | Validation Area | Yes | No | NA | Findings/Comments | | | |---|-----|----|----|-------------------|--|--| | VII. Sample Result Verification | | | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | | | Were detection limits < RL? | | | | | | | | VIII. Overall assessment of data | | | | | | | | Overall assessment of data was found to be acceptable. | | | | | | | | IX. Field duplicates | | | | | | | | Field duplicate pairs were identified in this SDG. | | | | | | | | Target analytes were detected in the field duplicates. | | | | | | | | X. Field blanks | | | | | | | | Field blanks were identified in this SDG. | | | | | | | | Target analytes were detected in the field blanks. | | | | | | | LDC #: 3791136 # VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference | Page:_ | of \ | |----------------|----------| | Reviewer:_ | æ | | 2nd reviewer:_ | <u>q</u> | All circled methods are applicable to each sample. | Sample ID | Matrix | Parameter | |-----------|--------|---| | 2-4,6 | | (PH) TDS(C) F(NO3) NO(SO) PO4 ALK CN. NH3 TKN TOC CR8+ CIQ4 101+ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | 5 | | pH TDS(CI)F (NO), NO, (SO) PO, ALK CN' NH, TKN TOC CR6+ CIQ Te T | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | Q:7 | | (PH) TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk Cn ⁻ Nh ₃ TKN toc CR ⁶⁺ Cio ₄ | | | | ph TDS CI F
NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CLF NO. NO. SO, PO, ALK CN. NH. TKN TOC CR6+ CIO. | | Comments: | | | | |-----------|--|--|--| | | | | | LDC #: 37191136 # **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page: | of | |---------------|----| | Reviewer:_ | OC | | 2nd reviewer: | Q | All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method? Y N N/A Were all cooler temperatures within validation criteria? | Method: | | 9040C | | | 2vv. | 380FED | | | |-------------|---------------|---------------|---------------------------------------|-----------|-----------------------------------|----------------|-----------|--| | Parameters | | PH | | | 5M38UFED
Ferraus Iron
48hrs | | | | | Technical h | olding time: | 48hrs | | 1 | <u>48hrs</u> | | | | | Sample ID | Sampling date | Analysis date | Total
Time | Qualifier | Analysis
date | Total
Time | Qualifier | | | 2,7 | 11/15/16 | 11/21/16 | 6days | JUSPRON | | , | | | | 3 | O9:50 | 12:03 | | | | | | | | 4 | 11-30 | 1208 | | | | | | | | 6 | 13:10 | 12:13 | | | | | | | | | | | | | | | | | | a | 11/15/16 | | | | 11/17/16 | 5 6 .10 | J/05/Rm | | | 3 | 09:50 | | | | | 54.60 | | | | 4 | 11:30 | | | | | 52,93
52,77 | | | | 5 | 11:40 | | | | | 52.77 | | | | 6 | 13:10 | | | | \bigvee | 51.27 | + | : | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | | | | | | | | | | | | LDC #: 37797B6 # VALIDATION FINDINGS WORKSHEET Blanks | Page: of | | |---------------|---| | Reviewer: | | | 2nd Reviewer: | _ | METHOD:Inorganics, Method See Cover Conc. units: mg/L Associated Samples: All | Analyte | Blank ID | Blank ID | Blank | | | | | | | |---------|----------|-------------------|--------------|------------------|------|--|--|--|--| | | РВ | ICB/CCB
(mg/L) | Action Limit | No qual
(>5x) |
 | | | | | | СІ | 0.391 | 0.424 | 2.12 | | | | | | | | NO3-N | | 0.109 | 0.545 | | | | | | | | SO4 | 0.439 | 0.483 | 2.415 | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". LDC #: 37797B6 # VALIDATION FINDINGS WORKSHEET Field Blanks | 1 | 1 | |--------------------|----| | Page: | of | | Reviewer: <u>C</u> | 2 | | 2nd Reviewer:(| | METHOD: Inorganics, EPA Method See Cover Blank units: mg/L Associated sample units: mg/L Sampling date: 11/15/16 Soil factor applied NA Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples: All | Analyte | Blank ID | Action Limit | | Sample Identification | | | | | | | |----------|---------------|--------------|------------------------|-----------------------|--|--|--|---|--|--| | | EB02-20161115 | | No Qualifiers
(>5x) | | | | | | | | | Chloride | 0.39 | 1.95 | | | | | | | | | | Sulfate | 0.43 | 2.15 | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | - | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". LDC#: 37797B6 # VALIDATION FINDINGS WORKSHEET Field Duplicates Inorganics, Method See Cover | | Concentrati | on (mg/L) | | 0 115 41 | | | |----------|-------------|-----------|-----------|--------------------------------|--|--| | Analyte | 4 | 5 | RPD (≤20) | Qualification
(Parent only) | | | | Chloride | 520 | 520 | 0 | | | | | Sulfate | 120 | 120 | 0 | | | | \\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\37797B6.wpd | | 3779 | 702/ | |----------|----------|------| | LDC #: _ | <u> </u> | 100 | # Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification | Page: of | |---------------| | Reviewer: | | 2nd Reviewer: | | wiethou: inorganics, wiethou _ | See Cover_ | | |---|----------------------------|--| | The correlation coefficient (r) for the | e calibration of <u></u> ∭ | was recalculated.Calibration date: 0/19/16 | | An initial or continuing calibration v | verification percent | recovery (%R) was recalculated for each type of analysis using the following formula: | | %R = <u>Found X 100</u> | Where, | Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution | | True | | True = concentration of each analyte in the ICV or CCV source | | | | | | | Recalculated | Reported | Acceptable | |--------------------------|---------|------------|--------------|-----------|---------------------|---------------------|------------| | Type of analysis | Analyte | Standard | Conc. (mg/L) | Area | r or r ² | r or r ² | (Y/N) | | Initial calibration | | s1 | 0.2 | 1590920 | | | | | | | s2 | 0.5 | 4076842 | 1.000 | 0.998 | | | | N(s, a) | s3 | 11 | 8789224 | | | Υ | | | NO3N | s4 | 4 | 40800587 | | | | | | | s 5 | 8 | 87082615 | | | | | | | s6 | 10 | 110756388 | | | | | Calibration verification | SDy | α | 100 | 101,5 | 102 | 107 | | | Calibration verification | FeII+ | CCU | 1,00 | 108 | 108 | 108 | 4 | | Calibration verification | | | | | | | - | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within | |--| | 0.0% of the recalculated results. | | | LDC #: 3777B6 # VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | Page: | (
of | 1 | |---------------|---------|---| | Reviewer: | کی | < | | 2nd Reviewer: | -4 | _ | | METHOD: Inorganics, Meth | 10d See care | |--------------------------|--------------| |--------------------------|--------------| Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = Found \times 100$ True Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = |S-D| \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration | Sample ID | Type of Analysis | Element | Found / S
(units) | True / D
(units) | Recalculated
%R / RPD | Reported
%R / RPD | Acceptable
(Y/N) | |-----------|---------------------------|---------|----------------------|---------------------|--------------------------|----------------------|---------------------| | LCS | Laboratory control sample | FeIH | 7.07 | 200 | 104 | W | 4 | | \sim | Matrix spike sample | | (SSR-SR) | ` | | | | | 7 | Duplicate sample | PH | 7.79 | 7.76
7:76 | 04 | 6.4 | 7 | | Comments: | | |
 |
 | | |-----------|--|--|------|------|--| | | | | | | | | | | | _ | | | LDC#: 377176 ## **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification | Page: 1 of | | |---------------|--| | Reviewer:0? | | | 2nd reviewer: | | | METHOD: Inor | ganics, Method <u>Sec Ca</u> | rel | | |---|---|--|--| | Please see qua X N N/A Y N N/A Y N N/A | alifications below for all questi
Have results been reported
Are results within the calibra
Are all detection limits belov | ions answered "N". Not applicate and calculated correctly? ated range of the instruments? with CRQL? | ble questions are identified as "N/A". | | | alyte) results for
d verified using the following | NOTN equation: | reported with a positive detect were | | Concentration = Pres (9x10 |)-r)+0.17 | Recalculation:
3435066 Axiot | 8) +0.17 = 3.749 mg/L | | # | Sample ID |
Analyte | Reported
Concentration
(YNG) | Calculated
Concentration
(M | Acceptable
(Y/N) | |---------|-----------|---------|-------------------------------------|-----------------------------------|---------------------| | | a | pH(SU) | 7.8 | 7.8 | Y | | | | Čl | 300 | 300 | | | | | N63-N | 3,2 | 3.2 | | | | | 50y | 590 | 590 | | | | | 1 ~ | | | • | | ļ | <u></u> | | | | | | | ļ | | · | | | | | | | | | | | | | | | | | | |
 | <u></u> | | | | Note: |
 |
 | | |-------|------|------|--| | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: Volatiles Validation Level: Stage 2B Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91122-1 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | OUA1-MW42-20161116 | 280-91122-5 | Water | 11/16/16 | | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | OUA1-MW31-20161116 | 280-91122-7 | Water | 11/16/16 | | OUA1-PZ19-20161116 | 280-91122-8 | Water | 11/16/16 | | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | | OUA1-MW04-20161116 | 280-91122-10 | Water | 11/16/16 | | OUA1-MW04A-20161116 | 280-91122-11 | Water | 11/16/16 | | OUA1-MW05-20161116 | 280-91122-12 | Water | 11/16/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending CCVs were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample TB03-20161116 was identified as a trip blank. No contaminants were found. Sample EB03-20161116 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1 was identified as a source blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions: | Sample | Surrogate | %R (Limits) | Affected
Compound | Flag | A or P | |--------------------|--------------------|-------------|----------------------|---|--------| | OUA1-MW54-20161116 | Bromofluorobenzene | 84 (85-114) | All compounds | J (all detects)
UJ (all non-detects) | Р | | OUA1-MW01-20161116 | Bromofluorobenzene | 84 (85-114) | All compounds | J (all detects)
UJ (all non-detects) | Р | | OUA1-MW04-20161116 | Bromofluorobenzene | 83 (85-114) | All compounds | J (all detects)
UJ (all non-detects) | Р | #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### X. Field Duplicates Samples OUA1-MW04-20161116 and OUA1-MW04A-20161116 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | James de la companya | | | | | |--------------------|--------------------
---|-----------------|------------------------|------|--------| | Compound | OUA1-MW04-20161116 | OUA1-MW04A-20161116 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | 1,1-Dichloroethene | 0.44 | 0.50 | - | 0.06 (≤1.0) | - | - | | Concentration (ug/L) | | Concentration (ug/L) | | | | | |----------------------|--------------------|----------------------|-----------------|------------------------|------|--------| | Compound | OUA1-MW04-20161116 | OUA1-MW04A-20161116 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | Trichloroethene | 0.40 | 0.49 | - | 0.09 (≤1.0) | - | - | #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to surrogate %R, data were qualified as estimated in three samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. #### **MCAS Yuma** ### Volatiles - Data Qualification Summary - SDG 280-91122-1 | Sample | Compound | Flag | A or P | Reason | |--|---------------|---|--------|-----------------| | OUA1-MW54-20161116
OUA1-MW01-20161116
OUA1-MW04-20161116 | All compounds | J (all detects)
UJ (all non-detects) | Р | Surrogates (%R) | #### MCAS Yuma Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG #### **MCAS** Yuma Volatiles - Field Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797C1 SDG #: 280-91122-1 Stage 2B Reviewer: 2nd Reviewer: METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) Laboratory: Test America, Inc. The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----------|--| | l. | Sample receipt/Technical holding times | A | | | 11. | GC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | AA | 75051570.82 1CV=2070 | | IV. | Continuing calibration | A | CCV = 20/50/r | | V. | Laboratory Blanks | 1 | / / | | VI. | Field blanks | ND | ZB=1. TB=2.0B=SB01-420161114
(=80-90987-1 | | VII. | Surrogate spikes | w | (=80-90 98T-1 | | VIII. | Matrix spike/Matrix spike duplicates | N | <u>CS</u> | | IX. | Laboratory control samples | \$ | 105 | | X. | Field duplicates | W | D=10+11 | | XI. | Internal standards | A | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|---------------------|--------------|--------|----------| | 1 | EB03-20161116 | 280-91122-1 | Water | 11/16/16 | | 2 | TB03-20161116 | 280 91122 2 | Water | 11/16/16 | | 3 | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | 4 | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | 5 | OUA1-MW42-20161116 | 280-91122-5 | Water | 11/16/16 | | 6 | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | 7 | OUA1-MW31-20161116 | 280-91122-7 | Water | 11/16/16 | | 8 | OUA1-PZ19-20161116 | 280-91122-8 | Water | 11/16/16 | | 9 | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | | 10 | OUA1-MW04-20161116 | 280-91122-10 | Water | 11/16/16 | | 11 | OUA1-MW04A-20161116 | 280-91122-11 | Water | 11/16/16 | | 12 | OUA1-MW05-20161116 | 280-91122-12 | Water | 11/16/16 | | 13 | | | | | #### TARGET COMPOUND WORKSHEET #### METHOD: VOA | METHOD. VOA | | | | | |------------------------------|---------------------------------|--|-----------------------------------|----------------------------| | A. Chloromethane | AA. Tetrachloroethene | AAA. 1,3,5-Trimethylbenzene | AAAA. Ethyl tert-butyl ether | A1. 1,3-Butadiene | | B. Bromomethane | BB. 1,1,2,2-Tetrachloroethane | BBB. 4-Chlorotoluene | BBBB. tert-Amyl methyl ether | B1. Hexane | | C. Vinyl choride | CC. Toluene | CCC. tert-Butylbenzene | CCCC. 1-Chlorohexane | C1. Heptane | | D. Chloroethane | DD. Chlorobenzene | DDD. 1,2,4-Trimethylbenzene | DDDD. Isopropyl alcohol | D1. Propylene | | E. Methylene chloride | EE. Ethylbenzene | EEE. sec-Butylbenzene | EEEE. Acetonitrile | E1. Freon 11 | | F. Acetone | FF. Styrene | FFF. 1,3-Dichlorobenzene | FFFF. Acrolein | F1. Freon 12 | | G. Carbon disulfide | GG. Xylenes, total | GGG. p-isopropyltoluene | GGGG. Acrylonitrile | G1. Freon 113 | | H. 1,1-Dichloroethene | HH. Vinyl acetate | HHH. 1,4-Dichlorobenzene | HHHH. 1,4-Dioxane | H1. Freon 114 | | I. 1,1-Dichloroethane | II. 2-Chloroethylvinyl ether | III. n-Butylbenzene | IIII. Isobutyl alcohol | I1. 2-Nitropropane | | J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane | JJJ. 1,2-Dichlorobenzene | JJJJ. Methacrylonitrile | J1. Dimethyl disulfide | | K. Chloroform | KK. Trichlorofluoromethane | KKK. 1,2,4-Trichlorobenzene | KKKK. Propionitrile | K1. 2,3-Dimethyl pentane | | L. 1,2-Dichloroethane | LL. Methyl-tert-butyl ether | LLL. Hexachlorobutadiene | LLLL. Ethyl ether | L1. 2,4-Dimethyl pentane | | M. 2-Butanone | MM. 1,2-Dibromo-3-chloropropane | MMM. Naphthalene | MMMM. Benzyl chloride | M1. 3,3-Dimethyl pentane | | N. 1,1,1-Trichloroethane | NN. Methyl ethyl ketone | NNN. 1,2,3-Trichlorobenzene | NNNN. lodomethane | N1. 2-Methylpentane | | O. Carbon tetrachloride | OO. 2,2-Dichloropropane | OOO. 1,3,5-Trichlorobenzene | OOOO.1,1-Difluoroethane | O1. 3-Methylpentane | | P. Bromodichloromethane | PP. Bromochloromethane | PPP. trans-1,2-Dichloroethene | PPPP. Tetrahydrofuran | P1. 3-Ethylpentane | | Q. 1,2-Dichloropropane | QQ. 1,1-Dichloropropene | QQQ. cis-1,2-Dichloroethene | QQQQ. Methyl acetate | Q1. 2,2-Dimethylpentane | | R. cis-1,3-Dichloropropene | RR. Dibromomethane | RRR. m,p-Xylenes | RRRR. Ethyl acetate | R1. 2,2,3- Trimethylbutane | | S. Trichloroethene | SS. 1,3-Dichloropropane | SSS. o-Xylene | SSSS. Cyclohexane | S1. 2,2,4-Trimethylpentane | | T. Dibromochloromethane | TT. 1,2-Dibromoethane | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methylcyclohexane | T1. 2-Methylhexane | | U. 1,1,2-Trichloroethane | UU. 1,1,1,2-Tetrachloroethane | UUU. 1,2-Dichlorotetrafluoroethane | UUUU. Allyl chloride | U1. Nonanal | | V. Benzene | VV. Isopropylbenzene | VVV. 4-Ethyltoluene | VVVV. Methyl methacrylate | V1. 2-Methylnaphthalene | | W. trans-1,3-Dichloropropene | WW. Bromobenzene | WWW. Ethanol | WWWW. Ethyl methacrylate | W1. Methanol | | X. Bromoform | XX. 1,2,3-Trichloropropane | XXX. Di-isopropyl ether | XXXX. cis-1,4-Dichloro-2-butene | X1. 1,2,3-Trimethylbenzene | | Y. 4-Methyl-2-pentanone | YY. n-Propylbenzene | YYY. tert-Butanol | YYYY. trans-1,4-Dichloro-2-butene | Y1. | | Z. 2-Hexanone | ZZ. 2-Chlorotoluene | ZZZ. tert-Butyl alcohol | ZZZZ. Pentachloroethane | Z1. | LDC#;311910 ### VALIDATION FINDINGS WORKSHEET Surrogate Spikes | Page:_ | (of/_ | |---------------|-------| | Reviewer: | 4 | | 2nd Reviewer: | M | METHOD:
GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y (V) N/A Were all surrogate %R within QC limits? Y\N N/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of | | criteria | 1? | | <u></u> | | |-------------|----------|-----------|-------------|--|----------------| | # | Date | Sample ID | Surrogate | %Recovery (Limits) | Qualifications | | | | 2 | BB | 81 (851A) | | | - | | 4 | PB | (85-14) | JANP (dets+NO | | | | | | $\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$ | THE COESTNO | | | | 6 | BB | 84 () | | | | | 10 | BB | () | | | | | | | () | V V | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | | | | | | | | () | | | | | | | () | | | | | | | | | | | | | | () | | | | | | | | | (TOL) = Toluene-d8 (DCE) = 1,2-Dichloroethane-d4 (DFM) = Dibromofluoromethane (BFB) = Bromofluorobenzene ## LDC#:3197C# # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | _of[_ | |----------------|----------| | Reviewer: | <u>d</u> | | 2nd Reviewer:_ | SIC | METHOD: GCMS voa (EPA SW 846 Method 8260B) | Concentration (ug/L) | | (≤20) | | | | | |----------------------|------|-------|-----|------------|--------|------| | Compound | 10 | 11 | RPD | Difference | Limits | Qual | | Н | 0.44 | 0.50 | | 0.06 | ≤1.0 | | | s | 0.40 | 0.49 | | 0.09 | ≤1.0 | | V:\FIELD DUPLICATES\37797C1.wpd # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91122-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | OUA1-MW42-20161116 | 280-91122-5 | Water | 11/16/16 | | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | OUA1-MW31-20161116 | 280-91122-7 | Water | 11/16/16 | | OUA1-PZ19-20161116 | 280-91122-8 | Water | 11/16/16 | | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | | OUA1-MW04-20161116 | 280-91122-10 | Water | 11/16/16 | | OUA1-MW04A-20161116 | 280-91122-11 | Water | 11/16/16 | | OUA1-MW05-20161116 | 280-91122-12 | Water | 11/16/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB03-20161116 was identified as an equipment blank. No contaminants were found. Sample SB01-2016114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates Samples OUA1-MW04-20161116 and OUA1-MW04A-20161116 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ug/L) | | | | | | |-------------|----------------------|---------------------|-----------------|------------------------|-----------------|--------| | Compound | OUA1-MW04-20161116 | OUA1-MW04A-20161116 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | 1,4-Dioxane | 2.5 | 1.8 | 33 (≤20) | - | J (all detects) | Α | #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to field duplicate RPD, data were qualified as estimated in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. #### **MCAS Yuma** ## 1,4-Dioxane - Data Qualification Summary - SDG 280-91122-1 | Sample | Compound | Flag | A or P | Reason | |---|-------------|-----------------|--------|------------------------| | OUA1-MW04-20161116
OUA1-MW04A-20161116 | 1,4-Dioxane | J (all detects) | Α | Field duplicates (RPD) | #### MCAS Yuma 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** 1,4-Dioxane - Field Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS
WORKSHEET** LDC #: 37797C2b SDG #: 280-91122-1 Stage 2B Reviewer: 2nd Reviewer Laboratory: Test America, Inc. METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|----------------------------------| | l | Sample receipt/Technical holding times | A | | | 11 | GC/MS Instrument performance check | A | | | 111. | Initial calibration/ICV | AA | RSD ≤ 1570. ICV ≤ 207 V | | IV. | Continuing calibration | A | act = 20/50/1 | | V | Laboratory Blanks | A | / / | | VI. | Field blanks | NO | B=1.5B=5B01-R20161114 (280-90987 | | VII. | Surrogate spikes | A | | | VIII. | Matrix spike/Matrix spike duplicates | N | es | | IX. | Laboratory control samples | \Rightarrow | LCS to | | X. | Field duplicates | W | D=9+10 | | XI. | Internal standards | \$ | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----------|---------------------|--------------|--------|----------| | 1 | EB03-20161116 | 280-91122-1 | Water | 11/16/16 | | 2 | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | 3 | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | 4 | OUA1-MW42-20161116 | 280-91122-5 | Water | 11/16/16 | | 5 | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | 6 | OUA1-MW31-20161116 | 280-91122-7 | Water | 11/16/16 | | 7 | OUA1-PZ19-20161116 | 280-91122-8 | Water | 11/16/16 | | 8 | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | | 9 , | OUA1-MW04-20161116 | 280-91122-10 | Water | 11/16/16 | | 10
10 | OUA1-MW04A-20161116 | 280-91122-11 | Water | 11/16/16 | | 11 | OUA1-MW05-20161116 | 280-91122-12 | Water | 11/16/16 | | 12 | | | | | | 13 | | | | | # VALIDATION FINDINGS WORKSHEET _Field Duplicates | Page: | Lof | |----------------|----------| | Reviewer: | <u>a</u> | | 2nd Reviewer:_ | SV | METHOD: GCMS svoa (EPA SW 846 Method 8270C) | | Concentration (ug/L) | | (≤20) | D:// | | | |-------------|----------------------|-----|-------|------------|--------|--------| | Compound | 9 | 10 | RPD | Difference | Limits | Qual | | 1,4-Dioxane | 2.5 | 1.8 | 33 | | | Stef 8 | V:\FIELD DUPLICATES\37797C2b.wpd # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Wet Chemistry **Validation Level:** Stage 2B Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91122-1 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056 Ferrous Iron by Standard Method 3500 FE D pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |--------------------------------|--------------|--|---|----------------------|--------| | All samples in SDG 280-91122-1 | рН | 5 days | 48 hours | J (all detects) | Р | | All samples in SDG 280-91122-1 | Ferrous iron | 9 days | 48 hours | UJ (all non-detects) | Р | #### II. Initial Calibration All criteria for the initial calibration of each method were met. #### **III. Continuing Calibration** Continuing calibration frequency and analysis criteria were met for each method when applicable. #### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample EB03-20161116 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. #### VI. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VII. Duplicates Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. #### **VIII. Laboratory Control Samples** Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Sample Result Verification Raw data were not reviewed for Stage 2B validation. #### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. No results were rejected in this SDG. Due to technical holding time, data were qualified as estimated in four samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ### MCAS Yuma Wet Chemistry - Data Qualification Summary - SDG 280-91122-1 | Sample | Analyte | Flag | A or P | Reason | |--|--------------|----------------------|--------|-------------------------| | OUA1-MW53-20161116
OUA1-MW54-20161116
OUA1-MW01-20161116
OUA1-MW52-20161116 | рН | J (all detects) | Р | Technical holding times | | OUA1-MW53-20161116
OUA1-MW54-20161116
OUA1-MW01-20161116
OUA1-MW52-20161116 | Ferrous iron | UJ (all non-detects) | Р | Technical holding times | #### **MCAS Yuma** Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG ### **MCAS Yuma** Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this
SDG # LDC #: 37797C6 VALIDATION COMPLETENESS WORKSHEET SDG #: 280-91122-1 Stage 2B | Date: 1/3/1 | 2 | |----------------------------|---| | Page: <u> </u> of <u> </u> | | | Reviewer: | _ | | 2nd Reviewer: | _ | Laboratory: <u>Test America</u>, <u>Inc.</u> METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Ferrous Iron (3500-FE D) pH, (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |----------|--|--------|------------------------------------| | <u> </u> | Sample receipt/Technical holding times | A SW | | | | Initial calibration | Ă | | | III. | Calibration verification | A | | | IV | Laboratory Blanks | A | | | V | Field blanks | NO | CB=1 SB=SB01-2016114 (280-90987-1) | | VI. | Matrix Spike/Matrix Spike Duplicates | A | ms/D | | VII. | Duplicate sample analysis | A | DP. | | VIII. | Laboratory control samples | A | LCS/D | | IX. | Field duplicates | \sim | | | X. | Sample result verification | N | | | ΧI | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: Matrix Date Client ID Lab ID EB03-20161116 280-91122-1 Water 11/16/16 1 OUA1-MW53-20161116 280-91122-3 Water 11/16/16 Water OUA1-MW54-20161116 280-91122-4 11/16/16 3 280-91122-6 Water 11/16/16 OUA1-MW01-20161116 OUA1-MW52-20161116 280-91122-9 Water 11/16/16 EB03-20161116MS 280-91122-1MS Water 11/16/16 EB03-20161116MSD 280-91122-1MSD Water 11/16/16 EB03-20161116DUP 280-91122-1DUP 8 Water 11/16/16 9 10 11 12 13 14 | | |
 | | | |--------|--|------|--|--| | 15 | | | | | | Notes: | ## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: 1 of 1 Reviewer: CR 2nd reviewer: 1 All circled methods are applicable to each sample. | Sample ID | Parameter | |-----------|---| | 7-5 | PA TDS(C) F (NO3) NO2(SO4)O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (12 11) | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH_TDS_CL_F_NO ₃ _NO ₃ _SO ₄ _O-PO ₄ _Alk_CN_NH ₃ _TKN_TOC_Cr6+_ClO ₄ | | Comments: | |
 | | |-----------|------|------|--| | | | | | | |
 |
 | | | | | | | LDC #: 3779766 # VALIDATION FINDINGS WORKSHEET **Technical Holding Times** | Page: <u>\</u> of_ | | |--------------------|--------| | Reviewer: O | ,
 | | 2nd reviewer: | \geq | All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method? Y N N/A Were all cooler temperatures within validation criteria? | Method: | | 5m 9040C
pH
48 ks | | | SM3500-FE-O
Ferras Iron
48hrs | | | |-------------------------|-------------------------|-------------------------|---------------|-----------|-------------------------------------|---------------|-----------| | Parameters: | | QH . | | | Ferras Iron | | | | Technical holding time: | | 48 | 48 hrs | | 48hrs | | | | Sample ID | Sampling
<u>date</u> | Analysis
date | Total
Time | Qualifier | Analysis
date | Total
Time | Qualifier | | All | 11/16/16 | 11/21/16 | Sdays | TITIPLON | 11/25/16 | 9 days | J/OJ/P/M | | ~ | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma LDC Report Date: January 4, 2017 Parameters: Volatiles Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91192-1 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | OUA1-MW51-20161117 | 280-91192-3 | Water | 11/17/16 | | OUA1-MW50-20161117 | 280-91192-4 | Water | 11/17/16 | | OUA1-MW49-20161117** | 280-91192-5** | Water | 11/17/16 | | OUA1-MW49-20161117MS | 280-91192-5MS | Water | 11/17/16 | | OUA1-MW49-20161117MSD | 280-91192-5MSD | Water | 11/17/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was
performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample TB04-20161117 was identified as a trip blank. No contaminants were found. Sample EB04-20161117 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. # XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. #### **MCAS Yuma** Volatiles - Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** Volatiles - Field Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797D1 SDG #: 280-91192-1 Stage 2B/4 | Date: | 4966 | |---------------|----------| | Page:_ | of | | Reviewer: | <u>a</u> | | 2nd Reviewer: | _NZ | Laboratory: Test America, Inc. METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|---------------------------------------| | l. | Sample receipt/Technical holding times | A | | | H. | GC/MS Instrument performance check | A | | | 111. | Initial calibration/ICV | A,A | RSD=1570. Y = 101=2070 | | IV. | Continuing calibration / Zweig | A | cc1 ≤ 20/50/0 | | V. | Laboratory Blanks | A | ~ | | VI. | Field blanks | N.D | B=1. TB=x . SB01-120161114/280-904 | | VII. | Surrogate spikes | A | | | VIII. | Matrix spike/Matrix spike duplicates | A | | | IX. | Laboratory control samples | | 109 | | Χ. | Field duplicates | Ĭ. | | | XI. | Internal standards | 4 | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | Å | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | A | | Note: A = Acceptable SW = See worksheet N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |-----|-----------------------|----------------|--------|----------| | 1 | EB04-20161117 | 280-91192-1 | Water | 11/17/18 | | 2_ | TB04-20161117 | 280-91192-2 | Water | 11/17/16 | | 3 | OUA1-MW51-20161117 | 280-91192-3 | Water | 11/17/16 | | 4 | OUA1-MW50-20161117 | 280-91192-4 | Water | 11/17/16 | | 5 | OUA1-MW49-20161117** | 280-91192-5** | Water | 11/17/16 | | 3 | OUA1-MW49-20161117MS | 280-91192-5MS | Water | 11/17/16 | | 7 | OUA1-MW49-20161117MSD | 280-91192-5MSD | Water | 11/17/16 | | 3 | | | | | | , | | | | | | 10. | | | | | ## VALIDATION FINDINGS CHECKLIST Method: Volatiles (EPA SW 846 Method 8260B) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----------|-----|--| | I. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | III. GC/MS Instrument performance check | | To | | | | Were the BFB performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | | | The Table 1 of the Control Co | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | - | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 38%/15% and relative response factors (RRF) ≥ 0.05? | | | | | | IIIb. Initial Calibration Verification | ı | . | 100 | and the second s | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | | | | Carlot September 1985 Control of the | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05? | | | | | | V. Laboratory Blanks | | energy. | Ĩ | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If
yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | j | | | | | Were field blanks were identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | | | Were all surrogate percent recovery (%R) within QC limits? | | | | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | | | | #### VALIDATION FINDINGS CHECKLIST Page: Of A Reviewer: Of A Page: O | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|----|--| | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | | 100 Television (100 Televisio) (100 Televisio) (100 Televisio) (100 Televisio) (100 Televisio) | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | / | | | | | X. Field duplicates | | p. | | The secretary of the second | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XII: Internal standards | | | | The state of s | | Were internal standard area counts within -50% to +100% of the associated calibration standard? | | | | | | Were retention times within \pm 30 seconds of the associated calibration standard? | | | | | | XIII Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | • | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | / | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV System performance | 14 | | | | | System performance was found to be acceptable. | / | | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | # TARGET COMPOUND WORKSHEET #### METHOD: VOA | A. Chloromethane | U. 1,1,2-Trichloroethane | OO. 2,2-Dichloropropane | III. n-Butylbenzene | CCCC.1-Chlorohexane | |------------------------------|---------------------------------|-------------------------------|--|-------------------------| | B. Bromomethane | V. Benzene | PP. Bromochloromethane | JJJ. 1,2-Dichlorobenzene | DDDD. Isopropyl alcohol | | C. Vinyl choride | W. trans-1,3-Dichloropropene | QQ. 1,1-Dichloropropene | KKK. 1,2,4-Trichlorobenzene | EEEE. Acetonitrile | | D. Chloroethane | X. Bromoform | RR. Dibromomethane | LLL. Hexachlorobutadiene | FFFF. Acrolein | | E. Methylene chloride | Y. 4-Methyl-2-pentanone | SS. 1,3-Dichloropropane | MMM. Naphthalene | GGGG. Acrylonitrile | | F. Acetone | Z. 2-Hexanone | TT. 1,2-Dibromoethane | NNN. 1,2,3-Trichlorobenzene | HHHH. 1,4-Dioxane | | G. Carbon disulfide | AA. Tetrachloroethene | UU. 1,1,1,2-Tetrachloroethane | OOO. 1,3,5-Trichlorobenzene | IIII. Isobutyl alcohol | | H. 1,1-Dichloroethene | BB. 1,1,2,2-Tetrachloroethane | VV. Isopropylbenzene | PPP. trans-1,2-Dichloroethene | JJJJ. Methacrylonitrile | | I. 1,1-Dichloroethane | CC. Toluene | WW. Bromobenzene | QQQ. cis-1,2-Dichloroethene | KKKK. Propionitrile | | J. 1,2-Dichloroethene, total | DD. Chlorobenzene | XX. 1,2,3-Trichloropropane | RRR. m,p-Xylenes | LLLL. Ethyl ether | | K. Chloroform | EE. Ethylbenzene | YY. n-Propylbenzene | SSS. o-Xylene | MMMM. Benzyl chloride | | L. 1,2-Dichloroethane | FF. Styrene | ZZ. 2-Chlorotoluene | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | NNNN. lodomethane | | M. 2-Butanone | GG. Xylenes, total | AAA. 1,3,5-Trimethylbenzene | UUU. 1,2-Dichlorotetrafluoroethane | OOOO.1,1-Difluoroethane | | N. 1,1,1-Trichloroethane | HH. Vinyl acetate | BBB. 4-Chlorotoluene | VVV. 4-Ethyltoluene | PPPP. | | Ó. Carbon tetrachloride | II. 2-Chloroethylvinyl ether | CCC. tert-Butylbenzene | WWW. Ethanol | QQQQ. | | P. Bromodichloromethane | JJ. Dichlorodifluoromethane | DDD. 1,2,4-Trimethylbenzene | XXX. Di-isopropyl ether | RRRR. | | Q. 1,2-Dichloropropane | KK. Trichlorofluoromethane | EEE. sec-Butylbenzene | YYY. tert-Butanol | SSSS. | | R. cis-1,3-Dichloropropene | LL. Methyl-tert-butyl ether | FFF. 1,3-Dichlorobenzene | ZZZ. tert-Butyl alcohol | ттт. | | S. Trichloroethene | MM. 1,2-Dibromo-3-chloropropane | GGG. p-Isopropyltoluene | AAAA. Ethyl tert-butyl ether | UUUU. | | T. Dibromochloromethane | NN. Methyl ethyl ketone | HHH. 1,4-Dichlorobenzene | BBBB. tert-Amyl methyl ether | ww. | LDC #:31970 # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | Page:_ | | |----------------|----| | Reviewer:_ | 9 | | 2nd Reviewer:_ | No | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard C_x = Concentration of compound, S = Standard deviation of the RRFs X = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|-------------------|-------------------|--------------------------|--------------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(Ø std) | RRF
((0 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | _ • | 1-0 | (1st internal standard) | 0.335 | 0.3351 | 0.315 | 0.3175 | 3.3 | 3.3 | | | ICAZ | 112916 | (2nd internal standard) | 12757 | 1.2757 | 1.2176 | 1.2176 | 3,5 | 3.5 | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 2 | | | (1st internal standard) | | | | | | | | L | | | (2nd internal standard) | | | | | · | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | <u> </u> | | | | Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #:311910 / # VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification | Page:_ | | |---------------|----| | Reviewer: | 9 | | 2nd Reviewer: | Mr | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent difference (%D) of the initial calibration average Relative Response
Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF Where: ave. RRF = initial calibration average RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF A_{x} = Area of compound, A_{is} = Area of associated internal standard $\hat{C_x}$ = Concentration of compound, C_{is} = Concentration of internal standard | #_ | Standard ID | Calibration
Date | Compound (Reference internal Standard) | Average RRF
(initial) | Reported
RRF
(CC) | Recalculated
RRF
(CC) | Reported
%D | Recalculated
%D | |---------|-------------|---------------------|--|---|-------------------------|-----------------------------|----------------|--------------------| | 1 | NSLT760 | 11/30/6 | (1st internal standard) | 0.3175 | 0.3483 | 0.3483 | 9.7 | 9.7 | | | · · | 1/2/10 | (2nd internal standard) | 12176 | 1.248 | 1.248 | 2.5 | 2,5 | | | | | (3rd internal standard) | | | | | | | <u></u> | | | (4th internal standard) | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | (4th internal standard) | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | . 4 | | | | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | (of <i>]</i> | |--------------| | 9 | | 100 | | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 5 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | 11.0 | 11.5 | 104 | 104 | 0 | | 1,2-Dichloroethane-d4 | | 12.4 | 113 | 113 | | | Toluene-d8 | | 10.9 | 99 | 99 | | | Bromofluorobenzene | | 107 | 98 | 98 | d | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID:_____ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | LDC #_3(19) # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentration RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD sample: _ | Compound | Spike
Added
(//→€) | | Sample Spiked Sample Concentration | | Matrix Spike Percent Recovery | | Matrix Spike Duplicate Percent Recovery | | MS/MSD
RPD | | | |--------------------|---------------------------|-----|------------------------------------|------|-------------------------------|----------|---|----------|---------------|----------|--------------| | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | 1,1-Dichloroethene | 500 | 500 | NJ | 5.20 | 536 | 104 | 104 | 107 | 10T | 3 | 3 | | Trichloroethene | V | V | 027 | 5.13 | 5.18 | 97 | 9 | 98 | 98 |] | 1 | | Benzene | | | | | <u>`</u> . | . 1 | | | | | | | Toluene | | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | | | | mments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0 |)% | |---|----| | the recalculated results. | | | | | | | | ## **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | Page:_ | | |---------------|----------| | Reviewer: | <u>a</u> | | 2nd Reviewer: | N | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCS ID: _ >80-353T | | Sı | oike | Spiked Sample
Concentration | | LCS | | LCSD | | LCS/LCSD | | |--------------------|-----|------------|--------------------------------|------|------------------|---------|------------------|---------|----------|--------------| | Compound | 200 | lded
C) | | | Percent Recovery | | Percent Recovery | | RPD | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | 1,1-Dichloroethene | 500 | NA | 5.34 | NA | IOT | 10 T | | | | | | Trichloroethene | V | V | 5.41 | V | 108 | 108 | | | | | | Benzene | | | | | | | | | | | | Toluene | | | | | | | | | | | | Chlorobenzene | | | | | | | · | | | | | Comments | : Refer to Laboratory | Control Sample finding | gs worksheet for list | of qualifications and | d associated sample | es when reported r | results do not agree wit | hin 10.0% of the | |-------------|-----------------------|------------------------|-----------------------|-----------------------|---------------------|--------------------|--------------------------|------------------| | recalculate | d results. | LDC# # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: | <u>_/</u> of/_ | |---------------|----------------| | Reviewer: | <u>Q</u> | | 2nd reviewer: | W | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? Concentration = $(A_r)(I_s)(DF)$ $\overline{(A_{is})(RRF)(V_o)(\%}S)$ Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) V_° or grams (g). Df Dilution factor. %S Percent solids, applicable to soils and solid matrices Example: Conc. = (13) = (12.5) (1) (180991) (0.3173) = 20.2678 Hz | | only. | | Reported | Calculated | | |---|-----------|----------|---------------------------|----------------------|---------------| | # | Sample ID | Compound | Reported
Concent/ation | Concentration
() | Qualification | | | 5 | S | 0.27 | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | , | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: 1,4-Dioxane Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91192-1 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------
--------------------| | OUA1-MW51-20161117 | 280-91192-3 | Water | 11/17/16 | | OUA1-MW50-20161117 | 280-91192-4 | Water | 11/17/16 | | OUA1-MW49-20161117** | 280-91192-5** | Water | 11/17/16 | | OUA1-MW49-20161117MS | 280-91192-5MS | Water | 11/17/16 | | OUA1-MW49-20161117MSD | 280-91192-5MSD | Water | 11/17/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met with the following exceptions: | Sample | Compound | Total Days From
Sample Collection
Until Extraction | Required Holding Time
(in Days) From Sample
Collection Until Extraction | Flag | A or P | |-----------------------------------|---------------|--|---|----------------------|--------| | All samples in SDG
280-91192-1 | All compounds | 11 | 7 | UJ (all non-detects) | Р | #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB04-20161117 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions: | Spike ID
(Associated Samples) | Compound | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |--|-------------|---------------------|----------------------|----------------------|--------| | OUA1-MW49-20161117MS/MSD
(OUA1-MW49-20161117**) | 1,4-Dioxane | 35 (38-120) | 36 (38-120) | UJ (all non-detects) | А | Relative percent differences (RPD) were within QC limits. #### IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to technical holding time and MS/MSD %R, data were qualified as estimated in three samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. #### **MCAS Yuma** ## 1,4-Dioxane - Data Qualification Summary - SDG 280-91192-1 | Sample | Compound | Flag | A or P | Reason | |--|---------------|----------------------|--------|--| | OUA1-MW51-20161117
OUA1-MW50-20161117
OUA1-MW49-20161117** | All compounds | UJ (all non-detects) | Р | Technical holding times | | OUA1-MW49-20161117** | 1,4-Dioxane | UJ (all non-detects) | А | Matrix spike/Matrix spike duplicate (%R) | #### MCAS Yuma 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** 1,4-Dioxane - Field Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797D2b Stage 2B/4 SDG #: 280-91192-1 Laboratory: Test America, Inc. Reviewer: 2nd Reviewer: METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments Sample receipt/Technical holding times 11. GC/MS Instrument performance check Initial calibration/ICV III. Continuing calibration IV. Laboratory Blanks V. SB01-20161114 (280-90-987-1) VI. Field blanks VII. Surrogate spikes VIII. Matrix spike/Matrix spike duplicates 100 IX. Laboratory control samples X. Field duplicates Internal standards XI. XII. Compound quantitation RL/LOQ/LODs Not reviewed for Stage 2B validation. XIII. Target compound identification Not reviewed for Stage 2B validation. Not reviewed for Stage 2B validation. XIV. System performance XV. Overall assessment of data D = Duplicate SB=Source blank A = Acceptable ND = No compounds detected Note: N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: FB = Field blank SW = See worksheet EB = Equipment blank ** Indicates sample underwent Stage 4 validation Client ID Lab ID Matrix Date
EB04-20161117 280-91192-1 Water 11/17/16 280-91192-3 Water OUA1-MW51-20161117 11/17/16 OUA1-MW50-20161117 280-91192-4 Water 11/17/16 3 OUA1-MW49-20161117** 280-91192-5** Water 11/17/16 5 OUA1-MW49-20161117MS 280-91192-5MS Water 11/17/16 280-91192-5MSD Water 11/17/16 6 OUA1-MW49-20161117MSD 8 9 Notes: #### **VALIDATION FINDINGS CHECKLIST** Page: //of → Reviewer: 100 2nd Reviewer: 100 Method: Semivolatiles (EPA SW 846 Method 8270C) | Validation Area | Yes | No | NA | Findings/Comments | |---|--------|-----|--------|--| | I. Technical holding times | fla de | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met?. | | | | | | II. GC/MS Instrument performance check | | | | | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%/15% and relative response factors (RRF) ≥ 0.05? | | | | | | IIIb Initial Calibration Verification | | ı | 15 II | The state of s | | Was an initial calibration verification standard analyzed after each ICAL for each instrument? | | | | | | Were all percent difference (%D) ≤20% or percent recoveries (%R) 80-120%? | | | 24,015 | | | IV. Continuing calibration | 1 | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | | | 12 | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | - 1 | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | | | Were all surrogate %R within QC limits? | | | | | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | | | | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | # VALIDATION FINDINGS CHECKLIST Page: Of A Reviewer: Of A 2nd Reviewer: D | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|-----|-------------------| | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | / | | | | IX: Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | · | | X. Field duplicates | | | 100 | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | | | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | - | | | XII. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | (| | | | | . Were chromatogram peaks verified and accounted for? | | | | | | XIV System performance | | | | | | System performance was found to be acceptable. | 1 | / | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | # VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u> | Page:_ | of | |---------------|------------| | Reviewer: | <u>a</u> . | | 2nd Reviewer: | JR | All circled dates have exceeded the technical holding times. Y N N/A Were all cooler temperatures within validation criteria? | METHOD : GC/M | IS BNA (EPA SV | N 846 Method | 8270C) | | | | | |---------------|----------------|--------------|---------------|-----------------|---------------|--------------------|-----------| | Sample ID | Matrix | Preserved | Sampling Date | Extraction date | Analysis date | Total #
of Days | Qualifier | | A11 (ND) | W | | 11-17-16 | 11-28-16 | | 11 | JUST | | , | | | | | | | / / / | #### **TECHNICAL HOLDING TIME CRITERIA** Water: Extracted within 7 days, analyzed within 40 days. Soil: Extracted within 14 days, analyzed within 40 days. # VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates | Page:_ | of | |---------------|----| | Reviewer: | 9 | | 2nd Reviewer: | Nb | METHOD: GC/MS BNA (EPA SW 846 Method 8270D) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. <u>√N N/A</u> Was a MS/MSD analyzed every 20 samples of each matrix? N N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | H | | Were the MS/MSD per | | MS
%R (Limits) | | | | | |---|------|---------------------|----------|-------------------|--------------------|--------------|--------------------|----------------| | # | Date | MS/MSD ID | Compound | | MSD
%R (Limits) | RPD (Limits) | Associated Samples | Qualifications | | | | 5/6 1.1 | Dioxane | 35 (38-120) | 36 (38-120) | () | 4 (NO) | 1/W/A | | | | / | | () | () | () | / | / / | | | | - | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | • | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | _ | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | |
 | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | ()_ | () | | | LDC #: 37797D2b # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | | |---------------|-----| | Reviewer:_ | ` Q | | 2nd Reviewer: | NZ | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ A_x = Area of compound, A_{is} = Area of associated internal standard average RRF = sum of the RRFs/number of standards C_x = Concentration of compound, C_i = Concentration of internal standard interna %RSD = 100 * (S/X) | | | Calibration | | Reported RRF | Recalculated
RRF | Reported Average RRF | Recalculated Average RRF | Reported
%RSD | Recalculated %RSD | |----------|-------------|-------------|--|--------------|---------------------|----------------------|--------------------------|------------------|-------------------| | # | Standard ID | Date | Compound (Reference Internal Standard) | (5000 std) | (5000 std) | (initial) | (initial) | ,,,,,, | | | 1 | ICAL | 10/14/16 | 1,4-Dioxane (1st internal standard) | 0.5594 | 0.5594 | 0.5511 | 0.5511 | 3.6 | 3.6 | | | (SMS_G4) | | 1,2,4-Trichlorobenzene (2nd internal standard) | | | | | | | | | | | 2,6-Dinitrotoluene (3rd internal standard) | <u>.</u> | | | | | | | | | | Hexachlorobenzene (4th internal standard) | · | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | <u> </u> | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | <u> </u> | | | <u> </u> | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | <u> </u> | | | Phenanthrene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | Comments: | Refer to Initial C | <u>alibration findin</u> | <u>gs worksheet fo</u> | <u>r list of qualifica</u> | <u>itions and associ</u> | <u>ated samples whe</u> | <u>en reported result</u> | <u>s do not agree within</u> | 10.0% of the recalculated | |-----------|--------------------|--------------------------|------------------------|----------------------------|--------------------------|-------------------------|---------------------------|------------------------------|---------------------------| | results. | , | | | LDC #: 37797D2b # VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page: | 10f_ | |---------------|------| | Reviewer: | E T | | 2nd Reviewer: | 5/6 | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|--------------------------|-------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal
Standard) | Average RRF
(initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | G4_3718 | 12/5/16 | 1,4-Dioxane (1st internal standard) | 0.5511 | 0.5128 | 0.5128 | 6.9 | 6.9 | | | | | Naphthalene (2nd internal standard) | | | | | · | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 2 | G4_3766 | 12/6/16 | 1,4-Dioxane (1st internal standard) | 0.5511 | 0.4945 | 0.4945 | 10.3 | 10.3 | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | Comments: _ | Refer to | Continuing | Calibration | <u>findings w</u> | <u>orksheet for</u> | list of q | ualifications | and asso | <u>ociated sa</u> | <u>amples wh</u> | <u>nen reporte</u> | <u>d results d</u> | <u>o not agree</u> | within | <u>10.0% of the</u> | |--------------|----------|------------|-------------|-------------------|---------------------|-----------|---------------|----------|-------------------|------------------|--------------------|--------------------|--------------------|--------|---------------------| | recalculated | results. | | | | | | | | - | # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of | |---------------|----| | Reviewer: | 9 | | 2nd reviewer: | NG | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) | The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calcu | |--| |--| % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID:__ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | 2500.U | 23(5.3 | 93 | 93 | 7 | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyi-d14 | | | · | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | LUU #211411/11/11 # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | _ _ _of | |---------------|----------------| | Reviewer:_ | a_ | | 2nd Reviewer: | 4v | METHOD: GC/MS PAH (EPA SW 846 Method 8270C) | The percent recoveries (| %R) and Relative Percent Difference | (RPD) of the matrix spike and | matrix spike duplicate were | recalculated for the compounds | identified below | |----------------------------|-------------------------------------|-------------------------------|-----------------------------|--------------------------------|------------------| | using the following calcul | ation: | | | · | | % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentation RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD samples: | | | oike | Sample | | Sample | Matrix | Spike | Matrix Spike | e Duplicate | MS/M | SD | |----------------------------|------|-------|-----------------|------|------------|-----------|----------|--------------|-------------|--|--------------| | Compound | (Ad | ded (| Concentration (| II . | ntration (| Percent I | Recovery | Percent F | Recovery | RPD | | | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc |
Reported | Recalculated | | Phenol | | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | ************************************** | | | Acenaphthene | | | | | ļ | | | | | | | | Pentachlorophenol | | | | | | | | | | | | | Pyrene | | | | | | | | | | | | | 14-Diexare | 9.65 | 9.8 | ND | 3.40 | 3.55 | 35 | 35 | 36 | 36 | 4 | 4 | Comments: Refe | er to Matrix Spike/Matrix | Spike Duplicates findings w | orksheet for list of qualific | ations and associated sa | imples when reported resul | <u>ts do not agree within 10.0</u> | <u>)%</u> | |--------------------|---------------------------|-----------------------------|-------------------------------|--------------------------|----------------------------|------------------------------------|-----------| | of the recalculate | ed results. | | | | | | | | | | | | | | | | LDU#319107 # **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page:_ | (of / | |---------------|-------| | Reviewer:_ | 9 | | 2nd Reviewer: | M | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA) Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS/LCSD samples: 282-253290 | | | oike | | ike | | :s | L C: | SD | LCS | LCSD | |----------------------------|-----------|-------------|--------------|----------|-----------|----------|------------------|--------|----------|--------------| | Compound | Ad
() | deal
PC) | Conce
(/ | ntration | Percent I | Recovery | Percent Recovery | | R | PD | | | LCS | LCSD | LCS | LCSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | 4-Chioro-3-methylphenol | | | | | | | | | | | | Acenaphthene | | | | / | | | | | | | | Pentachlorophenol | | | | | | | | | | | | Pyrene | | | | | | | | | | | | 1.4. Diexand | 10.0 | NA | 7.26 | NA | 73 | 73 | | | | | | | | | | , | 11 | | |--|--| | results do not agree within 10.0% of the recalculated results. | | | | | # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: | of | |---------------|----| | Reviewer:_ | 9 | | 2nd reviewer: | NU | METHOD: GC/MS SVOA (EPA SW 846 Method 8270C) | Y | Ŋ | N/A | |---|----------|-----| | Y | <u>N</u> | N/A | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Conce | entratio | on = $(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)$
$(A_{\bullet})(RRF)(V_{\circ})(V_{\bullet})(\%S)$ | Example: | · | .14 | | | | | |-----------------|----------|--|-------------|----|-----|----|------|------|--------------| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D. | | NO | _: | | | | | A _{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | | | | | | | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = ((|)(|)(|)(|)()(| _)(_ |) | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | | | | | | | | | V _I | = | Volume of extract injected in microliters (ul) | = | | | | | | | | V _t | = | Volume of the concentrated extract in microliters (ul) | [| | | | | | | | Df | = | Dilution Factor. | | | | | | | | | %S | = | Percent solids, applicable to soil and solid matrices only. | | | | | | | | | 2.0 | = Factor of 2 to accou | int for GPC cleanup | , | 1 | | |----------------|---------------------------------------|---------------------|----------------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration
() | Calculated
Concentration
() | Qualification | | - | | | | | | | | | | | | | <u> </u> | | · | - | | | | | | | | | | | | | | | | | | | $\neg +$ | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Wet Chemistry Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91192-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW51-20161117 | 280-91192-3 | Water | 11/17/16 | | OUA1-MW50-20161117 | 280-91192-4 | Water | 11/17/16 | | OUA1-MW49-20161117** | 280-91192-5** | Water | 11/17/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056 Ferrous Iron by Standard Method 3500 FE D pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |--------------------------------|--------------|--|---|---|--------| | All samples in SDG 280-91192-1 | рН | 4 days | 48 hours | J (all detects) | Р | | All samples in SDG 280-91192-1 | Ferrous iron | 8 days | 48 hours | J (all detects)
UJ (all non-detects) | Р | #### II. Initial Calibration All criteria for the initial
calibration of each method were met. #### **III. Continuing Calibration** Continuing calibration frequency and analysis criteria were met for each method when applicable. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample EB04-20161117 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. #### VI. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### VII. Duplicates The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG. #### **VIII. Laboratory Control Samples** Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Sample Result Verification All sample result verifications were acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. No results were rejected in this SDG. Due to technical holding time, data were qualified as estimated in three samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ### MCAS Yuma Wet Chemistry - Data Qualification Summary - SDG 280-91192-1 | Sample | Analyte | Flag | A or P | Reason | |--|--------------|---|--------|-------------------------| | OUA1-MW51-20161117
OUA1-MW50-20161117
OUA1-MW49-20161117** | pH | J (all detects) | Р | Technical holding times | | OUA1-MW51-20161117
OUA1-MW50-20161117
OUA1-MW49-20161117** | Ferrous iron | J (all detects)
UJ (all non-detects) | Р | Technical holding times | ### **MCAS Yuma** Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG ### **MCAS Yuma** Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797D6 SDG #: 280-91192-1 Stage 2B/4 | Date: 1/3/17 | |-----------------------------------| | Page: <u> \ </u> of <u> \ </u> | | Reviewer: | | 2nd Reviewer: | SM Laboratory: Test America, Inc. METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Ferrous Iron (3500-FE D) pH, (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|---------------------------------------| | l | Sample receipt/Technical holding times | A.Sw | | | 11 | Initial calibration | A | | | 111. | Calibration verification | A _ | | | IV | Laboratory Blanks | A | | | V | Field blanks | NO | EB=1 SB=SBO1-Za61114/506-90987-1) | | VI. | Matrix Spike/Matrix Spike Duplicates | N | CS | | VII. | Duplicate sample analysis | \mathcal{N} | | | VIII. | Laboratory control samples | A | LES/D | | IX. | Field duplicates | \mathcal{N} | | | X. | Sample result verification | A | Not reviewed for Stage 2B validation. | | ΧI | Overall assessment of data | X | | Note: A = Acceptable SW = See worksheet N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ** Indicates sample underwent Stage 4 validation Client ID Lab ID Matrix Date EB04-20161117 280-91192-1 Water 11/17/16 280-91192-3 2 OUA1-MW51-20161117 Water 11/17/16 3 OUA1-MW50-20161117 280-91192-4 Water 11/17/16 280-91192-5** OUA1-MW49-20161117** Water 11/17/16 5 6 8 9 10 11 12 | 13 |
 |
 | | |--------|------|------|------| | 14 | | | | | 15 |
 | | | | |
 |
 |
 | | Notes: | |
 | | | Notes: |
 | | | | Notes: |
 | | | ### **VALIDATION FINDINGS CHECKLIST** Page: 1 of 2 Reviewer: 2 Method: Inorganics (EPA Method See over) | motification (2.77 motification 5-2-3) | T | | | T T T T T T T T T T T T T T T T T T T | |--|-----|---------|-------------|---------------------------------------| | Validation Area | Yes | No | NA | Findings/Comments | | I. Technical holding times | | | | | | All technical holding times were met. | | | | | | II. Calibration | | | | | | Were all instruments calibrated daily, each set-up time? | | | | | | Were the proper number of standards used? | | | | | | Were all initial calibration correlation coefficients ≥ 0.995? | | <u></u> | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | | | | | | Were titrant checks performed as required? (Level IV only) | | | _ | | | Were balance checks performed as required? (Level IV only) | | | | | | III. Blanks | | | | | | Was a method blank associated with every sample in this SDG? | | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | | | - | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | | | | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | | | | | | V. Laboratory control samples | | | | | | Was an LCS anaylzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | Were performance evaluation (PE) samples performed? | | | | | | Were the performance evaluation (PE) samples within the acceptance limits? | | | | | LDC #: 3779706 ### **VALIDATION FINDINGS CHECKLIST** | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | VII. Sample Result Verification | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | Were detection limits < RL? | / | | | | | VIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | | IX. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | N | | | | | Target analytes were detected in the field duplicates. | | | | | | X. Field blanks | | | | | | Field blanks were identified in this SDG. | | | | | | Target analytes were detected in the field blanks. | | | | | LDC #: 3779706 # VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: ___of __ Reviewer: ____ 2nd reviewer: ____ All circled methods are applicable to each sample. | Sample ID | Matrix | Parameter | |-----------|--------|---| | 2-4 | | (pA) TDS(CI) F (NO3) NO2(SO) PO4 ALK CN- NH3 TKN TOC CR6+ CIO(TCTT+) | | , | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | · | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN
TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CLF NO, NO, SO, PO, ALK CN NH, TKN TOC CR6+ CIO, | | Comments | : |
 |
 |
 | | |----------|---|------|------|------|--| | | |
 |
 |
 | | ### **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page: of | | |-------------------------|---| | <u> </u> | _ | | Reviewer: 2nd reviewer: | | | | | All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method? N N/A Were all cooler temperatures within validation criteria? | Method: | | 9040 | validation criteria | | SM3500FE-D
FELLOUS IGM
48 hrs | | | |---------------------------------------|------------------|------------------|---------------------|-----------|-------------------------------------|---------------|-----------| | Parameters | | pH | | | FellosIon | | | | Technical h | olding time: | 48h | 5 | T | L | 18 hs | | | Sample ID | Sampling
date | Analysis
date | Total
Time | Qualifier | Analysis
date | Total
Time | Qualifier | | All | 11/17/16 | 11/21/16 | Ydays | JUJK(Od) | 11 25 6 | 8 days | JUP | | | | | 0 | | | <u> </u> | (Der MO) | · · · · · · · · · · · · · · · · · · · | | | | |] | LDC #: 379106 ### Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification | • | | I | |---------|----------------|---------| | Page:_ | of | <u></u> | | Reviewe | r:_ <i>O</i> \ | / | | nd Revi | ewer: C | | | Method : Inorganics, Method _ | See Cover | | |---|---------------------|--| | The correlation coefficient (r) for the | e calibration of | was recalculated.Calibration date: 1017/16 | | An initial or continuing calibration v | erification percent | recovery (%R) was recalculated for each type of analysis using the following formula: | | %R = <u>Found X 100</u> | Where, | Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution | | True | | True = concentration of each analyte in the ICV or CCV source | | | | | | | Recalculated | Reported | Acceptable | |--------------------------|---------|------------|--------------|---------------|---------------------|--------------------|-----------------------------| | Type of analysis | Analyte | Standard | Conc. (mg/L) | Area | r or r ² | r orr ² | (Y/N) | | Initial calibration | | s 1 | 1.0 | 18297919 | | | | | | | s2 | 2.5 | 44595772 | 1.000 | 1.000 | | | | | s3 | 5 | 89809352 | | | $\mathcal{C}_{\mathcal{I}}$ | | | | s4 | 60 | 1129842185 | | | | | | | s5 | 120 | 2243362063 | | | | | | | s6 | 200 | 3718642140 | | | | | Calibration verification | SOn | CCU | 100 | Fand
101.4 | 101 | 101 | | | Calibration verification | FeII+ | L | 1.00 | 1,02 | 102 | 107_ | 1 | | Calibration verification | | | | | | | | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within | |--| | 10.0% of the recalculated results | LDC#: 375706 # VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | Page:_ | of [| |---------------|------| | Reviewer: | CR | | 2nd Reviewer: | 4 | | METHOD: Inorganics, Method | Secaer | |----------------------------|--------| |----------------------------|--------| Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = \frac{Found}{True} \times 100$ Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = |S-D| \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration | Sample ID | Type of Analysis | Element | Found / S
(units) | True / D
(units) | Recalculated
%R / RPD | Reported
%R / RPD | Acceptable
(Y/N) | |-----------|---------------------------|--------------|----------------------|---------------------|--------------------------|----------------------|---------------------| | LES | Laboratory control sample | fellas
Fe | 190 | 2.00 | 95 | 95 | 7 | | \bigvee | Matrix spike sample | | (SSR-SR) | | | | | | N | Duplicate sample | | | | | | | | Comments: | | | |-----------|--|--| | | | | | | | | LDC#:3779706 ### **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification Page: 1 of 1 Reviewer: 2nd reviewer: | METH | HOD: Inorganics, Metho | od Secarel | | | | |-------------------------------------|---|---|----------------------------------|--------------------------|---------------------| | Y N
Y N
Y N
Comp
recalc | N/A Have results was Are all detection ound (analyte) results f | g the following equation: Recalculation: | repo | orted with a positi | ve detect were | | # | Sample ID | Analyte | Reported
Concentration
(W | Calculated Concentration | Acceptable
(Y/N) | | | И | off (SU) | 7.7 | 7.7 | Ÿ | | | ' | Č. | 910 | 910 | | | | | NOz-N | 3,4 | 3.4 | | | | | 504 | 1400 | 1400 | 7 | لـــــا | | | <u> </u> | | L | | Note:_ | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Perfluorinated Alkyl Acids Validation Level: Stage 2B & 4 Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1601451 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW13-20161114 | 1601451-03 | Water | 11/14/16 | | OUA1-MW37-20161114 | 1601451-04 | Water | 11/14/16 | | OUA1-MW37A-20161114 | 1601451-05 | Water | 11/14/16 | | OUA1-HS03-20161114 | 1601451-06 | Water | 11/14/16 | | OUA1-MW19-20161114 | 1601451-07 | Water | 11/14/16 | | OUA1-MW18-20161114** | 1601451-08** | Water | 11/14/16 | | OUA1-MW08-20161114 | 1601451-09 | Water | 11/14/16 | | OUA1-MW06-20161114 | 1601451-10 | Water | 11/14/16 | | OUA1-HS03-20161114MS | 1601451-06MS | Water | 11/14/16 | | OUA1-HS03-20161114MSD | 1601451-06MSD | Water | 11/14/16 | ^{**}Indicates sample underwent Stage 4 validation ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 3 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (February 2017), the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound
or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NJ (Presumptive and Estimated): The analysis indicates the presence of a compound or analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. ### II. LC/MS Instrument Performance Check Instrument performance was checked as applicable. All ion abundance requirements were met. ### III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. ### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. ### VI. Field Blanks Sample EB01-20161114 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 was identified as a source blank. No contaminants were found. ### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### VIII. Ongoing Precision Recovery Samples Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits. ### IX. Field Duplicates Samples OUA1-MW37-20161114 and OUA1-MW37A-20161114 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | ition (ng/L) | | | | | |----------|--------------------|---------------------|-----------------|-------------------------|----------|--------| | Compound | OUA1-MW37-20161114 | OUA1-MW37A-20161114 | RPD
(Limits) | Differences
(Limits) | Flag | A or P | | PFBS | 145 | 139 | 4 (≤20) | <u>-</u> | - | - | | PFOA | 26.2 | 28.9 | 10 (≤20) | - | <u>-</u> | - | | PFOS | 25.0 | 27.8 | 11 (≤20) | - | <u>-</u> | - | #### X. Internal Standards All internal standard areas and retention times were within QC limits. ### XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XIII. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. ### **MCAS Yuma** Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1601451 No Sample Data Qualified in this SDG ### **MCAS Yuma** Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1601451 No Sample Data Qualified in this SDG ### **MCAS Yuma** Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1601451 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797G96 SDG #: 1601451 Stage 2B/4 Laboratory: Vista Analytical Laboratory 2nd Reviewer METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-----------------|--|-------------|---------------------------------------| | I. | Sample receipt/Technical holding times | | | | II. | GC/MS Instrument performance check | N | >b >∂ | | 111. | Initial calibration/ICV | AA | PSD < 15/0. 8= 101 < 35/0 | | IV. | Continuing calibration | I"A" | AC limits <30% | | V. | Laboratory Blanks | À | | | VI. | Field blanks | NO | SB=1. 2B=2 | | VII. | Surrogate spikes | | | | VIII. | Matrix spike/Matrix spike duplicates | \triangle | | | IX. | Laboratory control samples | lack | OPP | | X. | Field duplicates | W | D=4+5 | | XI. | Internal standards | A | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | A | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | | | Note: A = Acceptable ND = No compounds detected R = Rinsate D = Duplicate TB = Trip blank SB=Source blank OTHER: N = Not provided/applicable SW = See worksheet FB = Field blank EB = Equipment blank ** Indicates sample was underwent Stage 4 review | _ | Totaled dample was underwork stage Treview | | | | |-----|--|---------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 4 | SB01-20161114 | 1601451-01 | Water | 11/14/16 | | 2 | EB01-20161114 | 1601451-02 | Water | 11/14/16 | | 3 | OUA1-MW13-20161114 | 1601451-03 | Water | 11/14/16 | | 4 , | OUA1-MW37-20161114 | 1601451-04 | Water | 11/14/16 | | 5 | OUA1-MW37A-20161114 | 1601451-05 | Water | 11/14/16 | | 6 | OUA1-HS03-20161114 | 1601451-06 | Water | 11/14/16 | | 7 | OUA1-MW19-20161114 | 1601451-07 | Water | 11/14/16 | | 8 | OUA1-MW18-201611114** | 1601451-08** | Water | 11/14/16 | | 9 | OUA1-MW08-20161114 | 1601451-09 | Water | 11/14/16 | | 10 | OUA1-MW06-20161114 | 1601451-10 | Water | 11/14/16 | | 11 | OUA1-HS03-20161114MS | 1601451-06MS | Water | 11/14/16 | | 12 | OUA1-HS03-20161114MSD | 1601451-06MSD | Water | 11/14/16 | | 13 | | | | | | 14 | | | | | ### **VALIDATION FINDINGS CHECKLIST** Method: LCMS (EPA Method 537) | Validation Area | Yes | No | NA | Findings/Comments | |--|----------|-----------------
--|---------------------------------------| | I. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. LC/MS Instrument performance check | 7.4 | 77.0 | 4425 | | | Were the instrument performance reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | and the same of th | | | IIIa. Initial calibration | | | T | 1 | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | <u></u> | | | Were all percent relative standard deviations (%RSD) ≤ 15%? | | | ļ | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of ≥ 0.990? | | | | | | IIIb. Initial Calibration Verification | | 15-41
H-15-1 | | THE TOTAL PROPERTY OF | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | | | | | Were all percent differences (%D) < 15%? | | | | | | IV. Continuing calibration | | | - 12 to 1 | | | Was a continuing calibration analyzed daily? | | <u> </u> | | | | Were all percent differences (%D) of the continuing calibration ≤ 15%? | | | | | | V, Laboratory Blanks | Taria. | | T | T T T T T T T T T T T T T T T T T T T | | Was a laboratory blank associated with every sample in this SDG? | 1 | | <u> </u> | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | 475 | | | | | VI. Field blanks | 1 | 1. | T | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | T | | T | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | ' | ļ! | | ### **VALIDATION FINDINGS CHECKLIST** | Validation Area | Yes | No | NA | Findings/Comments | |---|------|---|----|--| | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | - | | | | X. Field duplicates | | | | The second secon | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates?. | | | | | | XI, Internal standards | AV H | 3.5 | | | | Were internal standard area counts within ± 50% of the associated calibration standard? | | | | | | Were retention times within ± 30 seconds from the associated calibration standard? | | | | | | XII. Compound quantitation | | e green de la company
La companya de la | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | TAIN STANKING ON THE STANKING OF | | XIV. System performance | | e
Bag | | | | System performance was found to be acceptable. | | | | | | XIII. Overall assessment of data | | 100 | | | | Overall assessment of data was found to be acceptable. | | | | | # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | _of | |---------------|------| | Reviewer: | `Q | | 2nd Reviewer: | _ N? | METHOD: LCMS PFCs (EPA Method 537) | | Concentra | ation (ng/L) | (≤20) | | | | |----------|-----------|--------------|-------|-------------------|--|------| | Compound | 4 | 5 | RPD | Difference Limits | | Qual | | PFBS | 145 | 139 | 4 | | | | | PFOA | 26.2 | 28.9 | 10 | | | | | PFOS | 25.0 | 27.8 | 11 | | | | V:\FIELD DUPLICATES\37797G96.wpd LDC#:3797496 # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | Page: | of | | |-----------|------|----| | Reviewer: | 4 | | | 2nd Revie | wer: | NG | Method: LC/MS/MS PFCs | Calibration
Date | System | Compound | Standard | (Y)
Response | (X)
Concentration | |---------------------|--------|----------|----------|-----------------|----------------------| | 11/22/2016 | LCMS03 | PFOA | 0 | 0.5677075 | 0.50 | | | | | s1 | 0.9756087 | 1.00 | | | | | s2 | 1.8279562 | 2.00 | | | | | s3 | 4.0526312 | 5.00 | | | | | s4 | 9.8076912 | 10.00 | | | | | s5 | 23.514343 | 25.00 | | | | | s6 | 45.372340 | 50.00 | | | | | s7 | 68.277310 | 75.00 | | | | | s8 | 88.133640 | 100.00 | **Regression Output** | Reported | ı | |----------|---| |----------|---| | 1.09.000ioii Carpar_ | | . topo.tou | | | |------------------------------------|----------|------------|--|--| | Constant | 0.384668 | 0.091734 | | | | Std Err of Y Est | | | | | | R Squared | 0.999416 | 0.999048 | | | | Degrees of Freedom | | | | | | X Coefficient(s) | 0.890381 | 0.899906 | | | | Std Err of Coef. | | | | | | Correlation Coefficient | 0.999708 | | | | | Coefficient of Determination (r^2) | 0.999416 | 0.999048 | | | LDC #:317916 # VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification | Page:_ | of | |---------------|----| | Reviewer: | | | 2nd Reviewer: | NC | | METHOD: | GC | /_HPLC | /W/ | |---------|----|-------------|-----| | | | | | The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|----------|--------------------------------|-----------------|-----------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound | Average CF(Ical)/
CCV Conc. | CF/Conc.
CCV | CF/Conc.
CCV | %D | %D | | 1 | 1611742 | 11/5/16 | PFOA | <u>-5.º</u> | 26.5 | 26.5 | 5. | 5.8 | | | | | | | , | | | | | 2 | 161174127 | 157/6 | PFOA | 25.0 | 26.3 | 26.3 | 5./ | 5.0 | | | | /// | | | | | | | | 3 | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | 4 | | | : | | | | | | | | | | | | | : | | | | Comments: | Refer to Continuing | Calibration | findings wo | orksheet fo | r list of | f qualification | ns and | associated | <u>l samples v</u> | <u>vhen repo</u> | rted resu | <u>lts do not</u> | agree withir | 10.0% | of the | |--------------|---------------------|-------------|-------------|-------------|-----------|-----------------|--------|------------|--------------------|------------------|-----------|-------------------|--------------|-------|--------| | recalculated | results. | | | | | | • | - | ··· | | | | | | | LDC#3191496 # VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u> | Page:_ | | |------------|------------| | Reviewer:_ | <u>a</u> _ | | 2nd Rev | iewer: No | | METHOD: | GC | LHPLC NUS | |---------|----|-----------| | | | | The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC - SC)/SA Where SSC = Spiked sample concentration SC = Sample concentration RPD =(((SSCMS - SSCMSD) * 2) / (SSCMS + SSCMSD))*100 SA = Spike added MS = Matrix spike MSD = Matrix spike duplicate MS/MSD samples: 11/13 | | | Spi
Add | ike | Sample
Conc. | Spike S | Sample | Matrix | spike | Matrix Spike | e Duplicate | MS/N | ISD | |------------------|---------------|------------|--------|-----------------|-------------|---------------|-----------|----------|--------------|-------------|----------|---------| | Compo | ound | |)
) | () | Concen
(| itration
) | Percent I | Recovery | Percent R | lecovery | RP | D | | | | MS | MSD | *** | MS | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | · | | | | | | | | | | Diesel | (8015) | | | | | | | · | | | | | | Benzene | (8021B) | | | | | · | | | · | | | | | Methane | (RSK-175) | | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | | Anthracene | (8310) | | | · | ÷ | | | | | | | | | НМХ | (8330) | | | | | | · | | | | | | | 2,4,6-Trinitroto | oluene (8330) | | | | | | | | | | | | | PFOA | | 79.3 | 18.9 | 36.3 | 114 | 115 | 97.5 | 980 | 100 | 100 | 253 | 2,02 | | | | | | | | | | · | | · | | | | | | | | | : | 1 | | | | | | | | | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. ### **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification | | Page: | Lof_L | |-----|------------|-------| | | Reviewer:_ | 9 | | 2nd | Reviewer: | NB | | METHOD: | _GC _HPLC MS | |---------|--------------| The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD) LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS/LCSD samples: | | S | Spike Spike | | Spiked Sample | | s | LC | SD | LCS | LCSD | | |--|------------|---------------|------|-------------------|----------|------------------|----------|------------------|----------|---------|--| | Compound | (<i>V</i> | dded
(S/L) | (U | Concentration (U) | | Percent Recovery | | Percent Recovery | | RPD | | | and the state of t | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | | Gasoline (8015) | | | | | | | | | | | | | Diesel (8015) | | | | | | | | | | | | | Benzene (8021B) | | | | | | | | | | | | | Methane (RSK-175) | | | | | | | | | | | | | 2,4-D (8151) | | | | | | | | | | | | | Dinoseb (8151) | | | | | | | | | | | | | Naphthalene (8310) | | | | | | | | | | | | | Anthracene (8310) | | | | | | | | | | | | | HMX (8330) | | | | | | | | | | | | | 2,4,6-Trinitrotoluene (8330) | | | | | | | | | | | | | DECA | 70.0 | NA | 86.0 | NA | 10T | 10 T | | | | | | | | | | | () | | | | | | | | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#:3791496 ### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | | Page: _ | of/_ | |-----
-------------|------| | | Reviewer: _ | 9 | | 2nd | Reviewer: | No | METHOD: __GC_VHPLC_MS Y N N/A Y N N/A Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10% of the reported results? | Concentration= | (A)(Fv)(Df) | |----------------|-----------------------| | (F | RF)(Vs or Ws)(%S/100) | A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid Example: Sample ID. S Compound Name PFOA Concentration = $\frac{(7.24562 \times 12.5)}{(0.899906)(0.124)}$ = 2,585 N8/c | # | Sample ID | Compound | Reported
Concentrations | Recalculated Results Concentrations (| Qualifications | |---|-----------|----------|----------------------------|---------------------------------------|----------------| | | 8 | AFOA | 2.58 | omments: | | |----------|--| | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Perfluorinated Alkyl Acids Validation Level: Stage 2B & 4 Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1601461 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW14-20161115** | 1601461-02** | Water | 11/15/16 | | OUA1-MW15-20161115 | 1601461-03 | Water | 11/15/16 | | OUA1-MW07-20161115 | 1601461-04 | Water | 11/15/16 | | OUA1-MW23-20161115 | 1601461-05 | Water | 11/15/16 | | OUA1-MW55-20161115 | 1601461-06 | Water | 11/15/16 | | OUA1-MW55A-20161115 | 1601461-07 | Water | 11/15/16 | | OUA1-MW27-20161115 | 1601461-08 | Water | 11/15/16 | | OUA1-MW25-20161115 | 1601461-09 | Water | 11/15/16 | | OUA1-MW11-20161115 | 1601461-10 | Water | 11/15/16 | ^{**}Indicates sample underwent Stage 4 validation ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 3 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (February 2017), the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NJ (Presumptive and Estimated): The analysis indicates the presence of a compound or analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. ### II. LC/MS Instrument Performance Check Instrument performance was checked as applicable. All ion abundance requirements were met. ### III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. ### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. ### VI. Field Blanks Sample EB02-20161115 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 1601451) was identified as a source blank. No contaminants were found. ### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### VIII. Ongoing Precision Recovery Samples Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits. ### IX. Field Duplicates Samples OUA1-MW55-20161115 and OUA1-MW55A-20161115 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | tion (ng/L) | | | | | |----------|--------------------|---------------------|-----------------|-------------------------|------|--------| | Compound | OUA1-MW55-20161115 | OUA1-MW55A-20161115 | RPD
(Limits) | Differences
(Limits) | Flag | A or P | | PFOS | 5.39 | 5.33 | - | 0.06 (≤8.19) | - | - | #### X. Internal Standards All internal standard areas and retention times were within QC limits. ### XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XIII. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. ### **MCAS Yuma** Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1601461 No Sample Data Qualified in this SDG **MCAS Yuma** Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1601461 No Sample Data Qualified in this SDG **MCAS Yuma** Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1601461 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797H96 SDG #: 1601461 Laboratory: Vista Analytical Laboratory Stage 2B/4 2nd Reviewer METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation
findings worksheets. | | Validation Area | | Comments | |-------------------|--|---------------|---------------------------------------| | l | Sample receipt/Technical holding times | \triangle | | | II. | GC/MS Instrument performance check | N | 20 20 | | . 111. | Initial calibration/ICV | AA | RSO = 15/0. Y = 10/= 15/0 | | IV. | Continuing calibration | \Rightarrow | &climits < 30, | | V. | Laboratory Blanks | \triangle | | | VI. | Field blanks | NO | AB=1. SB01-20161114 (1601451) | | - ∀II. | Surrogate spikes | | | | VIII. | Matrix spike/Matrix spike duplicates | A | | | IX. | Laboratory control samples | A | OPR | | X. | Field duplicates | W | B=6+7 | | XI. | Internal standards | \triangle | , | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | \triangle | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | 1 | | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet FB = Field blank ** Indicates sample was underwent Stage 4 review | | Client ID | Lab ID | Matrix | Date | |----|----------------------|--------------|--------|----------| | 1- | EB02-20161115 | 1601461-01 | Water | 11/15/16 | | 2 | OUA1-MW14-20161115** | 1601461-02** | Water | 11/15/16 | | 3 | OUA1-MW15-20161115 | 1601461-03 | Water | 11/15/16 | | 4 | OUA1-MW07-20161115 | 1601461-04 | Water | 11/15/16 | | 5 | OUA1-MW23-20161115 | 1601461-05 | Water | 11/15/16 | | 6, | OUA1-MW55-20161115 | 1601461-06 | Water | 11/15/16 | | 7 | OUA1-MW55A-20161115 | 1601461-07 | Water | 11/15/16 | | 8 | OUA1-MW27-20161115 | 1601461-08 | Water | 11/15/16 | | 9 | OUA1-MW25-20161115 | 1601461-09 | Water | 11/15/16 | | 10 | OUA1-MW11-20161115 | 1601461-10 | Water | 11/15/16 | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | ## VALIDATION FINDINGS CHECKLIST Page: of Page: of Page: Method: LCMS (EPA Method 537) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|-------|------|-------------------| | i. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. LC/MS instrument performance check | | | | | | Were the instrument performance reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | Illa. Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | · | | Were all percent relative standard deviations (%RSD) ≤ 15%? | / | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990? | / | | | | | IIIb. Initial Calibration Verification | 14 | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 15%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) of the continuing calibration ≤15%? | | | | | | V. Laboratory Blanks | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | - | | | | Were target compounds detected in the field blanks? | | / | | | | VIII. Matrix spike/Matrix spike duplicates | | | 1.64 | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX: Laboratory control samples | | 30.70 | | | | Was an LCS analyzed for this SDG? | 1 | | | | | Was an LCS analyzed per extraction batch? | | | | | ### **VALIDATION FINDINGS CHECKLIST** Page: of 2 Reviewer: NZ | Validation Area | Yes | No | NA | Findings/Comments | |---|---------|-----|----|--| | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | 5.7 | | | Control of the Contro | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates?. | | | | | | XI. Internal standards | | 1 | | | | Were internal standard area counts within ± 50% of the associated calibration standard? | / | | | | | Were retention times within \pm 30 seconds from the associated calibration standard? | | , | | | | XII. Compound quantitation | ı | | | $\frac{d d}{d d} = \lim_{n \to \infty} \frac{d d}{d d} = 0$ | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | 730 | | e die gewenne der der der der der der der der der de | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | 1 | | | | System performance was found to be acceptable. | | | | | | XIII. Overall assessment of data | 11 V 32 | / | | The comment of the comment of | | Overall assessment of data was found to be acceptable. | | _ | | | ## LDC#3797496 # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page:_ <i>_</i> [| _of | |-------------------|----------| | Reviewer: | <u>a</u> | | 2nd Reviewer:_ | MO | METHOD: LCMS PFCs (EPA Method 537) | | Concentration (ng/L) | | (≤20) | Difference | 1 : 14- | Ovel | |----------|----------------------|------|-------|------------|---------|------| | Compound | 6 | 7 | RPD | Difference | Limits | Qual | | PFOS | 5.39 | 5.33 | | 0.06 | ≤8.19 | | V:\FIELD DUPLICATES\37797H96.wpd # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification Page:_____of__ Reviewer:______ 2nd Reviewer:______ Method: LC/MS/MS PFCs | Calibration
Date | System | Compound | Standard | (Y)
Response | (X)
Concentration | |---------------------|--------|----------|----------|-----------------|----------------------| | 11/22/2016 | LCMS03 | PFOA | 0 | 0.5677075 | 0.50 | | | | | s1 | 0.9756087 | 1.00 | | | | | s2 | 1.8279562 | 2.00 | | | | | s3 | 4.0526312 | 5.00 | | | | | s4 | 9.8076912 | 10.00 | | | | | s5 | 23.514343 | 25.00 | | | | | s6 | 45.372340 | 50.00 | | | | | s7 | 68.277310 | 75.00 | | | | · | s8 | 88.133640 | 100.00 | **Regression Output** | Re | no | rte | d | |-----|----|------|---| | 110 | μυ | ,,,, | u | | | | rtoportou | | | |------------------------------------|----------|-----------|--|--| | Constant | 0.384668 | 0.091734 | | | | Std Err of Y Est | | | | | | R Squared | 0.999416 | 0.999048 | | | | Degrees of Freedom | | | | | | X Coefficient(s) | 0.890381 | 0.899906 | | | | Std Err of Coef. | | | | | |
Correlation Coefficient | 0.999708 | | | | | Coefficient of Determination (r^2) | 0.999416 | 0.999048 | | | | LDC | # <u>3</u> T | 4 | $\Gamma_{\mathcal{H}}$ | 96 | |-----|--------------|---|------------------------|----| | 4 | | | | | ### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | <u></u> | |---------------|---------| | Reviewer: | 9 | | 2nd Reviewer: | NE | | | | | | ./ . | |---------|----|-------------|------|------| | METHOD: | GC | V | HPLC | MUS | | | | | | / | The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF - CF)/ave. CF ·CF = A/C Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|----------|--------------------------------|-----------------|-----------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound | Average CF(Ical)/
CCV Conc. | CF/Conc.
CCV | CF/Conc.
CCV | %D | %D | | 1 | 1612731-2 | 11/57/6 | PTOA | 25.0 | 26.5 | 26.5 | 5.9 | <u> 3</u> .8 | | | | , | | | | | | | | | ノルファイン | | | | | | 9.4 | 96 | | 2 | 161PH13 | 11/57/16 | PTOA | 25. | 27.4 | 27.4 | 7 -7 | 7.0 | | - | | , | | | | | | | | 3 | | | | | | · | | | | | | | | · | | | | | | | | | | | | | | | | 4 | | | · | : | | | | Comments: | Refer to Continuing | Calibration | findings worksheet for | list of qualifications | and associated | i samples when | reported results do not | <u>agree within 1</u> | <u>10.0% of the</u> | |--------------|---------------------|-------------|------------------------|------------------------|----------------|----------------|-------------------------|-----------------------|---------------------| | recalculated | results. | | | | · | #### **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification | | Page:_ | lof | |-----|-----------|-----| | | Reviewer: | 9_ | | 2nd | Reviewer: | NB | | METHOD: | GC | √ HPLC | NS | |---------|----|--------|----| The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD) LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS/LCSD samples: | | S | pike | Spiked | Sample | Lo | es | LC | SD | LCS/ | LCSD | |------------------------------|------|------|--------------|----------|-----------|----------|-----------|----------|----------|---------| | Compound | (1/2 | ided | Conce
(U: | ntration | Percent i | Recovery | Percent F | Recovery | R | PD | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline (8015) | | | | | | | | | | | | Diesel (8015) | | | | | | | | | | | | Benzene (8021B) | | | | | | | · | | | | | Methane (RSK-175) | | | | | | | | | | | | 2,4-D (8151) | | | | | | | | | | | | Dinoseb (8151) | | | | | | | | | | | | Naphthalene (8310) | | | | | • | | | | | | | Anthracene (8310) | | | | | | | | | | | | HMX (8330) | | | | | | | · | | | | | 2,4,6-Trinitrotoluene (8330) | | | | | | | | | | | | PTOA | 80. | WA | 86.0 | NA | 107 | 107 | | | | | | , , | | , | | ĺ | | ′ | | | | | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. #### **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification** | Page: _ | of | | |---------------|-----------|---| | Reviewer: | φ | | | 2nd Reviewer: | N | • | =40.41 ng | METHOD: | GC | $\sqrt{}$ | HPLC | W | 9 | |---------|----|-----------|------|---|---| |---------|----|-----------|------|---|---| | ĺ | Y | N | N/A | |------------------|----------------|---|-----| | $\left(\right)$ | \overline{Y} | N | N/A | %S= Percent Solid Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10% of the reported results? | Conce | ntration= (A)(Fv)(Df) | |---------|---| | | (RF)(Vs or Ws)(%S/100) | | Fv= Fi | ea or height of the compound to be measured
nal Volume of extract
lution Factor | | | erage response factor of the compound
the initial calibration | | | tial volume of the sample | | Ws= Ini | tial weight of the sample | Sample ID. PC Compound Name PFOA Concentration = $\frac{9.94 \pm 3 \times 12.5}{2617 \pm 4} - 0.0917344$ (0.899906)(0.128) Total = 46. 9 n8/2 | # | Sample ID | Compound | Reported
Concentrations
() | Recalculated Results Concentrations () | Qualifications | |---|-----------|----------|-----------------------------------|---|----------------| · | omments: | | | |----------|--|--| | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: Perfluorinated Alkyl Acids Validation Level: Stage 2B Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1601464 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW53-20161116 | 1601464-02 | Water | 11/16/16 | | OUA1-MW54-20161116 | 1601464-03 | Water | 11/16/16 | | OUA1-MW42-20161116 | 1601464-04 | Water | 11/16/16 | | OUA1-MW01-20161116 | 1601464-05 | Water | 11/16/16 | | OUA1-MW31-20161116 | 1601464-06 | Water | 11/16/16 | | OUA1-PZ19-20161116 | 1601464-07 | Water | 11/16/16 | | OUA1-MW52-20161116 | 1601464-08 | Water | 11/16/16 | | OUA1-MW04-20161116 | 1601464-09 | Water | 11/16/16 | | OUA1-MW04A-20161116 | 1601464-10 | Water | 11/16/16 | | OUA1-MW05-20161116 | 1601464-11 | Water | 11/16/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 3 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (February 2017), the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NJ (Presumptive and Estimated): The analysis indicates the presence of a compound or analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are
classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was not required by the method. #### III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Extraction
Date | Compound | Concentration | Associated
Samples | |--------------|--------------------|----------|---------------|----------------------------| | B6K0164-BLK1 | 11/28/16 | PFOA | 0.916 ng/L | All samples in SDG 1601464 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |--------------------|----------|---------------------------|---------------------------------| | OUA1-MW01-20161116 | PFOA | 1.40 ng/L | 1.95U ng/L | | OUA1-MW05-20161116 | PFOA | 0.859 ng/L | 1.94U ng/L | #### VI. Field Blanks Sample EB03-20161116 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound Concentration | | Associated
Samples | |---------------|--------------------|------------------------|------------|----------------------------| | EB03-20161116 | 11/16/16 | PFOA | 0.837 ng/L | All samples in SDG 1601464 | Sample SB01-20161114 (from SDG 1601451) was identified as a source blank. No contaminants were found. Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |--------------------|----------|---------------------------|---------------------------------| | OUA1-MW01-20161116 | PFOA | 1.40 ng/L | 1.95U ng/L | | OUA1-MW05-20161116 | PFOA | 0.859 ng/L | 1.94U ng/L | #### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VIII. Ongoing Precision Recovery Samples Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### IX. Field Duplicates Samples OUA1-MW04-20161116 and OUA1-MW04A-20161116 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentr | ation (ng/L) | | | | | |----------|--------------------|---------------------|-----------------|------------------------|------|--------| | Compound | OUA1-MW04-20161116 | OUA1-MW04A-20161116 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | PFBS | 157 | 162 | 3 (≤20) | - | - | - | | PFOA | 20.0 | 22.1 | 10 (≤20) | - | - | - | | PFOS | 2.50 | 2.83 | <u>-</u> | 0.33 (≤8.34) | - | - | #### X. Internal Standards All internal standard areas and retention times were within QC limits. #### **XI. Compound Quantitation** Raw data were not reviewed for Stage 2B validation. #### XII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIII. System Performance Raw data were not reviewed for Stage 2B validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to laboratory blank contamination, data were qualified as not detected in two samples. Due to equipment blank contamination, data were qualified as not detected in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes. #### **MCAS Yuma** #### Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1601464 #### No Sample Data Qualified in this SDG #### **MCAS Yuma** Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1601464 | Sample | Compound | Modified Final
Concentration | A or P | |--------------------|----------|---------------------------------|--------| | OUA1-MW01-20161116 | PFOA | 1.95U ng/L | Α | | OUA1-MW05-20161116 | PFOA | 1.94U ng/L | Α | #### **MCAS Yuma** Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1601464 | Sample | Compound | Modified Final
Concentration | A or P | |--------------------|----------|---------------------------------|--------| | OUA1-MW01-20161116 | PFOA | 1.95U ng/L | Α | | OUA1-MW05-20161116 | PFOA | 1.94U ng/L | Α | | LDC #: 37797196 | VALIDATION COMPLETENESS WORKSHEET | |-----------------|-----------------------------------| | SDG #· 1601464 | Stage 2B | Laboratory: Vista Analytical Laboratory 2nd Reviewer: METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------------------|--|-------------|------------------------------| | I. | Sample receipt/Technical holding times | A | | | 11. | GC/MS Instrument performance check | N | 2 2 | | III. | Initial calibration/ICV | AA | RSD < 1570. Y2 CV < 5570 | | IV. | Continuing calibration | A | QC LIMITS < 307. | | V. | Laboratory Blanks | W | / | | VI. | Field blanks | W | B=1. SB01-2016/114 (160/451) | | - VII. | Surrogate spikes | | | | VIII. | Matrix spike/Matrix spike duplicates | AN | | | IX. | Laboratory control samples | \triangle | OPP | | X. | Field duplicates | W | 3=9+10 | | XI. | Internal standards | 1 | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | 1 | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|---------------------|------------|--------|----------| | 1- | EB03-20161116 | 1601464-01 | Water | 11/16/16 | | 2 | OUA1-MW53-20161116 | 1601464-02 | Water | 11/16/16 | | 3 | OUA1-MW54-20161116 | 1601464-03 | Water | 11/16/16 | | 4 | OUA1-MW42-20161116 | 1601464-04 | Water | 11/16/16 | | 5 | OUA1-MW01-20161116 | 1601464-05 | Water | 11/16/16 | | 6 | OUA1-MW31-20161116 | 1601464-06 | Water | 11/16/16 | | 7 | OUA1-PZ19-20161116 | 1601464-07 | Water | 11/16/16 | | 8 | OUA1-MW52-20161116 | 1601464-08 | Water | 11/16/16 | | 9 | OUA1-MW04-20161116 | 1601464-09 | Water | 11/16/16 | | 10 | OUA1-MW04A-20161116 | 1601464-10 | Water | 11/16/16 | | 11 | OUA1-MW05-20161116 | 1601464-11 | Water | 11/16/16 | | 12 | | | | | | 13 | | | | | | 14 | | | | | LDC #3191 96 ## VALIDATION FINDINGS WORKSHEET Blanks | Page:_ | of | |--------------|----| | Reviewer: | | | nd Reviewer: | JR | | METHOD:V GG ∠C/ | W > | | | | | | | | | | |--|---------------------|---------------|-----------------------|--------------|----------------|-------------------|--------------|----------|----------|---| | Please see qualifications b | | | | | ns are identif | ied as "N/A". | | | | | | N N/A Were all s | amples associated | | | | | | | | | | | | thod blank perform | | | | ple extraction | n procedure w | as performed | l? | | | | MN N/A Was a me | thod blank perform | | | | | | | | | | | | contaminants foun | | | | see findings b | elow. | | | | | | Blank extraction date: 11 | <i>≶816</i> Blank a | nalysis date: | 11/29/10 | S | | 1 | | | | | | Conc. units: M5/L | | | Assoc | iated sample | es: <i>[</i> | <u>uj</u> | | | | | | Compound | Blank ID | | Sample Identification | | | | | | | | | | B640164-13 | \$/ 5X | 5 | 11 | | | | | | | | PFOA | 0.916 | 4.58 | 1.40/ | 0.859/ | | | | | | · | | | | | /1.95U | /1.94 V | | | | | | | | | | | | | <u> </u> | Blank extraction date:
Conc. units: | Blank anal | ysis date: | | Ass | sociated sam | nples: | | | | | | Compound | Blank ID | | | | San | nple Identificati | on |
 | | | | | | | | | | | | | | | | | | I | 1 | | | 1 | 1 | } | | ! | { | 1 | LDC#37797196 # VALIDATION FINDINGS WORKSHEET Field Blanks | Page:_ | / of_/ | |--------------|----------| | Reviewer: | a | | nd Reviewer: | NZ | | | ks were identifie
let compounds d
sociated samp | letected in the | e field blanks | | red Samples: | N | (| 2nd Rev | riewer:NZ- | |---|---|-----------------|----------------|-----------|--------------|------------------|-------|---------|-------------| | Compound | Blank ID | | | | | ample Identifica | ntion | | | | | 3 | 5X | 5 | 1/ | | | | | | | PFOX | 0.837 | 4.185 | | 0.859/ | | | | | | | | | | 1.95U | 1.944 | | Blank units: Asso
Sampling date:_
Field blank type: (circle one | _ | | | Associate | ed Samples: | | | | | | Compound | Blank ID | | | | s | ample Identifica | ation |
 | 1 | | 1 | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". ### LDC#:3(197)96 ### VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | (of / | |----------------|----------| | Reviewer: | <u> </u> | | 2nd Reviewer:_ | N | METHOD: LCMS PFCs (EPA Method 537) | | Concentra | ation (ng/L) | (≤20) | D.(f) | Limite | | |----------|-----------|--------------|-------|------------|--------|------| | Compound | 9 | · 10 | RPD | Difference | Limits | Qual | | PFBS | 157 | 162 | 3 | | | | | PFOA | 20.0 | 22.1 | 10 | | | | | PFOS | 2.50 | 2.83 | | 0.33 | ≤8.34 | | V:\FIELD DUPLICATES\37797I96.wpd # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma LDC Report Date: January 5, 2017 Parameters: Perfluorinated Alkyl Acids Validation Level: Stage 2B & 4 Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1601472 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | OUA1-MW51-20161117 | 1601472-02 | Water | 11/17/16 | | OUA1-MW50-20161117 | 1601472-03 | Water | 11/17/16 | | OUA1-MW49-20161117** | 1601472-04** | Water | 11/17/16 | | OUA1-MW49-20161117MS | 1601472-04MS | Water | 11/17/16 | | OUA1-MW49-20161117MSD | 1601472-04MSD | Water | 11/17/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 3 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (February 2017), the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NJ (Presumptive and Estimated): The analysis indicates the presence of a compound or analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was checked as applicable. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Extraction
Date | Compound | Concentration | Associated
Samples | |--------------|--------------------|----------|---------------|----------------------------| | BLK0164-BLK1 | 11/28/16 | PFOA | 0.916 ng/L | All samples in SDG 1601472 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |----------------------|----------|---------------------------|---------------------------------| | OUA1-MW49-20161117** | PFOA | 0.821 ng/L | 1.98U ng/L | #### VI. Field Blanks Sample EB04-20161117 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |---------------|--------------------|----------|---------------|----------------------------| | EB04-20161117 | 11/17/16 | PFOA | 0.741 ng/L | All samples in SDG 1601472 | Sample SB01-20161114 (from SDG 1601451) was identified as a source blank. No contaminants were found. Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |----------------------|----------|---------------------------|---------------------------------| | OUA1-MW49-20161117** | PFOA | 0.821 ng/L | 1.98U ng/L | #### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within
QC limits. Relative percent differences (RPD) were within QC limits. #### VIII. Ongoing Precision Recovery Samples Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Internal Standards All internal standard areas and retention times were within QC limits. #### XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to laboratory blank contamination, data were qualified as not detected in one sample. Due to equipment blank contamination, data were qualified as not detected in one sample. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes. #### **MCAS Yuma** #### Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1601472 #### No Sample Data Qualified in this SDG #### **MCAS Yuma** Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1601472 | Sample | Compound | Modified Final
Concentration | A or P | |----------------------|----------|---------------------------------|--------| | OUA1-MW49-20161117** | PFOA | 1.98U ng/L | Α | #### MCAS Yuma Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1601472 | Sample | Compound | Modified Final
Concentration | A or P | |----------------------|----------|---------------------------------|--------| | OUA1-MW49-20161117** | PFOA | 1.98U ng/L | Α | | SDG #
.abora | t: 1601472
atory: <u>Vista Analytical Laboratory</u> | St | age 2B/4 | S WORKSHEET | 2nd | Date: /-> Page: / of / Reviewer: | |-----------------|--|----------------------------------|---------------------|--|--|----------------------------------| | /IE I H | OD: LC/MS Perfluorinated Alkyl Acids (E | :PA Metho | d 537) | | | | | | amples listed below were reviewed for ea
ion findings worksheets. | ch of the fo | ollowing valida | ition areas. Validatio | on findings are | e noted in attached | | | Validation Area | | | Comm | ents | | | l. | Sample receipt/Technical holding times | A | | | | | | II. | GC/MS Instrument performance check | N | | 20 | | 20 | | 111. | Initial calibration/ICV | AA | RSOS | 1570.80 | 101= | ×570 | | IV. | Continuing calibration | A | AC bi | mi+= ≤ 3 | 0/0 | | | V. | Laboratory Blanks | W | | | t | | | VI. | Field blanks | W | ZB=1. | \$301-20 | 0161114 | (160 1451) | | VII. | Surrogate spikes | | | | | | | VIII. | Matrix spike/Matrix spike duplicates | A | | | the foreign specific and the second second | · | | IX. | Laboratory control samples | A | DPR | | | | | Χ. | Field duplicates | N | | | | | | XI. | Internal standards | A | | | | | | XII. | Compound quantitation RL/LOQ/LODs | Ă | Not reviewed for | Stage 2B validation. | | | | XIII. | Target compound identification | A | | Stage 2B validation. | | | | XIV. | System performance | Δ | | Stage 2B validation. | | | | | | A | THOU TO VIOLENCE TO | | · | | | XV. ote: | N = Not provided/applicable R = Rin | o compounds
sate
eld blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blank | OTHER | urce blank
t: | | | Client ID | | | Lab ID | Matrix | Date | | | B04-20161117 | | | 1601472-01 | Water | 11/17/16 | | | DUA1-MW51-20161117 | | | 1601472-02 | Water | 11/17/16 | | 3 (| DUA1-MW50-20161117 | | | 1601472-03 | Water | 11/17/16 | | | DUA1-MW49-20161117** | | | 1601472-04** | Water | 11/17/16 | | <u> </u> | DUA1-MW49-20161117MS | | | 1601472-04MS | Water | 11/17/16 | | | DUA1-MW49-20161117MSD | · <u>-</u> | | 1601472-04MSD | Water | 11/17/16 | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | <u>o</u> | | | - | | <u> </u> | | | otes: | | | | | | | #### **VALIDATION FINDINGS CHECKLIST** Method: LCMS (EPA Method 537) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|--------|--|-------------------| | I. Technical holding times | | 9 Juli | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | / | | | | | II. LC/MS Instrument performance check | | | | | | Were the instrument performance reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | Illa: Initial calibration | | 44.4 | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 15%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | , | | | | Were all percent differences (%D) < 15%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) of the continuing calibration ≤ 15%? | | | The state of s | | | V. Laboratory Blanks | · - | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | / | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | 1 | V 6 | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | / | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | / | | | | #### **VALIDATION FINDINGS CHECKLIST** | Page: | >_of >_ | |---------------|---------| | Reviewer: | 7 | | 2nd Reviewer: | No | | V-U-L-U-A | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | Firedians (Orange) | |---|---------------------------------------|-----|-----
--| | Validation Area | Yes | No | NA | Findings/Comments | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | Control Company and the Control Contro | | Were field duplicate pairs identified in this SDG? | 100 | | | | | Were target compounds detected in the field duplicates?. | | | / | | | XI. Internal standards | | | AC. | | | Were internal standard area counts within ± 58% of the associated calibration standard? | / | - | | | | Were retention times within ± 30 seconds from the associated calibration standard? | | | | | | XII. Compound quantitation | | mi. | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | • | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | LDC #31191196 # VALIDATION FINDINGS WORKSHEET Blanks | Page:_ | <u>l</u> of | |--------------|-------------| | Reviewer: | | | nd Reviewer: | Ne | | | 61 S | | | | | | | | 2nd Revie | wer: <u>_</u> <u>_</u> | |---|--|--|---|--|----------------------------------|-------------------|--------------|----|-----------|------------------------| | Y N N/A Was a me Y)N N/A Was a me | elow for all questic
amples associated
thod blank perform
thod blank perform
contaminants foun | l with a given me
ned for each ma
ned with each ex
id in the method | ethod blank
trix and who
xtraction ba
l blanks? If | ?
enever a sam
tch?
yes, please s | ple extraction
see findings b | n procedure w | as performed | i? | | | | Compound | Blank ID | | | | San | nple Identificati | on | | | | | B | 40164-BH | 4 | | | | | 22 | | | | | PFOA | | 0.82 | | | | | | | | | | | | 1.984 | | | | | | | | | | | | | | <u>.</u> . | Blank extraction date: | Blank anal | ysis date: | | Ass | sociated san | nples: | | | | | | Compound | Blank ID | <u> </u> | | | San | nple Identificati | on | | | | | | <u> </u> | i | 1 | | | 1 | 1 | i | I | I | | LDC#:3197196 #### VALIDATION FINDINGS WORKSHEET <u>Field Blanks</u> | Page:_ | <u>l_of</u> | |---------------|-------------| | Reviewer: | <u>a</u> | | 2nd Reviewer: | No | | METHOD: OF COM | 5 | | | | | | | | | |---|------------------|---------------------|-----------------|-----------|-------------|--|----------|------|--| | METHOD: OF COMP
YNN/A Field blanks | were identifie | ed in this SDG | i. | | | | | | | | Y/N N/A Were target | compounds of | detected in the | e field blanks? | ? | | | | | | | Blank units: 1/5/4 Asso
Sampling date: 1/17/14 | ciated samp | le units: <u>//</u> | 5/4 | | | | | | | | Sampling date: <u> /\f/ a</u> | | - | | | | A | 1 | | | | Field blank type: (circle one | e) Field Blank | / Rinsate / Ot | her: | Associat | ed Samples: | $\underline{\hspace{1cm}}$ \mathcal{U} | <u> </u> |
 | | | Compound | Blank ID | | | | S | ample Identifica | ition | | | | | | 48 | | | | | | | | | PROA | 0.741 | 0.821 | | | | | | | | | | | 1.984 | | | | | | | | | | | | | | | | |
 | ٠ | | | | | | | | | | | | | | | | | | · | | | | | | | | | Blank units: Associa | otod comple u | nito | | | | | | | | | Sampling date: | - | | | | | | | | | | Field blank type: (circle one) F | ield Blank / Rir | nsate / Other: | | Associate | ed Samples: | | | | | | Compound | Blank ID | | | | s | ample Identifica | ation | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". | LDC | # <u>3179719</u> E | |-----|--------------------| | | | #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | /of_/ | |---------------|--------------| | Reviewer: | \ | | 2nd Reviewer: | NE | | METHOD: | GC | / | HPLC | M- | ラ | |---------|----|---|------|----|---| | | | | - | | | The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF - CF)/ave. CF Where: ave. CF = initial calibration average CF CF = continuing calibration CF ·CF = A/C A = Area of compound C = Concentration of compound | # | Standard ID | Calibration
Date | Compound | Average CF(Ical)/
CCV Conc. | Reported CF/Conc, CCV | Recalculated CF/Conc. CCV | Reported
%D | Recalculated
%D | |---|-------------|---------------------|----------|---------------------------------------|------------------------|-----------------------------|----------------|--------------------| | 1 | 4511-951-34 | 11/59/6 | PF05 | Z5,0 | 25.0 | 25.05 | 0.1 | 0,2 | | 2 | | | | | | : | | | | 3 | 4 | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | | · | | Comments: | Refer to Continuing | Calibration f | <u>findings worksheet</u> | for list of | qualifications | and associated | d samples wher | reported re | <u>sults do not a</u> | agree within | <u>10.0% o</u> | <u>f the</u> | |--------------|---------------------|---------------|---------------------------|-------------|----------------|----------------|----------------|-------------|-----------------------|--------------|----------------|--------------| | recalculated | results. | | | • | | <u>.</u> | ## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification Page: _____of /___ Reviewer: ______ 2nd Reviewer: ______ Method: LC/MS/MS PFCs | Calibration | | | | (Y) | (X) | |-------------|--------|----------|----------|------------|---------------| | Date | System | Compound | Standard | Response | Concentration | | 11/18/2016 | LCMS03 | PFOS | 0 | 0.60049 | 0.50 | | | | | s1 | 1.1604475 | 1.00 | | | | | s2 | 2.2448212 | 2.00 | | | | | s3 | 5.0137362 | 5.00 | | | | | s4 | 12.566843 | 10.00 | | | | • | s5 | 34.250763 | 25.00 | | | | | s6 | 54.687500 | 50.00 | | | | | s7 | 86.829836 | 75.00 | | | | | s8 | 111.555230 | 100.00 | Regression Output | Reported | |----------| |----------| | Constant | 0.841659 | 0.021829 | |------------------------------------|----------|----------| | Std Err of Y Est | | | | R Squared | 0.996818 | 0.995038 | | Degrees of Freedom | | | | X Coefficient(s) | 1.122290 | 1.149810 | | Std Err of Coef. | | | |
Correlation Coefficient | 0.998408 | | | Coefficient of Determination (r^2) | 0.996818 | 0.995038 | | LDC # | 319 | N | 96 | |-------|-----|---|----| |-------|-----|---|----| # VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u> | Page:_ | | |------------|-----------| | Reviewer:_ | <u>`</u> | | 2nd Rev | iewer: No | | METHOD: | GC | \checkmark | HPLC | se | 5 | |---------|----|--------------|------|----|---| | | | | | | | The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: wsing the following calculation: %Recovery = 100 * (SSC - SC)/SA Where SSC = Spiked sample concentration SC = Sample concentration RPD =(((SSCMS - SSCMSD) * 2) / (SSCMS + SSCMSD))*100 SA = Spike added MS = Matrix spike MSD = Matrix spike duplicate MS/MSD samples: 5 | | | Spike | | Sample Spike Sample | Sample | Matrix spike | | Matrix Spike Duplicate | | MS/MSD | | | |-----------------|-----------|-------|--------------------------|---------------------|-----------------------|--------------|------------------|------------------------|------------------|---------|----------|---------| | Comp | ound | (N | Added Conc. (N5/4) (N5/4 | | Concentration
(ハラ) | | Percent Recovery | | Percent Recovery | | RPD | | | | | MS | MSD | | MS | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | | | | | | | | | · | | Diesel | (8015) | | | | | | | | | | | | | Benzene | (8021B) | | | | | · | | | · | | | | | Methane | (RSK-175) | | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | | Naphthalene | (8310) | | | | | - | | | | | · | | | Anthracene | (8310) | | | | · | | | | | | | | | НМХ | (8330) | | | | | | · | | | | | | | 2,4,6-Trinitrot | | | | | | 1 / | | | | | | | | +FRS | | 77.8 | 4. | ND | 8T.4 | T8.8 | 112 | 112 | 106 | 106 | 5.50 | 5.50 | | | | | | | | | | · | | | | | | | | | | | : | li . | | Į : | | | | | | | | | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. #### **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification | Page: | | |---------------|----| | Reviewer:_ | V | | 2nd Reviewer: | NZ | | METHOD: |
GC | | НР | LC | М | 9 | |---------|--------|---|----|----|--------------|---| | | | - | - | | <i>,</i> , , | | The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD) LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS/LCSD samples: | | s | pike | Spiked | Sample | LCS | | LCSD | | LCS/LCSD | | |------------------------------|------|---------------------------|----------------|----------|----------|----------|------------------|---------|----------|---------| | Compound | Ac | dded
(5/ 2) | Conce
(1/2 | ntration | Percent | Recovery | Percent Recovery | | RPD | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline (8015) | | | | | | | | | | | | Diesel (8015) | | | | | | | | | | | | Benzene (8021B) | | | | | | | | | · | | | Methane (RSK-175) | | | | | | | | | | | | 2,4-D (8151) | | | | | ı | | | | | | | Dinoseb (8151) | | | | · | | | | | | | | Naphthalene (8310) | | | | | • | | | | | | | Anthracene (8310) | | | | | | | | | | | | HMX (8330) | | | | | | | | | | | | 2,4,6-Trinitrotoluene (8330) | | | | | | | | | | | | JF09 | 80.0 | NÁ | 84.7 | NA | 106 | 106 | | | | | | | | | | , | | | | | | | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #:3119196 #### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | | Page: _ | 1 | _of_ | | |-----|-----------|---|------|----| | | Reviewer: | < | 7 | | | 2nd | Reviewer: | | | 12 | METHOD: __GC \(\sqrt{HPLC} \) \(\sqrt{HPLC} \) Y N N/A Y N N/A Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10% of the reported results? Concentration= (A)(Fv)(Df) (RF)(Vs or Ws)(%S/100) A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid Example: Sample ID. ____ Compound Name _____ Concentration = $\frac{-1.30489}{(1.30489)} - \left[4\times(-0.00316403)(-6.349e1\timesP.5 - 0.00818696)\right]$ $2\times(-0.00316403)(0.126)$ =0.823 NB/L | # | Sample ID | Compound | Reported Concentrations | Recalculated Results Concentrations () | Qualifications | |---|-----------|----------|-------------------------|---|----------------| | | 4 | PF0A | 0.821 | omments: | |
 | | | |----------|--|------|--|--| | | | | | | | | | | | | The zip file contains two files: | <u>File</u> | Format | Description | | | | |---|----------|---------------------------------------|---------------|--|--| | 1) Readme_Yuma_010617.docs | MS Word | A "Readme" file (th | is document). | | | | | MS Excel | A spreadsheet for the following SDGs: | | | | | 2) Validation Export_Nov2016_20161219.xlsx | | 280-90987-1 | 37797A | | | | | | 280-91067-1 | 37797B | | | | | | 280-91122-1 | 37797C | | | | | | 280-91192-1 | 37797D | | | | | | 1601451 | 37797G | | | | | | 1601461 | 37797H | | | | | | 1601464 | 37797I | | | | | | 1601472 | 37797J | | | | 3) ValExp Yuma VCT Nov2016 20161215.xlsx | | 280-91405-1 | 37797E | | | | 4) ValExp Yuma VCT Nov2016PFAS 20161219.xls | SX | 1601443 | 37797F | | | No discrepancies were observed between the hardcopy data packages and the electronic data deliverables during EDD population of validation qualifiers. A 100% verification of the EDD was not performed. Please contact Pei Geng at (760) 827-1100 if you have any questions regarding this electronic data submittal. LDC#: 37197 #### EDD POPULATION COMPLETENESS WORKSHEET Date: 1 0/17 Page: 1 of 1 2nd Reviewer: | | EDD Process | | Comments/Action | |-------|--|-----|-----------------| | I. | EDD Completeness | _ | | | Ia. | - All methods present? | 4 | | | Ib. | - All samples present/match report? | 4 | | | Ic. | - All reported analytes present? | Ч | | | Id. | (10%) or 100% verification of EDD? | 4 | | | | | | | | II. | EDD Preparation/Entry | - | | | IIa. | - Carryover U/J? | | | | IIb. | - Reason Codes used? If so, note which codes. | 4 | dient | | IIc. | - Additional Information (QC Level, Validator, Validated Y/N, etc.) | ч | | | | | | | | III. | Reasonableness Checks | - | | | IIIa. | - Do all qualified ND results have ND qualifier (e.g. UJ)? | Ч | | | IIIb. | - Do all qualified detect results have detect qualifier (e.g. J)? | ч | | | IIIc. | - If reason codes are used, do all qualified results have reason code field populated, and vice versa? | Ч | | | IIId. | -Does the detect flag require changing for blank qualifier? If so, are all U results marked ND? | 4/4 | | | IIIe. | - Do blank concentrations in report match EDD where data was qualified due to blank contamination? | Ч | | | IIIf. | - Were any results reported above calibration range? If so, were results qualified appropriately? | 4/9 | | | IIIg. | -ls the readme complete? If applicable, were edits or discrepancies listed in the readme? | 7 | | | Notes: | ee discrepancy sheet | | |--------|----------------------|---| | | | _ | The zip file contains two files: | File | Format | Description | 1 | | | |--|----------|-----------------------|---------------------------------------|--|--| | 1) Readme_Yuma_010617.docs | MS Word | A "Readme" file (thi | s document). | | | | | MS Excel | A spreadsheet for the | A spreadsheet for the following SDGs: | | | | 2) Validation Export_Nov2016_20161219.xlsx | | 280-90987-1 | 37797A | | | | | | 280-91067-1 | 37797B | | | | | | 280-91122-1 | 37797C | | | | | | 280-91192-1 | 37797D | | | | | | 1601451 | 37797G | | | | | | 1601461 | 37797H | | | | | | 1601464 | 37797I | | | | | | 1601472 | 37797J | | | | 3) ValExp Yuma VCT Nov2016 20161215.xlsx | | 280-91405-1 | 37797E | | | | 4) ValExp_Yuma_VCT_Nov2016PFAS_20161219.xlsx | | 1601443 | 37797F | | | No discrepancies were observed between the hardcopy data packages and the electronic data deliverables during EDD population of validation qualifiers. A 100% verification of the EDD was not performed. Please contact Pei Geng at (760) 827-1100 if you have any questions regarding this electronic data submittal. LDC#: 37197 #### EDD POPULATION COMPLETENESS WORKSHEET Date: 1 0/17 Page: 1 of 1 2nd Reviewer: The LDC job number listed above was entered by _______. | | | T | | |-------|--|-----|-----------------| | | EDD Process | | Comments/Action | | I. | EDD Completeness | - | | | Ia. | - All methods present? | 4 | | | Ib. | - All samples present/match
report? | Ч | | | Ic. | - All reported analytes present? | Ч | | | Id. | (10%) or 100% verification of EDD? | 4 | | | | | | | | II. | EDD Preparation/Entry | _ | | | IIa. | - Carryover U/J? | | | | IIb. | - Reason Codes used? If so, note which codes. | 4 | dient | | IIc. | - Additional Information (QC Level, Validator, Validated Y/N, etc.) | Ч | | | | | | | | III. | Reasonableness Checks | - | | | IIIa. | - Do all qualified ND results have ND qualifier (e.g. UJ)? | Ч | | | IIIb. | - Do all qualified detect results have detect qualifier (e.g. J)? | Ч | | | IIIc. | - If reason codes are used, do all qualified results have reason code field populated, and vice versa? | Ч | | | IIId. | -Does the detect flag require changing for blank qualifier? If so, are all U results marked ND? | 4/4 | | | IIIe. | - Do blank concentrations in report match EDD where data was qualified due to blank contamination? | Ч | | | IIIf. | - Were any results reported above calibration range? If so, were results qualified appropriately? | 4/9 | | | IIIg. | -Is the readme complete? If applicable, were edits or discrepancies listed in the readme? | 5 | | | Notes: | *see discrepancy sheet | |
 | |--------|------------------------|------|------| | | | | | | | |
 | | | INSTALLATION_ID | SDG | LOCATION-NAME | SITE_NAME | INSTALLATION_ID | LOCATION_TYPE | LOCATION_TYPE_DESC | COORD_X | COORD_Y | SAMPLE_NAME | SAMPLE_MATRIX | SAMPLE_MATRIC_DESC | COLLECT_DATE | CHEMICAL_NAME | |-----------------|---------|---------------|------------|-----------------|---------------|--------------------|-------------|-------------|---------------------|---------------|--------------------|--------------|-------------------------------------| | MCAS YUMA | 1601451 | A1-MW-37 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441675.7197 | 605691.9325 | OUA1-MW37-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601451 | A1-MW-37 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441675.7197 | 605691.9325 | OUA1-MW37-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601451 | A1-MW-37 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441675.7197 | 605691.9325 | OUA1-MW37-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601451 | A1-MW-37 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441675.7197 | 605691.9325 | OUA1-MW37A-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601451 | A1-MW-37 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441675.7197 | 605691.9325 | OUA1-MW37A-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601451 | A1-MW-37 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441675.7197 | 605691.9325 | OUA1-MW37A-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601451 | A1-MW-13 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441121.7924 | 605643.0455 | OUA1-MW13-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601451 | A1-MW-13 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441121.7924 | 605643.0455 | OUA1-MW13-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601451 | A1-MW-13 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441121.7924 | 605643.0455 | OUA1-MW13-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601451 | A1-MW-19 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442155.8248 | 605599.4029 | OUA1-MW19-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601451 | A1-MW-19 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442155.8248 | 605599.4029 | OUA1-MW19-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601451 | A1-MW-19 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442155.8248 | 605599.4029 | OUA1-MW19-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601451 | 16-HS-03 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441712.6895 | 605539.6474 | OUA1-HS03-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601451 | 16-HS-03 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441712.6895 | 605539.6474 | OUA1-HS03-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601451 | 16-HS-03 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 441712.6895 | 605539.6474 | OUA1-HS03-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601451 | A1-MW-18 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442390.7249 | 605493.1429 | OUA1-MW18-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601451 | A1-MW-18 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442390.7249 | 605493.1429 | OUA1-MW18-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601451 | A1-MW-18 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442390.7249 | 605493.1429 | OUA1-MW18-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601451 | 16-MW-08 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442128.793 | 605331.0117 | OUA1-MW08-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601451 | 16-MW-08 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442128.793 | 605331.0117 | OUA1-MW08-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601451 | 16-MW-08 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442128.793 | 605331.0117 | OUA1-MW08-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601451 | 16-MW-06 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442562.7747 | 605123.5928 | OUA1-MW06-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601451 | 16-MW-06 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442562.7747 | 605123.5928 | OUA1-MW06-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601451 | 16-MW-06 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 442562.7747 | 605123.5928 | OUA1-MW06-20161114 | WG | GROUNDWATER | 14-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) |