Groundwater Sample Results, Level 2 Laboratory Report, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1601464 Marine Corps Air Station Yuma Yuma, Arizona November 2019 December 19, 2016 #### Vista Work Order No. 1601464 Mr. Curtis Moss AMEC Foster Wheeler 9210 Sky Park Court Suite 200 San Diego, CA 92123 Dear Mr. Moss, Enclosed are the amended results for the sample set received at Vista Analytical Laboratory on November 17, 2016. This sample set was analyzed on a rush turn-around time, under your Project Name 'MCAS Yuma, AZ TO 105'. Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team. Sincerely, Martha Maier Laboratory Director Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista. Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph; 916-673-1520 fx; 916-673-0106 www.vista-analytical.com Work Order 1601464 Revision Page 1 of 25 ### Vista Work Order No. 1601464 Case Narrative ### **Sample Condition on Receipt:** Eleven water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. This report was amended on December 19, 2016 to correct the sample IDs to "OUA1" to match the Chain of Custody. ### **Analytical Notes:** ### **Modified EPA Method 537** The aqueous samples were extracted and analyzed for PFOA, PFOS and PFBS using Modified EPA Method 537. ### **Holding Times** The samples were extracted and analyzed within the method hold times. ### **Quality Control** The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria. A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria The labeled standard recoveries for all QC and field samples were within the acceptance criteria. # Table of Contents | Case Narrative | 1 | |---------------------|----| | Table of Contents | 3 | | Sample Inventory | 4 | | Analytical Results. | 5 | | Qualifiers | 19 | | Certifications | 20 | | Sample Receipt | 23 | # **Sample Inventory Report** | Vista
Sample ID | Client
Sample ID | Sampled | Received | Components/Containers | |--------------------|---------------------|-----------------|-----------------|-----------------------| | 1601464-01 | EB03-20161116 | 16-Nov-16 14:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-02 | OUA1-MW53-20161116 | 16-Nov-16 08:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-03 | OUA1-MW54-20161116 | 16-Nov-16 09:00 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-04 | OUA1-MW42-20161116 | 16-Nov-16 09:55 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-05 | OUA1-MW01-20161116 | 16-Nov-16 10:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-06 | OUA1-MW31-20161116 | 16-Nov-16 11:15 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-07 | OUA1-PZ19-20161116 | 16-Nov-16 11:45 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-08 | OUA1-MW52-20161116 | 16-Nov-16 12:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-09 | OUA1-MW04-20161116 | 16-Nov-16 13:25 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-10 | OUA1-MW04A-20161116 | 16-Nov-16 13:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-11 | OUA1-MW05-20161116 | 16-Nov-16 14:15 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | Vista Project: 1601464 Client Project: MCAS Yuma, AZ TO 105 ## ANALYTICAL RESULTS Work Order 1601464 Revision Page 5 of 25 | Sample ID: | Metho | d Blank | | | | | | Modif | ied EPA M | ethod 537 | | |-------------------------|--------------------|--------------|-----------------------------|------------------------|------|----------------------------|----------|--------------------------|-----------|-----------|------------| | Matrix:
Sample Size: | Aqueous
0.125 L | | QC Batch:
Date Extracted | B6K0164
28-Nov-2010 | | Lab Sample:
Date Analyz | | LK1
22:02 Column: BEF | I C18 | | | | Analyte | | Conc. (ng/L) | DL | LOD | LOQ | Qualifiers | Labeled | Standard | %R | LCL-UCL | Qualifiers | | PFBS | | ND | 1.79 | 4.00 | 8.00 | | IS 13C3- | PFBS | 115 | 60 - 150 | | | PFOA | | 0.916 | 0.651 | 2.00 | 8.00 | J | IS 13C2- | PFOA | 89.7 | 60 - 150 | | | PFOS | | ND | 0.807 | 0.900 | 8.00 | | IS 13C8- | PFOS | 93.3 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 6 of 25 | Sample ID: OPR | | | | | | | Modified 1 | EPA Method 537 | |---|-----------------------------|--------------------------|--------|----------|-----------------------------|--|--------------|----------------| | Matrix: Aqueous
Sample Size: 0.125 L | QC Batch:
Date Extracted | B6K0164
d: 28-Nov-201 | 6 9:21 | | Lab Sample:
Date Analyze | B6K0164-BS1
d: 29-Nov-16 21:37 Colu | umn: BEH C18 | | | Analyte | Amt Found (ng/L) | Spike Amt | %R | Limits | | Labeled Standard | %R | LCL-UCL | | PFBS | 93.1 | 80.0 | 116 | 60 - 130 | IS | 13C3-PFBS | 123 | 60 - 150 | | PFOA | 89.3 | 80.0 | 112 | 70 - 130 | IS | 13C2-PFOA | 85.9 | 60 - 150 | | PFOS | 84.7 | 80.0 | 106 | 70 - 130 | IS | 13C8-PFOS | 94.2 | 60 - 150 | LCL-UCL - Lower control limit - upper control limit Work Order 1601464 Revision Page 7 of 25 | Sample ID: | EB03-20161116 | | | | | | | Modifie | ed EPA Me | ethod 537 | |------------------------------|----------------------|-------|--------------|---------|-----------|----------|----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | La | borator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | I | Lab Samı | ole: 1601464-01 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.128 L | | QC Batch | : B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected:
Location: | 16-Nov-2016 14:30 | | | | | Oate Ana | lyzed: 29-Nov-16 19:59 Col | umn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifier | ·s | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | ND | 1.75 | 3.91 | 7.84 | | IS | 13C3-PFBS | 119 | 60 - 150 | | | PFOA | 0.837 | 0.638 | 1.95 | 7.84 | J, B | IS | 13C2-PFOA | 89.7 | 60 - 150 | | | PFOS | ND | 0.790 | 0.879 | 7.84 | | IS | 13C8-PFOS | 92.5 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 8 of 25 | Sample ID: | OUA1-MW53-20161116 | | | | | | | Modifie | ed EPA Me | thod 537 | |------------------------------|----------------------|-------|--------------|---------|-----------|----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | La | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | 1 | Lab Sam | ole: 1601464-02 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.127 L | | QC Batch | n: B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected:
Location: | 16-Nov-2016 8:30 | | | |] | Date Ana | lyzed: 29-Nov-16 20:12 Colu | ımn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Oualifier | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 681 | 1.76 | 3.94 | 7.85 | Quanner | IS | 13C3-PFBS | 106 | 60 - 150 | Quantiers | | PFOA | 67.5 | 0.639 | 1.97 | 7.85 | В | IS | 13C2-PFOA | 87.1 | 60 - 150 | | | PFOS | 7.08 | 0.792 | 0.886 | 7.85 | J | IS | 13C8-PFOS | 96.4 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 9 of 25 | Sample ID: | OUA1-MW54-20161116 | | | | | | | Modifie | d EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|----------|----------|-----------------------------|-----------------|-------------|------------| | Client Data | | | Sample Data | | L | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601464-03 | Date Received: | 17-Nov-2010 | 5 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.124 L | | QC Batcl | n: B6K0164 | Date Extracted: | 28-Nov-2010 | 5 9:21 | | Date Collected: | 16-Nov-2016 9:00 | | | | | Date Ana | lyzed: 29-Nov-16 20:24 Col- | umn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 329 | 1.80 | 4.03 |
8.04 | | IS | 13C3-PFBS | 110 | 60 - 150 | | | PFOA | 35.3 | 0.654 | 2.02 | 8.04 | В | IS | 13C2-PFOA | 86.1 | 60 - 150 | | | PFOS | 7.09 | 0.811 | 0.907 | 8.04 | J | IS | 13C8-PFOS | 92.4 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 10 of 25 | Sample ID: | OUA1-MW42-20161116 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|----------|----------|------------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | L | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601464-04 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.129 L | | QC Batc | h: B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected: | 16-Nov-2016 9:55 | | | | | Date Ana | llyzed: 29-Nov-16 20:36 Colu | umn: BEH C18 | | | | Location: | | | | | | _ | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 332 | 1.73 | 3.88 | 7.74 | | IS | 13C3-PFBS | 104 | 60 - 150 | | | PFOA | 29.6 | 0.630 | 1.94 | 7.74 | В | IS | 13C2-PFOA | 86.3 | 60 - 150 | | | PFOS | 4.52 | 0.781 | 0.872 | 7.74 | J | IS | 13C8-PFOS | 84.8 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 11 of 25 | Sample ID: | OUA1-MW01-20161116 | | | | | | | Modifie | ed EPA Me | ethod 537 | |-----------------|----------------------|-------|--------------|---------|------------|---------|----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | Lal | borator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | L | ab Samp | ole: 1601464-05 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.128 L | Q | C Batch | : B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected: | 16-Nov-2016 10:30 | | | | D | ate Ana | lyzed: 29-Nov-16 20:48 Col | umn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifiers | s | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 45.6 | 1.74 | 3.91 | 7.79 | | IS | 13C3-PFBS | 110 | 60 - 150 | | | PFOA | 1.40 | 0.634 | 1.95 | 7.79 | J, B | IS | 13C2-PFOA | 89.0 | 60 - 150 | | | PFOS | ND | 0.786 | 0.879 | 7.79 | | IS | 13C8-PFOS | 87.4 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 12 of 25 | Sample ID: | OUA1-MW31-20161116 | | | | | | | Modifie | d EPA Me | ethod 537 | |-----------------|----------------------|-------|--------------|---------|-----------|----------|----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | La | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | 1 | Lab Sam | ole: 1601464-06 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.131 L | (| QC Batcl | n: B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected: | 16-Nov-2016 11:15 | | | | 1 | Date Ana | lyzed: 29-Nov-16 22:14 Col | umn: BEH C18 | | | | Location: | | | | | | _ | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifier | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 120 | 1.71 | 3.82 | 7.65 | | IS | 13C3-PFBS | 106 | 60 - 150 | | | PFOA | 9.01 | 0.623 | 1.91 | 7.65 | В | IS | 13C2-PFOA | 85.9 | 60 - 150 | | | PFOS | ND | 0.772 | 0.859 | 7.65 | | IS | 13C8-PFOS | 92.2 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 13 of 25 | Sample ID: | OUA1-PZ19-20161116 | | | | | | | Modifie | ed EPA Me | thod 537 | |------------------------------|----------------------|-------|--------------|---------|----------|-----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | I | Laborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Samp | ole: 1601464-07 | Date Received: | 17-Nov-201 | 5 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.125 L | | QC Batch | : B6K0164 | Date Extracted: | 28-Nov-201 | 5 9:21 | | Date Collected:
Location: | 16-Nov-2016 11:45 | | | | | Date Ana | lyzed: 29-Nov-16 22:26 Colu | umn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 57.8 | 1.80 | 4.00 | 8.03 | | IS | 13C3-PFBS | 106 | 60 - 150 | | | PFOA | 21.1 | 0.653 | 2.00 | 8.03 | В | IS | 13C2-PFOA | 87.5 | 60 - 150 | | | PFOS | 6.15 | 0.810 | 0.900 | 8.03 | J | IS | 13C8-PFOS | 101 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 14 of 25 | Sample ID: | OUA1-MW52-20161116 | | | | | | | Modifie | ed EPA Me | ethod 537 | |------------------------------|----------------------|-------|--------------|---------|----------|----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | L | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Samp | ole: 1601464-08 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.130 L | | QC Batch | : B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected:
Location: | 16-Nov-2016 12:30 | | | | | Date Ana | lyzed: 29-Nov-16 22:38 Colu | umn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 64.9 | 1.73 | 3.85 | 7.72 | | IS | 13C3-PFBS | 102 | 60 - 150 | | | PFOA | 5.38 | 0.628 | 1.92 | 7.72 | J, B | IS | 13C2-PFOA | 93.1 | 60 - 150 | | | PFOS | ND | 0.778 | 0.865 | 7.72 | | IS | 13C8-PFOS | 88.7 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 15 of 25 | Sample ID: | e ID: OUA1-MW04-20161116 | | | | | | | Modifie | Modified EPA Meth | | | | | | |-----------------|--------------------------|-------|--------------|---------|----------|-----------|------------------------------|-----------------|--------------------------|------------|--|--|--|--| | Client Data | | | Sample Data | | I | Laboratoi | y Data | | | | | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601464-09 | Date Received: | 17-Nov-2016 | 5 9:22 | | | | | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.131 L | | QC Batc | h: B6K0164 | Date Extracted: | 28-Nov-2016 | 5 9:21 | | | | | | Date Collected: | 16-Nov-2016 13:25 | | | | | Date Ana | alyzed: 29-Nov-16 22:51 Colu | ımn: BEH C18 | | | | | | | | Location: | | | | | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | | | | | PFBS | 157 | 1.71 | 3.82 | 7.66 | | IS | 13C3-PFBS | 105 | 60 - 150 | | | | | | | PFOA | 20.0 | 0.623 | 1.91 | 7.66 | В | IS | 13C2-PFOA | 91.0 | 60 - 150 | | | | | | | PFOS | 2.50 | 0.773 | 0.859 | 7.66 | J | IS | 13C8-PFOS | 93.0 | 60 - 150 | | | | | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 16 of 25 | Sample ID: | D: OUA1-MW04A-20161116 | | | | | | | | | thod 537 | |-----------------|------------------------|-------|--------------|--------------------------------------|----------|----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | L | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | latrix: Water Lab Sample: 1601464-10 | | | | | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.120 L | | QC Batcl | n: B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected: | 16-Nov-2016 13:30 | | | | | Date Ana | lyzed: 29-Nov-16 23:03 Colu | mn: BEH C18 | | | | Location: | | | | | | _ | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 162 | 1.87 | 4.17 | 8.34 | | IS | 13C3-PFBS | 109 | 60 - 150 | | | PFOA | 22.1 | 0.678 | 2.08 | 8.34 | В | IS | 13C2-PFOA | 82.5 | 60 - 150 | | | PFOS | 2.83 | 0.841 | 0.938 | 8.34 | J | IS | 13C8-PFOS | 85.8 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 17 of 25 | Sample ID: | D: OUA1-MW05-20161116 | | |
| | | | | Modified EPA Met | | | | | | |------------------------------|-----------------------|-------|--------------|---------|-----------|----------------------|-----------------------------|-----------------|------------------|------------|--|--|--|--| | Client Data | | | Sample Data | | La | aborator | y Data | | | | | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | 1 | Lab Sam _l | ole: 1601464-11 | Date Received: | 17-Nov-201 | 6 9:22 | | | | | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.129 L | | QC Batch | n: B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | | | | | Date Collected:
Location: | 16-Nov-2016 14:15 | | | |] | Date Ana | lyzed: 29-Nov-16 23:15 Colu | ımn: BEH C18 | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifier | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | | | | | PFBS | 30.5 | 1.74 | 3.88 | 7.78 | | IS | 13C3-PFBS | 111 | 60 - 150 | | | | | | | PFOA | 0.859 | 0.633 | 1.94 | 7.78 | J, B | IS | 13C2-PFOA | 82.6 | 60 - 150 | | | | | | | PFOS | 0.937 | 0.784 | 0.872 | 7.78 | J | IS | 13C8-PFOS | 83.4 | 60 - 150 | | | | | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision Page 18 of 25 ### **DATA QUALIFIERS & ABBREVIATIONS** B This compound was also detected in the method blank. D Dilution E The associated compound concentration exceeded the calibration range of the instrument. H Recovery and/or RPD was outside laboratory acceptance limits. I Chemical Interference J The amount detected is below the Reporting Limit/LOQ. M Estimated Maximum Possible Concentration. (CA Region 2 projects only) * See Cover Letter **Conc.** Concentration NA Not applicable ND Not Detected TEQ Toxic Equivalency Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight. Work Order 1601464 Revision # **CERTIFICATIONS** | Accrediting Authority | Certificate Number | |---|--------------------| | California Department of Health – ELAP | 2892 | | DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005 | 3091.01 | | Florida Department of Health | E87777 | | Hawaii Department of Health | N/A | | Louisiana Department of Environmental Quality | 01977 | | Maine Department of Health | 2014022 | | Nevada Division of Environmental Protection | CA004132015-1 | | New Jersey Department of Environmental Protection | CA003 | | New York Department of Health | 11411 | | Oregon Laboratory Accreditation Program | 4042-004 | | Pennsylvania Department of Environmental Protection | 012 | | South Carolina Department of Health | 87002001 | | Texas Commission on Environmental Quality | T104704189-15-6 | | Virginia Department of General Services | 7923 | | Washington Department of Ecology | C584 | | Wisconsin Department of Natural Resources | 998036160 | Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request Work Order 1601464 Revision Page 20 of 25 ## **NELAP Accredited Test Methods** | MATRIX: Air | | |--|--------| | Description of Test | Method | | Determination of Polychlorinated p-Dioxins & Polychlorinated | EPA 23 | | Dibenzofurans | | | MATRIX: Biological Tissue | | |--|-------------| | Description of Test | Method | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by | EPA 1699 | | HRGC/HRMS | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by | EPA 8280A/B | | GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | MATRIX: Drinking Water | | |--|----------| | Description of Test | Method | | 2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS | EPA 1613 | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | MATRIX: Non-Potable Water | | |---|-------------| | Description of Test | Method | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS | EPA 1699 | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Dioxin by GC/HRMS | EPA 613 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated | EPA 8280A/B | | Dibenzofurans by GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | MATRIX: Solids | | |---|-----------| | Description of Test | Method | | Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS | EPA 1613 | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | Work Order 1601464 Revision Page 21 of 25 | Dilution GC/HRMS | | |---|-------------| | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated | EPA 8280A/B | | Dibenzofurans by GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | Work Order 1601464 Revision Page 22 of 25 Vista Analytical 1104 Windfield Way El Dorado Hills, CA 95762 TEL: 916-673-1520 Vista PM: Karen Lopez Vista PROJECT NAME / NUMBER: CHAIN OF CUSTODY RECORD DATE: U/16 / 2016 - B OF 2 | LABORA | CLIENT PROJECT NAME / NUMBER: | | | | | | | | | P.0 | P.O. NO.: | | | | | | | | | | | | | | | |---|--|---------|------------------------|--------------------|----------|------------------------|--------------------------------|------------------|-------|--------|-----------|-----|---------------|--------|---|----------|---|------------------|---------|---------|--------------|---------|---------|--------|--| | ADDRES | Foster Wheeler E & I, Inc. | M | CAS Y | uma. | AZ | TO ' | 105 | | | | | | TO 105 | | | | | | | | | | | | | | | Sky Park Court | | JECT CON | | | | | | | | | | CONTRACT NO.: | | | | | | | | | | | | | | CITY: | | | | | | \neg | Medora Hackler/Marina Mitchell | | | | | | | | | | | N62473-12-D-2012 | | | | | | | | | San D | iego, CA 92123 | | | | | | SAMPLER(S): (SIGNATURE) | | | | | | | | | | | LAB USE ONLY | | | | | | | | | TEL:
503.63 | 89.3400 E-Mail medora.hackler@amecfw.c | om. | E-MAIL
marina.mitch | ell@am | ecfw.com | | My Rute | OUND TIME | | | | | | REQUESTED ANALYSIS | | | | | | | | | | | | | | | | | \neg | | | | AME DAY 🔲 24 HR 📗 48HR 🔲 72 HR | AYS | | REQUESTED ANALTSIS | SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) | | | | | | | | | | | T | | T | Т | | | | | | | | | | | | | RWQCB REPORTING ARCHIVE SAMPLES UNTIL/ | 1 1 | | | - 1 | | | SPECIA | INSTRUCTIONS | | | | | | | PFBS
1.) | and PF
Mod.) | ľ | | | ' | | | | i | | | | | | | | | | | os,
537 | - 1 | <u>=</u> | PF | | | | | | | | | | | | ' | | | | | | | LAB | | SAME | PLING | 4 | * | | Level | USE | SAMPLE ID | DATE | TIME | Mari | 4 | One | ၁ဗ | PFOA,
(U.S. E | EB03 - 2016 1116 | 8/16/16 | 14:30 | V | | 2 | | X | | \neg | 十 | | | \top | | П | | | | | | | \top | ٦ | | | | OUA1 - MW 53 -2016 1116 | 1 | 8:10 | | | 2 | | X | | | \top | | | | | | | | | | | | | \neg | | | | OUA1 - NW54-20161116 | | 9:00 | | | 2 | | X | OUA1 - MW 42-2016 416 | | 9:55 | | 7 | 2 | | × | OVAI - MY01 - 2016 1116 | | 10:30 | | 1 | _ | | + | OUA1 - MW31 - 2016 1116 | | 11:15 | | | 2 | | X | OUAI - PZ19 - 2016 11 16 | | 11.45 | | 1 | 2_ | | X | | | | | | | | | | | | | | \perp | \perp | | | | | OVA1 - MU52 - ZOIG116 | | 12:30 | | | 2 | | X | | | | | _ | _ | | | | | \perp | | | \perp | \bot | | | | | 0 UAI - MW04 - 20161116 | | 13:25 | | | 2 | | × | | | \perp | | | ╙ | | \sqcup | _ | | \perp | | \Box | \perp | \perp | | | | | 0 UAI - MWO4A - 2016 11 16 | ٧ | 13:30 | | | 2 | | × | | | | | | | | | | | | | | | | | | | 1111 12 112 | | | | | | | | Carrier Tr | 19 | 2 11 3 | 0.0 | 152 | 19 | 98 | | | | ate: | 116 | <u></u> | Time: (6: 30 | | | | | | Relinquished by: (Signature) Received by: (Signature) | | | | | | | ure) | In | ٠,١ | | | | | | | | | ate: | ı | \neg | Time: | Time: | | | | | Relinquished by: (Signature) | | | | | | | | World | MIN ? | 5 | | | | | | | | 11/19/16 | | |
Time: 0932 | | | | | | Relinquished by: (Signature) | | | | | | ceived by: (Signature) | | | | | | | | | D | Date: / | | | Time: | | | | | | | | | | | | | 0 | Vista Analytical 1104 Windfield Way El Dorado Hills, CA 95762 TEL: 916-673-1520 Vista PM: Karen Lopez CHAIN OF CUSTODY RECORD DATE: 11/16/2016 - B PAGE: | AMEC Foster Wheeler F & Linc | | | | | | | | | | CLIENT PROJECT NAME / NUMBER: | | | | | | | | | P.O. NO.: | | | | | | | | |------------------------------|--|-------------------------|-----------|---------------|--------------|-------|--------------------------------|-----------------------------------|----------|-------------------------------|----------|----------|--------|----------|-----------|----------|-------------------|---------------|------------------|----------|----------|---------|--------------|----------|----------|--| | ADDRESS: | | | | | | | | | | AZ | TO | 105 | | | | | | | TO 105 | | | | | | | | | 9210 S | ky Park Court | | | | | | PRO | JECT CON | TACT: | | | | - | 01100000 | | | | | CONTRACT NO.: | | | | | | | | | CITY: | | | | | | | Medora Hackler/Marina Mitchell | | | | | | | | | | | | N62473-12-D-2012 | | | | | | | | | San Di | ego, CA 92123 | | | | | | SAMPLER(S): (SIGNATURE) | | | | | | | | | | | LAB USE ONLY | | | | | | | | | | TEL: | | E-Mail | | E-MAIL | -11@ | | ull Ruch | 9.3400
DUND TIME | medora.hackler@amecfw.c | <u>om</u> | marina, mitcr | ell@amecfw.d | com | ☐ 48HR ☐ 72 HR | ∏5 D | AYS X | 10 DAYS | | REQUESTED ANALYSIS | SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) | | | | | | | | | T | T | T | T | T | T | | | | | T | | | T | | | | | □ R' | RWQCB REPORTING ARCHIVE SAMPLES UNTIL// | SPECIAL INSTRUCTIONS | - 1 | | | | | | | | | | | and PFBS
Mod.) | Mo | | | | | | | | | | | | | | | | | - 1 | | | | | | | | | | | 0S,
537 | | | | | | | | | | | | | | | | | - 1 | | | | | | | | | | 76 | PFO
A & | LAB | | | SAME | PLING | 1. | × | Level | A, PF(
EPA | | | | | | | | 1 1 | | | | | | | | | | | | USE
ONLY | SAMP | PLE ID | DATE | TIME | Matrix | *Cont | ac 1 | PFOA,
(U.S. E | | | - | | | ľ | | | | | | | | | | | | | | | OUAL- MUOS | 5-2016 (116 | 11/16/16 | 14:15 | W | 2 | | X | | | | 1 | \top | | | | | | | | | | \top | Ì | | | | | | | / - (| | | | | , | | \dashv | \top | \top | \top | \top | \dagger | П | | \neg | 寸 | \dashv | \neg | \top | \downarrow | 7 | _ | | | | | | | | | - | | | | \dashv | \dashv | + | + | + | +- | \vdash | | | \dashv | 1 | | - | + | \dashv | \dashv | | | | | | | | | | | | | - | - | + | + | + | + | \vdash | | \rightarrow | 4 | \dashv | + | + | + | \dashv | \dashv | | | | | | | | | | | | | | 8.4 | 11 | (16 | 110 | | + | 1 | - | M | | \rightarrow | | - | + | + | + | \vdash | | \dashv | \neg | _ | _ | + | + | \dashv | \neg | | | | | | | | | | | - v | | | | | | | | | | | | | \perp | \perp | \perp | _ | | | | | | | | _ | \neg | 寸 | | \top | | | П | | | | | | | | \neg | \neg | | | | | | | | | - | | | \dashv | \dashv | + | + | + | + | + | \vdash | | \dashv | + | \dashv | \dashv | + | + | \dashv | \dashv | | | | | | | | | - | | | - | \dashv | \dashv | \dashv | + | _ | + | \vdash | | _ | \dashv | \dashv | + | _ | + | \dashv | \dashv | | | 9 | Relinqui | Received by: (Signature) Received by: (Sig FedEx Received by: (Sig | | | | | | | nature) / Carrier Tracking Number | | | | | | | | | Date: Time: 16 30 | | | | | | | | | | | | | | | | | | ture) | | | | | | | | | | | Date: | - 1 | 1 | \neg | Time: | | | \dashv | | | | te. | d Ex | | | | | nature) Wygyks | | | | | | | | | 11/17/16 | | | | SR | 2 | | | | | | | Relinqui | linquished by: (Signature) Received by: | | | | | | | ignature) Date: Time: | U | | | | | | | | | | | | | | | | | | # SAMPLE LOG-IN CHECKLIST | 990 | | |-----|-----------------------| | 60 | Vista | | | Analytical Laboratory | | Vista Project #: | 1(| 0011 | 64 | | | 1 | AT_ | 5 | A | | | |----------------------|---|-----------------|----------------------------------|----------------|--------|--------------------------------|------|----------------|------|-----------|--| | Samples Arrival: | Date/Time 11/17/16 0922 | | | Initials: | | Shelf/Rack: WA | | | | | | | Logged In: | Date/Tim | e 11/17
— 12 | 116 | Initials: | | Location: WK.7 Shelf/Rack: F4 | | | | | | | Delivered By: | FedE | | UPS | On Trac | DHL | | | and
vered | Oth | ner | | | Preservation: | Ice | | ВІ | ue Ice | Dr | y Ice | | | None | | | | Temp °C: 0.2 | (uncorre | - | ime: ()
robe us | 3
ed: Yes□ | Nola | The | rmon | neter ID: IR-1 | | | | | | | | | | | | | YES | NO | NA | | | Adequate Sample \ | Volume Re | ceived? | | | | | | | | | | | Holding Time Acce | ptable? | | | , | | | | | | | | | Shipping Container | (s) Intact? | | | | | | | V | | | | | Shipping Custody S | Seals Intac | t? | | | | | | | | $\sqrt{}$ | | | Shipping Documen | tation Pres | ent? | | | | | | | | | | | Airbill | Trk # | 1018 | 1952 19 | 998 | | | | $\sqrt{}$ | | | | | Sample Container | ntact? | | | | | | | / | | | | | Sample Custody Se | eals Intact | ? | | | | | | | | / | | | Chain of Custody / | Sample Do | ocument | tation Pro | esent? | | | | V | | | | | COC Anomaly/Sam | ple Accep | tance Fo | orm com | pleted? | | | | | V | | | | If Chlorinated or Dr | COC Anomaly/Sample Acceptance Form completed? If Chlorinated or Drinking Water Samples, Acceptable Preservation? | | | | | | | | | | | | Preservation Docur | mented: | | Na ₂ S ₂ O | 3 | Γrizma | | | Yes | No ′ | NÁ | | | Shipping Container | | V | ista | Client | Reta | in | Re | turn | Disp | ose | | Comments: December 19, 2016 #### Vista Work Order No. 1601464 Mr. Curtis Moss AMEC Foster Wheeler 9210 Sky Park Court Suite 200 San Diego, CA 92123 Dear Mr. Moss, Enclosed are the amended results for the sample set received at Vista Analytical Laboratory on November 17, 2016. This sample set was analyzed on a rush turn-around time, under your Project Name 'MCAS Yuma, AZ TO 105'. Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team. Sincerely, Martha Maier Laboratory Director Kanenjapez for Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista. Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com ### Vista Work Order No. 1601464 Case Narrative ### **Sample Condition on Receipt:** Eleven water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. This report was amended on December 19, 2016 to correct the sample IDs to "OUA1" to match the Chain of Custody. ### **Analytical Notes:** ### **Modified EPA Method 537** The aqueous samples were extracted and analyzed for PFOA, PFOS and PFBS using Modified EPA Method 537. ### **Holding Times** The samples were extracted and analyzed within the method hold times. ### **Quality Control** The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria. A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria The labeled standard recoveries for all QC and field samples were within the acceptance criteria. # Table of Contents | Case Narrative. | 1 | |--|-----| | Table of Contents | 3 | | Sample Inventory | 4 | | Analytical Results. | 5 | | Qualifiers | 19 | | Certifications | 20 | | Sample Receipt. | 23 | | Extraction Information. | 26 | | Sample Data - Modified EPA Method 537. | 31 | | Continuing Calibration. | 87 | | Initial Calibration | 106 | # **Sample Inventory Report** | Vista
Sample ID | Client
Sample ID | Sampled | Received | Components/Containers | |--------------------|---------------------|-----------------|-----------------|-----------------------| | 1601464-01 | EB03-20161116 | 16-Nov-16 14:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-02 | OUA1-MW53-20161116 | 16-Nov-16 08:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-03 | OUA1-MW54-20161116 | 16-Nov-16 09:00 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-04 | OUA1-MW42-20161116 | 16-Nov-16 09:55 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-05 | OUA1-MW01-20161116 | 16-Nov-16 10:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-06 | OUA1-MW31-20161116 | 16-Nov-16 11:15 | 17-Nov-16 09:22 |
HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-07 | OUA1-PZ19-20161116 | 16-Nov-16 11:45 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-08 | OUA1-MW52-20161116 | 16-Nov-16 12:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-09 | OUA1-MW04-20161116 | 16-Nov-16 13:25 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-10 | OUA1-MW04A-20161116 | 16-Nov-16 13:30 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1601464-11 | OUA1-MW05-20161116 | 16-Nov-16 14:15 | 17-Nov-16 09:22 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | Vista Project: 1601464 Client Project: MCAS Yuma, AZ TO 105 ## ANALYTICAL RESULTS | Sample ID: | Method Blank | | | | | Modif | ied EPA Mo | ethod 537 | | | |------------|--------------------|------------------------------|------------------------|------|------------|------------------------------|-------------------------------|-----------|----------|------------| | | Aqueous
).125 L | QC Batch:
Date Extracted: | B6K0164
28-Nov-2016 | 9:21 | | Lab Sample:
Date Analyzed | B6K0164-BLK
29-Nov-16 22:0 | | H C18 | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifiers | Labeled St | andard | %R | LCL-UCL | Qualifiers | | PFBS | ND | 1.79 | 4.00 | 8.00 | | IS 13C3-PI | BS | 115 | 60 - 150 | | | PFOA | 0.916 | 0.651 | 2.00 | 8.00 | J | IS 13C2-PI | OA | 89.7 | 60 - 150 | | | PFOS | ND | 0.807 | 0.900 | 8.00 | | IS 13C8-PI | FOS | 93.3 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 6 of 174 | Sample ID: OPR | | | | | | | Modified | EPA Method 537 | |---|-----------------------------|--------------------------|--------|----------|--------------------|------------------|-------------|----------------| | Matrix: Aqueous
Sample Size: 0.125 L | QC Batch:
Date Extracted | B6K0164
d: 28-Nov-201 | 6 9:21 | | Lab Sam
Date An | • | mn: BEH C18 | | | Analyte | Amt Found (ng/L) | Spike Amt | %R | Limits | | Labeled Standard | %R | LCL-UCL | | PFBS | 93.1 | 80.0 | 116 | 60 - 130 | IS | 13C3-PFBS | 123 | 60 - 150 | | PFOA | 89.3 | 80.0 | 112 | 70 - 130 | IS | 13C2-PFOA | 85.9 | 60 - 150 | | PFOS | 84.7 | 80.0 | 106 | 70 - 130 | IS | 13C8-PFOS | 94.2 | 60 - 150 | LCL-UCL - Lower control limit - upper control limit Work Order 1601464 Revision 1 Page 7 of 174 | Sample ID: | EB03-20161116 | | | | | | | Modifie | d EPA Me | ethod 537 | |------------------------------|----------------------|-------|--------------|---------|-----------|----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | La | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | I | Lab Samı | ole: 1601464-01 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.128 L | | QC Batch | : B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected:
Location: | 16-Nov-2016 14:30 | | | | Г | Date Ana | lyzed: 29-Nov-16 19:59 Colu | umn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifier | ·s | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | ND | 1.75 | 3.91 | 7.84 | | IS | 13C3-PFBS | 119 | 60 - 150 | | | PFOA | 0.837 | 0.638 | 1.95 | 7.84 | J, B | IS | 13C2-PFOA | 89.7 | 60 - 150 | | | PFOS | ND | 0.790 | 0.879 | 7.84 | | IS | 13C8-PFOS | 92.5 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 8 of 174 | Sample ID: | OUA1-MW53-20161116 | | | | | | | Modifie | d EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|---------|----------|------------------------------|-----------------|-------------|------------| | Client Data | | | Sample Data | | | Laborato | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601464-02 | Date Received: | 17-Nov-2010 | 5 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.127 L | | QC Bate | h: B6K0164 | Date Extracted: | 28-Nov-2010 | 5 9:21 | | Date Collected: | 16-Nov-2016 8:30 | | | | | Date Ana | alyzed: 29-Nov-16 20:12 Colu | ımn: BEH C18 | | | | Location: | | | | 1.00 | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifi | iers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 681 | 1.76 | 3.94 | 7.85 | | IS | 13C3-PFBS | 106 | 60 - 150 | | | PFOA | 67.5 | 0.639 | 1.97 | 7.85 | В | IS | 13C2-PFOA | 87.1 | 60 - 150 | | | PFOS | 7.08 | 0.792 | 0.886 | 7.85 | J | IS | 13C8-PFOS | 96.4 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 9 of 174 | Sample ID: | OUA1-MW54-20161116 | | | | | | | Modifie | d EPA Mo | ethod 537 | |--|---|-------|--|------------------|----------|--------------------|------------------|---|----------|------------| | Client Data Name: Project: Date Collected: Location: | AMEC Foster Wheeler
MCAS Yuma, AZ TO 105
16-Nov-2016 9:00 | | Sample Data
Matrix:
Sample Size: | Water
0.124 L | | Lab San
QC Bato | * | Date Received:
Date Extracted:
umn: BEH C18 | -, = | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 329 | 1.80 | 4.03 | 8.04 | | IS | 13C3-PFBS | 110 | 60 - 150 | | | PFOA | 35.3 | 0.654 | 2.02 | 8.04 | В | IS | 13C2-PFOA | 86.1 | 60 - 150 | | | PFOS | 7.09 | 0.811 | 0.907 | 8.04 | J | IS | 13C8-PFOS | 92.4 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 10 of 174 | Sample ID: | OUA1-MW42-20161116 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|----------|----------|------------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | I | Laborato | ry Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601464-04 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.129 L | | QC Batc | h: B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected: | 16-Nov-2016 9:55 | | | | | Date An | alyzed: 29-Nov-16 20:36 Colu | ımn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 332 | 1.73 | 3.88 | 7.74 | | IS | 13C3-PFBS | 104 | 60 - 150 | | | PFOA | 29.6 | 0.630 | 1.94 | 7.74 | В | IS | 13C2-PFOA | 86.3 | 60 - 150 | | | PFOS | 4.52 | 0.781 | 0.872 | 7.74 | J | IS | 13C8-PFOS | 84.8 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 11 of 174 | Sample ID: | OUA1-MW01-20161116 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|----------|-----------|-----------------------------|-----------------|-------------|------------| | Client Data | | | Sample Data | | I | Laborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Samı | ole: 1601464-05 | Date Received: | 17-Nov-2016 | 5 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.128 L | | QC Batch | : B6K0164 | Date Extracted: | 28-Nov-2016 | 5 9:21 | | Date Collected: | 16-Nov-2016 10:30 | | | | | Date Ana | lyzed: 29-Nov-16 20:48 Colu | umn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualific | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 45.6 | 1.74 | 3.91 | 7.79 | | IS | 13C3-PFBS | 110 | 60 - 150 | | | PFOA | 1.40 | 0.634 | 1.95 | 7.79 | J, B | IS | 13C2-PFOA | 89.0 | 60 - 150 | | | PFOS | ND | 0.786 | 0.879 | 7.79 | | IS | 13C8-PFOS | 87.4 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 12 of 174 | Sample ID: | OUA1-MW31-20161116 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|-----------|----------|-----------------------------|-----------------|-------------|------------| | Client Data | | | Sample Data | | La | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | 1 | Lab Samp | ole: 1601464-06 | Date Received: | 17-Nov-2010 | 5 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.131 L | | QC Batch | : B6K0164 | Date Extracted: | 28-Nov-2010 | 5 9:21 | | Date Collected: | 16-Nov-2016 11:15 | | | | 1 | Date Ana | lyzed: 29-Nov-16 22:14 Col- | umn: BEH C18 | | | |
Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifier | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 120 | 1.71 | 3.82 | 7.65 | | IS | 13C3-PFBS | 106 | 60 - 150 | | | PFOA | 9.01 | 0.623 | 1.91 | 7.65 | В | IS | 13C2-PFOA | 85.9 | 60 - 150 | | | PFOS | ND | 0.772 | 0.859 | 7.65 | | IS | 13C8-PFOS | 92.2 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 13 of 174 | Sample ID: | OUA1-PZ19-20161116 | | | | | | | Modifie | ed EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|-----------|----------|-----------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | La | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | 1 | Lab Samı | ole: 1601464-07 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.125 L | | QC Batch | n: B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected: | 16-Nov-2016 11:45 | | | | 1 | Date Ana | lyzed: 29-Nov-16 22:26 Colu | umn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifier | rs | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 57.8 | 1.80 | 4.00 | 8.03 | | IS | 13C3-PFBS | 106 | 60 - 150 | | | PFOA | 21.1 | 0.653 | 2.00 | 8.03 | В | IS | 13C2-PFOA | 87.5 | 60 - 150 | | | PFOS | 6.15 | 0.810 | 0.900 | 8.03 | J | IS | 13C8-PFOS | 101 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 14 of 174 | Sample ID: | OUA1-MW52-20161116 | | | | | | | Modifie | ed EPA M | ethod 537 | |--|--|-------|--|------------------|----------|----------------------------------|------------------|---|----------|------------| | Client Data Name: Project: Date Collected: Location: | AMEC Foster Wheeler
MCAS Yuma, AZ TO 105
16-Nov-2016 12:30 | | Sample Data
Matrix:
Sample Size: | Water
0.130 L | | Laborato Lab San QC Bato Date An | ple: 1601464-08 | Date Received:
Date Extracted:
umn: BEH C18 | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 64.9 | 1.73 | 3.85 | 7.72 | | IS | 13C3-PFBS | 102 | 60 - 150 | | | PFOA | 5.38 | 0.628 | 1.92 | 7.72 | J, B | IS | 13C2-PFOA | 93.1 | 60 - 150 | | | PFOS | ND | 0.778 | 0.865 | 7.72 | | IS | 13C8-PFOS | 88.7 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 15 of 174 | Sample ID: | OUA1-MW04-20161116 | | | | | | | Modifie | d EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|----------|----------|-----------------------------|-----------------|-------------|------------| | Client Data | | | Sample Data | | L | aborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601464-09 | Date Received: | 17-Nov-2010 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.131 L | | QC Batcl | n: B6K0164 | Date Extracted: | 28-Nov-2010 | 6 9:21 | | Date Collected: | 16-Nov-2016 13:25 | | | | | Date Ana | lyzed: 29-Nov-16 22:51 Colu | ımn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 157 | 1.71 | 3.82 | 7.66 | | IS | 13C3-PFBS | 105 | 60 - 150 | | | PFOA | 20.0 | 0.623 | 1.91 | 7.66 | В | IS | 13C2-PFOA | 91.0 | 60 - 150 | | | PFOS | 2.50 | 0.773 | 0.859 | 7.66 | J | IS | 13C8-PFOS | 93.0 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 16 of 174 | Sample ID: | OUA1-MW04A-20161116 | | | | | | | Modifie | d EPA Me | thod 537 | |-----------------|----------------------|-------|--------------|---------|----------|-----------|------------------------------|-----------------|-------------|------------| | Client Data | | | Sample Data | | L | Laborator | y Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab Sam | ple: 1601464-10 | Date Received: | 17-Nov-2010 | 5 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.120 L | | QC Batc | h: B6K0164 | Date Extracted: | 28-Nov-2010 | 5 9:21 | | Date Collected: | 16-Nov-2016 13:30 | | | | | Date Ana | alyzed: 29-Nov-16 23:03 Colu | ımn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 162 | 1.87 | 4.17 | 8.34 | | IS | 13C3-PFBS | 109 | 60 - 150 | | | PFOA | 22.1 | 0.678 | 2.08 | 8.34 | В | IS | 13C2-PFOA | 82.5 | 60 - 150 | | | PFOS | 2.83 | 0.841 | 0.938 | 8.34 | J | IS | 13C8-PFOS | 85.8 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 17 of 174 | Sample ID: | OUA1-MW05-20161116 | | | | | | | Modifie | ed EPA Mo | ethod 537 | |-----------------|----------------------|-------|--------------|---------|----------|---------|------------------------------|-----------------|------------|------------| | Client Data | | | Sample Data | | L | aborato | ry Data | | | | | Name: | AMEC Foster Wheeler | | Matrix: | Water | | Lab San | ple: 1601464-11 | Date Received: | 17-Nov-201 | 6 9:22 | | Project: | MCAS Yuma, AZ TO 105 | | Sample Size: | 0.129 L | | QC Bato | h: B6K0164 | Date Extracted: | 28-Nov-201 | 6 9:21 | | Date Collected: | 16-Nov-2016 14:15 | | | | | Date An | alyzed: 29-Nov-16 23:15 Colu | ımn: BEH C18 | | | | Location: | | | | | | | | | | | | Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifie | ers | Labeled Standard | %R | LCL-UCL | Qualifiers | | PFBS | 30.5 | 1.74 | 3.88 | 7.78 | | IS | 13C3-PFBS | 111 | 60 - 150 | | | PFOA | 0.859 | 0.633 | 1.94 | 7.78 | J, B | IS | 13C2-PFOA | 82.6 | 60 - 150 | | | PFOS | 0.937 | 0.784 | 0.872 | 7.78 | J | IS | 13C8-PFOS | 83.4 | 60 - 150 | | RL - Reporting limit LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1601464 Revision 1 Page 18 of 174 ### **DATA QUALIFIERS & ABBREVIATIONS** B This compound was also detected in the method blank. D Dilution E The associated compound concentration exceeded the calibration range of the instrument. H Recovery and/or RPD was outside laboratory acceptance limits. I Chemical Interference J The amount detected is below the Reporting Limit/LOQ. M Estimated Maximum Possible Concentration. (CA Region 2 projects only) * See Cover Letter **Conc.** Concentration NA Not applicable ND Not Detected TEQ Toxic Equivalency Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight. ## **CERTIFICATIONS** | Accrediting Authority | Certificate Number | |---|--------------------| | California Department of Health – ELAP | 2892 | | DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005 | 3091.01 | | Florida Department of Health | E87777 | | Hawaii Department of Health | N/A | | Louisiana Department of Environmental Quality | 01977 | | Maine Department of Health | 2014022 | | Nevada Division of Environmental Protection | CA004132015-1 | | New Jersey Department of Environmental Protection | CA003 | | New York Department of Health | 11411 | | Oregon Laboratory Accreditation Program | 4042-004 | | Pennsylvania Department of Environmental Protection | 012 | | South Carolina Department of Health | 87002001 | | Texas Commission on Environmental Quality | T104704189-15-6 | | Virginia Department of General Services | 7923 | | Washington Department of Ecology | C584 | | Wisconsin Department of Natural Resources | 998036160 | Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request ### **NELAP Accredited Test Methods** | MATRIX: Air | | |--|--------| | Description of Test | Method | | Determination of Polychlorinated p-Dioxins & Polychlorinated | EPA 23 | | Dibenzofurans | | | MATRIX: Biological Tissue | | |--|-------------| | Description of Test | Method | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by | EPA 1699 | | HRGC/HRMS | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Polychlorinated Dibenzo-p-Dioxins and
Polychlorinated Dibenzofurans by | EPA 8280A/B | | GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | MATRIX: Drinking Water | | |--|----------| | Description of Test | Method | | 2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS | EPA 1613 | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | MATRIX: Non-Potable Water | | |---|-------------| | Description of Test | Method | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS | EPA 1699 | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Dioxin by GC/HRMS | EPA 613 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated | EPA 8280A/B | | Dibenzofurans by GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | MATRIX: Solids | | |---|-----------| | Description of Test | Method | | Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS | EPA 1613 | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | |---|-------------| | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated | EPA 8280A/B | | Dibenzofurans by GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | ### Vista Analytical 1104 Windfield Way El Dorado Hills, CA 95762 TEL: 916-673-1520 Vista PM: Karen Lopez CHAIN OF CUSTODY RECORD DATE: U/16/2016 - B Vista PM: Karen Lopez PAGE: 0 0F 2 | | 1EE. 310-073-1320 | | | | | Viola | | . raicii | LOP | <u>-</u> | | | (Y). | .2 | | | | | | | ٠ | | | | | |------------|--|----------------|---------|-------------|------------|--------|---|--------------------------------|-------|----------|--------|--------|---------------------|-------|------------|----------|---------------|----------|------------------|----------|-----|---------------|---------------|----------|--------| | | ATORY CLIENT: | 200 200 - 2000 | | Kalendaria. | | | CLIE | NT PROJE | CTNAM | ME / NU | MBER: | | | | | | | П | P.O. | NO.: | | | | | | | ADDRE | | | | | | | MCAS Yuma, AZ TO 105 | | | | | | | | | | TO 105 | | | | | | | | | | | Sky Park Court | | | | | | PROJECT CONTACT: Medora Hackler/Marina Mitchell | | | | | | | | | | CONTRACT NO.: | | | | | | | | | | CITY: | Diego, CA 92123 | | | | | | | I edora
MPLER(S): (S | | | viarin | a Mitc | nell | | | | | \dashv | N62473-12-D-2012 | | | | | | 111111 | | TEL: | TEL: E-MAIL E-MAIL | | | | | | | (0). (| | | P | iř | | | | | | | | 1 [| ŤĽr | ٦r | | T | -11 | | | 503.639.3400 medora.hackler@amecfw.com marina.mitchell@amecfw.com TURNAROUND TIME | | | | | | _ | | - ' | 1 | 100 | | | | | | | | <u> </u> | | ا ل | | | !_ | | | A | SAME DAY 24 HR 48HR 72 HR 5 DAYS X 10 DAYS | | | | | | | REQUESTED ANALYSIS | AL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) | | DATO X | 10 0 | 7710 | - | | | | | | | | | | | | | | \dashv | | | | | | | | RWQCB REPORTING ARCHIVE SAMPLE | SUNTIL | 1 | 1 | AL INSTRUCTIONS | OOMIL | | | | | | BS | 問題 | and PFBS
Mod.) | and | PFOS, 2 | vel | PF. | | | | | | | | | | | | | | | | | | | LAB
USE | SAMPLE ID | | VIPLING | Mal | s. | *Cone | QC Level | PFOA, PFC
(U.S. EPA | | | | | | | | | | | | | | | | | | | ONLY | | DATE | TIME | | | | ğ | T | | | _ | | | | | \dashv | _ | _ | | | | \rightarrow | \rightarrow | \dashv | | | | EB03 - 2016 11 16 | 1/16/16 | | V | ٧ | 2 | | X | | | | | _ | | | _ | _ | \dashv | | | | $ \bot $ | _ | \dashv | | | | OUA1-MW53-20161116 | | 8:10 | | | 2 | | X | OUAI - MW54-20161116 | | 9:00 | | | 2 | | X | OUA1 - MW 42 - 2016 416 | | 9:55 | | | 2 | | × | OVAI - MY01 - 2016 1116 | | 10:30 | | | Z | | + | OUA1 - MW31 - 2016 1116 | | 11:15 | | | 2 | | X | OUAI - PZ19 - 2016 11 16 | | 11.45 | | | 2 | | X | OVA1 - MU52 - ZOIG116 | | 12:30 | | | 2 | | X | 2 | | × | | | | | | | | | | | | | | | | | Ì | | | OUAI - MW04A - 2016 11 16 13:30 | | | | | 2 | | × | | | | | | | | | | | | | | | | | | | Relino | Received by: (Signature) Received by: (Signature) | | | | | (Signa | Signature) / Carrier Tracking Number 8 1 0 1 0 95 2 1 9 9 8 | | | | | | | | Date: | IIr | 116 | | Time: 16: 30 | | | ٦ | | | | | D.: | | | | | -009/01/02 | (0) | | | | | | | 11/16/16
Date: 1 | | | | | | | \dashv | | | | | | | Kelind | ted Ex | | | | | (Signa | iture) | WSD | My : | 5 | | | | | | | | 11/19/16 | | | | Time: 0932 | | | | | Relino | Relinquished by: (Signature) Received by: (Signature) | | | | | (Signa | | | | | | | | Date: | Date: Time | | | | | | | | | | | Vista Analytical 1104 Windfield Way El Dorado Hills, CA 95762 TEL: 916-673-1520 Vista PM: Karen Lopez CHAIN OF CUSTODY RECORD DATE: 11/16/2016 - B 2 OF 2 PAGE: | AMEC Foster Wheeler E & I. Inc. | | | | | | | | CLIENT PROJECT NAME / NUMBER: P.O. NO.: | | | | | | | | | | 18-1 | | | | | | | |--|--|----------|------------------------|----------------------|----------|--------------------------------|-------------------|---|----------------------|-----|--------|-------|----------|---------------|---------------------------|------------------|----------|----------|---------------|----------|---------------|----------|---|----------| | ADDRE | DDRESS: | | | | | | | | MCAS Yuma, AZ TO 105 | | | | | | | | | TO 105 | | | | | | | | | Sky Park Court | | | | | PROJECT CONTACT: | | | | | | | | | \neg | CONTRACT NO.: | | | | | | | | | | CITY: | | | | | | Medora Hackler/Marina Mitchell | | | | | | | | | | N62473-12-D-2012 | | | | | | | | | | San D | Diego, CA 92123 | | | | | SAMPLER(S): (SIGNATURE) | | | | | | | | | LAB USE ONLY | | | | | | | | | | | TEL:
503.6 | 39.3400 E-Mail medora.hackler@amecfw. | com | E-MAIL
marina,mitch | nell@amecfw.c | om | uel Ruis | TURNAROUND TIME | | | | | | | | | | | FOL | IEO. | | ANIA | 4 I M | 010 | | | | | | | | | SAME DAY 24 HR 48HR 72 HR 5 DAYS X 10 DAYS | | | | | | | | | | | K | EQU | JEST | ED | ANA | ALY: | 515 | | | | | | | | | SPECIA | L REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) | RWQCB REPORTING 🔲 ARCHIVE SAMPLE | S UNTIL | / | _/ | | | S | | | | | | | | | | | | | | | | | | | SPECIA | LINSTRUCTIONS | | | | | | and PFBS
Mod.) | and PF
Mod.) | | | | 1 | | | | | | | | | | | | | | | 1 | | | | | | | an
7 M | | | | | | | | | | | | | - 1 | | | | | | l | | | | | | | OS, a | | - 1 | ē | PF
PA | | | | | | | | | | | | | - 1 | | | | | | LAB | SAMPLE ID | SAMI | PLING | 4 | * | Le | S. E | | - 1 | | 1 | | | | | | | | | | | | | | | USE | SAMPLEID | DATE | TIME | Matrix | *Cons | QC Level | PF(0.5 | PFOA, PFOS, (U.S. EPA 537 | | | | | | | | | 1 | | | | | | | | | | OUA1- MW05-2016 116 | 11/16/16 | 14:15 | W | 2 | | X | \top | | | | | | | | | | | | | | | | \top | | \top | 1 | | | 7 | | | | 7 | 7 | | | | | | | | - | | | | Н | | | - | _ | + | + | \vdash | - | | - | _ | | \dashv | \dashv | \dashv | | | \vdash | | | | | | 3-80- | _ | \vdash | | - | FFR | 111 | - | +_ | | $\overline{}$ | | _ | \dashv | _ | \dashv | | \rightarrow | | | - | | | | | | | | | A | u | (6 | | _ | M | -+ | \dashv | _ | + | +- | \vdash | \dashv | \dashv | \dashv | \dashv | _ | \dashv | \dashv | \dashv | \dashv | _ | | | | | | | | | \square | | - | - | _ | _ | + | \vdash | - | - | \dashv | + | _ | \rightarrow | \dashv | \dashv | - | | \vdash | | | | | | | | Ш | | | \perp | _ | | _ | | | 4 | | | 1 | \dashv | \dashv | \dashv | \Box | | \perp | Relinqu | uished by: (Signature) | • ** | • | Received by | : (Signa | ture) / | Carrier Tr | acking | Numbe | a t | , 1 | 990 | | | | | Date: | 110 | 111 | | Time | | | | | <u> </u> | ished by: (Signature) | | | FedEx
Received by | . (Class | | | | | | | Date: | 16 1 | 16 | \dashv | | 5 : 30 | <u> </u> | | | | | | | | Relinqu | Relinquished by: (Signature) Fed EX | | | | | | Signature) Whates | | | | | | | Date: | Date:
11/13/16 Time: 0132 | | | | | | | | | | | Relinqu | Relinquished by: (Signature) Received by: (Signature) | | | | | | ignature) D | | | | | | | Date: | | | | | | | | | | | | | 7, 0 | ## SAMPLE LOG-IN CHECKLIST | 990 |) | |-----|-----------------------| | 60 | Vista | | | Analytical Laboratory | | Vista Project #: | 1(| 0011 | 64 | | | 1 | AT_ | 5 | A | | | | |----------------------|-------------|-----------------|----------------------------------|----------------|----------|-------|-------|--------------|---------|-----------|--|--| | Samples Arrival: | Date/Tim | 092 | 2.2 | Initials: | | | ation | WK | -2
a | | | | | Logged In: | Date/Tim | e 11/17
— 12 | 116 | Initials: | | | ation | : WI | 1410 | | | | | Delivered By: | FedE | \geq | UPS | On Trac | DHL | | | and
vered | Oth | ner | | | | Preservation: | Ice | | ВІ | ue Ice | Dr | y Ice | | | None | | | | | Temp °C: 0.2 | (uncorre | - | ime: ()
robe us | 3
ed: Yes□ | Nola | The | rmon | neter II |): IR- | 1 | | | | | | | | | | | | YES | NO | NA | | | | Adequate Sample \ | Volume Re | ceived? | | | | | | | | | | | | Holding Time Acce | ptable? | | | | | | | | | | | | | Shipping Container | (s) Intact? | | | | | | | V | | | | | | Shipping Custody S | Seals Intac | t? | | | | | | | | $\sqrt{}$ | | | | Shipping Documen | tation Pres | ent? | | | | | | | | | | | | Airbill | Trk # | 1018 | 1952 1 | 998 | | | | $\sqrt{}$ | | | | | | Sample Container | ntact? | | | | | | | / | | | | | | Sample Custody Se | eals Intact | ? | | | | | | | | / | | | | Chain of Custody / | Sample Do | ocument | tation Pr | esent? | | | | V | | | | | | COC Anomaly/Sam | ple Accep | tance Fo | orm com | pleted? | | | | | V | | | | | If Chlorinated or Dr | inking Wat | er Samp | oles, Acc | eptable Pre | servatio | n? | | | | 1 | | | | Preservation Docur | mented: | | Na ₂ S ₂ O | 3 | Γrizma | | | Yes | No ′ | NÁ | | | | Shipping Container | | V | ista | Client | Reta | in | Re | turn | Disp | ose | | | Comments: ## **EXTRACTION INFORMATION** #### **Process Sheet** Workorder: 1601464 Prep Expiration: 11/30/2016 Client: AMEC Foster Wheeler Workorder Due: 01-Dec-16 00:00 TAT: 14 Method: 537 PFAS DOD (LOQ as mRL) Matrix: Aqueous Prep Batch: BUKOIUY Prep Data Entered: (174114 35) Date and Initials Version: PFOA, PFOS, and PFBS only Initial Sequence: | LabSampleID | Recon ClientSampleID | Date Received | Location Comments | | |--------------|----------------------|-----------------|-------------------|--| | 1601464-01 A | EB03-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-02 | OUAI-MW53-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-03 | OUAI-MW54-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-04 | OUAI-MW42-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-05 | OUAI-MW01-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-06 | OUAI-MW31-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-07 | OUAI-PZ19-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-08 | OUAI-MW52-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-09 | OUAI-MW04-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-10 | OUAI-MW04A-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | | 1601464-11 | OUAI-MW05-20161116 | 17-Nov-16 09:22 | WR-2 F-4 | | WO Comments: DoD PFOA/PFOS/PFBS only MS/MSD per analytical batch Vista PM:Martha Maier Vial Box ID: MATHOO Sample Reconciled By:_ Page 1 of 1 11 127,16 # **Percent Solids** BUK 0164 Balance ID: VA Project: | | Chemist | | Chemist: <u>PA</u> | Che | mist/[| Date | |---------------|----------|----------------------|--------------------|--------------|------------------|------| | | Date: | | Date: | DW | ilh | 7/10 | | | Time: | | Time: | - | | Cr | | Sample ID | Boat Wt. | Sampie + Boat
Wt. | Boat Wt. | pH
before | pH*
after | 1 ' | | 1401404 - 1:A | | | | 5 | 2 ⁽²⁾ | Ó | | -2 | | | | 7 | 2 | 0 | | -3 | | • | | 7- | Z | 0 | | -4 | | | | 7 | 2 | 0 | | 4 | | | . / | 9 | 2 | 0 | | - φ | | | . / | 7 | 2 | 0 | | -7 | | | | 7 | 2 | 0 | | -8 | | 112110 | | 7 | 2 | 0 | | -9. | | 110 | | 7 | 2 | 0 | | -16 | | Or/ | | 7 | Ŋ | 0 | | 4 -11 | | 7 | | 7 | 7 | 0 | | 1601472-01 | | | | 7 | Ŋ | 0_ | | -02 | | | | 7 | 7 | Ĉ_ | | -03 | | • | | 7 | 1 | o | | L 40/ | | | | 7 | 2 | 0 | | -uy B | | | | 7 | 2 | ο | | -04 C | | | | 7_ | ı | 0 | | | | | | | • | | | | | | | | | | | | , | | | | | | ### Procedure: - Tare the balance. - Record Boat Weight. - Add 2 10 g of sample. - Record Wet Wt. + Boat Wt. - Dry in oven overnight at 107°C. - Tare the balance. - Record Residue + Boat Wt. Opt adjusted with 2 days of Hel. on 11/27/14 * pH adjusted with 3 days of Hd. en 11/2+hu - Methods 8280, 613, 1613, 8290, 1614 pH < 9 - Methods 1668/PCN pH 2-3 - NCASI 551 pH 1 %Solids rmh 5/2011 ### PREPARATION BENCH SHEET Matrix: Aqueous Method: 537 PFAS DOD (LOO as mRL) | THE THURSDAY BEINGER STEEL | |----------------------------| | B6K0164 | | | G. Hyndipla Chemist: Gr. Happitola M 11/27/14 Prep Date/Time: 27-Nov-16 10:17-28-Nov-16 0121 ### Prepared using: LCMS - SPE Extraction-LCMS | | | | | | | | CLK | <u> </u> | | | | |---|----------------------------|---------------------------|-----------------------|-----------------------|--------------------------|------------------------------------|---------|----------|----------------------|----------------------------------|----------| | С | VISTA
Sample ID | Bottle +
Sample
(g) | Bottle
Only
(g) | Sample
Amt.
(L) | IS/NS
CHEM/WI
DATE | IT | SI | PE | , | RS
CHEM/W
DATE | IT | | | B6K0164-BLK1 | VA | NA | (0.125) | DM 35 | 11/20/16 | Olm | 11/20/16 | Qu | 35 | uhoolee | | | B6K0164-BS1 | V | 7 | 7 | | | - | | _ | | -> | | | B6K0164-MS1
1601472-04 | 155.50 | 26.97 | 0.12841 | | | | | | | | | | B6K0164-MSD1
1601472-04 | 142.02 | 27.01 | 0.1350 | , | | | | | | | | | 1601464-01 | 154.65 | 27.04 | 0.12761 | _ | | | | | , | | | | 1601464-02 | 154.39 | 27.06 | 0.12733 | , | | | | | | | | | 1601464-03 | 151.73 | 27.31 | 0.12442 | | | | | | | | | | 1601464-04 | 156.46 | 27.29 | 0.12917 | , | ` | | | | | | | | 1601464-05 | 155.56 | 27.24 | 0.12832 | | | | | | İ | | | | 1601464-06 | 158.9 | 27.30 | 0.13071 | 7 | | | | | | | | | 1601464-07 | 151.48 | 24.94 | 0.12454 | <i>;</i> | | | | | | | | | 1601464-08 | 156.64 | 22.03 | 0.12961 | | | | | | | | | | 1601464-09 | 157.54 | 27.01 | 0.13053 | | | | | | | | | | 1601464-10 | 146.99 | 27.03 | 0. 4994 J | | | | | | | | | Ш | 1601464-11 | 155.52 | 24.91 | 0.12841 | | | | 1 | | | | | | 1601472-01 | 146.92 | 27.21 | 0.4971 | 7 | | | <u> </u> | | 1 | | | 1 | lame 1672604,104 | NS Name | RS Name | (m) | | trata XAV 3
10H + 0157-1
1mL | HyDH in | Mrolt Ch | eck In:
emist/Dat | e: <u>Olm v</u>
e: <u>Omp</u> | b | | 0 | nments: Assume 1 a = 1 m | т | | | | | | | | | | Comments: Assume 1 g = 1 mL ### PREPARATION BENCH SHEET Matrix: Aqueous Method: 537 PFAS DOD (LOO as mRL) | B6K0164 | | |---------|--| | | | G. Mendiola Prep Date/Time: 27-Nov-16-10:17-28-Nov-10 09:21 Prepared using: LCMS - SPE Extraction-LCMS | | | | | | | Clek 0139 | | |---|--------------------|---------------------------|-----------------------|-----------------------|---------------------------|-------------|------------------------| | С | VISTA
Sample ID | Bottle +
Sample
(g) | Bottle
Only
(g) | Sample
Amt.
(L) | IS/NS
CHEM/WIT
DATE | SPE | RS
CHEM/WIT
DATE | | | 1601472-02 | 154.67 | 24.98 | 0.1274 | em >5 11/2016 | am 11/28/14 | an 35 11/20/10 | | | 1601472-03 | \58.74 | 24.97 | 0.13177 | | | | | | 1601472-04 | 153.43 | 27.00 | 0.12643 | 1 | | 4 | | IS Name | NS Name | RS Name | SPE Chem: Strata XAW 334m 200mg/low | Check Out: Chemist/Date: Oh 1178119 | |----------------|------------------------------------|---------|--------------------------------------|-------------------------------------| | 16 1260H NO 20 | المر 10 مر 10 ما 10 ما 10 ما 10 ما | (vy) | Ele SOLV: NOOH + 0.5%. NHYOH in MOOH | | | | | | Final Volume(s) | Balance ID: ItT W. | | | | | | | Comments: Assume 1 g = 1 mL ## **SAMPLE DATA – MODIFIED EPA METHOD 537** Dataset: U:\Q2.PRO\Results\161129J1\161129J1_38.qld Last Altered: Wednesday, November 30, 2016 14:28:42 Pacific Standard Time Printed: Wednesday, November 30, 2016 14:29:42 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: B6K0164-BLK1, Description: Method Blank, Name: 161129J1_38.wiff, Date: 29-Nov-2016, Time: 22:02:14 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|--------|------| | 1 | 3 PFBS | 79.90 | | 6.349e3 | | 0.125 | | | | | 2 | 8 PFOA | 368.90 | 6.514e1 | 5.765e3 | | 0.125 | 4.67 | 0.916 | | | 3 | 10 PFOS | 79.92 | | 3.260e3 | | 0.125 | | | | | 4 | 15 13C3-PFBS | 79.95 | 6.349e3 | 9.756e3 | 0.564 | 0.125 | 3.40 | 115 | 115 | | 5 | 16 13C2-PFHxA | 269.90 | 3.255e3 | 9.756e3 | 0.907 | 0.125 | 3.80 | 36.8 | 91.9 | | 6 | 17 13C4-PFHpA | 321.90 | 5.690e3 | 9.756e3 | 0.742 | 0.125 | 4.28 | 78.6 | 78.6 | | 7 | 18 18O2-PFHxS | 102.90 | 1.082e3 | 4.702e3 | 0.271 | 0.125 | 4.39 | 84.9 | 84.9 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.713e3 | 9.874e3 | 0.224 | 0.125 | 4.63 | 77.6 | 77.6 | | 9 | 20 13C2-PFOA | 369.90 | 5.765e3 | 9.874e3 | 0.651 | 0.125 | 4.67 | 89.7 | 89.7 | | 10 | 21 13C5-PFNA | 422.90 | 4.079e3 | 4.942e3 | 1.002 | 0.125 | 5.00 | 82.4 | 82.4 | | 11 | 22 13C8-PFOS | 79.93 | 3.260e3 | 3.675e3 | 0.950 | 0.125 | 5.06 | 93.3 | 93.3 | | 12 | 25 13C4-PFBA | 171.90 | 9.883e3 | 9.883e3 | 1.000 | 0.125 | 1.93 | 100 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 9.756e3 | 9.756e3 | 1.000 | 0.125 | 3.80 | 100 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.702e3 | 4.702e3 | 1.000 | 0.125 | 4.39 | 100 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 9.874e3 | 9.874e3 | 1.000 | 0.125 | 4.67 | 100 | 100 | | 16 | 29 13C4-PFOS |
79.94 | 3.675e3 | 3.675e3 | 1.000 | 0.125 | 5.06 | 100 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 4.942e3 | 4.942e3 | 1.000 | 0.125 | 4.99 | 100 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.548e3 | 4.548e3 | 1.000 | 0.125 | 5.28 | 100 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.349e3 | | 0.125 | | | | | 20 | 34 Total PFOA | 368.90 | | 5.765e3 | | 0.125 | | 0.916 | | | 21 | 35 Total PFOS | 79.92 | _ | 3.260e3 | _ | 0.125 | _ | 0.109_ | | Rev'd: MM 12/1/16 pw 11/30/16 ### **Quantify Totals Report MassLynx 4.1 SCN815** Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_38.qld Last Altered: Wednesday, November 30, 2016 14:28:42 Pacific Standard Time Printed: Wednesday, November 30, 2016 14:29:42 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: B6K0164-BLK1, Description: Method Blank, Name: 161129J1_38.wiff, Date: 29-Nov-2016, Time: 22:02:14 ### **Total PFBS** | | # Name | Trace | RT | Area | IS Area | Conc. | |---|--------|-------|----|------|---------|-------| | 1 | | | | | | | ### **Total PFHxS** | | # Name | Trace | RT | Area | IS Area | Conc. | |---|---------|-------|------|--------|----------|-------| | 1 | 6 PFHxS | 79.91 | 4.40 | 13.341 | 1082.133 | 1.3 | #### **Total PFOA** | | # Name | Trace | RT | Area | IS Area | Conc. | |---|--------|--------|------|--------|----------|-------| | 1 | 8 PFOA | 368.90 | 4.67 | 65.145 | 5764.815 | 0.9 | #### **Total PFOS** | | # Name | Trace | RT | Area | IS Area | Conc. | |---|---------------|-------|------|-------|----------|-------| | 1 | 35 Total PFOS | 79.92 | 4.98 | 9.762 | 3259.676 | 0.1 | Rev'd: MM 12/1/16 pw 11/30/16 Page 1 of 1 **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_38.qld Last Altered: Wednesday, November 30, 2016 14:28:42 Pacific Standard Time Printed: Wednesday, November 30, 2016 14:29:42 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: B6K0164-BLK1, Description: Method Blank, Name: 161129J1_38.wiff, Date: 29-Nov-2016, Time: 22:02:14, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_38.qld Last Altered: Wednesday, November 30, 2016 14:28:42 Pacific Standard Time Printed: Wednesday, November 30, 2016 14:29:42 Pacific Standard Time ID: B6K0164-BLK1, Description: Method Blank, Name: 161129J1_38.wiff, Date: 29-Nov-2016, Time: 22:02:14, Instrument: , Lab: ©PE-SCIEX, User: sciex **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_36.qld Last Altered: Wednesday, November 30, 2016 14:27:40 Pacific Standard Time Printed: Wednesday, November 30, 2016 14:28:04 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: B6K0164-BS1, Description: OPR, Name: 161129J1_36.wiff, Date: 29-Nov-2016, Time: 21:37:45 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | 5.194e3 | 7.218e3 | | 0.125 | 3.40 | 93.1 | 116 | | 2 | 8 PFOA | 368.90 | 7.130e3 | 6.290e3 | | 0.125 | 4.68 | 89.3 | 112 | | 3 | 10 PFOS | 79.92 | 3.483e3 | 3.569e3 | | 0.125 | 5.07 | 84.7 | 106 | | 4 | 15 13C3-PFBS | 79.95 | 7.218e3 | 1.043e4 | 0.564 | 0.125 | 3.40 | 123 | 123 | | 5 | 16 13C2-PFHxA | 269.90 | 3.892e3 | 1.043e4 | 0.907 | 0.125 | 3.80 | 41.1 | 103 | | 6 | 17 13C4-PFHpA | 321.90 | 7.263e3 | 1.043e4 | 0.742 | 0.125 | 4.28 | 93.9 | 93.9 | | 7 | 18 18O2-PFHxS | 102.90 | 1.348e3 | 4.922e3 | 0.271 | 0.125 | 4.39 | 101 | 101 | | 8 | 19 13C2-6:2 FTS | 408.90 | 2.018e3 | 1.124e4 | 0.224 | 0.125 | 4.63 | 80.2 | 80.2 | | 9 | 20 13C2-PFOA | 369.90 | 6.290e3 | 1.124e4 | 0.651 | 0.125 | 4.68 | 85.9 | 85.9 | | 10 | 21 13C5-PFNA | 422.90 | 4.399e3 | 5.637e3 | 1.002 | 0.125 | 5.01 | 77.9 | 77.9 | | 11 | 22 13C8-PFOS | 79.93 | 3.569e3 | 3.988e3 | 0.950 | 0.125 | 5.07 | 94.2 | 94.2 | | 12 | 25 13C4-PFBA | 171.90 | 1.133e4 | 1.133e4 | 1.000 | 0.125 | 1.92 | 100 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.043e4 | 1.043e4 | 1.000 | 0.125 | 3.80 | 100 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.922e3 | 4.922e3 | 1.000 | 0.125 | 4.39 | 100 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.124e4 | 1.124e4 | 1.000 | 0.125 | 4.67 | 100 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 3.988e3 | 3.988e3 | 1.000 | 0.125 | 5.07 | 100 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 5.637e3 | 5.637e3 | 1.000 | 0.125 | 5.00 | 100 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.767e3 | 4.767e3 | 1.000 | 0.125 | 5.29 | 100 | 100 | | 19 | 32 Total PFBS | 79.90 | | 7.218e3 | | 0.125 | | 93.1 | | | 20 | 34 Total PFOA | 368.90 | | 6.290e3 | | 0.125 | | 89.3 | | | 21 | 35 Total PFOS | 79.92 | | 3.569e3 | | 0.125 | | 84.7 | | ### **Quantify Totals Report MassLynx 4.1 SCN815** Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_36.qld Last Altered: Wednesday, November 30, 2016 14:27:40 Pacific Standard Time Printed: Wednesday, November 30, 2016 14:28:04 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: B6K0164-BS1, Description: OPR, Name: 161129J1_36.wiff, Date: 29-Nov-2016, Time: 21:37:45 ### **Total PFBS** | | # Name | Trace | RT | Area | IS Area | Conc. | |---|----------|-------|------|----------|----------|-------| | ŀ | 1 3 PFBS | 79.90 | 3.40 | 5193.683 | 7218.484 | 93.1 | ### **Total PFHxS** | | # Name | Trace | RT | Area | IS Area | Conc. | |---|---------|-------|------|----------|----------|-------| | 1 | 6 PFHxS | 79.91 | 4.40 | 3950.831 | 1348.480 | 89.1 | #### **Total PFOA** | | # Name | Trace | RT | Area | IS Area | Conc. | |---|--------|--------|------|----------|----------|-------| | 1 | 8 PFOA | 368.90 | 4.68 | 7130.243 | 6289.707 | 89.3 | #### **Total PFOS** | | # Name | Trace | RT | Area | IS Area | Conc. | |---|---------|-------|------|----------|----------|-------| | 1 | 10 PFOS | 79.92 | 5.07 | 3483.217 | 3569.334 | 84.7 | pw 11/30/16 Page 1 of 1 Vista Analytical Laboratory Q1 **Quantify Sample Report** Dataset: U:\Q2.PRO\Results\161129J1\161129J1_36.qld Last Altered: Wednesday, November 30, 2016 14:27:40 Pacific Standard Time Wednesday, November 30, 2016 14:28:04 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: B6K0164-BS1, Description: OPR, Name: 161129J1_36.wiff, Date: 29-Nov-2016, Time: 21:37:45, Instrument: , Lab: ©PE-SCIEX, User: sciex **Quantify Sample Report** Dataset: U:\Q2.PRO\Results\161129J1\161129J1_36.qld Last Altered: Wednesday, November 30, 2016 14:27:40 Pacific Standard Time Printed: Wednesday, November 30, 2016 14:28:04 Pacific Standard Time ### ID: B6K0164-BS1, Description: OPR, Name: 161129J1_36.wiff, Date: 29-Nov-2016, Time: 21:37:45, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_28.qld Last Altered: Thursday, December 01, 2016 11:01:48 Pacific Standard Time Printed: Thursday, December 01, 2016 11:02:27 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-01, Description: EB03-20161116, Name: 161129J1_28.wiff, Date: 29-Nov-2016, Time: 19:59:43 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | | 6.926e3 | | 0.128 | | | | | 2 | 8 PFOA | 368.90 | 6.492e1 | 6.188e3 | | 0.128 | 4.67 | 0.837 | | | 3 | 10 PFOS | 79.92 | 3.481e0 | 2.915e3 | | 0.128 | 5.08 | | | | 4 | 15 13C3-PFBS | 79.95 | 6.926e3 | 1.033e4 | 0.564 | 0.128 | 3.40 | 116 | 119 | | 5 | 16 13C2-PFHxA | 269.90 | 3.718e3 | 1.033e4 | 0.907 | 0.128 | 3.80 | 38.9 | 99.2 | | 6 | 17 13C4-PFHpA | 321.90 | 7.058e3 | 1.033e4 | 0.742 | 0.128 | 4.27 | 90.2 | 92.1 | | 7 | 18 18O2-PFHxS | 102.90 | 1.255e3 | 4.557e3 | 0.271 | 0.128 | 4.39 | 99.5 | 102 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.897e3 | 1.059e4 | 0.224 | 0.128 | 4.62 | 78.5 | 80.1 | | 9 | 20 13C2-PFOA | 369.90 | 6.188e3 | 1.059e4 | 0.651 | 0.128 | 4.67 | 87.9 | 89.7 | | 10 | 21 13C5-PFNA | 422.90 | 4.318e3 | 5.247e3 | 1.002 | 0.128 | 5.01 | 80.5 | 82.1 | | 11 | 22 13C8-PFOS | 79.93 | 2.915e3 | 3.317e3 | 0.950 | 0.128 | 5.07 | 90.6 | 92.5 | | 12 | 25 13C4-PFBA | 171.90 | 1.050e4 | 1.050e4 | 1.000 | 0.128 | 1.92 | 98.0 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.033e4 | 1.033e4 | 1.000 | 0.128 | 3.80 | 98.0 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.557e3 | 4.557e3 | 1.000 | 0.128 | 4.39 | 98.0 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.059e4 | 1.059e4 | 1.000 | 0.128 | 4.67 | 98.0 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 3.317e3 | 3.317e3 | 1.000 | 0.128 | 5.07 | 98.0 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 5.247e3 | 5.247e3 | 1.000 | 0.128 | 5.01 | 98.0 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.665e3 | 4.665e3 | 1.000 | 0.128 | 5.30 | 98.0 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.926e3 | | 0.128 | | | | | 20 | 34 Total PFOA | 368.90 | | 6.188e3 | | 0.128 | | 0.837 | | | 21 | 35 Total PFOS | 79.92 | _ | 2.915e3 | _ | 0.128 | _ | 0.136 | | Rev'd: MM 12/1/16 Vista Analytical Laboratory Q1 **Quantify Sample Report** Dataset: U:\Q2.PRO\Results\161129J1\161129J1 28.qld Last Altered: Thursday, December 01, 2016 11:01:48 Pacific Standard Time Thursday, December 01, 2016 11:02:27 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31
Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-01, Description: EB03-20161116, Name: 161129J1_28.wiff, Date: 29-Nov-2016, Time: 19:59:43, Instrument: , Lab: ©PE-SCIEX, User: sciex **Quantify Sample Report** Dataset: U:\Q2.PRO\Results\161129J1\161129J1_28.qld Last Altered: Thursday, December 01, 2016 11:01:48 Pacific Standard Time Thursday, December 01, 2016 11:02:27 Pacific Standard Time ID: 1601464-01, Description: EB03-20161116, Name: 161129J1_28.wiff, Date: 29-Nov-2016, Time: 19:59:43, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_29.qld Last Altered: Thursday, December 01, 2016 11:14:04 Pacific Standard Time Printed: Thursday, December 01, 2016 11:15:11 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-02, Description: OUAl-MW53-20161116, Name: 161129J1_29.wiff, Date: 29-Nov-2016, Time: 20:12:00 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | 3.171e4 | 6.042e3 | | 0.127 | 3.40 | 665 | | | 2 | 8 PFOA | 368.90 | 4.259e3 | 6.314e3 | | 0.127 | 4.68 | 51.6 | | | 3 | 10 PFOS | 79.92 | 6.630e1 | 3.387e3 | | 0.127 | 5.08 | 1.52 | | | 4 | 15 13C3-PFBS | 79.95 | 6.042e3 | 1.007e4 | 0.564 | 0.127 | 3.40 | 104 | 106 | | 5 | 16 13C2-PFHxA | 269.90 | 3.530e3 | 1.007e4 | 0.907 | 0.127 | 3.80 | 37.9 | 96.6 | | 6 | 17 13C4-PFHpA | 321.90 | 7.503e3 | 1.007e4 | 0.742 | 0.127 | 4.27 | 98.6 | 100 | | 7 | 18 18O2-PFHxS | 102.90 | 1.211e3 | 4.774e3 | 0.271 | 0.127 | 4.39 | 91.8 | 93.6 | | 8 | 19 13C2-6:2 FTS | 408.90 | 2.283e3 | 1.113e4 | 0.224 | 0.127 | 4.63 | 90.0 | 91.7 | | 9 | 20 13C2-PFOA | 369.90 | 6.314e3 | 1.113e4 | 0.651 | 0.127 | 4.67 | 85.5 | 87.1 | | 10 | 21 13C5-PFNA | 422.90 | 5.149e3 | 5.721e3 | 1.002 | 0.127 | 5.01 | 88.2 | 89.8 | | 11 | 22 13C8-PFOS | 79.93 | 3.387e3 | 3.699e3 | 0.950 | 0.127 | 5.08 | 94.6 | 96.4 | | 12 | 25 13C4-PFBA | 171.90 | 1.155e4 | 1.155e4 | 1.000 | 0.127 | 1.92 | 98.2 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.007e4 | 1.007e4 | 1.000 | 0.127 | 3.79 | 98.2 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.774e3 | 4.774e3 | 1.000 | 0.127 | 4.39 | 98.2 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.113e4 | 1.113e4 | 1.000 | 0.127 | 4.67 | 98.2 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 3.699e3 | 3.699e3 | 1.000 | 0.127 | 5.08 | 98.2 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 5.721e3 | 5.721e3 | 1.000 | 0.127 | 5.01 | 98.2 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.697e3 | 4.697e3 | 1.000 | 0.127 | 5.30 | 98.2 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.042e3 | | 0.127 | | 681 | | | 20 | 34 Total PFOA | 368.90 | | 6.314e3 | | 0.127 | | 67.5 | | | 21 | 35 Total PFOS | 79.92 | | 3.387e3 | | 0.127 | | 7.08 | | Rev'd: MM 12/1/16 **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_29.qld Last Altered: Thursday, December 01, 2016 11:14:04 Pacific Standard Time Thursday, December 01, 2016 11:15:11 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-02, Description: OUAl-MW53-20161116, Name: 161129J1_29.wiff, Date: 29-Nov-2016, Time: 20:12:00, Instrument: , Lab: ©PE-SCIEX, User: sciex Rev'd: MM 12/1/16 pw 12/1/16 Work Order 1601464 Revision 1 Page 45 of 174 Rev'd: MM 12/1/16 pw 12/1/16 Work Order 1601464 Revision 1 Page 46 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_29.qld Last Altered: Thursday, December 01, 2016 11:14:04 Pacific Standard Time Printed: Thursday, December 01, 2016 11:15:11 Pacific Standard Time ID: 1601464-02, Description: OUAl-MW53-20161116, Name: 161129J1_29.wiff, Date: 29-Nov-2016, Time: 20:12:00, Instrument: , Lab: ©PE-SCIEX, User: sciex **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 Page 1 of 1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_30.qld Last Altered: Thursday, December 01, 2016 11:20:32 Pacific Standard Time Printed: Thursday, December 01, 2016 11:21:26 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-03, Description: OUAl-MW54-20161116, Name: 161129J1_30.wiff, Date: 29-Nov-2016, Time: 20:24:14 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | 1.443e4 | 5.819e3 | | 0.124 | 3.41 | 322 | | | 2 | 8 PFOA | 368.90 | 1.913e3 | 5.395e3 | | 0.124 | 4.68 | 27.6 | | | 3 | 10 PFOS | 79.92 | 4.757e1 | 2.593e3 | | 0.124 | 5.09 | 1.45 | | | 4 | 15 13C3-PFBS | 79.95 | 5.819e3 | 9.352e3 | 0.564 | 0.124 | 3.41 | 111 | 110 | | 5 | 16 13C2-PFHxA | 269.90 | 3.373e3 | 9.352e3 | 0.907 | 0.124 | 3.81 | 39.9 | 99.4 | | 6 | 17 13C4-PFHpA | 321.90 | 6.256e3 | 9.352e3 | 0.742 | 0.124 | 4.28 | 90.6 | 90.2 | | 7 | 18 18O2-PFHxS | 102.90 | 1.125e3 | 4.062e3 | 0.271 | 0.124 | 4.40 | 103 | 102 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.847e3 | 9.628e3 | 0.224 | 0.124 | 4.64 | 86.2 | 85.8 | | 9 | 20 13C2-PFOA | 369.90 | 5.395e3 | 9.628e3 | 0.651 | 0.124 | 4.68 | 86.5 | 86.1 | | 10 | 21 13C5-PFNA | 422.90 | 4.166e3 | 4.455e3 | 1.002 | 0.124 | 5.02 | 93.8 | 93.3 | | 11 | 22 13C8-PFOS | 79.93 | 2.593e3 | 2.953e3 | 0.950 | 0.124 | 5.09 | 92.8 | 92.4 | | 12 | 25 13C4-PFBA | 171.90 | 9.963e3 | 9.963e3 | 1.000 | 0.124 | 1.93 | 100 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 9.352e3 | 9.352e3 | 1.000 | 0.124 | 3.81 | 100 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.062e3 | 4.062e3 | 1.000 | 0.124 | 4.39 | 100 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 9.628e3 | 9.628e3 | 1.000 | 0.124 | 4.68 | 100 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 2.953e3 | 2.953e3 | 1.000 | 0.124 | 5.08 | 100 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 4.455e3 | 4.455e3 | 1.000 | 0.124 | 5.02 | 100 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.042e3 | 4.042e3 | 1.000 | 0.124 | 5.30 | 100 | 100 | | 19 | 32 Total PFBS | 79.90 | | 5.819e3 | | 0.124 | | 329 | | | 20 | 34 Total PFOA | 368.90 | | 5.395e3 | | 0.124 | | 35.3 | | | 21 | 35 Total PFOS | 79.92 | _ | 2.593e3 | _ | 0.124 | _ | 7.09 | | Rev'd: MM 12/1/16 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1 30.qld Last Altered: Thursday, December 01, 2016 11:20:32 Pacific Standard Time Printed: Thursday, December 01, 2016 11:21:26 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\Q2.PRO\MethDB\PFC List 18 A No4-2FTS 161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18 VAL-PFC Q2 11-18-16 L18 A.cdb 19 Nov 2016 12:55:25 ID: 1601464-03, Description: OUAI-MW54-20161116, Name: 161129J1 30.wiff, Date: 29-Nov-2016, Time: 20:24:14, Instrument: , Lab: ©PE-SCIEX, User: sciex Work Order 1601464 Revision 1 Page 50 of 174 Work Order 1601464 Revision 1 Page 51 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1 30.qld Last Altered: Thursday, December 01, 2016 11:20:32 Pacific Standard Time Printed: Thursday, December 01, 2016 11:21:26 Pacific Standard Time ID: 1601464-03, Description: OUAl-MW54-20161116, Name: 161129J1_30.wiff, Date: 29-Nov-2016, Time: 20:24:14, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_31.qld Last Altered: Thursday, December 01, 2016 11:28:32 Pacific Standard Time Printed: Thursday, December 01, 2016 11:29:06 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-04, Description: OUAl-MW42-20161116, Name: 161129J1_31.wiff, Date: 29-Nov-2016, Time: 20:36:29 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | 1.624e4 | 6.268e3 | | 0.129 | 3.41 | 324 | | | 2 | 8 PFOA | 368.90 | 1.973e3 | 6.130e3 | | 0.129 | 4.67 | 24.1 | | | 3 | 10 PFOS | 79.92 | 2.545e1 | 3.071e3 | | 0.129 | 5.06 | 0.550 | | | 4 | 15 13C3-PFBS | 79.95 | 6.268e3 | 1.069e4 | 0.564 | 0.129 | 3.40 | 101 | 104 | | 5 | 16 13C2-PFHxA | 269.90 | 3.649e3 | 1.069e4 | 0.907 | 0.129 | 3.80 | 36.4 | 94.0 | | 6 | 17 13C4-PFHpA | 321.90 | 7.514e3 | 1.069e4 | 0.742 | 0.129 | 4.27 | 91.7 | 94.7 | | 7 | 18 18O2-PFHxS | 102.90 | 1.141e3 | 4.451e3 | 0.271 | 0.129 | 4.39 | 91.5 | 94.6 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.867e3 | 1.091e4 | 0.224 | 0.129 | 4.62 | 74.1 | 76.5 | | 9 | 20 13C2-PFOA | 369.90 | 6.130e3 | 1.091e4 | 0.651 | 0.129 | 4.67 | 83.5 | 86.3 | | 10 | 21 13C5-PFNA | 422.90 | 4.930e3 | 5.526e3 | 1.002 | 0.129 | 4.99 | 86.2 | 89.0 | | 11 | 22 13C8-PFOS | 79.93 | 3.071e3 | 3.813e3 | 0.950 | 0.129 | 5.06 | 82.0 | 84.8 | | 12 | 25 13C4-PFBA | 171.90 | 1.135e4 | 1.135e4 | 1.000 | 0.129 | 1.92 | 96.8 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.069e4 | 1.069e4 | 1.000 | 0.129 | 3.80 | 96.8 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.451e3 | 4.451e3 | 1.000 | 0.129 | 4.39 | 96.8 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.091e4 | 1.091e4 | 1.000 | 0.129 | 4.67 | 96.8 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 3.813e3 | 3.813e3 | 1.000 | 0.129 | 5.06 | 96.8 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 5.526e3 | 5.526e3 | 1.000 | 0.129 | 4.99 | 96.8 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 5.155e3 | 5.155e3 | 1.000 | 0.129 | 5.27 | 96.8 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.268e3 | | 0.129 | | 332 | | | 20 | 34 Total PFOA | 368.90 | | 6.130e3 | | 0.129 | | 29.6 | | | 21 | 35 Total PFOS | 79.92 | _ | 3.071e3 | _ | 0.129 | _ | 4.52 | | Rev'd: MM 12/1/16 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_31.qld Last Altered: Thursday, December 01, 2016 11:28:32 Pacific
Standard Time Thursday, December 01, 2016 11:29:06 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-04, Description: OUAl-MW42-20161116, Name: 161129J1_31.wiff, Date: 29-Nov-2016, Time: 20:36:29, Instrument: , Lab: ©PE-SCIEX, User: sciex Work Order 1601464 Revision 1 Page 55 of 174 Work Order 1601464 Revision 1 Page 56 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_31.qld Last Altered: Thursday, December 01, 2016 11:28:32 Pacific Standard Time Printed: Thursday, December 01, 2016 11:29:06 Pacific Standard Time ID: 1601464-04, Description: OUAl-MW42-20161116, Name: 161129J1_31.wiff, Date: 29-Nov-2016, Time: 20:36:29, Instrument: , Lab: ©PE-SCIEX, User: sciex **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 Page 1 of 1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_32.qld Last Altered: Thursday, December 01, 2016 11:32:30 Pacific Standard Time Printed: Thursday, December 01, 2016 11:33:18 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-05, Description: OUAl-MW01-20161116, Name: 161129J1_32.wiff, Date: 29-Nov-2016, Time: 20:48:43 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|--------|------| | 1 | 3 PFBS | 79.90 | 2.299e3 | 6.615e3 | | 0.128 | 3.40 | 43.9 | | | 2 | 8 PFOA | 368.90 | 6.638e1 | 6.133e3 | | 0.128 | 4.67 | 0.857 | | | 3 | 10 PFOS | 79.92 | 6.345e0 | 3.350e3 | | 0.128 | 5.07 | 0.0125 | | | 4 | 15 13C3-PFBS | 79.95 | 6.615e3 | 1.064e4 | 0.564 | 0.128 | 3.40 | 107 | 110 | | 5 | 16 13C2-PFHxA | 269.90 | 3.651e3 | 1.064e4 | 0.907 | 0.128 | 3.80 | 36.8 | 94.6 | | 6 | 17 13C4-PFHpA | 321.90 | 6.399e3 | 1.064e4 | 0.742 | 0.128 | 4.27 | 79.0 | 81.1 | | 7 | 18 18O2-PFHxS | 102.90 | 1.132e3 | 4.749e3 | 0.271 | 0.128 | 4.38 | 85.6 | 87.9 | | 8 | 19 13C2-6:2 FTS | 408.90 | 2.060e3 | 1.059e4 | 0.224 | 0.128 | 4.63 | 84.8 | 87.0 | | 9 | 20 13C2-PFOA | 369.90 | 6.133e3 | 1.059e4 | 0.651 | 0.128 | 4.67 | 86.7 | 89.0 | | 10 | 21 13C5-PFNA | 422.90 | 3.817e3 | 4.605e3 | 1.002 | 0.128 | 5.01 | 80.6 | 82.7 | | 11 | 22 13C8-PFOS | 79.93 | 3.350e3 | 4.034e3 | 0.950 | 0.128 | 5.07 | 85.1 | 87.4 | | 12 | 25 13C4-PFBA | 171.90 | 1.052e4 | 1.052e4 | 1.000 | 0.128 | 1.93 | 97.4 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.064e4 | 1.064e4 | 1.000 | 0.128 | 3.80 | 97.4 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.749e3 | 4.749e3 | 1.000 | 0.128 | 4.38 | 97.4 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.059e4 | 1.059e4 | 1.000 | 0.128 | 4.67 | 97.4 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 4.034e3 | 4.034e3 | 1.000 | 0.128 | 5.07 | 97.4 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 4.605e3 | 4.605e3 | 1.000 | 0.128 | 5.01 | 97.4 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.827e3 | 4.827e3 | 1.000 | 0.128 | 5.30 | 97.4 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.615e3 | | 0.128 | | 45.6 | | | 20 | 34 Total PFOA | 368.90 | | 6.133e3 | | 0.128 | | 1.40 | | | 21 | 35 Total PFOS | 79.92 | | 3.350e3 | | 0.128 | _ | 0.111 | | Rev'd: MM 12/1/16 Work Order 1601464 Revision 1 Page 58 of 174 **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1 32.qld Last Altered: Thursday, December 01, 2016 11:32:30 Pacific Standard Time Thursday, December 01, 2016 11:33:18 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18 VAL-PFC Q2 11-18-16 L18 A.cdb 19 Nov 2016 12:55:25 ID: 1601464-05, Description: OUAl-MW01-20161116, Name: 161129J1_32.wiff, Date: 29-Nov-2016, Time: 20:48:43, Instrument: , Lab: ©PE-SCIEX, User: sciex Work Order 1601464 Revision 1 Page 60 of 174 Rev'd: MM 12/1/16 Work Order 1601464 Revision 1 Page 61 of 174 Vista Analytical Laboratory Q1 **Quantify Sample Report** Dataset: U:\Q2.PRO\Results\161129J1\161129J1_32.qld Last Altered: Thursday, December 01, 2016 11:32:30 Pacific Standard Time Printed: Thursday, December 01, 2016 11:33:18 Pacific Standard Time ID: 1601464-05, Description: OUAl-MW01-20161116, Name: 161129J1_32.wiff, Date: 29-Nov-2016, Time: 20:48:43, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_39.qld Last Altered: Thursday, December 01, 2016 11:35:16 Pacific Standard Time Printed: Thursday, December 01, 2016 11:35:50 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-06, Description: OUAl-MW31-20161116, Name: 161129J1_39.wiff, Date: 29-Nov-2016, Time: 22:14:30 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | 6.151e3 | 6.563e3 | | 0.131 | 3.40 | 116 | | | 2 | 8 PFOA | 368.90 | 5.816e2 | 6.316e3 | | 0.131 | 4.67 | 6.81 | | | 3 | 10 PFOS | 79.92 | | 3.220e3 | | 0.131 | | | | | 4 | 15 13C3-PFBS | 79.95 | 6.563e3 | 1.103e4 | 0.564 | 0.131 | 3.40 | 101 | 105 | | 5 | 16 13C2-PFHxA | 269.90 | 4.013e3 | 1.103e4 | 0.907 | 0.131 | 3.80 | 38.3 | 100 | | 6 | 17 13C4-PFHpA | 321.90 | 7.071e3 | 1.103e4 | 0.742 | 0.131 | 4.27 | 82.6 | 86.4 | | 7 | 18 18O2-PFHxS | 102.90 | 1.168e3 | 4.541e3 | 0.271 | 0.131 | 4.39 | 90.7 | 94.9 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.757e3 | 1.129e4 | 0.224 | 0.131 | 4.62 | 66.6 | 69.6 | | 9 | 20 13C2-PFOA | 369.90 | 6.316e3 | 1.129e4 | 0.651 | 0.131 | 4.67 | 82.2 | 85.9 | | 10 | 21 13C5-PFNA | 422.90 | 4.967e3 | 5.540e3 | 1.002 | 0.131 | 4.99 | 85.6 | 89.5 | | 11 | 22 13C8-PFOS | 79.93 | 3.220e3 | 3.677e3 | 0.950 | 0.131 | 5.06 | 88.1 | 92.2 | | 12 | 25 13C4-PFBA | 171.90 | 1.147e4 | 1.147e4 | 1.000 | 0.131 | 1.93 | 95.6 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.103e4 | 1.103e4 | 1.000 | 0.131 | 3.80 | 95.6 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.541e3 | 4.541e3 | 1.000 | 0.131 | 4.39 | 95.6 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.129e4 | 1.129e4 | 1.000 | 0.131 | 4.66 | 95.6 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 3.677e3 | 3.677e3 | 1.000 | 0.131 | 5.06 | 95.6 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 5.540e3 | 5.540e3 | 1.000 | 0.131 | 4.99 | 95.6 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 5.047e3 | 5.047e3 | 1.000 | 0.131 | 5.28 | 95.6 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.563e3 | | 0.131 | | 120 | | | 20 | 34 Total PFOA | 368.90 | | 6.316e3 | | 0.131 | | 9.01 | | | 21 | 35 Total PFOS | 79.92 | _ | 3.220e3 | _ | 0.131 | _ | 0.391 | | Rev'd: MM 12/1/16 ## Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_39.qld Last Altered: Thursday, December 01, 2016 11:35:16 Pacific Standard Time Thursday, December 01, 2016 11:35:50 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-06, Description: OUAl-MW31-20161116, Name: 161129J1_39.wiff, Date: 29-Nov-2016, Time: 22:14:30, Instrument: , Lab: ©PE-SCIEX, User: sciex Work Order 1601464 Revision 1 Page 65 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1 39.qld Last Altered: Thursday, December 01, 2016 11:35:16 Pacific Standard Time Printed: Thursday, December 01, 2016 11:35:50 Pacific Standard Time ID: 1601464-06, Description: OUAl-MW31-20161116, Name: 161129J1_39.wiff, Date: 29-Nov-2016, Time: 22:14:30, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_40.qld Last Altered: Thursday, December 01, 2016 11:38:06 Pacific Standard Time Printed: Thursday, December 01, 2016 11:38:29 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-07, Description: OUAI-PZ19-20161116, Name: 161129J1_40.wiff, Date: 29-Nov-2016, Time: 22:26:45 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | 2.644e3 | 6.115e3 | | 0.125 | 3.40 | 56.2 | | | 2 | 8 PFOA | 368.90 | 1.354e3 | 5.990e3 | | 0.125 | 4.67 | 17.5 | | | 3 | 10 PFOS | 79.92 | 4.526e1 | 2.960e3 | | 0.125 | 5.07 | 1.18 | | | 4 | 15 13C3-PFBS | 79.95 | 6.115e3 | 1.019e4 | 0.564 | 0.125 | 3.40 | 107 | 106 | | 5 | 16 13C2-PFHxA | 269.90 | 3.594e3 | 1.019e4 | 0.907 | 0.125 | 3.80 | 39.0 | 97.2 | | 6 | 17 13C4-PFHpA | 321.90 | 6.664e3 | 1.019e4 | 0.742 | 0.125 | 4.27 | 88.5 | 88.1 | | 7 | 18 18O2-PFHxS | 102.90 | 1.084e3 | 4.186e3 | 0.271 | 0.125 | 4.38 | 95.9 | 95.6 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.739e3 | 1.052e4 | 0.224 | 0.125 | 4.62 | 74.2 | 73.9 | | 9 | 20 13C2-PFOA | 369.90 | 5.990e3 | 1.052e4 | 0.651 | 0.125 | 4.66 | 87.8 | 87.5 | | 10 | 21 13C5-PFNA | 422.90 | 4.653e3 | 4.780e3 | 1.002 | 0.125 | 5.00 | 97.5 | 97.1 | | 11 | 22 13C8-PFOS | 79.93 | 2.960e3 | 3.073e3 | 0.950 | 0.125 | 5.07 | 102 | 101 | | 12 | 25 13C4-PFBA | 171.90 | 1.059e4 | 1.059e4 | 1.000 | 0.125 | 1.93 | 100 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.019e4 | 1.019e4 | 1.000 | 0.125 | 3.79 | 100 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.186e3 | 4.186e3 | 1.000 | 0.125 | 4.38 | 100 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.052e4 | 1.052e4 | 1.000 | 0.125 | 4.66 | 100 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 3.073e3 | 3.073e3 | 1.000 | 0.125 | 5.06 | 100 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 4.780e3 | 4.780e3 | 1.000 | 0.125 | 5.00 | 100 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.811e3 | 4.811e3 | 1.000 | 0.125 | 5.29 | 100 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.115e3 | | 0.125 | | 57.8 | | | 20 | 34 Total PFOA | 368.90 | |
5.990e3 | | 0.125 | | 21.1 | | | 21 | 35 Total PFOS | 79.92 | | 2.960e3 | | 0.125 | | 6.15 | | Rev'd: MM 12/1/16 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_40.qld Last Altered: Thursday, December 01, 2016 11:38:06 Pacific Standard Time Thursday, December 01, 2016 11:38:29 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-07, Description: OUAI-PZ19-20161116, Name: 161129J1_40.wiff, Date: 29-Nov-2016, Time: 22:26:45, Instrument: , Lab: ©PE-SCIEX, User: sciex Work Order 1601464 Revision 1 Page 69 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_40.qld Last Altered: Thursday, December 01, 2016 11:38:06 Pacific Standard Time Printed: Thursday, December 01, 2016 11:38:29 Pacific Standard Time ID: 1601464-07, Description: OUAI-PZ19-20161116, Name: 161129J1_40.wiff, Date: 29-Nov-2016, Time: 22:26:45, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_41.qld Last Altered: Thursday, December 01, 2016 11:41:28 Pacific Standard Time Printed: Thursday, December 01, 2016 11:41:59 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-08, Description: OUAl-MW52-20161116, Name: 161129J1_41.wiff, Date: 29-Nov-2016, Time: 22:38:58 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|--------|------| | 1 | 3 PFBS | 79.90 | 3.086e3 | 6.170e3 | | 0.130 | 3.41 | 62.4 | | | 2 | 8 PFOA | 368.90 | 3.656e2 | 6.220e3 | | 0.130 | 4.69 | 4.40 | | | 3 | 10 PFOS | 79.92 | 6.163e0 | 3.222e3 | | 0.130 | 5.08 | 0.0140 | | | 4 | 15 13C3-PFBS | 79.95 | 6.170e3 | 1.069e4 | 0.564 | 0.130 | 3.40 | 98.7 | 102 | | 5 | 16 13C2-PFHxA | 269.90 | 3.713e3 | 1.069e4 | 0.907 | 0.130 | 3.80 | 36.9 | 95.7 | | 6 | 17 13C4-PFHpA | 321.90 | 6.589e3 | 1.069e4 | 0.742 | 0.130 | 4.28 | 80.1 | 83.1 | | 7 | 18 18O2-PFHxS | 102.90 | 1.115e3 | 4.419e3 | 0.271 | 0.130 | 4.40 | 89.7 | 93.0 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.669e3 | 1.026e4 | 0.224 | 0.130 | 4.64 | 70.2 | 72.8 | | 9 | 20 13C2-PFOA | 369.90 | 6.220e3 | 1.026e4 | 0.651 | 0.130 | 4.68 | 89.8 | 93.1 | | 10 | 21 13C5-PFNA | 422.90 | 4.643e3 | 5.607e3 | 1.002 | 0.130 | 5.02 | 79.7 | 82.6 | | 11 | 22 13C8-PFOS | 79.93 | 3.222e3 | 3.822e3 | 0.950 | 0.130 | 5.08 | 85.5 | 88.7 | | 12 | 25 13C4-PFBA | 171.90 | 1.106e4 | 1.106e4 | 1.000 | 0.130 | 1.93 | 96.4 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.069e4 | 1.069e4 | 1.000 | 0.130 | 3.80 | 96.4 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.419e3 | 4.419e3 | 1.000 | 0.130 | 4.40 | 96.4 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.026e4 | 1.026e4 | 1.000 | 0.130 | 4.69 | 96.4 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 3.822e3 | 3.822e3 | 1.000 | 0.130 | 5.08 | 96.4 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 5.607e3 | 5.607e3 | 1.000 | 0.130 | 5.02 | 96.4 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.771e3 | 4.771e3 | 1.000 | 0.130 | 5.30 | 96.4 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.170e3 | | 0.130 | | 64.9 | | | 20 | 34 Total PFOA | 368.90 | | 6.220e3 | | 0.130 | | 5.38 | | | 21 | 35 Total PFOS | 79.92 | | 3.222e3 | | 0.130 | | 0.406 | | Rev'd: MM 12/1/16 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_41.qld Last Altered: Thursday, December 01, 2016 11:41:28 Pacific Standard Time Thursday, December 01, 2016 11:41:59 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-08, Description: OUAl-MW52-20161116, Name: 161129J1_41.wiff, Date: 29-Nov-2016, Time: 22:38:58, Instrument: , Lab: ©PE-SCIEX, User: sciex Work Order 1601464 Revision 1 Page 73 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_41.qld Last Altered: Thursday, December 01, 2016 11:41:28 Pacific Standard Time Printed: Thursday, December 01, 2016 11:41:59 Pacific Standard Time MassLynx 4.1 SCN815 ID: 1601464-08, Description: OUAl-MW52-20161116, Name: 161129J1_41.wiff, Date: 29-Nov-2016, Time: 22:38:58, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_42.qld Last Altered: Thursday, December 01, 2016 11:43:59 Pacific Standard Time Printed: Thursday, December 01, 2016 11:44:21 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-09, Description: OUAl-MW04-20161116, Name: 161129J1_42.wiff, Date: 29-Nov-2016, Time: 22:51:14 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | 7.827e3 | 6.337e3 | | 0.131 | 3.40 | 153 | | | 2 | 8 PFOA | 368.90 | 1.366e3 | 6.326e3 | | 0.131 | 4.68 | 16.0 | | | 3 | 10 PFOS | 79.92 | 1.723e1 | 3.602e3 | | 0.131 | 5.08 | 0.253 | | | 4 | 15 13C3-PFBS | 79.95 | 6.337e3 | 1.076e4 | 0.564 | 0.131 | 3.40 | 100 | 104 | | 5 | 16 13C2-PFHxA | 269.90 | 3.867e3 | 1.076e4 | 0.907 | 0.131 | 3.80 | 37.9 | 99.1 | | 6 | 17 13C4-PFHpA | 321.90 | 6.770e3 | 1.076e4 | 0.742 | 0.131 | 4.28 | 81.3 | 84.8 | | 7 | 18 18O2-PFHxS | 102.90 | 1.233e3 | 4.630e3 | 0.271 | 0.131 | 4.39 | 94.1 | 98.2 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.894e3 | 1.068e4 | 0.224 | 0.131 | 4.63 | 76.0 | 79.3 | | 9 | 20 13C2-PFOA | 369.90 | 6.326e3 | 1.068e4 | 0.651 | 0.131 | 4.68 | 87.2 | 91.0 | | 10 | 21 13C5-PFNA | 422.90 | 4.223e3 | 5.013e3 | 1.002 | 0.131 | 5.01 | 80.5 | 84.1 | | 11 | 22 13C8-PFOS | 79.93 | 3.602e3 | 4.074e3 | 0.950 | 0.131 | 5.08 | 89.1 | 93.0 | | 12 | 25 13C4-PFBA | 171.90 | 1.091e4 | 1.091e4 | 1.000 | 0.131 | 1.93 | 95.8 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.076e4 | 1.076e4 | 1.000 | 0.131 | 3.80 | 95.8 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.630e3 | 4.630e3 | 1.000 | 0.131 | 4.39 | 95.8 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.068e4 | 1.068e4 | 1.000 | 0.131 | 4.68 | 95.8 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 4.074e3 | 4.074e3 | 1.000 | 0.131 | 5.08 | 95.8 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 5.013e3 | 5.013e3 | 1.000 | 0.131 | 5.01 | 95.8 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 5.338e3 | 5.338e3 | 1.000 | 0.131 | 5.30 | 95.8 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.337e3 | | 0.131 | | 157 | | | 20 | 34 Total PFOA | 368.90 | | 6.326e3 | | 0.131 | | 20.0 | | | 21 | 35 Total PFOS | 79.92 | _ | 3.602e3 | _ | 0.131 | _ | 2.50 | | Rev'd: MM 12/1/16 Vista Analytical Laboratory Q1 **Quantify Sample Report** Dataset: U:\Q2.PRO\Results\161129J1\161129J1 42.qld Last Altered: Thursday, December 01, 2016 11:43:59 Pacific Standard Time Thursday, December 01, 2016 11:44:21 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-09, Description: OUAl-MW04-20161116, Name: 161129J1_42.wiff, Date: 29-Nov-2016, Time: 22:51:14, Instrument: , Lab: ©PE-SCIEX, User: sciex Work Order 1601464 Revision 1 Page 77 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_42.qld Last Altered: Thursday, December 01, 2016 11:43:59 Pacific Standard Time Printed: Thursday, December 01, 2016 11:44:21 Pacific Standard Time ID: 1601464-09, Description: OUAl-MW04-20161116, Name: 161129J1_42.wiff, Date: 29-Nov-2016, Time: 22:51:14, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_43.qld Last Altered: Thursday, December 01, 2016 11:45:59 Pacific Standard Time Printed: Thursday, December 01, 2016 11:46:28 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-10, Description: OUAI-MW04A-20161116, Name: 161129J1_43.wiff, Date: 29-Nov-2016, Time: 23:03:30 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | 7.179e3 | 6.125e3 | | 0.120 | 3.41 | 158 | | | 2 | 8 PFOA | 368.90 | 1.205e3 | 5.459e3 | | 0.120 | 4.68 | 17.8 | | | 3 | 10 PFOS | 79.92 | 1.552e1 | 2.835e3 | | 0.120 | 5.07 | 0.338 | | | 4 | 15 13C3-PFBS | 79.95 | 6.125e3 | 9.978e3 | 0.564 | 0.120 | 3.40 | 113 | 109 | | 5 | 16 13C2-PFHxA | 269.90 | 3.628e3 | 9.978e3 | 0.907 | 0.120 | 3.81 | 41.8 | 100 | | 6 | 17 13C4-PFHpA | 321.90 | 6.674e3 | 9.978e3 | 0.742 | 0.120 | 4.28 | 94.0 | 90.2 | | 7 | 18 18O2-PFHxS | 102.90 | 1.097e3 | 4.473e3 | 0.271 | 0.120 | 4.39 | 94.3 | 90.5 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.763e3 | 1.016e4 | 0.224 | 0.120 | 4.63 | 80.8 | 77.6 | | 9 | 20 13C2-PFOA | 369.90 | 5.459e3 | 1.016e4 | 0.651 | 0.120 | 4.68 | 86.0 | 82.5 | | 10 | 21 13C5-PFNA | 422.90 | 4.297e3 | 4.773e3 | 1.002 | 0.120 | 5.01 | 93.6 | 89.9 | | 11 | 22 13C8-PFOS | 79.93 | 2.835e3 | 3.475e3 | 0.950 | 0.120 | 5.07 | 89.4 | 85.8 | | 12 | 25 13C4-PFBA | 171.90 | 1.020e4 | 1.020e4 | 1.000 | 0.120 | 1.93 | 104 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 9.978e3 | 9.978e3 | 1.000 | 0.120 | 3.80 | 104 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.473e3 | 4.473e3 | 1.000 | 0.120 | 4.39 | 104 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 1.016e4 | 1.016e4 | 1.000 | 0.120 | 4.68 | 104 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 3.475e3 | 3.475e3 | 1.000 | 0.120 | 5.07 | 104 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 4.773e3 | 4.773e3 | 1.000 | 0.120 | 5.01 | 104 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.382e3 | 4.382e3 | 1.000 | 0.120 | 5.29 | 104 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.125e3 | | 0.120 | | 162 | | | 20 | 34 Total PFOA | 368.90 | | 5.459e3 | | 0.120 | |
22.1 | | | 21 | 35 Total PFOS | 79.92 | | 2.835e3 | | 0.120 | | 2.83 | | Rev'd: MM 12/1/16 **Quantify Sample Report** Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161129J1\161129J1 43.qld Last Altered: Thursday, December 01, 2016 11:45:59 Pacific Standard Time Thursday, December 01, 2016 11:46:28 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-10, Description: OUAl-MW04A-20161116, Name: 161129J1_43.wiff, Date: 29-Nov-2016, Time: 23:03:30, Instrument: , Lab: ©PE-SCIEX, User: sciex Rev'd: MM 12/1/16 Work Order 1601464 Revision 1 Page 81 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1 43.qld Last Altered: Thursday, December 01, 2016 11:45:59 Pacific Standard Time Printed: Thursday, December 01, 2016 11:46:28 Pacific Standard Time ID: 1601464-10, Description: OUAl-MW04A-20161116, Name: 161129J1 43.wiff, Date: 29-Nov-2016, Time: 23:03:30, Instrument: , Lab: ©PE-SCIEX, User: sciex Dataset: U:\Q2.PRO\Results\161129J1\161129J1_44.qld Last Altered: Thursday, December 01, 2016 11:48:27 Pacific Standard Time Printed: Thursday, December 01, 2016 11:48:53 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-11, Description: OUAl-MW05-20161116, Name: 161129J1_44.wiff, Date: 29-Nov-2016, Time: 23:15:44 | | # Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol | RT | Conc. | %Rec | |----|-----------------|--------|-----------|---------|----------|--------|------|-------|------| | 1 | 3 PFBS | 79.90 | 1.516e3 | 6.675e3 | | 0.129 | 3.41 | 28.7 | | | 2 | 8 PFOA | 368.90 | 5.631e1 | 5.178e3 | | 0.129 | 4.67 | 0.859 | | | 3 | 10 PFOS | 79.92 | 1.983e1 | 2.950e3 | | 0.129 | 5.05 | 0.421 | | | 4 | 15 13C3-PFBS | 79.95 | 6.675e3 | 1.068e4 | 0.564 | 0.129 | 3.41 | 108 | 111 | | 5 | 16 13C2-PFHxA | 269.90 | 3.782e3 | 1.068e4 | 0.907 | 0.129 | 3.80 | 37.9 | 97.6 | | 6 | 17 13C4-PFHpA | 321.90 | 6.739e3 | 1.068e4 | 0.742 | 0.129 | 4.28 | 82.7 | 85.1 | | 7 | 18 18O2-PFHxS | 102.90 | 1.130e3 | 4.675e3 | 0.271 | 0.129 | 4.39 | 86.7 | 89.2 | | 8 | 19 13C2-6:2 FTS | 408.90 | 1.965e3 | 9.635e3 | 0.224 | 0.129 | 4.63 | 88.6 | 91.2 | | 9 | 20 13C2-PFOA | 369.90 | 5.178e3 | 9.635e3 | 0.651 | 0.129 | 4.67 | 80.2 | 82.6 | | 10 | 21 13C5-PFNA | 422.90 | 4.155e3 | 5.347e3 | 1.002 | 0.129 | 4.99 | 75.4 | 77.6 | | 11 | 22 13C8-PFOS | 79.93 | 2.950e3 | 3.721e3 | 0.950 | 0.129 | 5.05 | 81.1 | 83.4 | | 12 | 25 13C4-PFBA | 171.90 | 1.095e4 | 1.095e4 | 1.000 | 0.129 | 1.93 | 97.2 | 100 | | 13 | 26 13C5-PFHxA | 273.00 | 1.068e4 | 1.068e4 | 1.000 | 0.129 | 3.80 | 97.2 | 100 | | 14 | 27 13C3-PFHxS | 80.01 | 4.675e3 | 4.675e3 | 1.000 | 0.129 | 4.39 | 97.2 | 100 | | 15 | 28 13C8-PFOA | 375.90 | 9.635e3 | 9.635e3 | 1.000 | 0.129 | 4.67 | 97.2 | 100 | | 16 | 29 13C4-PFOS | 79.94 | 3.721e3 | 3.721e3 | 1.000 | 0.129 | 5.05 | 97.2 | 100 | | 17 | 30 13C9-PFNA | 427.00 | 5.347e3 | 5.347e3 | 1.000 | 0.129 | 4.99 | 97.2 | 100 | | 18 | 31 13C6-PFDA | 474.00 | 4.499e3 | 4.499e3 | 1.000 | 0.129 | 5.27 | 97.2 | 100 | | 19 | 32 Total PFBS | 79.90 | | 6.675e3 | | 0.129 | | 30.5 | | | 20 | 34 Total PFOA | 368.90 | | 5.178e3 | | 0.129 | | 0.859 | | | 21 | 35 Total PFOS | 79.92 | | 2.950e3 | _ | 0.129 | _ | 0.937 | | Rev'd: MM 12/1/16 Work Order 1601464 Revision 1 Page 83 of 174 Vista Analytical Laboratory Q1 **Quantify Sample Report** Dataset: U:\Q2.PRO\Results\161129J1\161129J1_44.qld Last Altered: Thursday, December 01, 2016 11:48:27 Pacific Standard Time Thursday, December 01, 2016 11:48:53 Pacific Standard Time MassLynx 4.1 SCN815 Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 01 Dec 2016 11:10:17 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 ID: 1601464-11, Description: OUAl-MW05-20161116, Name: 161129J1_44.wiff, Date: 29-Nov-2016, Time: 23:15:44, Instrument: , Lab: ©PE-SCIEX, User: sciex Rev'd: MM 12/1/16 Work Order 1601464 Revision 1 Page 85 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_44.qld Last Altered: Thursday, December 01, 2016 11:48:27 Pacific Standard Time Printed: Thursday, December 01, 2016 11:48:53 Pacific Standard Time ID: 1601464-11, Description: OUAl-MW05-20161116, Name: 161129J1_44.wiff, Date: 29-Nov-2016, Time: 23:15:44, Instrument: , Lab: ©PE-SCIEX, User: sciex ## **CONTINUING CALIBRATION** **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815 Page 1 of 2 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_19.qld Last Altered: Printed: Wednesday, November 30, 2016 13:27:58 Pacific Standard Time Wednesday, November 30, 2016 13:28:37 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 25 Nov 2016 08:57:09 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Name: 161129J1_19.wiff, Date: 29-Nov-2016, Time: 18:09:35, ID: ST161129J1-2 PFC C3.5 16K2902, Description: PFC C3.5 16K2902 A | 1000 W22 | # Name | Trace | Response | IS Resp | RRF | Wt/Vol | RT | Conc. | %Rec | | | |-----------|-------------------|--------|----------|---------|-------------------------|--------|------|-------|------------------|------------|--| | 10 | 1 PFBA | 168.90 | 2.14e4 | 1.02e4 | or year and the Edition | 1.000 | 1.93 | 26.6 | 106.5 | 75-125 | | | 2 | 2 PFPeA | 218.90 | 2.20e4 | 1.16e4 | | 1.000 | 3.12 | 27.4 | 109.7 | , , | <i>t</i> | | 3 | 3 PFBS | 79.90 | 1.12e4 | 6.80e3 | | 1.000 | 3.41 | 26.5 | 106.1 | | المعالمة المعالم | | 4 | 4 PFHxA | 268.90 | 1.79e4 | 4.19e3 | | 1.000 | 3.81 | 25.7 | 103.0 |) | PP | | 5 | 5 PFHpA | 318.90 | 1.38e4 | 7.94e3 | | 1.000 | 4.28 | 26.3 | 105.0 |) | 14 24 | | 6 | 6 PFHxS | 79.91 | 8.32e3 | 1.28e3 | | 1.000 | 4.40 | 25.0 | 100.0 |) } | المعالة | | 7 | 7 6:2 FTS | 406.90 | 3.52e3 | 1.97e3 | | 1.000 | 4.64 | 23.2 | 92.8 | s | 1/1301.0 | | 8 | 8 PFOA | 368.90 | 1.68e4 | 7.15e3 | | 1.000 | 4.68 | 23.8 | 95.3 | | | | 9 | 9 PFNA | 419.00 | 1.25e4 | 5.73e3 | | 1.000 | 5.02 | 33.3 | (A) 133.0 |) <i> </i> | | | 10 | 10 PFOS | 79.92 | 9.15e3 | 3.96e3 | | 1.000 | 5.08 | 25.1 | 100.5 | 1 1 | | | 11 | 11 PFDA | 469.00 | 9.61e3 | 4.63e3 | | 1.000 | 5.31 | 26.2 | 104.7 | 1 1 | | | 12 | 12 8:2 FTS | 506.90 | 2.27e3 | 1.12e3 | | 1.000 | 5.28 | 28.6 | 114.2 | \ | | | 13 | 13 13C3-PFBA | 172.00 | 1.02e4 | 1.11e4 | 0.867 | 1.000 | 1.93 | 13.2 | 106.0 | 60-150 | @ orderde Critecia | | 14 | 14 13C3-PFPeA | 221.90 | 1.16e4 | 1.06e4 | 0.994 | 1.000 | 3.11 | 13.8 | 110.7 | 1 | Ø 5012(10 511 5 5) | | 15 | 15 13C3-PFBS | 79.95 | 6.80e3 | 1.06e4 | 0.564 | 1.000 | 3.40 | 14.3 | 114.1 | } | , بطع | | 16 | 16 13C2-PFHxA | 269.90 | 4.19e3 | 1.06e4 | 0.907 | 1.000 | 3.81 | 5.46 | 109.2 | . | @ outside Criteria
Pu
11/30/14 | | 17 | 17 13C4-PFHpA | 321.90 | 7.94e3 | 1.06e4 | 0.742 | 1.000 | 4.28 | 12.6 | 101.2 | | | | 18 | 18 18O2-PFHxS | 102.90 | 1.28e3 | 4.38e3 | 0.271 | 1.000 | 4.40 | 13.4 | 107.3 | • | | | 19 | 19 13C2-6:2 FTS | 408.90 | 1.97e3 | 1.12e4 | 0.224 | 1.000 | 4.64 | 9.87 | 78.9 | 40-150 | | | 20 | 20 13C2-PFOA | 369.90 | 7.15e3 | 1.12e4 | 0.651 | 1.000 | 4.68 | 12.3 | 98.3 | 60-150 | 11/20/10 | | 21 | 21 13C5-PFNA | 422.90 | 5.73e3 | 5.71e3 | 1.002 | 1.000 | 5.02 | 12.5 | 100.2 | 50-150 | VAC/1/30/10 | | 22 | 22 13C8-PFOS | 79.93 | 3.96e3 | 4.16e3 | 0.950 | 1.000 | 5.08 | 12.5 | 100.2 | 60- 150 | | | 23 | 23 13C2-PFDA | 470.00 | 4.63e3 | 4.97e3 | 0.827 | 1.000 | 5.30 | 14.1 | 112.6 | | | | 24 | 24 13C2-8:2 FTS | 508.70 | 1.12e3 | 4.97e3 | 0.260 | 1.000 | 5.28 | 10.8 | 86.2 | 40-150 | | | 25 | 25 13C4-PFBA | 171.90 | 1.11e4 | 1.11e4 | 1.000 | 1.000 | 1.93 | 12.5 | 100.0 | | | | 26 | 26 13C5-PFHxA | 273.00 | 1.06e4 | 1.06e4 | 1.000 | 1.000 | 3.80 | 12.5 | 100.0 | | | | 27 | 27 13C3-PFHxS | 80.01 | 4.38e3 | 4.38e3 | 1.000 | 1.000 | 4.40 | 12.5 | 100.0 | | | | 28 | 28 13C8-PFOA | 375.90 | 1.12e4 | 1.12e4 | 1.000 | 1.000 | 4.68 | 12.5 | 100.0 |) | | | 29 | 29 13C4-PFOS | 79.94 | 4.16e3 | 4.16e3 | 1.000 | 1.000 | 5.08 | 12.5 | 100.0 | | | | 30 | 30 13C9-PFNA | 427.00 | 5.71e3 | 5.71e3 | 1.000 | 1.000 | 5.02 | 12.5 | 100.0 | | | | 31 | 31 13C6-PFDA | 474.00 | 4.97e3 | 4.97e3 | 1.000 | 1.000 | 5.30 | 12.5 | 100.0 | | Daga 90 a | | k Order I | 601464 Revision 1 | | | | | | | | | _ | Page 88 of | Page 88 of 174 Printing Time: 13:55:41 Printing Date: Wednesday, November 30, 2016 | | Sample Name | Acquisition Date | | Sample Comment | |----|-------------|---------------------|-------------------------------|-------------------------| | 1 | 161129J1_01 | 11/29/2016 14:29:06 | IPA | IPA | | 2 | 161129J1_02 | 11/29/2016 14:41:22 | ST161129J1-1 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 3 | 161129J1_03 | 11/29/2016 14:53:37 | IPA | IPA | | 4 | 161129J1_04 | 11/29/2016 15:05:52 | B6K0139-BS1 | OPR | | 5 | 161129J1_05 | 11/29/2016 15:18:05 | B6K0139-BSD1 | LCS Dup | | 6 | 161129J1_06 | 11/29/2016 15:30:21 | IPA | IPA | | 7 | 161129J1_07 | 11/29/2016 15:42:35 | B6K0139-BLK1 | Method Blank | | 8 | 161129J1_08 | 11/29/2016 15:54:51 | 1601456-01 | PFAS-SW39-111416 | | 9 | 161129J1_09 | 11/29/2016 16:07:03 | 1601456-02 | PFAS-SW32-111416 | | 10 | 161129J1_10 | 11/29/2016 16:19:18 | 1601456-03 | PFAS-SW29-111416 | | 11 | 161129J1_11 | 11/29/2016 16:31:35 | 1601456-04 | PFAS-SW38-111416 | | 12 | 161129J1_12 | 11/29/2016 16:43:48 | 1601456-05 | PFAS-SW28-111416 | | 13 | 161129J1_13 | 11/29/2016 16:56:04 | 1601456-06 | PFAS-WS-DUP3-111416 | | 14 | 161129J1_14 | 11/29/2016 17:08:18 | 1601456-07 | EB2-WS-111016 | | 15 | 161129J1_15 | 11/29/2016 17:20:34 | 1601456-08 | EB2-SED-110916 | | 16 | 161129J1_16 | 11/29/2016 17:32:49 | 1601456-09 | EB3-WS-111116 | | 17 | 161129J1_17 | 11/29/2016 17:45:05 | 1601456-10 | EB3-WG-110916 | | 18 | 161129J1_18 | 11/29/2016 17:57:20 | IPA | IPA | | 19 |
161129J1_19 | 11/29/2016 18:09:35 | ST161129J1-2 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 20 | 161129J1_20 | 11/29/2016 18:21:49 | IPA | IPA | | 21 | 161129J1_21 | 11/29/2016 18:34:05 | 1601456-11 | EB4-WG-111116 | | 22 | 161129J1_22 | 11/29/2016 18:46:19 | 1601456-12 | EB3-SED-111016 | | 23 | 161129J1_23 | 11/29/2016 18:58:35 | 1601456-13 | EB4-SED-111116 | | 24 | 161129J1 24 | 11/29/2016 19:10:48 | 1601456-14 | EB4-WS-111416 | | 25 | 161129J1_25 | 11/29/2016 19:23:02 | 1601456-15 | EB5-SED-111416 | | 26 | 161129J1_26 | 11/29/2016 19:35:15 | B6K0139-MS1 | Matrix Spike | | 27 | 161129J1_27 | 11/29/2016 19:47:28 | B6K0139-MSD1 | Matrix Spike Dup | | 28 | 161129J1_28 | 11/29/2016 19:59:43 | 1601464-01 | EB03-20161116 | | 29 | 161129J1 29 | 11/29/2016 20:12:00 | 1601464-02 | OUAI-MW53-20161116 | | 30 | 161129J1_30 | 11/29/2016 20:24:14 | 1601464-03 | OUAI-MW54-20161116 | | 31 | 161129J1 31 | 11/29/2016 20:36:29 | 1601464-04 | OUAI-MW42-20161116 | | 32 | 161129J1_32 | 11/29/2016 20:48:43 | 1601464-05 | OUAI-MW01-20161116 | | 33 | 161129J1_33 | 11/29/2016 21:00:59 | IPA | IPA | | 34 | 161129J1_34 | 11/29/2016 21:13:14 | ST161129J1-3 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 35 | 161129J1_35 | 11/29/2016 21:15:14 | IPA | IPA | | 36 | 161129J1_36 | 11/29/2016 21:37:45 | B6K0164-BS1 | OPR | | 37 | | 11/29/2016 21:50:00 | IPA | | | | 161129J1_37 | | | IPA Mathed Black | | 38 | 161129J1_38 | 11/29/2016 22:02:14 | B6K0164-BLK1 | Method Blank | | | 161129J1_39 | 11/29/2016 22:14:30 | 1601464-06 | OUAI-MW31-20161116 | | 40 | 161129J1_40 | 11/29/2016 22:26:45 | 1601464-07 | OUAI-PZ19-20161116 | | 41 | 161129J1_41 | 11/29/2016 22:38:58 | 1601464-08 | OUAI-MW52-20161116 | | 42 | 161129J1_42 | 11/29/2016 22:51:14 | 1601464-09 | OUAI-MW04-20161116 | | 43 | 161129J1_43 | 11/29/2016 23:03:30 | 1601464-10 | OUAI-MW04A-20161116 | | 44 | 161129J1_44 | 11/29/2016 23:15:44 | 1601464-11 | OUAI-MW05-20161116 | | 45 | 161129J1_45 | 11/29/2016 23:27:59 | 1601472-01 | EB04-20161117 | | 46 | 161129J1_46 | 11/29/2016 23:40:10 | 1601472-02 | OUAI-MW51-20161117 | | 47 | 161129J1_47 | 11/29/2016 23:52:24 | 1601472-03 | OUAI-MW50-20161117 | | 48 | 161129J1_48 | 11/30/2016 00:04:38 | 1601472-04 | OUAI-MW49-20161117 | | 49 | 161129J1_49 | 11/30/2016 00:16:53 | B6K0164-MS1 | Matrix Spike | | 50 | 161129J1_50 | 11/30/2016 00:29:08 | B6K0164-MSD1 | Matrix Spike Dup | | 51 | 161129J1_51 | 11/30/2016 00:41:22 | IPA | IPA | | 52 | 161129J1_52 | 11/30/2016 00:53:34 | ST161129J1-4 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 53 | 161129J1_53 | 11/30/2016 01:05:50 | IPA | IPA | | 54 | 161129J1_54 | 11/30/2016 01:18:03 | 161128-QC1 | Milk QC | | 55 | 161129J1_55 | 11/30/2016 01:30:18 | 161128-QC2 | Milk QC | | 56 | 161129J1_56 | 11/30/2016 01:42:33 | 1601432-09@5x | WURTS-VAS15009-18-21_FD | | 57 | 161129J1_57 | 11/30/2016 01:54:48 | 1601432-09@40x | WURTS-VAS15009-18-21_FD | Page 1 of 2 Printing Time: 13:55:41 Printing Date: Wednesday, November 30, 2016 | | Sample Name | Acquisition Date | Sample ID | Sample Comment | |----|-------------|---------------------|-------------------------------|-------------------------| | 58 | 161129J1_58 | 11/30/2016 02:07:04 | B6K0133-MS2@5x | WURTS-VAS15009-18-21_FD | | 59 | 161129J1_59 | 11/30/2016 02:19:19 | B6K0133-MS2@40x | WURTS-VAS15009-18-21_FD | | 60 | 161129J1_60 | 11/30/2016 02:31:33 | B6K0133-MSD2@5x | WURTS-VAS15009-28-31 | | 61 | 161129J1_61 | 11/30/2016 02:43:48 | B6K0133-MSD2@40x | WURTS-VAS15009-28-31 | | 62 | 161129J1_62 | 11/30/2016 02:56:03 | IPA . | IPA | | 63 | 161129J1_63 | 11/30/2016 03:08:18 | ST161129J1-5 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 64 | 161129J1_64 | 11/30/2016 03:20:33 | IPA | IPA | Page 2 of 2 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_19.qld Last Altered: Wednesday, November 30, 2016 13:27:58 Pacific Standard Time Printed: Wednesday, November 30, 2016 13:29:08 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 25 Nov 2016 08:57:09 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Work Order 1601464 Revision 1 Page 91 of 174 Work Order 1601464 Revision 1 Page 92 of 174 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_19.qld Last Altered: Printed: 5.00 5.20 5.40 5.60 Wednesday, November 30, 2016 13:27:58 Pacific Standard Time Wednesday, November 30, 2016 13:29:08 Pacific Standard Time min 🖳 5.80 ## Name: 161129J1_19.wiff, Date: 29-Nov-2016, Time: 18:09:35, ID: ST161129J1-2 PFC C3.5 16K2902, Description: PFC C3.5 16K2902 A Work Order 1601464 Revision 1 Page 93 of 174 **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815 Page 1 of 2 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_34.qld Last Altered: Printed: Wednesday, November 30, 2016 13:34:16 Pacific Standard Time Wednesday, November 30, 2016 13:39:00 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Name: 161129J1_34.wiff, Date: 29-Nov-2016, Time: 21:13:14, ID: ST161129J1-3 PFC C3.5 16K2902, Description: PFC C3.5 16K2902 A | | # Name | Trace | Response | IS Resp | RRF | Wt∕Vol | RT | Conc. | %Rec | 1 | | | |--|------------------|--------|----------|---------|---------------|--------|------|-------|-------|-------------|-------------------------------|------| | i de espidada distributa
Desentingan a securit | 1 PFBA | 168.90 | 2.15e4 | 1.02e4 | OU GILLIAN TO | 1.000 | 1.94 | 26.9 | 107.5 | 75-125 | | | | 2 | 2 PFPeA | 218.90 | 2.18e4 | 1.17e4 | | 1.000 | 3.11 | 27.0 | 108.1 | 1 | | | | 3 գունիկոնին և հարա
3 գունին կայնը, անդան
«Կուսումին», թանական | 3 PFBS | 79.90 | 1.10e4 | 6.46e3 | | 1.000 | 3.40 | 27.4 | 109.6 | | | | | Harristania de la comorcia del la comorcia de del la comorcia de del la comorcia de la comorcia de la comorcia del comorci | 4 PFHxA | 268.90 | 1.74e4 | 4.22e3 | | 1.000 | 3.80 | 24.8 | 99.3 | | | | | 5 | 5 PFHpA | 318.90 | 1.36e4 | 8.01e3 | | 1.000 | 4.28 | 25.6 | 102.6 | | | | | 6 | 6 PFHxS | 79.91 | 8.12e3 | 1.23e3 | | 1.000 | 4.39 | 25.3 | 101.2 | | PD Ice | | | 7 | 7 6:2 FTS | 406.90 | 3.78e3 | 1.89e3 | | 1.000 | 4.62 | 26.3 | 105.2 | | " 30 1 g | | | 8 | 8 PFOA | 368.90 | 1.60e4 | 7.05e3 | | 1.000 | 4.67 | 23.0 | 91.9 | | W | | | 9 | 9 PFNA | 419.00 | 1.12e4 | 5.82e3 | | 1.000 | 4.99 | 29.5 | 118.0 | | (10 10 11 | ^ | | 10 | 10 PFOS | 79.92 | 9.11e3 | 3.95e3 | | 1.000 | 5.06 | 25.0 | 100.1 | | 1 DO 11 30 11/2
617
617 | | | 11 thomas are seen | 11 PFDA | 469.00 | 7.99e3 | 4.02e3 | | 1.000 | 5.29 | 25.0 | 99.9 | | 10.1 | | | 12 | 12 8:2 FTS | 506.90 | 2.13e3 | 9.75e2 | | 1.000 | 5.27 | 30.9 | 123.7 | \ \u | | | | 13 | 13 13C3-PFBA | 172.00 | 1.02e4 | 1.10e4 | 0.867 | 1.000 | 1.94 | 13.4 | 106.9 | 60-150 | | | | 14 | 14 13C3-PFPeA | 221.90 | 1.17e4 | 1.05e4 | 0.994 | 1.000 | 3.11 | 14.0 | 112.4 | 1 | | | | 15 | 15 13C3-PFBS | 79.95 | 6.46e3 | 1.05e4 | 0.564 | 1.000 | 3.40 | 13.7 | 109.3 | 1 | | | | 16 | 16 13C2-PFHxA | 269.90 | 4.22e3 | 1.05e4 | 0.907 | 1.000 | 3.80 | 5.55 | 111.C | | | | | 47 Photogramme | 17 13C4-PFHpA | 321.90 | 8.01e3 | 1.05e4 | 0.742 | 1.000 | 4.28 | 12.9 | 103.1 | l .l. | | | | 18 | 18 18O2-PFHxS | 102.90 | 1.23e3 | 4.31e3 | 0.271 | 1.000 | 4.39 | 13.2 | 105.3 | V | | | | 19 | 19 13C2-6:2 FTS | 408.90 | 1.89e3 | 1.04e4 | 0.224 | 1.000 | 4.62 | 10.1 | 81.1 | 40-150 | | | | 20 | 20 13C2-PFOA | 369.90 | 7.05e3 | 1.04e4 | 0.651 | 1.000 | 4.66 | 13.0 | 103.9 | 60- 150 | | | | 21 | 21 13C5-PFNA | 422.90 | 5.82e3 | 6.06e3 | 1.002 | 1.000 | 4.99 | 12.0 | 95.9 | 50-150 | | | | 22 | 22 13C8-PFOS | 79.93 | 3.95e3 | 4.10e3 | 0.950 | 1.000 | 5.06 | 12.7 | 101.4 | 60- 150 | | | | 23 | 23 13C2-PFDA | 470.00 | 4.02e3 | 4.64e3 | 0.827 | 1.000 | 5.28 | 13.1 | 104.6 | | | | | 24 | 24 13C2-8:2 FTS | 508.70 | 9.75e2 | 4.64e3 | 0.260 | 1.000 | 5.26 | 10.1 | 80.6 | 40-150 | | | | 25 | 25 13C4-PFBA | 171.90 | 1.10e4 | 1.10e4 |
1.000 | 1.000 | 1.94 | 12.5 | 100.0 | | | | | 26 | 26 13C5-PFHxA | 273.00 | 1.05e4 | 1.05e4 | 1.000 | 1.000 | 3.80 | 12.5 | 100.0 | | | | | 27 | 27 13C3-PFHxS | 80.01 | 4.31e3 | 4.31e3 | 1.000 | 1.000 | 4.39 | 12.5 | 100.0 | | | | | 28 | 28 13C8-PFOA | 375.90 | 1.04e4 | 1.04e4 | 1.000 | 1.000 | 4.66 | 12.5 | 100.0 | | | | | 29 | 29 13C4-PFOS | 79.94 | 4.10e3 | 4.10e3 | 1.000 | 1.000 | 5.06 | 12.5 | 100.0 | | | | | 30 | 30 13C9-PFNA | 427.00 | 6.06e3 | 6.06e3 | 1.000 | 1.000 | 4.99 | 12.5 | 100.0 | | | | | 31 | 31 13C6-PFDA | 474.00 | 4.64e3 | 4.64e3 | 1.000 | 1.000 | 5.28 | 12.5 | 100.0 | | Dogg (| 14 6 | | k Order To | 01464 Revision 1 | | | | | | | | | | Page 9 | 40 | Page 94 of 174 Printing Time: 13:55:41 Printing Date: Wednesday, November 30, 2016 | | Sample Name | Acquisition Date | Sample ID | Sample Comment | |-----------|----------------------------|---------------------|-------------------------------|-------------------------| | 1 | 161129J1_01 | 11/29/2016 14:29:06 | IPA | IPA | | 2 | 161129J1_02 | 11/29/2016 14:41:22 | ST161129J1-1 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 3 | 161129J1_03 | 11/29/2016 14:53:37 | IPA | IPA | | 4 | 161129J1_04 | 11/29/2016 15:05:52 | B6K0139-BS1 | OPR | | 5 | 161129J1_05 | 11/29/2016 15:18:05 | B6K0139-BSD1 | LCS Dup | | 6 | 161129J1_06 | 11/29/2016 15:30:21 | IPA | IPA | | 7 | 161129J1_07 | 11/29/2016 15:42:35 | B6K0139-BLK1 | Method Blank | | 8 | 161129J1_08 | 11/29/2016 15:54:51 | 1601456-01 | PFAS-SW39-111416 | | 9 | 161129J1_09 | 11/29/2016 16:07:03 | 1601456-02 | PFAS-SW32-111416 | | 10 | 161129J1_10 | 11/29/2016 16:19:18 | 1601456-03 | PFAS-SW29-111416 | | 11 | 161129J1_11 | 11/29/2016 16:31:35 | 1601456-04 | PFAS-SW38-111416 | | 12 | 161129J1_12 | 11/29/2016 16:43:48 | 1601456-05 | PFAS-SW28-111416 | | 13 | 161129J1_13 | 11/29/2016 16:56:04 | 1601456-06 | PFAS-WS-DUP3-111416 | | 14 | 161129J1_14 | 11/29/2016 17:08:18 | 1601456-07 | EB2-WS-111016 | | 15 | 161129J1_15 | 11/29/2016 17:20:34 | 1601456-08 | EB2-SED-110916 | | 16 | 161129J1_16 | 11/29/2016 17:32:49 | 1601456-09 | EB3-WS-111116 | | 17 | 161129J1_17 | 11/29/2016 17:45:05 | 1601456-10 | EB3-WG-110916 | | 18 | 161129J1_18 | 11/29/2016 17:57:20 | IPA | IPA | | 19 | 161129J1_19 | 11/29/2016 17:37:20 | ST161129J1-2 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 19
20 | 161129J1_19
161129J1_20 | 11/29/2016 18:09:35 | IPA | IPA | | AMERICA P | | 11/29/2016 18:34:05 | 1601456-11 | EB4-WG-111116 | | 21
20 | 161129J1_21 | | | | | 22 | 161129J1_22 | 11/29/2016 18:46:19 | 1601456-12 | EB3-SED-111016 | | 23 | 161129J1_23 | 11/29/2016 18:58:35 | 1601456-13 | EB4-SED-111116 | | 24 | 161129J1_24 | 11/29/2016 19:10:48 | 1601456-14 | EB4-WS-111416 | | 25 | 161129J1_25 | 11/29/2016 19:23:02 | 1601456-15 | EB5-SED-111416 | | 26 | 161129J1_26 | 11/29/2016 19:35:15 | B6K0139-MS1 | Matrix Spike | | 27 | ·161129J1_27 | 11/29/2016 19:47:28 | B6K0139-MSD1 | Matrix Spike Dup | | 28 | 161129J1_28 | 11/29/2016 19:59:43 | 1601464-01 | EB03-20161116 | | 29 | 161129J1_29 | 11/29/2016 20:12:00 | 1601464-02 | OUAI-MW53-20161116 | | 30 | 161129J1_30 | 11/29/2016 20:24:14 | 1601464-03 | OUAI-MW54-20161116 | | 31 | 161129J1_31 | 11/29/2016 20:36:29 | 1601464-04 | OUAI-MW42-20161116 | | 32 | 161129J1_32 | 11/29/2016 20:48:43 | 1601464-05 | OUAI-MW01-20161116 | | 33 | 161129J1 33 | 11/29/2016 21:00:59 | IPA | IPA | | 34 | 161129J1_34 | 11/29/2016 21:13:14 | ST161129J1-3 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 35 | 161129J1_35 | 11/29/2016 21:25:29 | IPA | IPA | | 36 | 161129J1_36 | 11/29/2016 21:37:45 | B6K0164-BS1 | OPR | | 37 | 161129J1_37 | 11/29/2016 21:50:00 | IPA | IPA | | 38 | 161129J1_38 | 11/29/2016 22:02:14 | B6K0164-BLK1 | Method Blank | | 39 | 161129J1_39 | 11/29/2016 22:14:30 | 1601464-06 | OUAI-MW31-20161116 | | 40 | 161129J1_39 | 11/29/2016 22:26:45 | 1601464-07 | OUAI-PZ19-20161116 | | 41 | 161129J1_41 | 11/29/2016 22:28:58 | 1601464-08 | OUAI-MW52-20161116 | | 42 | | 11/29/2016 22:51:14 | 1601464-09 | OUAI-MW04-20161116 | | 42
43 | 161129J1_42
161129J1_43 | 11/29/2016 22:51:14 | | OUAI-MW04A-20161116 | | | | | 1601464-10 | | | 44 | 161129J1_44 | 11/29/2016 23:15:44 | 1601464-11 | OUAI-MW05-20161116 | | 45 | 161129J1_45 | 11/29/2016 23:27:59 | 1601472-01 | EB04-20161117 | | 46 | 161129J1_46 | 11/29/2016 23:40:10 | 1601472-02 | OUAI-MW51-20161117 | | 47 | 161129J1_47 | 11/29/2016 23:52:24 | 1601472-03 | OUAI-MW50-20161117 | | 48 | 161129J1_48 | 11/30/2016 00:04:38 | 1601472-04 | OUAI-MW49-20161117 | | 49 | 161129J1_49 | 11/30/2016 00:16:53 | B6K0164-MS1 | Matrix Spike | | 50 | 161129J1_50 | 11/30/2016 00:29:08 | B6K0164-MSD1 | Matrix Spike Dup | | 51. | 161129J1_51 | 11/30/2016 00:41:22 | IPA | IPA | | 52 | 161129J1_52 | 11/30/2016 00:53:34 | ST161129J1-4 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 53 | 161129J1_53 | 11/30/2016 01:05:50 | IPA | IPA | | 54 | 161129J1_54 | 11/30/2016 01:18:03 | 161128-QC1 | Milk QC | | 55 | 161129J1_55 | 11/30/2016 01:30:18 | 161128-QC2 | Milk QC | | 56 | 161129J1_56 | 11/30/2016 01:42:33 | 1601432-09@5x | WURTS-VAS15009-18-21_FD | | 57 | 161129J1_57 | 11/30/2016 01:54:48 | 1601432-09@40x | WURTS-VAS15009-18-21_FD | Page 1 of 2 Printing Time: 13:55:41 Printing Date: Wednesday, November 30, 2016 | | Sample Name | Acquisition Date | Sample ID | Sample Comment | |----|-------------|---------------------|-------------------------------|--------------------------| | 58 | 161129J1_58 | 11/30/2016 02:07:04 | B6K0133-MS2@5x | WURTS-VAS 15009-18-21_FD | | 59 | 161129J1_59 | 11/30/2016 02:19:19 | B6K0133-MS2@40x | WURTS-VAS15009-18-21_FD | | 60 | 161129J1_60 | 11/30/2016 02:31:33 | B6K0133-MSD2@5x | WURTS-VAS15009-28-31 | | 61 | 161129J1_61 | 11/30/2016 02:43:48 | B6K0133-MSD2@40x | WURTS-VAS15009-28-31 | | 62 | 161129J1_62 | 11/30/2016 02:56:03 | IPA | IPA | | 63 | 161129J1_63 | 11/30/2016 03:08:18 | ST161129J1-5 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 64 | 161129J1_64 | 11/30/2016 03:20:33 | IPA | IPA | Page 2 of 2 Vista Analytical Laboratory Q2 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_34.qld Last Altered: Wednesday, November 30, 2016 13:34:16 Pacific Standard Time Printed: Wednesday, November 30, 2016 13:38:36 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Work Order 1601464 Revision 1 Page 97 of 174 Page 2 of 3 Dataset: U:\Q2.PRO\Results\161129J1\161129J1 34.qld Last Altered: Printed: Wednesday, November 30, 2016 13:34:16 Pacific Standard Time Wednesday, November 30, 2016 13:38:36 Pacific Standard Time Name: 161129J1 34.wiff, Date: 29-Nov-2016, Time: 21:13:14, ID: ST161129J1-3 PFC C3.5 16K2902, Description: PFC C3.5 16K2902 A Work Order 1601464 Revision 1 Page 98 of 174 Work Order 1601464 Revision 1 Page 99 of 174 **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815 Page 1 of 2 Dataset: U:\Q2.PRO\Results\161129J1\161129J1_52.qld Last Altered: Printed: Wednesday, November 30, 2016 13:40:28 Pacific Standard Time Wednesday, November 30, 2016 13:40:55 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 30 Nov 2016 13:32:31 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Name: 161129J1_52.wiff, Date: 30-Nov-2016, Time: 00:53:34, ID: ST161129J1-4 PFC C3.5 16K2902, Description: PFC C3.5 16K2902 A | 1000 | ne a si jaran sa | # Name | Trace | Response | Resp | RRF | Wt/Vol | RT | Conc. | %Rec | | | |------|--|----------------|--------|----------|--------
--|--------|------|-------|-------|--------------|------------------------------------| | 1 | Apparation of the second | 1 PFBA | 168.90 | 2.16e4 | 1.03e4 | # 10 mm m | 1.000 | 1.94 | 26.7 | 106.8 | 75-125 | | | 2 | | 2 PFPeA | 218.90 | 2.14e4 | 1.16e4 | | 1.000 | 3.12 | 26.8 | 107.0 | • | | | 3 | A Manual Concess | 3 PFBS | 79.90 | 1.07e4 | 6.57e3 | | 1.000 | 3.40 | 26.3 | 105.2 | | _ | | 4 | | 4 PFHxA | 268.90 | 1.80e4 | 3.99e3 | | 1.000 | 3.80 | 27.2 | 109.0 | 1 | PD . | | 5 | e in activities | 5 PFHpA | 318.90 | 1.32e4 | 7.97e3 | | 1.000 | 4.27 | 25.1 | 100.5 | | 1130 / K | | 6 | | 6 PFHxS | 79.91 | 7.74e3 | 1.32e3 | | 1.000 | 4.39 | 22.5 | 89.9 | | Me . | | 7 | | 7 6:2 FTS | 406.90 | 3.53e3 | 1.95e3 | | 1.000 | 4.63 | 23.6 | 94.3 | | PD
11/30/H
V AC 11/30/14 | | 8 | | 8 PFOA | 368.90 | 1.72e4 | 7.11e3 | | 1.000 | 4.67 | 24.6 | 98.5 | | V ACII JOSTIC | | 9 | | 9 PFNA | 419.00 | 1.26e4 | 5.95e3 | | 1.000 | 5.01 | 32.3 | 129.4 | | · | | 1 | 0 10 | 0 PFOS | 79.92 | 8.76e3 | 3.98e3 | | 1.000 | 5.07 | 23.9 | 95.6 | | | | 1 | 1 | 1 PFDA | 469.00 | 8.27e3 | 4.12e3 | | 1.000 | 5.30 | 25.2 | 100.9 | leal# | | | 1 | 2 1: | 2 8:2 FTS | 506.90 | 2.12e3 | 1.03e3 | | 1.000 | 5.27 | 28.9 | 115.5 | A bry liber. | | | 1 | | | 172.00 | 1.03e4 | 1.11e4 | 0.867 | 1.000 | 1.94 | 13.4 | 107.0 | PIJ IIISOH | | | 1 | 374 C. (1) 10 10 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | | 221.90 | 1.16e4 | 1.04e4 | 0.994 | 1.000 | 3.12 | 14.0 | 111.9 | 1 | | | 1 | 415-1985 | | 79.95 | 6.57e3 | 1.04e4 | 0.564 | 1.000 | 3.40 | 14.0 | 111.7 | 1 | | | 1 | PART OF STREET | | 269.90 | 3.99e3 | 1.04e4 | 0.907 | 1.000 | 3.80 | 5.27 | 105.4 | | Badeide Criteria
PW
11/30/16 | | 1 | | • | 321.90 | 7.97e3 | 1.04e4 | 0.742 | 1.000 | 4.27 | 12.9 | 103.0 | | 90 | | 1 | COMMISSION OF THE PROPERTY | | 102.90 | 1.32e3 | 4.24e3 | 0.271 | 1.000 | 4.39 | 14.3 | 114.8 | V | | | 1 | 25.7 | 9 13C2-6:2 FTS | 408.90 | 1.95e3 | 1.09e4 | 0.224 | 1.000 | 4.62 | 10.0 | 80.0 | 40-150 | 1115010 | | 2 | | | 369.90 | 7.11e3 | 1.09e4 | 0.651 | 1.000 | 4.67 | 12.5 | | 60-150 | | | 2 | | | 422.90 | 5.95e3 | 5.33e3 | 1.002 | 1.000 | 5.01 | 13.9 | | 50- 150 | | | 2 | 1.2.3.7° (1.0.11) | | 79.93 | 3.98e3 | 3.93e3 | 0.950 | 1.000 | 5.07 | 13.3 | 106.7 | 60- 150 | | | 2 | r | | 470.00 | 4.12e3 | 4.43e3 | 0.827 | 1.000 | 5.30 | 14.1 | 112.5 | | | | 2 | N | | 508.70 | 1.03e3 | 4.43e3 | 0.260 | 1.000 | 5.27 | 11.2 | 89.7 | 40-150 | | | 2 | | | 171.90 | 1.11e4 | 1.11e4 | 1.000 | 1.000 | 1.94 | 12.5 | 100.0 | | | | 2 | E 'S LARGIERINI MANAGERIS | | 273.00 | 1.04e4 | 1.04e4 | 1.000 | 1.000 | 3.80 | 12.5 | 100.0 | | | | 2 | 111114208144 | | 80.01 | 4.24e3 | 4.24e3 | 1.000 | 1.000 | 4.38 | 12.5 | 100.0 | | | | 2 | Life in the second second | | 375.90 | 1.09e4 | 1.09e4 | 1.000 | 1.000 | 4.67 | 12.5 | 100.0 | | | | 2 | | | 79.94 | 3.93e3 | 3.93e3 | 1.000 | 1.000 | 5.07 | 12.5 | 100.0 | | | | 3 | · · Market Control of the | | 427.00 | 5.33e3 | 5.33e3 | 1.000 | 1.000 | 5.00 | 12.5 | 100.0 | | | | ork | 1 3 | | 474.00 | 4.43e3 | 4.43e3 | 1.000 | 1.000 | 5.30 | 12.5 | 100.0 | | Page 100 of | Work Order 1601464 Revision 1 Page 100 of 174 Printing Time: 13:55:41 Printing Date: Wednesday, November 30, 2016 | | Sample Name | Acquisition Date | Sample ID | Sample Comment | |----------|-------------|---------------------|-------------------------------|-------------------------| | 1 , | 161129J1_01 | 11/29/2016 14:29:06 | IPA | IPA | | 2 | 161129J1_02 | 11/29/2016 14:41:22 | ST161129J1-1 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 3 | 161129J1_03 | 11/29/2016 14:53:37 | IPA | IPA | | 4 | 161129J1_04 | 11/29/2016 15:05:52 | B6K0139-BS1 | OPR | | 5 | 161129J1_05 | 11/29/2016 15:18:05 | B6K0139-BSD1 | LCS Dup | | 6 | 161129J1_06 | 11/29/2016 15:30:21 | IPA | IPA | | 7 | 161129J1_07 | 11/29/2016 15:42:35 | B6K0139-BLK1 | Method Blank | | 8 | 161129J1_08 | 11/29/2016 15:54:51 | 1601456-01 | PFAS-SW39-111416 | | 9 | 161129J1_09 | 11/29/2016 16:07:03 | 1601456-02 | PFAS-SW32-111416 | | 10 | 161129J1_10 | 11/29/2016 16:19:18 | 1601456-03 | PFAS-SW29-111416 | | 11 | 161129J1_11 | 11/29/2016 16:31:35 | 1601456-04 | PFAS-SW38-111416 | | 12 | 161129J1_12 | 11/29/2016 16:43:48 | 1601456-05 | PFAS-SW28-111416 | | 13 | 161129J1_13 | 11/29/2016 16:56:04 | 1601456-06 | PFAS-WS-DUP3-111416 | | 14 | 161129J1_14 | 11/29/2016 17:08:18 | 1601456-07 | EB2-WS-111016 | | 15 | 161129J1_15 | 11/29/2016 17:20:34 | 1601456-08 | EB2-SED-110916 | | 16 | 161129J1_16 | 11/29/2016 17:32:49 | 1601456-09 | EB3-WS-111116 | | 17 | 161129J1_17 | 11/29/2016 17:45:05 | 1601456-10 | EB3-WG-110916 | | 18 | 161129J1_18 | 11/29/2016 17:57:20 | IPA | IPA | | 19 | 161129J1_19 | 11/29/2016 18:09:35 | ST161129J1-2 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 20 | 161129J1_19 | 11/29/2016 18:09:35 | IPA | IPA | | 20
21 | 161129J1_20 | 11/29/2016 18:34:05 | 1601456-11 | EB4-WG-111116 | | 7 36 373 | | 11/29/2016 18:46:19 | 1601456-12 | EB3-SED-111016 | | 22 | 161129J1_22 | | | | | 23 | 161129J1_23 | 11/29/2016 18:58:35 | 1601456-13 | EB4-SED-111116 | | 24 | 161129J1_24 | 11/29/2016 19:10:48 | 1601456-14 | EB4-WS-111416 | | 25 | 161129J1_25 | 11/29/2016 19:23:02 | 1601456-15 | EB5-SED-111416 | | 26 | 161129J1_26 | 11/29/2016 19:35:15 | B6K0139-MS1 | Matrix Spike | | 27 | 161129J1_27 | 11/29/2016 19:47:28 | B6K0139-MSD1 | Matrix Spike Dup | | 28 | 161129J1_28 | 11/29/2016 19:59:43 | 1601464-01 | EB03-20161116 | | 29 | 161129J1_29 | 11/29/2016 20:12:00 | 1601464-02 | OUAI-MW53-20161116 | | 30 | 161129J1_30 | 11/29/2016 20:24:14 | 1601464-03 | OUAI-MW54-20161116 | | 31 | 161129J1_31 | 11/29/2016 20:36:29 | 1601464-04 | OUAI-MW42-20161116 | | 32 | 161129J1_32 | 11/29/2016 20:48:43 | 1601464-05 | OUAI-MW01-20161116 | | 33 | 161129J1_33 | 11/29/2016 21:00:59 | IPA | IPA | | 34 | 161129J1_34 | 11/29/2016 21:13:14 | ST161129J1-3 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 35 | 161129J1_35 | 11/29/2016 21:25:29 | IPA | IPA | | 36 | 161129J1_36 | 11/29/2016 21:37:45 | B6K0164-BS1 | OPR | | 37 | 161129J1_37 | 11/29/2016 21:50:00 | IPA | IPA | | 38 | 161129J1_38 | 11/29/2016 22:02:14 | B6K0164-BLK1 | Method Blank | | 39 | 161129J1_39 | 11/29/2016 22:14:30 | 1601464-06 | OUAI-MW31-20161116 | | 40 | 161129J1_40 | 11/29/2016 22:26:45 | 1601464-07 | OUAI-PZ19-20161116 | | 41 | 161129J1_41 | 11/29/2016 22:38:58 | 1601464-08 | OUAI-MW52-20161116 | | 42 | 161129J1_42 | 11/29/2016 22:51:14 | 1601464-09 | OUAI-MW04-20161116 | | 43 | 161129J1_43 | 11/29/2016 23:03:30 | 1601464-10 | OUAI-MW04A-20161116 | | 43
44 | 161129J1_43 | 11/29/2016 23:05:30 | 1601464-11 | OUAI-MW05-20161116 | | 44
45 | 161129J1_45 | 11/29/2016 23:15:44 | 1601472-01 | EB04-20161117 | | | | 11/29/2016 23:27:59 | | OUAI-MW51-20161117 | | 46 | 161129J1_46 | | 1601472-02 | | | 47 | 161129J1_47 | 11/29/2016 23:52:24 | 1601472-03 | OUAI-MW50-20161117 | | 48 | 161129J1_48 | 11/30/2016 00:04:38 | 1601472-04 | OUAI-MW49-20161117 | | 49 | 161129J1_49 | 11/30/2016 00:16:53 | B6K0164-MS1 | Matrix Spike | | 50 | 161129J1_50 | 11/30/2016 00:29:08 | B6K0164-MSD1 | Matrix Spike Dup | | 51 | 161129J1_51 | 11/30/2016 00:41:22 | IPA | IPA | | 52 | 161129J1_52 | 11/30/2016 00:53:34 | ST161129J1-4 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 53 | 161129J1_53 | 11/30/2016 01:05:50 | IPA | IPA | | 54 | 161129J1_54 | 11/30/2016 01:18:03 | 161128-QC1 | Milk QC | | 55 | 161129J1_55 | 11/30/2016 01:30:18 | 161128-QC2 | Milk QC | | 56 | 161129J1_56 | 11/30/2016 01:42:33 | 1601432-09@5x | WURTS-VAS15009-18-21_FD | | 57 | 161129J1_57 | 11/30/2016 01:54:48 | 1601432-09@40x | WURTS-VAS15009-18-21_FD | Page 1 of 2 Printing Time: 13:55:41 Printing Date: Wednesday, November 30, 2016 | | Sample Name | Acquisition Date | Sample ID | Sample Comment | |----|-------------|---------------------|-------------------------------|-------------------------| | 58 | 161129J1_58 | 11/30/2016 02:07:04 | B6K0133-MS2@5x | WURTS-VAS15009-18-21_FD | | 59 | 161129J1_59 | 11/30/2016 02:19:19 | B6K0133-MS2@40x |
WURTS-VAS15009-18-21_FD | | 60 | 161129J1_60 | 11/30/2016 02:31:33 | B6K0133-MSD2@5x | WURTS-VAS15009-28-31 | | 61 | 161129J1_61 | 11/30/2016 02:43:48 | B6K0133-MSD2@40x | WURTS-VAS15009-28-31 | | 62 | 161129J1_62 | 11/30/2016 02:56:03 | IPA | IPA | | 63 | 161129J1_63 | 11/30/2016 03:08:18 | ST161129J1-5 PFC C3.5 16K2902 | PFC C3.5 16K2902 A | | 64 | 161129J1_64 | 11/30/2016 03:20:33 | IPA | IPA | Page 2 of 2 Work Order 1601464 Revision 1 Page 103 of 174 4.20 4.40 4.60 4.00 4.20 4.60 4.80 5.00 3.60 3.80 4.00 4.20 4.40 3.80 4.00 Work Order 1601464 Revision 1 Page 104 of 174 Work Order 1601464 Revision 1 Page 105 of 174 ## INITIAL CALIBRATION Quantify Compound Summary Report Vista Analytical Laboratory Q2 MassLynx 4.1 SCN815 Page 1 of 16 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:59:09 Pacific Standard Time Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 19 Nov 2016 12:55:02 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Compound name: PFBA Correlation coefficient: r = 0.999219, $r^2 = 0.998438$ Calibration curve: 0.982791 * x + 0.0230635 Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |-----|---------------------|-----------|------|--------|---------|-------|------|-------| | 1.5 | 1 161118J2_03_P1_E1 | 0.500 | 1.90 | 4.24e2 | 9.66e3 | 0.535 | 7.1 | 1.10 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 1.91 | 7.90e2 | 1.01e4 | 0.972 | -2.8 | 0.978 | | 3 | 3 161118J2_05_P1_E1 | 2.00 | 1.91 | 1.58e3 | 1.05e4 | 1.88 | -6.0 | 0.936 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 1.91 | 3.59e3 | 9.99e3 | 4.55 | -9.1 | 0.898 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 1.91 | 8.91e3 | 1.04e4 | 10.9 | 9.2 | 1.08 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 1.91 | 1.96e4 | 9.20e3 | 27.1 | 8.5 | 1.07 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 1.91 | 3.98e4 | 9.95e3 | 50.8 | 1.7 | 1.00 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 1.91 | 6.13e4 | 1.06e4 | 73.2 | -2.4 | 0.960 | | 9 | 9 161118J2_11_P1_E1 | 100 | 1.90 | 7.16e4 | 9.24e3 | 98.4 | -1.6 | 0.968 | MAIL الاعداله Compound name: PFPeA Correlation coefficient: r = 0.998741, $r^2 = 0.997484$ Calibration curve: 0.85968 * x + 0.0362224 Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------|------|-------| | | 1 161118J2_03_P1_E1 | 0.500 | 3.11 | 4.30e2 | 1.11e4 | 0.524 | 4.7 | 0.973 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 3.10 | 7.66e2 | 1.13e4 | 0.945 | -5.5 | 0.848 | | 3 | 3 161118J2_05_P1_E1 | 2.00 | 3.11 | 1.58e3 | 1.17e4 | 1.92 | -4.1 | 0.842 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 3.11 | 3.65e3 | 1.13e4 | 4.65 | -6.9 | 0.807 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 3.11 | 8.91e3 | 1.15e4 | 11.2 | 12.1 | 0.968 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 3.11 | 1.96e4 | 1.02e4 | 27.9 | 11.8 | 0.962 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 3.11 | 3.82e4 | 1.10e4 | 50.5 | 1.0 | 0.869 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 3.10 | 5.94e4 | 1.17e4 | 73.8 | -1.6 | 0.846 | | 9 | 9 161118J2_11_P1_E1 | 100 | 3.11 | 6.78e4 | 1.02e4 | 97.0 | -3.0 | 0.835 | ss reinjected. Both injections are included. Work Order 1601464 Revision 1 Page 107 of 174 Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q2 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: PFBS Correlation coefficient: r = 0.999357, $r^2 = 0.998715$ Calibration curve: 0.774866 * x + -0.0202219 Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None | Programme and the second secon | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |--|---------------------|-----------|------|--------|---------|-------|-------|-------| | 1 | 1 161118J2_03_P1_E1 | 0.500 | 3.40 | 2.02e2 | 6.31e3 | 0.543 | 8.7 | 0.802 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 3.40 | 3.70e2 | 6.41e3 | 0.957 | -4.3 | 0.722 | | 3 - 1/4 | 3 161118J2_05_P1_E1 | 2.00 | 3.40 | 7.47e2 | 6.75e3 | 1.81 | -9.5 | 0.691 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 3.40 | 1.76e3 | 6.54e3 | 4.36 | -12.8 | 0.672 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 3.40 | 4.41e3 | 6.60e3 | 10.8 | 7.9 | 0.834 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 3.40 | 9.83e3 | 6.03e3 | 26.4 | 5.4 | 0.816 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 3.40 | 1.92e4 | 6.06e3 | 51.3 | 2.5 | 0.794 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 3.40 | 2.90e4 | 6.40e3 | 73.1 | -2.6 | 0.755 | | 9 | 9 161118J2_11_P1_E1 | 100 | 3.40 | 3.44e4 | 5.59e3 | 99.3 | -0.7 | 0.770 | Compound name: PFHxA Correlation coefficient: r = 0.998535, $r^2 = 0.997072$ Calibration curve: 0.829371 * x + 0.0163807 Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None | 11-11-12 (A. 22) (11-11-12)
11-11-12 (A. 22) (11-11-12) | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |--|---------------------|-----------|------|--------|---------|-------|-------|-------| | 1 | 1 161118J2_03_P1_E1 | 0.500 | 3.80 | 3.69e2 | 4.09e3 | 0.524 | 4.8 | 0.902 | | 2 11 11 11 11 11 11 11 11 11 11 11 11 11 | 2 161118J2_04_P1_E1 | 1.00 | 3.80 | 6.83e2 | 4.14e3 | 0.977 | -2.3 | 0.826 | | 3 | 3 161118J2_05_P1_E1 | 2.00 | 3.80 | 1.34e3 | 4.46e3 | 1.79 | -10.3 | 0.752 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 3.80 | 3.15e3 | 4.17e3 | 4.52 | -9.5 | 0.754 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 3.80 | 7.88e3 | 4.20e3 | 11.3 | 13.0 | 0.939 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 3.80 | 1.70e4 | 3.62e3 | 28.3 | 13.2 | 0.940 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 3.80 | 3.29e4 | 4.00e3 | 49.6 | -0.8 | 0.823 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 3.80 | 5.07e4 | 4.17e3 | 73.3 | -2.3 | 0.810 | | 9 | 9 161118J2_11_P1_E1 | 100 | 3.80 | 5.96e4 | 3.66e3 | 98.2 | -1.8 | 0.815 | Work Order 1601464 Revision 1 Page 108 of 174 Page 2 of 16 Quantify Compound Summary Report Vista Analytical Laboratory Q2 MassLynx 4.1 SCN815 Page 3 of 16 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: PFHpA Correlation coefficient: r = 0.999224, $r^2 = 0.998449$ Calibration curve: 0.825598 * x + -0.00188587 Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------|-------|-------| | 1 | 1 161118J2_03_P1_E1 | 0.500 | 4.28 | 2.89e2 | 7.89e3 | 0.557 | 11.4 | 0.916 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 4.27 | 5.60e2 | 7.91e3 | 1.08 | 7.6 | 0.886 | | 3 | 3 161118J2_05_P1_E1 | 2.00 | 4.27 | 1.03e3 | 8.97e3 | 1.75 | -12.6 | 0.720 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 4.28 | 2.40e3 | 8.54e3 | 4.25 | -15.0 | 0.701 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 4.27 | 6.00e3 | 8.73e3 | 10.4 | 4.1 | 0.860 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 4.28 | 1.36e4 | 7.71e3 | 26.7 | 6.8 | 0.881 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 4.27 | 2.72e4 | 8.57e3 | 48.1 | -3.9 | 0.794 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 4.27 | 4.38e4 | 8.67e3 | 76.4 | 1.9 | 0.841 | | 9 | 9 161118J2_11_P1_E1 | 100 | 4.27 | 4.99e4 | 7.61e3 | 99.3 | -0.7 | 0.820 | Compound name: PFHxS Coefficient of Determination: R^2 = 0.997308 Calibration curve: -0.00339694 * x^2 + 3.36003 * x + -0.393288 Response type: Internal
Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name = | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------|-------|------| | 1 | 1 161118J2_03_P1_E1 | 0.500 | 4.39 | 1.60e2 | 1.21e3 | 0.610 | 22.0 | 3.31 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 4.40 | 3.00e2 | 1.22e3 | 1.03 | 3.1 | 3.07 | | 3 | 3 161118J2_05_P1_E1 | 2.00 | 4.40 | 5.85e2 | 1.28e3 | 1.81 | -9.3 | 2.85 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 4.40 | 1.28e3 | 1.29e3 | 3.83 | -23.4 | 2.48 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 4.39 | 3.33e3 | 1.24e3 | 10.2 | 1.7 | 3.34 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 4.40 | 7.64e3 | 1.10e3 | 26.6 | 6.4 | 3.46 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 4.40 | 1.57e4 | 1.21e3 | 51.4 | 2.7 | 3.26 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 4.39 | 2.39e4 | 1.35e3 | 71.5 | -4.7 | 2.97 | | 9 | 9 161118J2_11_P1_E1 | 100 | 4.39 | 2.78e4 | 1.13e3 | 102 | 1.6 | 3.06 | Work Order 1601464 Revision 1 Page 109 of 174 **Quantify Compound Summary Report** MassLynx 4.1 SCN815 Page 4 of 16 Vista Analytical Laboratory Q2 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 6:2 FTS Coefficient of Determination: R^2 = 0.997896 Calibration curve: -0.00379453 * x^2 + 1.05162 * x + -0.0537721 Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | aloto e hoji di sa
mangang pelakatan | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 0.500 | 4.63 | 8.82e1 | 2.25e3 | 0.518 | 3.6 | 0.980 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 4.63 | 1.70e2 | 2.23e3 | 0.961 | -3.9 | 0.953 | | 3 | 3 161118J2_05_P1_E1 | 2.00 | 4.63 | 3.64e2 | 2.36e3 | 1.90 | -5.0 | 0.966 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 4.63 | 8.22e2 | 2.08e3 | 4.84 | -3.2 | 0.989 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 4.62 | 2.16e3 | 2.34e3 | 11.5 | 14.7 | 1.15 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 4.64 | 4.19e3 | 2.35e3 | 23.2 | -7.3 | 0.892 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 4.63 | 9.45e3 | 2.73e3 | 50.5 | 0.9 | 0.867 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 4.62 | 1.32e4 | 2.87e3 | 75.2 | 0.3 | 0.768 | | 9 | 9 161118J2_11_P1_E1 | 100 | 4.62 | 1.58e4 | 2.93e3 | 100 | 0.1 | 0.672 | Compound name: PFOA Coefficient of Determination: R^2 = 0.997857 Calibration curve: $-0.00316403 * x^2 + 1.30489 * x + -0.00818696$ Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|-----------------|---------|-------|-------|-------| | 1 | 1 161118J2_03_P1_E1 | 0.500 | 4.67 | 4.20e2 | 6.73e3 | 0.604 | 20.9 | 1.56 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 4.67 | 6.86e2 | 7.03e3 | 0.944 | -5.6 | 1.22 | | 3 | 3 161118J2_05_P1_E1 | 2.00 | 4.68 | 1. 42 e3 | 7.65e3 | 1.79 | -10.6 | 1.16 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 4.67 | 3.16e3 | 7.34e3 | 4.17 | -16.5 | 1.08 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 4.66 | 7.24e3 | 6.63e3 | 10.7 | 7.4 | 1.36 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 4.68 | 1.80e4 | 6.89e3 | 26.8 | 7.1 | 1.31 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 4.67 | 3.40e4 | 7.68e3 | 48.0 | -4.0 | 1.11 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 4.67 | 4.86e4 | 7.62e3 | 74.4 | -0.7 | 1.06 | | 9 | 9 161118J2_11_P1_E1 | 100 | 4.67 | 5.64e4 | 7.07e3 | 101 | 1.2 | 0.997 | Work Order 1601464 Revision 1 Page 110 of 174 Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q2 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: PFNA Correlation coefficient: r = 0.999117, $r^2 = 0.998235$ Calibration curve: 0.818566 * x + -0.00476162 Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |----|---------------------|-----------|------|--------|---------|-------|-------|-------| | 1 | 1 161118J2_03_P1_E1 | 0.500 | 5.01 | 2.12e2 | 5.85e3 | 0.558 | 11.6 | 0.904 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 5.00 | 3.84e2 | 6.59e3 | 0.896 | -10.4 | 0.728 | | 3 | 3 161118J2_05_P1_E1 | 2.00 | 5.02 | 8.03e2 | 6.89e3 | 1.78 | -10.8 | 0.728 | | 4. | 4 161118J2_06_P1_E1 | 5.00 | 5.00 | 1.89e3 | 5.98e3 | 4.82 | -3.6 | 0.788 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 4.99 | 4.85e3 | 6.45e3 | 11.5 | 14.9 | 0.940 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 5.01 | 1.07e4 | 6.86e3 | 23.9 | -4.4 | 0.782 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 5.01 | 2.28e4 | 6.69e3 | 52.1 | 4.3 | 0.854 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 4.99 | 3.67e4 | 7.65e3 | 73.3 | -2.3 | 0.800 | | 9 | 9 161118J2_11_P1_E1 | 100 | 5.00 | 4.09e4 | 6.27e3 | 99.6 | -0.4 | 0.816 | Compound name: PFOS Correlation coefficient: r = 0.997516, $r^2 = 0.995038$ Calibration curve: 1.14981 * x + 0.021829 Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None | on telephone to the Section | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |-----------------------------|---------------------|-----------|------|--------|---------|-------|-------|------| | 1 | 1 161118J2_03_P1_E1 | 0.500 | 5.07 | 1.47e2 | 3.06e3 | 0.501 | 0.2 | 1.20 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 5.06 | 3.11e2 | 3.35e3 | 0.988 | -1.2 | 1.16 | | 3 | 3 161118J2_05_P1_E1 | 2.00 | 5.08 | 6.07e2 | 3.38e3 | 1.94 | -3.2 | 1.12 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 5.06 | 1.46e3 | 3.64e3 | 4.35 | -13.0 | 1.00 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 5.05 | 3.76e3 | 3.74e3 | 10.9 | 9.0 | 1.26 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 5.07 | 8.96e3 | 3.27e3 | 29.7 | 19.0 | 1.37 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 5.08 | 1.61e4 | 3.68e3 | 47.7 | -4.6 | 1.10 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 5.05 | 2.98e4 | 4.29e3 | 75.4 | 0.5 | 1.16 | | 9 | 9 161118J2_11_P1_E1 | 100 | 5.06 | 3.07e4 | 3.44e3 | 97.0 | -3.0 | 1.12 | Work Order 1601464 Revision 1 Page 111 of 174 Page 5 of 16 Quantify Compound Summary Report MassLynx 4.1 SCN815 Page 6 of 16 Vista Analytical Laboratory Q2 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: PFDA Coefficient of Determination: R^2 = 0.994991 Calibration curve: -0.00347007 * x^2 + 1.08566 * x + -0.0891482 Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None | ցրում գտնելի գրվերներներին ինչ
Մարջույն Միջերի բորոշում և ՀՀ ՀՀ
ՀԱՏԵՐ Միջերի Արևույն ԱՄ | # Name | Std. Conc | RT | Resp | S Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|--------|-------|-------|-------| | Territoriani de la martina | 1 161118J2_03_P1_E1 | 0.500 | 5.30 | 1.24e2 | 2.90e3 | 0.573 | 14.6 | 1.06 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 5.28 | 2.45e2 | 3.23e3 | 0.957 | -4.3 | 0.947 | | 3 - 20 145 r p 1411 1416 20 | 3 161118J2_05_P1_E1 | 2.00 | 5.31 | 4.89e2 | 3.43e3 | 1.73 | -13.3 | 0.891 | | 4 Ֆուլադիա, | 4 161118J2_06_P1_E1 | 5.00 | 5.29 | 1.19e3 | 3.48e3 | 4.09 | -18.3 | 0.858 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 5.28 | 3.03e3 | 3.83e3 | 9.49 | -5.1 | 0.990 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 5.29 | 8.23e3 | 3.72e3 | 28.0 | 12.2 | 1.11 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 5.30 | 1.73e4 | 4.61e3 | 51.8 | 3.6 |
0.936 | | 8 | 8 161118J2_10_P1_E1 | 75.0 | 5.27 | 2.38e4 | 5.18e3 | 67.7 | -9.7 | 0.767 | | 9 (11) | 9 161118J2_11_P1_E1 | 100 | 5.28 | 2.69e4 | 4.43e3 | 105 | 5.3 | 0.758 | Compound name: 8:2 FTS Coefficient of Determination: R^2 = 0.996754 Calibration curve: -0.0034291 * x^2 + 0.988926 * x + -0.0486443 Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None | Alabatan puhihdan sastas
Alabatan pokaras | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |--|---------------------|-----------|------|--------|---------|-------|-------|-------| | 1 | 1 161118J2_03_P1_E1 | 0.500 | 5.27 | 3.13e1 | 9.39e2 | 0.471 | -5.8 | 0.833 | | 2 | 2 161118J2_04_P1_E1 | 1.00 | 5.26 | 7.68e1 | 9.83e2 | 1.04 | 4.0 | 0.976 | | 3 section state and section in the section is | 3 161118J2_05_P1_E1 | 2.00 | 5.28 | 1.39e2 | 1.07e3 | 1.70 | -15.2 | 0.809 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 5.26 | 3.98e2 | 1.10e3 | 4.69 | -6.2 | 0.903 | | 5 | 5 161118J2_07_P1_E1 | 10.0 | 5.26 | 9.60e2 | 1.10e3 | 11.6 | 15.7 | 1.09 | | 6 | 6 161118J2_08_P1_E1 | 25.0 | 5.27 | 2.18e3 | 1.18e3 | 25.8 | 3.1 | 0.927 | | 7 | 7 161118J2_09_P1_E1 | 50.0 | 5.28 | 4.62e3 | 1.52e3 | 45.7 | -8.5 | 0.760 | | 8 min hambani s | 8 161118J2_10_P1_E1 | 75.0 | 5.25 | 7.29e3 | 1.64e3 | 76.8 | 2.4 | 0.742 | | 9 less of the state stat | 9 161118J2_11_P1_E1 | 100 | 5.26 | 7.46e3 | 1.43e3 | 102 | 1.7 | 0.651 | Work Order 1601464 Revision 1 Page 112 of 174 Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q2 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C3-PFBA Response Factor: 0.866891 RRF SD: 0.0236312, Relative SD: 2.72597 Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 1.90 | 9.66e3 | 1.15e4 | 12.1 | -3.4 | 0.838 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 1.90 | 1.01e4 | 1.16e4 | 12.6 | 0.6 | 0.872 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 1.90 | 1.05e4 | 1.16e4 | 13.1 | 5.1 | 0.911 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 1.90 | 9.99e3 | 1.18e4 | 12.2 | -2.0 | 0.849 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 1.91 | 1.04e4 | 1.17e4 | 12.7 | 1.9 | 0.883 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 1.90 | 9.20e3 | 1.06e4 | 12.5 | 0.2 | 0.868 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 1.90 | 9.95e3 | 1.16e4 | 12.4 | -1.0 | 0.858 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 1.91 | 1.06e4 | 1.21e4 | 12.7 | 1.8 | 0.883 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 1.90 | 9.24e3 | 1.10e4 | 12.1 | -3.1 | 0.840 | Compound name: 13C3-PFPeA Response Factor: 0.994106 RRF SD: 0.0301656, Relative SD: 3.03445 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 3.10 | 1.11e4 | 1.12e4 | 12.4 | -0.7 | 0.987 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 3.10 | 1.13e4 | 1.09e4 | 13.0 | 4.2 | 1.04 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 3.10 | 1.17e4 | 1.15e4 | 12.9 | 3.0 | 1.02 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 3.11 | 1.13e4 | 1.15e4 | 12.3 | -1.2 | 0.982 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 3.10 | 1.15e4 | 1.17e4 | 12.4 | -0.8 | 0.986 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 3.11 | 1.02e4 | 1.03e4 | 12.5 | -0.3 | 0.991 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 3.10 | 1.10e4 | 1.12e4 | 12.3 | -1.5 | 0.979 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 3.10 | 1.17e4 | 1.14e4 | 12.9 | 3.1 | 1.02 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 3.10 | 1.02e4 | 1.08e4 | 11.8 | -5.7 | 0.937 | Work Order 1601464 Revision 1 Page 113 of 174 Page 7 of 16 **Quantify Compound Summary Report** Vista Analytical Laboratory Q2 MassLynx 4.1 SCN815 Page 8 of 16 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Printed: Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C3-PFBS Response Factor: 0.563832 RRF SD: 0.0242321, Relative SD: 4.29775 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |-----|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 3.40 | 6.31e3 | 1.12e4 | 12.5 | -0.2 | 0.563 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 3.40 | 6.41e3 | 1.09e4 | 13.0 | 4.4 | 0.589 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 3.40 | 6.75e3 | 1.15e4 | 13.1 | 4.4 | 0.589 | | 4.7 | 4 161118J2_06_P1_E1 | 12.5 | 3.40 | 6.54e3 | 1.15e4 | 12.6 | 8.0 | 0.568 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 3.40 | 6.60e3 | 1.17e4 | 12.5 | 0.3 | 0.566 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 3.40 | 6.03e3 | 1.03e4 | 13.0 | 3.9 | 0.586 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 3.40 | 6.06e3 | 1.12e4 | 12.0 | -4.4 | 0.539 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 3.40 | 6.40e3 | 1.14e4 | 12.4 | -0.7 | 0.560 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 3.40 | 5.59e3 | 1.08e4 | 11.4 | -8.6 | 0.516 | Compound name: 13C2-PFHxA Response Factor: 0.907083 RRF SD: 0.0372162, Relative SD: 4.10285 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF | 250 | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |-----|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 5.00 | 3.80 | 4.09e3 | 1.12e4 | 5.03 | 0.5 | 0.912 | | 2 | 2 161118J2_04_P1_E1 | 5.00 | 3.80 | 4.14e3 | 1.09e4 | 5.23 | 4.6 | 0.948 | | 3 | 3 161118J2_05_P1_E1 | 5.00 | 3.79 | 4.46e3 | 1.15e4 | 5.36 | 7.1 | 0.972 | | 4 | 4 161118J2_06_P1_E1 | 5.00 | 3.80 | 4.17e3 | 1.15e4 | 5.00 | 0.0 | 0.907 | | 5 | 5 161118J2_07_P1_E1 | 5.00 | 3.80 | 4.20e3 | 1.17e4 | 4.95 | -0.9 | 0.898 | | 6 | 6 161118J2_08_P1_E1 | 5.00 | 3.80 | 3.62e3 | 1.03e4 | 4.85 | -3.1 | 0.879 | | 7 | 7 161118J2_09_P1_E1 | 5.00 | 3.80 | 4.00e3 | 1.12e4 | 4.91 | -1.8 | 0.890 | | 8 | 8 161118J2_10_P1_E1 | 5.00 | 3.79 | 4.17e3 | 1.14e4 | 5.03 | 0.6 | 0.913 | | 9 | 9 161118J2_11_P1_E1 | 5.00 | 3.80 | 3.66e3 | 1.08e4 | 4.65 | -7.0 | 0.844 | Page 114 of 174 Work Order 1601464 Revision 1 **Quantify Compound Summary Report** MassLynx 4.1 SCN815 Vista Analytical Laboratory Q2 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Printed: Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C4-PFHpA Response Factor: 0.741732 RRF SD: 0.0267417, Relative SD: 3.60531 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF | EGS (Section 1997)
GT (Section 1997) and (1997) | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |--|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 4.27 | 7.89e3 | 1.12e4 | 11.9 | -5.1 | 0.704 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 4.27 | 7.91e3 | 1.09e4 | 12.2 | -2.2 | 0.725 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 4.27 | 8.97e3 | 1.15e4 | 13.2 | 5.5 | 0.782 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 4.28 | 8.54e3 | 1.15e4 | 12.5 | 0.1 | 0.742 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 4.27 | 8.73e3 | 1.17e4 | 12.6 | 8.0 | 0.747 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 4.28 | 7.71e3 | 1.03e4 | 12.6 | 1.1 | 0.750 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 4.27 | 8.57e3 | 1.12e4 | 12.9 | 2.9 | 0.763 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 4.27 | 8.67e3 | 1.14e4 | 12.8 | 2.3 | 0.759 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 4.27 | 7.61e3 | 1.08e4 | 11.8 | -5.3 | 0.702 | Compound name: 18O2-PFHxS Response Factor: 0.271084
RRF SD: 0.0155398, Relative SD: 5.73246 Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 20 10000000000 | 1 161118J2_03_P1_E1 | 12.5 | 4.39 | 1.21e3 | 4.58e3 | 12.2 | -2.8 | 0.264 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 4.39 | 1.22e3 | 4.43e3 | 12.7 | 1.8 | 0.276 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 4.39 | 1.28e3 | 4.57e3 | 13.0 | 3.7 | 0.281 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 4.40 | 1.29e3 | 4.57e3 | 13.0 | 4.2 | 0.283 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 4.39 | 1.24e3 | 4.83e3 | 11.9 | -5.0 | 0.258 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 4.40 | 1.10e3 | 4.35e3 | 11.7 | -6.6 | 0.253 | | 7. 2. 2. 2. 1 | 7 161118J2_09_P1_E1 | 12.5 | 4.39 | 1.21e3 | 4.71e3 | 11.8 | -5.5 | 0.256 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 4.39 | 1.35e3 | 4.47e3 | 13.9 | 11.0 | 0.301 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 4.39 | 1.13e3 | 4.22e3 | 12.4 | -0.8 | 0.269 | Page 115 of 174 Work Order 1601464 Revision 1 Page 9 of 16 Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q2 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C2-6:2 FTS Response Factor: 0.223576 RRF SD: 0.0338864, Relative SD: 15.1566 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF | an Same | # Name | Std. Conc | RT | Resp | IS Resp | Conc | %Dev | RRE | |---------|---------------------|-----------|------|--------|---------|------------------|-------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 4.63 | 2.25e3 | 1.13e4 | 11.1 | -11.0 | 0.199 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 4.63 | 2.23e3 | 1.00e4 | 12.5 | -0.1 | 0.223 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 4.63 | 2.36e3 | 1.28e4 | 10.3 | -17.3 | 0.185 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 4.63 | 2.08e3 | 1.16e4 | 10.0 | -20.0 | 0.179 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 4.62 | 2.34e3 | 9.79e3 | 13. 4 | 7.0 | 0.239 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 4.63 | 2.35e3 | 1.11e4 | 11.8 | -5.8 | 0.211 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 4.63 | 2.73e3 | 1.16e4 | 13.1 | 5.0 | 0.235 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 4.62 | 2.87e3 | 1.08e4 | 14.8 | 18.4 | 0.265 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 4.62 | 2.93e3 | 1.06e4 | 15.5 | 23.9 | 0.277 | Compound name: 13C2-PFOA Response Factor: 0.651033 RRF SD: 0.0415144, Relative SD: 6.3767 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dév | RRF | |--|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 4.67 | 6.73e3 | 1.13e4 | 11.4 | -8.6 | 0.595 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 4.67 | 7.03e3 | 1.00e4 | 13.5 | 7.9 | 0.703 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 4.68 | 7.65e3 | 1.28e4 | 11.5 | -7.8 | 0.600 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 4.67 | 7.34e3 | 1.16e4 | 12.1 | -2.9 | 0.632 | | 5 2000000000000000000000000000000000000 | 5 161118J2_07_P1_E1 | 12.5 | 4.66 | 6.63e3 | 9.79e3 | 13.0 | 4.1 | 0.678 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 4.68 | 6.89e3 | 1.11e4 | 11.9 | -5.0 | 0.618 | | 7 - Sandalis el | 7 161118J2_09_P1_E1 | 12.5 | 4.67 | 7.68e3 | 1.16e4 | 12.7 | 1.6 | 0.662 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 4.66 | 7.62e3 | 1.08e4 | 13.5 | 8.1 | 0.704 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 4.67 | 7.07e3 | 1.06e4 | 12.8 | 2.6 | 0.668 | Work Order 1601464 Revision 1 Page 116 of 174 Page 10 of 16 Quantify Compound Summary Report Mass Vista Analytical Laboratory Q2 MassLynx 4.1 SCN815 Page 11 of 16 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C5-PFNA Response Factor: 1.00196 RRF SD: 0.0611671, Relative SD: 6.10474 Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | , RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------------------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 5.00 | 5.85e3 | 6.09e3 | 12.0 | -4.1 | 0.961 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 4.99 | 6.59e3 | 6.13e3 | 13.4 | 7.3 | 1.07 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 5.01 | 6.89e3 | 6.68e3 | 12.9 | 3.0 | 1.03 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 5.00 | 5.98e3 | 6.62e3 | 11.3 | -9.7 | 0.904 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 4.99 | 6.45e3 | 6.34e3 | 12.7 | 1.6 | 1.02 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 5.01 | 6.86e3 | 6.45e3 | 13.3 | 6.2 | 1.06 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 5.01 | 6.69e3 | 6.76e3 | 12.3 | -1.2 | 0.990 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 4.99 | 7.65e3 | 7.29e3 | 13.1 | 4.7 | 1.05 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 5.00 | 6.27e3 | 6.78e3 | 11.5 ⁻ | -7.7 | 0.925 | Compound name: 13C8-PFOS Response Factor: 0.950357 RRF SD: 0.0485013, Relative SD: 5.10348 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 5.07 | 3.06e3 | 3.20e3 | 12.6 | 0.9 | 0.959 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 5.05 | 3.35e3 | 3.59e3 | 12.3 | -1.8 | 0.933 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 5.08 | 3.38e3 | 3.93e3 | 11.3 | -9.5 | 0.860 | | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 161118J2_06_P1_E1 | 12.5 | 5.06 | 3.64e3 | 3.66e3 | 13.1 | 4.5 | 0.993 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 5.05 | 3.74e3 | 3.92e3 | 12.6 | 0.5 | 0.955 | | 6 |
6 161118J2_08_P1_E1 | 12.5 | 5.07 | 3.27e3 | 3.50e3 | 12.3 | -1.6 | 0.935 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 5.07 | 3.68e3 | 3.55e3 | 13.6 | 9.0 | 1.04 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 5.05 | 4.29e3 | 4.48e3 | 12.6 | 0.9 | 0.959 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 5.06 | 3.44e3 | 3.73e3 | 12.1 | -2.9 | 0.923 | Work Order 1601464 Revision 1 Page 117 of 174 Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q2 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C2-PFDA Response Factor: 0.827364 RRF SD: 0.0452081, Relative SD: 5.46412 Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: RF | 1. 1. 1. 1. | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |-------------|---------------------|-----------|------|--------|---------|-------|------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 5.29 | 2.90e3 | 3.19e3 | 13.8 | 10.2 | 0.912 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 5.28 | 3.23e3 | 3.86e3 | 12.7 | 1.2 | 0.837 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 5.31 | 3.43e3 | 4.26e3 | 12.1 | -2.8 | 0.804 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 5.28 | 3.48e3 | 4.40e3 | 11.9 | -4.4 | 0.791 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 5.28 | 3.83e3 | 4.78e3 | 12.1 | -3.1 | 0.801 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 5.29 | 3.72e3 | 4.92e3 | 11.4 | -8.6 | 0.756 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 5.30 | 4.61e3 | 5.39e3 | 12.9 | 3.4 | 0.855 | | 8 : | 8 161118J2_10_P1_E1 | 12.5 | 5.27 | 5.18e3 | 6.20e3 | 12.6 | 0.9 | 0.835 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 5.28 | 4.43e3 | 5.19e3 | 12.9 | 3.3 | 0.855 | Compound name: 13C2-8:2 FT\$ Response Factor: 0.26028 RRF SD: 0.0208158, Relative SD: 7.99747 Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: RF | Property and the second | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |-------------------------|---------------------|-----------|------|--------|---------|-------|-------|-------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 5.27 | 9.39e2 | 3.19e3 | 14.1 | 13.2 | 0.295 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 5.26 | 9.83e2 | 3.86e3 | 12.2 | -2.1 | 0.255 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 5.28 | 1.07e3 | 4.26e3 | 12.1 | -3.4 | 0.252 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 5.26 | 1.10e3 | 4.40e3 | 12.0 | -3.8 | 0.250 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 5.26 | 1.10e3 | 4.78e3 | 11.0 | -11.7 | 0.230 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 5.27 | 1.18e3 | 4.92e3 | 11.5 | -8.0 | 0.239 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 5.27 | 1.52e3 | 5.39e3 | 13.5 | 8.2 | 0.282 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 5.25 | 1.64e3 | 6.20e3 | 12.7 | 1.5 | 0.264 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 5.26 | 1.43e3 | 5.19e3 | 13.3 | 6.1 | 0.276 | Work Order 1601464 Revision 1 Page 118 of 174 Page 12 of 16 Quantify Compound Summary Report Vista Analytical Laboratory Q2 MassLynx 4.1 SCN815 Page 13 of 16 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C4-PFBA Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |-------------|---------------------|-----------|------|--------|---------|-------|------|------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 1.90 | 1.15e4 | 1.15e4 | 12.5 | 0.0 | 1.00 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 1.90 | 1.16e4 | 1.16e4 | 12.5 | 0.0 | 1.00 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 1.90 | 1.16e4 | 1.16e4 | 12.5 | 0.0 | 1.00 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 1.90 | 1.18e4 | 1.18e4 | 12.5 | 0.0 | 1.00 | | 5 7 70 100 | 5 161118J2_07_P1_E1 | 12.5 | 1.91 | 1.17e4 | 1.17e4 | 12.5 | 0.0 | 1.00 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 1.90 | 1.06e4 | 1.06e4 | 12.5 | 0.0 | 1.00 | | 7 30 100 20 | 7 161118J2_09_P1_E1 | 12.5 | 1.90 | 1.16e4 | 1.16e4 | 12.5 | 0.0 | 1.00 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 1.90 | 1.21e4 | 1.21e4 | 12.5 | 0.0 | 1.00 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 1.90 | 1.10e4 | 1.10e4 | 12.5 | 0.0 | 1.00 | Compound name: 13C5-PFHxA Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |--|---------------------|-----------|------|--------|---------|-------|------|------| | 1 .8 2 min the sail. | 1 161118J2_03_P1_E1 | 12.5 | 3.80 | 1.12e4 | 1.12e4 | 12.5 | 0.0 | 1.00 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 3.80 | 1.09e4 | 1.09e4 | 12.5 | 0.0 | 1.00 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 3.79 | 1.15e4 | 1.15e4 | 12.5 | 0.0 | 1.00 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 3.79 | 1.15e4 | 1.15e4 | 12.5 | 0.0 | 1.00 | | 5 33 Supersident in the second | 5 161118J2_07_P1_E1 | 12.5 | 3.79 | 1.17e4 | 1.17e4 | 12.5 | 0.0 | 1.00 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 3.80 | 1.03e4 | 1.03e4 | 12.5 | 0.0 | 1.00 | | 7.30 28.35 | 7 161118J2_09_P1_E1 | 12.5 | 3.79 | 1.12e4 | 1.12e4 | 12.5 | 0.0 | 1.00 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 3.79 | 1.14e4 | 1.14e4 | 12.5 | 0.0 | 1.00 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 3.80 | 1.08e4 | 1.08e4 | 12.5 | 0.0 | 1.00 | Work Order 1601464 Revision 1 Page 119 of 174 Quantify Compound Summary Report Vista Analytical Laboratory Q2 MassLynx 4.1 SCN815 Page 14 of 16 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C3-PFHxS Response Factor: 1 RRF SD: 5.55112e-017, Relative SD: 5.55112e-015 Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: RF | 22111111111111 | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |----------------|---------------------|-----------|------|--------|---------|-------|------|------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 4.39 | 4.58e3 | 4.58e3 | 12.5 | 0.0 | 1.00 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 4.39 | 4.43e3 | 4.43e3 | 12.5 | -0.0 | 1.00 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 4.39 | 4.57e3 | 4.57e3 | 12.5 | 0.0 | 1.00 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 4.40 | 4.57e3 | 4.57e3 | 12.5 | 0.0 | 1.00 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 4.38 | 4.83e3 | 4.83e3 | 12.5 | 0.0 | 1.00 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 4.40 | 4.35e3 | 4.35e3 | 12.5 | -0.0 | 1.00 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 4.39 | 4.71e3 | 4.71e3 | 12.5 | 0.0 | 1.00 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 4.39 | 4.47e3 | 4.47e3 | 12.5 | 0.0 | 1.00 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 4.39 | 4.22e3 | 4.22e3 | 12.5 | 0.0 | 1.00 | Compound name: 13C8-PFOA Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |---|---------------------|-----------|------|--------|---------|-------|------|------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 4.67 | 1.13e4 | 1.13e4 | 12.5 | 0.0 | 1.00 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 4.67 | 1.00e4 | 1.00e4 | 12.5 | 0.0 | 1.00 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 4.68 | 1.28e4 | 1.28e4 | 12.5 | 0.0 | 1.00 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 4.67 | 1.16e4 | 1.16e4 | 12.5 | 0.0 | 1.00 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 4.66 | 9.79e3 | 9.79e3 | 12.5 | 0.0 | 1.00 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 4.68 | 1.11e4 | 1.11e4 | 12.5 | 0.0 | 1.00 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 4.67 | 1.16e4 | 1.16e4 | 12.5 | 0.0 | 1.00 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 4.66 | 1.08e4 | 1.08e4 | 12.5 | 0.0 | 1.00 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 4.67 | 1.06e4 | 1.06e4 | 12.5 | 0.0 | 1.00 | Work Order 1601464 Revision 1 Page 120 of 174 Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Q2 Dataset:
U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C4-PFOS Response Factor: 1 RRF SD: 1.35974e-016, Relative SD: 1.35974e-014 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: RF | 0.411300 | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |----------|---------------------|-----------|------|--------|---------|-------|------|------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 5.07 | 3.20e3 | 3.20e3 | 12.5 | 0.0 | 1.00 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 5.05 | 3.59e3 | 3.59e3 | 12.5 | 0.0 | 1.00 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 5.08 | 3.93e3 | 3.93e3 | 12.5 | 0.0 | 1.00 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 5.06 | 3.66e3 | 3.66e3 | 12.5 | 0.0 | 1.00 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 5.05 | 3.92e3 | 3.92e3 | 12.5 | 0.0 | 1.00 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 5.07 | 3.50e3 | 3.50e3 | 12.5 | 0.0 | 1.00 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 5.07 | 3.55e3 | 3.55e3 | 12.5 | 0.0 | 1.00 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 5.05 | 4.48e3 | 4.48e3 | 12.5 | 0.0 | 1.00 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 5.05 | 3.73e3 | 3.73e3 | 12.5 | 0.0 | 1.00 | Compound name: 13C9-PFNA Response Factor: 1 RRF SD: 3.92523e-017, Relative SD: 3.92523e-015 Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area) Curve type: RF | nt not to the second | # Name | Std. Conc | RT * | Resp | IS Resp | Conc. | %Dev | RRF | |----------------------|---------------------|-----------|------|--------|---------|-------|------|------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 5.01 | 6.09e3 | 6.09e3 | 12.5 | 0.0 | 1.00 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 4.99 | 6.13e3 | 6.13e3 | 12.5 | 0.0 | 1.00 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 5.02 | 6.68e3 | 6.68e3 | 12.5 | 0.0 | 1.00 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 5.00 | 6.62e3 | 6.62e3 | 12.5 | 0.0 | 1.00 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 4.99 | 6.34e3 | 6.34e3 | 12.5 | 0.0 | 1.00 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 5.01 | 6.45e3 | 6.45e3 | 12.5 | 0.0 | 1.00 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 5.01 | 6.76e3 | 6.76e3 | 12.5 | 0.0 | 1.00 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 4.99 | 7.29e3 | 7.29e3 | 12.5 | -0.0 | 1.00 | | 9 | 9 161118J2_11_P1_E1 | 12.5 | 5.00 | 6.78e3 | 6.78e3 | 12.5 | 0.0 | 1.00 | Work Order 1601464 Revision 1 Page 121 of 174 Page 15 of 16 Quantify Compound Summary Report Vista Analytical Laboratory Q2 MassLynx 4.1 SCN815 Page 16 of 16 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:59:09 Pacific Standard Time Compound name: 13C6-PFDA Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Std. Conc | RT | Resp | IS Resp | Conc. | %Dev | RRF | |----------|---------------------|-----------|------|--------|---------|-------|------|------| | 1 | 1 161118J2_03_P1_E1 | 12.5 | 5.29 | 3.19e3 | 3.19e3 | 12.5 | 0.0 | 1.00 | | 2 | 2 161118J2_04_P1_E1 | 12.5 | 5.28 | 3.86e3 | 3.86e3 | 12.5 | 0.0 | 1.00 | | 3 | 3 161118J2_05_P1_E1 | 12.5 | 5.31 | 4.26e3 | 4.26e3 | 12.5 | 0.0 | 1.00 | | 4 | 4 161118J2_06_P1_E1 | 12.5 | 5.28 | 4.40e3 | 4.40e3 | 12.5 | 0.0 | 1.00 | | 5 | 5 161118J2_07_P1_E1 | 12.5 | 5.28 | 4.78e3 | 4.78e3 | 12.5 | 0.0 | 1.00 | | 6 | 6 161118J2_08_P1_E1 | 12.5 | 5.29 | 4.92e3 | 4.92e3 | 12.5 | 0.0 | 1.00 | | 7 | 7 161118J2_09_P1_E1 | 12.5 | 5.30 | 5.39e3 | 5.39e3 | 12.5 | 0.0 | 1.00 | | 8 | 8 161118J2_10_P1_E1 | 12.5 | 5.27 | 6.20e3 | 6.20e3 | 12.5 | 0.0 | 1.00 | | 9 (1111) | 9 161118J2_11_P1_E1 | 12.5 | 5.28 | 5.19e3 | 5.19e3 | 12.5 | 0.0 | 1.00 | Work Order 1601464 Revision 1 Page 122 of 174 **Quantify Calibration Report** MassLynx 4.1 SCN815 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:57:59 Pacific Standard Time Printed: Method: U:\Q2.PRO\MethDB\PFC List 18_A No4-2FTS_161118.mdb 19 Nov 2016 12:55:02 Calibration: U:\Q2.PRO\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Compound name: PFBA Correlation coefficient: r = 0.999219, $r^2 = 0.998438$ Calibration curve: 0.982791 * x + 0.0230635 Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:57:59 Pacific Standard Time Compound name: PFPeA Correlation coefficient: r = 0.998741, $r^2 = 0.997484$ Calibration curve: 0.85968 * x + 0.0362224 Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1601464 Revision 1 Page 124 of 174 Quantify Calibration Report MassLynx 4.1 SCN815 Page 3 of 12 Vista Analytical Laboratory Q1 Dataset: Printed: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:57:59 Pacific Standard Time Compound name: PFBS Correlation coefficient: r = 0.999357, $r^2 = 0.998715$ Calibration curve: 0.774866 * x + -0.0202219 Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1601464 Revision 1 Page 125 of 174 Quantify Calibration Report Mass MassLynx 4.1 SCN815 Page 4 of 12 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:57:59 Pacific Standard Time Compound name: PFHxA Correlation coefficient: r = 0.998535, $r^2 = 0.997072$ Calibration curve: 0.829371 * x + 0.0163807 Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1601464 Revision 1 Page 126 of 174 MassLynx 4.1 SCN815 Page 5 of 12 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:57:59 Pacific Standard Time Compound name: PFHpA Correlation coefficient: r = 0.999224, r^2 = 0.998449 Calibration curve: 0.825598 * x + -0.00188587 Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1601464 Revision 1 MassLynx 4.1 SCN815 Page 6 of 12 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:57:59 Pacific Standard Time Compound name: PFHxS Coefficient of Determination: R^2 = 0.997308 Calibration curve: -0.00339694 * x^2 + 3.36003 * x + -0.393288 Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601464 Revision 1 Page 128 of 174 Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:57:59 Pacific Standard Time Compound name: 6:2 FTS Coefficient of Determination: R^2 = 0.997896 Calibration curve: $-0.00379453 * x^2 + 1.05162 * x + -0.0537721$ Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1601464 Revision 1 Page 129 of 174 Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:57:59 Pacific Standard Time Compound name: PFOA Coefficient of Determination: R^2 = 0.997857 Calibration curve: -0.00316403 * x^2 + 1.30489 * x + -0.00818696 Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1601464 Revision 1 Page 130 of 174 Page 131 of 174 Work Order 1601464 Revision 1 Page 10 of 12 Vista Analytical Laboratory Q1 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:57:59 Pacific Standard Time Compound name: PFOS Correlation coefficient: r = 0.997516, $r^2 = 0.995038$ Calibration curve: 1.14981 * x + 0.021829 Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1601464 Revision 1 Page 132 of 174 Dataset: U:\Q2.PRO\Results\161118J2\161118J2-CRV.qld Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:57:59 Pacific Standard Time Compound name: PFDA Coefficient of Determination: R^2 = 0.994991 Calibration curve: -0.00347007 * x^2 + 1.08566 * x + -0.0891482 Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1601464 Revision 1 Page 133 of 174 Work Order 1601464 Revision 1 Page 134 of 174 | 2 11/18/2016 17:14.07 ST161118/22 PFC C-2 16K1714 11/18/2016 17:36:18 ST161118/22 PFC C-1 16K1715 11/18/2016 17:36:18 ST161118/22 PFC C-1 16K1717 11/18/2016 18:15:16 ST161118/22 PFC C-1 16K1717 11/18/2016 18:15:16 ST161118/22 PFC C-2 16K1718 11/18/2016 18:21:31 ST161118/22 PFC C-2 16K1719 11/18/2016 18:39:42 ST161118/22 PFC C-3 16K1719 11/18/2016 19:04:12 ST161118/22 PFC C-3 16K1720 11/18/2016 19:04:12 ST161118/22 PFC C-3 16K1721 11/18/2016 19:04:12 ST161118/22 PFC C-3 16K1722 11/18/2016 19:04:12 ST161118/22 PFC C-3 16K1722 11/18/2016 19:05:05 BRAD127-BS1 11/18/2016 20:05:18 BRAD137-BS1 20:05:19 56 BRAD117-BS1
11/18/2016 20:05:19 56 BRAD117-BS1 11/18/2016 20:05:19 56 BRAD117-BS1 11/18/2016 20:05:19 56 BRAD117-BS1 11/18/2016 20:05:19 56 BRAD117-BLK1 11/18/2016 20:05:19 56 BRAD117-BS1 11/18/2016 20:05:19 56 BRAD117-BLK1 5 | WURTS-VAS17003-22-25 | 1601410-09 | 11/19/2016 04:27:09 | | | |---|-------------------------|--|---------------------|---------------|---| | 11/18/2016 17:36 S7161118/23 PPC CO 1 68(717) PFC | WURTS-VAS17001-41-44 | 1601410-08 | 11/19/2016 04:14:55 | 161118J2 56 | හි ද | | 11/18/2016 17:36.19 S7161118/2.2 PPC C.2 16K1714 PFC C.2 16K1714 A FFC C.2 16K1715 A T1/18/2016 17:38.39 S7161118/2.2 PPC C.1 16K1715 PFC 16K1717 A T1/18/2016 17:38.39 S7161118/2.2 PPC C.2 16K1717 A PFC C.2 16K1717 A T1/18/2016 18:16 S7161118/2.2 PPC C.2 16K1717 PFC C.2 16K1717 A T1/18/2016 18:16 S7161118/2.2 PPC C.2 16K1717 A PFC C.2 16K1717 A T1/18/2016 18:16 S7161118/2.2 PPC C.2 16K1722 PFC C.3 16K1722 A PFC C.3 16K1722 A T1/18/2016 19:6.12 S7161118/2.2 PPC C.3 16K1722 PFC C.3 16K1722 A PFC C.3 16K1722 A T1/18/2016 19:6.12 S7161118/2.2 PPC C.3 16K1722 PFC C.3 16K1722 A PFC C.3 16K1722 A T1/18/2016 19:6.12 S7161118/2.2 PPC C.3 16K1722 PFC C.3 16K1722 A PFC C.3 16K1722 A T1/18/2016 19:6.12 S7161118/2.2 PPC C.3 16K1722 PFC C.3 16K1722 A 16K1723 | IDA | FFC C3.5 | 11/19/2016 03:50:25 | | 1 7 | | 11/18/2016 17;46 7 140 7 161/18/22 PPC C-1 6K1714 PFC C-2 16K1714 PFC C-1 6K1715 6K1717 PFC C-1 6K1715 PFC C-1 6K1720 6K1 | DEC C3 5 16K1720A | DEC C3 & | 11/19/2016 03:50:09 | | Z Z | | 111182016 177.36 18 15161118.12.3 PPC C.2 16K1714 PFC C.3 16K1714 FFC C.3 16K1714 FFC C.3 16K1714 FFC C.3 16K1715 FFC C.3 16K1714 FFC C.3 16K1715 16K1717 16K172 | WURIS-VAS1/001-31-34 | 1601410-07 | 11/19/2016 03:25:55 | | 3 2 | | 11/18/2016 17:34 07 ST161118/2.2 PPC C.2 16K1714 PPC C.2 16K1714 A 11/18/2016 17:38 18 ST161118/2.2 PPC C.1 16K1715 PPC C.1 16K1715 A 11/18/2016 17:38 30 ST161118/2.2 PPC C.1 16K1716 PPC C.0 16K1716 A 11/18/2016 18:03 03 ST161118/2.2 PPC C.1 16K1717 PPC C.1 16K1717 A 11/18/2016 18:03 03 ST161118/2.2 PPC C.3 16K1719 PPC C.3 5 16K1720 A 11/18/2016 18:03 03 ST161118/2.2 PPC C.3 16K1719 PPC C.3 5 16K1720 A 11/18/2016 18:04 12 ST161118/2.2 PPC C.3 16K1719 PPC C.3 5 16K1720 A 11/18/2016 18:04 12 ST161118/2.2 PPC C.3 16K1720 PPC C.3 5 16K1720 A 11/18/2016 18:04 12 ST161118/2.2 PPC C.3 16K1720 PPC C.3 5 16K1720 A 11/18/2016 18:04 12 ST161118/2.2 PPC C.3 16K1720 PPC C.3 5 16K1720 A 11/18/2016 18:04 12 ST161118/2.2 PPC C.3 16K1720 PPC C.3 5 16K1720 A 11/18/2016 18:04 12 ST161118/2.2 PPC C.3 16K1720 PPC C.3 16K1720 A 11/18/2016 18:04 12 ST161118/2.2 PPC C.3 16K1720 PPC C.3 16K1720 A 11/18/2016 18:04 12 ST161118/2.2 PPC C.3 16K1720 PPC C.3 16K1720 A 11/18/2016 18:04 12 ST161118/2.2 PPC C.3 16K1720 PPC C.3 16K1720 A 11/18/2016 20:05 18 B6J016-BS1 OPR PPC C.3 16K1720 A 11/18/2016 20:05 18 B6J0172-BS1 OPR PPC C.3 16K1720 A 11/18/2016 20:05 18 B6J0172-BS1 OPR PPC C.3 16K1720 A 11/18/2016 20:05 18 B6J0172-BLK1 PPC C.3 16K1720 A 11/18/2016 20:05 18 B6J0172-BLK1 Method Blank PA 11/18/2016 20:05 20:05 18 B6J0172-BJ017 Sample No II PA 11/18/2016 20:05 20:05 18 B6J0172-BJ017 Sample No II PA 11/18/2016 20:05 20:05 18 B6J0172-BJ017 Sample No III Sample M0 II Sample No II Sample M0 II Sample M0 II Sample M0 II Sample M1 III Sample #2 Sample #2 Sample #3 Sample #3 Sample #2 Sample #3 Sample #3 Sample #3 | | 1601410-06 | 11/19/2016 03:13:40 | | 3 2 | | 11/18/2016 17:14(07) ST161118L2:1 PFC C-2 16K1714 PFC C-2 16K1714 FFC C-2 16K1714 FFC C-2 16K1715 FFC C-1 16K1716 FFC C-1 16K1717 16K1716 FFC C-1 16K1717 FFC C-1 16K1719 FFC C-1 16K1717 16K172 | 1 | 1601410-05 | 11/19/2016 03:01:23 | 161118JZ_50 | 2 2 | | 11/18/2016 17:34 07 \$7161118/2.2 FPC C.2 16K1714 FPC C.2 16K1714 A 11/18/2016 17:38 18 \$7161118/2.2 FPC C.1 16K1715 A 11/18/2016 17:38 30 \$7161118/2.2 FPC C.1 16K1715 A 11/18/2016 18:38 30 \$7161118/2.2 FPC C.1 16K1717 \$76C C.1 16K1717 A 11/18/2016 18:51 68 \$7161118/2.2 FPC C.2 16K1719 \$76C C.1 16K1717 A 11/18/2016 18:51 68 \$7161118/2.2 FPC C.2 16K1719 \$76C C.1 16K1717 A 11/18/2016 18:51 68 \$7161118/2.2 FPC C.2 16K1719 \$76C C.2 16K1719 \$76C C.2 16K1719 A 11/18/2016 18:51 68 \$7161118/2.2 FPC C.2 16K1712 \$76C C.2 16K1719 A 11/18/2016 18:51 68 \$7161118/2.2 FPC C.2 16K1722 \$76C 16K172 \$76C C.2 16K172 \$76C C.2 16K1722 \$76C C.2 16K1722 \$76C C.2 16K172 \$76C C.2 16K172 \$76C C.2 16K172 \$76C C.2 16K172 | WURTS-VAS04006-52-55 | 1601410-04 | 11/19/2016 02:49:08 | 161118J2_49 | 49 | | 11/19/2016 17:14/07 ST161118/23 FPC C2 16K1714 PFC C2 16K1714 FTC C2 16K1714 International Processor Internati | WURTS-VAS04006-42-45 | 1601410-03 | 11/19/2016 02:36:53 | 161118J2_48 | 48 | | 11/18/2016 17:14:07 ST161118JZ-1 PFC C-2 16K1714 | WURTS-VAS04006-32-35_FD | 1601410-02 | 11/19/2016 02:24:39 | 161118J2_47 | 47 | | 11/18/2016 17:24:07 ST161118JZ-1 PFC C-2 16K1714 | WURTS-EB008JH-110216 | 1601410-01 | 11/19/2016 02:12:22 | 161118J2_46 | 46 | | 11/18/2016 17:14:07 ST161118/2-1 PFC C-2 16K1714 | Sample #3 | 1601379-03 | 11/19/2016 02:00:10 | 161118J2_45 | 45 | | 11/18/2016 17:14:07 ST161118JZ-1 PFC C-2 16K1714 | Sample #2 | 1601379-02 | 11/19/2016 01:47:56 | 161118J2_44 | 44 | | 11/18/2016 17:14:07 ST161118JZ-1 PFC C-2 16K1714 | Sample #1 | 1601379-01 | 11/19/2016 01:35:40 | 161118J2_43 | 43 | | 11/18/2016 17:14:07 ST161118JZ-1 PFC C-2 16K1714 | IPA | IPA | 11/19/2016 01:23:28 | 161118J2_42 | 42 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:30:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:50:45 ST161118J2-5 PFC C1 16K1717 11/18/2016 18:50:30:3 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:50:45 ST161118J2-5 PFC C2 16K1720 11/18/2016 18:51:48 ST161118J2-1 PFC C3 16K1720 11/18/2016 19:04:12 ST161118J2-1 PFC C3 16K1721 11/18/2016 19:04:12 ST161118J2-1 PFC C3 16K1721 11/18/2016 19:04:12 ST161118J2-1 PFC C3 16K1722 11/18/2016 19:04:12 ST161118J2-1 PFC C3 16K1722 11/18/2016 19:04:12 ST161118J2-1 PFC C3 16K1723 11/18/2016 19:04:15 IPA 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:29:47 B6K0110-BS1 11/18/2016 20:29:47 B6K0110-BS1 11/18/2016 21:30:57 B6K0117-BS1 11/18/2016 21:30:57 B6K0117-BS1 11/18/2016 21:30:57 B6K0117-BLK1 11/18/2016 22:32:10 B6K0117-BLK1 11/18/2016 22:32:20 B6K0117-BLK1 11/18/2016 23:21:05 B6K0117-BLK1 11/18/2016 23:21:05 B6K0117-BLK1 11/18/2016 23:21:05 B6K0117-BLK1 11/18/2016 23:33:20 B6K0117-BLK1 11/18/2016 23:33:20 B6K0117-BLK1 11/18/2016 23:45:31 1601299-05 11/18/2016 23:45:31 1601299-06 11/18/2016 00:34:31 1601299-06 11/18/2016 00:34:31 1601299-07 11/18/2016 00:34:31 1601299-07 11/18/2016 00:34:31 1601399-07 11/19/2016 00:34:31 1601399-07 11/19/2016 00:34:31 1601399-07 11/19/2016 00:34:31 1601399-07 11/19/2016 00:35:88 IPA | - 1 | C3.5 | 11/19/2016 01:11:14 | 161118J2_41 | 41 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-4 PFC C2 16K1718 11/18/2016 18:03:04 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:04:12 ST161118J2-7 PFC C3 16K1720 11/18/2016 19:04:12 ST161118J2-9 PFC C4 16K1721 11/18/2016 19:04:12 ST161118J2-10 PFC C3 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C4 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:06:18 SS161118J2-10 PFC C5 16K1723 11/18/2016 19:06:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6K0117-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 22:07:40 B6K0117-BLK1 11/18/2016 22:07:40 B6K0117-BLK1 11/18/2016 22:09:47 B6K0117-BLK1 11/18/2016 22:09:40 B6K0117-BLK1 11/18/2016 22:09:40 B6K0117-BLK1 11/18/2016 22:09:40 B6K0117-BLK1 11/18/2016 22:09:40 B6K0117-BLK1 11/18/2016 22:35:08 B6K0117-BLK1
11/18/2016 23:37:00 B6K0117-BLK1 11/18/2016 23:37:05 B6K0117-BLK1 11/18/2016 23:45:31 1601299-03 11/18/2016 23:45:31 1601299-06 11/18/2016 00:24:31 1601299-06 11/18/2016 00:24:31 1601299-06 11/18/2016 00:24:31 1601399-06 11/19/2016 00:24:31 1601399-06 11/19/2016 00:24:31 1601399-06 11/19/2016 00:24:31 1601379-01@20X 11/19/2016 00:24:31 1601379-02@20X | IPA | IPA | 11/19/2016 00:58:58 | 161118J2_40 | 6 | | 11/18/2016 17:14:07 ST161118/2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118/2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118/2-3 PFC C0 16K1716 11/18/2016 18:33:30 ST161118/2-3 PFC C0 16K1717 11/18/2016 18:51:56 ST161118/2-5 PFC C2 16K1717 11/18/2016 18:27:31 ST161118/2-5 PFC C2 16K1719 11/18/2016 18:51:58 ST161118/2-5 PFC C2 16K1720 11/18/2016 19:04:12 ST161118/2-5 PFC C2 16K1721 11/18/2016 19:04:12 ST161118/2-5 PFC C3 16K1722 11/18/2016 19:04:12 ST161118/2-9 PFC C4.5 16K1723 11/18/2016 19:04:12 ST161118/2-9 PFC C5.1 16K1723 11/18/2016 19:05:18 SE0127-BS1 11/18/2016 20:05:18 BE0127-BS1 11/18/2016 20:05:18 BE0127-BS1 11/18/2016 20:05:18 BE6017-BS1 11/18/2016 20:17:34 BE6017-BS1 11/18/2016 20:18:45 BE6017-BS1 11/18/2016 20:18:45 BE6017-BS1 11/18/2016 20:18:45 BE6017-BS1 11/18/2016 20:18:45 BE6017-BLK1 11/18/2016 20:18:45 BE6017-BLK1 11/18/2016 20:29:46 BE6017-BLK1 11/18/2016 20:29:40 BE60111-BLK1 11/18/2016 20:29:40 BE60117-BLK1 20:29:56 BE60129-02 11/18/2016 20:39:31 1601299-03 11/18/2016 20:39:31 1601299-04 11/18/2016 20:39:49 1601299-06 11/18/2016 00:29:16 1601299-06 11/19/2016 00:29:16 1601379-02@20X | Sample #3 | 1601379-03@20X | 11/19/2016 00:46:45 | | 39 | | 11/18/2016 17:14:07 ST161118/2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118/2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118/2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118/2-3 PFC C0 16K1717 11/18/2016 18:03:03 ST161118/2-5 PFC C2 16K1717 11/18/2016 18:03:03 ST161118/2-5 PFC C2 16K1718 11/18/2016 18:03:03 ST161118/2-5 PFC C2 16K1720 11/18/2016 18:04:12 ST161118/2-7 PFC C3 16K1721 11/18/2016 19:04:12 ST161118/2-7 PFC C3 16K1722 11/18/2016 19:04:12 ST161118/2-9 PFC C4 16K1722 11/18/2016 19:04:12 ST161118/2-9 PFC C4 16K1723 11/18/2016 19:04:12 ST161118/2-9 PFC C5 16K1723 11/18/2016 19:05:05 11/18/2016 19:05:05 11/18/2016 20:05:18 11/18/2016 20:05:18 11/18/2016 20:05:18 11/18/2016 20:05:18 11/18/2016 20:05:18 11/18/2016 20:05:19 11/18/2016 20:05:10 11/18/2016 21:05:05 11/18/2016 21:05:05 11/18/2016 21:05:05 11/18/2016 21:05:05 11/18/2016 21:05:05 11/18/2016 22:07:40 11/18/2016 22:07:40 11/18/2016 22:07:40 11/18/2016 23:08:49 11/18/20 | Sample #2 | 1601379-02@20X | 11/19/2016 00:34:31 | 161118J2 38 | 38 | | 11/18/2016 17:14:07 ST161118/2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118/2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118/2-3 PFC C-1 16K1716 11/18/2016 18:03:03 ST161118/2-3 PFC C-1 16K1717 11/18/2016 18:03:03 ST161118/2-5 PFC C-2 16K1717 11/18/2016 18:03:03 ST161118/2-5 PFC C-2 16K1718 11/18/2016 18:03:13 ST161118/2-5 PFC C-2 16K1720 11/18/2016 18:04:12 ST161118/2-7 PFC C-3 16K1720 11/18/2016 18:04:12 ST161118/2-7 PFC C-3 16K1722 11/18/2016 19:04:12 ST161118/2-9 PFC C-4 16K1722 11/18/2016 19:04:12 ST161118/2-9 PFC C-4 16K1722 11/18/2016 19:04:12 ST161118/2-9 PFC C-5 16K1722 11/18/2016 19:40:55 IPA 11/18/2016 19:40:55 IPA 11/18/2016 19:53:06 B6.0127-BS1 11/18/2016 20:05:18 B6.0168-BS1 11/18/2016 20:054:16 B6.0017-BS1 11/18/2016 20:054:16 B6.0017-BS1 11/18/2016 21:06:30 B6.00127-BLK1 11/18/2016 21:05:28 B6.00127-BLK1 11/18/2016 22:07:40 B6.00127-BLK1 11/18/2016 22:07:40 B6.0017-BLK1 11/18/2016 23:08:49 B6.0017-BLK1 11/18/2016 23:08:49 B6.001299-03 11/18/2016 23:07:05 B6.001299-03 11/18/2016 23:57-48 B6.001299-05 11/18/2016 23:57-48 B6.001299-07 11/18/2016 23:57-48 B6.001299-07 11/18/2016 23:57-48 B6.001299-07 | Sample #1 | 1601379-01@20X | 11/19/2016 00:22:16 | 161118J2 37 | 37 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-2 PFC C-1 16K1716 11/18/2016 17:50:45 ST161118J2-4 PFC C-1 16K1717 11/18/2016 18:03:03 ST161118J2-4 PFC C-1 16K1717 11/18/2016 18:03:03 ST161118J2-4 PFC C-1 16K1717 11/18/2016 18:39:42 ST161118J2-5 PFC C-2 16K1720 11/18/2016 18:51:58 ST161118J2-7 PFC C-3 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C-4 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C-4 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:04:15 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:04:55 IPA 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:05:41 B6K0017-BS1 11/18/2016 20:05:41 B6K0117-BS1 11/18/2016 20:05:41 B6K0117-BS1 11/18/2016 22:07:40 B6K0117-BS1 11/18/2016 22:07:40 B6K0117-BLK1 11/18/2016 22:08:49 B6K0037-BLK1 11/18/2016 22:08:49 B6K0117-BLK1 11/18/2016 23:33:20 B6K0111-BLK1 11/18/2016 23:45:31 B6K011299-03 11/18/2016 23:45:31 B6K01299-03 11/18/2016 23:45:31 B6K01299-07 | Sample No. V | 1601299-05RE1 | 11/19/2016 00:10:03 | 161118J2_36 | 36 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-2 PFC C-1 16K1716 11/18/2016 17:50:45 ST161118J2-4 PFC C-1 16K1717 11/18/2016 18:03:03 ST161118J2-4 PFC C-1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C-2 16K1718 11/18/2016 18:03:03 ST161118J2-5 PFC C-2 16K1719 11/18/2016 18:03:04 ST161118J2-6 PFC C-3 16K1720 11/18/2016 18:04:12 ST161118J2-7 PFC C-3 16K1722 11/18/2016 19:04:12 ST161118J2-9 PFC C-4 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:05:18 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:05:50 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:05:18 ST161118J2-10 PFC C-5 16K1723 11/18/2016 19:05:18 ST161118J2-10 PFC C-5 16K1723 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:05:41 B6K0117-BS1 11/18/2016 20:05:41 B6K0117-BS1 11/18/2016 22:07:40 B6K0117-BLK1 11/18/2016 22:08:38 B6K0117-BLK1 11/18/2016 22:07:40 B6K0117-BLK1 11/18/2016 22:08:49 B6K0117-BLK1 11/18/2016 22:08:49 B6K0117-BLK1 11/18/2016 22:08:49 B6K0117-BLK1 11/18/2016 23:33:20 B6K0111-BCK1 11/18/2016 23:33:20 B6K0110-BCK1 11/18/2016 23:33:20 B6K0110-BCK1 | Sample No. VII | 1601299-07 | 11/18/2016 23:57:48 | | 35 | | 11/18/2016 17:14:07 ST61118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C-1 16K1716 11/18/2016 17:50:45 ST161118J2-4 PFC C-1 16K1717 11/18/2016 18:03:03 ST161118J2-4 PFC C-1 16K1717 11/18/2016 18:03:03 ST161118J2-4 PFC C-1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C-2 16K1718 11/18/2016 18:51:58 ST161118J2-6 PFC C-3 16K1720 11/18/2016 18:51:58 ST161118J2-7 PFC C-3 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C-4 16K1721 11/18/2016 19:04:12 ST161118J2-10 PFC C-5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C-5 16K1723 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 22:07:40 B6K0117-BLK1 11/18/2016 22:07:40 B6K0110-BLK1 11/18/2016 22:07:40 B6K0110-BLK1 11/18/2016 22:07:40 B6K0110-BLK1 11/18/2016 22:07:40 B6K0110-BLK1 11/18/2016 22:05:38 B6K0111-BLK1 11/18/2016 22:05:38 B6K0111-BLK1 11/18/2016 22:05:38 B6K0111-BLK1 11/18/2016 22:05:38 B6K0110-BLK1 | Sample No. VI | 1601299-06 | 11/18/2016 23:45:31 | 161118.12 34 | 3 3 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:36:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 17:50:45 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1719 11/18/2016 18:27:31 ST161118J2-6 PFC C3 16K1720 11/18/2016 18:39:42 ST161118J2-7 PFC C3 5 16K1721 11/18/2016 19:04:12 ST161118J2-1 PFC C3 5 16K1722 11/18/2016 19:04:12 ST161118J2-1 PFC C4 16K1722 11/18/2016 19:04:12 ST161118J2-1 PFC C5 16K1723 11/18/2016 19:04:12 ST161118J2-1 PFC C5 16K1723 11/18/2016 19:05:18 ST161118J2-1 PFC C5 16K1723 11/18/2016 19:05:18 ST161118J2-1 PFC C5 16K1723 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:4:16 B6K0117-BS1 11/18/2016 20:05:4:16 B6K0117-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 21:06:30 B6K0117-BLK1 11/18/2016 21:06:30 B6K0110-BLK1 11/18/2016 22:07:40 B6K0111-BLK1 11/18/2016 22:07:40 B6K0111-BLK1 11/18/2016 22:07:40 B6K0111-BLK1 11/18/2016 22:08:49 B6K0111-BLK1 11/18/2016 22:08:49 B6K0111-BLK1 11/18/2016 22:08:49 B6K0111-BLK1 11/18/2016 22:08:49 B6K0110-BLK1 | Sample No. IV | 1601299-04 | 11/18/2016 23:33:20 | 161118.12 3.3 | 33 8 | | 11/18/2016 17:14:07 ST61118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST61118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03
ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:39:42 ST161118J2-5 PFC C3 16K1720 11/18/2016 18:51:58 ST161118J2-7 PFC C3:5 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C4:5 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4:5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5:16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C5:16K1723 11/18/2016 19:28:40 SS161118J2-10 PFC C5:16K1723 11/18/2016 20:05:18 B6.00127-BS1 11/18/2016 20:05:18 B6.00127-BS1 11/18/2016 20:04:16 B6K0117-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 21:06:30 B6K0111-BS1 11/18/2016 22:07:40 B6K0113-BLK1 22:08:40 B6K0111-BLK1 11/18/2016 22:08:40 B6K0113-BLK1 | | 1601299-02 | 11/18/2016 23:00:49 | 161118 2 32 | ვ <u>-</u> | | 11/18/2016 17: 14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-3 PFC C0 16K1717 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:27:31 ST161118J2-6 PFC C2 16K1719 11/18/2016 18:39:42 ST161118J2-6 PFC C3 16K1720 11/18/2016 18:51:58 ST161118J2-7 PFC C3.5 16K1722 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1723 11/18/2016 19:06:24 IPA 11/18/2016 19:28:40 SS161118J2-1 PFC SSS 16J1810 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:54:16 B6K0117-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 21:18:45 IPA 11/18/2016 22:19:56 B6J0168-BLK1 11/18/2016 22:19:56 B6K017-BLK1 11/18/2016 22:19:56 B6K0117-BLK1 11/18/2016 22:207:40 B6K0117-BLK1 11/18/2016 22:219:56 B6K0117-BLK1 11/18/2016 22:219:56 B6K0111-BLK1 11/18/2016 22:44:24 IPA 11/18/2016 22:44:24 IPA 11/18/2016 22:44:24 IPA 11/18/2016 22:44:24 IPA | Sample No. I | 1001299-01 | 11/18/2016 22:56:38 | 161118777 | 2 6 | | 11/18/2016 17:14.07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-2 PFC C-1 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:27:31 ST161118J2-5 PFC C2 16K1719 11/18/2016 18:27:31 ST161118J2-5 PFC C2 16K1720 11/18/2016 18:51:58 ST161118J2-7 PFC C3 5 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C4 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4 16K1722 11/18/2016 19:04:12 ST161118J2-9 PFC C4 16K1722 11/18/2016 19:26:24 IPA 11/18/2016 19:26:24 IPA 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:04:20 B6K0017-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 21:06:28 B6J0168-BLK1 11/18/2016 21:05:28 B6J0168-BLK1 11/18/2016 22:07:40 B6K0037-BLK1 11/18/2016 22:19:56 B6K0117-BLK1 11/18/2016 22:32:10 B6K0117-BLK1 | | IFA | 11/18/2016 22:44:24 | 161118JZ_Z9 | 90 29 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1719 11/18/2016 18:39:42 ST161118J2-5 PFC C2 16K1720 11/18/2016 18:39:42 ST161118J2-7 PFC C3 5 16K1720 11/18/2016 19:04:12 ST161118J2-9 PFC C4 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4 16K1722 11/18/2016 19:04:12 ST161118J2-9 PFC C4 5 16K1723 11/18/2016 19:05:13 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:05:51 IPA 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:05:41 B6K0037-BS1 11/18/2016 21:06:30 B6K0117-BS1 | Method Blank | B6K0111-BLK1 | 11/18/2016 22:32:10 | 161118J2_28 | 28 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 18:03:03 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:39:42 ST161118J2-5 PFC C3 16K1720 11/18/2016 18:39:42 ST161118J2-9 PFC C3 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4 16K1722 11/18/2016 19:04:12 ST161118J2-9 PFC C5 16K1723 11/18/2016 19:05:18 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:05:18 SS161118J2-1 PFC SSS 16J1810 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:05:18 B6K0117-BS1 11/18/2016 20:54:16 B6K0117-BS1 11/18/2016 21:06:30 B6K0111-BS1 11/18/2016 21:06:30 B6K0117-BS1 11/18/2016 21:06:30 B6K0111-BS1 | Method Blank | B6K0117-BLK1 | 11/18/2016 22:19:56 | | 27 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:27:31 ST161118J2-7 PFC C3 16K1720 11/18/2016 18:39:42 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:40:55 IPA 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:29:47 B6K0117-BS1 11/18/2016 20:54:16 B6K0117-BS1 11/18/2016 21:43:12 B6K0127-BLK1 11/18/2016 21:43:12 B6K0137-BLK1 | Method Blank | B6K0110-BLK1 | 11/18/2016 22:07:40 | 161118J2_26 | 26 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:50:45 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1719 11/18/2016 18:51:51 ST161118J2-5 PFC C3 16K1729 11/18/2016 18:39:42 ST161118J2-7 PFC C3 5 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C4 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:05:24 IPA 11/18/2016 19:05:30 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:05:416 B6K0117-BS1 11/18/2016 20:54:16 B6K0117-BS1 11/18/2016 21:06:30 B6K0111-BS1 11/18/2016 21:06:30 B6K0117-BSD1 11/18/2016 21:06:30 B6K0111-BS1 | Method Blank | B6K0037-BLK1 | 11/18/2016 21:55:28 | 161118J2_25 | 25 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1719 11/18/2016 18:39:42 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5.16K1723 11/18/2016 19:04:12 IPA 11/18/2016 19:05:18 11/18/2016 20 | Method Blank | B6J0168-BLK1 | 11/18/2016 21:43:12 | 161118J2_24 | 24 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 17:50:45 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1719 11/18/2016 18:39:42 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:39:42 ST161118J2-9 PFC C4.5 16K1720 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5.16K1723 11/18/2016 19:40:55 IPA 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6K0110-BS1 11/18/2016 20:05:47 B6K0117-BS1 11/18/2016 20:54:16 B6K0117-BSD1 11/18/2016 21:06:30 B6K0111-BS1 11/18/2016 21:18:45 IPA | Method Blank | B6J0127-BLK1 | 11/18/2016 21:30:57 | 161118J2_23 | 23 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:50:45 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1719 11/18/2016 18:27:31 ST161118J2-6 PFC C3 16K1720 11/18/2016 18:39:42 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C4.15K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:53:06 B6J0127-BS1 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:05:47 B6K0117-BS1 11/18/2016 20:54:16 B6K0117-BS1 11/18/2016 20:54:16 B6K0117-BS1 | IPA | IPA | 11/18/2016 21:18:45 | 161118J2_22 | 22 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1719 11/18/2016 18:15:16
ST161118J2-5 PFC C2 16K1719 11/18/2016 18:39:42 ST161118J2-7 PFC C3 16K1720 11/18/2016 18:51:58 ST161118J2-7 PFC C3 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4,5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5,16K1723 11/18/2016 19:28:40 SS161118J2-10 PFC C5 16K1723 11/18/2016 19:53:06 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:29:47 B6K0117-BS1 11/18/2016 20:29:47 B6K0117-BS1 11/18/2016 20:54:16 B6K0117-BSD1 | OPR | B6K0111-BS1 | 11/18/2016 21:06:30 | 161118J2_21 | 21 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1719 11/18/2016 18:27:31 ST161118J2-5 PFC C3 16K1720 11/18/2016 18:39:42 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:04:12 ST161118J2-9 PFC C4.1 16K1722 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:40:55 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:40:55 IPA 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:29:47 B6K0110-BS1 | OPR Dup | B6K0117-BSD1 | 11/18/2016 20:54:16 | 161118J2_20 | 20 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:51:16 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:27:31 ST161118J2-5 PFC C3 16K1720 11/18/2016 18:39:42 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C4 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:46:24 IPA 11/18/2016 19:40:55 IPA 11/18/2016 20:05:18 B6J0127-BS1 11/18/2016 20:05:18 B6K0037-BS1 11/18/2016 20:29:47 B6K0110-BS1 | OPR | B6K0117-BS1 | 11/18/2016 20:42:02 | 161118J2_19 | 19 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:27:31 ST161118J2-5 PFC C3 16K1719 11/18/2016 18:39:42 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:04:12 ST161118J2-8 PFC C4 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:16:24 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:28:40 SS161118J2-1 PFC SSS 16J1810 11/18/2016 19:53:06 B6J0127-BS1 11/18/2016 20:05:18 B6J0168-BS1 11/18/2016 20:05:18 B6J0168-BS1 | OPR | B6K0110-BS1 | 11/18/2016 20:29:47 | 161118J2 18 | 18 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:27:31 ST161118J2-5 PFC C3 16K1719 11/18/2016 18:39:42 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C4 16K1721 11/18/2016 19:04:12 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:16:24 IPA 11/18/2016 19:53:06 B6J0127-BS1 11/18/2016 19:53:06 B6J0128-BS1 | OPR | B6K0037-RS1 | 11/18/2016 20:00:10 | 161118.12 17 | 17 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:27:31 ST161118J2-6 PFC C3 16K1720 11/18/2016 18:39:42 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:51:58 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:04:24 SS161118J2-1 PFC SSS 16J1810 11/18/2016 19:04:56 PA | OPR | B6 10168-B51 | 11/18/2016 19:55:06 | 16111812 16 | 5 0 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 17:50:45 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:15:16 ST161118J2-6 PFC C3 16K1719 11/18/2016 18:27:31 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:39:42 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5.5 16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C5.5 16K1723 11/18/2016 19:04:12 ST161118J2-10 PFC C5.5 16K1723 11/18/2016 19:28:40 SS161118J2-1 PFC SSS 16J1810 | IPA | IPA | 11/18/2016 19:40:55 | | 1 2 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:15:16 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:27:31 ST161118J2-6 PFC C3 16K1720 11/18/2016 18:39:42 ST161118J2-9 PFC C4 16K1721 11/18/2016 18:51:58 ST161118J2-9 PFC C4.5 16K1722 11/18/2016 19:04:12 ST161118J2-10 PFC C5 16K1723 11/18/2016 19:04:12 IPA | SSS | SS161118J2-1 PFC SSS 16J1810 | 11/18/2016 19:28:40 | 161118J2_13 | 3 | | 02 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 03 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 04 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 05 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 06 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 07 11/18/2016 18:15:16 ST161118J2-6 PFC C3 16K1729 08 11/18/2016 18:27:31 ST161118J2-7 PFC C3.5 16K1720 09 11/18/2016 18:39:42 ST161118J2-9 PFC C4.16K1721 10 11/18/2016 18:51:58 ST161118J2-9 PFC C5.16K1723 11 11/18/2016 19:04:12 ST161118J2-10 PFC C5.16K1723 | IPA | IPA | 11/18/2016 19:16:24 | 161118J2_12 | 12 | | 02 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 03 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 04 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 05 11/18/2016 18:03:03 ST161118J2-4 PFC C1 16K1717 06 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 07 11/18/2016 18:15:16 ST161118J2-6 PFC C3 16K1719 08 11/18/2016 18:27:31 ST161118J2-7 PFC C3.5 16K1720 09 11/18/2016 18:39:42 ST161118J2-8 PFC C4 16K1721 10 11/18/2016 18:51:58 ST161118J2-9 PFC C4.5 16K1722 | PFC C5 16K1723 A | ST161118J2-10 PFC C5 16K1723 | 11/18/2016 19:04:12 | 161118J2_11 | ⇉ | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 17:50:45 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:15:16 ST161118J2-6 PFC C3 16K1719 11/18/2016 18:27:31 ST161118J2-7 PFC C3.5 16K1720 11/18/2016 18:39:42 ST161118J2-8 PFC C4 16K1721 | PFC C4.5 16K1722 A | ST161118J2-9 PFC C4.5 16K1722 | 11/18/2016 18:51:58 | 161118J2_10 | ಕ | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 11/18/2016 17:50:45 ST161118J2-4 PFC C1 16K1717 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 11/18/2016 18:15:16 ST161118J2-6 PFC C3 16K1719 11/18/2016 18:27:31 ST161118J2-7 PFC C3.5 16K1720 | PFC C4 16K1721 A | ST161118J2-8 PFC C4 16K1721 | 11/18/2016 18:39:42 | 161118J2_09 | 9 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 PFC C-2 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 PFC C-1 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 PFC C0 11/18/2016 17:50:45 ST161118J2-4 PFC C1 16K1717 PFC C1 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 PFC C2 11/18/2016 18:15:16 ST161118J2-6 PFC C3 16K1719 PFC C3 | PFC C3.5 16K1720 A | ST161118J2-7 PFC C3.5 16K1720 | 11/18/2016 18:27:31 | 161118J2_08 | 8 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 PFC C-2 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 PFC C-1 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 PFC C0 11/18/2016 17:50:45 ST161118J2-4 PFC C1 16K1717 PFC C1 11/18/2016 18:03:03 ST161118J2-5 PFC C2 16K1718 PFC C2 | PFC C3 16K1719 A | ST161118J2-6 PFC C3 16K1719 | 11/18/2016 18:15:16 | 161118J2_07 | 7 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 PFC C-2 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 PFC C-1 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 PFC C0 11/18/2016 17:50:45 ST161118J2-4 PFC C1 16K1717 PFC C1 | PFC C2 16K1718 A | ST161118J2-5 PFC C2 16K1718 | 11/18/2016 18:03:03 | 161118J2_06 | 6 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 PFC C-2 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 PFC C-1 11/18/2016 17:38:30 ST161118J2-3 PFC C0 16K1716 PFC C0 | | ST161118J2-4 PFC C1 16K1717 | 11/18/2016 17:50:45 | 161118J2_05 | 5 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 PFC C-2 11/18/2016 17:26:18 ST161118J2-2 PFC C-1 16K1715 PFC C-1 | 16K1716, | ST161118J2-3 PFC C0 16K1716 | 11/18/2016 17:38:30 | 161118J2_04 | 4 | | 11/18/2016 17:14:07 ST161118J2-1 PFC C-2 16K1714 PFC C-2 | | - 1 | 11/18/2016 17:26:18 | 161118J2 03 | ω | | | C-2 | | 11/18/2016 17:14:07 | 161118J2 02 | 2 | | 11/18/2016 17:01:53 IPA | IPA | IPA | 11/18/2016 17:01:53 | 161118J2_01 | *************************************** | | | \$ 10 mm | 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | | | | Page 1 of 2 | | | | 20120 | | |------------------------|--------------------------------|---------------------|--------------|-----| | DEC C3.5 16K1720A | ST161118J2-16 PFC C3.5 16K1720 | 11/19/2016 13:40:50 | 161118J2_102 | 102 | | IPA | IPA | 11/19/2016 13:28:39 | 161118J2_101 | 101 | | Matrix Spike Dup | B6K0111-MSD1 | 11/19/2016 13:16:23 | 161118J2_100 | 100 | | Matrix Spike | B6K0111-MS1 | 11/19/2016 13:04:12 | 161118J2_99 | 99 | | Matrix Spike Dup | B6K0117-MSD1 | 11/19/2016 12:51:58 | 161118J2_98 | 98 | | Matrix Spike | B6K0117-MS1 | 11/19/2016 12:39:45 | 161118J2_97 | 97 | | OW11-MW4-1016 | 1601437-07 | 11/19/2016 12:27:29 | 161118J2_96 | 96 | | OW11-MW6-1016 | 1601437-06 | 11/19/2016 12:15:18 | 161118J2_95 | 95 | | IPA | IPA | 11/19/2016 12:03:03 | 161118J2_94 | 94 | | PFC C3.5 16K1720A | ST161118J2-15 PFC C3.5 16K1720 | 11/19/2016 11:50:49 | 161118J2_93 | 93 | | IPA | IPA | 11/19/2016 11:38:32 | 161118J2_92 | 92 | | OW11-MW5-1016 | 1601437-05 | 11/19/2016 11:26:21 | 161118J2_91 | 91 | | OW11-MW7-1016 | 1601437-04 | 11/19/2016 11:14:05 | 161118J2_90 | 90 | | OW11-MW1-1016 | 1601437-03 |
11/19/2016 11:01:53 | 161118J2_89 | 89 | | OW11-MW9P-1016 | 1601437-02 | 11/19/2016 10:49:38 | 161118J2_88 | 88 | | OW11-MW9-1016 | 1601437-01 | 11/19/2016 10:37:27 | 161118J2_87 | 87 | | PFAS-B24-MW-03-110416 | 1601413-20 | 11/19/2016 10:25:12 | 161118J2_86 | 86 | | EB2-WG-110416 | 1601413-19 | 11/19/2016 10:12:56 | 161118J2_85 | 85 | | PFAS-WS-DUP1-110416 | 1601413-18 | 11/19/2016 10:00:22 | 161118J2_84 | 22 | | PFAS-ABT-MW-20-110416 | 1601413-17 | 11/19/2016 09:47:51 | 161118J2_83 | 83 | | PFAS-B81-MW-215-110416 | 1601413-16 | 11/19/2016 09:35:19 | 161118J2_82 | 83 | | IPA | IPA | 11/19/2016 09:22:47 | 161118J2_81 | 81 | | PFC C3.5 16K1720A | ST161118J2-14 PFC C3.5 16K1720 | 11/19/2016 09:10:17 | 161118J2_80 | 88 | | IPA | IPA | 11/19/2016 08:57:48 | 161118J2_79 | 79 | | PFAS-ABT-36-110416 | 1601413-15 | 11/19/2016 08:45:15 | 161118J2_78 | 78 | | PFAS-MW11-095-110416 | 1601413-14 | 11/19/2016 08:32:43 | 161118J2_77 | 77 | | PFAS-MW11-093-110416 | 1601413-13 | 11/19/2016 08:20:11 | 161118J2_76 | 76 | | EB1-WG-110316 | 1601413-12 | 11/19/2016 08:07:55 | 161118J2_75 | 75 | | PFAS-B81-MW-46S-110416 | 1601413-11 | 11/19/2016 07:55:41 | 161118J2_74 | 74 | | PFAS-B82-MW-09S-110316 | 1601413-10 | 11/19/2016 07:43:18 | 161118J2_73 | 73 | | PFAS-B82-MW-09D-110316 | 1601413-09 | 11/19/2016 07:30:59 | 161118J2_72 | 72 | | PFAS-B82-MW-10D-110316 | 1601413-08 | 11/19/2016 07:18:32 | 161118J2_71 | 71 | | PFAS-B82-MW-11S-110416 | 1601413-07 | 11/19/2016 07:06:17 | 161118J2_70 | 70 | | PFAS-B82-MW-11D-110416 | 1601413-06 | 11/19/2016 06:54:01 | 161118J2_69 | 69 | | IPA | IPA | 11/19/2016 06:41:45 | 161118J2_68 | 68 | | PFC C3.5 16K1720A | ST161118J2-13 PFC C3.5 16K1720 | 11/19/2016 06:29:31 | 161118J2_67 | 67 | | IPA | IPA | 11/19/2016 06:17:15 | 161118J2_66 | 66 | | PFAS-WG-DUP2-110416 | 1601413-05 | 11/19/2016 06:04:59 | 161118J2_65 | 65 | | PFAS-B82-MW-105-110316 | 1601413-04 | 11/19/2016 05:52:47 | 161118J2_64 | 2 | | PFAS-BW-MW-30-110316 | 1601413-03 | 11/19/2016 05:40:32 | 161118J2_63 | සු | | PFAS-MW01-62-110316 | 1601413-02 | 11/19/2016 05:28:17 | 161118J2_62 | දි | | PFAS-ABT-MW-58-110316 | 1601413-01 | 11/19/2016 05:16:02 | 161118J2_61 | 61 | | WURTS-VAS17003-52-55 | 1601410-12 | 11/19/2016 05:03:50 | 161118J2_60 | 8 | | WURTS-VAS17003-42-45 | 1601410-11 | 11/19/2016 04:51:36 | 161118J2_59 | 59 | | WURTS-VAS17003-32-35 | 1601410-10 | 11/19/2016 04:39:19 | 161118J2_58 | 58 | | | | | | | 4.40 4.60 3.60 3.80 4.00 4.20 4.40 3.80 4.00 4.00 4.20 4.40 4.60 4.80 --- min 5.00 Vista Analytical Laboratory Q2 Page 2 of 27 Dataset: Untitled Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:55:40 Pacific Standard Time ## Name: 161118J2_03.wiff, Date: 18-Nov-2016, Time: 17:26:18, ID: ST161118J2-2 PFC C-1 16K1715, Description: PFC C-1 16K1715 A Work Order 1601464 Revision 1 Page 138 of 174 Work Order 1601464 Revision 1 Page 139 of 174 Work Order 1601464 Revision 1 Page 140 of 174 Page 5 of 27 Dataset: Untitled Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:55:40 Pacific Standard Time Name: 161118J2_04.wiff, Date: 18-Nov-2016, Time: 17:38:30, ID: ST161118J2-3 PFC C0 16K1716, Description: PFC C0 16K1716 A Work Order 1601464 Revision 1 Page 141 of 174 **Quantify Sample Report** MassLynx 4.1 SCN815 Page 6 of 27 SIR of 31 channels, ES- 4.60 4.80 SIR of 31 channels, ES- 80.01 ── min 79.94 5.00 1.341e+005 Vista Analytical Laboratory Q2 Untitled Dataset: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Last Altered: Printed: Saturday, November 19, 2016 12:55:40 Pacific Standard Time ## Name: 161118J2_04.wiff, Date: 18-Nov-2016, Time: 17:38:30, ID: ST161118J2-3 PFC C0 16K1716, Description: PFC C0 16K1716 A MassLynx 4.1 SCN815 Page 7 of 27 Dataset: Untitled Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:55:40 Pacific Standard Time ## Name: 161118J2_05.wiff, Date: 18-Nov-2016, Time: 17:50:45, ID: ST161118J2-4 PFC C1 16K1717, Description: PFC C1 16K1717 A Work Order 1601464 Revision 1 Page 143 of 174 **Quantify Sample Report** MassLynx 4.1 SCN815 Page 8 of 27 Vista Analytical Laboratory Q2 Dataset: Untitled Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:55:40 Pacific Standard Time Name: 161118J2 05.wiff, Date: 18-Nov-2016, Time: 17:50:45, ID: ST161118J2-4 PFC C1 16K1717, Description: PFC C1 16K1717 A 6:2 FTS **PFOA PFNA** SIR of 31 channels, ES-161118J2_05_P1_E1 SIR of 31 channels, ES-161118J2_05_P1_E1 SIR of 31 channels, ES-161118J2_05_P1_E1 **PFNA** 419.00 6:2 FTS 406.90 **PFOA** 368.90 100-100-100-4.63 1.129e+004 4.575e+004 5.02 2.830e+004 4.68 8.03e2 3.64e2 1.42e3 28214 11280 45365 %-%-%---- min 5.00 4.40 4.60 4.80 5.00 5.20 4.40 4.60 4.80 5.00 5.20 4.60 4.80 5.20 5.40 5.60 13C2-PFOA 13C5-PFNA 13C2-6:2 FTS SIR of 31 channels, ES-161118J2 05 P1 E1 SIR of 31 channels, ES-161118J2_05_P1_E1 SIR of 31 channels, ES-161118J2 05 P1 E1 13C5-PFNA 422.90 13C2-6:2 FTS 408.90 13C2-PFOA 369.90 100-100 100-2.157e+005 4.63 6.870e+004 4.68 2.592e+005 5.01 2.36e3 6.89e3 7.65e3 215650 68664 259151 %----- min min min 4.60 4.80 5.00 5.20 5.40 5.60 4.40 4.60 4.80 5.00 5.20 4.40 4.60 4.80 5.00 5.20 8:2 FTS **PFOS PFDA** SIR of 31 channels, ES-161118J2_05_P1_E1 SIR of 31 channels, ES-161118J2_05_P1_E1 SIR of 31 channels, ES-161118J2_05_P1_E1 **PFOS** 469.00 8:2 FTS 506.90 79.92 PFDA 100-100-100-4.209e+003 1.479e+004 5.08 1.668e+004 5.31 5.28 1.39e2 6.07e2 4.89e2 16661 14725 4209 %-¬ min min . 5.00 5.20 5.40 5.00 5.20 5.40 5.60 5.80 5.00 5.20 5.40 5.60 5.80 6.00 4.80 5.60 13C2-8:2 FTS 13C8-PFOS 13C2-PFDA 161118J2 05 P1 E1 SIR of 31 channels, ES-SIR of 31 channels, ES-161118J2_05_P1_E1 SIR of 31 channels.ES-161118J2_05_P1_E1 508.70 13C2-8:2 FTS 13C8-PFOS 79.93 13C2-PFDA 470.00 100-100-100-3.450e+004 5.08 9.328e+004 5.31 1.083e+005 5.28 3.38e3 1.07e3 3.43e3 34456 108298 93224 %- 5.40 5.60 5.20 5.00 — min 5.60 4.80 5.00 5.20 5.40 min 5.80 5.20 5.00 5.40 5.60 🗂 min 6.00 5.80 Work Order 1601464 Revision 1 Page 145 of 174 Dataset: Untitled Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:55:40 Pacific Standard Time Name: 161118J2_06.wiff, Date: 18-Nov-2016, Time: 18:03:03, ID: ST161118J2-5 PFC C2 16K1718, Description: PFC C2 16K1718 A Work Order 1601464 Revision 1 Page 146 of 174 **Quantify Sample Report** MassLynx 4.1 SCN815 Page 11 of 27 Vista Analytical Laboratory Q2 Dataset: Untitled Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:55:40 Pacific Standard Time Printed: Name: 161118J2_06.wiff, Date: 18-Nov-2016, Time: 18:03:03, ID: ST161118J2-5 PFC C2 16K1718, Description: PFC C2 16K1718 A 6:2 FTS **PFOA PFNA** 161118J2_06_P1_E1 SIR of 31 channels.ES-161118J2_06_P1_E1 SIR of 31 channels, ES-161118J2_06_P1_E1 SIR of 31 channels.ES-6:2 FTS 406.90 **PFNA** 419.00 **PFOA** 368.90 100-100-100-4.63 2.501e+004 4.67 1.091e+005 5.00 6.440e+004 8.22e2 1.89e3 3.16e3 25013 108758 64280 %-%nim r 4.40 4.60 4.80 5.00 5.20 4.40 4.60 4.80 5.00 5.20 4.60 4.80 5.00 5.20 5.40 5.60 13C2-6:2 FTS 13C2-PFOA 13C5-PFNA 161118J2_06_P1_E1 SIR of 31 channels, ES-161118J2 06 P1 E1 161118J2 06_P1_E1 SIR of 31 channels.ES-SIR of 31 channels.ES-13C2-6:2 FTS 13C5-PFNA 408.90 13C2-PFOA 369.90 422.90 100-100-100-4.63 6.279e+004 2.532e+005 5.00 1.907e+005 4.67 2.08e3 7.34e3 5.98e3 62740 253057 190624 %-% %min יייי min min r 4.40 4.60 4.80 5.00 5.20 4.60 5.00 4.60 4.80 5.00 5.20 5.40 4.40 4.80 5.20 5.60 **PFOS PFDA** 8:2 FTS 161118J2_06_P1_E1 SIR of 31 channels, ES-161118J2_06_P1_E1 SIR of 31 channels, ES-161118J2_06_P1_E1 SIR of 31 channels, ES-**PFOS** 79.92 PFDA 469.00 8:2 FTS 506.90 100-100-100-5.06 4.053e+004 1.123e+004 3.706e+004 5.29 5.26 1.46e3 3.98e2 1.19e3 40510 36941 11219 %---- min 5.00 4.80 5.20 5.40 5.60 5.00 5.20 5.40 5.60 5.80 5.00 5.20 5.40 5.60 5.80 6.00 13C8-PFOS 13C2-PFDA 13C2-8:2 FTS 161118J2_06_P1_E1 SIR of 31 channels, ES-161118J2_06_P1_E1 SIR of 31 channels, ES-161118J2_06_P1_E1 SIR of 31 channels.ES-13C8-PFOS 13C2-8:2 FTS 508.70 79.93 13C2-PFDA 470.00 100 100-100-1.039e+005 3.172e+004 5.06 5.28 1.052e+005 5.26 3.64e3 3.48e3 1.10e3 103854 31692 105147 %n min 5.40 5.00 5.20 5.20 5.60 5.80 6.00 4.80 5.40 5.00 5.20 5.80 5.00 5.60 5.40 5.60 Work Order 1601464 Revision 1 Page 147 of 174 Work Order 1601464 Revision 1 Page 148 of 174 Dataset: Untitled Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:55:40 Pacific Standard Time Name: 161118J2_07.wiff, Date: 18-Nov-2016, Time: 18:15:16, ID: ST161118J2-6 PFC C3 16K1719, Description: PFC C3 16K1719 A Work Order 1601464 Revision 1 Page 151 of 174 **Quantify Sample Report** MassLynx 4.1 SCN815 Page 16 of 27 Vista Analytical Laboratory Q2 Dataset: Untitled Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Printed: Saturday, November 19, 2016 12:55:40 Pacific Standard Time Name: 161118J2_08.wiff, Date: 18-Nov-2016, Time: 18:27:31, ID: ST161118J2-7 PFC C3.5 16K1720, Description: PFC C3.5 16K1720 A **PFBA PFPeA PFBS** 161118J2_08_P1_E1 SIR of 31 channels.ES-161118J2_08_P1_E1 161118J2_08_P1_E1 SIR of 31 channels, ES-SIR of 31 channels, ES-PFBA 168.90 PFPeA 218.90 **PFBS** 79.90 100-100-100-1.91 4.564e+005 3.11 6.332e+005 3.40 3.301e+005 1.96e4 1.96e4 9.83e3 454183 632751 329928 %-%-%-⊤⊤ min ¬ min 1.80 2.00 2.20 2.40 2.60 3.00 3.00 3.20 3.40 3.60 3.80 4.00 2.80 3.20 3.40 3.60 13C3-PFBA 13C3-PFPeA 13C3-PFBS SIR of 31 channels, ES-161118J2_08_P1_E1 161118J2 08 P1 E1 SIR of 31 channels, ES-161118J2 08 P1 E1 SIR of 31 channels, ES-13C3-PFBA 172.00 13C3-PFPeA 13C3-PFBS 79.95 221.90 100-100-100-2.122e+005 1.90 3.178e+005 3.40 1.947e+005 3.11 9.20e3 1.02e4 6.03e3 211445 317504 194614 %-%-%min 2.00 2.20 3.20 1.80 2.40 2.60 2.80 3.00 3.40 3.00 3.40 3.60 3.80 4.00 3.20 3.60 **PFHxA
PFHxS PFHpA** 161118J2 08 P1 E1 161118J2_08_P1_E1 SIR of 31 channels, ES-SIR of 31 channels, ES-161118J2_08_P1_E1 SIR of 31 channels.ES-PFHxA 268.90 PFHpA 318.90 **PFHxS** 79.91 100-100-100-3.80 5.688e+005 4.28 4.341e+005 4.40 2.260e+005 1.70e4 7.64e3 1.36e4 568346 225787 433540 %-% min r 3.60 3.80 4.00 4.20 4.40 4.20 4.40 4.60 4.80 5.00 3.80 4.00 4.20 4.40 4.60 4.00 13C2-PFHxA 1802-PFHxS 13C4-PFHpA 161118J2_08_P1_E1 SIR of 31 channels, ES-161118J2_08_P1_E1 SIR of 31 channels, ES-161118J2_08_P1_E1 SIR of 31 channels, ES-13C2-PFHxA 102.90 269.90 13C4-PFHpA 321.90 18O2-PFHxS 100-100-100-2.476e+005 1.229e+005 4.40 3.371e+004 3.80 4.28 3.62e3 7.71e3 1.10e3 122880 247138 33704 - min 4.60 4.00 4.20 4.40 4.60 4.80 3.60 3.80 4.00 4.20 4.40 3.80 4.00 4.20 4.40 5.00 Work Order 1601464 Revision 1 Page 153 of 174 Dataset: Untitled Last Altered: Printed: 13C6-PFDA 5.00 5.20 Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:55:40 Pacific Standard Time ## Name: 161118J2_08.wiff, Date: 18-Nov-2016, Time: 18:27:31, ID: ST161118J2-7 PFC C3.5 16K1720, Description: PFC C3.5 16K1720 A 5.40 5.60 5.80 Quantify Sample Report MassLynx 4.1 SCN815 Page 19 of 27 Vista Analytical Laboratory Q2 Dataset: Untitled Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:55:40 Pacific Standard Time Name: 161118J2_09.wiff, Date: 18-Nov-2016, Time: 18:39:42, ID: ST161118J2-8 PFC C4 16K1721, Description: PFC C4 16K1721 A Work Order 1601464 Revision 1 Page 156 of 174 Work Order 1601464 Revision 1 Page 157 of 174 **Quantify Sample Report** MassLynx 4.1 SCN815 Page 22 of 27 Vista Analytical Laboratory Q2 Dataset: Untitled Last Altered: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:55:40 Pacific Standard Time **PFPeA PFBS** Printed: Name: 161118J2_10.wiff, Date: 18-Nov-2016, Time: 18:51:58, ID: ST161118J2-9 PFC C4.5 16K1722, Description: PFC C4.5 16K1722 A **PFBA** 161118J2_10_P1_E1 SIR of 31 channels, ES-SIR of 31 channels, ES-161118J2 10 P1 E1 161118J2_10_P1_E1 SIR of 31 channels.ES-PFBA 168.90 **PFPeA** 218.90 **PFBS** 79.90 100-100-100-1.91 1.411e+006 1.834e+006 3.40 9.477e+005 3.10 6.13e4 2.90e4 5.94e4 947323 1404494 1832960 %-%-%-2.00 2.20 2.40 3.20 3.40 1.80 2.60 2.80 3.00 3.20 3.40 3.60 3.00 3.60 3.80 4.00 13C3-PFBA 13C3-PFPeA 13C3-PFBS 161118J2_10_P1_E1 SIR of 31 channels.ES-161118J2 10 P1 E1 161118J2 10 P1 E1 SIR of 31 channels, ES-SIR of 31 channels.ES-13C3-PFBA 13C3-PFPeA 13C3-PFBS 79.95 172.00 221.90 100-100-100-2.465e+005 1.91 3.737e+005 3.40 2.014e+005 3.10 1.06e4 1.17e4 6.40e3 245673 373227 201277 %-%-→ min min 2.00 2.20 3.20 3.40 3.60 1.80 2.40 2.60 2.80 3.00 3.20 3.40 3.00 3.80 4.00 3.60 **PFHxA PFHpA PFHxS** 161118J2_10_P1_E1 161118J2_10_P1_E1 SIR of 31 channels.ES-SIR of 31 channels, ES-161118J2_10_P1_E1 SIR of 31 channels, ES-**PFHxA** 268.90 **PFHpA** 318.90 **PFHxS** 79.91 100-100-100-3.80 1.645e+006 1.363e+006 4.39 7.165e+005 4.27 5.07e4 4.38e4 2.39e4 716013 1643437 1360453 nin r 4.20 3.60 3.80 4.00 4.20 4.40 3.80 4.00 4.20 4.40 4.60 4.00 4.40 4.60 4.80 5.00 13C2-PFHxA 13C4-PFHpA 18O2-PFHxS 161118J2 10 P1 E1 161118J2_10_P1_E1 161118J2_10_P1_E1 SIR of 31 channels, ES-SIR of 31 channels, ES-SIR of 31 channels, ES-13C2-PFHxA 1802-PFHxS 102.90 269.90 321.90 13C4-PFHpA 100-100 100-1.385e+005 2.789e+005 4.39 4.220e+004 3.79 4.27 4.17e3 8.67e3 1.35e3 138455 42194 278529 4.20 4.40 4.60 4.80 5.00 3.60 3.80 4.00 3.80 4.00 4.20 4.40 4.00 4.20 4.40 4.60 Work Order 1601464 Revision 1 Page 158 of 174 Untitled MassLynx 4.1 SCN815 Page 23 of 27 Dataset: Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:55:40 Pacific Standard Time #### Name: 161118J2_10.wiff, Date: 18-Nov-2016, Time: 18:51:58, ID: ST161118J2-9 PFC C4.5 16K1722, Description: PFC C4.5 16K1722 A Work Order 1601464 Revision 1 Page 160 of 174 4.20 Work Order 1601464 Revision 1 Page 161 of 174 4.40 4.60 4.00 4.20 4.60 4.80 3.60 3.80 4.00 4.20 4.40 3.80 4.00 min רדד 5.00 Dataset: Untitled Last Altered: Printed: Saturday, November 19, 2016 12:55:25 Pacific Standard Time Saturday, November 19, 2016 12:55:40 Pacific Standard Time Work Order 1601464 Revision 1 Page 162 of 174 Work Order 1601464 Revision 1 Page 163 of 174 **Quantify Sample Summary Report** Vista Analytical Laboratory Q1 MassLynx 4.1 SCN815 Page 1 of 1 Dataset: U:\Q2.PRO\Results\161118J2\161118J2_13.qld Last Altered: Printed: Monday, November 21, 2016 15:52:24 Pacific Standard Time Monday, November 21, 2016 15:53:35 Pacific Standard Time Method: U:\Q2.pro\MethDB\PFC List 18_A No4-2FTS_161118.mdb 19 Nov 2016 12:55:02 Calibration: U:\Q2.pro\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Name: 161118J2_13.wiff, Date: 18-Nov-2016, Time: 19:28:40, ID: SS161118J2-1 PFC SSS 16J1810, Description: PFC SSS 16J1810 A | | # Name | Trace | Response | IS Resp | RRF | Wt/Vol | RT | Conc. | %Rec | | |---------------|---------------------------------|--------|----------|---------|--|--------|------|-------|-------|-------| | 1 | 1 PFBA | 168.90 | 2.63e4 | 1.10e4 | SOR SECTION SE | 1.000 | 1.91 | 30.4 | 121.4 | 15-17 | | 2 | 2 PFPeA | 218.90 | 2.00e4 | 1.26e4 | | 1.000 | 3.11 | 23.1 | 92.5 | | | 3 | 3 PFBS | 79.90 | 1.17e4 | 6.92e3 | | 1.000 | 3.40 | 27.2 | 108.7 | 1 | | 4 | 4 PFHxA | 268.90 | 2.22e4 | 4.28e3 | | 1.000 | 3.80 | 31.2 | 124.8 | - 1 | | 5 | 5 PFHpA | 318.90 | 1.84e4 | 8.37e3 | | 1.000 | 4.28 | 33.2 | 132.8 | [(A | | State Comment | 6 PFHxS | 79.91 | 6.70e3 | 1.12e3 | | 1.000 | 4.40 | 22.9 | 91.7 | | | Arrest (A) | 7 6:2 FTS | 406.90 | 4.86e3 | 2.41e3 | | 1.000 | 4.63 | 26.6 | 106.3 | | | } | 8 PFOA | 368.90 | 1.49e4 | 6.69e3 | | 1.000 | 4.67 | 22.6 | 90.3 | | |) | 9 PFNA | 419.00 | 1.14e4 | 5.85e3 | | 1.000 | 5.01 | 29.8 | 119.2 | | | 0 | 10 PFOS | 79.92 | 5.24e3 | 2.56e3 | | 1.000 | 5.06 | 22.2 | 88.9 | - } | | 1 | 11 PFDA | 469.00 | 4.84e3 | 2.16e3 | | 1.000 | 5.29 | 28.5 | 113.9 | , | | 2 | 12 8:2 FTS | 506.90 | 1.30e3 | 6.66e2 | | 1.000 | 5.27 | 27.4 | 109.5 | - | | 3 | 13 13C3-PFBA | 172.00 | 1.10e4 | 1.26e4 | 0.867 | 1.000 | 1.91 | 12.6 | 100.4 | | | 4 | 14 13C3-PFPeA | 221.90 | 1.26e4 | 1.21e4 | 0.994 | 1.000 | 3.11 | 13.0 | 104.1 | | | 5 | 15 13C3-PFBS | 79.95 | 6.92e3 | 1.21e4 | 0.564 | 1.000 | 3.40 | 12.6 | 101.1 | | | 6 | 16 13C2-PFHxA | 269.90 | 4.28e3 | 1.21e4 | 0.907 | 1.000 | 3.80 | 4.86 | 97.1 | | | 7 | 17 13C4-PFHpA | 321.90 | 8.37e3 | 1.21e4 | 0.742 | 1.000 | 4.28 | 11.6 | 92.9 | | | 8 | 18 18O2-PFHxS | 102.90 | 1.12e3 | 4.29e3 | 0.271 | 1.000 | 4.40 | 12.0 | 96.2 | | | 9 | 19 13C2-6:2 FTS | 408.90 | 2.41e3 | 1.00e4 | 0.224 | 1.000 | 4.63 | 13.4 | 107.3 | | | 0 | 20 13C2-PFOA | 369.90 | 6.69e3 | 1.00e4 | 0.651 | 1.000 | 4.67 | 12.8 | 102.2 | | | 1 | 21 13C5-PFNA | 422.90 | 5.85e3 | 5.95e3 | 1.002 | 1.000 | 5.00 | 12.3 | 98.2 | | | 2 | 22 13C8-PFOS | 79.93 | 2.56e3 | 2.54e3 | 0.950 | 1.000 | 5.06 | 13.3 | 106.0 | | | 3 | 23 13C2-PFDA | 470.00 | 2.16e3 | 2.56e3 | 0.827 | 1.000 | 5.29 | 12.8 | 102.1 | | | 24 | 24 13C2-8:2 FTS | 508.70 | 6.66e2 | 2.56e3 | 0.260 | 1.000 | 5.26 | 12.5 | 100.0 | | | 25 | 25 13C4-PFBA | 171.90 | 1.26e4 | 1.26e4 | 1.000 | 1.000 | 1.91 | 12.5 | 100.0 | | | 26 | 26 13C5-PFHxA | 273.00 | 1.21e4 | 1.21e4 | 1.000 | 1.000 | 3.80 | 12.5 | 100.0 | | | 27 | 27 13C3-PFHxS | 80.01 | 4.29e3 | 4.29e3 | 1.000 | 1.000 | 4.39 | 12.5 | 100.0 | | | 28 | 28 13C8-PFOA | 375.90 | 1.00e4 | 1.00e4 | 1.000 | 1.000 | 4.67 | 12.5 | 100.0 | | | 29 | 29 13C4-PFOS | 79.94 | 2.54e3 | 2.54e3 | 1.000 | 1.000 | 5.06 | 12.5 | 100.0 | | | 30 | 30 13C9-PFNA | 427.00 | 5.95e3 | 5.95e3 | 1.000 | 1.000 | 5.00 | 12.5 | 100.0 | | | Mk Order 1 | 160 314634CR-E VFIDAOn 1 | 474.00 | 2.56e3 | 2.56e3 | 1.000 | 1.000 | 5.28 | 12.5 | 100.0 | | Doutside method limits. AC 11/21/10 Page 164 of 174 **Quantify Sample Report** Vista Analytical Laboratory Q2 MassLynx 4.1 SCN815 Page 1 of 3 Dataset:
Printed: Untitled Last Altered: 3.60 Work Order 1601464 Revision 1 4.00 4.20 4.40 3.80 4.00 4.20 4.40 4.60 4.00 4.20 4.40 4.60 4.80 5.00 Page 165 of 174 Monday, November 21, 2016 15:51:43 Pacific Standard Time Monday, November 21, 2016 15:51:59 Pacific Standard Time Method: U:\Q2.pro\MethDB\PFC List 18_A No4-2FTS_161118.mdb 19 Nov 2016 12:55:02 Calibration: U:\Q2.pro\CurveDB\C18_VAL-PFC Q2_11-18-16 L18 A.cdb 19 Nov 2016 12:55:25 Name: 161118J2_13.wiff, Date: 18-Nov-2016, Time: 19:28:40, ID: SS161118J2-1 PFC SSS 16J1810, Description: PFC SSS 16J1810 A **Quantify Sample Report** Vista Analytical Laboratory Q2 MassLynx 4.1 SCN815 Page 2 of 3 Dataset: Printed: Untitled Last Altered: Monday, November 21, 2016 15:51:43 Pacific Standard Time Monday, November 21, 2016 15:51:59 Pacific Standard Time ## Name: 161118J2_13.wiff, Date: 18-Nov-2016, Time: 19:28:40, ID: SS161118J2-1 PFC SSS 16J1810, Description: PFC SSS 16J1810 A 5.00 9.27e1 2462 5.40 5.20 ¬ min 5.00 5.20 5.40 5.60 5.80 5.00 5.20 5.40 5.60 5.80 5.60 nin 🕝 6.00 Dataset: Untitled Last Altered: Printed: 5.00 5.20 5.40 5.60 Monday, November 21, 2016 15:51:43 Pacific Standard Time Monday, November 21, 2016 15:51:59 Pacific Standard Time min 5.80 #### Name: 161118J2_13.wiff, Date: 18-Nov-2016, Time: 19:28:40, ID: SS161118J2-1 PFC SSS 16J1810, Description: PFC SSS 16J1810 A Work Order 1601464 Revision 1 Page 167 of 174 Dataset: Printed: U:\Q2.PRO\Results\161121J4\161121J4_04.qld Last Altered: Tuesday, November 22, 2016 08:55:40 Pacific Standard Time Tuesday, November 22, 2016 10:09:28 Pacific Standard Time Method: U:\Q2.pro\MethDB\PFC List 18_A No4-2FTS_161118.mdb 19 Nov 2016 12:55:02 Calibration: U:\Q2.pro\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Name: 161121J4_04.wiff, Date: 21-Nov-2016, Time: 12:25:30, ID: SS161118J2-1 PFC SSS 16J1810, Description: PFC SSS 16J1810 A | 400 | # Name | Trace | Response | IS Resp | RRF | Wt/Vol | RT | Conc. | %Rec | | |-----------------------|-------------------------|--------|----------|---------|-------|--------|------|----------------|--------------------|--------------| | 10 m | 1 PFBA | 168.90 | 2.81e4 | 1.15e4 | | 1.000 | 1.85 | 30.9 | 123.7 | 15-125 | | (3) | 2 PFPeA | 218.90 | 2.17e4 | 1.38e4 | | 1.000 | 3.07 | 22.8 | 91.2 | - 1 | | | 3 PFBS | 79.90 | 1.26e4 | 7.52e3 | | 1.000 | 3.38 | 27.0 | 108.0 | | | | 4 PFHxA | 268.90 | 2.43e4 | 4.88e3 | | 1.000 | 3.78 | 30.0 | 119.9 | | | 5 | 5 PFHpA | 318.90 | 2.15e4 | 1.04e4 | | 1.000 | 4.25 | 31.2 | 124.9 | | | | 6 PFHxS | 79.91 | 8.48e3 | 1.52e3 | | 1.000 | 4.37 | 21.4 | .5 _{85.6} | (A) | | anti-min and a second | 7 6:2 FTS | 406.90 | 5.93e3 | 2.88e3 | | 1.000 | 4.60 | 27.2 | 109.0 | | | | 8 PFOA | 368.90 | 1.80e4 | 8.36e3 | | 1.000 | 4.65 | 21.8 | 4 87.2 | | | | 9 PFNA | 419.00 | 1.28e4 | 6.34e3 | | 1.000 | 4.97 | 30.8 | 123.3 | <u> </u> | | 10 | 10 PFOS | 79.92 | 5.20e3 | 2.47e3 | | 1.000 | 5.03 | 22.8 15 | 9 91.3 | (4) | | 1 | 11 PFDA | 469.00 | 4.19e3 | 1.94e3 | | 1.000 | 5.26 | 27.4 | 109.6 | <u> </u> | | 2 | 12 8:2 FTS | 506.90 | 1.24e3 | 6.02e2 | | 1.000 | 5.23 | 28.9 | 115.5 | \mathbf{V} | | 3 | 13 13C3-PFBA | 172.00 | 1.15e4 | 1.29e4 | 0.867 | 1.000 | 1.85 | 12.9 | 103.5 | | | 4 | 14 13C3-PFPeA | 221.90 | 1.38e4 | 1.38e4 | 0.994 | 1.000 | 3.07 | 12.5 | 100.3 | | | 5 | 15 13C3-PFBS | 79.95 | 7.52e3 | 1.38e4 | 0.564 | 1.000 | 3.37 | 12.0 | 96.3 | | | 3 | 16 13C2-PFHxA | 269.90 | 4.88e3 | 1.38e4 | 0.907 | 1.000 | 3.78 | 4.86 | 97.2 | | | 7 | 17 13C4-PFHpA | 321.90 | 1.04e4 | 1.38e4 | 0.742 | 1.000 | 4.25 | 12.7 | 101.4 | | | | 18 18O2-PFHxS | 102.90 | 1.52e3 | 5.28e3 | 0.271 | 1.000 | 4.37 | 13.2 | 106.0 | | | 100 | 19 13C2-6:2 FTS | 408.90 | 2.88e3 | 9.25e3 | 0.224 | 1.000 | 4.60 | 17.4 | 139.0 | | |) | 20 13C2-PFOA | 369.90 | 8.36e3 | 9.25e3 | 0.651 | 1.000 | 4.64 | 17.3 | 138.8 | | | 1 | 21 13C5-PFNA | 422.90 | 6.34e3 | 6.66e3 | 1.002 | 1.000 | 4.97 | 11.9 | 94.9 | | | 2 | 22 13C8-PFOS | 79.93 | 2.47e3 | 2.59e3 | 0.950 | 1.000 | 5.03 | 12.6 | 100.6 | | | 3 | 23 13C2-PFDA | 470.00 | 1.94e3 | 2.51e3 | 0.827 | 1.000 | 5.26 | 11.6 | 93.1 | | | 4 | 24 13C2-8:2 FTS | 508.70 | 6.02e2 | 2.51e3 | 0.260 | 1.000 | 5.23 | 11.5 | 92.1 | | | 5 | 25 13C4-PFBA | 171.90 | 1.29e4 | 1.29e4 | 1.000 | 1.000 | 1.85 | 12.5 | 100.0 | | | 6 | 26 13C5-PFHxA | 273.00 | 1.38e4 | 1.38e4 | 1.000 | 1.000 | 3.78 | 12.5 | 100.0 | | | 7 | 27 13C3-PFHxS | 80.01 | 5.28e3 | 5.28e3 | 1.000 | 1.000 | 4.37 | 12.5 | 100.0 | | | 3 | 28 13C8-PFOA | 375.90 | 9.25e3 | 9.25e3 | 1.000 | 1.000 | 4.64 | 12.5 | 100.0 | | |) | 29 13C4-PFOS | 79.94 | 2.59e3 | 2.59e3 | 1.000 | 1.000 | 5.03 | 12.5 | 100.0 | | | 0 | 30 13C9-PFNA | 427.00 | 6.66e3 | 6.66e3 | 1.000 | 1.000 | 4.97 | 12.5 | 100.0 | | | k Order 1 | 6081141631CR-EVF19Abn 1 | 474.00 | 2.51e3 | 2.51e3 | 1.000 | 1.000 | 5.25 | 12.5 | 100.0 | | 1/22/14 | | Sample Name | Sample Name Acquisition Date | Samble | Sample Comment | |----|--------------|------------------------------|-------------------------------|---------------------| | | 16112134_01 | 11/21/2016 11:48:45 | IPA | IPA | | | 16112134_02 | 11/21/2016 12:01:00 | ST161120J2-1 PFC C3.5 16K1421 | PFC C3.5 16K1421 A | | | 161121J4_03 | 11/21/2016 12:13:14 | IPA | IPA | | 4 | 16112134_04 | 11/21/2016 12:25:30 | SS161118J2-1 PFC SSS 16J1810 | PFC SSS 16J1810 A | | 5 | 16112134_05 | 11/21/2016 12:37:43 | IPA | IPA | | 9 | 16112134_06 | 11/21/2016 12:49:58 | B6K0124-BS1 | OPR | | | 16112134 07 | 11/21/2016 13:02:12 | B6K0124-BSD1 | OPR Dup | | 8 | 16112134_08 | 11/21/2016 13:14:25 | IPA | IPA | | 6 | 16112134_09 | 11/21/2016 13:26:39 | B6K0124-BLK1 | Method Blank | | 10 | 16112134_10 | 11/21/2016 13:38:53 | IPA | IPA | | _ | 161121J4_11 | 11/21/2016 13:51:06 | 1601447-01 | OF-INF01-111116 | | 12 | 161121J4_12 | 11/21/2016 14:03:22 | 1601447-02 | OF-GAC-EFF01-111116 | | 13 | 161121J4_13 | 11/21/2016 14:15:40 | IPA | IPA | | 4 | 16112134_14 | 11/21/2016 14:27:55 | ST161120J2-2 PFC C3.5 16K1421 | PFC C3.5 16K1421 A | | 15 | 161121.14 15 | 11/21/2016 14:40:09 | ра | PA | Page 169 of 174 Dataset: Untitled Last Altered: Printed: Tuesday, November 22, 2016 08:53:22 Pacific Standard Time Tuesday, November 22, 2016 08:53:36 Pacific Standard Time Method: U:\Q2.pro\MethDB\PFC List 18_A No4-2FTS_161118.mdb 19 Nov 2016 12:55:02 Calibration: U:\Q2.pro\CurveDB\C18_VAL-PFC_Q2_11-18-16_L18_A.cdb 19 Nov 2016 12:55:25 Name: 161121J4_04.wiff, Date: 21-Nov-2016, Time: 12:25:30, ID: SS161118J2-1 PFC SSS 16J1810, Description: PFC SSS 16J1810 A Work Order 1601464 Revision 1 Page 171 of 174 **Quantify Sample Report** MassLynx 4.1 SCN815 Page 2 of 3 Vista Analytical Laboratory Q2 Untitled Dataset: Last Altered: Tuesday, November 22, 2016 08:53:22 Pacific Standard Time Printed: Tuesday, November 22, 2016 08:53:36 Pacific Standard Time Name: 161121J4_04.wiff, Date: 21-Nov-2016, Time: 12:25:30, ID: SS161118J2-1 PFC SSS 16J1810, Description: PFC SSS 16J1810 A 6:2 FTS **PFOA PFNA** 161121J4 04 P1 E1 SIR of 31 channels.ES-161121J4_04_P1_E1 SIR of 31 channels, ES-161121J4 04 P1 E1 SIR of 31 channels, ES-6:2 FTS 406.90 **PFOA** 368.90 PFNA 419.00 100-100-100-4.60 1.775e+005 4.65 5.596e+005 4.97 4.161e+005 5.93e3 1.80e4 9.91e3 177396 559005 364282 %-TTTTT min → min 4.80 4.40 4.60 5.00 5.20 4.40 4.60 5.00 5.20 4.60 4.80 5.00 5.20 5.40 5.60 4.80 13C2-6:2 FTS 13C2-PFOA 13C5-PFNA Work Order 1601464 Revision 1 Page 173 of 174 Dataset: Untitled Last Altered: Tuesday, November 22, 2016 08:53:22 Pacific Standard Time Printed: Tuesday, November 22, 2016 08:53:36 Pacific Standard Time ## Name: 161121J4_04.wiff, Date: 21-Nov-2016, Time: 12:25:30, ID: SS161118J2-1 PFC SSS 16J1810, Description: PFC SSS 16J1810 A # 5.40 5.60 5.80 5.00 5.20 13C6-PFDA ``` "sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t est_type","cas_rn","chemical_name","result_value","result_error_delta","result_type_code","reportable_result","detect_ flag", "lab_qualifiers", "organic_yn", "method_detection_limit", "reporting_detection_limit", "quantatation_limit", "result_u nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta tus" "EB03-20161116","537_MOD","11/29/16","19:59","N","NA","000","375-73- " "" "" "EB03-20161116","537_MOD","11/29/16","19:59","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.837","","TRG","Yes","Y","J, "EB03-20161116","537_MOD","11/29/16","19:59","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "EB03-20161116","537_MOD","11/29/16","19:59","N","NA","000","13C3-PFBS","13C3- PFBS","119","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","119","119","119","","","","","","","150","","" 1111 1111 "EB03-20161116","537_MOD","11/29/16","19:59","N","NA","000","13C2-PFOA","13C2- PFOA","89.7","","IS","Yes","Y","","","","","","PCT_REC","","","","100","89.7","89.7","89.7","","","","","","150","" "EB03-20161116","537_MOD","11/29/16","19:59","N","NA","000","13C8-PFOS","13C8- PFOS","92.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","92.5","92.5","","","","","","","150","", "", "", "" "OUAI-MW53-20161116", "537 MOD", "11/29/16", "20:12", "N", "NA", "000", "375-73- "OUAI-MW53-20161116","537_MOD","11/29/16","20:12","N","NA","000","335-67-1","PERFLUOROOCTANOIC n nn nn in nn "OUAI-MW53-20161116","537_MOD","11/29/16","20:12","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION '''' "OUAI-MW53-20161116","537 MOD","11/29/16","20:12","N","NA","000","13C3-PFBS","13C3- 1111 1111 "OUAI-MW53-20161116","537 MOD","11/29/16","20:12","N","NA","000","13C2-PFOA","13C2- PFOA","87.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","87.1","87.1","","","","","","","150",""
"OUAI-MW53-20161116","537_MOD","11/29/16","20:12","N","NA","000","13C8-PFOS","13C8- "OUAI-MW54-20161116","537 MOD","11/29/16","20:24","N","NA","000","375-73- "OUAI-MW54-20161116","537_MOD","11/29/16","20:24","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID ń na na ńa na "OUAI-MW54-20161116","537 MOD","11/29/16","20:24","N","NA","000","1763-23- ``` ``` 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "OUAI-MW54-20161116","537_MOD","11/29/16","20:24","N","NA","000","13C3-PFBS","13C3- PFBS","110","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","110","110","","","","","","","60","150","","" "OUAI-MW54-20161116","537_MOD","11/29/16","20:24","N","NA","000","13C2-PFOA","13C2- PFOA","86.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","86.1","86.1","86.1","","","","","","150","" "OUAI-MW54-20161116","537 MOD","11/29/16","20:24","N","NA","000","13C8-PFOS","13C8- PFOS","92.4","","IS","Yes","Y","","","","","","PCT_REC","","","","100","92.4","92.4","","","","","","","60","150","" "" "" "" "OUAI-MW42-20161116","537_MOD","11/29/16","20:36","N","NA","000","375-73- "OUAI-MW42-20161116","537_MOD","11/29/16","20:36","N","NA","000","335-67-1","PERFLUOROOCTANOIC "OUAI-MW42-20161116","537_MOD","11/29/16","20:36","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION ***** "OUAI-MW42-20161116","537_MOD","11/29/16","20:36","N","NA","000","13C3-PFBS","13C3- PFBS","104","","IS","Yes","Y","","Y","","","","","PCT_REC","","","","","100","104","104","104","","","","","","","150","","" "OUAI-MW42-20161116","537_MOD","11/29/16","20:36","N","NA","000","13C2-PFOA","13C2- PFOA","86.3","","IS","Yes","Y","","","","","","PCT_REC","","","","100","86.3","86.3","86.3","","","","","","150","" , , , "OUAI-MW42-20161116","537_MOD","11/29/16","20:36","N","NA","000","13C8-PFOS","13C8- "OUAI-MW01-20161116","537_MOD","11/29/16","20:48","N","NA","000","375-73- , , , , , "OUAI-MW01-20161116","537_MOD","11/29/16","20:48","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","1.40","","TRG","Yes","Y","J, "OUAI-MW01-20161116","537_MOD","11/29/16","20:48","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION PFBS","110","","IS","Yes","Y","","Y","","","","","PCT_REC","","","","","100","110","110","110","","","","","","","150","","" "OUAI-MW01-20161116","537_MOD","11/29/16","20:48","N","NA","000","13C2-PFOA","13C2- PFOA","89.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","89.0","89.0","89.0","","","","","","150","" "OUAI-MW01-20161116","537_MOD","11/29/16","20:48","N","NA","000","13C8-PFOS","13C8- PFOS","87.4","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","87.4","87.4","87.4","","","","","","60","150","", "OUAI-MW31-20161116","537 MOD","11/29/16","22:14","N","NA","000","375-73- "OUAI-MW31-20161116","537_MOD","11/29/16","22:14","N","NA","000","335-67-1","PERFLUOROOCTANOIC ``` ``` ACID "OUAI-MW31-20161116","537_MOD","11/29/16","22:14","N","NA","000","1763-23- 1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "OUAI-MW31-20161116","537_MOD","11/29/16","22:14","N","NA","000","13C3-PFBS","13C3- PFBS","106","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","106","106","106","","","","","","","150","","" ***** "OUAI-MW31-20161116","537_MOD","11/29/16","22:14","N","NA","000","13C2-PFOA","13C2- PFOA","85.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","85.9","85.9","","","","","","","150","" , , , , , , , "OUAI-MW31-20161116","537_MOD","11/29/16","22:14","N","NA","000","13C8-PFOS","13C8- PFOS","92.2","","IS","Yes","Y","","","","","","PCT_REC","","","","100","92.2","92.2","","","","","","","60","150","" "OUAI-PZ19-20161116","537_MOD","11/29/16","22:26","N","NA","000","375-73- "OUAI-PZ19-20161116","537 MOD","11/29/16","22:26","N","NA","000","335-67-1","PERFLUOROOCTANOIC "OUAI-PZ19-20161116","537_MOD","11/29/16","22:26","N","NA","000","1763-23- 1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "OUAI-PZ19-20161116","537_MOD","11/29/16","22:26","N","NA","000","13C3-PFBS","13C3- PFBS","106","","IS","Yes","Y","","","","","","","PCT_REC","","","","100","106","106","","","","","","","","60","150","","" ***** "OUAI-PZ19-20161116","537_MOD","11/29/16","22:26","N","NA","000","13C2-PFOA","13C2- PFOA","87.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","87.5","87.5","87.5","","","","","","60","150","" , , , "OUAI-PZ19-20161116","537_MOD","11/29/16","22:26","N","NA","000","13C8-PFOS","13C8- PFOS","101","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","101","101","","","","","","","60","150","","" "OUAI-MW52-20161116","537_MOD","11/29/16","22:38","N","NA","000","375-73- , , , , , , "OUAI-MW52-20161116", "537_MOD", "11/29/16", "22:38", "N", "NA", "000", "335-67-1", "PERFLUOROOCTANOIC ACID (PFOA)","5.38","","TRG","Yes","Y","J, "OUAI-MW52-20161116","537_MOD","11/29/16","22:38","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "OUAI-MW52-20161116","537_MOD","11/29/16","22:38","N","NA","000","13C3-PFBS","13C3- PFBS","102","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","102","102","102","","","","","","","60","150","","" "OUAI-MW52-20161116","537_MOD","11/29/16","22:38","N","NA","000","13C2-PFOA","13C2- PFOA","93.1","","IS","Yes","Y","","","","","","PCT_REC","","","","100","93.1","93.1","93.1","","","","","","150","" "OUAI-MW52-20161116","537_MOD","11/29/16","22:38","N","NA","000","13C8-PFOS","13C8- PFOS","88.7","","IS","Yes","Y","","","","","","PCT_REC","","","","","100","88.7","88.7","88.7","","","","","","60","150","", "OUAI-MW04-20161116","537 MOD","11/29/16","22:51","N","NA","000","375-73- ``` ``` "OUAI-MW04-20161116","537_MOD","11/29/16","22:51","N","NA","000","335-67-1","PERFLUOROOCTANOIC "OUAI-MW04-20161116","537_MOD","11/29/16","22:51","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "" "" "OUAI-MW04-20161116","537_MOD","11/29/16","22:51","N","NA","000","13C3-PFBS","13C3- PFBS","105","","IS","Yes","Y","","Y","","","","PCT_REC","","","","100","105","105","","","","","","","60","150","","" "OUAI-MW04-20161116","537_MOD","11/29/16","22:51","N","NA","000","13C2-PFOA","13C2- PFOA","91.0","","IS","Yes","Y","","","","","","PCT_REC","","","","100","91.0","91.0","","","","","","","60","150","" , , , "OUAI-MW04-20161116","537 MOD","11/29/16","22:51","N","NA","000","13C8-PFOS","13C8- PFOS","93.0","","IS","Yes","Y","","","","","","","PCT_REC","","","","100","93.0","93.0","","","","","","","60","150","", "", "", "OUAI-MW04A-20161116","537_MOD","11/29/16","23:03","N","NA","000","375-73- "OUAI-MW04A-20161116","537 MOD","11/29/16","23:03","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID "OUAI-MW04A-20161116","537_MOD","11/29/16","23:03","N","NA","000","1763-23- 1"."HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "OUAI-MW04A-20161116","537_MOD","11/29/16","23:03","N","NA","000","13C3-PFBS","13C3- "OUAI-MW04A-20161116","537_MOD","11/29/16","23:03","N","NA","000","13C2-PFOA","13C2- PFOA","82.5","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.5","82.5","82.5","","","","","","60","150","" "OUAI-MW04A-20161116","537_MOD","11/29/16","23:03","N","NA","000","13C8-PFOS","13C8- "OUAI-MW05-20161116","537_MOD","11/29/16","23:15","N","NA","000","375-73- "OUAI-MW05-20161116","537_MOD","11/29/16","23:15","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.859","","TRG","Yes","Y","J, "OUAI-MW05-20161116","537_MOD","11/29/16","23:15","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION ***** "OUAI-MW05-20161116","537_MOD","11/29/16","23:15","N","NA","000","13C3-PFBS","13C3- PFBS","111","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","111","111","","","","","","","60","150","","" 1111 1111 "OUAI-MW05-20161116","537 MOD","11/29/16","23:15","N","NA","000","13C2-PFOA","13C2- PFOA","82.6","","IS","Yes","Y","","","","","","PCT_REC","","","","100","82.6","82.6","82.6","","","","","","150","" ``` ``` "OUAI-MW05-20161116","537_MOD","11/29/16","23:15","N","NA","000","13C8-PFOS","13C8- "B6K0164-BLK1","537_MOD","11/29/16","22:02","N","NA","000","375-73- 11 1111 1111 "B6K0164-BLK1","537 MOD","11/29/16","22:02","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID nn nn nn nn nn "B6K0164-BLK1","537_MOD","11/29/16","22:02","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "B6K0164-BLK1","537 MOD","11/29/16","22:02","N","NA","000","13C3-PFBS","13C3- "B6K0164-BLK1","537 MOD","11/29/16","22:02","N","NA","000","13C2-PFOA","13C2- PFOA", "89.7", "IS", "Yes", "Y", "", "", "", "", "PCT_REC", "", "", "", "100", "89.7", "89.7", "89.7", "", "", "", "", "", "60", "150", "" "B6K0164-BLK1","537_MOD","11/29/16","22:02","N","NA","000","13C8-PFOS","13C8- "B6K0164-BS1","537 MOD","11/29/16","21:37","N","NA","000","375-73- 5","PFBS","93.1","","TRG","Yes","Y","","Y","1.79","4.00","8.00","NG_L","NG_L","","","","80.0","93.1","116","","", "","","","60","130","","","","" "B6K0164-BS1","537 MOD","11/29/16","21:37","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","89.3","","TRG","Yes","Y","B","Y","0.651","2.00","8.00","NG L","NG L","","","","80.0","89.3","112","","" ,"","","","70","130","","","","" "B6K0164-BS1","537_MOD","11/29/16","21:37","N","NA","000","1763-23- 1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION "70","130","","","","" "B6K0164-BS1","537_MOD","11/29/16","21:37","N","NA","000","13C3-PFBS","13C3- PFBS","123","","IS","Yes","Y","","Y","","","PCT_REC","","","","","100","123","123","","","","","","","60","150","","" "B6K0164-BS1","537 MOD","11/29/16","21:37","N","NA","000","13C2-PFOA","13C2- PFOA","85.9","","IS","Yes","Y","","","","","","PCT_REC","","","","100","85.9","85.9","85.9","","","","","","60","150","" "B6K0164-BS1", "537 MOD", "11/29/16", "21:37", "N", "NA", "000", "13C8-PFOS", "13C8- ``` "" "" "" AMEC Foster Wheeler, Inc. 7376 SW Durham Road Portland, OR 97224 Attn: Ms. Marina Mitchell February 2, 2017 SUBJECT: MCAS Yuma, Data Validation Dear Ms. Mitchell, Enclosed are the final validation reports for the fractions listed below.
These SDGs were received on December 20, 2016. Attachment 1 is a summary of the samples that were reviewed for each analysis. ## **LDC Project #37797:** SDG # Fraction 280-90987-1, 280-91067-1, 280-91122-1, 280-91192-1 1601451, 1601461, 1601464, 1601472 Volatiles, 1,4-Dioxane, Wet Chemistry, Perfluorinated Alkyl Acids The data validation was performed under Stage 2B & 4 guidelines. The analyses were validated using the following documents, as applicable to each method: - Final Addendum 3 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, February 2017 - Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, September 2015 - Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, May 2013 - Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, May 2013 - U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.0, July 2013 - USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, August 2014 - USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, August 2014 - EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014 Please feel free to contact us if you have any questions. Sincerely, Pei Geng Project Manager/Senior Chemist 5,062 pages-SF Attachment 1 LDC #37797 (AMEC Foster Wheeler-Portland, OR / MCAS Yuma) 90/10 (client select) EDD Short CI,SO, (2) 1,4-Fe II DATE DATE VOA Dioxane PFAs NO,-N (3500рΗ REC'D LDC SDG# DUE (8260B) (8270C) (537) (9056) FE D) (9040C) w s s W s w s w s Matrix: Water/Soil 0 280-90987-1 12/20/16 01/05/17 0 12/20/16 01/05/17 1 0 0 280-90987-1 280-91067-1 12/20/16 01/05/17 8 8 0 4 0 3 12/20/16 01/05/17 1 В 280-91067-1 С 12/20/16 01/05/17 10 0 10 0 4 0 0 4 0 280-91122-1 4 0 D 280-91192-1 12/20/16 01/05/17 2 2 2 0 2 0 2 12/20/16 01/05/17 1 0 D 280-91192-1 0 G 12/20/16 01/05/17 7 0 1601451 G 1601451 12/20/16 01/05/17 н 12/20/16 01/05/17 8 0 1601461 Н 12/20/16 01/05/17 1601461 0 12/20/16 01/05/17 10 1601464 12/20/16 01/05/17 2 0 1601472 12/20/16 01/05/17 1601472 0 0 0 0 30 0 19 16 0 0 0 0 0 0 0 Total T/PG # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 6, 2017 Parameters: Volatiles Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-90987-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW13-20161114 | 280-90987-4 | Water | 11/14/16 | | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | ^{**}Indicates sample underwent Stage 4 validation ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. # IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. # V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample TB01-20161114 was identified as a trip blank. No contaminants were found. Sample EB01-20161114 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 was identified as a source blank. No contaminants were found. # VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions: | Sample | Surrogate | %R (Limits) | Affected
Compound | Flag | A or P | |---------------------|--------------------|--------------|----------------------|-----------------|--------| | OUA1-MW13-20161114 | Bromofluorobenzene | 117 (85-114) | All compounds | J (all detects) | Р | | OUA1-MW37A-20161114 | Bromofluorobenzene | 116 (85-114) | All compounds | J (all detects) | Р | # VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # IX. Laboratory Control Samples Laboratory
control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. # X. Field Duplicates Samples OUA1-MW37-20161114 and OUA1-MW37A-20161114 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentr | ation (ug/L) | | | | | |--------------------|--------------------|---------------------------|---------|------------------------|------|--------| | Compound | OUA1-MW37-20161114 | 61114 OUA1-MW37A-20161114 | | Difference
(Limits) | Flag | A or P | | 1,1-Dichloroethene | 0.76 | 0.78 | - | 0.02 (≤1.0) | - | - | | Trichloroethene | 1.7 | 1.8 | 6 (≤20) | - | - | - | ### XI. internal Standards All internal standard areas and retention times were within QC limits. ## XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ## XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. # XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ## XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to surrogate %R, data were qualified as estimated in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ## **MCAS Yuma** # Volatiles - Data Qualification Summary - SDG 280-90987-1 | Sample | Compound | Flag | A or P | Reason | |---|---------------|-----------------|--------|-----------------| | OUA1-MW13-20161114
OUA1-MW37A-20161114 | All compounds | J (all detects) | Р | Surrogates (%R) | # **MCAS Yuma** Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG # **MCAS Yuma** Volatiles - Field Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797A1 SDG #: 280-90987-1 Laboratory: Test America, Inc. Stage 2B/4 2nd Reviewer METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | ., | T | | |-------|--|-------------|---------------------------------------| | | Validation Area | | Comments | | 1. | Sample receipt/Technical holding times | A | | | II. | GC/MS Instrument performance check | lacksquare | | | 111. | Initial calibration/ICV | AA | RSD=1570 Y 10V=2070 | | IV. | Continuing calibration / Zwies | \triangle | RSD=1570 Y 10V=2070
CCV < 20/5070 | | V. | Laboratory Blanks | 1 | | | VI. | Field blanks | NO | B=1.2B=2. TB=3 | | VII. | Surrogate spikes | M | | | VIII. | Matrix spike/Matrix spike duplicates | \triangle | | | IX. | Laboratory control samples | \triangle | 109 | | X. | Field duplicates | ay | D=5+6 | | XI. | Internal standards | \Diamond | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | A | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | 1 | | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |----|-----------------------|----------------|--------|----------| | 1 | SB01-20181114 | 280-90987-1 | Water | 11/14/16 | | 2 | EB01-201611114 | 280-90987-2 | Water | 11/14/16 | | 3- | TB01-201611114 | 280-90987-3 | Water | 11/14/16 | | 4 | OUAMW13-20161114 | 280-90987-4 | Water | 11/14/16 | | 5 | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | 6 | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | 7 | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | 8 | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | 9 | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | 10 | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | 11 | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | 12 | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | 13 | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | # VALIDATION FINDINGS CHECKLIST | Page:_ | 1 | of 之 | | |---------------|---|------------|--| | Reviewer: | (| Y _ | | | 2nd Reviewer: | | NO | | Method: Volatiles (EPA SW 846 Method 8260B) | Validation Area | Yes | No | NA | Findings/Comments | |--|-------|-------------|-------|---| | I. Technical holding times | | | 14.27 | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. GC/MS Instrument performance check | | | | | | Were the BFB performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | L (SARCE OF | | And the second section of the second | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) \leq 38%/15% and relative response factors (RRF) \geq 0.05? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | <u></u> | | | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | 10.19 | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | , | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks were identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | | | Were all surrogate percent recovery (%R) within QC limits? | | / | | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | | | | #### VALIDATION FINDINGS CHECKLIST Page: 2 of 2 Reviewer: 2nd Reviewer: No | Validation Area | Yes | No | NA | Findings/Comments |
--|-----|----|-----|--| | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | Ø |) | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | | The state of s | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% to +100% of the associated calibration standard? | | / | | | | Were retention times within + 30 seconds of the associated calibration standard? | | | | | | XII. Compound guantitation | | | ₹ | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | ĺ | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | i i | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | / | | | | # TARGET COMPOUND WORKSHEET # METHOD: VOA | A. Chloromethane | U. 1,1,2-Trichloroethane | OO 2 2 Dichleronson | III - D. f. II | | |------------------------------|---------------------------------|-------------------------------|--|-------------------------| | A. Chloromethane | U. 1,1,2-1 richioroethane | OO. 2,2-Dichloropropane | III. n-Butylbenzene | CCCC.1-Chlorohexane | | B. Bromomethane | V. Benzene | PP. Bromochloromethane | JJJ. 1,2-Dichlorobenzene | DDDD. Isopropyl alcohol | | C. Vinyl choride | W. trans-1,3-Dichloropropene | QQ. 1,1-Dichloropropene | KKK. 1,2,4-Trichlorobenzene | EEEE. Acetonitrile | | D. Chloroethane | X. Bromoform | RR. Dibromomethane | LLL. Hexachlorobutadiene | FFFF. Acrolein | | E. Methylene chloride | Y. 4-Methyl-2-pentanone | SS. 1,3-Dichloropropane | MMM. Naphthalene | GGGG. Acrylonitrile | | F. Acetone | Z. 2-Hexanone | TT. 1,2-Dibromoethane | NNN. 1,2,3-Trichlorobenzene | HHHH. 1,4-Dioxane | | G. Carbon disulfide | AA. Tetrachloroethene | UU. 1,1,1,2-Tetrachloroethane | OOO. 1,3,5-Trichlorobenzene | IIII. Isobutyl alcohol | | H. 1,1-Dichloroethene | BB. 1,1,2,2-Tetrachloroethane | VV. Isopropylbenzene | PPP. trans-1,2-Dichloroethene | JJJJ. Methacrylonitrile | | I. 1,1-Dichloroethane | CC. Toluene | WW. Bromobenzene | QQQ. cis-1,2-Dichloroethene | KKKK. Propionitrile | | J. 1,2-Dichloroethene, total | DD. Chlorobenzene | XX. 1,2,3-Trichloropropane | RRR. m,p-Xylenes | LLLL. Ethyl ether | | K. Chloroform | EE. Ethylbenzene | YY. n-Propylbenzene | SSS. o-Xylene | MMMM. Benzyl chloride | | L. 1,2-Dichloroethane | FF. Styrene | ZZ. 2-Chlorotoluene | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | NNNN. lodomethane | | M. 2-Butanone | GG. Xylenes, total | AAA. 1,3,5-Trimethylbenzene | UUU. 1,2-Dichlorotetrafluoroethane | OOOO.1,1-Difluoroethane | | N. 1,1,1-Trichloroethane | HH. Vinyl acetate | BBB. 4-Chlorotoluene | VVV. 4-Ethyltoluene | PPPP. | | O. Carbon tetrachloride | II. 2-Chloroethylvinyl ether | CCC. tert-Butylbenzene | WWW. Ethanol | QQQQ. | | P. Bromodichloromethane | JJ. Dichlorodifluoromethane | DDD. 1,2,4-Trimethylbenzene | XXX. Di-isopropyl ether | RRRR. | | Q. 1,2-Dichloropropane | KK. Trichlorofluoromethane | EEE. sec-Butylbenzene | YYY. tert-Butanol | SSSS. | | R. cis-1,3-Dichloropropene | LL. Methyl-tert-butyl ether | FFF. 1,3-Dichlorobenzene | ZZZ. tert-Butyl alcohol | тттт. | | S. Trichloroethene | MM. 1,2-Dibromo-3-chloropropane | GGG. p-Isopropyltoluene | AAAA. Ethyl tert-butyl ether | UUUU. | | T. Dibromochloromethane | NN. Methyl ethyl ketone | HHH. 1,4-Dichlorobenzene | BBBB. tert-Amyl methyl ether | vvv. | LDC#3TATA # VALIDATION FINDINGS WORKSHEET Surrogate Spikes | Page:_ | <u>of</u> | |---------------|-----------| | Reviewer:_ | 1 | | 2nd Reviewer: | , M | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YON N/A Were all surrogate %R within QC limits? Y N/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria? | # | Date | Sample ID | Surrogate | %Recovery (Limits) | Qualifications | |---|------|-----------|-------------|--------------------|----------------| | | | 4 | BB | 117 (85-14) | | | | | | | | 1/ | | | | 6 | BFB | 16 (1) | \ | | | | | | () | <u> </u> | | | | | | () | | | | | | | | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | | <u> </u> | | | | | | () | | | | | | | | | (TOL) = Toluene-d8 (DCE) = 1,2-Dichloroethane-d4 (BFB) = Bromofluorobenzene (DFM) = Dibromofluoromethane | LDC#:377974 | | |-------------|--| |-------------|--| # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | _of | |---------------|----------| | Reviewer:_ | a | | 2nd Reviewer: | 116 | METHOD: GCMS voa (EPA SW 846 Method 8260B) | | Concentration (ug/L) | | (≤20) | | | _ | | |----------|----------------------|------|-------|------------|--------|------|--| | Compound | 5 | 6 | RPD | Difference | Limits | Qual | | | н | 0.76 | 0.78 | | 0.02 | ≤1.0 | | | | s | 1.7 | 1.8 | 6 | | | | | V:\FIELD DUPLICATES\37797A1.wpd LDC #: 37797A1 # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | Lof 1 | |---------------|-------| | Reviewer: | 9 | | 2nd Reviewer: | No | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_v)(C_{is})/(A_{is})(C_v)$ average RRF = sum of the RRFs/number of standards A_{ν} = Area of compound, A_{is} = Area of associated internal standard C = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard %RSD = 100 * (S/X) X = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----|-------------|---------------------|--|------------------|------------------|--------------------------|--------------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(10 std) | RRF
(10 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | 1_ | | | S (1st internal standard) | 0.6242 | 0.6242 | 0.6492 | 0.6492 | 6.8 | 6.8 | | | ICAL | 11/25/16 | AA (2nd internal standard) | 1.8423 | 1.8423 | 1.9091 | 1.9091 | 6.9 | 6.9 | | | (VMS_H) | | (3rd internal
standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 37797A1 # VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page: | Lof (| |----------------|-------| | Reviewer:_ | 4 | | 2nd Reviewer:_ | SVB | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF Where: ave. RRF = initial calibration average RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard | # | Standard ID | Calibration
Date | Compound (Reference internal Standard) | Average RRF
(initial) | Reported
RRF
(CC) | Recalculated
RRF
(CC) | Reported
%D | Recalculated
%D | |------|-------------|---------------------|--|--------------------------|-------------------------|-----------------------------|----------------|--------------------| | 1_1_ | H2165 | 11/28/16 | S (1st internal standard) | 0.6492 | 0.6532 | 0.6532 | 0.6 | 0.6 | | | | | AA (2nd internal standard) | 1.9091 | 2.012 | 2.012 | 5.4 | 5.4 | | | , | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #:31(9R) # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of/_ | |---------------|------| | Reviewer: | C | | 2nd reviewer: | NB | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) | The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following o | |--| |--| % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID:_ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|--| | Dibromofluoromethane | 10.1 | 10.9 | 107 | 107 | 0 | | | 1,2-Dichloroethane-d4 | | 9.54 | 94 | 94 | | | | Toluene-d8_ | | 9.87 | 97 | 97 | | | | Bromofluorobenzene | d | 10.8 | 107 | 107 | d | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID:_ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | of | |---------------|----| | Reviewer: | 9 | | 2nd Reviewer: | Ne | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentration RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD sample: | Compound | Spike
Added
(/ / / / / /) | | Sample Spiked Sample Concentration | | Matrix Spike Percent Recovery | | Matrix Spike Duplicate Percent Recovery | | MS/MSD
RPD | | | |--------------------|-----------------------------------|-----|------------------------------------|------|-------------------------------|----------|---|----------|---------------|----------|--------------| | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | 1,1-Dichloroethene | 500 | 500 | ≥,8 | 7.81 | T.79 | 100 | 100 | 100 | 100 | 0 | 0 | | Trichloroethene | V | | 3 ^T | 842 | 86T | 95 | 94 | 100 | 99 | 3 | 3 | | Benzene | | | | | | | | | | | | | Toluene | | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | | | | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10 | <u>.0%</u> | |---|------------| | of the recalculated results. | | | | | | | | # **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | Page:_ | _/_of(| |---------------|--------| | Reviewer: | 9 | | 2nd Reviewer: | NB | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS ID: -280-353-24 | | | oike | Spiked Sample | | LCS | | LCSD | | LCS/LCSD | |
--|----------------|------|---------------|------|------------------|---------|------------------|---------|----------|--------------| | Compound | Added
(MGC) | | Concentration | | Percent Recovery | | Percent Recovery | | RPD | | | And the second s | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | 1,1-Dichloroethene | 5.00 | NA | 5-9 | NA | 106 | 106 | | | | | | Trichloroethene | V | 1 | 500 | d | 180 | 100 | | | | | | Benzene | | | | | | | | | | | | Toluene | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | | | Comments: | Refer to Laboratory | Control Sample findings | worksheet for list of | of qualifications and | associated sample | s when reported re | sults do not agree w | ithin 10.0% of the | |--------------|---------------------|-------------------------|-----------------------|-----------------------|-------------------|--------------------|----------------------|--------------------| | recalculated | results. | | | | | | · | LDC #3796 # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | _/ of / | |---------------|---------| | Reviewer: | 9 | | 2nd reviewer: | NG | | METUOD. | GC/MS VOA | /EDA | CIM QAG | Mothod | 9260D) | |------------|-----------|------|---------|----------|--------| | WIE I HOD: | GC/MS VOA | (EPA | 5VV 846 | ivietnoa | 826UB1 | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? Concentration = $(A_s)(I_s)(DF)$ $(A_{ls})(RRF)(V_o)(\%S)$ A_x = Area of the characteristic ion (EICP) for the compound to be measured A_{is} = Area of the characteristic ion (EICP) for the specific internal standard I_s = Amount of internal standard added in nanograms RRF = Relative response factor of the calibration standard. V_o = Volume or weight of sample pruged in milliliters (ml) or grams (g). Df = Dilution factor. %S = Percent solids, applicable to soils and solid matrices Example: Sample I.D. 9 ; _______: Conc. = (55/1) (15, 5) (15/15) = 1.16Mgc | Г | only. | 7 | | | T | |---|---|----------|---------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration | Calculated
Concentration
() | Qualification | | | 9 | S | 1.2 | - | *************************************** | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 6, 2017 Parameters: 1,4-Dioxane Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-90987-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW13-20161114 | 280-90987-4 | Water | 11/14/16 | | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The
compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. # IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB01-20161114 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 was identified as a source blank. No contaminants were found. # VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were not within the QC limits for OUA1-HS03-20161114MS/MSD. No data were qualified since the parent sample results were greater than 4X the spiked concentration. Relative percent differences (RPD) were within QC limits. # IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### X. Field Duplicates Samples OUA1-MW37-20161114 and OUA1-MW37A-20161114 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ug/L) | | | | | | |-------------|----------------------|---------------------|-----------------|------------------------|------|--------| | Compound | OUA1-MW37-20161114 | OUA1-MW37A-20161114 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | 1,4-Dioxane | 5.6 | 5.7 | 2 (≤20) | - | - | - | #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### **XIV. System Performance** The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. # XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. # **MCAS Yuma** 1,4-Dioxane - Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG # **MCAS Yuma** 1,4-Dioxane - Field Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797A2b SDG #: 280-90987-1 Stage 2B/4 Reviewer: 2nd Reviewer: Laboratory: Test America, Inc. METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-------------|---------------------------------------| | 1. | Sample receipt/Technical holding times | A | | | II. | GC/MS Instrument performance check | 1 | | | III. | Initial calibration/ICV | A A | RSD = 1570. 101=2070 | | IV. | Continuing calibration / Znlee | A | RSDS 1570. 1eV=2070
ecV < 20/5070 | | V. | Laboratory Blanks | \triangle | | | VI. | Field blanks | NO | \$3=1. 23=2. | | VII. | Surrogate spikes | A | | | VIII. | Matrix spike/Matrix spike duplicates | w | 11/12 - 70 Raut > 4x. | | IX. | Laboratory control samples | A | 100 | | Χ | Field duplicates | M | D=4+5 | | XI. | Internal standards | \triangle | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | A | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | \triangle | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | ** Inc | licates sample underwent Stage 4 validation | Lb - Equipment dia | | | |--------|---|--------------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 1_ | SB01-20161114 | 280-90987-1 | Water | 11/14/16 | | 2 | EB01-20161114 | 280-90987-2 | Water | 11/14/16 | | 3 | OUAMW13-20161114 | 280-90987-4 | Water | 11/14/16 | | 4 | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | 5 | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | 6 | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | 7 | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | 8 | OUA1-MW18-201611114** | 280-90987-9** | Water | 11/14/16 | | 9 | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | 10 | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | 11 | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | 12 | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | | 13 | | | | | # **VALIDATION FINDINGS CHECKLIST** Page: _/ of ____ Reviewer: _____ 2nd Reviewer: ______ Method: Semivolatiles (EPA SW 846 Method 8270C) | Wethod: Semivolatiles (EPA SVV 846 Method 8270C) | Т | 1 | | | |---|-----|----|-------------
--| | Validation Area | Yes | No | NA | Findings/Comments | | 1. Technical holding times | I | I | | T | | Were all technical holding times met? | | | <u> </u> | | | Was cooler temperature criteria met?. | | | | | | II. GC/MS Instrument performance check | ı | | | | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | / | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | | ** | Carlo Barra Carratte Carra and | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | / | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | - | | Were all percent relative standard deviations (%RSD) \leq 30%/15% and relative response factors (RRF) \geq 0.05? | | | | | | IIIb Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each ICAL for each instrument? | | | | | | Were all percent difference (%D) ≤20% or percent recoveries (%R) 80-120%? | | | | - | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | / | | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | | | 100 mg | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | - | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | ` | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | A graph of the state sta | | Were all surrogate %R within QC limits? | | | | | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | | | | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | / | | # **VALIDATION FINDINGS CHECKLIST** Page: of > 2nd Reviewer: DE | Validation Area | Yes | No | NA | Findings/Comments | |--|----------------------|--------|----|--| | VIII. Matrix spike/Matrix spike duplicates | | 34 | | The state of s | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | • | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | 1985
1985
1985 | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | Here the second of | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | | , | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | ~ | | | XII. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | (6) F- | | 1. 3. P. T. | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | of [| |---------------|------| | Reviewer: | 9 | | 2nd Reviewer: | DE | METHOD: GCMS svoa (EPA SW 846 Method 8270C) | | Concentra | ation (ug/L) | (≤20) | Difference | Limits | Qual | |-------------|-----------|--------------|-------|------------|---------|------| | Compound | 4 | 5 | RPD | Dillerence | Lillius | Quai | | 1,4-Dioxane | 5.6 | 5.7 | 2 | | | | V:\FIELD DUPLICATES\37797A2b.wpd LDC #: 37797A2b # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page: | _of | | |---------------|-----|--| | Reviewer: | D | | | 2nd Reviewer: | Ne | | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $$\label{eq:RRF} \begin{split} &RRF = (A_x)(C_{is})/(A_{is})(C_x)\\ &average \ RRF = sum \ of the \ RRFs/number \ of standards \end{split}$$ A_x = Area of compound, A_{is} = Area of associated internal
standard C_x = Concentration of compound, C_{is} = Concentration of internal standard C_{is} = Mean of the RRFs %RSD = 100 * (S/X) | | step is (ex.) a samulate destation of the fixture | | | | | | | | | | | |---|---|---------------------|--|--------------------|--------------------|--------------------------|--------------------------|----------|--------------|--|--| | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | | | | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(5000 std) | RRF
(5000 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | | | 1 | ICAL | 10/14/16 | 1,4-Dioxane (1st internal standard) | 0.5594 | 0.5594 | 0.5511 | 0.5511 | 3.6 | 3.6 | | | | | (SMS_G4) | | 1,2,4-Trichlorobenzene (2nd internal standard) | | | | | | | | | | | | | 2,6-Dinitrotoluene (3rd internal standard) | | | | | | | | | | | | | Hexachlorobenzene (4th internal standard) | | | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | L | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | | | Comments: | s: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of t | he recalculated | |-----------|---|-----------------| | results. | | | | | | | | | | | LDC #: 37797A2b # **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | Lot | |---------------|-----| | Reviewer: | 9 | | 2nd Reviewer: | NG | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of associated internal standard C_v = Concentration of compound, C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|--------------------------|-------------|--------------|----------|--------------| | | | 0-111 | O d (Defended by toward | A | | | | | | # | Standard ID | Calibration
Date | Compound (Reference Internal
Standard) | Average RRF
(initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | G4_3626 | 11/25/16 | 1,4-Dioxane (1st internal standard) | 0.5511 | 0.5008 | 0.5008 | 9.1 | 9.1 | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | _ | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | Comments: _ | Refer to Continuing | Calibration findings | worksheet for lis | <u>t of qualifications</u> | and associated | samples when | <u>reported results c</u> | to not agree within | 10.0% of the | |--------------|---------------------|----------------------|-------------------|----------------------------|----------------|--------------|---------------------------|---------------------|--------------| | recalculated | results. | # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of | |---------------|-----| | Reviewer: | 9 | | 2nd reviewer: | SVZ | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID:_ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | 2500.0 | 1936.7 | 77 | 77 | 0 | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | · | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page: | _of | |---------------|-----| | Reviewer:_ | 9_ | | 2nd Reviewer: | NE | METHOD: GC/MS PAH (EPA SW 846 Method 8270C) | The percent recoveries (%R) and Relative | : Percent Difference (RPD) of the ma | atrix spike and matrix spike dupli | icate were recalculated for th | e compounds identified below | |--|--------------------------------------|------------------------------------|--------------------------------|------------------------------| | using the following calculation: | | | | · | % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration MSDC = Matrix spike duplicate concentration | | Add | ike
død | Sample
Concentration | Spiked Sample
Concentration | | 1 | | Matrix Spike Duplicate | | MS/MSD | | |----------------------------|-----|------------|-------------------------|--------------------------------|-------|-----------|----------|------------------------|--------|----------|--------------| | Compound | (pe | Be) | (MA) | (M | tex . | Percent f | Recovery | Percent Recovery | | RPD | | | | Ms | MSD | 20 to to to page | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | | | | Acenaphthene | | | | | | | | | | | | | Pentachlorophenol | | | | | | | | | | | | | Pyrene | | | | | | | _ | | | | | | 1.4-Bioxane | 9.8 | 10.0 | 68 | 74.8 | 63.6 | 66 | 69 | -46 | -44 | 16 | 16 | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% | |--| | of the recalculated results. | | | | | # **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page:_ | of | |---------------|----| | Reviewer:_ | 0 | | 2nd Reviewer: | TO | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the
compounds identified below using the following calculation: % Recovery = 100 * (SC/SA) Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) | Compound | Spike
Added
() | | Conce | Spike ICS Concentration (| | | LCSD
Percent Recovery | | | LCSD
PD | |----------------------------|-----------------------|------|-------|---------------------------|----------|--------|--------------------------|--------|----------|--------------| | | LCS | LCSD | LCS | LCSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | | | Acenaphthene | | | | | | | | | | | | Pentachlorophenol | | | | | | | | *** | | | | Pyrene | | · | | | | | | | | | | 1.4-Dioxone | 10.0 | NA | 6.44 | NA | at | 6+ | | | | | | | | | | | | / | Comments: | Refer to Laborator | y Control Sample/Laborat | ory Control Sample | Duplicates findings | worksheet for list | of qualifications an | nd associated sa | mples when re | portec | |--------------|----------------------|----------------------------|--------------------|---------------------|--------------------|----------------------|------------------|---------------|--------| | results do n | ot agree within 10.0 | % of the recalculated resu | ults. | | | | | | | | | | | | | | | | | | # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | _ | _of | | | |---------------|---|-----------|----|---| | Reviewer: | | \supset | | | | 2nd reviewer: | | J | 56 | - | METHOD: GC/MS SVOA (EPA SW 846 Method 8270C) | NI | Ŋ | N/A | |----|---|-----| | Y | V | N/A | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Conce | entratio | on = $(\underline{A}_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)$
$(A_{\bullet})(RRF)(V_{\circ})(V_{\bullet})(\%S)$ | Example: | |-----------------|----------|--|------------------------------------| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D. 8, 1.4-Dioxanl | | A _{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = $(1 - 799)(4000.)(2000)()$ | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | 201(310.551) 1 1 (10/28)(1000) | | V _i | = | Volume of extract injected in microliters (ul) | =0.909 Mbc | | V_t | = | Volume of the concentrated extract in microliters (ul) | | | Df | = | Dilution Factor. | | | %S | = | Percent solids, applicable to soil and solid matrices only. | | | 2.0 | = Factor of 2 to accou | nt for GPC cleanup | | | | | |-----|------------------------|--------------------|-------|---------------------------|------------------------------------|---------------| | # | Sample ID | Compound | | Reported
Concentration | Calculated
Concentration
() | Qualification | | | 8 | 1-4-0ic | rang | 0.91 | ***** | ļ | | | | | | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma LDC Report Date: January 5, 2017 Parameters: Wet Chemistry Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-90987-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | OUA1-HS03-20161114MSD | 280-90987-7MSD | Water | 11/14/16 | | OUA1-HS03-20161114DUP | 280-90987-7DUP | Water | 11/14/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056 Ferrous Iron by Standard Method 3500 FE D pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |----------------------|--------------|--|---|----------------------|--------| | OUA1-MW37-20161114 | рН | 52.98 hours | 48 hours | J (all detects) | Р | | OUA1-HS03-20161114 | рН | 52.05 hours | 48 hours | J (all detects) | Р | | OUA1-MW18-20161114** | рН | 50.38 hours | 48 hours | J (all detects) | Р | | OUA1-MW08-20161114 | рН | 49.48 hours | 48 hours | J (all detects) | Р | | OUA1-MW06-20161114 | рН | 48.48 hours | 48 hours | J (all detects) | Р | | OUA1-MW37-20161114 | Ferrous iron | 78.43 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW37A-20161114 | Ferrous iron | 78.35 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-HS03-20161114 | Ferrous iron | 77.43 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW18-20161114** | Ferrous iron | 75.68 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW08-20161114 | Ferrous iron | 74.68 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW06-20161114 | Ferrous iron | 73.60 hours | 48 hours | UJ (all non-detects) | Р | #### II. Initial Calibration All criteria for the initial calibration of each method were met. # III. Continuing Calibration Continuing calibration frequency and analysis criteria were met for each method when applicable. # IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample EB01-20161114 was identified as an
equipment blank. No contaminants were found. Sample SB01-20161114 was identified as a source blank. No contaminants were found. ### VI. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # VII. Duplicates Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. # **VIII. Laboratory Control Samples** Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # IX. Field Duplicates Samples OUA1-MW37-20161114 and OUA1-MW37A-20161114 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | | | | | |--------------|--------------------|---------------------|--------------|------|--------| | Analyte | OUA1-MW37-20161114 | OUA1-MW37A-20161114 | RPD (Limits) | Flag | A or P | | Chloride | 630 | 630 | 0 (≤20) | - | - | | Nitrate as N | 6.3 | 6.3 | 0 (≤20) | - | - | | Sulfate | 1500 | 1500 | 0 (≤20) | - | - | # X. Sample Result Verification All sample result verifications were acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. No results were rejected in this SDG. Due to technical holding time, data were qualified as estimated in six samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. # MCAS Yuma Wet Chemistry - Data Qualification Summary - SDG 280-90987-1 | Sample | Analyte | Flag | A or P | Reason | |---|--------------|----------------------|--------|-------------------------| | OUA1-MW37-20161114
OUA1-HS03-20161114
OUA1-MW18-20161114**
OUA1-MW08-20161114
OUA1-MW06-20161114 | рН | J (all detects) | Р | Technical holding times | | OUA1-MW37-20161114
OUA1-MW37A-20161114
OUA1-HS03-20161114
OUA1-MW18-20161114**
OUA1-MW08-20161114
OUA1-MW06-20161114 | Ferrous iron | UJ (all non-detects) | P | Technical holding times | # **MCAS Yuma** Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG # **MCAS Yuma** Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-90987-1 No Sample Data Qualified in this SDG # **VALIDATION COMPLETENESS WORKSHEET** Stage 2B/4 | | Date: <u>1/3/17</u> | |-----|-----------------------------| | | Page: <u></u> _of <u></u> \ | | | Reviewer: | | 2nd | Reviewer: | | | | SDG #: 280-90987-1 Laboratory: Test America, Inc. LDC #: 37797A6 METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Ferrous Iron (3500-FE D) pH, (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|---------------------------------------| | 1. | Sample receipt/Technical holding times | ABW | | | 11 | Initial calibration | A | | | III. | Calibration verification | A | | | IV | Laboratory Blanks | A | | | V | Field blanks | MO | SB=1 EB=Z | | VI. | Matrix Spike/Matrix Spike Duplicates | A | | | VII. | Duplicate sample analysis | À | | | VIII. | Laboratory control samples | À | LCS/O | | IX. | Field duplicates | SW | (63,4) | | X. | Sample result verification | Ã | Not reviewed for Stage 2B validation. | | ΧI | Overall assessment of data | X | | A = Acceptable Note: N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet | | Client ID | Lab ID | Matrix | Date | |----|------------------------|----------------|--------|----------| | - | SB01-20161114 | 280-90987-1 | Water | 11/14/16 | | 2 | EB01-20161114 | 280-90987-2 | Water | 11/14/16 | | 3 | OUA1-MW37-20161114 | 280-90987-5 | Water | 11/14/16 | | 4 | OUA1-MW37A-20161114 | 280-90987-6 | Water | 11/14/16 | | 5 | OUA1-HS03-20161114 | 280-90987-7 | Water | 11/14/16 | | 6 | OUA1-MW19-20161114 | 280-90987-8 | Water | 11/14/16 | | 7 | OUA1-MW18-20161114** | 280-90987-9** | Water | 11/14/16 | | 8 | OUA1-MW08-20161114 | 280-90987-10 | Water | 11/14/16 | | 9 | OUA1-MW06-20161114 | 280-90987-11 | Water | 11/14/16 | | 10 | OUA1-HS03-20161114MS | 280-90987-7MS | Water | 11/14/16 | | 11 | OUA1-HS03-201611114MSD | 280-90987-7MSD | Water | 11/14/16 | | 12 | OUA1-HS03-20161114DUP | 280-90987-7DUP | Water | 11/14/16 | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16 | | | | | Notes: # **VALIDATION FINDINGS CHECKLIST** Page: 1 of 2 Reviewer: C2 2nd Reviewer: 1 Method: Inorganics (EPA Method See over) | Method:Inorganics (EPA Method Sel avery | | | | | | | | | |--|-----|----|----------|-------------------|--|--|--|--| | Validation Area | Yes | No | NA | Findings/Comments | | | | | | I. Technical holding times | | | | | | | | | | All technical holding times were met. | P | | <u> </u> | | | | | | | II. Calibration | | | | | | | | | | Were all instruments calibrated daily, each set-up time? | | | | | | | | | | Were the proper number of standards used? | | | | | | | | | | Were all initial calibration correlation coefficients ≥ 0.995? | | | | | | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | | | | | | | | | | Were titrant checks performed as required? (Level IV only) | | | | | | | | | | Were balance checks performed as required? (Level IV only) | | | | | | | | | | III. Blanks | | | | | | | | | | Was a method blank associated with every sample in this SDG? | | | | | | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | | 1 | | | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | | | | | | | | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | | | | | | | | | | V. Laboratory control samples | | | | | | | | | | Was an LCS anaylzed for this SDG? | | | | | | | | | | Was an LCS analyzed per extraction batch? | | | | | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | | | | | | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | | | | | Were performance evaluation (PE) samples performed? | | | | | | | | | | Were the performance evaluation (PE) samples within the acceptance limits? | | | l | | | | | | | | | | | | | | | | LDC #: 37797A6 ## **VALIDATION FINDINGS CHECKLIST** Page: Qof A Reviewer: 2nd Reviewer: | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----------|-------------------| | VII. Sample Result Verification | | | . | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | Were detection limits < RL? | | | | | | VIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | / | | | | | IX. Field duplicates | | _ | | | | Field duplicate pairs were identified in this SDG. | | | | | | Target analytes were detected in the field duplicates. | | | | | | X. Field blanks | | | | | | Field blanks were identified in this SDG. | | | | | | Target analytes were detected in the field blanks. | | / | | | LDC#:3779746 # VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: of A All circled methods are applicable to each sample. | Sample ID | Matrix | Parameter | |-----------|----------|---| | 3,5,7 | -q | (pH) TDS(C) F(NO3)NO2(SO4)PO4 ALK CN NH3 TKN TOC CR6+ CIO4(Jell+) | | | <u>.</u> | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | 4 | | pH TDS(C) F(NO) NO, SO) PO, ALK CN NH, TKN TOC CR6+ CIO, (TeH+) | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | 0 | | pH TDS(C) F (NO) NO2(SO4) PO4 ALK CN. NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | Q:10,11 | | PH TDS (CT) F (NO3) NO SO PO4 ALK CN' NH3 TKN TOC CR6+
CIO4 (Fe H+) | | 12 | | PH TDS (C) F (NO) NO, SO PO ALK CN' NH, TKN TOC CR CO FETT | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CLF NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | Comments: | | |-----------|--| | | | LDC #: 379746 # **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page: | of_ | | |---------------|-----|-------| | Reviewer: | אנ | !
 | | 2nd reviewer: | U | _ | All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method? Y N N/A Were all cooler temperatures within validation criteria? | | | Transfer of the second | validation criteria | 2000 | | | | |--------------|-------------------|---|---------------------|----------------|-------------------------|-----------|--| | Method: | | 9040C | | | SM3500-FE_D | | | | Parameters | : <u> </u> | PH | | | SM3500-FE_D FERRAS Iron | | | | Technical h | olding time: | 48 hr | 5 | | 48hrs | | | | | Sampling | Analysis | Total
Time (hs | | Analysis | Total | _ | | Sample ID | date
 11/14/16 | 11/16/16 | / | l | <u>date</u> | Time (hs) | Qualifier | | 3 | 9:00 | 13:59 | 52.98 | SUTPE | et) | | | | <u>5</u> | 10:00 | 14:03 | 52,05 | | | | | | 7 | ม:45 | 14:08 | 50,38 | | | | | | 8 | 1245 | 14:14 | 49.48 | | | | | | 9 | 13:50 | 14:19 | 48,48 | | | | | | | | | | - - - - | 2 | 11/14/16 | 14/7/16 | | | 11/17/16 | 78,43 | THE PLANT OF THE PARTY P | | U | 09:00 | 16:26 | | | 16:26 | 78,95 | 5/15/P(m) | | | 09:05 | | | | | 78,55 | | | 5,0,1 | - 10:00 | X | | | | 17,45 | | | | 11:45 | | | | | 75.68 | | | 8 | 12:45 | | | | | 74.68 | | | q | 13:50 | La | | | | 73.60 | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | LDC#: 37797A6 # VALIDATION FINDINGS WORKSHEET Field Duplicates Page: of Reviewer: 2nd Reviewer: Inorganics, Method See Cover | | Concentrati | | | | |--------------|-------------|-----------|--------------------------------|--| | Analyte | 3 | RPD (≤20) | Qualification
(Parent only) | | | Chloride | 630 | 630 | 0 | | | Nitrate as N | 6.3 | 6.3 | 0 | | | Sulfate | 1500 | 1500 | 0 | | \\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\37797A6.wpd | | 37 | \mathcal{D} | AG | |--------|--------|---------------|-----| | LDC #: | - 'D / | / L | 012 | # Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification | Page: | _ of | <u> </u> | |------------|-------|----------| | Reviewer: | 9 | | | 2nd Review | ver.C | 1 | | Method: Inorganics, Method _ | See Cover | | |---|---------------------|--| | The correlation coefficient (r) for the | calibration of | was recalculated.Calibration date: 11/15/16 | | An initial or continuing calibration ve | erification percent | recovery (%R) was recalculated for each type of analysis using the following formula: | | %R = <u>Found X 100</u> | Where, | Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution | | True | | True = concentration of each analyte in the ICV or CCV source | | | | | | | Recalculated | Reported | Acceptable | |--------------------------|---------|------------|--------------|---------------|---------------------|-----------------------|------------| | Type of analysis | Analyte | Standard | Conc. (mg/L) | Area | r or r ² | r or r ² ' | (Y/N) | | Initial calibration | | s 1 | 0.0 | 0.002 | | | | | | | s2 | 0.2 | 0.046 | 0.9990 | 0.9990 | | | | Farmer | s3 | 0.5 | 0.103 | | | | | | Form | s4 | 1 | 0.221 | | | | | | 1 1000 | s5 | 2 | 0.432 | | | | | | | s6 | 3 | 0.609 | | | | | Calibration verification | N03-N | CCv | 4.00 | Found
3.97 | 99 | 99 | | | Calibration verification | 804 | CCU | 100 | 100.8 | 101 | 101 | 7 | | Calibration verification | | | | | | | | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within | |--| | 10.0% of the recalculated results | | | LDC #: 3777/46 # VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | | | l | 1 | |-------|-----------|----|----------| | | Page:_ | of | 1 | | F | Reviewer: | ي | <u> </u> | | 2nd F | Reviewer: | Q | | | METHOD: Inorganics, Method | Secaer | |----------------------------|--------| |----------------------------|--------| Percent
recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = \frac{Found}{True} \times 100$ Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = |S-D| \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration | | | | Found / S | True / D | Recalculated | Reported | Acceptable | |-----------|---------------------------|---------|-----------|----------|--------------|----------|------------| | Sample ID | Type of Analysis | Element | (units) | (units) | %R / RPD | %R / RPD | (Y/N) | | LCS | Laboratory control sample | NOZN | 5.05 | 5 | 101 | 101 | Y | | 10 | Matrix spike sample | FeIH | (SSR-SR) | 7,00 | 85 | 85 | | | 12 | Duplicate sample | Cl | 434 | 477 | | | 1 | | Comments: | | | | | |-----------|------|------|------|------| | | | | | | | | | | | | | |
 |
 |
 |
 | LDC #: 377C17A6 # **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification Page: 1 of 1 Reviewer: 2nd reviewer: | METH | HOD: Inorganics, Metho | od <u>Secael</u> | | | | |--------|--|---|---------------------------|--------------------------|---------------------| | NX | N/A Have results v | ow for all questions answered "N" been reported and calculated convithin the calibrated range of the intention limits below the CRQL? | rrectly? | ns are identified as "N | /A". | | | oound (analyte) results
culated and verified usir | for <u>SO4</u>
ng the following equation: | | reported with a positi | ve detect were | | Concer | ntration = | Recalculation: | | | | | G= | 12272020x +5 | 77505 | 1594601-57 | 7503 ×50=1 | 155 Zmg | | # | Sample ID | Analyte | Reported
Concentration | Calculated concentration | Acceptable
(Y/N) | | | 7 | PH (Su | 7,3 | 7.3 | Y | | | | Cl | 3100 | 3100 | | | | | NO3-N | 9,9 | 99 | | | - | | Sal | 1600 | 1600 | | | | | Text. | Note:_ | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma LDC Report Date: January 4, 2017 Parameters: Volatiles Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91067-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | OUA1-MW15-20161115 | 280-91067-4 | Water | 11/15/16 | | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | OUA1-MW23-20161115 | 280-91067-6 | Water | 11/15/16 | | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | OUA1-MW25-20161115 | 280-91067-10 | Water | 11/15/16 | | OUA1-MW11-20161115 | 280-91067-11 | Water | 11/15/16 | | OUA1-MW11-20161115RE | 280-91067-11RE | Water | 11/15/16 | | OUA1-MW14-20161115MS | 280-91067-3MS | Water | 11/15/16 | | OUA1-MW14-20161115MSD | 280-91067-3MSD | Water | 11/15/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met with the following exceptions: | Sample | Compound | Total Days From
Sample Collection
Until Analysis | Required Holding Time
(in Days) From Sample
Collection Until Analysis | Flag | A or P | |----------------------|---------------|--|---|---|--------| | OUA1-MW11-20161115RE | All compounds | 27 | 14 | J (all detects)
UJ (all non-detects) | А | #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. ## V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample TB02-20161115 was identified as a trip blank. No contaminants were found. Sample EB02-20161115 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. ### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions: | Sample | Surrogate | %R (Limits) | Affected
Compound | Flag | A or P | |---------------------|---|------------------------------|----------------------|-----------------|--------| | OUA1-MW23-20161115 | 1,2-Dichloroethane-d4
Dibromofluoromethane | 123 (81-118)
121 (80-119) | All compounds | NA | - | | OUA1-MW55-20161115 | 1,2-Dichloroethane-d4 | 125 (81-118) |
All compounds | NA | - | | OUA1-MW55A-20161115 | 1,2-Dichloroethane-d4 | 124 (81-118) | All compounds | NA | - | | OUA1-MW27-20161115 | 1,2-Dichloroethane-d4 | 121 (81-118) | All compounds | J (all detects) | Р | | OUA1-MW25-20161115 | 1,2-Dichloroethane-d4 | 125 (81-118) | All compounds | J (all detects) | Р | | OUA1-MW11-20161115 | 1,2-Dichloroethane-d4
Bromofluorobenzene | 123 (81-118)
117 (85-114) | All compounds | J (all detects) | Α | # VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions: | Spike ID
(Associated Samples) | Compound | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |--|-----------------|---------------------|----------------------|-----------------|--------| | OUA1-MW14-20161115MS/MSD
(OUA1-MW14-20161115**) | Trichloroethene | 136 (79-123) | 141 (79-123) | J (all detects) | А | | Spike ID
(Associated Samples) | Compound | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |--|------------------------|---------------------|----------------------|------|--------| | OUA1-MW14-20161115MS/MSD
(OUA1-MW14-20161115**) | cis-1,2-Dichloroethene | - | 127 (78-123) | NA | - | Relative percent differences (RPD) were within QC limits. # IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # X. Field Duplicates Samples OUA1-MW55-20161115 and OUA1-MW55A-20161115 were identified as field duplicates. No results were detected in any of the samples. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. # XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed unusable as follows: | Sample | Compound | Flag | A or P | |----------------------|---------------|------|--------| | OUA1-MW11-20161115RE | All compounds | R | Α | Due to surrogate %R and MS/MSD %R, data were qualified as estimated in four samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. # MCAS Yuma Volatiles - Data Qualification Summary - SDG 280-91067-1 | Sample | Compound | Flag | A or P | Reason | |--|-----------------|-----------------|--------|--| | OUA1-MW25-20161115
OUA1-MW27-20161115 | All compounds | J (all detects) | Р | Surrogates (%R) | | OUA1-MW11-20161115 | All compounds | J (all detects) | А | Surrogates (%R) | | OUA1-MW14-20161115** | Trichloroethene | J (all detects) | А | Matrix spike/Matrix spike duplicate (%R) | | OUA1-MW11-20161115RE | All compounds | R | Α | Overall assessment of data | #### **MCAS Yuma** Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG **MCAS Yuma** Volatiles - Field Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG # LDC #: 37797B1 VALIDATION COMPLETENESS WORKSHEET Stage 2B/4 | Date; | 12/29/16 | |---------------|----------| | Page:_ | 6f 2 | | Reviewer: | 9_ | | 2nd Reviewer: | NZ | SDG #: 280-91067-1 Laboratory: Test America, Inc. METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|---------------------------------------| | I | Sample receipt/Technical holding times | AM | | | II. | GC/MS Instrument performance check | \Rightarrow | | | III. | Initial calibration/ICV | AA | RSO < 1570. 82 (CV = 20)0 | | IV. | Continuing calibration / Zndie | A | cal < 20/50/0 | | V. | Laboratory Blanks | A | / / | | VI. | Field blanks | ND | B=1. TB=2. SB=SB01-620161114(280 | | VII. | Surrogate spikes | W | | | VIII. | Matrix spike/Matrix spike duplicates | W | | | IX. | Laboratory control samples | A. | 105 8 | | Χ. | Field duplicates | NB | D=7+8 | | XI. | Internal standards | A | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | \bigcirc | Not reviewed for Stage 2B validation. | | XIV. | System performance | \rightarrow | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | W | | Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank OTHER: N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank ** Indicates sample underwent Stage 4 validation | _ | indice sample underwent etage i vandation | | | | |----|---|----------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 4 | EB02-20161115 | 280-91067-1 | Water | 11/15/16 | | 2- | TB02-20161115 | 280-91067-2 | Water | 11/15/16 | | 3 | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | 4 | OUA1-MW15-20161115 | 280-91067-4 | Water | 11/15/16 | | 5 | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | 6 | OUA1-MW23-20161115 | 280-91067-6 | Water | 11/15/16 | | 7 | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | 8 | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | 9 | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | 10 | OUA1-MW25-20161115 | 280-91067-10 | Water | 11/15/16 | | 11 | OUA1-MW11-20161115 | 280-91067-11 | Water | 11/15/16 | | 12 | OUA1-MW11-20161115RE | 280-91067-11RE | Water | 11/15/16 | | 13 | OUA1-MW14-20161115MS | 280-91067-3MS | Water | 11/15/16 | | SDG
Labo | #:37797B1 | | Date: Page: Of Page: Of Page: | | | |-------------|-----------------------|--|---|----------|--------------| | | Client ID | | Lab ID | Matrix | Date | | 14 | OUA1-MW14-20161115MSD | . · · | 280-91067-3MSD | Water | 11/15/16 | | 15 | | | | | | | 16 | | | · | | | | 17 | | ······································ | | | | | 18 | | | | | | | 19 | | | | | | | Note | · | | | <u> </u> | 1 | # LDC#3(9(B) # VALIDATION FINDINGS CHECKLIST | Page:_ | /of | |----------------|----------| | Reviewer:_ | <u> </u> | | 2nd Reviewer:_ | Ne | Method: Volatiles (EPA SW 846 Method 8260B) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----------|------|----|-------------------| | I. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler
temperature criteria met? | | | | | | II. GC/MS Instrument performance check | | J 21 | | | | Were the BFB performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | 14 (1914) | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 36%/15% and relative response factors (RRF) ≥ 0.05? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | . ** | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | T. | 4 | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | - | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05? | | | | | | V. Laboratory Blanks | Γ | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks were identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | l | | | | | Were all surrogate percent recovery (%R) within QC limits? | | (| | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | | | | ## VALIDATION FINDINGS CHECKLIST | Page:_ | <u> →</u> of <u> →</u> | |---------------|------------------------| | Reviewer: | 9 | | 2nd Reviewer: | NZ | | Validation Area | Yes | No | NA | Findings/Comments | |--|------|---|----------------------|---| | VIII. Matrix spike/Matrix spike duplicates | | | | The state of s | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | | The second secon | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | 2.50 | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | 140 pm. 140 pm. | | Were internal standard area counts within -50% to +100% of the associated calibration standard? | | · | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | | | | XII: Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | • | | | | XIII Target compound identification | | | 111 i.e.
111 i.e. | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | 7 | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | / | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV System performance | | | | | | System performance was found to be acceptable. | | / | | | | XV Overall assessment of data | | 19 6 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | e de pare de la companya de la comp
La companya de la del company | | Overall assessment of data was found to be acceptable. | | | | | # TARGET COMPOUND WORKSHEET # METHOD: VOA | A. Chloromethane | U. 1,1,2-Trichloroethane | OO. 2,2-Dichloropropane | III. n-Butylbenzene | CCCC.1-Chlorohexane | |------------------------------|---------------------------------|-------------------------------|--|-------------------------| | B. Bromomethane | V. Benzene | PP. Bromochloromethane | JJJ. 1,2-Dichlorobenzene | DDDD. Isopropyl alcohol | | C. Vinyl choride | W. trans-1,3-Dichloropropene | QQ. 1,1-Dichloropropene | KKK. 1,2,4-Trichlorobenzene | EEEE. Acetonitrile | | D. Chloroethane | X. Bromoform | RR. Dibromomethane | LLL. Hexachlorobutadiene | FFFF. Acrolein | | E. Methylene chloride | Y. 4-Methyl-2-pentanone | SS. 1,3-Dichloropropane | MMM. Naphthalene | GGGG. Acrylonitrile | | F. Acetone | Z. 2-Hexanone | TT. 1,2-Dibromoethane | NNN. 1,2,3-Trichlorobenzene | HHHH. 1,4-Dioxane | | G. Carbon disulfide | AA. Tetrachloroethene | UU. 1,1,1,2-Tetrachloroethane | OOO. 1,3,5-Trichlorobenzene | IIII. Isobutyl alcohol | | H. 1,1-Dichloroethene | BB. 1,1,2,2-Tetrachloroethane | VV. Isopropylbenzene | PPP. trans-1,2-Dichloroethene | JJJJ. Methacrylonitrile | | I. 1,1-Dichloroethane | CC. Toluene | WW. Bromobenzene | QQQ. cis-1,2-Dichloroethene | KKKK. Propionitrile | | J. 1,2-Dichloroethene, total | DD. Chlorobenzene | XX. 1,2,3-Trichloropropane | RRR. m,p-Xylenes | LLLL. Ethyl ether | | K. Chloroform | EE. Ethylbenzene | YY. n-Propylbenzene | SSS. o-Xylene | MMMM. Benzyl chloride | | L. 1,2-Dichloroethane | FF. Styrene | ZZ. 2-Chlorotoluene | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | NNNN. lodomethane | | M. 2-Butanone | GG. Xylenes, total | AAA. 1,3,5-Trimethylbenzene | UUU. 1,2-Dichlorotetrafluoroethane | OOOO.1,1-Difluoroethane | | N. 1,1,1-Trichloroethane | HH. Vinyl acetate | BBB. 4-Chlorotoluene | VVV. 4-Ethyltoluene | РРРР. | | O. Carbon tetrachloride | II. 2-Chloroethylvinyl ether | CCC. tert-Butylbenzene | WWW. Ethanol | ଦ୍ରଦ୍ର | | P. Bromodichloromethane | JJ. Dichlorodifluoromethane | DDD. 1,2,4-Trimethylbenzene | XXX. Di-isopropyl ether | RRRR. | | Q. 1,2-Dichloropropane | KK. Trichlorofluoromethane | EEE. sec-Butylbenzene | YYY. tert-Butanol | SSSS. | | R. cis-1,3-Dichloropropene | LL. Methyl-tert-butyl ether | FFF. 1,3-Dichlorobenzene | ZZZ. tert-Butyl alcohol | тттт. | | S. Trichloroethene | MM. 1,2-Dibromo-3-chloropropane | GGG. p-lsopropyltoluene | AAAA. Ethyl tert-butyl ether | UUUU. | | T. Dibromochloromethane | NN. Methyl ethyl ketone | HHH. 1,4-Dichlorobenzene | BBBB. tert-Amyl methyl ether | vvv. | # **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page: | of | |---------------|----------| | Reviewer: | <u>a</u> | | 2nd Reviewer: | St | | All circled dates have exceeded the technical holding times. | | |--|--| | (<u>Y</u> N N/A Were all cooler temperatures within validation criteria? | | | V/N/N/A Were air hubbles > 1/4 inch or was headenace present in the viale? | | | METHOD: GC/MS VOA (EPA SW 846 Method 8260 S) | | | | | | | | |--|---------|-----------
---------------|---------------------------------------|---------------|--------------------|-----------| | Sample ID | Matrix | Preserved | Sampling Date | Extraction date | Analysis date | Total #
of Days | Qualifier | | 12 | W | Y | 11-15-16 | | 12-12-16 | 27 | Vava | | (dets+ND) | | | | | | | / / ` | · · · · · · · · · · · · · · · · · · · | | | , | <u></u> | • | | | - | | | | | | | | | | | | | | | ŀ | | | | | | | L | #### **TECHNICAL HOLDING TIME CRITERIA** Aromatic within 7 days, non-aromatic within 14 days of sample collection. Water unpreserved: Within 14 days of sample collection. Water preserved: Within 14 days of sample collection. Soil: LDC #: 3190B # VALIDATION FINDINGS WORKSHEET Surrogate Spikes | Page:_ | of | |-------------|-----| | Reviewer: | 0 | | nd Reviewer | TUZ | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N/A Were all surrogate %R within QC limits? Y N/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria? | # | Date | Sample ID | Surrogate | %Recovery | y (I imits) | Qualifications | |---------|------|-----------|-----------|-----------|--------------|-----------------| | | | 6 | DCZ | 123 | (81-118) | Jets/P (NO) | | | | | OFM | 121 | (80-119) | ď | | | | | , | | (| A | | | | 7 | カとそ | 125 | (81-118) | Note P (NO) | | | | 0 | 7.2 | 1 1 1 | () | / 1/2 / | | | | 8 | DCE | 124 | . (| (ND) | | | | a | DCE | 121 | | (dets+ND) | | | - | | | | | | | | | 10 | DEE | 125 | () | V | | | | | | | (/) | . 0 1 () | | | | | DEZ | [] Z Z | (V) | rats/A (dob+NO) | | | | | BB | 177 | (85-11-4) | | | | | | | | | | | | | | | | () | | | | | | | | () | | | | | | | | () | | | | | | | | () | | | | | | | | () | | | | | | | | () | | | | | | | | | | | | | | | | () | | | | | | | | (| | (TOL) = Toluene-d8 (DCE) = 1,2-Dichloroethane-d4 (BFB) = Bromofluorobenzene (DFM) = Dibromofluoromethane # VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates | Page:_ | lof / | |---------------|-------| | Reviewer: | 4 | | 2nd Reviewer: | NC | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. Was a MS/MSD analyzed every 20 samples of each matrix? YIN N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | MS | MSD | | | | |---------------|------|-----------|----------|--------------|--------------|--------------|--------------------|----------------| | # | Date | MS/MSD ID | Compound | %R (Limits) | %R (Limits) | RPD (Limits) | Associated Samples | Qualifications | | Ш | | 13/14 | 5 | 136 (79-123) | H1 (79-123) | () | 3 (dets) | 1 dets A | | Ш | | , | 5 | () | 12T (78-123) | () | (NO) | | | | | | | (, , ,) | () | (, ,) , | | | | Ш | | | | () | () | () | | | | Ш | | | | () | () | () | | | | | | | | () | () | () | | | | | | | - | (' ') | () | (') | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | П | | | | () | () | () | | | | H | | | | () | () | () | | | | \vdash | | | | , , | () | () | | | | 1 | | | | () | () | () | | | | Н | | | | () | , , | , , | | | | Ш | | | | () | () | () | | | | | | | | () | () | () | | | | П | | | | () | () | () | | | | \Box | | | | () | () | () | | | | | | | | () | () | () | | | | $\ \cdot \ $ | | | | , , | , , | , , | | | | ╟┼ | | | | , , | () | , , | | | | Ш | | | | () | () | () | | | | Ш | | | | () | () | () | | | | | | | | () | () | () | | | LDC #:37(97B) # VALIDATION FINDINGS WORKSHEET Overall Assessment of Data | Page: _ | /_of_/_ | |---------------|---------| | Reviewer: | 9 | | 2nd Reviewer: | Ne | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data. Y N/A Was the overall quality and usability of the data acceptable? | # | Date | Sample ID | Compound | Finding | Qualifications | |---------|------|-----------|----------|---------|----------------| | | | 12 | AII | | R/A | | | | | | | , / | ļ | | | | | | | - | 1 | | | | | | | | | | | | | | | Comments: | | | | |-----------|--|-----|--| | | | · · | | | | | | | LDC #: 37797B1 # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | <u>Lot !</u> | |--------------| | ` 4 | | _ JV6 | | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards A_x = Area of compound, A_{is} = Area of associated internal standard $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard %RSD = 100 * (S/X) X = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|------------------|------------------|--------------------------|--------------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(10 std) | RRF
(10 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | | | S (1st internal standard) | 0.3967 | 0.3967 | 0.3984 | 0.3984 | 4.1 | 4.1 | | | ICAL . | 11/23/16 | AA (2nd internal standard) | 1.2500 | 1.2500 | 1.2786 | 1.2786 | 6.1 | 6.1 | | | (VMS_G) | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 3 | : | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 37797B1 # VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page:_ | 1 of 1 | |---------------|--------| | Reviewer: | a | | 2nd Reviewer: | No | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of ass C_x = Concentration of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard | # | Standard ID | Calibration
Date | Compound (Reference internal Standard) | Average RRF
(initial) | Reported
RRF
(CC) | Recalculated
RRF
(CC) | Reported
%D | Recalculated
%D | |---|-------------|---------------------|--|--------------------------|-------------------------|-----------------------------|----------------|--------------------| | 1 | G0848 | 11/28/16 | S (1st internal standard) | 0.3984 | 0.4098 | 0.4098 | 2.8 | 2.8 | | | | | AA (2nd internal standard) | 1.2786 | 1.199 | 1.199 | 6.3 | 6.3 - | | | | | (2nd internal standard) | | | <u> </u> | | | | | | | (3rd internal standard) | | | | | | | 2 | | | (1st internal standard) | | | | | · | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of | |---------------|----| | Reviewer: | 9 | | 2nd reviewer: | NG | METHOD: GC/MS VOA
(EPA SW 846 Method 8260B) | The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the follov | |---| |---| % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: 3 | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | 11.0 | 11.7 | 106 | 106 | 0 | | 1,2-Dichloroethane-d4 |) | 12.0 | 109 | 109 | 1 | | Toluene-d8 | | 11.9 | 108 | 108 | | | Bromofluorobenzene | <u> </u> | 11.2 | 102 | 100 | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | <u> </u> | |---------------|----------| | Reviewer: | 9 | | 2nd Reviewer: | 1/12 | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentration RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD sample: ___ | Compound | Spike
Added
(M 73 | | Added Concentration Concentration | | ration | Matrix Spike Percent Recovery | | Matrix Spike Duplicate Percent Recovery | | MS/MSD
RPD | | |--------------------|--------------------------|------|-----------------------------------|------|--------|-------------------------------|--------|---|--------|---------------|--------------| | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | 1,1-Dichloroethene | 500 | 5.00 | 1.1 | 7.32 | 7.53 | p4 | 124 | 128 | 128 | 3 | M | | Trichloroethene | \bigvee | V | 14 | 8,22 | 8.46 | 136 | 136 | 141 | 41 | 3 | 3 | | Benzene | | | | | | | | | | | | | Toluene | | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | | | | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results | s do not agree within 10.0% | |--|-----------------------------| | of the recalculated results. | | | | | | | | # **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | Page:_ | <u>/</u> of_/ | |---------------|---------------| | Reviewer: | Q | | 2nd Reviewer: | M | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCS ID: 280-353386 | | | oike | Spiked Sample | | LCS | | LCSD | | I CS/I CSD | | | |--------------------|-----------|--------------|---------------|---------------|----------|------------------|----------|------------------|------------|--------------|--| | Compound | Ac
() | Ided (| Concen | Concentration | | Percent Recovery | | Percent Recovery | | RPD | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | | 1,1-Dichloroethene | 500 | 5.00 | 5,21 | 5.28 | 104 | 104 | 106 | 106 | 1 | 1 | | | Trichloroethene | V | \downarrow | 548 | 5.86 | 110 | 10 | 117 | 117 | 7 | 7 | | | Benzene | | | | | | | | | | | | | Toluene | | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | | | | Comments: | Refer to Laboratory | Control Sample findin | gs worksheet for lis | t of qualifications a | nd associated samp | les when reported re | <u>esults do not agree wi</u> | thin 10.0% of the | |--------------|---------------------|-----------------------|----------------------|-----------------------|--------------------|----------------------|-------------------------------|-------------------| | recalculated | results. | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | LDC #:3797B # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | of | |---------------|----| | Reviewer: | 0 | | 2nd reviewer: | M | Were all reported results recalculated and verified for all level IV samples? | Y | N | N/A | Were all recalculated results for detected target compounds agree within 10.0% of the reported results? $\begin{aligned} & \text{Concentration} = & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ V_o = Volume or weight of sample pruged in milliliters (ml) or grams (g). Df = Dilution factor. %S = Percent solids, applicable to soils and solid matrices only. Example: Sample I.D. 3 , 5 Conc. = (32217)(12.5)(1)= (10157)(0.3984)(1) | | only. | | | | | |---|-----------|-------------|---------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration | Calculated
Concentration
() | Qualification | | | 3 | 5 | 1.4 | | | | | | | | , | | | | | | | | | | | | | ~ | | | | | | | | | | | L | # Laboratory Data
Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: 1,4-Dioxane Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91067-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | OUA1-MW15-20161115 | 280-91067-4 | Water | 11/15/16 | | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | OUA1-MW23-20161115 | 280-91067-6 | Water | 11/15/16 | | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | OUA1-MW25-20161115 | 280-91067-10 | Water | 11/15/16 | | OUA1-MW11-20161115 | 280-91067-11 | Water | 11/15/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. ## IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. ## V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB02-20161115 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. ## VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ## VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. # X. Field Duplicates Samples OUA1-MW55-20161115 and OUA1-MW55A-20161115 were identified as field duplicates. No results were detected in any of the samples. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. # XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. ## **MCAS Yuma** 1,4-Dioxane - Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG ### **MCAS Yuma** 1,4-Dioxane - Field Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG # LDC #: 37797B2b VALIDATION COMPLETENESS WORKSHEET SDG #: 280-91067-1 Stage 2B/4 Laboratory: Test America, Inc. Date: />/2/9/6 Page: / of / Reviewer: 2nd Reviewer: NG METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|--| | 1. | Sample receipt/Technical holding times | A | | | 11. | GC/MS Instrument performance check | A | | | IH. | Initial calibration/ICV | AA | RS0 < 1570. 1 CV < >0/0 CCV < 20/50/0 | | IV. | Continuing calibration Endie | \triangle | ecv = 20/50/0 | | V. | Laboratory Blanks | \forall | / / | | VI. | Field blanks | NO | ZB=1, SB=SB01-020161112 (280-909) | | VII. | Surrogate spikes | A | | | VIII. | Matrix spike/Matrix spike duplicates | A | "A ' | | IX. | Laboratory control samples | \triangle | 205 | | X. | Field duplicates | ND | D=6+T | | XI. | Internal standards | \rightarrow | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | \Rightarrow | Not reviewed for Stage 2B validation. | | XIV. | System performance | A | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | \triangle | | Note: A = Acceptable ND = No compounds detected D = Duplicate TB = Trip blank SB=Source blank OTHER: N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank EB = Equipment blank ** Indicates sample underwent Stage 4 validation | IIIG | icates sample underwent Stage 4 Validation | | | | |------|--|---------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 1 | EB02-20161115 | 280-91067-1 | Water | 11/15/16 | | 2 | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | 3 | OUA1-MW15-20161115 | 280-91067-4 | Water | 11/15/16 | | 4 | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | 5 | OUA1-MW23-20161115 |
280-91067-6 | Water | 11/15/16 | | 6 | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | 7 | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | 8 | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | 9 | OUA1-MW25-20161115 | 280-91067-10 | Water | 11/15/16 | | 10 | OUA1-MW11-20161115 | 280-91067-11 | Water | 11/15/16 | | 11 | | | | | | 12 | | | | | | 13 | | | , | | ## **VALIDATION FINDINGS CHECKLIST** Page: / of > Reviewer: O 2nd Reviewer: ______ Method: Semivolatiles (EPA SW 846 Method 8270C) | | П | Π | | | |---|--|----------------|--|--| | Validation Area | Yes | No | NA | Findings/Comments | | Technical holding times | ii | Г | Γ | l de la companya l | | Were all technical holding times met? | - | ' | | | | Was cooler temperature criteria met?. | | | | | | II. GC/MS Instrument performance check | T | ī | e de la companya l | 1 21 22 240 7 8 6 4 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | | | <u> </u> | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa: Initial calibration | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 10 p | The second secon | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | <u> </u> | <u></u> ' | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 30%/15% and relative response factors (RRF) ≥ 0.05? | | | | | | IIIb Initial Calibration Verification | | | 1 1 2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | | | Was an initial calibration verification standard analyzed after each ICAL for each instrument? | | | | | | Were all percent difference (%D) ≤20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05? | | - Contract of | | | | V. Laboratory Blanks | | | | 8.7 | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | The second secon | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | / | | | | VII. Surrogate spikes | 1 | 4 | | | | Were all surrogate %R within QC limits? | 1 | | | | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | | | | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | ## VALIDATION FINDINGS CHECKLIST Page: 2 of 2 Reviewer: 2nd Reviewer: 0 | Validation Area | Yes | No | NA | Findings/Comments | |--|------|---------|------|-------------------| | VIII. Matrix spike/Matrix spike duplicates | | 2 - 1 N | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | a de | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | 1 1 | | | Were field duplicate pairs identified in this SDG? | | ` | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | | | | , | | Were retention times within ± 30 seconds of the associated calibration standard? | | | - | | | XII. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data | | | 10.0 | | | Overall assessment of data was found to be acceptable. | | | | | LDC #: 37797B2b ## **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | <u></u> | |---------------|----------| | Reviewer:_ | <u>a</u> | | 2nd Reviewer: | DR | METHOD: GC/MS
SVOC (EPA SW 846 Method 8270C) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $$\label{eq:RRF} \begin{split} RRF &= (A_x)(C_{is})/(A_{is})(C_x) \\ \text{average RRF} &= \text{sum of the RRFs/number of standards} \end{split}$$ A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard %RSD = 100 * (S/X) A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs, X = Mean of the RRFs | # | Standard ID | Calibration
Date | Company (Reference Internal Standard) | Reported
RRF | Recalculated RRF | Reported Average RRF | Recalculated Average RRF | Reported
%RSD | Recalculated
%RSD | |---|-------------|---------------------|--|-----------------|-------------------|-----------------------|---------------------------|------------------|----------------------| | # | | | Compound (Reference Internal Standard) | (5000 std) | (5000 std) | (initial) | (initial) | | | | 1 | ICAL | 10/14/16 | 1,4-Dioxane (1st internal standard) | 0.5594 | 0.5594 | 0.5511 | 0.5511 | 3.6 | 3.6 | | | (SMS_G4) | | 1,2,4-Trichlorobenzene (2nd internal standard) | | | | | | | | | · . | | . 2,6-Dinitrotoluene (3rd internal standard) | <u> </u> | | <u>.</u> | | | | | | | | Hexachlorobenzene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | - | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | _ | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | L | | | | | | | Comments: | Refer to Initial Calibrat | <u>ion findings worksheet</u> | for list of qualification | <u>s and associated sar</u> | nples when reported | results do not agree within | 10.0% of the recalculated | |-----------|---------------------------|-------------------------------|---------------------------|-----------------------------|---------------------|-----------------------------|---------------------------| | results | LDC #: 37797B2b ## **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | 10f_ | |---------------|------| | Reviewer:_ | | | 2nd Reviewer: | ne | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|--------------------------|-------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal
Standard) | Average RRF
(initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | G4_3626 | 11/25/16 | 1,4-Dioxane (1st internal standard) | 0.5511 | 0.5008 | 0.5008 | 9.1 | 9.1 | | | | · . | Naphthalene (2nd internal standard) | | | | | · | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | Comments: . | <u>Refer to </u> | Continuing | g Calibration t | indings work | sneet for list | or qualification | ons and asso | ciated samp | oles when repo | ortea results ac | o not agree withir | 1 10.0% of the | |--------------|------------------|------------|-----------------|--------------|----------------|------------------|--------------|-------------|----------------|------------------|--------------------|----------------| | recalculated | results. | ## VALIDATION FINDINGS WORKSHEET Surrogate Results Verification | Page:_ | | |----------------|----------| | Reviewer: | <u>a</u> | | 2nd reviewer:_ | NB | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) | | below using the following calculation: | |--|--| | | | | | | % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: 2 | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | 2500 P | 1816. | 73 | T3 | 0 | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | LUC#:3/19/19/19 ## **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page: <u></u> _of | |-------------------| | Reviewer: | | 2nd Reviewer: | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA) Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCS/LCSD samples: 280-35 | Compound | Ad | oike
ded | Spike
Concentration | | I CS Percent Recovery | | LCSD Percent Recovery | | LCS/LCSD
RPD | |
--|----------|----------------|------------------------|------|-----------------------|--------|-----------------------|--------|-----------------|--------------| | the state of s | | l [/] | | 7 | | | | l l | | T i | | | <u> </u> | LCSD | LCS | LCSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | | | Acenaphthene | | | | | | | | | | | | Pentachlorophenol | | | | | | | | | | | | Pyrene | | | | | | | | | | | | 1.4-Dioxans | 10.0 | NA | 6.44 | NA | 64 | 64 | | | | | | | | ļ | | , | | , | Comments: | Refer to Laborato | ry Control Sample/Labora | ory Control Sam | ple Duplicates fi | ndings workshee | t for list of qualific | cations and associ | ciated samples | when reported | |---------------|---------------------|----------------------------|-----------------|-------------------|-----------------|------------------------|--------------------|----------------|---------------| | results do no | ot agree within 10. | 0% of the recalculated res | ults. | | | | | | | | | • | | | | · | | | | | | | | | | | | | | | | only. ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: | / of/ | |---------------|----------| | Reviewer: | <u>a</u> | | 2nd reviewer: | 17/2 | METHOD: GC/MS SVOA (EPA SW 846 Method 8270C) | (X) | N | N/A | |-----|---|-----| | Y | N | N/A | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | 7 | | | | |-----------------|----------|--|--| | Conce | entratio | on = $(A_{i})(I_{s})(V_{i})(DF)(2.0)$
$(A_{is})(RRF)(V_{o})(V_{i})(%S)$ | Example: | | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D, [4-Dioxal] | | A _{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = $(578^{22})(4000.)(2)(1071)(10)$ | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | | | V _I | = | Volume of extract injected in microliters (ul) | =3.73 M | | V_{t} | = | Volume of the concentrated extract in microliters (ul) | (| | Df | = | Dilution Factor. | | | %S | = | Percent solids, applicable to soil and solid matrices | | | 2.0 | = Factor of 2 to accou | unt for GPC cleanup | | | | |-----|------------------------|---------------------|---------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration | Calculated
Concentration
() | Qualification | | | > | 1.4-Diexane | 3.7 | ļ | | | | 1 | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Wet Chemistry Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91067-1 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | OUA1-MW14-20161115DUP | 280-91067-3DUP | Water | 11/15/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056 Ferrous Iron by Standard Method 3500 FE D pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |----------------------|--------------|--
---|----------------------|--------| | OUA1-MW14-20161115** | рН | 6 days | 48 hours | J (all detects) | Р | | OUA1-MW07-20161115 | рН | 6 days | 48 hours | J (all detects) | Р | | OUA1-MW55-20161115 | рН | 6 days | 48 hours | J (all detects) | Р | | OUA1-MW27-20161115 | pН | 6 days | 48 hours | J (all detects) | Р | | OUA1-MW14-20161115** | Ferrous iron | 55.10 hours | 48 hours | UJ (all non-detects) | P | | OUA1-MW07-20161115 | Ferrous iron | 54.60 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW55-20161115 | Ferrous iron | 52.93 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW55A-20161115 | Ferrous iron | 52.77 hours | 48 hours | UJ (all non-detects) | Р | | OUA1-MW27-20161115 | Ferrous iron | 51.27 hours | 48 hours | UJ (all non-detects) | Р | #### II. Initial Calibration All criteria for the initial calibration of each method were met. ## III. Continuing Calibration Continuing calibration frequency and analysis criteria were met for each method when applicable. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Analyte | Maximum
Concentration | Associated
Samples | |-----------------|---------------------|--------------------------|--------------------------------| | PB (prep blank) | Chloride
Sulfate | 0.391 mg/L
0.439 mg/L | All samples in SDG 280-91067-1 | | Blank ID | Analyte | Maximum
Concentration | Associated
Samples | |----------|-------------------------------------|--|--------------------------------| | ICB/CCB | Chloride
Nitrate as N
Sulfate | 0.424 mg/L
0.109 mg/L
0.483 mg/L | All samples in SDG 280-91067-1 | Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks. #### V. Field Blanks Sample EB02-20161115 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Analyte | Concentration | Associated
Samples | |---------------|--------------------|---------------------|------------------------|--------------------------------| | EB02-20161115 | 11/15/16 | Chloride
Sulfate | 0.39 mg/L
0.43 mg/L | All samples in SDG 280-91067-1 | Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated field blanks. #### VI. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### VII. Duplicates Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Field Duplicates Samples OUA1-MW55-20161115 and OUA1-MW55A-20161115 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | | | | | |----------|--------------------|---------------------|--------------|--------|----------| | Analyte | OUA1-MW55-20161115 | OUA1-MW55A-20161115 | RPD (Limits) | Flag | A or P | | Chloride | 520 | 520 | 0 (≤20) | -
- | - | | Sulfate | 120 | 120 | 0 (≤20) | - | <u>-</u> | ## X. Sample Result Verification All sample result verifications were acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. No results were rejected in this SDG. Due to technical holding time, data were qualified as estimated in five samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ## MCAS Yuma Wet Chemistry - Data Qualification Summary - SDG 280-91067-1 | Sample | Analyte | Flag | A or P | Reason | |---|--------------|----------------------|--------|-------------------------| | OUA1-MW14-20161115**
OUA1-MW07-20161115
OUA1-MW55-20161115
OUA1-MW27-20161115 | рН | J (all detects) | Р | Technical holding times | | OUA1-MW14-20161115** OUA1-MW07-20161115 OUA1-MW55-20161115 OUA1-MW55A-20161115 OUA1-MW27-20161115 | Ferrous iron | UJ (all non-detects) | Р | Technical holding times | ## MCAS Yuma Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG ## **MCAS Yuma** Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-91067-1 No Sample Data Qualified in this SDG #### | Date: 1/3/17 | | |----------------------------|---| | Page: <u>∟</u> of_ <u></u> | | | Reviewer: | | | 2nd Reviewer: | _ | Laboratory: Test America, Inc. METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Ferrous Iron (3500-FE D) pH, (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|---------------------------------------| | 1. | Sample receipt/Technical holding times | A SW | | | 11 | Initial calibration | A | | | III. | Calibration verification | A | | | IV | Laboratory Blanks | asw | < 0/. | | V | Field blanks | SW | CB=1 SB=SB01-70161114/280-90987-1) | | VI. | Matrix Spike/Matrix Spike Duplicates | \mathcal{N} | CS | | VII. | Duplicate sample analysis | A | | | VIII. | Laboratory control samples | A | US(0 | | IX. | Field duplicates | SW | (46) | | Χ. | Sample result verification | A | Not reviewed for Stage 2B validation. | | ΧI | Overall assessment of data | 1 | | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |----|-----------------------|----------------|--------|----------| | 1 | EB02-20161115 | 280-91067-1 | Water | 11/15/16 | | 2 | OUA1-MW14-20161115** | 280-91067-3** | Water | 11/15/16 | | 3 | OUA1-MW07-20161115 | 280-91067-5 | Water | 11/15/16 | | 4 | OUA1-MW55-20161115 | 280-91067-7 | Water | 11/15/16 | | 5 | OUA1-MW55A-20161115 | 280-91067-8 | Water | 11/15/16 | | 6 | OUA1-MW27-20161115 | 280-91067-9 | Water | 11/15/16 | | 7 | OUA1-MW14-20161115DUP | 280-91067-3DUP | Water | 11/15/16 | | 8 | | | | | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | NOIES. |
 | The second secon |
 | |--------|------|--|------| | | | 777 - 110-110-110-110-110-110-110-110-110-1 | ## **VALIDATION FINDINGS
CHECKLIST** Page: 1 of 2 Reviewer: CZ 2nd Reviewer: Method: Inorganics (EPA Method See over) | Method:Inorganics (EPA Method Sel over) | | | | | | | |--|-----|------|----|-------------------|--|--| | Validation Area | Yes | No | NA | Findings/Comments | | | | I. Technical holding times | | | | | | | | All technical holding times were met. | | V | | | | | | II. Calibration | | | | | | | | Were all instruments calibrated daily, each set-up time? | | | | | | | | Were the proper number of standards used? | | | | | | | | Were all initial calibration correlation coefficients ≥ 0.995? | | | | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | | | | | | | | Were titrant checks performed as required? (Level IV only) | | | _ | | | | | Were balance checks performed as required? (Level IV only) | | | | | | | | III. Blanks | | | | | | | | Was a method blank associated with every sample in this SDG? | | | | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | | -· , | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | | | / | | | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | | | | | | | | V. Laboratory control samples | | | | | | | | Was an LCS anaylzed for this SDG? | | | | | | | | Was an LCS analyzed per extraction batch? | | | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | | | | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | | | Were performance evaluation (PE) samples performed? | | | | | | | | Were the performance evaluation (PE) samples within the acceptance limits? | | | / | | | | LDC #: 3798 ## **VALIDATION FINDINGS CHECKLIST** Page: Qof 2 Reviewer: 2nd Reviewer: 2 | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | VII. Sample Result Verification | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | Were detection limits < RL? | | | | | | VIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | | IX. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | | | | | Target analytes were detected in the field duplicates. | | | | | | X. Field blanks | | | | | | Field blanks were identified in this SDG. | | | | | | Target analytes were detected in the field blanks. | | | | | LDC #: 3791136 ## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference | Page:_ | of \ | |----------------|----------| | Reviewer:_ | æ | | 2nd reviewer:_ | <u>q</u> | All circled methods are applicable to each sample. | Sample ID | Matrix | Parameter | |-----------|--------|---| | 2-4,6 | | (PH) TDS(C) F(NO3) NO(SO) PO4 ALK CN. NH3 TKN TOC CR8+ CIQ4 101+ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | 5 | | pH TDS(CI)F (NO), NO, (SO) PO, ALK CN' NH, TKN TOC CR6+ CIQ Te T | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | Q:7 | | (PH) TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk CN ⁻ NH ₃ TKN toc CR ⁶⁺ Cio ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CLF NO. NO. SO, PO, ALK CN. NH. TKN TOC CR6+ CIO. | | Comments: | | | | |-----------|------|--|--| | |
 | | | LDC #: 37191136 ## **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page: | of | |----------------|----------| | Reviewer:_ | OC | | 2nd reviewer:_ | <u> </u> | All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method? Y N N/A Were all cooler temperatures within validation criteria? | Method: | | 9040C | | | 2vv. | 3500FED
enastron
48hrs | | |-------------|-------------------------|---------------|---------------|-----------|------------------|------------------------------|-----------| | Parameters | : | PH | | | Fe | Mas Iron | | | Technical h | olding time: | 48hrs | | 1 | | 48hrs | | | Sample ID | Sampling
<u>date</u> | Analysis date | Total
Time | Qualifier | Analysis
date | Total
Time | Qualifier | | 2,7 | 11/15/16 | 11/21/16 | 6days | JUSPRON | | , | | | 3 | 09:50 | 12:03 | | | | | | | 4 | 11:30 | 1208 | | | | | | | 6 | 13:10 | 12:13 | | | | a | | | | | | | | | | | | a | 11/15/16 | | | | 11/17/16 | 5 6 .10 | J/05/Rm | | 3 | 09:50 | | | | | 54.60 | | | 4 | 11:30 | | | | | 52,93
52,77 | | | 5 | 11:40 | | | | | | | | 6 | 13:10 | | | | \bigvee | 51.27 | + | LDC #: 37797B6 ## VALIDATION FINDINGS WORKSHEET Blanks | Page: of | | |---------------|---| | Reviewer: | | | 2nd Reviewer: | _ | METHOD:Inorganics, Method See Cover Conc. units: mg/L Associated Samples: All | Analyte | Blank ID | Blank ID | Blank | | | | | | | |---------|----------|-------------------|--------------|------------------|--|--|--|--|--| | | РВ | ICB/CCB
(mg/L) | Action Limit | No qual
(>5x) | | | | | | | СІ | 0.391 | 0.424 | 2.12 | | | | | | | | NO3-N | | 0.109 | 0.545 | | | | | | | | SO4 | 0.439 | 0.483 | 2.415 | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". LDC #: 37797B6 ## VALIDATION FINDINGS WORKSHEET Field Blanks | 1 | 1 | |--------------------|-----| | Page: | _of | | Reviewer: <u>C</u> | 2_ | | 2nd Reviewer: | | METHOD: Inorganics, EPA Method See Cover Blank units: mg/L Associated sample units: mg/L Sampling date: 11/15/16 Soil factor applied NA Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples: All | Analyte | Blank ID | Action Limit | | | Sample Ide | entification | | | |----------|---------------|--------------|------------------------|--|------------|--------------|---|--| | | EB02-20161115 | | No Qualifiers
(>5x) | | | | | | | Chloride | 0.39 | 1.95 | | | | | | | | Sulfate | 0.43 | 2.15 | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | - | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". LDC#: 37797B6 ## VALIDATION FINDINGS WORKSHEET Field Duplicates Inorganics, Method See Cover | | Concentrati | | | | |----------|-------------|-----|-----------|--------------------------------| | Analyte | 4 | 5 | RPD (≤20) | Qualification
(Parent only) | | Chloride | 520 | 520 | 0 | | | Sulfate | 120 | 120 | 0 | | \\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\37797B6.wpd | I DC #: | 3779 | 7B/2 | |----------|----------|------| | LDC #: _ | <u> </u> | | ## Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification | Page: of | |---------------| | Reviewer: | | 2nd Reviewer: | | Method: Inorganics,
Method | See Cover | | |---|-------------------------|--| | The correlation coefficient (r) for the | calibration of <u>M</u> | was recalculated.Calibration date: 0/19/16 | | An initial or continuing calibration ve | rification percent | recovery (%R) was recalculated for each type of analysis using the following formula: | | %R = <u>Found X 100</u> | Where, | Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution | | True | | True = concentration of each analyte in the ICV or CCV source | | | | | | | Recalculated | Reported | Acceptable | |--------------------------|---------|----------|--------------|-----------|---------------------|---------------------|------------| | Type of analysis | Analyte | Standard | Conc. (mg/L) | Area | r or r ² | r or r ² | (Y/N) | | Initial calibration | | s1 | 0.2 | 1590920 | | | | | | | s2 | 0.5 | 4076842 | 1.000 | 0.998 | | | | NO. | s3 | 1 | 8789224 | | | Y | | | NO3N | s4 | 4 | 40800587 | | | | | | | s5 | 8 | 87082615 | | | | | | | s6 | 10 | 110756388 | | | | | Calibration verification | SDy | CU | 100 | 101.5 | 102 | 107 | | | Calibration verification | FeII+ | CCU | 1,00 | 108 | 108 | 108 | 4 | | Calibration verification | | | | | | | | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within | |--| | 10.0% of the recalculated results | | | LDC #: 3777B6 ## VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | Page:_ | (
of | 1 | |---------------|---------------|---| | Reviewer: | كي_ | _ | | 2nd Reviewer: | $\overline{}$ | | | METHOD: Inorganics, Method | secaer | |----------------------------|--------| |----------------------------|--------| Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = Found \times 100$ True Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = |S-D| \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration | Sample ID | Type of Analysis | Element | Found / S
(units) | True / D
(units) | Recalculated
%R / RPD | Reported
%R / RPD | Acceptable
(Y/N) | |-----------|---------------------------|---------|----------------------|---------------------|--------------------------|----------------------|---------------------| | LCS | Laboratory control sample | FeIH | 7.07 | 2ω | 104 | W | 4 | | \sim | Matrix spike sample | | (SSR-SR) | ` | | | | | 7 | Duplicate sample | PH | 7.79
7.79 | 7.76
7.76 | 04 | 6.4 | 7 | | Comments: | | |
 |
 | | |-----------|--|--|------|------|--| | | | | | | | | | | | _ | | | LDC#: 377176 ## **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification | Page: 1 of | | |---------------|--| | Reviewer:0? | | | 2nd reviewer: | | | METHOD: Inor | ganics, Method <u>Sec Ca</u> | rel | | |---|---|--|--| | Please see qua X N N/A Y N N/A Y N N/A | alifications below for all questi
Have results been reported
Are results within the calibra
Are all detection limits belov | ions answered "N". Not applicate and calculated correctly? ated range of the instruments? with CRQL? | ble questions are identified as "N/A". | | | alyte) results for
d verified using the following | NOTN equation: | reported with a positive detect were | | Concentration = Pres (9x10 |)-r)+0.17 | Recalculation:
3435066 Axiot | 8) +0.17 = 3.749 mg/L | | # | Sample ID | Analyte | Reported
Concentration
(YNG) | Calculated
Concentration
(M | Acceptable
(Y/N) | |---------|-----------|---------|------------------------------------|-----------------------------------|---------------------| | | a | pH(SU) | 7.8 | 7.8 | Y | | | | Čl | 300 | 300 | | | | | N63-N | 3,2 | 3.2 | | | | | 50y | 590 | 590 | | | | | 1 ~ | | | • | | ļ | <u></u> | | | | | | | ļ | | · | | | | | | | | | | | | | | | | | | |
 | <u></u> | | | | Note: |
 |
 | | |-------|------|------|--| | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: Volatiles Validation Level: Stage 2B Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91122-1 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | OUA1-MW42-20161116 | 280-91122-5 | Water | 11/16/16 | | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | OUA1-MW31-20161116 | 280-91122-7 | Water | 11/16/16 | | OUA1-PZ19-20161116 | 280-91122-8 | Water | 11/16/16 | | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | | OUA1-MW04-20161116 | 280-91122-10 | Water | 11/16/16 | | OUA1-MW04A-20161116 | 280-91122-11 | Water | 11/16/16 | | OUA1-MW05-20161116 | 280-91122-12 | Water | 11/16/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990. Average relative
response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending CCVs were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample TB03-20161116 was identified as a trip blank. No contaminants were found. Sample EB03-20161116 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1 was identified as a source blank. No contaminants were found. ### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions: | Sample | Surrogate | %R (Limits) | Affected
Compound | Flag | A or P | |--------------------|--------------------|-------------|----------------------|---|--------| | OUA1-MW54-20161116 | Bromofluorobenzene | 84 (85-114) | All compounds | J (all detects)
UJ (all non-detects) | Р | | OUA1-MW01-20161116 | Bromofluorobenzene | 84 (85-114) | All compounds | J (all detects)
UJ (all non-detects) | Р | | OUA1-MW04-20161116 | Bromofluorobenzene | 83 (85-114) | All compounds | J (all detects)
UJ (all non-detects) | Р | ### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ## IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### X. Field Duplicates Samples OUA1-MW04-20161116 and OUA1-MW04A-20161116 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ug/L) | | James de la constante co | | | | | |--------------------|----------------------|---------------------|--|------------------------|------|--------|--| | Compound | OUA1-MW04-20161116 | OUA1-MW04A-20161116 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | | 1,1-Dichloroethene | 0.44 | 0.50 | - | 0.06 (≤1.0) | - | - | | | | Concentration (ug/L) | | Concentration (ug/L) | | 1 | | | | |-----------------|----------------------|---------------------|----------------------|------------------------|------|--------|--|--| | Compound | OUA1-MW04-20161116 | OUA1-MW04A-20161116 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | | | Trichloroethene | 0.40 | 0.49 | - | 0.09 (≤1.0) | - | - | | | #### XI. Internal Standards All internal standard areas and retention times were within QC limits. ## XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. ## XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. ## XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to surrogate %R, data were qualified as estimated in three samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ## **MCAS Yuma** ## Volatiles - Data Qualification Summary - SDG 280-91122-1 | Sample | Compound | Flag | A or P | Reason | |--|---------------|---|--------|-----------------| | OUA1-MW54-20161116
OUA1-MW01-20161116
OUA1-MW04-20161116 | All compounds | J (all detects)
UJ (all non-detects) | Р | Surrogates (%R) | ### MCAS Yuma Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG ## **MCAS** Yuma Volatiles - Field Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797C1 SDG #: 280-91122-1 Stage 2B Reviewer: 2nd Reviewer: METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) Laboratory: Test America, Inc. The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----------|--| | l. | Sample receipt/Technical holding times | A | | | 11. | GC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | AA | 75051570.82 1CV=2070 | | IV. | Continuing calibration | A | CCV = 20/50/r | | V. | Laboratory Blanks | 1 | / / | | VI. | Field blanks | ND | ZB=1. TB=2.0B=SB01-420161114
(=80-90987-1 | | VII. | Surrogate spikes | w | (=80-90 98T-1 | | VIII. | Matrix spike/Matrix spike duplicates | N | <u>CS</u> | | IX. | Laboratory control samples | \$ | 105 | | X. | Field duplicates | W | D=10+11 | | XI. | Internal standards | A | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|---------------------|--------------|--------|----------| | 1 | EB03-20161116 | 280-91122-1 | Water | 11/16/16 | | 2 | TB03-20161116 | 280 91122 2 | Water | 11/16/16 | | 3 | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | 4 | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | 5 | OUA1-MW42-20161116 | 280-91122-5 | Water | 11/16/16 | | 6 | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | 7 | OUA1-MW31-20161116 | 280-91122-7 | Water | 11/16/16 | | 88 | OUA1-PZ19-20161116 | 280-91122-8 | Water | 11/16/16 | | 9 | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | | 10 | OUA1-MW04-20161116 | 280-91122-10 | Water | 11/16/16 | | 11 | OUA1-MW04A-20161116 | 280-91122-11 | Water | 11/16/16 | | 12 | OUA1-MW05-20161116 | 280-91122-12 | Water | 11/16/16 | | 13 | | | | | ## TARGET COMPOUND WORKSHEET #### METHOD: VOA | METHOD. VOA | | | | | |------------------------------|---------------------------------|--|-----------------------------------|----------------------------| | A. Chloromethane | AA. Tetrachloroethene | AAA. 1,3,5-Trimethylbenzene | AAAA. Ethyl tert-butyl ether | A1. 1,3-Butadiene | | B. Bromomethane | BB. 1,1,2,2-Tetrachloroethane | BBB. 4-Chlorotoluene | BBBB. tert-Amyl methyl ether | B1. Hexane | | C. Vinyl choride | CC. Toluene | CCC. tert-Butylbenzene | CCCC. 1-Chlorohexane | C1. Heptane | | D. Chloroethane | DD. Chlorobenzene | DDD. 1,2,4-Trimethylbenzene | DDDD. Isopropyl alcohol | D1. Propylene | | E. Methylene chloride | EE. Ethylbenzene | EEE. sec-Butylbenzene | EEEE. Acetonitrile | E1. Freon 11 | | F. Acetone | FF. Styrene | FFF. 1,3-Dichlorobenzene | FFFF. Acrolein | F1. Freon 12 | | G. Carbon disulfide | GG. Xylenes, total | GGG. p-Isopropyltoluene | GGGG. Acrylonitrile | G1.
Freon 113 | | H. 1,1-Dichloroethene | HH. Vinyl acetate | HHH. 1,4-Dichlorobenzene | HHHH. 1,4-Dioxane | H1. Freon 114 | | I. 1,1-Dichloroethane | II. 2-Chloroethylvinyl ether | III. n-Butylbenzene | IIII. Isobutyl alcohol | I1. 2-Nitropropane | | J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane | JJJ. 1,2-Dichlorobenzene | JJJJ. Methacrylonitrile | J1. Dimethyl disulfide | | K. Chloroform | KK. Trichlorofluoromethane | KKK. 1,2,4-Trichlorobenzene | KKKK. Propionitrile | K1. 2,3-Dimethyl pentane | | L. 1,2-Dichloroethane | LL. Methyl-tert-butyl ether | LLL. Hexachlorobutadiene | LLLL. Ethyl ether | L1. 2,4-Dimethyl pentane | | M. 2-Butanone | MM. 1,2-Dibromo-3-chloropropane | MMM. Naphthalene | MMMM. Benzyl chloride | M1. 3,3-Dimethyl pentane | | N. 1,1,1-Trichloroethane | NN. Methyl ethyl ketone | NNN. 1,2,3-Trichlorobenzene | NNNN. lodomethane | N1. 2-Methylpentane | | O. Carbon tetrachloride | OO. 2,2-Dichloropropane | OOO. 1,3,5-Trichlorobenzene | OOOO.1,1-Difluoroethane | O1. 3-Methylpentane | | P. Bromodichloromethane | PP. Bromochloromethane | PPP. trans-1,2-Dichloroethene | PPPP. Tetrahydrofuran | P1. 3-Ethylpentane | | Q. 1,2-Dichloropropane | QQ. 1,1-Dichloropropene | QQQ. cis-1,2-Dichloroethene | QQQQ. Methyl acetate | Q1. 2,2-Dimethylpentane | | R. cis-1,3-Dichloropropene | RR. Dibromomethane | RRR. m,p-Xylenes | RRRR. Ethyl acetate | R1. 2,2,3- Trimethylbutane | | S. Trichloroethene | SS. 1,3-Dichloropropane | SSS. o-Xylene | SSSS. Cyclohexane | S1. 2,2,4-Trimethylpentane | | T. Dibromochloromethane | TT. 1,2-Dibromoethane | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methylcyclohexane | T1. 2-Methylhexane | | U. 1,1,2-Trichloroethane | UU. 1,1,1,2-Tetrachloroethane | UUU. 1,2-Dichlorotetrafluoroethane | UUUU. Allyl chloride | U1. Nonanal | | V. Benzene | VV. Isopropylbenzene | VVV. 4-Ethyltoluene | VVVV. Methyl methacrylate | V1. 2-Methylnaphthalene | | W. trans-1,3-Dichloropropene | WW. Bromobenzene | WWW. Ethanol | WWWW. Ethyl methacrylate | W1. Methanol | | X. Bromoform | XX. 1,2,3-Trichloropropane | XXX. Di-isopropyl ether | XXXX. cis-1,4-Dichloro-2-butene | X1. 1,2,3-Trimethylbenzene | | Y. 4-Methyl-2-pentanone | YY. n-Propylbenzene | YYY. tert-Butanol | YYYY. trans-1,4-Dichloro-2-butene | Y1. | | Z. 2-Hexanone | ZZ. 2-Chlorotoluene | ZZZ. tert-Butyl alcohol | ZZZZ. Pentachloroethane | Z1. | LDC#;311910 ## VALIDATION FINDINGS WORKSHEET Surrogate Spikes | Page:_ | (of/_ | |---------------|-------| | Reviewer: | 4 | | 2nd Reviewer: | M | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y (V) N/A Were all surrogate %R within QC limits? Y\N N/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of | | criteria | 1? | | <u> </u> | | | | |-------------|----------|-----------|-----------|--------------------|--------------------|-----------|----------| | # | Date | Sample ID | Surrogate | %Recovery (Limits) |) | Qualifica | tions | | | | 2 | BB | 81 | 851A) | THE | (ND) 9 | | | | 4 | PB | 84 (| 85-1A) | | 11/2 | | | | | | 04 (| 057 (A) | YMT | (det3+NO | | | | 6 | B(3 | 84 1 | | | | | | | 10 | BEB | (83) |) | // | / | | | | (V | | | <u> </u> | V | <i>y</i> | | | | | | |) | | | | | | | | (|) | | | | | | | | (|) | | | | | | | | (|) | | | | | | | | (|) | | | | | | | | (|) | | | | | | | | (|) | | | | | | | | (|) | | | | | | | | (|) | | | | | | | | |) | | | | | | | | (|) | | | | | | | | |) | | | | | | | | | | | | (TOL) = Toluene-d8 (DCE) = 1,2-Dichloroethane-d4 (DFM) = Dibromofluoromethane (BFB) = Bromofluorobenzene # LDC#:3197C# # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | _of[| |----------------|----------| | Reviewer: | <u>a</u> | | 2nd Reviewer:_ | SIC | METHOD: GCMS voa (EPA SW 846 Method 8260B) | | Concentra | Concentration (ug/L) | | | | | |----------|-----------|----------------------|-----|------------|--------|------| | Compound | 10 | 11 | RPD | Difference | Limits | Qual | | Н | 0.44 | 0.50 | | 0.06 | ≤1.0 | | | s | 0.40 | 0.49 | | 0.09 | ≤1.0 | | V:\FIELD DUPLICATES\37797C1.wpd # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91122-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | OUA1-MW42-20161116 | 280-91122-5 | Water | 11/16/16 | | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | OUA1-MW31-20161116 | 280-91122-7 | Water | 11/16/16 | | OUA1-PZ19-20161116 | 280-91122-8 | Water | 11/16/16 | | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | | OUA1-MW04-20161116 | 280-91122-10 | Water | 11/16/16 | | OUA1-MW04A-20161116 | 280-91122-11 | Water | 11/16/16 | | OUA1-MW05-20161116 | 280-91122-12 | Water | 11/16/16 | ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. ### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. ### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. ### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. ### VI. Field Blanks Sample EB03-20161116 was identified as an equipment blank. No contaminants were found. Sample SB01-2016114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. ### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VIII.
Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### X. Field Duplicates Samples OUA1-MW04-20161116 and OUA1-MW04A-20161116 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ug/L) | | | | | | |-------------|----------------------|---------------------|-----------------|------------------------|-----------------|--------| | Compound | OUA1-MW04-20161116 | OUA1-MW04A-20161116 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | 1,4-Dioxane | 2.5 | 1.8 | 33 (≤20) | - | J (all detects) | Α | ### XI. Internal Standards All internal standard areas and retention times were within QC limits. ### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. ### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. ### XIV. System Performance Raw data were not reviewed for Stage 2B validation. ### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to field duplicate RPD, data were qualified as estimated in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ### **MCAS Yuma** ## 1,4-Dioxane - Data Qualification Summary - SDG 280-91122-1 | Sample | Compound | Flag | A or P | Reason | |---|-------------|-----------------|--------|------------------------| | OUA1-MW04-20161116
OUA1-MW04A-20161116 | 1,4-Dioxane | J (all detects) | Α | Field duplicates (RPD) | ### MCAS Yuma 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG ### **MCAS Yuma** 1,4-Dioxane - Field Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797C2b SDG #: 280-91122-1 Stage 2B Reviewer: 2nd Reviewer Laboratory: Test America, Inc. METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|----------------------------------| | l, | Sample receipt/Technical holding times | A | | | II. | GC/MS Instrument performance check | A | | | 111. | Initial calibration/ICV | AA | RSD ≤ 1570. 101 ≤ 207 V | | IV. | Continuing calibration /Zulia | A | act = 20/50/1 | | ٧. | Laboratory Blanks | \$ | / / | | VI. | Field blanks | NO | B=1.5B=5B01-120161114 (280-90987 | | VII. | Surrogate spikes | A | | | VIII. | Matrix spike/Matrix spike duplicates | N | es | | IX. | Laboratory control samples | \Rightarrow | 105 to | | Χ. | Field duplicates | W | D=9+10 | | XI. | Internal standards | \$ | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet R = Rinsate ND = No compounds detected FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----------|---------------------|--------------|--------|----------| | 1 | EB03-20161116 | 280-91122-1 | Water | 11/16/16 | | 2 | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | 3 | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | 4 | OUA1-MW42-20161116 | 280-91122-5 | Water | 11/16/16 | | 5 | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | 6 | OUA1-MW31-20161116 | 280-91122-7 | Water | 11/16/16 | | 7 | OUA1-PZ19-20161116 | 280-91122-8 | Water | 11/16/16 | | 8 | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | | 9 | OUA1-MW04-20161116 | 280-91122-10 | Water | 11/16/16 | | 10
10 | OUA1-MW04A-20161116 | 280-91122-11 | Water | 11/16/16 | | 11 | OUA1-MW05-20161116 | 280-91122-12 | Water | 11/16/16 | | 12 | | | | | | 13 | | | | | # VALIDATION FINDINGS WORKSHEET _Field Duplicates | Page: | Lof | |----------------|----------| | Reviewer: | <u>a</u> | | 2nd Reviewer:_ | SV | METHOD: GCMS svoa (EPA SW 846 Method 8270C) | | Concentration (ug/L) | | (≤20) | D:// | | | |-------------|----------------------|-----|-------|------------|--------|--------| | Compound | 9 | 10 | RPD | Difference | Limits | Qual | | 1,4-Dioxane | 2.5 | 1.8 | 33 | | | Stef 8 | V:\FIELD DUPLICATES\37797C2b.wpd # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Wet Chemistry **Validation Level:** Stage 2B Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91122-1 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | OUA1-MW53-20161116 | 280-91122-3 | Water | 11/16/16 | | OUA1-MW54-20161116 | 280-91122-4 | Water | 11/16/16 | | OUA1-MW01-20161116 | 280-91122-6 | Water | 11/16/16 | | OUA1-MW52-20161116 | 280-91122-9 | Water | 11/16/16 | ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056 Ferrous Iron by Standard Method 3500 FE D pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |--------------------------------|--------------|--|---|----------------------|--------| | All samples in SDG 280-91122-1 | рН | 5 days | 48 hours | J (all detects) | Р | | All samples in SDG 280-91122-1 | Ferrous iron | 9 days | 48 hours | UJ (all non-detects) | Р | ### II. Initial Calibration All criteria for the initial calibration of each method were met. ### **III. Continuing Calibration** Continuing calibration frequency and analysis criteria
were met for each method when applicable. ### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks. ### V. Field Blanks Sample EB03-20161116 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. ### VI. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### VII. Duplicates Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. ### **VIII. Laboratory Control Samples** Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### IX. Field Duplicates No field duplicates were identified in this SDG. ### X. Sample Result Verification Raw data were not reviewed for Stage 2B validation. ### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. No results were rejected in this SDG. Due to technical holding time, data were qualified as estimated in four samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ## MCAS Yuma Wet Chemistry - Data Qualification Summary - SDG 280-91122-1 | Sample | Analyte | Flag | A or P | Reason | |--|--------------|----------------------|--------|-------------------------| | OUA1-MW53-20161116
OUA1-MW54-20161116
OUA1-MW01-20161116
OUA1-MW52-20161116 | рН | J (all detects) | Р | Technical holding times | | OUA1-MW53-20161116
OUA1-MW54-20161116
OUA1-MW01-20161116
OUA1-MW52-20161116 | Ferrous iron | UJ (all non-detects) | Р | Technical holding times | ### **MCAS Yuma** Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG ## **MCAS Yuma** Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-91122-1 No Sample Data Qualified in this SDG # LDC #: 37797C6 VALIDATION COMPLETENESS WORKSHEET SDG #: 280-91122-1 Stage 2B | Date: 1/3/1 | 2 | |----------------------------|---| | Page: <u> </u> of <u> </u> | | | Reviewer: | _ | | 2nd Reviewer: | _ | Laboratory: <u>Test America</u>, <u>Inc.</u> METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Ferrous Iron (3500-FE D) pH, (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |----------|--|---------------|------------------------------------| | <u> </u> | Sample receipt/Technical holding times | A SW | | | | Initial calibration | Ă | | | III. | Calibration verification | A | | | IV | Laboratory Blanks | A | | | V | Field blanks | NO | CB=1 SB=SB01-2016114 (280-90987-1) | | VI. | Matrix Spike/Matrix Spike Duplicates | A | ms/D | | VII. | Duplicate sample analysis | A | DP. | | VIII. | Laboratory control samples | A | LCS/D | | IX. | Field duplicates | \mathcal{N} | | | X. | Sample result verification | N | | | ΧI | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: Matrix Date Client ID Lab ID EB03-20161116 280-91122-1 Water 11/16/16 1 OUA1-MW53-20161116 280-91122-3 Water 11/16/16 Water OUA1-MW54-20161116 280-91122-4 11/16/16 3 280-91122-6 Water 11/16/16 OUA1-MW01-20161116 OUA1-MW52-20161116 280-91122-9 Water 11/16/16 EB03-20161116MS 280-91122-1MS Water 11/16/16 EB03-20161116MSD 280-91122-1MSD Water 11/16/16 EB03-20161116DUP 280-91122-1DUP 8 Water 11/16/16 9 10 11 12 13 14 | | |
 | | | |--------|--|------|--|--| | 15 | | | | | | Notes: | | | | | | | | | | | | _ | | | | | | | | | | | # VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: 1 of 1 Reviewer: CR 2nd reviewer: 1 All circled methods are applicable to each sample. | Sample ID | Parameter | |-----------|--| | 7-5 (| ph tds(c) f (no3) No2(SO4)O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (10-11-11) | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | ph TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CLF NO, NO, SO, O-PO, Alk CN NH, TKN TOC Cr6+ ClO, | | Comments: | |
 | | |-----------|------|------|--| | | | | | | |
 |
 | | | | | | | LDC #: 3779766 # VALIDATION FINDINGS WORKSHEET **Technical Holding Times** | Page: <u>\</u> of_ | | |--------------------|--------| | Reviewer: O | ,
 | | 2nd reviewer: | \geq | All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method? Y N N/A Were all cooler temperatures within validation criteria? | Method: | | SM | 9040C
H
K/S | | SM3500-FEO
Ferras Iron
48hrs | | | | |-------------|------------------|------------------|-------------------|-----------|------------------------------------|---------------|-----------|--| | Parameters |): | P | H | | Ferras Iron | | | | | Technical h | olding time: | 48 | hrs . | | 닉 | 48hrs | | | | Sample ID | Sampling
date | Analysis
date | Total
Time | Qualifier | Analysis
date | Total
Time | Qualifier | | | All | 11/16/16 | 11/21/16 | Sdays | JURA | 11/25/16 | 9 days | JOJPM | | | | | | U | · . | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma LDC Report Date: January 4, 2017 Parameters: Volatiles Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91192-1 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | OUA1-MW51-20161117 | 280-91192-3 | Water | 11/17/16 | | OUA1-MW50-20161117 | 280-91192-4 | Water | 11/17/16 | | OUA1-MW49-20161117** | 280-91192-5** | Water | 11/17/16 | | OUA1-MW49-20161117MS | 280-91192-5MS | Water | 11/17/16 | | OUA1-MW49-20161117MSD | 280-91192-5MSD | Water | 11/17/16 | ^{**}Indicates sample underwent Stage 4 validation ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for
Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. ### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. ### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. ### VI. Field Blanks Sample TB04-20161117 was identified as a trip blank. No contaminants were found. Sample EB04-20161117 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. ### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. ### X. Field Duplicates No field duplicates were identified in this SDG. ### XI. Internal Standards All internal standard areas and retention times were within QC limits. ### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. # XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. ### **MCAS Yuma** Volatiles - Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG ### **MCAS Yuma** Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG ### **MCAS Yuma** Volatiles - Field Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG ### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797D1 SDG #: 280-91192-1 Stage 2B/4 | | 4966 | |---------------|----------| | Page: _ | of | | Reviewer: | <u> </u> | | 2nd Reviewer: | _NZ | Laboratory: Test America, Inc. METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----------|---------------------------------------| | I. | Sample receipt/Technical holding times | A | | | II. | GC/MS Instrument performance check | A | | | Ш. | Initial calibration/ICV | A A | RSD=1570. 12 101=200 | | IV. | Continuing calibration / Zulia | A | cc1 ≤ 20/50/0 | | V. | Laboratory Blanks | A | ~ / | | VI. | Field blanks | N.B | CB=1. TB=4. SB01-120161114/280-90 | | VII. | Surrogate spikes | A | | | VIII. | Matrix spike/Matrix spike duplicates | A | | | IX. | Laboratory control samples | | 109 | | Χ. | Field duplicates | <u> </u> | | | XI. | Internal standards | 1 | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | A | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | ** Ind | icates sample underwent Stage 4 validation | | | | |--------|--|----------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 4 | EB04 20161117 | 280-91192-1 | Water | 11/17/18 | | 2 | TB04-20161117 | 280-91192-2 | Water | 11/17/16 | | 3 | OUA1-MW51-20161117 | 280-91192-3 | Water | 11/17/16 | | 4 | OUA1-MW50-20161117 | 280-91192-4 | Water | 11/17/16 | | 5 | OUA1-MW49-20161117** | 280-91192-5** | Water | 11/17/16 | | 6 | OUA1-MW49-20161117MS | 280-91192-5MS | Water | 11/17/16 | | 7 | OUA1-MW49-20161117MSD | 280-91192-5MSD | Water | 11/17/16 | | 8 | | | | | | 9 | | | | | | 10 | | | | | | Note | S: | | | | | | |
 | | | I | |---|---|------|---|----------|---| | | | | | | | | ı | | | | | | | | |
 | |
 | | | İ | | | | | | | | | | | | | | — | L |
 | L | <u> </u> | l | ### VALIDATION FINDINGS CHECKLIST Method: Volatiles (EPA SW 846 Method 8260B) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|-------------|-------------
--| | I. Technical holding times | | | | · · · · · · · · · · · · · · · · · · · | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | N. A. S. C. | | | II. GC/MS Instrument performance check | | į, į | | The Angle of the State S | | Were the BFB performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) \leq 38%/15% and relative response factors (RRF) \geq 0.05? | | | | | | IIIb. Initial Calibration Verification | |) Determine | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | · ** | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | , | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks were identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | Were all surrogate percent recovery (%R) within QC limits? | / | | | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | | / | | ### VALIDATION FINDINGS CHECKLIST Page: Of A Reviewer: Of A Page: O | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|----|--| | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | | 100 Television (100 Televisio) (100 Televisio) (100 Televisio) (100 Televisio) (100 Televisio) | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | / | | | | | X. Field duplicates | | p. | | The secretary of the second | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XII: Internal standards | | | | The state of s | | Were internal standard area counts within -50% to +100% of the associated calibration standard? | | | | | | Were retention times within \pm 30 seconds of the associated calibration standard? | | | | | | XIII Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | • | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | / | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV System performance | 14 | | | | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | # TARGET COMPOUND WORKSHEET ### METHOD: VOA | A. Chloromethane | U. 1,1,2-Trichloroethane | OO. 2,2-Dichloropropane | III. n-Butylbenzene | CCCC.1-Chlorohexane | |------------------------------|---------------------------------|-------------------------------|--|-------------------------| | B. Bromomethane | V. Benzene | PP. Bromochloromethane | JJJ. 1,2-Dichlorobenzene | DDDD. Isopropyl alcohol | | C. Vinyl choride | W. trans-1,3-Dichloropropene | QQ. 1,1-Dichloropropene | KKK. 1,2,4-Trichlorobenzene | EEEE. Acetonitrile | | D. Chloroethane | X. Bromoform | RR. Dibromomethane | LLL. Hexachlorobutadiene | FFFF. Acrolein | | E. Methylene chloride | Y. 4-Methyl-2-pentanone | SS. 1,3-Dichloropropane | MMM. Naphthalene | GGGG. Acrylonitrile | | F. Acetone | Z. 2-Hexanone | TT. 1,2-Dibromoethane | NNN. 1,2,3-Trichlorobenzene | HHHH. 1,4-Dioxane | | G. Carbon disulfide | AA. Tetrachloroethene | UU. 1,1,1,2-Tetrachloroethane | OOO. 1,3,5-Trichlorobenzene | IIII. Isobutyl alcohol | | H. 1,1-Dichloroethene | BB.
1,1,2,2-Tetrachloroethane | VV. Isopropylbenzene | PPP. trans-1,2-Dichloroethene | JJJJ. Methacrylonitrile | | I. 1,1-Dichloroethane | CC. Toluene | WW. Bromobenzene | QQQ. cis-1,2-Dichloroethene | KKKK. Propionitrile | | J. 1,2-Dichloroethene, total | DD. Chlorobenzene | XX. 1,2,3-Trichloropropane | RRR. m,p-Xylenes | LLLL. Ethyl ether | | K. Chloroform | EE. Ethylbenzene | YY. n-Propylbenzene | SSS. o-Xylene | MMMM. Benzyl chloride | | L. 1,2-Dichloroethane | FF. Styrene | ZZ. 2-Chlorotoluene | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | NNNN. lodomethane | | M. 2-Butanone | GG. Xylenes, total | AAA. 1,3,5-Trimethylbenzene | UUU. 1,2-Dichlorotetrafluoroethane | OOOO.1,1-Difluoroethane | | N. 1,1,1-Trichloroethane | HH. Vinyl acetate | BBB. 4-Chlorotoluene | VVV. 4-Ethyltoluene | РРРР. | | Ó. Carbon tetrachloride | II. 2-Chloroethylvinyl ether | CCC. tert-Butylbenzene | WWW. Ethanol | QQQQ. | | P. Bromodichloromethane | JJ. Dichlorodifluoromethane | DDD. 1,2,4-Trimethylbenzene | XXX. Di-isopropyl ether | RRRR. | | Q. 1,2-Dichloropropane | KK. Trichlorofluoromethane | EEE. sec-Butylbenzene | YYY. tert-Butanol | SSSS. | | R. cis-1,3-Dichloropropene | LL. Methyl-tert-butyl ether | FFF. 1,3-Dichlorobenzene | ZZZ. tert-Butyl alcohol | ттт. | | S. Trichloroethene | MM. 1,2-Dibromo-3-chloropropane | GGG. p-Isopropyltoluene | AAAA. Ethyl tert-butyl ether | UUUU. | | T. Dibromochloromethane | NN. Methyl ethyl ketone | HHH. 1,4-Dichlorobenzene | BBBB. tert-Amyl methyl ether | www. | LDC #:31970 # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | Page:_ | | |----------------|----| | Reviewer: | 9 | | 2nd Reviewer:_ | No | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard C_x = Concentration of compound, S = Standard deviation of the RRFs X = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|-------------------|-------------------|--------------------------|--------------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(Ø std) | RRF
((0 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | _ • | 1-0 | (1st internal standard) | 0.335 | 0.3351 | 0.315 | 0.3175 | 3.3 | 3.3 | | | ICAZ | 112916 | (2nd internal standard) | 12757 | 1.2757 | 1.2176 | 1.2176 | 3,5 | 3.5 | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 2 | | | (1st internal standard) | | | | | | | | L | | | (2nd internal standard) | | | | | · | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | <u> </u> | | | | Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #:311910 / # VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification | Page:_ | | |---------------|----| | Reviewer: | 9 | | 2nd Reviewer: | Mr | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF Where: ave. RRF = initial calibration average RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF A_{x} = Area of compound, A_{is} = Area of associated internal standard $\hat{C_x}$ = Concentration of compound, C_{is} = Concentration of internal standard | #_ | Standard ID | Calibration
Date | Compound (Reference internal Standard) | Average RRF
(initial) | Reported
RRF
(CC) | Recalculated
RRF
(CC) | Reported
%D | Recalculated
%D | |---------|-------------|---------------------|--|---|-------------------------|-----------------------------|----------------|--------------------| | 1 | NSLT760 | 11/30/6 | (1st internal standard) | 0.3175 | 0.3483 | 0.3483 | 9.7 | 9.7 | | | · · | 1/2/10 | (2nd internal standard) | 12176 | 1.248 | 1.248 | 2.5 | 2,5 | | | | | (3rd internal standard) | | | | | | | <u></u> | | | (4th internal standard) | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | (4th internal standard) | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | . 4 | | | | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | (of <i>]</i> | |--------------| | 9 | | 100 | | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 5 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | 11.0 | 11.5 | 104 | 104 | 0 | | 1,2-Dichloroethane-d4 | | 12.4 | 113 | 113 | | | Toluene-d8 | | 10.9 | 99 | 99 | | | Bromofluorobenzene | | 107 | 98 | 98 | d | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID:_____ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | LDC #_3(19) ## **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentration RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD sample: _ | Compound | Spike
Added
(从★€) | | Sample
Concentration
(/ Z) | Spiked Sample
Concentration | | Matrix Spike Percent Recovery | | Matrix Spike Duplicate Percent Recovery | | MS/MSD
RPD | | |--------------------|--------------------------|-----|-----------------------------------|--------------------------------|------------|-------------------------------|--------|---|--------|---------------|--------------| | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | 1,1-Dichloroethene | 500 | 500 | NJ | 5.20 | 536 | 104 | 104 | 107 | 10T | 3 | 3 | | Trichloroethene | V | V | 027 | 5.13 | 5.18 | 97 | 9 | 98 | 98 | | 1 | | Benzene | | | | | <u>`</u> . | . 1 | | | | | | | Toluene | | | | | |
| | | | | | | Chlorobenzene | | | | | | | | | | | | | mments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0 |)% | |---|----| | the recalculated results. | | | | | | | | ## **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | Page:_ | | |---------------|----------| | Reviewer: | α | | 2nd Reviewer: | N | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCS ID: _ >80-353T | | Sı | oike | Spiked Sample | | LCS | | LCSD | | LCS/LCSD | | |--------------------|------------|------|---------------|------|------------------|---------|------------------|---------|----------|--------------| | Compound | Added (C) | | Concentration | | Percent Recovery | | Percent Recovery | | RPD | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | 1,1-Dichloroethene | 500 | NA | 5.34 | NA | IOT | 10 T | | | | | | Trichloroethene | V | V | 5.41 | V | 108 | 108 | | | | | | Benzene | | | | | | | | | | | | Toluene | | | | | | | | | | | | Chlorobenzene | | | | | | | · | | | | | Comments | : Refer to Laboratory | Control Sample finding | gs worksheet for list | t of qualifications an | d associated sample | es when reported r | esults do not agree with | in 10.0% of the | |-------------|-----------------------|------------------------|-----------------------|------------------------|---------------------|--------------------|--------------------------|-----------------| | recalculate | d results. | | | | | | _ | LDC# ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: | <u>_/</u> of_/_ | |---------------|-----------------| | Reviewer: | Q | | 2nd reviewer: | W | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? Concentration = $(A_r)(I_s)(DF)$ $\overline{(A_{is})(RRF)(V_o)(\%}S)$ Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) V_° or grams (g). Df Dilution factor. %S Percent solids, applicable to soils and solid matrices Example: Conc. = (13) = (12.5) (1) (180991) (0.3173) = 20.2678 Hz | | only. | | Reported | Calculated | | |---|-----------|----------|---------------------------|----------------------|---------------| | # | Sample ID | Compound | Reported
Concent/ation | Concentration
() | Qualification | | | 5 | S | 0.27 | <u> </u> | · | | | | | | | *** | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: 1,4-Dioxane Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91192-1 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | OUA1-MW51-20161117 | 280-91192-3 | Water | 11/17/16 | | OUA1-MW50-20161117 | 280-91192-4 | Water | 11/17/16 | | OUA1-MW49-20161117** | 280-91192-5** | Water | 11/17/16 | | OUA1-MW49-20161117MS | 280-91192-5MS | Water | 11/17/16 | | OUA1-MW49-20161117MSD | 280-91192-5MSD | Water | 11/17/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met with the following exceptions: | Sample | Compound | Total Days From
Sample Collection
Until Extraction | Required Holding Time
(in Days) From Sample
Collection Until Extraction | Flag | A or P | |-----------------------------------|---------------|--|---|----------------------|--------| | All samples in SDG
280-91192-1 | All compounds | 11 | 7 | UJ (all non-detects) | Р | #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB04-20161117 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample
analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions: | Spike ID
(Associated Samples) | Compound | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |--|-------------|---------------------|----------------------|----------------------|--------| | OUA1-MW49-20161117MS/MSD
(OUA1-MW49-20161117**) | 1,4-Dioxane | 35 (38-120) | 36 (38-120) | UJ (all non-detects) | А | Relative percent differences (RPD) were within QC limits. #### IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to technical holding time and MS/MSD %R, data were qualified as estimated in three samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. #### **MCAS Yuma** ### 1,4-Dioxane - Data Qualification Summary - SDG 280-91192-1 | Sample | Compound | Flag | A or P | Reason | |--|---------------|----------------------|--------|--| | OUA1-MW51-20161117
OUA1-MW50-20161117
OUA1-MW49-20161117** | All compounds | UJ (all non-detects) | Р | Technical holding times | | OUA1-MW49-20161117** | 1,4-Dioxane | UJ (all non-detects) | А | Matrix spike/Matrix spike duplicate (%R) | #### MCAS Yuma 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** 1,4-Dioxane - Field Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797D2b Stage 2B/4 SDG #: 280-91192-1 Laboratory: Test America, Inc. Reviewer: 2nd Reviewer: METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments Sample receipt/Technical holding times 11. GC/MS Instrument performance check Initial calibration/ICV III. Continuing calibration IV. Laboratory Blanks V. SBO1-20161114 (280-90-987-1) VI. Field blanks VII. Surrogate spikes VIII. Matrix spike/Matrix spike duplicates 100 IX. Laboratory control samples X. Field duplicates Internal standards XI. XII. Compound quantitation RL/LOQ/LODs Not reviewed for Stage 2B validation. XIII. Target compound identification Not reviewed for Stage 2B validation. Not reviewed for Stage 2B validation. XIV. System performance XV. Overall assessment of data D = Duplicate SB=Source blank A = Acceptable ND = No compounds detected Note: N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: FB = Field blank SW = See worksheet EB = Equipment blank ** Indicates sample underwent Stage 4 validation Client ID Lab ID Matrix Date EB04-20161117 280-91192-1 Water 11/17/16 280-91192-3 Water OUA1-MW51-20161117 11/17/16 OUA1-MW50-20161117 280-91192-4 Water 11/17/16 3 OUA1-MW49-20161117** 280-91192-5** Water 11/17/16 5 OUA1-MW49-20161117MS 280-91192-5MS Water 11/17/16 280-91192-5MSD Water 11/17/16 6 OUA1-MW49-20161117MSD 8 9 Notes: #### **VALIDATION FINDINGS CHECKLIST** Page: //of → Reviewer: 100 2nd Reviewer: 100 Method: Semivolatiles (EPA SW 846 Method 8270C) | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|-------|-----|--| | I. Technical holding times | t i | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met?. | | | | | | II. GC/MS Instrument performance check | | 4 | 104 | | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | 1,344 | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%/15% and relative response factors (RRF) ≥ 0.05? | | | | | | IIIb Initial Calibration Verification | | | 111 | | | Was an initial calibration verification standard analyzed after each ICAL for each instrument? | | | | | | Were all percent difference (%D) ≤20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05? | | | | | | V Laboratory Blanks | | 114 | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | The second secon | | Were all surrogate %R within QC limits? | | | | | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | | | | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | ## VALIDATION FINDINGS CHECKLIST Page: Of A Reviewer: Of A 2nd Reviewer: D | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|-----|-------------------| | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | / | | | | IX: Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | |
 | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | · | | X. Field duplicates | | | 100 | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | | | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | - | | | XII. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | (| | | | | . Were chromatogram peaks verified and accounted for? | | | | | | XIV System performance | | | | | | System performance was found to be acceptable. | 1 | / | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | ## **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page:_ | of/ | |---------------|-----| | Reviewer: | 0 | | 2nd Reviewer: | JR | All circled dates have exceeded the technical holding times. | <u>Y</u> | N | N/A | Were al | l cooler | tem | peratures | within | validation | criteria? |) | | |----------|---|-----|---------|----------|-----|-----------|--------|------------|-----------|---|--| | 厅 | | | | | | | | | | | | | Sample ID Matrix Preserved Sampling Date Extraction glab Analysis date Total # of Days Qualifier | METHOD : GC/MS BNA (EPA SW 846 Method 8270C) | | | | | | | | |--|--|--------|-----------|---------------|--|---------------|--------------------|-----------| | | Sample ID | Matrix | Preserved | Sampling Date | Extraction date | Analysis date | Total #
of Days | Qualifier | | | All (ND) | -W | | 11-17-16 | 11-28-16 | | 11 | VIVA | | | , | | | | | | | / / (| ļ | | | | | | | | | | | ļ | | | | | | | | | | ļ | - | *** | - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | - | | | #### **TECHNICAL HOLDING TIME CRITERIA** Water: Extracted within 7 days, analyzed within 40 days. Extracted within 14 days, analyzed within 40 days. Soil: ## VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates | Page:_ | of | |---------------|----| | Reviewer: | 9 | | 2nd Reviewer: | Nb | METHOD: GC/MS BNA (EPA SW 846 Method 8270D) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. <u>√N N/A</u> Was a MS/MSD analyzed every 20 samples of each matrix? N N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | H | | Were the MS/MSD per | | MS
%R (Limits) | | | | | |---|------|---------------------|----------|-------------------|--------------------|--------------|--------------------|----------------| | # | Date | MS/MSD ID | Compound | | MSD
%R (Limits) | RPD (Limits) | Associated Samples | Qualifications | | | | 5/6 1.1 | Dioxane | 35 (38-120) | 36 (38-120) | () | 4 (NO) | 1/W/A | | | | / | | () | () | () | / | / / | | | | - | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | • | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | _ | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | ()_ | () | | | LDC #: 37797D2b ## **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | | |---------------|-----| | Reviewer:_ | ` Q | | 2nd Reviewer: | NZ | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ A_x = Area of compound, A_{is} = Area of associated internal standard average RRF = sum of the RRFs/number of standards C_x = Concentration of compound, C_i = Concentration of internal standard interna %RSD = 100 * (S/X) | | | Calibration | | Reported
RRF | Recalculated
RRF | Reported Average RRF | Recalculated Average RRF | Reported
%RSD | Recalculated %RSD | |----------|-------------|-------------|--|-----------------|---------------------|----------------------|--------------------------|------------------|-------------------| | # | Standard ID | Date | Compound (Reference Internal Standard) | (5000 std) | (5000 std) | (initial) | (initial) | ,,,,,, | | | 1 | ICAL | 10/14/16 | 1,4-Dioxane (1st internal standard) | 0.5594 | 0.5594 | 0.5511 | 0.5511 | 3.6 | 3.6 | | | (SMS_G4) | | 1,2,4-Trichlorobenzene (2nd internal standard) | | | | | | | | | | | 2,6-Dinitrotoluene (3rd internal standard) | <u>.</u> | | | | | | | | | | Hexachlorobenzene (4th internal standard) | · | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | 2 | | | Phenol (1st internal standard) | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | | Phenanthrene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | <u> </u> | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | <u> </u> | | | <u> </u> | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | <u> </u> | | | Phenanthrene (4th internal standard) | | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | <u> </u> | | Comments: | Refer to Initial C | <u>alibration findin</u> | <u>gs worksheet fo</u> | <u>r list of qualifica</u> | <u>itions and associ</u> | <u>ated samples whe</u> | <u>en reported result</u> | <u>s do not agree within</u> | 10.0% of the recalculated | |-----------|--------------------|--------------------------|------------------------|----------------------------|--------------------------|-------------------------|---------------------------|------------------------------|---------------------------| | results. | , | | | LDC #: 37797D2b ## VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page: | 10f_ | |---------------|------| | Reviewer: | E T | | 2nd Reviewer: | 5/6 | METHOD: GC/MS SVOC (EPA SW 846 Method 8270C) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|--------------------------|-------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal
Standard) | Average RRF
(initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | G4_3718 | 12/5/16 | 1,4-Dioxane (1st internal standard) | 0.5511 | 0.5128 | 0.5128 | 6.9 | 6.9 | | | | | Naphthalene (2nd internal standard) | | | | | · | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 2 | G4_3766 | 12/6/16 | 1,4-Dioxane (1st internal standard) | 0.5511 | 0.4945 | 0.4945 | 10.3 | 10.3 | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th
internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | 3 | | | Phenol (1st internal standard) | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | Pentachlorophenol (4th internal standard) | | | | | | | | | | Bis(2-ethylhexyl)phthalate (5th internal standard) | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | Comments: _ | Refer to | Continuing | Calibration | <u>findings w</u> | <u>orksheet for</u> | list of q | ualifications | and asso | <u>ociated sa</u> | <u>amples wh</u> | <u>nen reporte</u> | <u>d results d</u> | <u>o not agree</u> | within | <u>10.0% of the</u> | |--------------|----------|------------|-------------|-------------------|---------------------|-----------|---------------|----------|-------------------|------------------|--------------------|--------------------|--------------------|--------|---------------------| | recalculated | results. | ## **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of | |---------------|----| | Reviewer: | 9 | | 2nd reviewer: | NG | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) | The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calcu | |--| |--| % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID:__ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | 2500.U | 23(5.3 | 93 | 93 | 7 | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyi-d14 | | | · | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | LUU #211411/11/11 ## **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | _ _ _of | |---------------|----------------| | Reviewer:_ | a_ | | 2nd Reviewer: | 4v | METHOD: GC/MS PAH (EPA SW 846 Method 8270C) | The percent recoveries (| %R) and Relative Percent Difference | (RPD) of the matrix spike and | matrix spike duplicate were | recalculated for the compounds | identified below | |----------------------------|-------------------------------------|-------------------------------|-----------------------------|--------------------------------|------------------| | using the following calcul | ation: | | | · | | % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentation RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD samples: | | | oike | Sample | | Sample | Matrix | Spike | Matrix Spike | e Duplicate | MS/M | SD | |----------------------------|------|-------|-----------------|------|------------|-----------|----------|--------------|-------------|--|--------------| | Compound | (Ad | ded (| Concentration (| II . | ntration (| Percent I | Recovery | Percent F | Recovery | RPI | 2 | | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | ************************************** | | | Acenaphthene | | | | | ļ | | | | | | | | Pentachlorophenol | | | | | | | | | | | | | Pyrene | | | | | | | | | | | | | 14-Diexand | 9.65 | 9.8 | ND | 3.40 | 3.55 | 35 | 35 | 36 | 36 | 4 | 4 | Comments: Refe | er to Matrix Spike/Matrix | Spike Duplicates findings w | orksheet for list of qualific | ations and associated san | nples when reported results o | do not agree within 10.0% | |--------------------|---------------------------|-----------------------------|-------------------------------|---------------------------|-------------------------------|---------------------------| | of the recalculate | ed results. | | | | | | | | | | | | | | LDU#319107 ## **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page:_ | (of / | |---------------|-------| | Reviewer:_ | 9 | | 2nd Reviewer: | M | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA) Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS/LCSD samples: 282-253290 | | | oike | | ike | | cs | LC: | SD | LCS | LCSD | |----------------------------|-----------|-------------|--------------|----------|-----------|----------|-----------|----------|----------|--------------| | Compound | Ad
() | deal
PC) | Conce
(/ | ntration | Percent I | Recovery | Percent F | Recovery | R | PD | | | LCS | LCSD | LCS | LCSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | 4-Chioro-3-methylphenol | | | | | | | | | | | | Acenaphthene | | | | / | | | | | | | | Pentachlorophenol | | | | | | | | | | | | Pyrene | | | | | | | | | | | | 1.4. Diexand | 10.0 | NA | 7.26 | NA | 73 | 73 | | | | | | | | | | , | | • 111 | results do not agree within 10.0% of the recalculated results. | Comments: Refer to Laboratory Control Sample/Laboratory | Control Sample Duplicates | findings worksheet for list of | i qualifications and associat | ted samples when repor | tec | |--|--|---------------------------|--------------------------------|-------------------------------|------------------------|-----| | | results do not agree within 10.0% of the recalculated result | 3 | | | | | | | | | | | | | ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: | of | |---------------|----| | Reviewer:_ | 9 | | 2nd reviewer: | NU | METHOD: GC/MS SVOA (EPA SW 846 Method 8270C) | Y | Ŋ | N/A | |---|----------|-----| | Y | <u>N</u> | N/A | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Conce | entratio | on = $(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)$
$(A_{\bullet})(RRF)(V_{\circ})(V_{\bullet})(\%S)$ | Example: | · | .14 | | | | | |-----------------|----------|--|-------------|----|-----|----|------|------|--------------| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D. | | NO | _: | | | | | A _{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | | | | | | | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = ((|)(|)(|)(|)()(| _)(_ |) | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | | | | | | | | | V _I | = | Volume of extract injected in microliters (ul) | = | | | | | | | | V _t | = | Volume of the concentrated extract in microliters (ul) | [| | | | | | | | Df | = | Dilution Factor. | | | | | | | | | %S | = | Percent solids, applicable to soil and solid matrices only. | | | | | | | | | 2.0 | = Factor of 2 to accou | nt for GPC cleanup | | | | |---------------|------------------------|--------------------|----------------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration
() | Calculated
Concentration
() | Qualification | | 一十 | 1 | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | . | | | | | | | | | | | | | | | | | | | $\neg \vdash$ | L | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Wet Chemistry Validation Level: Stage 2B & 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-91192-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW51-20161117 | 280-91192-3 | Water | 11/17/16 | | OUA1-MW50-20161117 | 280-91192-4 | Water | 11/17/16 | | OUA1-MW49-20161117** | 280-91192-5** | Water | 11/17/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056 Ferrous Iron by Standard Method 3500 FE D pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |--------------------------------|--------------|--|---|---|--------| | All samples in SDG 280-91192-1 | рН | 4 days | 48 hours | J (all detects) | Р | | All samples in SDG 280-91192-1 | Ferrous iron | 8 days | 48 hours | J (all detects)
UJ (all non-detects) | Р | #### II. Initial Calibration All criteria for the initial calibration of each method were met. #### **III. Continuing Calibration** Continuing calibration frequency and analysis criteria were met for each method when applicable. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample EB04-20161117 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 280-90987-1) was identified as a source blank. No contaminants were found. #### VI. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### VII. Duplicates The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG. #### **VIII. Laboratory Control Samples** Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Sample Result Verification All sample result verifications were acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. No results were rejected in this SDG. Due to technical holding time, data were qualified as estimated in three samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ## MCAS Yuma Wet Chemistry - Data Qualification Summary - SDG 280-91192-1 | Sample | Analyte | Flag | A or P | Reason | |--|--------------|---|--------|-------------------------| | OUA1-MW51-20161117
OUA1-MW50-20161117
OUA1-MW49-20161117** | pH | J (all detects) | Р | Technical holding times | | OUA1-MW51-20161117
OUA1-MW50-20161117
OUA1-MW49-20161117** | Ferrous iron | J (all detects)
UJ (all non-detects) | Р | Technical holding times | #### **MCAS Yuma** Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **MCAS Yuma** Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-91192-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797D6 SDG #: 280-91192-1 Stage 2B/4 | Date: 1/3/17 | |-----------------------------------| | Page: <u> \ </u> of <u> \ </u> | | Reviewer: | | 2nd Reviewer: | SM Laboratory: Test America, Inc. METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Ferrous Iron (3500-FE D) pH, (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|---------------------------------------| | l | Sample receipt/Technical holding times | A.Sw | | | 11 | Initial calibration | A | | | 111. | Calibration verification | A _ | | | IV | Laboratory Blanks | A | | | V | Field blanks | NO | EB=1 SB=SBO1-Za61114/506-90987-1) | | VI. | Matrix Spike/Matrix Spike Duplicates | N | CS | | VII. | Duplicate sample analysis | \mathcal{N} | | | VIII. | Laboratory control samples | A | LES/D | | IX. | Field duplicates | \mathcal{N} | | | X. | Sample result verification | A | Not reviewed for Stage 2B validation. | | ΧI | Overall assessment of data | X | | Note: A = Acceptable SW = See worksheet N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ** Indicates sample underwent Stage 4 validation Client ID Lab ID Matrix Date EB04-20161117 280-91192-1 Water 11/17/16 280-91192-3 2 OUA1-MW51-20161117 Water 11/17/16 3 OUA1-MW50-20161117 280-91192-4 Water 11/17/16 280-91192-5** OUA1-MW49-20161117** Water 11/17/16 5 6 8 9 10 11 12 | 13 |
 |
 | | |--------|------|------|------| | 14 | | | | | 15 |
 | | | | |
 |
 |
 | | Notes: | |
 | | | Notes: |
 | | | | Notes: |
 | | | #### **VALIDATION FINDINGS CHECKLIST** Page: 1 of 2 Reviewer: 2 Method: Inorganics (EPA Method See
over) | Validation Area | Yes | No | NA | Findings/Comments | |--|---------|----------|----|-------------------| | I. Technical holding times | | L | L | | | All technical holding times were met. | Γ | | | | | II. Calibration | 1 | L | · | | | | | <u> </u> | | | | Were all instruments calibrated daily, each set-up time? | | | | | | Were the proper number of standards used? | | <u> </u> | | | | Were all initial calibration correlation coefficients ≥ 0.995? | | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | | - | | | | Were titrant checks performed as required? (Level IV only) | | | _ | | | Were balance checks performed as required? (Level IV only) | | | / | | | III. Blanks | | | | · | | Was a method blank associated with every sample in this SDG? | | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | | | / | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | | | / | | | V. Laboratory control samples | | | | | | Was an LCS anaylzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | Were performance evaluation (PE) samples performed? | | | / | | | Were the performance evaluation (PE) samples within the acceptance limits? | | | | | LDC #: 3719706 #### **VALIDATION FINDINGS CHECKLIST** | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | VII. Sample Result Verification | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | Were detection limits < RL? | / | | | | | VIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | | IX. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | N | | | | | Target analytes were detected in the field duplicates. | | | | | | X. Field blanks | | | | | | Field blanks were identified in this SDG. | | | | | | Target analytes were detected in the field blanks. | | | | | LDC #: 3779706 ## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: ___of __ Reviewer: ____ 2nd reviewer: ___ All circled methods are applicable to each sample. | Sample ID | Matrix | Parameter | |-----------|--------|---| | 2-4 | | (pA) TDS(CI) F (NO3) NO2(SO) PO4 ALK CN- NH3 TKN TOC CR6+ CIO(TCTT+) | | , | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | · | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CLF NO, NO, SO, PO, ALK CN NH, TKN TOC CR6+ CIO, | | Comments | : |
 |
 |
 | | |----------|---|------|------|------|--| | | |
 |
 |
 | | ## **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page: of | | |-------------------------|---| | <u> </u> | _ | | Reviewer: 2nd reviewer: | | | | | All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method? N N/A Were all cooler temperatures within validation criteria? | Method: | | 9040 | validation criteria | | SM350FE-D
FELLOSION
48 hrs | | | | |---------------------------------------|------------------|------------------|---------------------|-----------|----------------------------------|---------------|-----------|--| | Parameters | | pH | | | FellosIM | | | | | Technical h | olding time: | 48h | 5 | T | L | 18 hs | | | | Sample ID | Sampling
date | Analysis
date | Total
Time | Qualifier | Analysis
date | Total
Time | Qualifier | | | All | 11/17/16 | 11/21/16 | Ydays | JUJK(Od) | 11 25 6 | 8 days | JUP | | | | | | 0 | | | <u> </u> | (Der MO) | · · · · · · · · · · · · · · · · · · · | | | | |] | LDC #: 37006 ## Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification | | | 1 | |----------|----------------|----------| | Page:_ | of | <u> </u> | | Reviewe | r:_ <i>O</i> \ | / | | 2nd Revi | ewer: | | | Method: Inorganics, Method | d <u>See Cover</u> | | |-------------------------------------|------------------------|--| | The correlation coefficient (r) for | the calibration of | was recalculated.Calibration date: 1017/16 | | An initial or continuing calibratio | n verification percent | recovery (%R) was recalculated for each type of analysis using the following formula: | | %R = <u>Found X 100</u> | Where, | Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution | | True | | True = concentration of each analyte in the ICV or CCV source | | | | | | | Recalculated | Reported | Acceptable | |--------------------------|---------|------------|--------------|---------------|---------------------|--------------------|-----------------------------| | Type of analysis | Analyte | Standard | Conc. (mg/L) | Area | r or r ² | r orr ² | (Y/N) | | Initial calibration | | s 1 | 1.0 | 18297919 | | | | | | | s2 | 2.5 | 44595772 | 1.000 | 1.000 | | | | | s3 | 5 | 89809352 | | | $\mathcal{C}_{\mathcal{I}}$ | | | | s4 | 60 | 1129842185 | | | | | | | s5 | 120 | 2243362063 | | | | | | | s6 | 200 | 3718642140 | | | | | Calibration verification | SOn | CCU | 100 | Fand
101.4 | 101 | 101 | | | Calibration verification | FeII+ | L | 1.00 | 1,02 | 102 | 107_ | 1 | | Calibration verification | | | | | | | | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within | |--| | 10.0% of the recalculated results | LDC#: 375706 ## VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | Page:_ | of \ | |---------------|------| | Reviewer: | CR. | | 2nd Reviewer: | 4 | | METHOD: Inorganics, Method | Secaer | |----------------------------|--------| |----------------------------|--------| Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = \frac{Found}{True} \times 100$ Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = |S-D| \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration | Sample ID |
Type of Analysis | Element | Found / S
(units) | True / D
(units) | Recalculated %R / RPD | Reported
%R / RPD | Acceptable
(Y/N) | |-----------|---------------------------|--------------|----------------------|---------------------|------------------------|----------------------|---------------------| | LES | Laboratory control sample | fellas
Fe | 190 | 2.00 | 95 | 95 | 7 | | \bigvee | Matrix spike sample | | (SSR-SR) | | | | | | N | Duplicate sample | | | | | | | | Comments: | | | |-----------|--|--| | | | | | | | | LDC#:3779706 ## **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification Page: 1 of 1 Reviewer: 2nd reviewer: | METH | HOD: Inorganics, Metho | od Secarel | | | | |-------------------------------------|--|---|----------------------------------|--------------------------|---------------------| | Y N
Y N
Y N
Comp
recalc | N/A Have results was Are all detections ound (analyte) results f | g the following equation: Recalculation: | repo | orted with a positi | ve detect were | | # | Sample ID | Analyte | Reported
Concentration
(W | Calculated Concentration | Acceptable
(Y/N) | | | И | off (SU) | 7.7 | 7.7 | Ÿ | | | ' | Č. | 910 | 910 | | | | | NOZ-N | 3,4 | 3.4 | | | | | 504 | 1400 | 1400 | 7 | لـــــا | | | <u> </u> | | L | | Note:_ | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Perfluorinated Alkyl Acids Validation Level: Stage 2B & 4 Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1601451 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW13-20161114 | 1601451-03 | Water | 11/14/16 | | OUA1-MW37-20161114 | 1601451-04 | Water | 11/14/16 | | OUA1-MW37A-20161114 | 1601451-05 | Water | 11/14/16 | | OUA1-HS03-20161114 | 1601451-06 | Water | 11/14/16 | | OUA1-MW19-20161114 | 1601451-07 | Water | 11/14/16 | | OUA1-MW18-20161114** | 1601451-08** | Water | 11/14/16 | | OUA1-MW08-20161114 | 1601451-09 | Water | 11/14/16 | | OUA1-MW06-20161114 | 1601451-10 | Water | 11/14/16 | | OUA1-HS03-20161114MS | 1601451-06MS | Water | 11/14/16 | | OUA1-HS03-20161114MSD | 1601451-06MSD | Water | 11/14/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 3 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (February 2017), the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NJ (Presumptive and Estimated): The analysis indicates the presence of a compound or analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was checked as applicable. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB01-20161114 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 was identified as a source blank. No contaminants were found. #### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VIII. Ongoing Precision Recovery Samples Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### IX. Field Duplicates Samples OUA1-MW37-20161114 and OUA1-MW37A-20161114 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | | | | | | |----------|--------------------|---------------------|-----------------|-------------------------|----------|--------| | Compound | OUA1-MW37-20161114 | OUA1-MW37A-20161114 | RPD
(Limits) | Differences
(Limits) | Flag | A or P | | PFBS | 145 | 139 | 4 (≤20) | <u>-</u> | - | - | | PFOA | 26.2 | 28.9 | 10 (≤20) | - | <u>-</u> | - | | PFOS | 25.0 | 27.8 | 11 (≤20) | - | <u>-</u> | - | #### X. Internal Standards All internal standard areas and retention times were within QC limits. #### XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. #### **MCAS Yuma** Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1601451
No Sample Data Qualified in this SDG #### **MCAS Yuma** Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1601451 No Sample Data Qualified in this SDG #### **MCAS Yuma** Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1601451 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797G96 SDG #: 1601451 Stage 2B/4 Laboratory: Vista Analytical Laboratory 2nd Reviewer METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-----------------|--|-------------|---------------------------------------| | I. | Sample receipt/Technical holding times | | | | II. | GC/MS Instrument performance check | N | >b >∂ | | 111. | Initial calibration/ICV | AA | PSD < 15/0. 8= 101 < 35/0 | | IV. | Continuing calibration | I"A" | AC limits <30% | | V. | Laboratory Blanks | À | | | VI. | Field blanks | NO | SB=1. 2B=2 | | VII. | Surrogate spikes | | | | VIII. | Matrix spike/Matrix spike duplicates | \triangle | | | IX. | Laboratory control samples | \triangle | OPP | | X. | Field duplicates | W | D=4+5 | | XI. | Internal standards | A | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | A | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | | | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet ** Indicates sample was underwent Stage 4 review | | Client ID | Lab ID | Matrix | Date | |----|-----------------------|-----------------------|--------|----------| | 4 | SB01-20161114 | 1601451-01 | Water | 11/14/16 | | 2 | EB01-20161114 | 1601451-02 | Water | 11/14/16 | | 3 | OUA1-MW13-20161114 | 1601451-03 | Water | 11/14/16 | | 4 | OUA1-MW37-20161114 | 1601451-04 | Water | 11/14/16 | | 5 | OUA1-MW37A-20161114 | 1601451-05 | Water | 11/14/16 | | 6 | OUA1-HS03-20161114 | 1601451-06 | Water | 11/14/16 | | 7 | OUA1-MW19-20161114 | 1601451-07 | Water | 11/14/16 | | 8 | OUA1-MW18-20161114** | 1601451-08** | Water | 11/14/16 | | 9 | OUA1-MW08-20161114 | 1601451-09 | Water | 11/14/16 | | 10 | OUA1-MW06-20161114 | 1601451-10 | Water | 11/14/16 | | 11 | OUA1-HS03-20161114MS | 1601451-06 M S | Water | 11/14/16 | | 12 | OUA1-HS03-20161114MSD | 1601451-06MSD | Water | 11/14/16 | | 13 | | | | | | 14 | | | | | #### **VALIDATION FINDINGS CHECKLIST** Method: LCMS (EPA Method 537) | Validation Area | Yes | No | NA | Findings/Comments | |--|----------|-----------------|--|---------------------------------------| | I. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. LC/MS Instrument performance check | 7.4 | 77.0 | 4425 | | | Were the instrument performance reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | and the same of th | | | IIIa. Initial calibration | | | T | 1 | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | <u></u> | | | Were all percent relative standard deviations (%RSD) ≤ 15%? | | | ļ | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of ≥ 0.990? | | | | | | IIIb. Initial Calibration Verification | | 16-44
E-17-1 | | THE TOTAL PROPERTY OF | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | | | | | Were all percent differences (%D) < 15%? | | | | | | IV. Continuing calibration | | | - 12 to 1 | | | Was a continuing calibration analyzed daily? | | <u> </u> | | | | Were all percent differences (%D) of the continuing calibration ≤ 15%? | | | | | | V, Laboratory Blanks | Taria. | | T | T T T T T T T T T T T T T T T T T T T | | Was a laboratory blank associated with every sample in this SDG? | 1 | | <u> </u> | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | 475 | | | | | VI. Field blanks | 1 | 1. | T | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | T | | T | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | ' | ļ! | | #### **VALIDATION FINDINGS CHECKLIST** | Validation Area | Yes | No | NA | Findings/Comments | |---|------|---|----
--| | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | - | | | | X. Field duplicates | | | | The second secon | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates?. | | | | | | XI, Internal standards | AV H | 3.5 | | | | Were internal standard area counts within ± 50% of the associated calibration standard? | | | | | | Were retention times within ± 30 seconds from the associated calibration standard? | | | | | | XII. Compound quantitation | | e green de la company
La companya de la | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | FAIR STARTER ON THE | | XIV. System performance | | e Bag | | | | System performance was found to be acceptable. | | | | | | XIII. Overall assessment of data | | 100 | | | | Overall assessment of data was found to be acceptable. | | | | | ## VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | _of | |---------------|------| | Reviewer: | `Q | | 2nd Reviewer: | _ N? | METHOD: LCMS PFCs (EPA Method 537) | | Concentra | ation (ng/L) | (≤20) | | | | |----------|-----------|--------------|-------|------------|--------|------| | Compound | 4 | 5 | RPD | Difference | Limits | Qual | | PFBS | 145 | 139 | 4 | | | | | PFOA | 26.2 | 28.9 | 10 | | | | | PFOS | 25.0 | 27.8 | 11 | | | | V:\FIELD DUPLICATES\37797G96.wpd LDC#:3797696 ## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | Page: | _/_of | | |-----------|-------|----| | Reviewer: | 4 | | | 2nd Revie | wer: | 21 | Method: LC/MS/MS PFCs | Calibration
Date | System | Compound | Standard | (Y)
Response | (X)
Concentration | |---------------------|--------|----------|----------|-----------------|----------------------| | 11/22/2016 | LCMS03 | PFOA | 0 | 0.5677075 | 0.50 | | | | | s1 | 0.9756087 | 1.00 | | | | | s2 | 1.8279562 | 2.00 | | | | | s3 | 4.0526312 | 5.00 | | | | | s4 | 9.8076912 | 10.00 | | | | | s5 | 23.514343 | 25.00 | | | | | s6 | 45.372340 | 50.00 | |] | | | s7 | 68.277310 | 75.00 | | | | · · | s8 | 88.133640 | 100.00 | **Regression Output** | Re | po | rte | d | |-----|--------|-------|---| | 110 | \sim | ,,,,, | u | | rtogroodion Gatpat | | Noportoa | |------------------------------------|----------|----------| | Constant | 0.384668 | 0.091734 | | Std Err of Y Est | | | | R Squared | 0.999416 | 0.999048 | | Degrees of Freedom | | | | X Coefficient(s) | 0.890381 | 0.899906 | | Std Err of Coef. | | | | Correlation Coefficient | 0.999708 | | | Coefficient of Determination (r^2) | 0.999416 | 0.999048 | #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | of | |---------------|----| | Reviewer: | | | 2nd Reviewer: | NC | | METHOD: | GC | /_HPLC | /W/ | |---------|----|-------------|-----| | | | | | The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF - CF)/ave. CF ·CF = A/C Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | # | Standard ID | Calibration
Date | Compound | Average CF(Ical)/
CCV Conc. | Reported CF/Conc. CCV | Recalculated CF/Conc. CCV | Reported
%D | Recalculated %D | |---|-------------|---------------------|----------|--------------------------------|-------------------------|-----------------------------|----------------|-----------------| | 1 | 16117422 | 11/2/16 | PFOA | <u> -</u> S.º | 26.5 | 26.5 | 5.9 | 5.8 | | 2 | 161174127 | 1/5/16 | PFOA | 25.0 | 26.3 | 26.3 | 5./ | 5.0 | | 3 | · · · · | | | | | | | | | | | | | | | | | | | 4 | | | | | | · · | | | | Comments: | Refer to | Continuing | Calibration | findings | worksheet | for list of | of qualifica | tions and | l associate | <u>d samples w</u> | <u>/hen reported</u> | <u>i results do</u> | not ag | <u>ree within</u> | 10.0% | of the | |--------------|------------|------------|-------------|----------|-----------|-------------|--------------|-----------|-------------|--------------------|----------------------|---------------------|--------|-------------------|-------|--------| | recalculated | l results. | • | LDC#3191496 # VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u> | Page:_ | | |------------|-----------| | Reviewer:_ | <u>a</u> | | 2nd Rev | iewer: No | | METHOD: | GC | LHPLC NUS | |---------|----|-----------| | | | | The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC - SC)/SA Where SSC = Spiked sample concentration SC = Sample concentration RPD =(((SSCMS - SSCMSD) * 2) / (SSCMS + SSCMSD))*100 SA = Spike added MS = Matrix spike MSD = Matrix spike duplicate MS/MSD samples: 11/13 | Spik
Adde | | ike | Sample
Conc. | Spike Sample
Concentration | | Matrix | spike | Matrix Spike | e Duplicate | MS/N | ISD | | |------------------|---------------|------|-----------------|-------------------------------|-------------|---------------|-----------|--------------|------------------|---------|----------|---------| | Compo | ound | |)
) | () | Concen
(| itration
) | Percent I | Recovery | Percent Recovery | | RP | D | | | | MS | MSD | *** | MS | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | · | | | | | | | | | | Diesel | (8015) | | | | | | | · | | | | | | Benzene | (8021B) | | | | | · | | | · | | | | | Methane | (RSK-175) | | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | | Anthracene | (8310) | | | · | ÷ | | | | | | | | | НМХ | (8330) | | | | | | · | | | | | | | 2,4,6-Trinitroto | oluene (8330) | | | | | | | | | | | | | PFOA | | 79.3 | 18.9 | 36.3 | 114 | 115 | 97.5 | 980 | 100 | 100 | 253 | 2,02 | | | | | | | | | | · | | · | | | | | | | | | : | 1 | | | | | | | | | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. ### **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification | | Page: | Lof_L | |-----|------------|-------| | | Reviewer:_ | 9 | | 2nd | Reviewer: | NB | | METHOD: | _GC _HPLC MS | |---------|--------------| The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD) LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS/LCSD samples: | | S | pike | Spiked Sample | | LC | s | LC | SD | LCS | LCSD |
--|------------|---------------|---------------|---|----------|----------------------------------|----------|----------|----------|---------| | Compound | (<i>V</i> | dded
(S/L) | (U | Concentration (U Percent Recovery Percent Recovery | | Percent Recovery Percent Recover | | Recovery | R | PD | | and the state of t | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline (8015) | | | | | | | | | | | | Diesel (8015) | | | | | | | | | | | | Benzene (8021B) | | | | | | | | | | | | Methane (RSK-175) | | | | | | | | | | | | 2,4-D (8151) | | | | | | | | | | | | Dinoseb (8151) | | | | | | | | | | | | Naphthalene (8310) | | | | | | | | | | | | Anthracene (8310) | | | | | | | | | | | | HMX (8330) | | | | | | | | | | | | 2,4,6-Trinitrotoluene (8330) | | | | | | | | | | | | DECA | 70.0 | NA | 86.0 | NA | 10T | 10 T | | | | | | | | | | () | | | | | | | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#:3797496 #### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | | Page: _ | of | |-----|-----------|----| | | Reviewer: | 9 | | 2nd | Reviewer: | No | METHOD: __GC_VHPLC_MS Y N N/A Y N N/A Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10% of the reported results? | Concentration= | (A)(Fv)(Df) | |----------------|-----------------------| | (1 | RF)(Vs or Ws)(%S/100) | A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid Example: Sample ID. S Compound Name PFOA Concentration = $\frac{(7.245e = x | 2.5)}{(0.899906)(0.124)}$ = 2,585 n8/c | # | Sample ID | Compound | Reported
Concentrations | Recalculated Results Concentrations () | Qualifications | |---|-----------|----------|----------------------------|---|----------------| | | 8 | AFOA | 0.58
2.58 | omments: |
 |
 | | |----------|------|------|--| | | |
 | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 5, 2017 Parameters: Perfluorinated Alkyl Acids Validation Level: Stage 2B & 4 Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1601461 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW14-20161115** | 1601461-02** | Water | 11/15/16 | | OUA1-MW15-20161115 | 1601461-03 | Water | 11/15/16 | | OUA1-MW07-20161115 | 1601461-04 | Water | 11/15/16 | | OUA1-MW23-20161115 | 1601461-05 | Water | 11/15/16 | | OUA1-MW55-20161115 | 1601461-06 | Water | 11/15/16 | | OUA1-MW55A-20161115 | 1601461-07 | Water | 11/15/16 | | OUA1-MW27-20161115 | 1601461-08 | Water | 11/15/16 | | OUA1-MW25-20161115 | 1601461-09 | Water | 11/15/16 | | OUA1-MW11-20161115 | 1601461-10 | Water | 11/15/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 3 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (February 2017), the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NJ (Presumptive and Estimated): The analysis indicates the presence of a compound or analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was checked as applicable. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%. In the case where the laboratory used a calibration curve to evaluate the compounds,
all coefficients of determination (r²) were greater than or equal to 0.990. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB02-20161115 was identified as an equipment blank. No contaminants were found. Sample SB01-20161114 (from SDG 1601451) was identified as a source blank. No contaminants were found. #### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### **VIII. Ongoing Precision Recovery Samples** Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### IX. Field Duplicates Samples OUA1-MW55-20161115 and OUA1-MW55A-20161115 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ng/L) | | | | | | |----------|----------------------|---------------------|-----------------|-------------------------|------|--------| | Compound | OUA1-MW55-20161115 | OUA1-MW55A-20161115 | RPD
(Limits) | Differences
(Limits) | Flag | A or P | | PFOS | 5.39 | 5.33 | - | 0.06 (≤8.19) | - | - | #### X. Internal Standards All internal standard areas and retention times were within QC limits. #### XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. #### **MCAS Yuma** Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1601461 No Sample Data Qualified in this SDG **MCAS Yuma** Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1601461 No Sample Data Qualified in this SDG **MCAS Yuma** Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1601461 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 37797H96 SDG #: 1601461 Laboratory: Vista Analytical Laboratory Stage 2B/4 2nd Reviewer METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------------------|--|---------------|---------------------------------------| | l | Sample receipt/Technical holding times | \triangle | | | II. | GC/MS Instrument performance check | N | 20 20 | | . 111. | Initial calibration/ICV | AA | RSO = 15/0. Y = 1CV = 15/0 | | IV. | Continuing calibration | \Rightarrow | &climits < 30, | | V. | Laboratory Blanks | \triangle | | | VI. | Field blanks | NO | AB=1. SB01-20161114 (1601451) | | - ∀II. | Surrogate spikes | | | | VIII. | Matrix spike/Matrix spike duplicates | A | | | IX. | Laboratory control samples | A | OPR | | X. | Field duplicates | W | B=6+7 | | XI. | Internal standards | \triangle | , | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Stage 2B validation. | | XIII. | Target compound identification | A | Not reviewed for Stage 2B validation. | | XIV. | System performance | \triangle | Not reviewed for Stage 2B validation. | | XV. | Overall assessment of data | 1 | | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet FB = Field blank ** Indicates sample was underwent Stage 4 review | | Client ID | Lab ID | Matrix | Date | |----|----------------------|--------------|--------|----------| | 1- | EB02-20161115 | 1601461-01 | Water | 11/15/16 | | 2 | OUA1-MW14-20161115** | 1601461-02** | Water | 11/15/16 | | 3 | OUA1-MW15-20161115 | 1601461-03 | Water | 11/15/16 | | 4 | OUA1-MW07-20161115 | 1601461-04 | Water | 11/15/16 | | 5 | OUA1-MW23-20161115 | 1601461-05 | Water | 11/15/16 | | 6, | OUA1-MW55-20161115 | 1601461-06 | Water | 11/15/16 | | 7 | OUA1-MW55A-20161115 | 1601461-07 | Water | 11/15/16 | | 8 | OUA1-MW27-20161115 | 1601461-08 | Water | 11/15/16 | | 9 | OUA1-MW25-20161115 | 1601461-09 | Water | 11/15/16 | | 10 | OUA1-MW11-20161115 | 1601461-10 | Water | 11/15/16 | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | ### VALIDATION FINDINGS CHECKLIST Page: of Page: of Page: Method: LCMS (EPA Method 537) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|-------|------|-------------------| | i. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. LC/MS instrument performance check | | | | | | Were the instrument performance reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | Illa. Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | · | | Were all percent relative standard deviations (%RSD) ≤ 15%? | / | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990? | / | | | | | IIIb. Initial Calibration Verification | 14 | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 15%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) of the continuing calibration ≤15%? | | | | | | V. Laboratory Blanks | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | - | | | | Were target compounds detected in the field blanks? | | / | | | | VIII. Matrix spike/Matrix spike duplicates | | | 1.64 | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX: Laboratory control samples | | 30.70 | | | | Was an LCS analyzed for this SDG? | 1 | | | | | Was an LCS analyzed per extraction batch? | | | | | #### **VALIDATION FINDINGS CHECKLIST** Page: of 2 Reviewer: NZ | Validation Area | Yes | No | NA | Findings/Comments | |---|---------|-----|----
--| | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | 5.7 | | | Control of the Contro | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates?. | | | | | | XI. Internal standards | | 1 | | | | Were internal standard area counts within ± 50% of the associated calibration standard? | / | | | | | Were retention times within \pm 30 seconds from the associated calibration standard? | | , | | | | XII. Compound quantitation | ı | | | $\frac{d d}{d d} = \lim_{n \to \infty} \frac{d d}{d d} = 0$ | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | 730 | | e die geber
1914 Die mei segen – 19 wilde | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | 1 | | | | System performance was found to be acceptable. | | | | | | XIII. Overall assessment of data | 11 V 32 | / | | The comment of the comment of | | Overall assessment of data was found to be acceptable. | | _ | | | ### LDC#3797496 # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page:/ | _of | |----------------|----------| | Reviewer: | <u>a</u> | | 2nd Reviewer:_ | MO | METHOD: LCMS PFCs (EPA Method 537) | Concentration (ng/L) | | (≤20) | Difference | Limite | Ovel | | |----------------------|------|-------|------------|------------|--------|------| | Compound | 6 | 7 | RPD | Difference | Limits | Qual | | PFOS | 5.39 | 5.33 | | 0.06 | ≤8.19 | | V:\FIELD DUPLICATES\37797H96.wpd ## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification Page:_____of__ Reviewer:______ 2nd Reviewer:______ Method: LC/MS/MS PFCs | Calibration
Date | System | Compound | Standard | (Y)
Response | (X)
Concentration | |---------------------|--------|----------|----------|-----------------|----------------------| | 11/22/2016 | LCMS03 | PFOA | 0 | 0.5677075 | 0.50 | | | | | s1 | 0.9756087 | 1.00 | | | | | s2 | 1.8279562 | 2.00 | | | | | s3 | 4.0526312 | 5.00 | | | | | s4 | 9.8076912 | 10.00 | | | | | s5 | 23.514343 | 25.00 | | | | | s6 | 45.372340 | 50.00 | | | | | s7 | 68.277310 | 75.00 | | | | · | s8 | 88.133640 | 100.00 | **Regression Output** | Re | no | rte | d | |-----|----|------|---| | 110 | μυ | ,,,, | u | | | | rioportou | |------------------------------------|----------|-----------| | Constant | 0.384668 | 0.091734 | | Std Err of Y Est | | | | R Squared | 0.999416 | 0.999048 | | Degrees of Freedom | | | | X Coefficient(s) | 0.890381 | 0.899906 | | Std Err of Coef. | | | | Correlation Coefficient | 0.999708 | | | Coefficient of Determination (r^2) | 0.999416 | 0.999048 | | LDC | # <u>3</u> T | 4 | TH | 96 | |-----|--------------|---|----|----| | 4. | | | | | #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | <u></u> | |---------------|---------| | Reviewer: | 9 | | 2nd Reviewer: | NE | | | | | | ./ . | |---------|----|-------------|------|------| | METHOD: | GC | V | HPLC | MUS | | | | | | / | The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF - CF)/ave. CF ·CF = A/C Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | # | Standard ID | Calibration
Date | Compound | Average CF(Ical)/
CCV Conc. | Reported CF/Conc. CCV | Recalculated CF/Conc. CCV | Reported
%D | Recalculated
%D | |---|-------------|---------------------|----------|--------------------------------|-------------------------|-----------------------------|----------------|--------------------| | 1 | 16127-1-2 | | | 25.0 | 36.5 | 26,5 | 5.9 | 5.8 | | | | | | | | | | | | 2 | 617414 | 11/57/16 | DFOA | 25.0 | 27.4 | 274 | 9.4 | 9.6 | | | | | | | | | | | | 3 | 4 | | | : | ; | | | | Comments: | Refer to C | Continuing | Calibration: | <u>findings v</u> | <u>vorksheet</u> | for list of | of qualification | <u>s and</u> | associated | samples wh | en reported | results do | not agree | within 1 | 0.0% of | the | |--------------|------------|------------|--------------|-------------------|------------------|-------------|------------------|--------------|------------|------------|-------------|------------|-----------|----------|---------|-----| | recalculated | results. | • | | | | | | | - | . • | ### **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample Duplicate Results Verification | | Page:_ | of | |-----|------------|----| | | Reviewer:_ | 9_ | | 2nd | Reviewer: | NB | | METHOD: | GC | ✓HPLC | NS | |---------|----|---------------|----| The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD) LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS/LCSD samples: | | Spike | | Spiked Sample | | LC | LCS | | SD | LCS | LCSD | |------------------------------|-----------|---------------|---------------|----------|---------------------------------------|---------|------------------|---------|----------|---------| | Compound | Ac
(Ve | ided
5/2-) | Conce
(U: | ntration | Percent Recovery Percent Recovery RPD | | Percent Recovery | | PD | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline (8015) | | | | | | | | | | | | Diesel (8015) | | | | | | | | | | | | Benzene (8021B) | | | | | | | | | | | | Methane (RSK-175) | | | | | | | | | | | | 2,4-D (8151) | | | | | | | | | | l | | Dinoseb (8151) | | | | | | | | | | | | Naphthalene (8310) | | | | | • | | | | | | | Anthracene (8310) | | | | | | | | | | | | HMX (8330) | | | | | · | | | | | | | 2,4,6-Trinitrotoluene (8330) | | | | | | | | | | | | PFOA | 80. | WÁ | 86.0 | NA | 107 | 107 | | | | | | 7 | | 7 | | ' | | , | | | | | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. #### **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification** | Page: _ | of | | |---------------|-----------|---| | Reviewer: | φ | | | 2nd Reviewer: | N | • | | METHOD: | | GC | $ \mathcal{L} $ | HPLC | W | 9 | |---------|--|----|-----------------|------|---|---| |---------|--|----|-----------------|------|---|---| | Ĩ | Y | N | N/A | |----------------------|----------------|---|-----| | $\left(\ \ \right)$ | \overline{Y} | N | N/A | %S= Percent Solid Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10% of the reported results? | Concentration= | (A)(Fv)(Df) | E | |---------------------------|-----------------------------|---| | (RF) | Vs or Ws)(%S/100) | | | | | S | | | the compound to be measured |
| | Fv= Final Volume of | extract | | | Df= Dilution Factor | • | | | RF= Average response | factor of the compound | С | | In the initial calibrate | ation | | | Vs= Initial volume of the | • | | | Ws= Initial weight of the | e sample | | | Example: | |----------| |----------| Sample ID. PC Compound Name PFOA =40.4dng Total = 46. 9 n8/2 | # | Sample ID | Compound | Reported
Concentrations
() | Recalculated Results
Concentrations
() | Qualifications | |---|-----------|----------|-----------------------------------|---|----------------| · | omments: | | |----------|---| | | • | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma **LDC Report Date:** January 4, 2017 Parameters: Perfluorinated Alkyl Acids Validation Level: Stage 2B Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1601464 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | OUA1-MW53-20161116 | 1601464-02 | Water | 11/16/16 | | OUA1-MW54-20161116 | 1601464-03 | Water | 11/16/16 | | OUA1-MW42-20161116 | 1601464-04 | Water | 11/16/16 | | OUA1-MW01-20161116 | 1601464-05 | Water | 11/16/16 | | OUA1-MW31-20161116 | 1601464-06 | Water | 11/16/16 | | OUA1-PZ19-20161116 | 1601464-07 | Water | 11/16/16 | | OUA1-MW52-20161116 | 1601464-08 | Water | 11/16/16 | | OUA1-MW04-20161116 | 1601464-09 | Water | 11/16/16 | | OUA1-MW04A-20161116 | 1601464-10 | Water | 11/16/16 | | OUA1-MW05-20161116 | 1601464-11 | Water | 11/16/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 3 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (February 2017), the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NJ (Presumptive and Estimated): The analysis indicates the presence of a compound or analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was not required by the method. #### III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Extraction
Date | Compound | Concentration | Associated
Samples | |--------------|--------------------|----------|---------------|----------------------------| | B6K0164-BLK1 | 11/28/16 | PFOA | 0.916 ng/L | All samples in SDG 1601464 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |--------------------|----------|---------------------------|---------------------------------| | OUA1-MW01-20161116 | PFOA | 1.40 ng/L | 1.95U ng/L | | OUA1-MW05-20161116 | PFOA | 0.859 ng/L | 1.94U ng/L | #### VI. Field Blanks Sample EB03-20161116 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |---------------|--------------------|----------|---------------|----------------------------| | EB03-20161116 | 11/16/16 | PFOA | 0.837 ng/L | All samples in SDG 1601464 | Sample SB01-20161114 (from SDG 1601451) was identified as a source blank. No contaminants were found. Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |--------------------|----------|---------------------------|---------------------------------| | OUA1-MW01-20161116 | PFOA | 1.40 ng/L | 1.95U ng/L | | OUA1-MW05-20161116 | PFOA | 0.859 ng/L | 1.94U ng/L | #### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VIII. Ongoing Precision Recovery Samples Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### IX. Field Duplicates Samples OUA1-MW04-20161116 and OUA1-MW04A-20161116 were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ng/L) | | | | | | |----------|----------------------|---------------------|-----------------|------------------------|------|--------| | Compound | OUA1-MW04-20161116 | OUA1-MW04A-20161116 | RPD
(Limits) | Difference
(Limits) | Flag | A or P | | PFBS | 157 | 162 | 3 (≤20) | - | - | - | | PFOA | 20.0 | 22.1 | 10 (≤20) | - | - | - | | PFOS | 2.50 | 2.83 | <u>-</u> | 0.33 (≤8.34) | - | - | #### X. Internal Standards All internal standard areas and retention times were within QC limits. #### XI. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIII. System Performance Raw data were not reviewed for Stage 2B validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of
the method. No results were rejected in this SDG. Due to laboratory blank contamination, data were qualified as not detected in two samples. Due to equipment blank contamination, data were qualified as not detected in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes. #### **MCAS Yuma** #### Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1601464 ### No Sample Data Qualified in this SDG #### **MCAS Yuma** Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1601464 | Sample | Compound | Modified Final
Concentration | A or P | |--------------------|----------|---------------------------------|--------| | OUA1-MW01-20161116 | PFOA | 1.95U ng/L | Α | | OUA1-MW05-20161116 | PFOA | 1.94U ng/L | Α | #### **MCAS Yuma** Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1601464 | Sample | Compound | Modified Final
Concentration | A or P | |--------------------|----------|---------------------------------|--------| | OUA1-MW01-20161116 | PFOA | 1.95U ng/L | Α | | OUA1-MW05-20161116 | PFOA | 1.94U ng/L | Α | | LDC #: 37797196 | VALIDATION COMPLETENESS WORKSHEET | |-----------------|-----------------------------------| | SDG #· 1601464 | Stage 2B | Laboratory: Vista Analytical Laboratory 2nd Reviewer: METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-----------------|--|-------------|------------------------------| | I. | Sample receipt/Technical holding times | A | | | H. | GC/MS Instrument performance check | N | 20 | | III. | Initial calibration/ICV | AA | RSD < 15/0. Y2 CV < 55/0 | | IV. | Continuing calibration | A | QC LIMITS < 307. | | V. | Laboratory Blanks | W | | | VI. | Field blanks | W | B=1. SB01-2016/114 (160/451) | | ∀II. | Surrogate spikes | | | | VIII. | Matrix spike/Matrix spike duplicates | AN | | | IX. | Laboratory control samples | \triangle | OPE | | X. | Field duplicates | w | 3=9+10 | | XI. | Internal standards | 1 | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | 1 | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|---------------------|------------|--------|----------| | 1- | EB03-20161116 | 1601464-01 | Water | 11/16/16 | | 2 | OUA1-MW53-20161116 | 1601464-02 | Water | 11/16/16 | | 3 | OUA1-MW54-20161116 | 1601464-03 | Water | 11/16/16 | | 4 | OUA1-MW42-20161116 | 1601464-04 | Water | 11/16/16 | | 5 | OUA1-MW01-20161116 | 1601464-05 | Water | 11/16/16 | | 6 | OUA1-MW31-20161116 | 1601464-06 | Water | 11/16/16 | | 7 | OUA1-PZ19-20161116 | 1601464-07 | Water | 11/16/16 | | 8 | OUA1-MW52-20161116 | 1601464-08 | Water | 11/16/16 | | 9 | OUA1-MW04-20161116 | 1601464-09 | Water | 11/16/16 | | 10 | OUA1-MW04A-20161116 | 1601464-10 | Water | 11/16/16 | | 11 | OUA1-MW05-20161116 | 1601464-11 | Water | 11/16/16 | | 12 | | | | | | 13 | | | | | | 14 | | | | | LDC #3191 96 # VALIDATION FINDINGS WORKSHEET Blanks | Page:_ | | |-------------|----| | Reviewer: | | | nd Reviewer | DR | | METHOD:VGC.∠C_/\ | u > | | | | | | | | | | |--|-----------------------|----------------|----------------|----------------|----------------|-------------------|--------------|----|-----|---| | METHOD: GC ∠C N
Please see qualifications be | elow for all questio | ns answered | "N". Not appli | icable questio | ns are identif | ied as "N/A". | | | | | | Were all sa
WN N/A Was a met | amples associated | with a given i | method blank | ? | | | | | | | | WN N/A Was a met | thod blank perform | | | | ple extraction | procedure w | as performed | l? | | | | N N/A Was a met Was a met | thod blank perform | ed with each | extraction ba | tch? | • | | • | | | | | ✓ N N/A Were any of the second | contaminants foun | d in the metho | od blanks? If | yes, please s | ee findings b | elow. | | | | | | Blank extraction date: \\\ | <u> 68/6</u> Blank ai | nalysis date: | 115910 | 5 | _ | . / | | | | | | Conc. units: M5/L | <u>/</u> | | Ássoc | iated sample | es: <i>l</i> | <u> </u> | | | | | | Compound Blank ID Sample Identification | | | | | | | | | | | | BGK0164-134 5X 5 11 | | | | | | | | | | | | PFOA | 0.916 | 4.58 | 1.40/ | 0.859/ | | | | | | · | | | | | /1.95U | 1.94 4 | | | | | | | | | | | | | <u> </u> | | | | . , | Blank extraction date:
Conc. units: | Blank anal | ysis date: | | Ass | sociated sam | nples: | | | | | | Compound | Blank ID | | | | San | nple Identificati | on | 1 | | | | | 1 | | | LDC#37797196 # VALIDATION FINDINGS WORKSHEET Field Blanks | Page:_ | / of_/ | |--------------|--------| | Reviewer: | 9 | | nd Reviewer: | NZ | | | ks were identifie
let compounds d
sociated samp | letected in the | e field blanks | | red Samples: | N | (| | 2nd Rev | riewer:NZ | | | |--|---|-----------------|----------------|-----------|--------------|------------------|-------|--|---------|-----------|--|--| | | Compound Blank ID Sample Identification | | | | | | | | | | | | | | 3 | 5X | 5 | 1/ | | | | | | | | | | PFOX | 0.837 | 4.185 | | 0.859/ | | | | | | | | | | | | | 1.95U | 1.944 | | Blank units: Asso
Sampling date:
Field blank type: (circle one | _ | | | Associate | ed Samples: | | | | | | | | | Compound | Blank ID | | | | s | ample Identifica | ation | 1 | | | 1 | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". ### LDC#:3(197)96 ### VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page: | (of / | |---------------|-------| | Reviewer: | 0 | | 2nd Reviewer: | N | METHOD: LCMS PFCs (EPA Method 537) | | Concentra | ation (ng/L) | (≤20) | | | | | |----------|-----------|--------------|-------|------------|--------|------|--| | Compound | 9 | · 10 | RPD | Difference | Limits | Qual | | | PFBS | 157 | 162 | 3 | | | | | | PFOA | 20.0 | 22.1 | 10 | | | | | | PFOS | 2.50 | 2.83 | | 0.33 | ≤8.34 | | | V:\FIELD DUPLICATES\37797I96.wpd # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma LDC Report Date: January 5, 2017 Parameters: Perfluorinated Alkyl Acids Validation Level: Stage 2B & 4 Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1601472 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | OUA1-MW51-20161117 | 1601472-02 | Water | 11/17/16 | |
OUA1-MW50-20161117 | 1601472-03 | Water | 11/17/16 | | OUA1-MW49-20161117** | 1601472-04** | Water | 11/17/16 | | OUA1-MW49-20161117MS | 1601472-04MS | Water | 11/17/16 | | OUA1-MW49-20161117MSD | 1601472-04MSD | Water | 11/17/16 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 3 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (February 2017), the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan. Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NJ (Presumptive and Estimated): The analysis indicates the presence of a compound or analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was checked as applicable. All ion abundance requirements were met. ## III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. ## IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Extraction
Date | Compound | Concentration | Associated
Samples | |--------------|--------------------|----------|---------------|----------------------------| | BLK0164-BLK1 | 11/28/16 | PFOA | 0.916 ng/L | All samples in SDG 1601472 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | | |----------------------|----------|---------------------------|---------------------------------|--| | OUA1-MW49-20161117** | PFOA | 0.821 ng/L | 1.98U ng/L | | #### VI. Field Blanks Sample EB04-20161117 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |---------------|--------------------|----------|---------------|----------------------------| | EB04-20161117 | 11/17/16 | PFOA | 0.741 ng/L | All samples in SDG 1601472 | Sample SB01-20161114 (from SDG 1601451) was identified as a source blank. No contaminants were found. Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |----------------------|----------|---------------------------|---------------------------------| | OUA1-MW49-20161117** | PFOA | 0.821 ng/L | 1.98U ng/L | ## VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## VIII. Ongoing Precision Recovery Samples Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits. ### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Internal Standards All internal standard areas and retention times were within QC limits. ### XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ## XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. ### XIII. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to laboratory blank contamination, data were qualified as not detected in one sample. Due to equipment blank contamination, data were qualified as not detected in one sample. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes. ### **MCAS Yuma** ## Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1601472 ## No Sample Data Qualified in this SDG ## **MCAS Yuma** Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1601472 | Sample | Compound | Modified Final
Concentration | A or P | |----------------------|----------|---------------------------------|--------| | OUA1-MW49-20161117** | PFOA | 1.98U ng/L | Α | #### MCAS Yuma Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1601472 | Sample | Compound | Modified Final
Concentration | A or P | |----------------------|----------|---------------------------------|--------| | OUA1-MW49-20161117** | PFOA | 1.98U ng/L | Α | | SDG #
.abora | t: 1601472
atory: <u>Vista Analytical Laboratory</u> | St | age 2B/4 | S WORKSHEET | 2nd | Date: /-> Page: / of / Reviewer: | | | |-----------------|--|----------------------------------|---------------------|--
-------------------------------------|----------------------------------|--|--| | /IE I H | ETHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) | | | | | | | | | | amples listed below were reviewed for ea
ion findings worksheets. | ch of the fo | ollowing valida | ition areas. Validatio | on findings are | e noted in attached | | | | | Validation Area | | | Comm | ents | | | | | I. | Sample receipt/Technical holding times | A | | | | | | | | II. | GC/MS Instrument performance check | N | | 20 | | 20 | | | | 111. | Initial calibration/ICV | AA | RSOS | 1570.80 | 101= | ×570 | | | | IV. | Continuing calibration | A | AC bi | mi+= ≤ 3 | 0/0 | | | | | V. | Laboratory Blanks | W | | | t | | | | | VI. | Field blanks | W | ZB=1. | \$301-20 | 0161114 | (160 1451) | | | | VII. | Surrogate spikes | | | | | | | | | VIII. | Matrix spike/Matrix spike duplicates | A | | | the foreign specific and the second | · | | | | IX. | Laboratory control samples | A | DPR | | | | | | | Χ. | Field duplicates | N | | | | | | | | XI. | Internal standards | A | | | | | | | | XII. | Compound quantitation RL/LOQ/LODs | Ă | Not reviewed for | Stage 2B validation. | | | | | | XIII. | Target compound identification | A | | Stage 2B validation. | | | | | | XIV. | System performance | Δ | | Stage 2B validation. | | | | | | | | A | THOU TO VIOLENCE TO | | · | | | | | XV. ote: | N = Not provided/applicable R = Rin | o compounds
sate
eld blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blank | OTHER | urce blank
t: | | | | | Client ID | | | Lab ID | Matrix | Date | | | | | B04-20161117 | | | 1601472-01 | Water | 11/17/16 | | | | | DUA1-MW51-20161117 | | | 1601472-02 | Water | 11/17/16 | | | | 3 (| DUA1-MW50-20161117 | | | 1601472-03 | Water | 11/17/16 | | | | | DUA1-MW49-20161117** | | | 1601472-04** | Water | 11/17/16 | | | | <u> </u> | DUA1-MW49-20161117MS | | | 1601472-04MS | Water | 11/17/16 | | | | | OUA1-MW49-20161117MSD | | | 1601472-04MSD | Water | 11/17/16 | | | | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | <u>o</u> | | | - | | <u> </u> | | | | | otes: | | | | | | | | | ## **VALIDATION FINDINGS CHECKLIST** Method: LCMS (EPA Method 537) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|-----------|--| | I. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. LC/MS instrument performance check | | | | | | Were the instrument performance reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa: Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 15%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | , | | | | Were all percent differences (%D) ≤ 15%? | | | | | | IV. Continuing calibration | | | 4.0 | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) of the continuing calibration ≤ 15%? | | | Treat and | | | V. Laboratory Blanks | 1 | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | _ | , | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX, Laboratory control samples | | | | The Court of C | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | / | | | | ## **VALIDATION FINDINGS CHECKLIST** | Page: | >_of >_ | |---------------|---------| | Reviewer: | 7 | | 2nd Reviewer: | No | | V-U-L-U-A | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | Firedians (Orange) | |---|---------------------------------------|-----|-----|--| | Validation Area | Yes | No | NA | Findings/Comments | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | Control Company and the Control Contro | | Were field duplicate pairs identified in this SDG? | 100 | | | | | Were target compounds detected in the field duplicates?. | | | / | | | XI. Internal standards | | | AC. | | | Were internal standard area counts within ± 58% of the associated calibration standard? | / | - | | | | Were retention times within ± 30 seconds from the associated calibration standard? | | | | | | XII. Compound quantitation | | mi. | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | • | | | | Were compound
quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | LDC #31191196 ## VALIDATION FINDINGS WORKSHEET Blanks | Page:_ | <u>l</u> of | |--------------|-------------| | Reviewer: | | | nd Reviewer: | Ne | | METHOD: VGG レピノ | 110 | | | | | | | | 2nd Revie | wer: <u></u> | |---|--|--|--|--|-----------------|-------------------|---------------|----|-----------|--------------| | Please see qualifications by N N/A Were all s Y N N/A Was a me Y N N/A Was a me | pelow for all questic
samples associated
ethod blank perforn
ethod blank perforn
contaminants four | I with a given met
ned for each matr
ned with each ext
nd in the method I | thod blank
rix and who
traction ba
blanks? If | ?
enever a sam
tch?
yes, please s | nple extraction | n procedure w | /as performed | d? | | | | Compound | Blank ID | | | | Sar | mple Identificati | on | | | | | В | 40164-B+ | 4 | | | | | | | | | | PFOA | 0.916 | 0.821 | | | | | | | | | | | | | | · . | Blank extraction date:
Conc. units: | Blank ana | lysis date: | | As | sociated san | nples: | | | | | | Compound | Blank ID | | | | Sar | mple Identificati | on | | | | | | 47 | - | - | | | | | | | | | | | | | | ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". LDC#:3197196 ## VALIDATION FINDINGS WORKSHEET <u>Field Blanks</u> | Page:_ | <u>l_of</u> | |---------------|-------------| | Reviewer: | <u>a</u> | | 2nd Reviewer: | No | | METHOD: OF COM | 5 | | | | | | | | | |---|------------------|---------------------|-----------------|-----------|-------------|--|----------|------|--| | METHOD: OF COMP
YNN/A Field blanks | were identifie | ed in this SDG | i. | | | | | | | | Y/N N/A Were target | compounds of | detected in the | e field blanks? | ? | | | | | | | Blank units: 1/5/4 Asso
Sampling date: 1/17/14 | ciated samp | le units: <u>//</u> | 5/4 | | | | | | | | Sampling date: <u> /\f/ a</u> | | - | | | | A | 1 | | | | Field blank type: (circle one | e) Field Blank | / Rinsate / Ot | her: | Associat | ed Samples: | $\underline{\hspace{1cm}}$ \mathcal{U} | <u> </u> |
 | | | Compound | Blank ID | | | | S | ample Identifica | ition | | | | | | 48 | | | | | | | | | PROA | 0.741 | 0.821 | | | | | | | | | | | 1.984 | | | | | | | | | | | | | | | | |
 | ٠ | | | | | | | | | | | | | | | | | | · | | | | | | | | | Blank units: Associa | otod comple u | nito | | | | | | | | | Sampling date: | - | | | | | | | | | | Field blank type: (circle one) F | ield Blank / Rir | nsate / Other: | | Associate | ed Samples: | | | | | | Compound | Blank ID | | | | s | ample Identifica | ation | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". | LDC | # <u>3179719</u> E | |-----|--------------------| | | | ## **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | /of_/ | |---------------|--------------| | Reviewer: | \ | | 2nd Reviewer: | NE | | | | / | | | | |---------|----|---|------|----|---| | METHOD: | GC | / | HPLC | M- | ラ | | | | | - | | | The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF - CF)/ave. CF Where: ave. CF = initial calibration average CF CF = continuing calibration CF ·CF = A/C A = Area of compound C = Concentration of compound | # | Standard ID | Calibration
Date | Compound | Average CF(Ical)/
CCV Conc. | Reported CF/Conc, CCV | Recalculated CF/Conc. CCV | Reported
%D | Recalculated
%D | |---|-------------|---------------------|----------|---------------------------------------|-------------------------|-----------------------------|----------------|--------------------| | 1 | 4511-951-34 | 11/59/6 | PF05 | Z5,0 | 25.0 | 25.05 | 0.1 | 0,2 | | 2 | | | | | | : | | | | 3 | 4 | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | | · | | Comments: | Refer to Continuing | Calibration f | <u>findings worksheet</u> | for list of | qualifications | and associated | d samples wher | reported re | <u>sults do not a</u> | agree within | <u>10.0% o</u> | <u>f the</u> | |--------------|---------------------|---------------|---------------------------|-------------|----------------|----------------|----------------|-------------|-----------------------|--------------|----------------|--------------| | recalculated | results. | | | • | | <u>.</u> | ## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification Page: _____of /___ Reviewer: ______ 2nd Reviewer: ______ Method: LC/MS/MS PFCs | Calibration | | | | (Y) | (X) | |-------------|--------|----------|----------|------------|---------------| | Date | System | Compound | Standard | Response | Concentration | | 11/18/2016 | LCMS03 | PFOS | 0 | 0.60049 | 0.50 | | | | | s1 | 1.1604475 | 1.00 | | | | | s2 | 2.2448212 | 2.00 | | | | | s3 | 5.0137362 | 5.00 | | | | | s4 | 12.566843 | 10.00 | | | | • | s5 | 34.250763 | 25.00 | | | | | s6 | 54.687500 | 50.00 | | | | | s7 | 86.829836 | 75.00 | | | | | s8 | 111.555230 | 100.00 | Regression Output | Reported | |----------| |----------| | Constant | 0.841659 | 0.021829 | |------------------------------------|----------|----------| | Std Err of Y Est | | | | R Squared | 0.996818 | 0.995038 | | Degrees of Freedom | | | | X Coefficient(s) | 1.122290 | 1.149810 | | Std Err of Coef. | | | | Correlation Coefficient | 0.998408 | | | Coefficient of Determination (r^2) | 0.996818 | 0.995038 | | LDC # | 319 | N | 96 | |-------|-----|---|----| |-------|-----|---|----| ## VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u> | Page:_ | | |------------|-----------| | Reviewer:_ | <u>`</u> | | 2nd Rev | iewer: No | | METHOD: | GC | \checkmark | HPLC | se | 5 | |---------|----|--------------|------|----|---| | | | | | | | The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: wsing the following calculation: %Recovery = 100 * (SSC - SC)/SA Where SSC = Spiked sample concentration SC = Sample concentration RPD =(((SSCMS - SSCMSD) * 2) / (SSCMS + SSCMSD))*100 SA = Spike added MS = Matrix spike MSD = Matrix spike duplicate MS/MSD samples: 5 | | | Spi | ike
ded | Sample | Spike S | Sample | Matrix | spike | Matrix Spike | e Duplicate | MS/N | 1SD | | |-----------------|-----------|------|------------|--------|----------------|----------|-----------|----------|--------------|-------------|----------|---------|--| | Comp | ound | (N | (A) | Conc. | Concer
(N.5 | ntration | Percent F | Recovery | Percent R | ecovery | RP | RPD | | | | | MS | MSD | | MS | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | | Gasoline | (8015) | | | | | | | | | | | · | | | Diesel | (8015) | | | | | | | | | | | | | | Benzene | (8021B) | | | | | · | | | · | | | | | | Methane | (RSK-175) | | | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | | | Naphthalene | (8310) | | | | | - | | | | | · | | | | Anthracene | (8310) | | | | ·. | | | | | | | | | | НМХ | (8330) | | | | | | · | | | | | | | | 2,4,6-Trinitrot | | | | | | 1 / | | | | | | | | | +FRS | | 77.8 | 4. | ND | 87.4 | T8.8 | 112 | 112 | 106 | 106 | 5.50 | 5.50 | | | | | | | | | | | · | | | | | | | | | | | | : | li . | | Į : | | | | | | | | | | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. ## **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification | Page: | | |---------------|----| | Reviewer:_ | V | | 2nd Reviewer: | NZ | | METHOD: |
GC | | НР | LC | М | 9 | |---------|--------|---|----|----|--------------|---| | | | - | - | | <i>,</i> , , | | The percent recoveries (%R) and Relative Percent
difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD) LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS/LCSD samples: | | s | pike | Spiked | Sample | Lo | CS | LCS | SD | LCS | /LCSD | | |------------------------------|------|---------------------------|----------------|----------|----------|------------------|----------|------------------|----------|---------|--| | Compound | Ac | dded
(5/ 2) | Conce
(1/2 | ntration | Percent | Percent Recovery | | Percent Recovery | | RPD | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | | Gasoline (8015) | | | | | | | | | | | | | Diesel (8015) | | | | | | | | | | | | | Benzene (8021B) | | | | | | | | | · | | | | Methane (RSK-175) | | | | | | | | | | | | | 2,4-D (8151) | | | | | ı | | | | | | | | Dinoseb (8151) | | | | · | | | | | | | | | Naphthalene (8310) | | | | | • | | | | | | | | Anthracene (8310) | | | | | | | | | | | | | HMX (8330) | | | | | | | | | | | | | 2,4,6-Trinitrotoluene (8330) | | | | | | | | | | | | | JF09 | 80.0 | NÁ | 84.7 | NA | 106 | 106 | | | | | | | | | | | , | | | | | | | | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #:3119196 ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | | Page: _ | 1 | _of_ | | |-----|-----------|---|------|---| | | Reviewer: | < | 7 | | | 2nd | Reviewer: | | | P | METHOD: __GC \(\sqrt{HPLC} \) \(\sqrt{HPLC} \) Y N N/A Y N N/A Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10% of the reported results? Concentration= (A)(Fv)(Df) (RF)(Vs or Ws)(%S/100) A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid Example: Sample ID. ____ Compound Name _____ Concentration = $\frac{-1.30489}{(1.30489)} - \left[4\times(-0.00316403)(-6.349e1\timesP.5 - 0.00818696)\right]$ $2\times(-0.00316403)(0.126)$ =0.823 NB/L | # | Sample ID | Compound | Reported Concentrations | Recalculated Results Concentrations () | Qualifications | |---|-----------|----------|-------------------------|---|----------------| | | 4 | PF0A | 0.821 | omments: | |
 | | | |----------|--|------|--|--| | | | | | | | | | | | | The zip file contains two files: | <u>File</u> | Format | Description | | |---|----------|----------------------|-------------------| | 1) Readme_Yuma_010617.docs | MS Word | A "Readme" file (th | is document). | | | MS Excel | A spreadsheet for th | e following SDGs: | | 2) Validation Export_Nov2016_20161219.xlsx | | 280-90987-1 | 37797A | | | | 280-91067-1 | 37797B | | | | 280-91122-1 | 37797C | | | | 280-91192-1 | 37797D | | | | 1601451 | 37797G | | | | 1601461 | 37797H | | | | 1601464 | 37797I | | | | 1601472 | 37797J | | 3) ValExp Yuma VCT Nov2016 20161215.xlsx | | 280-91405-1 | 37797E | | 4) ValExp Yuma VCT Nov2016PFAS 20161219.xls | SX | 1601443 | 37797F | No discrepancies were observed between the hardcopy data packages and the electronic data deliverables during EDD population of validation qualifiers. A 100% verification of the EDD was not performed. Please contact Pei Geng at (760) 827-1100 if you have any questions regarding this electronic data submittal. LDC#: 37197 ## EDD POPULATION COMPLETENESS WORKSHEET Date: 1 0/17 Page: 1 of 1 2nd Reviewer: | | EDD Process | | Comments/Action | |-------|--|-----|-----------------| | I. | EDD Completeness | _ | | | Ia. | - All methods present? | 4 | | | Ib. | - All samples present/match report? | 4 | | | Ic. | - All reported analytes present? | Ч | | | Id. | (10%) or 100% verification of EDD? | 4 | | | | | | | | II. | EDD Preparation/Entry | - | | | IIa. | - Carryover U/J? | | | | IIb. | - Reason Codes used? If so, note which codes. | 4 | dient | | IIc. | - Additional Information (QC Level, Validator, Validated Y/N, etc.) | ч | | | | | | | | III. | Reasonableness Checks | - | | | IIIa. | - Do all qualified ND results have ND qualifier (e.g. UJ)? | Ч | | | IIIb. | - Do all qualified detect results have detect qualifier (e.g. J)? | ч | | | IIIc. | - If reason codes are used, do all qualified results have reason code field populated, and vice versa? | Ч | | | IIId. | -Does the detect flag require changing for blank qualifier? If so, are all U results marked ND? | 4/4 | | | IIIe. | - Do blank concentrations in report match EDD where data was qualified due to blank contamination? | Ч | | | IIIf. | - Were any results reported above calibration range? If so, were results qualified appropriately? | 4/9 | | | IIIg. | -Is the readme complete? If applicable, were edits or discrepancies listed in the readme? | 7 | | | Notes: | see discrepancy sheet | | |--------|-----------------------|--| | | | | The zip file contains two files: | File | Format | Description | 1 | |--|----------|-----------------------|-----------------| | 1) Readme_Yuma_010617.docs | MS Word | A "Readme" file (thi | s document). | | | MS Excel | A spreadsheet for the | following SDGs: | | 2) Validation Export_Nov2016_20161219.xlsx | | 280-90987-1 | 37797A | | | | 280-91067-1 | 37797B | | | | 280-91122-1 | 37797C | | | | 280-91192-1 | 37797D | | | | 1601451 | 37797G | | | | 1601461 | 37797H | | | | 1601464 | 37797I | | | | 1601472 | 37797J | | 3) ValExp Yuma VCT Nov2016 20161215.xlsx | | 280-91405-1 | 37797E | | 4) ValExp_Yuma_VCT_Nov2016PFAS_20161219.xlsx | | 1601443 | 37797F | No discrepancies were observed between the hardcopy data packages and the electronic data deliverables during EDD population of validation qualifiers. A 100% verification of the EDD was not performed. Please contact Pei Geng at (760) 827-1100 if you have any questions regarding this electronic data submittal. LDC#: 37197 ## EDD POPULATION COMPLETENESS WORKSHEET Date: 1 0/17 Page: 1 of 1 2nd Reviewer: The LDC job number listed above was entered by _______. | | | T | | |-------|--|-----|-----------------| | | EDD Process | | Comments/Action | | I. | EDD Completeness | - | | | Ia. | - All methods present? | 4 | | | Ib. | - All samples present/match report? | Ч | | | Ic. | - All reported analytes present? | Ч | | | Id. | (10%) or 100% verification of EDD? | 4 | | | | | | | | II. | EDD Preparation/Entry | _ | | | IIa. | - Carryover U/J? | | | | IIb. | - Reason Codes used? If so, note which codes. | 4 | dient | | IIc. | - Additional Information (QC Level, Validator, Validated Y/N, etc.) | Ч | | | | | | | | III. | Reasonableness Checks | - | | | IIIa. | - Do all qualified ND results have ND qualifier (e.g. UJ)? | Ч | | | IIIb. | - Do all qualified detect results have detect qualifier (e.g. J)? | Ч | | | IIIc. | - If reason codes are used, do all qualified results have reason code field populated, and vice versa? | Ч | | | IIId. | -Does the detect flag require changing for blank qualifier? If so, are all U results marked ND? | 4/4 | | | IIIe. | - Do blank concentrations in report match EDD where data was qualified due to blank contamination? | Ч | | | IIIf. | - Were any results reported above calibration range? If so, were results qualified appropriately? | 4/9 | | | IIIg. | -Is the readme complete? If applicable, were edits or discrepancies listed in the readme? | 5 | | | Notes: | *see discrepancy sheet | |
 | |--------|------------------------|------|------| | | | | | | | |
 | | | INSTALLATION_ID | SDG | LOCATION-NAME | SITE_NAME | INSTALLATION_ID | LOCATION_TYPE | LOCATION_TYPE_DESC | COORD_X | COORD_Y | SAMPLE_NAME | SAMPLE_MATRIX | SAMPLE_MATRIC_DESC | COLLECT_DATE | CHEMICAL_NAME | |-----------------|---------|---------------|-------------------|-----------------|---------------|--------------------|-------------|-------------|---------------------|---------------|--------------------|--------------|-------------------------------------| | MCAS YUMA | 1601464 | A1-MW-05 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436301.6301 | 607443.138 | OUA1-MW05-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601464 | A1-MW-05 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436301.6301 | 607443.138 | OUA1-MW05-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601464 | A1-MW-05 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436301.6301 | 607443.138 | OUA1-MW05-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601464 | A1-MW-04 | SITE 00019 | | WLM | MONITORING WELL | 436280.9228 | 607319.2492 | OUA1-MW04-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601464 | A1-MW-04 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436280.9228 | 607319.2492 | OUA1-MW04-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601464 | A1-MW-04 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436280.9228 | 607319.2492 | OUA1-MW04-20161116 | WG
| GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601464 | A1-MW-04 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436280.9228 | 607319.2492 | OUA1-MW04A-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601464 | A1-MW-04 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436280.9228 | 607319.2492 | OUA1-MW04A-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | | | SITE 00019 | | WLM | MONITORING WELL | 436280.9228 | 607319.2492 | OUA1-MW04A-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601464 | A1-PZ-19 | SITE 00019 | | | MONITORING WELL | 436357.6995 | 607259.7175 | OUA1-PZ19-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601464 | A1-PZ-19 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436357.6995 | 607259.7175 | OUA1-PZ19-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601464 | A1-PZ-19 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436357.6995 | 607259.7175 | OUA1-PZ19-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | | A1-MW-31 | SITE 00019 | | WLM | MONITORING WELL | 436610.1639 | | OUA1-MW31-20161116 | | GROUNDWATER | 16-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601464 | A1-MW-31 | SITE 00019 | | | MONITORING WELL | 436610.1639 | 607254.3576 | OUA1-MW31-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601464 | A1-MW-31 | SITE 00019 | YUMA_MCAS | WLM | MONITORING WELL | 436610.1639 | 607254.3576 | OUA1-MW31-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601464 | A1-MW-52 | OU 0000001 AREA 1 | | WLM | MONITORING WELL | 436320.115 | 607239.298 | OUA1-MW52-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601464 | A1-MW-52 | OU 0000001 AREA 1 | YUMA_MCAS | WLM | MONITORING WELL | 436320.115 | 607239.298 | OUA1-MW52-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601464 | A1-MW-52 | OU 0000001 AREA 1 | | WLM | MONITORING WELL | 436320.115 | 607239.298 | OUA1-MW52-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601464 | A1-MW-01 | SITE 00019 | | | MONITORING WELL | 436397.4025 | 607204.2176 | OUA1-MW01-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601464 | A1-MW-01 | SITE 00019 | | WLM | MONITORING WELL | 436397.4025 | 607204.2176 | OUA1-MW01-20161116 | | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601464 | A1-MW-01 | SITE 00019 | | | MONITORING WELL | 436397.4025 | 607204.2176 | OUA1-MW01-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601464 | A1-MW-42 | SITE 00019 | _ | WLM | MONITORING WELL | 436422.6597 | | OUA1-MW42-20161116 | | GROUNDWATER | 16-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | | A1-MW-42 | SITE 00019 | | WLM | MONITORING WELL | 436422.6597 | 607084.7952 | OUA1-MW42-20161116 | | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | | A1-MW-42 | SITE 00019 | | | MONITORING WELL | 436422.6597 | 607084.7952 | OUA1-MW42-20161116 | | GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601464 | A1-MW-54 | OU 0000001 AREA 1 | | | MONITORING WELL | 436340.456 | 606933.323 | OUA1-MW54-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | | A1-MW-54 | OU 0000001 AREA 1 | | WLM | MONITORING WELL | 436340.456 | 606933.323 | OUA1-MW54-20161116 | | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601464 | A1-MW-54 | OU 0000001 AREA 1 | _ | | MONITORING WELL | 436340.456 | 606933.323 | OUA1-MW54-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) | | MCAS YUMA | 1601464 | A1-MW-53 | OU 0000001 AREA 1 | YUMA_MCAS | WLM | MONITORING WELL | 436340.185 | 606920.256 | OUA1-MW53-20161116 | WG | GROUNDWATER | | Perfluorooctanesulfonic Acid (PFOS) | | MCAS YUMA | 1601464 | A1-MW-53 | OU 0000001 AREA 1 | | WLM | MONITORING WELL | 436340.185 | 606920.256 | OUA1-MW53-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorooctanoic Acid (PFOA) | | MCAS YUMA | 1601464 | A1-MW-53 | OU 0000001 AREA 1 | YUMA_MCAS | WLM | MONITORING WELL | 436340.185 | 606920.256 | OUA1-MW53-20161116 | WG | GROUNDWATER | 16-Nov-16 | Perfluorobutanesulfonic Acid (PFBS) |