Groundwater Sample Results, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1803676 Marine Corps Air Station Yuma Yuma, Arizona November 2019 December 21, 2018 Vista Work Order No. 1803676 Ms. Sabina Sudoko Tetra Tech EC, Inc. 17885 Von Karman Avenue, Suite 500 Irvine, CA 92614 Dear Ms. Sudoko, Enclosed are the results for the sample set received at Vista Analytical Laboratory on November 19, 2018 under your Project Name '4663.3803'. This Revision 1 is a revision to the Case Narrative to clarify the holding times Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team. Sincerely, Martha Maier Laboratory Director Calva Jasaka ar Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com #### Vista Work Order No. 1803676 Case Narrative #### **Sample Condition on Receipt:** Eight water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The report was amended to note that extraction hold times were missed. #### **Analytical Notes:** #### **PFAS Isotope Dilution Method** The samples were extracted and analyzed for a selected list of PFAS using the PFAS Isotope Dilution Method (Modified EPA Method 537). The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only. #### **Holding Times** The samples were extracted one day past holding times, but analyzed within the method holding times. #### **Quality Control** The Initial Calibration met the method acceptance criteria. The recoveries of PFTeDA were greater than 130% in the Continuing Calibration Verifications (CCV) ST181203M1-1 and ST181203M1-2. The recovery of MeFOSAA was also greater than 130% in CCV ST181203M1-2. These analytes were not detected in the samples. All other analytes met the method acceptance criteria A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The recovery of PFTeDA was greater than 130% in the OPR. This analyte was not detected in the samples. The recoveries of all other analytes were within the method acceptance criteria. The extracts of samples "A1-MW-11-SA2" and "A1-MW-37-SA2" were re-injected because one or more Injection Internal Standard Analyte response areas were outside of criteria. The results were similar in the second injections and the results from the original injections have been reported. The labeled standard recoveries for all QC and field samples were within the acceptance criteria. # TABLE OF CONTENTS | Case Narrative | 1 | |--|-----| | Table of Contents | 3 | | Sample Inventory | 4 | | Analytical Results | 5 | | Qualifiers | 16 | | Certifications | 17 | | Sample Receipt | 20 | | Receiving Airbills | 22 | | Extraction Information | 23 | | Sample Data - PFAS Isotope Dilution Method | 30 | | IIS Areas, IBs and CCVs | 101 | | ICAL with ICV and IB | 153 | | Tune Checks | 297 | | Standards | 304 | Work Order 1803676 Page 3 of 556 # **Sample Inventory Report** | Vista
Sample ID | Client
Sample ID | Sampled | Received | Components/Containers | |--------------------|---------------------|-----------------|-----------------|-----------------------| | 1803676-01 | A1-MW-11-SA2 | 15-Nov-18 09:06 | 19-Nov-18 09:55 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1803676-02 | A1-MW-13-SA2 | 15-Nov-18 08:20 | 19-Nov-18 09:55 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1803676-03 | A1-MW-14-SA2 | 15-Nov-18 10:53 | 19-Nov-18 09:55 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1803676-04 | A1-MW-15-SA2 | 15-Nov-18 10:07 | 19-Nov-18 09:55 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1803676-05 | A1-MW-37-SA2 | 15-Nov-18 11:54 | 19-Nov-18 09:55 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1803676-06 | A1-MW-37-SA2D | 15-Nov-18 12:04 | 19-Nov-18 09:55 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1803676-07 | FRB-20181115 | 15-Nov-18 14:30 | 19-Nov-18 09:55 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | | 1803676-08 | A1-MW-31-SA2 | 15-Nov-18 14:16 | 19-Nov-18 09:55 | HDPE Bottle, 125 mL | | | | | | HDPE Bottle, 125 mL | Vista Project: 1803676 Client Project: 4663.3803 Work Order 1803676 Page 4 of 556 ## ANALYTICAL RESULTS Work Order 1803676 Page 5 of 556 #### Sample ID: Method Blank PFAS Isotope Dilution Method Client Data Laboratory Data Name: Tetra Tech EC, Inc. Matrix: Aqueous Lab Sample: B8K0153-BLK1 Column: BEH C18 Project: 4663.3803 | Analyte | CAS Number | Conc. (ug/L) | DL | LOD | LOQ | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------------|--------------|---------|----------|---------|------------|---------|-----------|-----------|-----------------|----------| | PFBS | 375-73-5 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFHxA | 307-24-4 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFHpA | 375-85-9 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFHxS | 355-46-4 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFOA | 335-67-1 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFNA | 375-95-1 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFOS | 1763-23-1 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFDA | 335-76-2 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | MeFOSAA | 2355-31-9 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | EtFOSAA | 2991-50-6 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFUnA | 2058-94-8 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFDoA | 307-55-1 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFTrDA | 72629-94-8 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | PFTeDA | 376-06-7 | ND | 0.00137 | 0.00200 | 0.00400 | U | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | Labeled Standards | Type | % Recovery | | Limits | | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | 13C3-PFBS | IS | 75.9 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C2-PFHxA | IS | 95.6 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C4-PFHnA | IS | 72.6 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C3-PFBS | IS | 75.0 | | | | | | | |-------------|----|------|----------|---------|-----------|---------|-----------------|---| | 13C3-FFB3 | | 75.9 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C2-PFHxA | IS | 95.6 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C4-PFHpA | IS | 72.6 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 18O2-PFHxS | IS | 83.7 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C2-PFOA | IS | 74.8 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C5-PFNA | IS | 95.2 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C8-PFOS | IS | 98.6 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C2-PFDA | IS | 79.0 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | d3-MeFOSAA | IS | 58.7 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | d5-EtFOSAA | IS | 74.5 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C2-PFUnA | IS | 75.5 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C2-PFDoA | IS | 86.4 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | | 13C2-PFTeDA | IS | 72.4 | 50 - 150 | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 15:29 | 1 | DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1803676 Page 6 of 556 Sample ID: OPR PFAS Isotope Dilution Method Client Data Laboratory Data Name: Tetra Tech EC, Inc. Matrix: Aqueous Lab Sample: B8K0153-BS1 Column: BEH C18 Project: 4663.3803 | Analyte | CAS Number | Amt Found (ug/L) | Spike Amt | % Rec | Limits | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------------|------------------|-----------|-------|----------|------------|---------|-----------|-----------|-----------------|----------| | PFBS | 375-73-5 | 0.0413 | 0.0400 | 103 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | PFHxA | 307-24-4 | 0.0371 | 0.0400 | 92.6 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | PFHpA | 375-85-9 | 0.0455 | 0.0400 | 114 | 70 - 130 | |
B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | PFHxS | 355-46-4 | 0.0428 | 0.0400 | 107 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | PFOA | 335-67-1 | 0.0473 | 0.0400 | 118 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | . 1 | | PFNA | 375-95-1 | 0.0420 | 0.0400 | 105 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | PFOS | 1763-23-1 | 0.0380 | 0.0400 | 95.1 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | . 1 | | PFDA | 335-76-2 | 0.0431 | 0.0400 | 108 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | MeFOSAA | 2355-31-9 | 0.0452 | 0.0400 | 113 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | EtFOSAA | 2991-50-6 | 0.0406 | 0.0400 | 101 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | PFUnA | 2058-94-8 | 0.0354 | 0.0400 | 88.5 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | PFDoA | 307-55-1 | 0.0396 | 0.0400 | 99.1 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | PFTrDA | 72629-94-8 | 0.0429 | 0.0400 | 107 | 70 - 130 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | PFTeDA | 376-06-7 | 0.0559 | 0.0400 | 140 | 70 - 130 | Н | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | Labeled Standards | | Type | | % Rec | Limits | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | 13C3-PFBS | | IS | | 81.5 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | 13C2-PFHxA | | IS | | 104 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | 13C4-PFHpA | | IS | | 80.3 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | 18O2-PFHxS | | IS | | 96.0 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | 13C2-PFOA | | IS | | 76.2 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | 13C5-PFNA | | IS | | 86.5 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | 13C8-PFOS | | IS | | 105 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | 13C2-PFDA | | IS | | 70.0 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | d3-MeFOSAA | | IS | | 52.8 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | d5-EtFOSAA | | IS | | 67.2 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | | | 13C2-PFUnA | | IS | | 68.3 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | 13C2-PFDoA | | IS | | 78.4 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | | 13C2-PFTeDA | | IS | | 72.9 | 50- 150 | | B8K0153 | 30-Nov-18 | 0.250 L | 03-Dec-18 14:58 | 1 | Work Order 1803676 Page 7 of 556 Sample ID: A1-MW-11-SA2 **PFAS Isotope Dilution Method** Name: Tetra Tech EC, Inc. **Client Data** Project: Matrix: Water 4663.3803 Date Collected: 15-Nov-18 09:06 **Laboratory Data** Lab Sample: 1803676-01 Date Received: 19-Nov-18 09:55 Column: BEH C18 Location: YUMA, AZ | * | | | | | | | | | | | | |-------------------|------------|--------------|---------|----------|---------|------------|----------|------------|-----------------|-----------------|----------| | Analyte | CAS Number | Conc. (ug/L) | DL | LOD | LOQ | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | PFBS | 375-73-5 | 0.184 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | . 1 | | PFHxA | 307-24-4 | 0.460 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | PFHpA | 375-85-9 | 0.0352 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | PFHxS | 355-46-4 | 0.109 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | PFOA | 335-67-1 | 0.0349 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | PFNA | 375-95-1 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | PFOS | 1763-23-1 | 0.00916 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | . 1 | | PFDA | 335-76-2 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | MeFOSAA | 2355-31-9 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | EtFOSAA | 2991-50-6 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | PFUnA | 2058-94-8 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | . 1 | | PFDoA | 307-55-1 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | . 1 | | PFTrDA | 72629-94-8 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | . 1 | | PFTeDA | 376-06-7 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | . 1 | | Labeled Standards | Type | % Recovery | | Limits | | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | 13C3-PFBS | IS | 72.0 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 2 1 | | 13C2-PFHxA | IS | 101 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | 12C4 DELL. A | IC | 72.1 | | 50 150 | | | D01/01/2 | 20 Mars 10 | 0.11 <i>C</i> T | 02 Dec 10 16.22 | 1 1 | | Labeled Standards | Туре | % Recovery | Limits | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------------|-------------------|----------|------------|------------|-------------|-----------|-------------------|----------| | 13C3-PFBS | IS | 72.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | . 1 | | 13C2-PFHxA | IS | 101 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | 13C4-PFHpA | IS | 73.1 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | 18O2-PFHxS | IS | 89.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | 13C2-PFOA | IS | 72.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | 13C5-PFNA | IS | 82.2 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | 13C8-PFOS | IS | 113 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | 13C2-PFDA | IS | 64.7 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | d3-MeFOSAA | IS | 84.5 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | d5-EtFOSAA | IS | 105 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | 13C2-PFUnA | IS | 62.2 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | . 1 | | 13C2-PFDoA | IS | 82.2 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | 13C2-PFTeDA | IS | 87.9 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:22 | 1 | | DI Di il Il I | LOD III CD | D t t t t D | Г | 33.71 | / I DELL C | DECA DECC M | FOCAA 1Ed | COC A A :11- 141- | | DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1803676 Page 8 of 556 Sample ID: A1-MW-13-SA2 PFAS Isotope Dilution Method Name: Tetra Tech EC, Inc. **Client Data** Project: Location: 4663.3803 YUMA, AZ Matrix: Water Date Collected: 15-Nov-18 08:20 Laboratory Data Lab Sample: 1803676-02 Date Received: 19-Nov-18 09:55 Column: BEH C18 | Analyte | CAS Number | Conc. (ug/L) | DL | LOD | LOQ | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------------|--------------|----------|---------|---------|------------|---------|-----------|-----------|-----------------|----------| | PFBS | 375-73-5 | 0.259 | 0.00310 | 0.00455 | 0.00906 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFHxA | 307-24-4 | 0.655 | 0.00310 | 0.00455 | 0.00906 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFHpA | 375-85-9 | 0.105 | 0.00310 | 0.00455 | 0.00906 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFHxS | 355-46-4 | 0.368 | 0.00310 | 0.00455 | 0.00906 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFOA | 335-67-1 | 0.0695 | 0.00310 | 0.00455 | 0.00906 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFNA | 375-95-1 | ND | 0.00310 | 0.00455 | 0.00906 | U | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFOS | 1763-23-1 | 0.107 | 0.00310 | 0.00455 | 0.00906 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFDA | 335-76-2 | ND | 0.00310 | 0.00455 | 0.00906 | U | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | MeFOSAA | 2355-31-9 | ND | 0.00310 | 0.00455 | 0.00906 | U | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | EtFOSAA | 2991-50-6 | ND | 0.00310 | 0.00455 | 0.00906 | U | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFUnA | 2058-94-8 | ND | 0.00310 | 0.00455 | 0.00906 | U | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFDoA | 307-55-1 | ND | 0.00310 | 0.00455 | 0.00906 | U | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFTrDA | 72629-94-8 | ND | 0.00310 | 0.00455 | 0.00906 | U | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | PFTeDA | 376-06-7 | ND | 0.00310 | 0.00455 | 0.00906 | U | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | Labeled Standards | Type | % Recovery | <u> </u> | Limits | | Oualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | Labeled Standards | Type | % Recovery | Limits | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------|------------|----------|------------|---------|-----------|-----------|-----------------|----------| | 13C3-PFBS | IS | 66.2 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | 13C2-PFHxA | IS | 97.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | 13C4-PFHpA | IS | 71.0 | 50 - 150
| | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | 18O2-PFHxS | IS | 82.6 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | 13C2-PFOA | IS | 74.6 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | 13C5-PFNA | IS | 79.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | 13C8-PFOS | IS | 97.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | 13C2-PFDA | IS | 63.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110~L | 03-Dec-18 16:33 | 1 | | d3-MeFOSAA | IS | 60.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | d5-EtFOSAA | IS | 84.3 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110~L | 03-Dec-18 16:33 | 1 | | 13C2-PFUnA | IS | 65.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | 13C2-PFDoA | IS | 85.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | | 13C2-PFTeDA | IS | 80.1 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.110 L | 03-Dec-18 16:33 | 1 | DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1803676 Page 9 of 556 ### Sample ID: A1-MW-14-SA2 PFAS Isotope Dilution Method Water Date Collected: 15-Nov-18 10:53 Name: Tetra Tech EC, Inc. Project: 4663.3803 **Client Data** Location: YUMA, AZ Laboratory Data Lab Sample: 1803676-03 Date Received: 19-Nov-18 09:55 Column: BEH C18 | Analyte | CAS Number | Conc. (ug/L) | DL | LOD | LOQ | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------------|--------------|---------|---------|---------|------------|---------|-----------|-----------|-----------------|----------| | PFBS | 375-73-5 | 0.101 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | PFHxA | 307-24-4 | 0.327 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | PFHpA | 375-85-9 | 0.0658 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | PFHxS | 355-46-4 | 0.253 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | PFOA | 335-67-1 | 0.0527 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | PFNA | 375-95-1 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | PFOS | 1763-23-1 | 0.0604 | 0.00295 | 0.00431 | 0.00860 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | PFDA | 335-76-2 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 3 1 | | MeFOSAA | 2355-31-9 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | , 1 | | EtFOSAA | 2991-50-6 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 3 1 | | PFUnA | 2058-94-8 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | , 1 | | PFDoA | 307-55-1 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 3 1 | | PFTrDA | 72629-94-8 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | , 1 | | PFTeDA | 376-06-7 | ND | 0.00295 | 0.00431 | 0.00860 | U | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 3 1 | | Labeled Standards | Туре | % Recovery | | Limits | | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | Labeled Standards | Type | % Recovery | Limits | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------|------------|----------|------------|---------|-----------|-----------|-----------------|----------| | 13C3-PFBS | IS | 76.6 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 13C2-PFHxA | IS | 103 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 13C4-PFHpA | IS | 74.6 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 18O2-PFHxS | IS | 86.2 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 13C2-PFOA | IS | 77.7 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 13C5-PFNA | IS | 87.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 13C8-PFOS | IS | 98.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 13C2-PFDA | IS | 69.9 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | d3-MeFOSAA | IS | 65.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | d5-EtFOSAA | IS | 84.1 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 13C2-PFUnA | IS | 66.6 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 13C2-PFDoA | IS | 87.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | | 13C2-PFTeDA | IS | 76.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.116 L | 03-Dec-18 16:43 | 1 | DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL. Matrix: When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1803676 Page 10 of 556 Sample ID: A1-MW-15-SA2 PFAS Isotope Dilution Method Name: Tetra Tech EC, Inc. **Client Data** Project: Location: 4663.3803 YUMA, AZ Matrix: Water Date Collected: 15-Nov-18 10:07 Laboratory Data Lab Sample: 1803676-04 Date Received: 19-Nov-18 09:55 Column: BEH C18 Conc. (ug/L) DLLOD LOQ Batch Extracted Samp Size **CAS Number Qualifiers** Analyzed Dilution Analyte **PFBS** 375-73-5 0.363 0.00309 0.00450 0.00902 B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 PFHxA 307-24-4 0.596 0.00309 0.00450 0.00902 B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 **PFHpA** 375-85-9 0.0773 0.00309 0.00450 0.00902 B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 **PFHxS** 355-46-4 0.322 0.00309 0.00450 0.00902 B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 **PFOA** 335-67-1 0.190 0.00309 0.00450 0.00902 B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 **PFNA** 375-95-1 ND 0.00309 0.00450 0.00902 U B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 **PFOS** 1763-23-1 0.0185 0.00309 0.00450 0.00902 B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 0.00450 PFDA 335-76-2 ND 0.00309 0.00902 U B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 1 MeFOSAA U 2355-31-9 ND 0.00309 0.00450 0.00902 B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 **EtFOSAA** 0.00450 0.00902 U B8K0153 30-Nov-18 0.111 L 2991-50-6 ND 0.00309 03-Dec-18 16:54 1 PFUnA 2058-94-8 ND 0.00309 0.00450 0.00902 U B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 **PFDoA** U B8K0153 30-Nov-18 307-55-1 ND 0.00309 0.00450 0.00902 0.111 L 03-Dec-18 16:54 **PFTrDA** 72629-94-8 ND 0.00309 0.00450 0.00902 U B8K0153 30-Nov-18 0.111 L 03-Dec-18 16:54 **PFTeDA** U B8K0153 30-Nov-18 376-06-7 ND 0.00309 0.00450 0.00902 0.111 L 03-Dec-18 16:54 | Labeled Standards | Type | % Recovery | Limits | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------|------------|----------|------------|---------|-----------|-----------|-----------------|----------| | 13C3-PFBS | IS | 75.2 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | 13C2-PFHxA | IS | 106 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | 13C4-PFHpA | IS | 73.7 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | 18O2-PFHxS | IS | 88.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | 13C2-PFOA | IS | 76.7 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | 13C5-PFNA | IS | 86.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | 13C8-PFOS | IS | 104 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | 13C2-PFDA | IS | 69.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | d3-MeFOSAA | IS | 70.3 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | d5-EtFOSAA | IS | 92.5 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | . 1 | | 13C2-PFUnA | IS | 71.1 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | | 13C2-PFDoA | IS | 88.7 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | . 1 | | 13C2-PFTeDA | IS | 92.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 16:54 | 1 | DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1803676 Page 11 of 556 #### Sample ID: A1-MW-37-SA2 **PFAS Isotope Dilution Method** Tetra Tech EC, Inc. Name: 4663.3803 Location: YUMA, AZ **Client Data** Project: **Laboratory Data** Matrix: Lab Sample: Water 1803676-05 Date Collected: 15-Nov-18 11:54 Date Received: 19-Nov-18 09:55 Column: BEH C18 | Analyte | CAS Number | Conc. (ug/L) | DL | LOD | LOQ | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------------|--------------|---------|---------|---------|------------|---------|-----------|-----------|-----------------|----------| | PFBS | 375-73-5 | 0.151 | 0.00291 | 0.00424 | 0.00851 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFHxA | 307-24-4 | 0.520 | 0.00291 | 0.00424 | 0.00851 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFHpA | 375-85-9 | 0.0856 | 0.00291 | 0.00424 | 0.00851 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFHxS | 355-46-4 | 0.438 | 0.00291 | 0.00424 | 0.00851 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFOA | 335-67-1 | 0.0599 | 0.00291 | 0.00424 | 0.00851 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFNA | 375-95-1 | ND | 0.00291 | 0.00424 | 0.00851 | U | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFOS | 1763-23-1 | 0.0288 |
0.00291 | 0.00424 | 0.00851 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFDA | 335-76-2 | ND | 0.00291 | 0.00424 | 0.00851 | U | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | MeFOSAA | 2355-31-9 | ND | 0.00291 | 0.00424 | 0.00851 | U | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | EtFOSAA | 2991-50-6 | ND | 0.00291 | 0.00424 | 0.00851 | U | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFUnA | 2058-94-8 | ND | 0.00291 | 0.00424 | 0.00851 | U | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFDoA | 307-55-1 | ND | 0.00291 | 0.00424 | 0.00851 | U | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFTrDA | 72629-94-8 | ND | 0.00291 | 0.00424 | 0.00851 | U | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | PFTeDA | 376-06-7 | ND | 0.00291 | 0.00424 | 0.00851 | U | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | Labeled Standards | Type | % Recovery | | Limits | | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | Labeled Standards | Type | % Recovery | Limits | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------|------------|----------|------------|---------|-----------|-----------|-----------------|----------| | 13C3-PFBS | IS | 80.6 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 13C2-PFHxA | IS | 104 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 13C4-PFHpA | IS | 72.7 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 18O2-PFHxS | IS | 92.3 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 13C2-PFOA | IS | 70.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 13C5-PFNA | IS | 85.1 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 13C8-PFOS | IS | 112 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 13C2-PFDA | IS | 68.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | d3-MeFOSAA | IS | 95.5 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | d5-EtFOSAA | IS | 127 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 13C2-PFUnA | IS | 76.6 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 13C2-PFDoA | IS | 96.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | | 13C2-PFTeDA | IS | 113 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.118 L | 03-Dec-18 18:35 | 1 | DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1803676 Page 12 of 556 #### Sample ID: A1-MW-37-SA2D **PFAS Isotope Dilution Method** Name: Tetra Tech EC, Inc. Project: 4663.3803 **Client Data** Location: YUMA, AZ Matrix: Water Date Collected: 15-Nov-18 12:04 Laboratory Data Lab Sample: 1803676-06 Date Received: 19-Nov-18 09:55 Column: BEH C18 Conc. (ug/L) DLLOD LOQ Batch Extracted Samp Size **CAS Number Qualifiers** Analyzed Dilution Analyte **PFBS** 375-73-5 0.150 0.00298 0.00435 0.00870 B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 PFHxA 307-24-4 0.529 0.00298 0.00435 0.00870 B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 **PFHpA** 375-85-9 0.0830 0.00298 0.00435 0.00870 B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 **PFHxS** 355-46-4 0.429 0.00298 0.00435 0.00870 B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 **PFOA** 335-67-1 0.0555 0.00298 0.00435 0.00870 B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 **PFNA** 375-95-1 ND 0.00298 0.00435 0.00870 U B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 **PFOS** 1763-23-1 0.0275 0.00298 0.00435 0.00870 B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 PFDA 335-76-2 ND 0.00298 0.00435 0.00870U B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 1 MeFOSAA 2355-31-9 ND 0.00298 0.00435 0.00870 U B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 **EtFOSAA** 0.00435 U B8K0153 30-Nov-18 0.115 L 2991-50-6 ND 0.00298 0.0087003-Dec-18 18:45 1 PFUnA 2058-94-8 ND 0.00298 0.00435 0.00870 U B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 **PFDoA** 0.00435 U B8K0153 30-Nov-18 307-55-1 ND 0.00298 0.00870 0.115 L 03-Dec-18 18:45 **PFTrDA** 72629-94-8 ND 0.00298 0.00435 0.00870 U B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 **PFTeDA** 376-06-7 ND 0.00298 0.00435 0.00870 IJ B8K0153 30-Nov-18 0.115 L 03-Dec-18 18:45 | TTTCDA | 370-00-7 | ND | 0.00276 0.00433 | 0.00670 | Dokuiss | JU-110V-10 | 0.113 L | 03-DCC-10 10. 4 3 | 1 | |-------------------|----------|------------|-----------------|------------|---------|------------|-----------|------------------------------|----------| | Labeled Standards | Туре | % Recovery | Limits | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | 13C3-PFBS | IS | 78.5 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 13C2-PFHxA | IS | 104 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 13C4-PFHpA | IS | 75.5 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 18O2-PFHxS | IS | 92.6 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 13C2-PFOA | IS | 72.9 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 13C5-PFNA | IS | 91.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 13C8-PFOS | IS | 108 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 13C2-PFDA | IS | 68.9 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | d3-MeFOSAA | IS | 69.2 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | d5-EtFOSAA | IS | 89.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 13C2-PFUnA | IS | 66.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 13C2-PFDoA | IS | 86.5 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | | 13C2-PFTeDA | IS | 84.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.115 L | 03-Dec-18 18:45 | 1 | DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1803676 Page 13 of 556 BEH C18 #### Sample ID: FRB-20181115 PFAS Isotope Dilution Method **Laboratory Data** Client Data Name: Tetra Tech EC, Inc. Matrix: Water Name:Tetra Tech EC, Inc.Matrix:WaterLab Sample:1803676-07Column:Project:4663.3803Date Collected:15-Nov-18 14:30Date Received:19-Nov-18 09:55 Location: YUMA, AZ | Location. TOWA, AZ | | | | | | | | | | | | |--------------------|------------|--------------|---------|----------|---------|------------|---------|-----------|-----------|-----------------|----------| | Analyte | CAS Number | Conc. (ug/L) | DL | LOD | LOQ | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | PFBS | 375-73-5 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | , 1 | | PFHxA | 307-24-4 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 5 1 | | PFHpA | 375-85-9 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | , 1 | | PFHxS | 355-46-4 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 5 1 | | PFOA | 335-67-1 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | , 1 | | PFNA | 375-95-1 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 5 1 | | PFOS | 1763-23-1 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | , 1 | | PFDA | 335-76-2 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 5 1 | | MeFOSAA | 2355-31-9 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | , 1 | | EtFOSAA | 2991-50-6 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 5 1 | | PFUnA | 2058-94-8 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | , 1 | | PFDoA | 307-55-1 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 5 1 | | PFTrDA | 72629-94-8 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | , 1 | | PFTeDA | 376-06-7 | ND | 0.00309 | 0.00450 | 0.00904 | U | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | Labeled Standards | Type | % Recovery | | Limits | | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | 13C3-PFBS | IS | 70.4 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 5 1 | | Labeled Standards | Type | % Recovery | Limits | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | |-------------------|------|------------|----------|------------|---------|-----------|-----------|-----------------|----------| | 13C3-PFBS | IS | 70.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 13C2-PFHxA | IS | 103 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 13C4-PFHpA | IS | 72.4 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 18O2-PFHxS | IS | 87.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 13C2-PFOA | IS | 68.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 13C5-PFNA | IS | 73.7 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 13C8-PFOS | IS | 97.9 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 13C2-PFDA | IS | 61.3 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | d3-MeFOSAA | IS | 50.8 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | d5-EtFOSAA | IS | 66.0 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 13C2-PFUnA | IS | 59.5 | 50 -
150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 13C2-PFDoA | IS | 74.5 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | | 13C2-PFTeDA | IS | 67.2 | 50 - 150 | | B8K0153 | 30-Nov-18 | 0.111 L | 03-Dec-18 18:56 | 1 | DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes. Work Order 1803676 Page 14 of 556 Sample ID: A1-MW-31-SA2 **PFAS Isotope Dilution Method** Name: Tetra Tech EC, Inc. 4663.3803 Location: YUMA, AZ **Client Data** Project: **Laboratory Data** Lab Sample: Water 1803676-08 Date Collected: 15-Nov-18 14:16 Date Received: 19-Nov-18 09:55 Column: BEH C18 | Eccution: 1 OWIT, TE | | | | | | | | | | | | |----------------------|------------|--------------|---------|----------|---------|------------|---------|-----------|-----------|-----------------|----------| | Analyte | CAS Number | Conc. (ug/L) | DL | LOD | LOQ | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | PFBS | 375-73-5 | 0.0235 | 0.00293 | 0.00427 | 0.00855 | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | , 1 | | PFHxA | 307-24-4 | 0.0732 | 0.00293 | 0.00427 | 0.00855 | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 1 | | PFHpA | 375-85-9 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | PFHxS | 355-46-4 | 0.00855 | 0.00293 | 0.00427 | 0.00855 | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 1 | | PFOA | 335-67-1 | 0.00388 | 0.00293 | 0.00427 | 0.00855 | J | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 1 | | PFNA | 375-95-1 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 1 | | PFOS | 1763-23-1 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 1 | | PFDA | 335-76-2 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | j 1 | | MeFOSAA | 2355-31-9 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 1 | | EtFOSAA | 2991-50-6 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 1 | | PFUnA | 2058-94-8 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 1 | | PFDoA | 307-55-1 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | PFTrDA | 72629-94-8 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 1 | | PFTeDA | 376-06-7 | ND | 0.00293 | 0.00427 | 0.00855 | U | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | j 1 | | Labeled Standards | Type | % Recovery | | Limits | | Qualifiers | Batch | Extracted | Samp Size | Analyzed | Dilution | | 13C3-PFBS | IS | 79.9 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | 13C2-PFHxA | IS | 99.4 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | 13C4-PFHpA | IS | 68.3 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | 18O2-PFHxS | IS | 92.6 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | 13C2-PFOA | IS | 75.4 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | 13C5-PFNA | IS | 83.8 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | 13C8-PFOS | IS | 106 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | 13C2-PFDA | IS | 66.3 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | d3-MeFOSAA | IS | 66.2 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | d5-EtFOSAA | IS | 92.5 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | 13C2-PFUnA | IS | 68.9 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | 13C2-PFDoA | IS | 77.2 | | 50 - 150 | | | B8K0153 | 30-Nov-18 | 0.117 L | 03-Dec-18 19:06 | 5 1 | | | | | | | | | | | | | | 13C2-PFTeDA DL - Detection Limit LOD - Limit of Detection LOQ - Limit of quantitation IS Results reported to the DL. 79.0 Matrix: When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes. 0.117 L 03-Dec-18 19:06 B8K0153 30-Nov-18 Page 15 of 556 Work Order 1803676 50 - 150 ### **DATA QUALIFIERS & ABBREVIATIONS** B This compound was also detected in the method blank **Conc.** Concentration D Dilution **DL** Detection limit E The associated compound concentration exceeded the calibration range of the instrument H Recovery and/or RPD was outside laboratory acceptance limits I Chemical Interference J The amount detected is below the Reporting Limit/LOQ **LOD** Limits of Detection **LOQ** Limits of Quantitation M Estimated Maximum Possible Concentration (CA Region 2 projects only) NA Not applicable ND Not Detected Q Ion ratio outside of 70-130% of Standard Ratio. (DOD PFAS projects only) **TEQ** Toxic Equivalency U Not Detected (specific projects only) * See Cover Letter Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight. Work Order 1803676 Page 16 of 556 ## Vista Analytical Laboratory Certifications | Accrediting Authority | Certificate Number | |---|--------------------| | Alaska Department of Environmental Conservation | 17-013 | | Arkansas Department of Environmental Quality | 18-008-0 | | California Department of Health – ELAP | 2892 | | DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005 | 3091.01 | | Florida Department of Health | E87777 | | Hawaii Department of Health | N/A | | Louisiana Department of Environmental Quality | 01977 | | Maine Department of Health | 2018017 | | Michigan Department of Environmental Quality | 9932 | | Minnesota Department of Health | 1322288 | | New Hampshire Environmental Accreditation Program | 207718 | | New Jersey Department of Environmental Protection | CA003 | | New York Department of Health | 11411 | | Oregon Laboratory Accreditation Program | 4042-009 | | Pennsylvania Department of Environmental Protection | 015 | | Texas Commission on Environmental Quality | T104704189-18-9 | | Virginia Department of General Services | 9618 | | Washington Department of Ecology | C584-18 | | Wisconsin Department of Natural Resources | 998036160 | Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request. Work Order 1803676 Page 17 of 556 ### **NELAP Accredited Test Methods** | MATRIX: Air | | |--|-----------| | Description of Test | Method | | Determination of Polychlorinated p-Dioxins & Polychlorinated | EPA 23 | | Dibenzofurans | | | Determination of Polychlorinated p-Dioxins & Polychlorinated | EPA TO-9A | | Dibenzofurans | | | MATRIX: Biological Tissue | | |--|-------------| | Description of Test | Method | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | | | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by | EPA 1699 | | HRGC/HRMS | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | | | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by | EPA 8280A/B | | GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | MATRIX: Drinking Water | | |--|-------------------| | Description of Test | Method | | 2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS | EPA | | | 1613/1613B | | 1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS | EPA 522 | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | ISO 25101
2009 | | MATRIX: Non-Potable Water | | |---|-------------| | Description of Test | Method | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope | EPA 1613B | | Dilution GC/HRMS | | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | | | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue | EPA 1668A/C | | by GC/HRMS | | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS | EPA 1699 | | | | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | | | | Dioxin by GC/HRMS | EPA 613 | | | | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated | EPA 8280A/B | | Dibenzofurans by GC/HRMS | | | Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | | MATRIX: Solids | | |--|-------------| | Description of Test | Method | | Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS | EPA 1613 | | Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS | EPA 1613B | | Brominated Diphenyl Ethers by HRGC/HRMS | EPA 1614A | | Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS | EPA 1668A/C | | Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS | EPA 1699 | | Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537 | | Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS | EPA 8280A/B | | Polychlorinated
Dibenzodioxins (PCDDs) and Polychlorinated | EPA | | Dibenzofurans (PCDFs) by GC/HRMS | 8290/8290A | Work Order 1803676 Page 19 of 556 # **CHAIN OF CUSTODY** | For Laborato | ry Use Only | | 4 -1 | |---------------|-------------|------------------|----------| | Work Order #: | 1803676 | Temp: | 2.8 °C | | Storage ID: | W22 | Storage Secured: | Yes No 🗆 | | Project ID: 4663.3803 | 4 | | PO#: 1152405 | | | | Samp | oler: Spe | encer | Doolittle
(name) | | TAT
(check one): | Standard:
Rush (surc | 21 days harge may apply) | Specify: 10 BD | |-----------------------------------|--|----------|---|----|----------|---------|-----------|---|----------|--|--|--|-------------------------|---------------------------|--------------------| | Invoice to: Name | | Compar | IV | | Addr | ess | | | | (name) | City | | State | Ph# | Fax# | | Accts Pay | able | | ech EC, Inc. | | | | mbia | St. Suite | 750 | | San Di | ego | CA | 619-234-8696 | | | Relinquished by (printer | | | Date | | Time | | | | | orinted name and sign | ature) | | | Date | Time | | | Below + | | | | 1608 | | | FedE | | er. | | | | Boto | | | Relinquished by (printed | Place Flagger | ture) | Date | | Time | | | * u | W (b | printed name and sign | ature | Ool | 2 | - 11 Pate | Time 9 4955 | | | field Way
Hills, CA 95762
1520 * Fax (916) 6 | 573-0106 | Method of Shipment: FED_EX Tracking No.: | | | ainer(s |) | / | 1,926 | Menod 52 | | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | Mus. | | | | Sample ID | Date | Time | Location/Sample Description | | \$10 POR | Main | 1 2 4 5 E | 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Full 14 | 2 / 7 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 75 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | Commer | nts | | A1-MW-11-SA2 | ulishs | 0906 | YUMA, AZ | 2 | Р | W | | X | | , , , | | | T-A | | | | A1-MW-13-SA2 | 11/15/18 | | YUMA, AZ | 2 | Р | W | | X | | | | | | | | | A1-MW-14-SA2 | 11/15/18 | - | YUMA, AZ | 2 | Р | W | | × | | | | | | | | | A1-MW-15-SA2 | 11/15/18 | 1 | YUMA, AZ | 2 | Р | W | | × | | | | | | | | | A1-MW-37-SA2 | 11/15/18 | 1154 | YUMA, AZ | 2 | Р | W | | × | | | | | | | | | A1-MW-37-SA2D | 11/2/13 | | YUMA, AZ | 2 | Р | W | | X | | | | | | | | | FRB-20181115 | 11/15/18 | | YUMA, AZ | 2 | Р | W | | X | | | | | | | | | EB-20181115 | li listi g | 1112 | YUMA, AZ | -2 | Р | W | | × | 6 | | | | | | | | Al-MW-31-5 | AZ IIĮISIIS | 1916 | Yuna, Az | 1 | ρ | W | | × | | | | | | | | | Special Instructions/Comm | nents: | | | Ž. | | | | | | SEND
CUMENTATION
D RESULTS TO: | Compan
Addres
Cit | e: Sabina Sudo
y: Tetra Tech E
s: 17885 Von K
y: Irvine
e: 949-809-502 | C, Inc.
Karman Aven | | Zip: <u>9</u> 2614 | | Container Types: P= HD O = Other: | PE, PJ= HDPE Jar | | Bottle Preservi
TZ = Trizma | | pe: T | = Thios | ulfate, | | | Matrix Types: AQ = Ac
SL = Sludge, SO = Soil, | Ema
Jueous, DW | il: sabina.sudok
= Drinking Water, | co@tetratech. | com
PP = Pulp/Paper, S | | # Sample Log-In Checklist | Vista Work Orde | er#:18036= | 16 | | | Page #
TAT \(\right) \(\mathbb{B} \right) | | |---------------------|------------|-----------|-----------|-----|--|-----------| | Samples
Arrival: | Date/Time | 955 | Initials: | | Location: Wk- | 1. | | Logged In: | Date/Time | | Initials: | | Location: WR-2
Shelf/Rack: 3-3 | | | Delivered By: | FedEx UPS | On Tra | c GSO | DHL | Hand
Delivered | Other | | Preservation: | lce | Blu | ie Ice | | Dry Ice | None | | Temp °C: 2. | | Probe use | ed: Y / N |) 1 | Thermometer ID: | TR-4 | | | | | | | * VEO | T NO T NA | | | 是对某事的。是自己的专权与其实的。但是是有了 | YES | NO | NA | |----------------------------|---|-------|------|-----| | Adequate Sample Volum | e Received? | 1 | | | | Holding Time Acceptable | ? | / | | | | Shipping Container(s) Int | act? | V | | | | Shipping Custody Seals I | ntact? | / | | | | Shipping Documentation | | 1 | | | | Airbill Ti | rk# 7838 0431 9525 | 1 | | | | Sample Container Intact? | | J | | | | Sample Custody Seals In | tact? | | | 1 | | Chain of Custody / Samp | le Documentation Present? | / | | | | COC Anomaly/Sample Ad | cceptance Form completed? | | 1 | 1 | | If Chlorinated or Drinking | Water Samples, Acceptable Preservation? | | | 1 | | Preservation Documented | No. C.O. Trizmo None | Yes | No | NA | | Shipping Container | Vista Client Retain R | eturn | Disp | ose | Comments: ID .: LR - SLC Rev No.: 3 Rev Date: 05 October 2018 Page: 1 of 1 ORIGIN ID: YUMA (619) 518-6896 TETRA TECH 1230 COLUMBIA ST STE 750 SAN DIEGO, CA 92101 UNITED STATES US SHIP ACTWG, CAD: O. DIMS: 2. TO VISTA ANALYTICAL LAB 1104 WINDFIELD WAY EL DORADO HILLS CA 95762 7838 0431 9525 FRI - 16 NOV 10:30A PRIORITY OVERNIGHT WD MHRA 95762 CA-US SMF Work Order 1803676 Page 22 of 556 # **EXTRACTION INFORMATION** Work Order 1803676 Page 23 of 556 ### **Process Sheet** # Workorder: 1803676 Prep Expiration: 2018-Nov-29 Client: Tetra Tech EC, Inc. Workorder Due:05-Dec-18 00:00 TAT: 16 Method: 537M PFAS DOD (LOQ as mRL) Matrix: Aqueous Prep Batch: B&Kol53 Prep Data Entered: <u>QC 12/02/18</u> Date and Initials Version: 537 (14 Analyte) DoD: DoD QSM 5.1 Initial Sequence: 58L005 | LabSamplD | A/B | Prep
Rec | Spike
Rec | ClientSampleID | Comments | Location | Container | |------------|----------|-------------|--------------|----------------|----------|----------|---------------------| | 1803676-01 | HAN | <u>P</u> | \checkmark | A1-MW-11-SA2 | | WR-2 A-3 | HDPE Bottle, 125 mL | | 1803676-02 | | Ø | V | A1-MW-13-SA2 | | WR-2 A-3 | HDPE Bottle, 125 mL | | 1803676-03 | | ⅎ | Δį | A1-MW-14-SA2 | | WR-2 A-3 | HDPE Bottle, 125 mL | | 1803676-04 | 1 | | A | A1-MW-15-SA2 | | WR-2 A-3 | HDPE Bottle, 125 mL | | 1803676-05 | - 1 | | V | A1-MW-37-SA2 | | WR-2 A-3 | HDPE Bottle, 125 mL | | 1803676-06 | | | \mathbf{V} | A1-MW-37-SA2D | | WR-2 A-3 | HDPE Bottle, 125 mL | | 1803676-07 | | | \square | FRB-20181115 | | WR-2 A-3 | HDPE Bottle, 125 mL | | 1803676-08 | ♦ | | ∇ | A1-MW-31-SA2 | | WR-2 A-3 | HDPE Bottle, 125 mL | WO Comments: Internal COC 11/2019 Prep Check Out: MAC Pre-Prep Check in: HB 11 26 19 Prep Check In: HB 11/26/18 Prep Reconciled Initals/Date:__ ac 11/30/18 Spike Reconciled Initals/Date:_ VialBoxID: Santo Page 1 of 3 Work Order 1803676 Page 24 of 556 Matrix: Aqueous PREPARATION BENCH SHEET | Method: | 537M | PFAS | DOD | (LOQ | as | mRL) | |---------|------|-------------|-----|------|----|------| |---------|------|-------------|-----|------|----|------| B8K0153 Prep Time: Prepared using: Sonication Shaker SPE Extraction Centrifuge ID: | | | | | | | | | • | _ | | | | | | | | |----------------|----------------------------|--------------|-------------|---------------|-----------------------|---------------------------|-----------------------------|-----------------------|----------|----------------------|----|--------------|-----|-----------|------|----------------------| | | | Date/Inita | Is: HBI | 1/260/18 | | BalanceID: HQ | 15-9 | | | _ | | | | | | | | Cen | VISTA
Sample ID | pH
Before | pH
After | Chlorine (Cl) | Drops
HCl
Added | Bottle +
Sample
(g) | Bottle Only (g) 45 12/02/18 | Sample
Amt.
(L) | CHE
D | S/NS
M/WIT
ATE | ! | SPE | EN' | VI-Carb | СНІ | RS
EM/WIT
DATE | | | B8K0153-BLK1 | 7 | 2 | 0 | 2 | NA | NA | 1 | | MU130/18 | ۵٤ | 11/30/18 | 95 | 11/30/18 | ar W | X 11/30/18 | | | B8K0153-BS1 | 7 | 2 | 0 | 2 | • | 4 | (0.250) | | 7 | _ | <u>T</u> | • | T | - | | | | B8K0153-MS1
1803678-01 | 5 | 2 | 0 | History | 113.91 133.72 | 36.437* | 0.10680 | | | | | | | | | | | B8K0153-MSD1
1803678-01 | 5 | - 2 | Ŏ | 1 3 | 118.38 1381 | 24.963* | 0.11122 | | | | | | | | | | | 1803676-01 | 5 | 2 | 0 | 2 | 143.23 | E7:44 | D. 11626 | | | | | | | _ | | | | 1803676-02 | 5 | 2 | 0 | 2 | 137.45 | <i>27.</i> 。3 | 0.1642 | | | | | | | | _ | | | 1803676-03 | 5 | 2 | 0 | 2 | 147 143.23 | 26.94 | 0.11639 | 1 | | | | | | | . January | | | 1803676-04 | 5_ | 2 | 0 | 2_ | 137.83 | 26.97 | 0.11086 | | | | | | | | | | | 1803676-05 | 5 | 2 | 0 | 2 | 144.50 | 26.97 | 0.11753 | | | | | | | | | | 쁘 | 1803676-06 | 5 | 2 | 0 | 2 | 141.83 | 26.90 | 0.11493 | | | | | | | | | | | 1803676-07 | 4 | 2 | Ó | 2 | 137.59 | | 0.11067 | / | | | | | | | | | H | 1803678-01 | 5 | 2 | 0 | 1 | 143.87 | | 0.11690 | | į | | | | | | <u> </u> | | - | 1803678-02 | 5 | 2 | 0 | | 138,96 | | 0.11182 | | | | | | | | 1 | | | 10030/0*02 | <u> </u> | 2 | 0_ | 】_ | 144.92 | 27.11 | 0.11781 | <u> </u> | $\overline{}$ | | \downarrow | | $\sqrt{}$ | | \downarrow | | IS: 1851502, 10 MZ | | Notes: (8) 11). HB 11/26/18 | | |------------------------|----------------------------------|-----------------------------|--| | IS SUP:NA | SPE Lot#: \18-00369 2 | * 12/62/18 az | | | NS: 1851505, 10 ML (3) | ENVI-Carb Lot#: 1026216 | | | | | Ele SOLV: MeOH/0.5%NH4OH in MeOH | | | | RS: 1851503, 10 ML V2 | Final Volume(s)mL | | | Comments: Assume 1 g = 1 mL Cen = Centrifuged - 1 = Sample centrifuged twice - 2 = Sample deeply colored after centrifuge - 3 = Cartridge sorbent discolored after SPE - 4 = Sample clogged cartridge, additional cartridge(s) used - 5 = Sample recombined at final volume - 6 = Sample took longer to SPE, required stronger vacuum - 7 = Required Nitrogen line to finish SPE - 8 = Required Nitrogen line to finish elution - 9 = Sample arrived with low volume - 10 = Trizma added to QC (5g/L) **Matrix: Aqueous** PREPARATION BENCH SHEET Method: 537M PFAS DOD (LOQ as mRL) QE. B8K0153 Chemist: Prep Date: 08:40 Prep Time: Prepared using: Sonication Shaker SPE Extraction Centrifuge ID: Date/Initals: HB 11/20 (9
HPMS.9 BalanceID: RS Bottle + Bottle Sample IS/NS Drops **VISTA** pН Chlorine HCI Sample Only Amt. CHEM/WIT SPE **ENVI-Carb** CHEM/WIT pН Cen Sample ID (g) as 12/02/18 DATE Before After (Cl) Added (L) DATE 1803678-03 0 27.04 2 at MK 11/30/18 OF 11/30/18 OF 11/30/18 OF 130.64 0.10360 4/30/18 1803678-04 2 27.13 0.11772 0.25208 | IS: 1851502, 10 ML @ | SPE Chem: Strata X-AW 33 mm 200 mg | Notes: | |----------------------|------------------------------------|--------| | IS SUP: NA | SPE Lot#: 518- 2369ス | | | NS: 1851505, 10 HL 1 | ENVI-Carb Lot#: 62626 | | | | Ele SOLV: MeOH/0.5%NH4OH in MeOH | | | RS: 18 3 1503, 10 HL | Final Volume(s)mL | | Comments: Assume 1 g = 1 mLCen = Centrifuged 1803689-01 1 = Sample centrifuged twice 2 = Sample deeply colored after centrifuge 3 = Cartridge sorbent discolored after SPE 4 = Sample clogged cartridge, additioanl cartridge(s) used 2 2 279.21 5 = Sample recombined at final volume 6 = Sample took longer to SPE, required stronger vacuum 7 = Required Nitrogen line to finish SPE 8 = Required Nitrogen line to finish elution 9 = Sample arrived with low volume 10 = Trizma added to QC (5g/L) Batch: B8K0153 Matrix: Aqueous | LabNumber | WetWeight
(Initial) | % Solids
(Extraction Solids) | DryWeight | Final | Extracted | Ext By | Spike S | | ClientMatrix | Analysis | |--------------|------------------------|---------------------------------|-----------|-------|-----------------|--------|-----------|------|--------------|-----------------------| | 1803676-01 | 0.11626 | ' NA | NA | 1000 | 30-Nov-18 08:40 | AME | | _ | Water | 537M PFAS DOD (LOQ as | | 1803676-02 | 0.11042 V | / T | | 1000 | 30-Nov-18 08:40 | AME | | | Water | 537M PFAS DOD (LOQ as | | 1803676-03 | 0.11629 | / | | 1000 | 30-Nov-18 08:40 | AME | | _ | Water | 537M PFAS DOD (LOQ as | | 1803676-04 | 0.11086 | / | | 1000 | 30-Nov-18 08:40 | AME | | | Water | 537M PFAS DOD (LOQ as | | 1803676-05 | 0.11753 | / | | 1000 | 30-Nov-18 08:40 | AME | | _ | Water | 537M PFAS DOD (LOQ as | | 1803676-06 | 0.11493 | / | | 1000 | 30-Nov-18 08:40 | AME | | | Water | 537M PFAS DOD (LOQ as | | 1803676-07 | 0.11067 | / | | 1000 | 30-Nov-18 08:40 | AME | | | Water | 537M PFAS DOD (LOQ as | | 1803676-08 | 0.1169 | / | | 1000 | 30-Nov-18 08:40 | AME | | | Water | 537M PFAS DOD (LOQ as | | 1803678-01 | 0.11182 | / | | 1000 | 30-Nov-18 08:40 | AME | | | Water | 537M PFAS DOD (LOQ as | | 1803678-02 | 0.11781 | 7 | | 1000 | 30-Nov-18 08:40 | AME | | | Water | 537M PFAS DOD (LOQ as | | 1803678-03 | 0.1036 | , | | 1000 | 30-Nov-18 08:40 | AME | | _ | Water | 537M PFAS DOD (LOQ as | | 1803678-04 | 0.11772 V | / | | 1000 | 30-Nov-18 08:40 | AME | | | Water | 537M PFAS DOD (LOQ as | | 1803689-01 | 0.25208 | / | | 1000 | 30-Nov-18 08:40 | AME | | | Decon Water | 537M PFAS DOD (LOQ as | | B8K0153-BLK1 | 0.25 🗸 | | | 1000 | 30-Nov-18 08:40 | AME | | | | QC | | B8K0153-BS1 | 0.25 V | | | 1000 | 30-Nov-18 08:40 | AME | 18J1505 | 10 🗸 | | QC | | B8K0153-MS1 | 0.1068 🗸 | | | 1000 | 30-Nov-18 08:40 | AME | 18J1505 🗸 | 10 🗸 | | QC | | B8K0153-MSD1 | 0.11122 V | / 1 | | 1000 | 30-Nov-18 08:40 | AME | 18J1505 🗸 | 10 🗸 | | QC | 12/02/18 ae Printed: 12/2/2018 12:46:19PM # **Internal Chain of Custody** 1803676 Client: Tetra Tech EC, Inc. Project Number: 4663 3803 Received: 19-Nov-18 09:55 | Client: Tetra Te | ech EC, Inc. | | Project Number: 4663.3803 | Rece | ived: 19-Nov-18 09:55 | Received By: 1 | Kim Elric | | | |--------------------|--------------|-------------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--| | | | | Sa | mple | | Extract | | | | | Vista
Sample ID | | | Initials Date/Time New Location | | | | 1803676-01 3,B | | WDS 11/19/18 | HB 11/26/18/11:00
Airlab "A"bothes | HBIIISOLIA | MAC 11/30/18 0714
Pro 105 2 | QE 11/30/18 * Refliggerator #7 | | | | | 803676-02 | 8,8 | wws 11/19/18
wr-2 a: a-3, Bs F-4 | | Ī | 7 | | | | | | 803676-03 | 3,B | WR-2 2:2-3, B:F-4 | | | | | | | | | 803676-04 | 3,8 | WWS 11 19 18
WK-2 823-3, B3F-4 | | | | | | | | | 803676-05 | 3,8 | WK-2 8:2-3, B: F-4 | | | | | | | | | 803676-06 | 3,8 | WWS 11/19/18
WR-2 3:3-3,88 F-4 | | | | | | | | | 803676-07 | 8,8 | WWS 11 19 18
WR-2 3: 3-3, B; F-4 | | | | | | | | | 803676-08 | 3,B | WAS 11/19/18 | | 4 | 1 | | | | | *Did not record time. Samples placed in refridgerator on 11/30/18, recorded on 12/02/18, az 12/02/18 WR-2 8: 8-3, B: F-4 # **Internal Chain of Custody** 1803676 | Client: Tetra Te | ech EC, Inc. | | | Project Num | ber: 4663.3803 | Rec | eived: 19-Nov-18 09:55 | | Received By: | Kim Elric | |--------------------|--------------|------------|------------|-----------------------|----------------|---------------------------------|---------------------------------|-----------------|----------------------|---------------------------------| | | | | | | Sa | mple | | | Ext | ract | | Vista
Sample ID | Bottle | Initials I | Date/Time | Initials Da | | Initials Date/Time New Location | Initials Date/Time New Location | Initials New Lo | Date/Time
cation | Initials Date/Time New Location | | 1803676-01 | A/B | | 03/18 8:05 | HR 12/03
Restridge | 10125 rator 7 | | | Om | 12/3/10 1722
runt | | | 1803676-02 | A/B | | | 7 | | | | | | | | 1803676-03 | A/B | | | | | | | | | | | 1803676-04 | Alb | | | | | | | | | _ | | 1803676-05 | Alb | | | | | | | | | | | 1803676-06 | A/B | | | | | | | | | | | 1803676-07 | A/B | | | | | | | | | | | 1803676-08 | Alb | | <i>y</i> | | / | | | | | | # Sample Data – PFAS Isotope Dilution Method Work Order 1803676 Page 30 of 556 Vista Analytical Laboratory L30 MM 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.qld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:52:03 Pacific Standard Time ### Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank | | # Name | Trace | Area | IS Area | wt/vol RRF | Mean | RT | Respo | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|------------|-------|------|--------|---------|------|-----------|------------| | 1 | 1 PFBA | 213.0 > 168.8 | | 5.27e3 | 0.250 | | | | | | | | | 2 | 2 PFPeA | 263.1 > 218.9 | | 6.65e3 | 0.250 | | | | | | | | | 3 | 3 PFBS | 299.0 > 79.7 | | 1.12e3 | 0.250 | | | | | | | | | 4 | 4 4:2 FTS | 327.2>307.2 | | 2.75e3 | 0.250 | | | | | | | | | 5 | 5 PFHxA | 313 > 269 | | 4.70e3 | 0.250 | | | | | | | | | 6 | 36 13C3-PFBA | 216.1 > 171.8 | 5.27e3 | 6.76e3 | 0.250 | 0.861 | 1.41 | 9.74 | 45.2835 | 90.6 | | | | 7 | 37 13C3-PFPeA | 266. > 221.8 | 6.65e3 | 1.37e4 | 0.250 | 0.604 | 2.68 | 6.09 | 40.3432 | 80.7 | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.12e3 | 2.34e3 | 0.250 | 0.633 | 3.00 | 6.00 | 37.9389 | 75.9 | | | | 9 | 39 13C2-4:2 FTS | 329.2>308.9 | 2.75e3 | 2.34e3 | 0.250 | 2.074 | 3.48 | 14.7 | 28.2875 | 56.6 | | | | 10 | 40 13C2-PFHxA | 315 > 270 | 4.70e3 | 1.37e4 | 0.250 | 0.900 | 3.56 | 4.30 | 19.1137 | 95.6 | | | | 11 | -1 | | | | | | | | | | | | | 12 | 6 PFPeS | 349.1>80.1 | | 1.12e3 | 0.250 | | | | | | | | | 13 | 7 PFHpA | 363.0 > 318.9 | | 6.88e3 | 0.250 | | | | | | | | | 14 | 8 L-PFHxS | 398.9 > 79.6 | 2.29e0 | 9.32e2 | 0.250 | | 4.33 | 0.0306 | 0.0711 | | 4.82 | YES | | 15 | 68 Total PFHxS | 398.9 > 79.6 | 2.29e0 | 9.32e2 | 0.250 | | | 0.0306 | 0.0711 | | | | | 16 | 10 6:2 FTS | 427.1 > 407 | | 3.18e3 | 0.250 | | | | | | | | | 17 | 38 13C3-PFBS | 302. > 98.8 | 1.12e3 | 2.34e3 | 0.250 | 0.633 | 3.00 | 6.00 | 37.9389 | 75.9 | | | | 18 | 41 13C4-PFHpA | 367.2 > 321.8 | 6.88e3 | 1.37e4 | 0.250 | 0.693 | 4.20 | 6.29 | 36.3146 | 72.6 | | | | 19 | 42 18O2-PFHxS | 403.0 > 102.6 | 9.32e2 | 2.34e3 | 0.250 | 0.476 | 4.33 | 4.98 | 41.8420 | 83.7 | | | | 20 | 42 18O2-PFHxS | 403.0 > 102.6 | 9.32e2 | 2.34e3 | 0.250 | 0.476 | 4.33 | 4.98 | 41.8420 | 83.7 | | | | 21 | 43 13C2-6:2 FTS | 429.1 > 408.9 | 3.18e3 | 2.57e3 | 0.250 | 1.825 | 4.63 | 15.5 | 33.9782 | 68.0 | | | | 22 | -1 | | | | | | | | | | | | | 23 | 11 L-PFOA | 412.8 > 368.9 | | 1.21e4 | 0.250 | | | | | | | | | 24 | 69 Total PFOA | 412.8 > 368.9 | 0.00e0 | 1.21e4 | 0.250 | | | 0.000 | | | | | | 25 | 13 PFHpS | 449 > 80.0 | | 2.45e3 | 0.250 | | | | | | | | | 26 | 16 L-PFOS | 498.9 > 79.9 | | 2.45e3 | 0.250 | | | | | | | | | 27 | 70 Total PFOS | 498.9 > 79.9 | 0.00e0 | 2.45e3 | 0.250 | | | 0.000 | | | | | | 28 | 44 13C2-PFOA | 414.9 > 369.7 | 1.21e4 | 1.85e4 | 0.250 | 0.873 | 4.68 | 8.16 | 37.4063 | 74.8 | | | | 29 | 44 13C2-PFOA | 414.9 > 369.7 | 1.21e4 | 1.85e4 | 0.250 | 0.873 | 4.68 | 8.16 | 37.4063 | 74.8 | | | | 30 | 47 13C8-PFOS | 507.0 > 79.9 | 2.45e3 | 2.57e3 | 0.250 | 0.968 | 5.20 | 11.9 | 49.2918 | 98.6 | | | | 31 | 47 13C8-PFOS | 507.0 > 79.9 | 2.45e3 | 2.57e3 | 0.250 | 0.968 | 5.20 | 11.9 | 49.2918 | 98.6 | | | | 32 | 47 13C8-PFOS | 507.0 > 79.9 | 2.45e3 | 2.57e3 | 0.250 | 0.968 | 5.20 | 11.9 | 49.2918 | 98.6 | | | | 33 | -1 | | | | | | | | | | | | | 34 | 14 PFNA | 463.0 > 418.8 | | 1.27e4 | 0.250 | | | | | | | | | 35 | 15 PFOSA | 497.9 > 77.9 | | 1.10e3_ | 0.250_ | | | | _ | _ | _ | | | | Work Order 1803676 | | | - | | | | - | | | - | | CGH 12/4/2018 Page 31 of 556 MM 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.qld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:52:03 Pacific Standard Time ### Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank | | # Name | Trace | Area | IS Area | wt/vol RI | RF Mean | RT | Respo | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|-----------|---------|------|---------|---------|------|-----------|------------| | 36 | 18 PFDA | 513 > 468.8 | 5.59e0 | 1.32e4 | 0.250 | | 5.49 | 0.00528 | 0.0832 | | 4.46 | NO |
 37 | 19 8:2 FTS | 527 > 506.9 | | 2.67e3 | 0.250 | | | | | | | | | 38 | 20 PFNS | 549.1 > 80.1 | | 2.45e3 | 0.250 | | | | | | | | | 39 | 45 13C5-PFNA | 468.2 > 422.9 | 1.27e4 | 1.33e4 | 0.250 | 1.006 | 5.12 | 12.0 | 47.5785 | 95.2 | | | | 40 | 46 13C8-PFOSA | 506.1 > 77.7 | 1.10e3 | 1.76e4 | 0.250 | 0.202 | 5.15 | 0.785 | 15.5710 | 31.1 | | | | 41 | 48 13C2-PFDA | 515.1 > 469.9 | 1.32e4 | 1.49e4 | 0.250 | 1.125 | 5.49 | 11.1 | 39.4757 | 79.0 | | | | 42 | 49 13C2-8:2 FTS | 529.1 > 508.7 | 2.67e3 | 2.57e3 | 0.250 | 1.086 | 5.46 | 13.0 | 47.8855 | 95.8 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.45e3 | 2.57e3 | 0.250 | 0.968 | 5.20 | 11.9 | 49.2918 | 98.6 | | | | 44 | -1 | | | | | | | | | | | | | 45 | 21 L-MeFOSAA | 570 > 419 | | 3.40e3 | 0.250 | | | | | | | | | 46 | 71 Total N-MeFOSAA | 570. > 419 | 0.00e0 | 3.40e3 | 0.250 | | | 0.000 | | | | | | 47 | 23 L-EtFOSAA | 584.1 > 419 | | 4.65e3 | 0.250 | | | | | | | | | 48 | 72 Total N-EtFOSAA | 584.1 > 419 | 0.00e0 | 4.65e3 | 0.250 | | | 0.000 | | | | | | 49 | 25 PFUdA | 563.0 > 518.9 | 2.40e1 | 1.48e4 | 0.250 | | 5.81 | 0.0204 | 0.0746 | | 10.3 | NO | | 50 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.40e3 | 1.76e4 | 0.250 | 0.329 | 5.63 | 2.42 | 29.3713 | 58.7 | | | | 51 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.40e3 | 1.76e4 | 0.250 | 0.329 | 5.63 | 2.42 | 29.3713 | 58.7 | | | | 52 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.65e3 | 1.76e4 | 0.250 | 0.355 | 5.79 | 3.31 | 37.2650 | 74.5 | | | | 53 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.65e3 | 1.76e4 | 0.250 | 0.355 | 5.79 | 3.31 | 37.2650 | 74.5 | | | | 54 | 51 13C2-PFUdA | 565 > 519.8 | 1.48e4 | 1.76e4 | 0.250 | 1.111 | 5.81 | 10.5 | 37.7668 | 75.5 | | | | 55 | -1 | | | | | | | | | | | | | 56 | 26 PFDS | 598.8 > 79.9 | | 2.45e3 | 0.250 | | | | | | | | | 57 | 27 PFDoA | 612.9 > 569.0 | | 1.28e4 | 0.250 | | | | | | | | | 58 | 29 PFTrDA | 662.9 > 618.9 | | 1.28e4 | 0.250 | | | | | | | | | 59 | 30 PFTeDA | 713.0 > 669.0 | | 9.54e3 | 0.250 | | | | | | | | | 60 | 28 N-MeFOSA | 512.1 > 168.9 | | | 0.250 | | | | | | | | | 61 | 47 13C8-PFOS | 507.0 > 79.9 | 2.45e3 | 2.57e3 | 0.250 | 0.968 | 5.20 | 11.9 | 49.2918 | 98.6 | | | | 62 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.28e4 | 1.49e4 | 0.250 | 0.993 | 6.09 | 10.7 | 43.2180 | 86.4 | | | | 63 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.28e4 | 1.49e4 | 0.250 | 0.993 | 6.09 | 10.7 | 43.2180 | 86.4 | | | | 64 | 55 13C2-PFTeDA | 715.1 > 669.7 | 9.54e3 | 1.76e4 | 0.250 | 0.749 | 6.55 | 6.78 | 36.2184 | 72.4 | | | | 65 | 54 d3-N-MeFOSA | 515.2 > 168.9 | | 1.76e4 | 0.250 | 0.074 | | | | | | | | 66 | -1 | | | | | | | | | | | | | 67 | 31 N-EtFOSA | 526.1 > 168.9 | | | 0.250 | | | | | | | | | 68 | 32 PFHxDA | 813.1 > 768.6 | | 4.24e3 | 0.250 | | | | | | | | | 69 | 33 PFODA | 913.1 > 868.8 | 1.23e1 | 4.24e3 | 0.250 | | 7.08 | 0.0145 | 0.0163 | | | | | 70 | 34 N-MeFOSE | 616.1 > 58.9 | | | 0.250 | | | | | | | | | | Work Order 1803676 | _ | • | • | - | • | _ | - | _ | - | - | | CGH 12/4/2018 Page 32 of 556 Vista Analytical Laboratory L30 MM 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.qld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:52:03 Pacific Standard Time #### Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank | | # Name | Trace | Area | IS Area | wt/vol RRI | F Mean | RT Re | espo | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|----------------|---------------|--------|---------|------------|--------|-------|------|---------|-------|-----------|------------| | 71 | 35 N-EtFOSE | 630.1 > 58.9 | | | 0.250 | | | | | | | | | 72 | 56 d5-N-ETFOSA | 531.1 > 168.9 | | 1.76e4 | 0.250 | 0.097 | | | | | | | | 73 | 57 13C2-PFHxDA | 815 > 769.7 | 4.24e3 | 1.76e4 | 0.250 | 0.714 | 6.86 | 3.01 | 16.8826 | 84.4 | | | | 74 | 57 13C2-PFHxDA | 815 > 769.7 | 4.24e3 | 1.76e4 | 0.250 | 0.714 | 6.86 | 3.01 | 16.8826 | 84.4 | | | | 75 | 58 d7-N-MeFOSE | 623.1 > 58.9 | | 1.76e4 | 0.250 | 0.036 | | | | | | | | 76 | 59 d9-N-EtFOSE | 639.2 > 58.8 | | 1.76e4 | 0.250 | 0.036 | | | | | | | | 77 | -1 | | | | | | | | | | | | | 78 | 73 TCDA | 498.3>106.9 | | | 0.250 | | | | | | | | | 79 | 61 13C5-PFHxA | 318 > 272.9 | 1.37e4 | 1.37e4 | 0.250 | 1.000 | 3.56 | 12.5 | 50.0000 | 100.0 | | | | 80 | 60 13C4-PFBA | 217. > 172 | 6.76e3 | 6.76e3 | 0.250 | 1.000 | 1.41 | 12.5 | 50.0000 | 100.0 | | | | 81 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.34e3 | 2.34e3 | 0.250 | 1.000 | 4.33 | 12.5 | 50.0000 | 100.0 | | | | 82 | 63 13C8-PFOA | 420.9 > 376 | 1.85e4 | 1.85e4 | 0.250 | 1.000 | 4.68 | 12.5 | 50.0000 | 100.0 | | | | 83 | 47 13C8-PFOS | 507.0 > 79.9 | 2.45e3 | 2.57e3 | 0.250 | 0.968 | 5.20 | 11.9 | 49.2918 | 98.6 | | | | 84 | 64 13C9-PFNA | 472.2 > 426.9 | 1.33e4 | 1.33e4 | 0.250 | 1.000 | 5.12 | 12.5 | 50.0000 | 100.0 | | | | 85 | 65 13C4-PFOS | 503 > 79.9 | 2.57e3 | 2.57e3 | 0.250 | 1.000 | 5.20 | 12.5 | 50.0000 | 100.0 | | | | 86 | 66 13C6-PFDA | 519.1 > 473.7 | 1.49e4 | 1.49e4 | 0.250 | 1.000 | 5.49 | 12.5 | 50.0000 | 100.0 | | | | 87 | 67_13C7-PFUdA | 570.1 > 524.8 | 1.76e4 | 1.76e4 | 0.250 | 1.000_ | 5.81_ | 12.5 | 50.0000 | 100.0 | | | MM 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.qld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Tuesday, December 04, 2018 12:52:03 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18 VAL-PFAS Q4 12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank MM 12/4/2018 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.gld Dataset: Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Tuesday, December 04, 2018 12:52:03 Pacific Standard Time Printed: Name: 181203M1 7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank CGH 12/4/2018 Work Order 1803676 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.qld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:52:03 Pacific Standard Time Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank CGH 12/4/2018 MM 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.qld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:52:03 Pacific Standard Time Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank CGH 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.qld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:52:03 Pacific Standard Time Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank CGH 12/4/2018 Work Order 1803676 Page 38 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.gld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:52:03 Pacific Standard Time Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank CGH 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.qld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:52:03 Pacific Standard Time Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank CGH 12/4/2018 Work Order 1803676 Page 40 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-7.qld Last Altered: Tuesday, December 04, 2018 12:44:00 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:52:03 Pacific Standard Time Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank CGH 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR | | # Name | Trace | Area | IS Area | wt/vol RR | F Mean | RT | Respo | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|-----------|--------|------|-------|---------|-------|-----------|------------| | 1 | 1 PFBA | 213.0 > 168.8 | 4.57e3 | 5.13e3 | 0.250 | | 1.41 | 11.1 | 43.4281 | 108.6 | | | | 2 | 2 PFPeA | 263.1 > 218.9 | 4.85e3 | 6.57e3 | 0.250 | | 2.68 | 9.23 | 40.5799 | 101.4 | | | | 3 | 3 PFBS | 299.0 > 79.7 | 1.89e3 | 1.14e3 | 0.250 | | 3.00 | 20.8 | 41.3022 | 103.3 | 3.30 | NO | | 4 | 4 4:2 FTS | 327.2>307.2 | 2.45e3 | 2.95e3 | 0.250 | | 3.48 | 10.4 | 51.1914 | 128.0 | 2.01 | NO | | 5 | 5 PFHxA | 313 > 269 | 9.28e3 | 4.78e3 | 0.250 | | 3.56 | 9.70 | 37.0550 | 92.6 | 14.5 | NO | | 6 | 36 13C3-PFBA | 216.1 > 171.8 | 5.13e3 | 6.33e3 | 0.250 | 0.861 | 1.41 | 10.1 | 47.0582 | 94.1 | | | | 7 | 37 13C3-PFPeA | 266. > 221.8 | 6.57e3 | 1.28e4 | 0.250 | 0.604 | 2.68 | 6.41 | 42.4725 | 84.9 | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.14e3 | 2.20e3 | 0.250 | 0.633 | 3.00 | 6.45 | 40.7388 | 81.5 | | | | 9 | 39 13C2-4:2 FTS | 329.2>308.9 | 2.95e3 | 2.20e3 | 0.250 | 2.074 | 3.47 | 16.8 | 32.3298 | 64.7 | | | | 10 | 40 13C2-PFHxA | 315 > 270 | 4.78e3 | 1.28e4 | 0.250 | 0.900 | 3.56 | 4.66 | 20.7220 | 103.6 | | | | 11 | -1 | | | | | | | | | | | | | 12 | 6 PFPeS | 349.1>80.1 | 1.27e3 | 1.14e3 | 0.250 | | 3.77 | 13.9 | 37.7738 | 94.4 | 1.46 | NO | | 13 | 7 PFHpA | 363.0 > 318.9 | 7.55e3 | 7.13e3 | 0.250 | | 4.20 | 13.2 | 45.5104 | 113.8 | 15.2 | NO | | 14 | 8 L-PFHxS | 398.9 > 79.6 | 1.70e3 | 1.01e3 | 0.250 | | 4.33 | 21.1 | 42.8286 | 107.1 | 2.12 | NO | | 15 | 68 Total PFHxS | 398.9 >
79.6 | 1.70e3 | 1.01e3 | 0.250 | | | 21.1 | 42.8286 | | | | | 16 | 10 6:2 FTS | 427.1 > 407 | 3.47e3 | 3.30e3 | 0.250 | | 4.63 | 13.1 | 55.7880 | 139.5 | 3.19 | NO | | 17 | 38 13C3-PFBS | 302. > 98.8 | 1.14e3 | 2.20e3 | 0.250 | 0.633 | 3.00 | 6.45 | 40.7388 | 81.5 | | | | 18 | 41 13C4-PFHpA | 367.2 > 321.8 | 7.13e3 | 1.28e4 | 0.250 | 0.693 | 4.19 | 6.95 | 40.1340 | 80.3 | | | | 19 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.01e3 | 2.20e3 | 0.250 | 0.476 | 4.33 | 5.71 | 48.0073 | 96.0 | | | | 20 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.01e3 | 2.20e3 | 0.250 | 0.476 | 4.33 | 5.71 | 48.0073 | 96.0 | | | | 21 | 43 13C2-6:2 FTS | 429.1 > 408.9 | 3.30e3 | 2.48e3 | 0.250 | 1.825 | 4.63 | 16.7 | 36.5259 | 73.1 | | | | 22 | -1 | | | | | | | | | | | | | 23 | 11 L-PFOA | 412.8 > 368.9 | 1.35e4 | 1.17e4 | 0.250 | | 4.68 | 14.5 | 47.3255 | 118.3 | 3.24 | NO | | 24 | 69 Total PFOA | 412.8 > 368.9 | 1.35e4 | 1.17e4 | 0.250 | | | 14.5 | 47.3255 | | | | | 25 | 13 PFHpS | 449 > 80.0 | 1.76e3 | 2.52e3 | 0.250 | | 4.79 | 8.72 | 39.6499 | 99.1 | 1.81 | NO | | 26 | 16 L-PFOS | 498.9 > 79.9 | 2.11e3 | 2.52e3 | 0.250 | | 5.19 | 10.5 | 38.0484 | 95.1 | 2.14 | NO | | 27 | 70 Total PFOS | 498.9 > 79.9 | 2.11e3 | 2.52e3 | 0.250 | | | 10.5 | 38.0484 | | | | | 28 | 44 13C2-PFOA | 414.9 > 369.7 | 1.17e4 | 1.75e4 | 0.250 | 0.873 | 4.68 | 8.32 | 38.1084 | 76.2 | | | | 29 | 44 13C2-PFOA | 414.9 > 369.7 | 1.17e4 | 1.75e4 | 0.250 | 0.873 | 4.68 | 8.32 | 38.1084 | 76.2 | | | | 30 | 47 13C8-PFOS | 507.0 > 79.9 | 2.52e3 | 2.48e3 | 0.250 | 0.968 | 5.19 | 12.7 | 52.6695 | 105.3 | | | | 31 | 47 13C8-PFOS | 507.0 > 79.9 | 2.52e3 | 2.48e3 | 0.250 | 0.968 | 5.19 | 12.7 | 52.6695 | 105.3 | | | | 32 | 47 13C8-PFOS | 507.0 > 79.9 | 2.52e3 | 2.48e3 | 0.250 | 0.968 | 5.19 | 12.7 | 52.6695 | 105.3 | | | | 33 | -1 | | | | | | | | | | | | | 34 | 14 PFNA | 463.0 > 418.8 | 1.10e4 | 1.18e4 | 0.250 | | 5.11 | 11.6 | 42.0483 | 105.1 | 4.87 | NO | | 35 | 15 PFOSA 1002676 | 497.9 > 77.9 | 1.22e3 | 1.43e3 | 0.250 | | 5.15 | 10.7 | 37.7042 | 94.3 | 41.0 | YES | | | Work Order 1803676 | <u> </u> | - | _ | _ | _ | - | _ | - | _ | _ | | CGH 12/4/2018 Page 42 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR | | # Name | Trace | Area | IS Area | wt/vol RF | RF Mean | RT I | Respo | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|-----------|---------|------|-------|---------|-------|-----------|------------| | 36 | 18 PFDA | 513 > 468.8 | 1.10e4 | 1.19e4 | 0.250 | | 5.49 | 11.6 | 43.1038 | 107.8 | 6.04 | NO | | 37 | 19 8:2 FTS | 527 > 506.9 | 3.23e3 | 2.81e3 | 0.250 | | 5.46 | 14.4 | 44.1912 | 110.5 | 2.54 | NO | | 38 | 20 PFNS | 549.1 > 80.1 | 1.27e3 | 2.52e3 | 0.250 | | 5.55 | 6.28 | 32.4646 | 81.2 | 1.86 | NO | | 39 | 45 13C5-PFNA | 468.2 > 422.9 | 1.18e4 | 1.36e4 | 0.250 | 1.006 | 5.11 | 10.9 | 43.2691 | 86.5 | | | | 40 | 46 13C8-PFOSA | 506.1 > 77.7 | 1.43e3 | 1.77e4 | 0.250 | 0.202 | 5.15 | 1.01 | 19.9917 | 40.0 | | | | 41 | 48 13C2-PFDA | 515.1 > 469.9 | 1.19e4 | 1.52e4 | 0.250 | 1.125 | 5.49 | 9.84 | 35.0012 | 70.0 | | | | 42 | 49 13C2-8:2 FTS | 529.1 > 508.7 | 2.81e3 | 2.48e3 | 0.250 | 1.086 | 5.46 | 14.2 | 52.2239 | 104.4 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.52e3 | 2.48e3 | 0.250 | 0.968 | 5.19 | 12.7 | 52.6695 | 105.3 | | | | 44 | -1 | | | | | | | | | | | | | 45 | 21 L-MeFOSAA | 570 > 419 | 4.18e3 | 3.07e3 | 0.250 | | 5.64 | 17.0 | 45.1668 | 112.9 | 2.27 | NO | | 46 | 71 Total N-MeFOSAA | 570. > 419 | 4.18e3 | 3.07e3 | 0.250 | | | 17.0 | 45.1668 | | | | | 47 | 23 L-EtFOSAA | 584.1 > 419 | 3.71e3 | 4.22e3 | 0.250 | | 5.79 | 11.0 | 40.5764 | 101.4 | 1.28 | NO | | 48 | 72 Total N-EtFOSAA | 584.1 > 419 | 3.71e3 | 4.22e3 | 0.250 | | | 11.0 | 40.5764 | | | | | 49 | 25 PFUdA | 563.0 > 518.9 | 1.02e4 | 1.34e4 | 0.250 | | 5.81 | 9.52 | 35.3801 | 88.5 | 9.66 | NO | | 50 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.07e3 | 1.77e4 | 0.250 | 0.329 | 5.63 | 2.17 | 26.3869 | 52.8 | | | | 51 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.07e3 | 1.77e4 | 0.250 | 0.329 | 5.63 | 2.17 | 26.3869 | 52.8 | | | | 52 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.22e3 | 1.77e4 | 0.250 | 0.355 | 5.79 | 2.98 | 33.6026 | 67.2 | | | | 53 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.22e3 | 1.77e4 | 0.250 | 0.355 | 5.79 | 2.98 | 33.6026 | 67.2 | | | | 54 | 51 13C2-PFUdA | 565 > 519.8 | 1.34e4 | 1.77e4 | 0.250 | 1.111 | 5.81 | 9.48 | 34.1373 | 68.3 | | | | 55 | -1 | | | | | | | | | | | | | 56 | 26 PFDS | 598.8 > 79.9 | 1.79e3 | 2.52e3 | 0.250 | | 5.85 | 8.88 | 43.3902 | 108.5 | 1.70 | NO | | 57 | 27 PFDoA | 612.9 > 569.0 | 1.23e4 | 1.18e4 | 0.250 | | 6.09 | 13.0 | 39.6393 | 99.1 | 8.70 | NO | | 58 | 29 PFTrDA | 662.9 > 618.9 | 1.23e4 | 1.18e4 | 0.250 | | 6.33 | 13.0 | 42.8956 | 107.2 | 26.4 | NO | | 59 | 30 PFTeDA | 713.0 > 669.0 | 1.22e4 | 9.66e3 | 0.250 | | 6.55 | 15.8 | 55.8544 | 139.6 | 14.6 | NO | | 60 | 28 N-MeFOSA | 512.1 > 168.9 | 7.31e2 | | 0.250 | | 6.01 | | | | 1.63 | NO | | 61 | 47 13C8-PFOS | 507.0 > 79.9 | 2.52e3 | 2.48e3 | 0.250 | 0.968 | 5.19 | 12.7 | 52.6695 | 105.3 | | | | 62 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.18e4 | 1.52e4 | 0.250 | 0.993 | 6.09 | 9.74 | 39.2178 | 78.4 | | | | 63 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.18e4 | 1.52e4 | 0.250 | 0.993 | 6.09 | 9.74 | 39.2178 | 78.4 | | | | 64 | 55 13C2-PFTeDA | 715.1 > 669.7 | 9.66e3 | 1.77e4 | 0.250 | 0.749 | 6.54 | 6.82 | 36.4253 | 72.9 | | | | 65 | 54 d3-N-MeFOSA | 515.2 > 168.9 | | 1.77e4 | 0.250 | 0.074 | | | | | | | | 66 | -1 | | | | | | | | | | | | | 67 | 31 N-EtFOSA | 526.1 > 168.9 | 9.50e2 | | 0.250 | | 6.45 | | | | 1.66 | NO | | 68 | 32 PFHxDA | 813.1 > 768.6 | 3.55e3 | 3.87e3 | 0.250 | | 6.86 | 4.58 | 34.2852 | 85.7 | 18.8 | NO | | 69 | 33 PFODA | 913.1 > 868.8 | 5.58e2 | 3.87e3 | 0.250 | | 7.08 | 0.721 | 3.3092 | 8.3 | | | | 70 | 34 N-MeFOSE | 616.1 > 58.9 | 1.13e3 | | 0.250 | | 6.68 | | | | | | | _ | Work Order 1803676 | - | | • | _ | _ | • | - | _ | • | - | | CGH 12/4/2018 Page 43 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR | | # Name | Trace | Area | IS Area | wt/vol RRI | - Mean | RT Re | spo | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|----------------|---------------|---------|---------|------------|--------|-------|------|---------|-------|-----------|------------| | 71 | 35 N-EtFOSE | 630.1 > 58.9 | 1.40e3 | | 0.250 | | 6.82 | | | | | | | 72 | 56 d5-N-ETFOSA | 531.1 > 168.9 | | 1.77e4 | 0.250 | 0.097 | | | | | | | | 73 | 57 13C2-PFHxDA | 815 > 769.7 | 3.87e3 | 1.77e4 | 0.250 | 0.714 | 6.86 | 2.73 | 15.3060 | 76.5 | | | | 74 | 57 13C2-PFHxDA | 815 > 769.7 | 3.87e3 | 1.77e4 | 0.250 | 0.714 | 6.86 | 2.73 | 15.3060 | 76.5 | | | | 75 | 58 d7-N-MeFOSE | 623.1 > 58.9 | | 1.77e4 | 0.250 | 0.036 | | | | | | | | 76 | 59 d9-N-EtFOSE | 639.2 > 58.8 | | 1.77e4 | 0.250 | 0.036 | | | | | | | | 77 | -1 | | | | | | | | | | | | | 78 | 73 TCDA | 498.3>106.9 | | | 0.250 | | | | | | | | | 79 | 61 13C5-PFHxA | 318 > 272.9 | 1.28e4 | 1.28e4 | 0.250 | 1.000 | 3.56 | 12.5 | 50.0000 | 100.0 | | | | 80 | 60 13C4-PFBA | 217. > 172 | 6.33e3 | 6.33e3 | 0.250 | 1.000 | 1.41 | 12.5 | 50.0000 | 100.0 | | | | 81 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.20e3 | 2.20e3 | 0.250 | 1.000 | 4.33 | 12.5 | 50.0000 | 100.0 | | | | 82 | 63 13C8-PFOA | 420.9 > 376 | 1.75e4 | 1.75e4 | 0.250 | 1.000 | 4.68 | 12.5 | 50.0000 | 100.0 | | | | 83 | 47 13C8-PFOS | 507.0 > 79.9 | 2.52e3 | 2.48e3 | 0.250 | 0.968 | 5.19 | 12.7 | 52.6695 | 105.3 | | | | 84 | 64 13C9-PFNA | 472.2 > 426.9 | 1.36e4 | 1.36e4 | 0.250 | 1.000 | 5.11 | 12.5 | 50.0000 | 100.0 | | | | 85 | 65 13C4-PFOS | 503 > 79.9 | 2.48e3 | 2.48e3 | 0.250 | 1.000 | 5.20 | 12.5 | 50.0000 | 100.0 | | | | 86 | 66 13C6-PFDA | 519.1 > 473.7 | 1.52e4 | 1.52e4 | 0.250 | 1.000 | 5.49 | 12.5 | 50.0000 | 100.0 | | | | 87 | 67_13C7-PFUdA | 570.1 > 524.8 | 1.77e4_ | 1.77e4 | 0.250 | 1.000 | 5.81 | 12.5 | 50.0000 | 100.0 | | | MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR CGH 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR CGH 12/4/2018 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR CGH
12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR CGH 12/4/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-4.qld Last Altered: Tuesday, December 04, 2018 12:10:04 Pacific Standard Time Printed: Tuesday, December 04, 2018 12:19:21 Pacific Standard Time Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR Page 5 of 6 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-12.qld Last Altered: Wednesday, December 05, 2018 10:18:26 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:19:54 Pacific Standard Time ## Name: 181203M1_12, Date: 03-Dec-2018, Time: 16:22:46, ID: 1803676-01 A1-MW-11-SA2 0.11626, Description: A1-MW-11-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 1 | 3 PFBS | 299.0 > 79.7 | 4.07e3 | 1.18e3 | 0.116 | | 3.00 | 3.00 | 43.1 | 184.0140 | | 2.939 | NO | | 2 | 5 PFHxA | 313 > 269 | 3.39e4 | 3.06e3 | 0.116 | | 3.56 | 3.57 | 55.4 | 459.6291 | | 14.876 | NO | | 3 | 7 PFHpA | 363.0 > 318.9 | 1.63e3 | 4.28e3 | 0.116 | | 4.20 | 4.20 | 4.76 | 35.1678 | | 11.509 | NO | | 4 | 8 L-PFHxS | 398.9 > 79.6 | 2.22e3 | 1.10e3 | 0.116 | | 4.33 | 4.33 | 25.1 | 109.2595 | | 2.332 | NO | | 5 | 68 Total PFHxS | 398.9 > 79.6 | 2.22e3 | 1.10e3 | 0.116 | | 4.58 | | 25.1 | 109.2595 | | | | | 6 | 11 L-PFOA | 412.8 > 368.9 | 2.79e3 | 6.99e3 | 0.116 | | 4.58 | 4.68 | 5.00 | 34.9089 | | 3.248 | NO | | 7 | 69 Total PFOA | 412.8 > 368.9 | 2.79e3 | 6.99e3 | 0.116 | | 4.97 | | 5.00 | 34.9089 | | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.18e3 | 2.59e3 | 0.116 | 0.633 | 3.00 | 3.00 | 5.70 | 77.4618 | 72.0 | | | | 9 | 40 13C2-PFHxA | 315 > 270 | 3.06e3 | 8.44e3 | 0.116 | 0.900 | 3.56 | 3.56 | 4.53 | 43.2757 | 100.6 | | | | 10 | 41 13C4-PFHpA | 367.2 > 321.8 | 4.28e3 | 8.44e3 | 0.116 | 0.693 | 4.19 | 4.20 | 6.34 | 78.6354 | 73.1 | | | | 11 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.10e3 | 2.59e3 | 0.116 | 0.476 | 4.33 | 4.33 | 5.34 | 96.5546 | 89.8 | | | | 12 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.10e3 | 2.59e3 | 0.116 | 0.476 | 4.33 | 4.33 | 5.34 | 96.5546 | 89.8 | | | | 13 | 44 13C2-PFOA | 414.9 > 369.7 | 6.99e3 | 1.10e4 | 0.116 | 0.873 | 4.68 | 4.68 | 7.94 | 78.2600 | 72.8 | | | | 14 | 44 13C2-PFOA | 414.9 > 369.7 | 6.99e3 | 1.10e4 | 0.116 | 0.873 | 4.68 | 4.68 | 7.94 | 78.2600 | 72.8 | | | | 15 | -1 | | | | | | | | | | | | | | 16 | 14 PFNA | 463.0 > 418.8 | | 6.40e3 | 0.116 | | 5.11 | | | | | | | | 17 | 16 L-PFOS | 498.9 > 79.9 | 2.46e2 | 2.76e3 | 0.116 | | 5.08 | 5.20 | 1.11 | 9.1564 | | 2.700 | NO | | 18 | 70 Total PFOS | 498.9 > 79.9 | 2.46e2 | 2.76e3 | 0.116 | | 5.46 | | 1.11 | 9.1564 | | | | | 19 | 18 PFDA | 513 > 468.8 | | 6.64e3 | 0.116 | | 5.48 | | | | | | | | 20 | 21 L-MeFOSAA | 570 > 419 | | 3.09e3 | 0.116 | | 5.63 | | | | | | | | 21 | 71 Total N-MeFOSAA | 570. > 419 | 0.00e0 | 3.09e3 | 0.116 | | 5.90 | | 0.000 | | | | | | 22 | 25 PFUdA | 563.0 > 518.9 | | 7.69e3 | 0.116 | | 5.81 | | | | | | | | 23 | 45 13C5-PFNA | 468.2 > 422.9 | 6.40e3 | 7.74e3 | 0.116 | 1.006 | 5.11 | 5.12 | 10.3 | 88.3352 | 82.2 | | | | 24 | 47 13C8-PFOS | 507.0 > 79.9 | 2.76e3 | 2.52e3 | 0.116 | 0.968 | 5.19 | 5.20 | 13.7 | 121.8797 | 113.4 | | | | 25 | 47 13C8-PFOS | 507.0 > 79.9 | 2.76e3 | 2.52e3 | 0.116 | 0.968 | 5.19 | 5.20 | 13.7 | 121.8797 | 113.4 | | | | 26 | 48 13C2-PFDA | 515.1 > 469.9 | 6.64e3 | 9.12e3 | 0.116 | 1.125 | 5.48 | 5.49 | 9.10 | 69.6056 | 64.7 | | | | 27 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.09e3 | 1.11e4 | 0.116 | 0.329 | 5.63 | 5.63 | 3.48 | 90.8227 | 84.5 | | | | 28 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.09e3 | 1.11e4 | 0.116 | 0.329 | 5.63 | 5.63 | 3.48 | 90.8227 | 84.5 | | | | 29 | 51 13C2-PFUdA | 565 > 519.8 | 7.69e3 | 1.11e4 | 0.116 | 1.111 | 5.81 | 5.81 | 8.64 | 66.8891 | 62.2 | | | | 30 | -1 | | | | | | | | | | | | | | 31 | 23 L-EtFOSAA | 584.1 > 419 | | 4.14e3 | 0.116 | | 5.79 | | | | | | | | 32 | 72 Total N-EtFOSAA | 584.1 > 419 | 0.00e0 | 4.14e3 | 0.116 | | 6.06 | | 0.000 | | | | | | 33 | 29 PFTrDA | 662.9 > 618.9 | | 7.44e3 | 0.116 | | 6.32 | | | | | | | | 34 | 27 PFDoA | 612.9 > 569.0 | | 7.44e3 | 0.116 | | 6.08 | | | | | | | | 35 | 30 PFTeDA | 713.0 > 669.0 | 1.31e1 | 7.33e3 | 0.116 | | 6.54 | 6.55 | 0.0224 | 0.1597 | | 27.487 | YES
AI | | 36 | 73 TCDA | 498.3>106.9 | | | 0.116 | | 5.45 | | | | | | Î | ÄD 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-12.qld Last Altered: Wednesday, December 05, 2018 10:18:26 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:19:54 Pacific Standard Time Name: 181203M1_12, Date: 03-Dec-2018, Time: 16:22:46, ID: 1803676-01 A1-MW-11-SA2 0.11626, Description: A1-MW-11-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|-----------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 37 | 61 13C5-PFHxA | 318 > 272.9 | 8.44e3 | 8.44e3 | 0.116 | 1.000 | 3.56 | 3.56 | 12.5 | 107.5176 | 100.0 | | | | 38 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.14e3 | 1.11e4 | 0.116 | 0.355 | 5.78 | 5.79 | 4.65 | 112.7428 | 104.9 | | | | 39 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.14e3 | 1.11e4 | 0.116 | 0.355 | 5.78 | 5.79 | 4.65 | 112.7428 | 104.9 | | | | 40 | 53 13C2-PFDoA | 615.0 > 569.7 | 7.44e3 | 9.12e3 | 0.116 | 0.993 | 6.08 | 6.09 | 10.2 | 88.3471 | 82.2 | | | | 41 | 53 13C2-PFDoA | 615.0 > 569.7 | 7.44e3 | 9.12e3 | 0.116 | 0.993 | 6.08 | 6.09 | 10.2 | 88.3471 | 82.2 | | | | 42 | 55 13C2-PFTeDA | 715.1 > 669.7 | 7.33e3 | 1.11e4 | 0.116 | 0.749 | 6.54 | 6.55 | 8.23 | 94.5293 | 87.9 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.76e3 | 2.52e3 | 0.116 | 0.968 | 5.19 | 5.20 | 13.7 | 121.8797 | 113.4 | | | | 44 | 63 13C8-PFOA | 420.9 > 376 | 1.10e4 | 1.10e4 | 0.116 | 1.000 | 4.68 | 4.68 | 12.5 | 107.5176 | 100.0 | | | | 45 | -1 | | | | | | | | | | | | | | 46 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.59e3 | 2.59e3 | 0.116 | 1.000 | 4.33 | 4.33 | 12.5 | 107.5176 | 100.0 | | | | 47 | 64 13C9-PFNA | 472.2 > 426.9 | 7.74e3 | 7.74e3 | 0.116 | 1.000 | 5.11 | 5.12 | 12.5 | 107.5176 | 100.0 | | | | 48 | 65 13C4-PFOS | 503 > 79.9 | 2.52e3 | 2.52e3 | 0.116 | 1.000 | 5.19 | 5.20 | 12.5 | 107.5176 | 100.0 | | | | 49 | 66 13C6-PFDA | 519.1 > 473.7 | 9.12e3 | 9.12e3 | 0.116 | 1.000 | 5.48 | 5.49 | 12.5 | 107.5176 | 100.0 | | | | 50 | 67 13C7-PFUdA | 570.1 > 524.8 | 1.11e4 | 1.11e4 | 0.116 | 1.000 | 5.81 | 5.81 | 12.5 | 107.5176 | 100.0 | | | Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-12.qld Last Altered: Wednesday, December 05, 2018 10:18:26 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:19:54 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_12, Date: 03-Dec-2018, Time: 16:22:46, ID: 1803676-01 A1-MW-11-SA2 0.11626, Description: A1-MW-11-SA2 Work Order 1803676 Page 55 of 556 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-12.qld Last Altered: Wednesday, December 05, 2018 10:18:26 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:19:54 Pacific Standard Time Name: 181203M1_12, Date: 03-Dec-2018, Time: 16:22:46, ID: 1803676-01 A1-MW-11-SA2 0.11626, Description: A1-MW-11-SA2 AD 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-12.qld Last Altered: Wednesday, December 05, 2018 10:18:26 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:19:54 Pacific Standard Time Name: 181203M1_12, Date: 03-Dec-2018, Time: 16:22:46, ID: 1803676-01 A1-MW-11-SA2 0.11626, Description: A1-MW-11-SA2 AD 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-12.qld **Quantify Sample Report** Last Altered: Wednesday, December 05, 2018 10:18:26 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:19:54 Pacific Standard Time Name: 181203M1_12, Date: 03-Dec-2018, Time: 16:22:46, ID: 1803676-01 A1-MW-11-SA2 0.11626, Description: A1-MW-11-SA2 Page 5 of 6 Vista Analytical Laboratory L14 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-13.qld Last Altered: Wednesday, December 05, 2018 10:24:07 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:24:15 Pacific Standard Time ## Name: 181203M1_13, Date: 03-Dec-2018, Time: 16:33:24, ID: 1803676-02 A1-MW-13-SA2 0.11042, Description: A1-MW-13-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|------|-----------|------------| | 1 | 3 PFBS | 299.0 > 79.7 | 4.72e3 | 1.02e3 | 0.110 | | 3.01 | 3.01 | 57.6 | 258.7667 | | 3.124 | NO | | 2 | 5 PFHxA | 313 > 269 | 5.80e4 | 3.88e3 | 0.110 | | 3.56 | 3.57 | 74.7 | 655.1207 | | 14.407 | NO | | 3 | 7 PFHpA | 363.0 > 318.9 | 5.83e3 | 5.42e3 | 0.110 | | 4.20 | 4.20 | 13.5 | 104.7425 | | 14.431 | NO | | 4 | 8 L-PFHxS | 398.9 > 79.6 | 6.14e3 | 9.59e2 | 0.110 | | 4.33 | 4.33 | 80.0 | 367.5226 | | 2.201 | NO | | 5 | 68 Total PFHxS | 398.9 > 79.6 | 6.14e3 | 9.59e2 | 0.110 | | 4.58 | | 80.0 | 367.5226 | | | | | 6 | 11 L-PFOA | 412.8 > 368.9 | 7.08e3 | 9.41e3 | 0.110 | |
4.58 | 4.68 | 9.40 | 69.4848 | | 3.018 | NO | | 7 | 69 Total PFOA | 412.8 > 368.9 | 7.08e3 | 9.41e3 | 0.110 | | 4.97 | | 9.40 | 69.4848 | | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.02e3 | 2.44e3 | 0.110 | 0.633 | 3.00 | 3.00 | 5.24 | 74.9841 | 66.2 | | | | 9 | 40 13C2-PFHxA | 315 > 270 | 3.88e3 | 1.10e4 | 0.110 | 0.900 | 3.56 | 3.56 | 4.40 | 44.3000 | 97.8 | | | | 10 | 41 13C4-PFHpA | 367.2 > 321.8 | 5.42e3 | 1.10e4 | 0.110 | 0.693 | 4.19 | 4.20 | 6.15 | 80.3509 | 71.0 | | | | 11 | 42 18O2-PFHxS | 403.0 > 102.6 | 9.59e2 | 2.44e3 | 0.110 | 0.476 | 4.33 | 4.33 | 4.91 | 93.5308 | 82.6 | | | | 12 | 42 18O2-PFHxS | 403.0 > 102.6 | 9.59e2 | 2.44e3 | 0.110 | 0.476 | 4.33 | 4.33 | 4.91 | 93.5308 | 82.6 | | | | 13 | 44 13C2-PFOA | 414.9 > 369.7 | 9.41e3 | 1.45e4 | 0.110 | 0.873 | 4.68 | 4.68 | 8.14 | 84.4403 | 74.6 | | | | 14 | 44 13C2-PFOA | 414.9 > 369.7 | 9.41e3 | 1.45e4 | 0.110 | 0.873 | 4.68 | 4.68 | 8.14 | 84.4403 | 74.6 | | | | 15 | -1 | | | | | | | | | | | | | | 16 | 14 PFNA | 463.0 > 418.8 | 6.37e1 | 8.93e3 | 0.110 | | 5.11 | 5.12 | 0.0891 | 1.1479 | | 7.517 | YES | | 17 | 16 L-PFOS | 498.9 > 79.9 | 2.51e3 | 2.40e3 | 0.110 | | 5.08 | 5.19 | 13.1 | 107.4974 | | 2.503 | NO | | 18 | 70 Total PFOS | 498.9 > 79.9 | 2.51e3 | 2.40e3 | 0.110 | | 5.46 | | 13.1 | 107.4974 | | | | | 19 | 18 PFDA | 513 > 468.8 | 3.80e1 | 9.00e3 | 0.110 | | 5.48 | 5.48 | 0.0528 | 0.5874 | | 6.768 | NO | | 20 | 21 L-MeFOSAA | 570 > 419 | | 3.00e3 | 0.110 | | 5.63 | | | | | | | | 21 | 71 Total N-MeFOSAA | 570. > 419 | 0.00e0 | 3.00e3 | 0.110 | | 5.90 | | 0.000 | | | | | | 22 | 25 PFUdA | 563.0 > 518.9 | 3.51e1 | 1.09e4 | 0.110 | | 5.81 | 5.81 | 0.0402 | 0.3357 | | 15.309 | YES | | 23 | 45 13C5-PFNA | 468.2 > 422.9 | 8.93e3 | 1.12e4 | 0.110 | 1.006 | 5.11 | 5.12 | 9.98 | 89.8341 | 79.4 | | | | 24 | 47 13C8-PFOS | 507.0 > 79.9 | 2.40e3 | 2.55e3 | 0.110 | 0.968 | 5.19 | 5.20 | 11.8 | 110.2244 | 97.4 | | | | 25 | 47 13C8-PFOS | 507.0 > 79.9 | 2.40e3 | 2.55e3 | 0.110 | 0.968 | 5.19 | 5.20 | 11.8 | 110.2244 | 97.4 | | | | 26 | 48 13C2-PFDA | 515.1 > 469.9 | 9.00e3 | 1.27e4 | 0.110 | 1.125 | 5.48 | 5.49 | 8.86 | 71.3653 | 63.0 | | | | 27 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.00e3 | 1.51e4 | 0.110 | 0.329 | 5.63 | 5.63 | 2.49 | 68.4028 | 60.4 | | | | 28 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.00e3 | 1.51e4 | 0.110 | 0.329 | 5.63 | 5.63 | 2.49 | 68.4028 | 60.4 | | | | 29 | 51 13C2-PFUdA | 565 > 519.8 | 1.09e4 | 1.51e4 | 0.110 | 1.111 | 5.81 | 5.81 | 9.03 | 73.5966 | 65.0 | | | | 30 | -1 | | | | | | | | | | | | | | 31 | 23 L-EtFOSAA | 584.1 > 419 | | 4.52e3 | 0.110 | | 5.79 | | | | | | | | 32 | 72 Total N-EtFOSAA | 584.1 > 419 | 0.00e0 | 4.52e3 | 0.110 | | 6.06 | | 0.000 | | | | | | 33 | 29 PFTrDA | 662.9 > 618.9 | | 1.07e4 | 0.110 | | 6.32 | | | | | | | | 34 | 27 PFDoA | 612.9 > 569.0 | | 1.07e4 | 0.110 | | 6.08 | | | | | | | | 35 | 30 PFTeDA | 713.0 > 669.0 | 2.30e1 | 9.06e3 | 0.110 | | 6.54 | 6.55 | 0.0317 | 0.2419 | | 27.888 | YES | | 36 | 73 TCDA | 498.3>106.9 | | | 0.110 | | 5.45 | | | | | | | ÄD 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-13.qld Last Altered: Wednesday, December 05, 2018 10:24:07 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:24:15 Pacific Standard Time Name: 181203M1_13, Date: 03-Dec-2018, Time: 16:33:24, ID: 1803676-02 A1-MW-13-SA2 0.11042, Description: A1-MW-13-SA2 | | # Name | Trace | Area | IS Area | wt/vol R | RF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|-----------------|---------------|--------|---------|----------|---------|---------|------|----------|----------|-------|-----------|------------| | 37 | 61 13C5-PFHxA | 318 > 272.9 | 1.10e4 | 1.10e4 | 0.110 | 1.000 | 3.56 | 3.57 | 12.5 | 113.2041 | 100.0 | | | | 38 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.52e3 | 1.51e4 | 0.110 | 0.355 | 5.78 | 5.79 | 3.74 | 95.4713 | 84.3 | | | | 39 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.52e3 | 1.51e4 | 0.110 | 0.355 | 5.78 | 5.79 | 3.74 | 95.4713 | 84.3 | | | | 40 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.07e4 | 1.27e4 | 0.110 | 0.993 | 6.08 | 6.09 | 10.5 | 96.1959 | 85.0 | | | | 41 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.07e4 | 1.27e4 | 0.110 | 0.993 | 6.08 | 6.09 | 10.5 | 96.1959 | 85.0 | | | | 42 | 55 13C2-PFTeDA | 715.1 > 669.7 | 9.06e3 | 1.51e4 | 0.110 | 0.749 | 6.54 | 6.55 | 7.50 | 90.7020 | 80.1 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.40e3 | 2.55e3 | 0.110 | 0.968 | 5.19 | 5.20 | 11.8 | 110.2244 | 97.4 | | | | 44 | 63 13C8-PFOA | 420.9 > 376 | 1.45e4 | 1.45e4 | 0.110 | 1.000 | 4.68 | 4.68 | 12.5 | 113.2041 | 100.0 | | | | 45 | -1 | | | | | | | | | | | | | | 46 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.44e3 | 2.44e3 | 0.110 | 1.000 | 4.33 | 4.33 | 12.5 | 113.2041 | 100.0 | | | | 47 | 64 13C9-PFNA | 472.2 > 426.9 | 1.12e4 | 1.12e4 | 0.110 | 1.000 | 5.11 | 5.12 | 12.5 | 113.2041 | 100.0 | | | | 48 | 65 13C4-PFOS | 503 > 79.9 | 2.55e3 | 2.55e3 | 0.110 | 1.000 | 5.19 | 5.20 | 12.5 | 113.2041 | 100.0 | | | | 49 | 66 13C6-PFDA | 519.1 > 473.7 | 1.27e4 | 1.27e4 | 0.110 | 1.000 | 5.48 | 5.49 | 12.5 | 113.2041 | 100.0 | | | | 50 | 67 13C7-PFUdA | 570.1 > 524.8 | 1.51e4 | 1.51e4 | 0.110 | 1.000 | 5.81 | 5.81 | 12.5 | 113.2041 | 100.0 | | | **Quantify Sample Report** MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-13.qld Last Altered: Wednesday, December 05, 2018 10:24:07 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:24:15 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_13, Date: 03-Dec-2018, Time: 16:33:24, ID: 1803676-02 A1-MW-13-SA2 0.11042, Description: A1-MW-13-SA2 Work Order 1803676 Page 61 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-13.qld Last Altered: Wednesday, December 05, 2018 10:24:07 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:24:15 Pacific Standard Time Name: 181203M1_13, Date: 03-Dec-2018, Time: 16:33:24, ID: 1803676-02 A1-MW-13-SA2 0.11042, Description: A1-MW-13-SA2 AD 12/5/2018 Vista Analytical Laboratory L14 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-13.qld Last Altered: Wednesday, December 05, 2018 10:24:07 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:24:15 Pacific Standard Time Name: 181203M1_13, Date: 03-Dec-2018, Time: 16:33:24, ID: 1803676-02 A1-MW-13-SA2 0.11042, Description: A1-MW-13-SA2 AD 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-13.qld **Quantify Sample Report** Last Altered: Wednesday, December 05, 2018 10:24:07 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:24:15 Pacific Standard Time Name: 181203M1_13, Date: 03-Dec-2018, Time: 16:33:24, ID: 1803676-02 A1-MW-13-SA2 0.11042, Description: A1-MW-13-SA2 ssLynx MassLynx V4.1 SCN 945 MM 12/5/2018 Page 5 of 6 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-14.qld Last Altered: Wednesday, December 05, 2018 10:26:30 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:26:48 Pacific Standard Time Name: 181203M1_14, Date: 03-Dec-2018, Time: 16:43:58, ID: 1803676-03 A1-MW-14-SA2 0.11629, Description: A1-MW-14-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 1 | 3 PFBS | 299.0 > 79.7 | 1.96e3 | 1.03e3 | 0.116 | | 3.00 | 3.00 | 23.8 | 101.4103 | | 3.117 | NO | | 2 | 5 PFHxA | 313 > 269 | 2.91e4 | 3.67e3 | 0.116 | | 3.56 | 3.56 | 39.6 | 327.4048 | | 15.301 | NO | | 3 | 7 PFHpA | 363.0 > 318.9 | 3.62e3 | 5.09e3 | 0.116 | | 4.20 | 4.20 | 8.90 | 65.7847 | | 15.853 | NO | | 4 | 8 L-PFHxS | 398.9 > 79.6 | 4.07e3 | 8.74e2 | 0.116 | | 4.33 | 4.33 | 58.1 | 253.3852 | | 2.189 | NO | | 5 | 68 Total PFHxS | 398.9 > 79.6 | 4.07e3 | 8.74e2 | 0.116 | | 4.58 | | 58.1 | 253.3852 | | | | | 6 | 11 L-PFOA | 412.8 > 368.9 | 5.51e3 | 9.16e3 | 0.116 | | 4.58 | 4.68 | 7.52 | 52.6877 | | 2.984 | NO | | 7 | 69 Total PFOA | 412.8 > 368.9 | 5.51e3 | 9.16e3 | 0.116 | | 4.97 | | 7.52 | 52.6877 | | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.03e3 | 2.13e3 | 0.116 | 0.633 | 3.00 | 3.00 | 6.06 | 82.2922 | 76.6 | | | | 9 | 40 13C2-PFHxA | 315 > 270 | 3.67e3 | 9.84e3 | 0.116 | 0.900 | 3.56 | 3.56 | 4.66 | 44.4680 | 103.4 | | | | 10 | 41 13C4-PFHpA | 367.2 > 321.8 | 5.09e3 | 9.84e3 | 0.116 | 0.693 | 4.19 | 4.20 | 6.46 | 80.1626 | 74.6 | | | | 11 | 42 18O2-PFHxS | 403.0 > 102.6 | 8.74e2 | 2.13e3 | 0.116 | 0.476 | 4.33 | 4.33 | 5.12 | 92.6151 | 86.2 | | | | 12 | 42 18O2-PFHxS | 403.0 > 102.6 | 8.74e2 | 2.13e3 | 0.116 | 0.476 | 4.33 | 4.33 | 5.12 | 92.6151 | 86.2 | | | | 13 | 44 13C2-PFOA | 414.9 > 369.7 | 9.16e3 | 1.35e4 | 0.116 | 0.873 | 4.68 | 4.68 | 8.48 | 83.4992 | 77.7 | | | | 14 | 44 13C2-PFOA | 414.9 > 369.7 | 9.16e3 | 1.35e4 | 0.116 | 0.873 | 4.68 | 4.68 | 8.48 | 83.4992 | 77.7 | | | | 15 | -1 | | | | | | | | | | | | | | 16 | 14 PFNA | 463.0 > 418.8 | 2.82e1 | 8.98e3 | 0.116 | | 5.11 | 5.12 | 0.0393 | 0.7039 | | 9.423 | YES | | 17 | 16 L-PFOS | 498.9 > 79.9 | 1.43e3 | 2.32e3 | 0.116 | | 5.08 | 5.19 | 7.71 | 60.4280 | | 2.577 | NO | | 18 | 70 Total PFOS | 498.9 > 79.9 | 1.43e3 | 2.32e3 | 0.116 | | 5.46 | | 7.71 | 60.4280 | | | | | 19 | 18 PFDA | 513 > 468.8 | | 9.15e3 | 0.116 | | 5.48 | | | | | | | | 20 | 21 L-MeFOSAA | 570 > 419 | | 3.02e3 | 0.116 | | 5.63 | | | | | | | | 21 | 71 Total N-MeFOSAA | 570. > 419 | 0.00e0 | 3.02e3 | 0.116 | | 5.90 | | 0.000 | | | | | | 22 | 25 PFUdA | 563.0 > 518.9 | 1.19e1 | 1.04e4 | 0.116 | | 5.81 | 5.82 | 0.0142 | 0.1111 | | 8.759 | NO | | 23 | 45 13C5-PFNA | 468.2 > 422.9 | 8.98e3 | 1.03e4 | 0.116 | 1.006 | 5.11 | 5.12 | 10.9 | 93.4743 | 87.0 | | | | 24 | 47 13C8-PFOS | 507.0 > 79.9 | 2.32e3 | 2.42e3 | 0.116 | 0.968 | 5.19 | 5.20 | 12.0 | 106.1901 | 98.8 | | | | 25 | 47 13C8-PFOS | 507.0 > 79.9 | 2.32e3 | 2.42e3 | 0.116 | 0.968 | 5.19 | 5.20 | 12.0 | 106.1901
| 98.8 | | | | 26 | 48 13C2-PFDA | 515.1 > 469.9 | 9.15e3 | 1.16e4 | 0.116 | 1.125 | 5.48 | 5.49 | 9.82 | 75.0828 | 69.9 | | | | 27 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.02e3 | 1.41e4 | 0.116 | 0.329 | 5.63 | 5.63 | 2.68 | 69.9140 | 65.0 | | | | 28 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.02e3 | 1.41e4 | 0.116 | 0.329 | 5.63 | 5.63 | 2.68 | 69.9140 | 65.0 | | | | 29 | 51 13C2-PFUdA | 565 > 519.8 | 1.04e4 | 1.41e4 | 0.116 | 1.111 | 5.81 | 5.81 | 9.26 | 71.6366 | 66.6 | | | | 30 | -1 | | | | | | | | | | | | | | 31 | 23 L-EtFOSAA | 584.1 > 419 | | 4.21e3 | 0.116 | | 5.79 | | | | | | | | 32 | 72 Total N-EtFOSAA | 584.1 > 419 | 0.00e0 | 4.21e3 | 0.116 | | 6.06 | | 0.000 | | | | | | 33 | 29 PFTrDA | 662.9 > 618.9 | | 1.01e4 | 0.116 | | 6.32 | | | | | | | | 34 | 27 PFDoA | 612.9 > 569.0 | | 1.01e4 | 0.116 | | 6.08 | | | | | | | | 35 | 30 PFTeDA | 713.0 > 669.0 | | 8.11e3 | 0.116 | | 6.54 | | | | | | A | | 36 | 73 TCDA | 498.3>106.9 | | | 0.116 | | 5.45 | | | | | | | AD 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-14.qld Last Altered: Wednesday, December 05, 2018 10:26:30 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:26:48 Pacific Standard Time Name: 181203M1_14, Date: 03-Dec-2018, Time: 16:43:58, ID: 1803676-03 A1-MW-14-SA2 0.11629, Description: A1-MW-14-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|-----------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 37 | 61 13C5-PFHxA | 318 > 272.9 | 9.84e3 | 9.84e3 | 0.116 | 1.000 | 3.56 | 3.56 | 12.5 | 107.4899 | 100.0 | | | | 38 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.21e3 | 1.41e4 | 0.116 | 0.355 | 5.78 | 5.79 | 3.73 | 90.4185 | 84.1 | | | | 39 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.21e3 | 1.41e4 | 0.116 | 0.355 | 5.78 | 5.79 | 3.73 | 90.4185 | 84.1 | | | | 40 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.01e4 | 1.16e4 | 0.116 | 0.993 | 6.08 | 6.09 | 10.9 | 93.9996 | 87.4 | | | | 41 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.01e4 | 1.16e4 | 0.116 | 0.993 | 6.08 | 6.09 | 10.9 | 93.9996 | 87.4 | | | | 42 | 55 13C2-PFTeDA | 715.1 > 669.7 | 8.11e3 | 1.41e4 | 0.116 | 0.749 | 6.54 | 6.54 | 7.19 | 82.5961 | 76.8 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.32e3 | 2.42e3 | 0.116 | 0.968 | 5.19 | 5.20 | 12.0 | 106.1901 | 98.8 | | | | 44 | 63 13C8-PFOA | 420.9 > 376 | 1.35e4 | 1.35e4 | 0.116 | 1.000 | 4.68 | 4.68 | 12.5 | 107.4899 | 100.0 | | | | 45 | -1 | | | | | | | | | | | | | | 46 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.13e3 | 2.13e3 | 0.116 | 1.000 | 4.33 | 4.33 | 12.5 | 107.4899 | 100.0 | | | | 47 | 64 13C9-PFNA | 472.2 > 426.9 | 1.03e4 | 1.03e4 | 0.116 | 1.000 | 5.11 | 5.12 | 12.5 | 107.4899 | 100.0 | | | | 48 | 65 13C4-PFOS | 503 > 79.9 | 2.42e3 | 2.42e3 | 0.116 | 1.000 | 5.19 | 5.20 | 12.5 | 107.4899 | 100.0 | | | | 49 | 66 13C6-PFDA | 519.1 > 473.7 | 1.16e4 | 1.16e4 | 0.116 | 1.000 | 5.48 | 5.49 | 12.5 | 107.4899 | 100.0 | | | | 50 | 67 13C7-PFUdA | 570.1 > 524.8 | 1.41e4 | 1.41e4 | 0.116 | 1.000 | 5.81 | 5.81 | 12.5 | 107.4899 | 100.0 | | | MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-14.qld **Quantify Sample Report** Last Altered: Wednesday, December 05, 2018 10:26:30 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:26:48 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_14, Date: 03-Dec-2018, Time: 16:43:58, ID: 1803676-03 A1-MW-14-SA2 0.11629, Description: A1-MW-14-SA2 Work Order 1803676 Page 67 of 556 Page 2 of 6 Vista Analytical Laboratory L14 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-14.qld Last Altered: Wednesday, December 05, 2018 10:26:30 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:26:48 Pacific Standard Time Name: 181203M1_14, Date: 03-Dec-2018, Time: 16:43:58, ID: 1803676-03 A1-MW-14-SA2 0.11629, Description: A1-MW-14-SA2 AD 12/5/2018 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-14.qld Last Altered: Wednesday, December 05, 2018 10:26:30 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:26:48 Pacific Standard Time Name: 181203M1_14, Date: 03-Dec-2018, Time: 16:43:58, ID: 1803676-03 A1-MW-14-SA2 0.11629, Description: A1-MW-14-SA2 AD 12/5/2018 Work Order 1803676 Page 69 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-14.qld **Quantify Sample Report** Last Altered: Wednesday, December 05, 2018 10:26:30 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:26:48 Pacific Standard Time Name: 181203M1_14, Date: 03-Dec-2018, Time: 16:43:58, ID: 1803676-03 A1-MW-14-SA2 0.11629, Description: A1-MW-14-SA2 Page 5 of 6 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-15.qld Last Altered: Wednesday, December 05, 2018 10:28:38 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:28:45 Pacific Standard Time ## Name: 181203M1_15, Date: 03-Dec-2018, Time: 16:54:36, ID: 1803676-04 A1-MW-15-SA2 0.11086, Description: A1-MW-15-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 1 | 3 PFBS | 299.0 > 79.7 | 6.87e3 | 1.06e3 | 0.111 | | 3.00 | 3.00 | 81.0 | 362.5808 | | 3.067 | NO | | 2 | 5 PFHxA | 313 > 269 | 5.14e4 | 3.76e3 | 0.111 | | 3.56 | 3.56 | 68.3 | 595.5671 | | 15.331 | NO | | 3 | 7 PFHpA | 363.0 > 318.9 | 4.02e3 | 5.04e3 | 0.111 | | 4.20 | 4.20 | 9.97 | 77.3271 | | 15.321 | NO | | 4 | 8 L-PFHxS | 398.9 > 79.6 | 5.25e3 | 9.33e2 | 0.111 | | 4.33 | 4.33 | 70.4 | 322.2939 | | 2.285 | NO | | 5 | 68 Total PFHxS | 398.9 > 79.6 | 5.25e3 | 9.33e2 | 0.111 | | 4.58 | | 70.4 | 322.2939 | | | | | 6 | 11 L-PFOA | 412.8 > 368.9 | 1.81e4 | 8.83e3 | 0.111 | | 4.58 | 4.68 | 25.6 | 189.6535 | | 2.955 | NO | | 7 | 69 Total PFOA | 412.8 > 368.9 | 1.81e4 | 8.83e3 | 0.111 | | 4.97 | | 25.6 | 189.6535 | | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.06e3 | 2.23e3 | 0.111 | 0.633 | 3.00 | 3.00 | 5.95 | 84.7916 | 75.2 | | | | 9 | 40 13C2-PFHxA | 315 > 270 | 3.76e3 | 9.86e3 | 0.111 | 0.900 | 3.56 | 3.56 | 4.77 | 47.7928 | 106.0 | | | | 10 | 41 13C4-PFHpA | 367.2 > 321.8 | 5.04e3 | 9.86e3 | 0.111 | 0.693 | 4.19 | 4.20 | 6.39 | 83.1224 | 73.7 | | | | 11 | 42 18O2-PFHxS | 403.0 > 102.6 | 9.33e2 | 2.23e3 | 0.111 | 0.476 | 4.33 | 4.33 | 5.23 | 99.1714 | 88.0 | | | | 12 | 42 18O2-PFHxS | 403.0 > 102.6 | 9.33e2 | 2.23e3 | 0.111 | 0.476 | 4.33 | 4.33 | 5.23 | 99.1714 | 88.0 | | | | 13 | 44 13C2-PFOA | 414.9 > 369.7 | 8.83e3 | 1.32e4 | 0.111 | 0.873 | 4.68 | 4.68 | 8.37 | 86.5300 | 76.7 | | | | 14 | 44 13C2-PFOA | 414.9 > 369.7 | 8.83e3 | 1.32e4 | 0.111 | 0.873 | 4.68 | 4.68 | 8.37 | 86.5300 | 76.7 | | | | 15 | -1 | | | | | | | | | | | | | | 16 | 14 PFNA | 463.0 > 418.8 | | 8.05e3 | 0.111 | | 5.11 | | | | | | | | 17 | 16 L-PFOS | 498.9 > 79.9 | 4.42e2 | 2.51e3 | 0.111 | | 5.08 | 5.19 | 2.20 | 18.4530 | | 2.102 | NO | | 18 | 70 Total PFOS | 498.9 > 79.9 | 4.42e2 | 2.51e3 | 0.111 | | 5.46 | | 2.20 | 18.4530 | | | | | 19 | 18 PFDA | 513 > 468.8 | | 8.51e3 | 0.111 | | 5.48 | | | | | | | | 20 | 21 L-MeFOSAA | 570 > 419 | | 2.90e3 | 0.111 | | 5.63 | | | | | | | | 21 | 71 Total N-MeFOSAA | 570. > 419 | 0.00e0 | 2.90e3 | 0.111 | | 5.90 | | 0.000 | | | | | | 22 | 25 PFUdA | 563.0 > 518.9 | | 9.90e3 | 0.111 | | 5.81 | | | | | | | | 23 | 45 13C5-PFNA | 468.2 > 422.9 | 8.05e3 | 9.26e3 | 0.111 | 1.006 | 5.11 | 5.12 | 10.9 | 97.3832 | 86.4 | | | | 24 | 47 13C8-PFOS | 507.0 > 79.9 | 2.51e3 | 2.50e3 | 0.111 | 0.968 | 5.19 | 5.20 | 12.6 | 117.2302 | 104.0 | | | | 25 | 47 13C8-PFOS | 507.0 > 79.9 | 2.51e3 | 2.50e3 | 0.111 | 0.968 | 5.19 | 5.20 | 12.6 | 117.2302 | 104.0 | | | | 26 | 48 13C2-PFDA | 515.1 > 469.9 | 8.51e3 | 1.08e4 | 0.111 | 1.125 | 5.48 | 5.49 | 9.81 | 78.6807 | 69.8 | | | | 27 | 50 d3-N-MeFOSAA | 573.3 > 419 | 2.90e3 | 1.25e4 | 0.111 | 0.329 | 5.63 | 5.63 | 2.89 | 79.2964 | 70.3 | | | | 28 | 50 d3-N-MeFOSAA | 573.3 > 419 | 2.90e3 | 1.25e4 | 0.111 | 0.329 | 5.63 | 5.63 | 2.89 | 79.2964 | 70.3 | | | | 29 | 51 13C2-PFUdA | 565 > 519.8 | 9.90e3 | 1.25e4 | 0.111 | 1.111 | 5.81 | 5.81 | 9.88 | 80.1881 | 71.1 | | | | 30 | -1 | | | | | | | | | | | | | | 31 | 23 L-EtFOSAA | 584.1 > 419 | | 4.11e3 | 0.111 | | 5.79 | | | | | | | | 32 | 72 Total N-EtFOSAA | 584.1 > 419 | 0.00e0 | 4.11e3 | 0.111 | | 6.06 | | 0.000 | | | | | | 33 | 29 PFTrDA | 662.9 > 618.9 | | 9.54e3 | 0.111 | | 6.32 | | | | | | | | 34 | 27 PFDoA | 612.9 > 569.0 | | 9.54e3 | 0.111 | | 6.08 | | | | | | | | 35 | 30 PFTeDA | 713.0 > 669.0 | | 8.67e3 | 0.111 | | 6.54 | | | | | | Δ | | 36 | 73 TCDA | 498.3>106.9 | | | 0.111 | | 5.45 | | | | | | i | ÁD 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-15.qld Last Altered: Wednesday, December 05, 2018 10:28:38 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:28:45 Pacific Standard Time Name: 181203M1_15, Date: 03-Dec-2018, Time: 16:54:36, ID: 1803676-04 A1-MW-15-SA2 0.11086, Description: A1-MW-15-SA2 | | # Name | Trace | Area | IS Area | wt/vol R | RF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|-----------------|---------------|--------|---------|----------|---------|---------|------|----------|----------|-------|-----------|------------| | 37 | 61 13C5-PFHxA | 318 > 272.9 | 9.86e3 | 9.86e3 | 0.111 | 1.000 | 3.56 | 3.56 | 12.5 | 112.7548 | 100.0 | | | | 38 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.11e3 | 1.25e4 | 0.111 | 0.355 | 5.78 | 5.79 | 4.11 | 104.2851 | 92.5 | | | | 39 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.11e3 | 1.25e4 | 0.111 | 0.355 | 5.78 | 5.79 | 4.11 | 104.2851 | 92.5 | | | | 40 | 53 13C2-PFDoA | 615.0 > 569.7 | 9.54e3 | 1.08e4 | 0.111 | 0.993 | 6.08 | 6.09 | 11.0 | 100.0144 | 88.7 | | | | 41 | 53 13C2-PFDoA | 615.0
> 569.7 | 9.54e3 | 1.08e4 | 0.111 | 0.993 | 6.08 | 6.09 | 11.0 | 100.0144 | 88.7 | | | | 42 | 55 13C2-PFTeDA | 715.1 > 669.7 | 8.67e3 | 1.25e4 | 0.111 | 0.749 | 6.54 | 6.54 | 8.65 | 104.2215 | 92.4 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.51e3 | 2.50e3 | 0.111 | 0.968 | 5.19 | 5.20 | 12.6 | 117.2302 | 104.0 | | | | 44 | 63 13C8-PFOA | 420.9 > 376 | 1.32e4 | 1.32e4 | 0.111 | 1.000 | 4.68 | 4.68 | 12.5 | 112.7548 | 100.0 | | | | 45 | -1 | | | | | | | | | | | | | | 46 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.23e3 | 2.23e3 | 0.111 | 1.000 | 4.33 | 4.33 | 12.5 | 112.7548 | 100.0 | | | | 47 | 64 13C9-PFNA | 472.2 > 426.9 | 9.26e3 | 9.26e3 | 0.111 | 1.000 | 5.11 | 5.11 | 12.5 | 112.7548 | 100.0 | | | | 48 | 65 13C4-PFOS | 503 > 79.9 | 2.50e3 | 2.50e3 | 0.111 | 1.000 | 5.19 | 5.20 | 12.5 | 112.7548 | 100.0 | | | | 49 | 66 13C6-PFDA | 519.1 > 473.7 | 1.08e4 | 1.08e4 | 0.111 | 1.000 | 5.48 | 5.49 | 12.5 | 112.7548 | 100.0 | | | | 50 | 67 13C7-PFUdA | 570.1 > 524.8 | 1.25e4 | 1.25e4 | 0.111 | 1.000 | 5.81 | 5.81 | 12.5 | 112.7548 | 100.0 | | | **Quantify Sample Report** MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-15.qld Last Altered: Wednesday, December 05, 2018 10:28:38 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:28:45 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18 VAL-PFAS Q4 12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_15, Date: 03-Dec-2018, Time: 16:54:36, ID: 1803676-04 A1-MW-15-SA2 0.11086, Description: A1-MW-15-SA2 Work Order 1803676 Page 73 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-15.qld Last Altered: Wednesday, December 05, 2018 10:28:38 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:28:45 Pacific Standard Time Name: 181203M1_15, Date: 03-Dec-2018, Time: 16:54:36, ID: 1803676-04 A1-MW-15-SA2 0.11086, Description: A1-MW-15-SA2 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-15.qld Last Altered: Wednesday, December 05, 2018 10:28:38 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:28:45 Pacific Standard Time Name: 181203M1_15, Date: 03-Dec-2018, Time: 16:54:36, ID: 1803676-04 A1-MW-15-SA2 0.11086, Description: A1-MW-15-SA2 AD 12/5/2018 Work Order 1803676 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-15.qld **Quantify Sample Report** Last Altered: Wednesday, December 05, 2018 10:28:38 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:28:45 Pacific Standard Time Name: 181203M1_15, Date: 03-Dec-2018, Time: 16:54:36, ID: 1803676-04 A1-MW-15-SA2 0.11086, Description: A1-MW-15-SA2 Page 5 of 6 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-18.qld Last Altered: Wednesday, December 05, 2018 10:30:46 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:31:03 Pacific Standard Time Name: 181203M1_18, Date: 03-Dec-2018, Time: 18:35:06, ID: 1803676-05 A1-MW-37-SA2 0.11753, Description: A1-MW-37-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 1 | 3 PFBS | 299.0 > 79.7 | 3.26e3 | 1.14e3 | 0.118 | | 3.00 | 3.00 | 35.9 | 151.4726 | | 3.161 | NO | | 2 | 5 PFHxA | 313 > 269 | 3.94e4 | 3.11e3 | 0.118 | | 3.56 | 3.56 | 63.3 | 520.0265 | | 14.377 | NO | | 3 | 7 PFHpA | 363.0 > 318.9 | 3.92e3 | 4.19e3 | 0.118 | | 4.19 | 4.19 | 11.7 | 85.5913 | | 12.358 | NO | | 4 | 8 L-PFHxS | 398.9 > 79.6 | 7.93e3 | 9.77e2 | 0.118 | | 4.32 | 4.32 | 101 | 438.4019 | | 2.362 | NO | | 5 | 68 Total PFHxS | 398.9 > 79.6 | 7.93e3 | 9.77e2 | 0.118 | | 4.58 | | 101 | 438.4019 | | | | | 6 | 11 L-PFOA | 412.8 > 368.9 | 4.86e3 | 7.04e3 | 0.118 | | 4.58 | 4.68 | 8.63 | 59.8940 | | 2.987 | NO | | 7 | 69 Total PFOA | 412.8 > 368.9 | 4.86e3 | 7.04e3 | 0.118 | | 4.97 | | 8.63 | 59.8940 | | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.14e3 | 2.22e3 | 0.118 | 0.633 | 3.00 | 3.00 | 6.38 | 85.7325 | 80.6 | | | | 9 | 40 13C2-PFHxA | 315 > 270 | 3.11e3 | 8.32e3 | 0.118 | 0.900 | 3.56 | 3.56 | 4.68 | 44.1817 | 103.9 | | | | 10 | 41 13C4-PFHpA | 367.2 > 321.8 | 4.19e3 | 8.32e3 | 0.118 | 0.693 | 4.19 | 4.19 | 6.30 | 77.3284 | 72.7 | | | | 11 | 42 18O2-PFHxS | 403.0 > 102.6 | 9.77e2 | 2.22e3 | 0.118 | 0.476 | 4.33 | 4.32 | 5.49 | 98.1888 | 92.3 | | | | 12 | 42 18O2-PFHxS | 403.0 > 102.6 | 9.77e2 | 2.22e3 | 0.118 | 0.476 | 4.33 | 4.32 | 5.49 | 98.1888 | 92.3 | | | | 13 | 44 13C2-PFOA | 414.9 > 369.7 | 7.04e3 | 1.14e4 | 0.118 | 0.873 | 4.68 | 4.68 | 7.73 | 75.3401 | 70.8 | | | | 14 | 44 13C2-PFOA | 414.9 > 369.7 | 7.04e3 | 1.14e4 | 0.118 | 0.873 | 4.68 | 4.68 | 7.73 | 75.3401 | 70.8 | | | | 15 | -1 | | | | | | | | | | | | | | 16 | 14 PFNA | 463.0 > 418.8 | 5.11e1 | 6.57e3 | 0.118 | | 5.11 | 5.10 | 0.0972 | 1.1405 | | 19.879 | YES | | 17 | 16 L-PFOS | 498.9 > 79.9 | 7.71e2 | 2.62e3 | 0.118 | | 5.08 | 5.19 | 3.68 | 28.7625 | | 2.370 | NO | | 18 | 70 Total PFOS | 498.9 > 79.9 | 7.71e2 | 2.62e3 | 0.118 | | 5.46 | | 3.68 | 28.7625 | | | | | 19 | 18 PFDA | 513 > 468.8 | | 6.33e3 | 0.118 | | 5.48 | | | | | | | | 20 | 21 L-MeFOSAA | 570 > 419 | | 2.96e3 | 0.118 | | 5.63 | | | | | | | | 21 | 71 Total N-MeFOSAA | 570. > 419 | 0.00e0 | 2.96e3 | 0.118 | | 5.90 | | 0.000 | | | | | | 22 | 25 PFUdA | 563.0 > 518.9 | | 8.02e3 | 0.118 | | 5.81 | | | | | | | | 23 | 45 13C5-PFNA | 468.2 > 422.9 | 6.57e3 | 7.67e3 | 0.118 | 1.006 | 5.11 | 5.11 | 10.7 | 90.4584 | 85.1 | | | | 24 | 47 13C8-PFOS | 507.0 > 79.9 | 2.62e3 | 2.42e3 | 0.118 | 0.968 | 5.19 | 5.19 | 13.5 | 119.1029 | 112.0 | | | | 25 | 47 13C8-PFOS | 507.0 > 79.9 | 2.62e3 | 2.42e3 | 0.118 | 0.968 | 5.19 | 5.19 | 13.5 | 119.1029 | 112.0 | | | | 26 | 48 13C2-PFDA | 515.1 > 469.9 | 6.33e3 | 8.27e3 | 0.118 | 1.125 | 5.48 | 5.48 | 9.56 | 72.3069 | 68.0 | | | | 27 | 50 d3-N-MeFOSAA | 573.3 > 419 | 2.96e3 | 9.42e3 | 0.118 | 0.329 | 5.63 | 5.63 | 3.93 | 101.5541 | 95.5 | | | | 28 | 50 d3-N-MeFOSAA | 573.3 > 419 | 2.96e3 | 9.42e3 | 0.118 | 0.329 | 5.63 | 5.63 | 3.93 | 101.5541 | 95.5 | | | | 29 | 51 13C2-PFUdA | 565 > 519.8 | 8.02e3 | 9.42e3 | 0.118 | 1.111 | 5.81 | 5.81 | 10.6 | 81.4666 | 76.6 | | | | 30 | -1 | | | | | | | | | | | | | | 31 | 23 L-EtFOSAA | 584.1 > 419 | | 4.25e3 | 0.118 | | 5.79 | | | | | | | | 32 | 72 Total N-EtFOSAA | 584.1 > 419 | 0.00e0 | 4.25e3 | 0.118 | | 6.06 | | 0.000 | | | | | | 33 | 29 PFTrDA | 662.9 > 618.9 | | 7.92e3 | 0.118 | | 6.32 | | | | | | | | 34 | 27 PFDoA | 612.9 > 569.0 | | 7.92e3 | 0.118 | | 6.08 | | | | | | | | 35 | 30 PFTeDA | 713.0 > 669.0 | 1.08e1 | 8.00e3 | 0.118 | | 6.54 | 6.54 | 0.0169 | 0.1163 | | 27.191 | YES | | 36 | 73 TCDA | 498.3>106.9 | | | 0.118 | | 5.45 | | | | | | <i>F</i> | ÄD 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-18.qld Last Altered: Wednesday, December 05, 2018 10:30:46 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:31:03 Pacific Standard Time Name: 181203M1_18, Date: 03-Dec-2018, Time: 18:35:06, ID: 1803676-05 A1-MW-37-SA2 0.11753, Description: A1-MW-37-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|-----------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 37 | 61 13C5-PFHxA | 318 > 272.9 | 8.32e3 | 8.32e3 | 0.118 | 1.000 | 3.56 | 3.56 | 12.5 | 106.3558 | 100.0 | | | | 38 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.25e3 | 9.42e3 | 0.118 | 0.355 | 5.78 | 5.78 | 5.65 | 135.2843 | 127.2 | | | | 39 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.25e3 | 9.42e3 | 0.118 | 0.355 | 5.78 | 5.78 | 5.65 | 135.2843 | 127.2 | | | | 40 | 53 13C2-PFDoA | 615.0 > 569.7 | 7.92e3 | 8.27e3 | 0.118 | 0.993 | 6.08 | 6.08 | 12.0 | 102.5199 | 96.4 | | | | 41 | 53 13C2-PFDoA | 615.0 > 569.7 | 7.92e3 | 8.27e3 | 0.118 | 0.993 | 6.08 | 6.08 | 12.0 | 102.5199 | 96.4 | | | | 42 | 55 13C2-PFTeDA | 715.1 > 669.7 | 8.00e3 | 9.42e3 | 0.118 | 0.749 | 6.54 | 6.54 | 10.6 | 120.5907 | 113.4 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.62e3 | 2.42e3 | 0.118 | 0.968 | 5.19 | 5.19 | 13.5 | 119.1029 | 112.0 | | | | 44 | 63 13C8-PFOA | 420.9 > 376 | 1.14e4 | 1.14e4 | 0.118 | 1.000 | 4.68 | 4.68 | 12.5 | 106.3558 | 100.0 | | | | 45 | -1 | | | | | | | | | | | | | | 46 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.22e3 | 2.22e3 | 0.118 | 1.000 | 4.33 | 4.32 | 12.5 | 106.3558 | 100.0 | | | | 47 | 64 13C9-PFNA | 472.2 > 426.9 | 7.67e3 | 7.67e3 | 0.118 | 1.000 | 5.11 | 5.11 | 12.5 | 106.3558 | 100.0 | | | | 48 | 65 13C4-PFOS | 503 > 79.9 | 2.42e3 | 2.42e3 | 0.118 | 1.000 | 5.19 | 5.19 | 12.5 | 106.3558 | 100.0 | | | | 49 | 66 13C6-PFDA | 519.1 > 473.7 | 8.27e3 | 8.27e3 | 0.118 | 1.000 | 5.48 | 5.48 | 12.5 | 106.3558 | 100.0 | | | | 50 | 67 13C7-PFUdA | 570.1 > 524.8 | 9.42e3 | 9.42e3 | 0.118 | 1.000 | 5.81 | 5.80 | 12.5 | 106.3558 | 100.0 | | | Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-18.qld Last Altered: Wednesday, December 05, 2018 10:30:46 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:31:03 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_18, Date: 03-Dec-2018, Time: 18:35:06, ID: 1803676-05 A1-MW-37-SA2 0.11753, Description: A1-MW-37-SA2 Work Order 1803676 Page 79 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-18.qld Last Altered: Wednesday, December 05, 2018 10:30:46 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:31:03 Pacific Standard Time Name: 181203M1_18, Date: 03-Dec-2018, Time: 18:35:06, ID: 1803676-05 A1-MW-37-SA2 0.11753, Description: A1-MW-37-SA2 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-18.qld Last Altered: Wednesday, December 05, 2018 10:30:46 Pacific Standard Time Printed: Wednesday, December 05, 2018
10:31:03 Pacific Standard Time Name: 181203M1_18, Date: 03-Dec-2018, Time: 18:35:06, ID: 1803676-05 A1-MW-37-SA2 0.11753, Description: A1-MW-37-SA2 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-18.qld **Quantify Sample Report** Last Altered: Wednesday, December 05, 2018 10:30:46 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:31:03 Pacific Standard Time Name: 181203M1_18, Date: 03-Dec-2018, Time: 18:35:06, ID: 1803676-05 A1-MW-37-SA2 0.11753, Description: A1-MW-37-SA2 Page 5 of 6 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-19.qld Last Altered: Wednesday, December 05, 2018 10:33:01 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:33:09 Pacific Standard Time Name: 181203M1_19, Date: 03-Dec-2018, Time: 18:45:39, ID: 1803676-06 A1-MW-37-SA2D 0.11493, Description: A1-MW-37-SA2D | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|--------|----------|------|------|----------|----------|-------|-----------|------------| | 1 | 3 PFBS | 299.0 > 79.7 | 3.34e3 | 1.20e3 | 0.115 | | 3.00 | 3.00 | 34.8 | 150.0324 | | 3.147 | NO | | 2 | 5 PFHxA | 313 > 269 | 4.79e4 | 3.81e3 | 0.115 | | 3.56 | 3.56 | 63.0 | 528.8095 | | 15.151 | NO | | 3 | 7 PFHpA | 363.0 > 318.9 | 4.74e3 | 5.34e3 | 0.115 | | 4.19 | 4.19 | 11.1 | 82.9909 | | 15.232 | NO | | 4 | 8 L-PFHxS | 398.9 > 79.6 | 8.28e3 | 1.06e3 | 0.115 | | 4.32 | 4.32 | 97.1 | 429.2396 | | 2.133 | NO | | 5 | 68 Total PFHxS | 398.9 > 79.6 | 8.28e3 | 1.06e3 | 0.115 | | 4.58 | | 97.1 | 429.2396 | | | | | 6 | 11 L-PFOA | 412.8 > 368.9 | 5.67e3 | 9.05e3 | 0.115 | | 4.58 | 4.68 | 7.83 | 55.4865 | | 2.760 | NO | | 7 | 69 Total PFOA | 412.8 > 368.9 | 5.67e3 | 9.05e3 | 0.115 | | 4.97 | | 7.83 | 55.4865 | | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.20e3 | 2.42e3 | 0.115 | 0.633 | 3.00 | 3.00 | 6.21 | 85.4012 | 78.5 | | | | 9 | 40 13C2-PFHxA | 315 > 270 | 3.81e3 | 1.02e4 | 0.115 | 0.900 | 3.56 | 3.56 | 4.66 | 45.0387 | 103.5 | | | | 10 | 41 13C4-PFHpA | 367.2 > 321.8 | 5.34e3 | 1.02e4 | 0.115 | 0.693 | 4.19 | 4.19 | 6.54 | 82.0782 | 75.5 | | | | 11 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.06e3 | 2.42e3 | 0.115 | 0.476 | 4.33 | 4.32 | 5.51 | 100.6879 | 92.6 | | | | 12 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.06e3 | 2.42e3 | 0.115 | 0.476 | 4.33 | 4.32 | 5.51 | 100.6879 | 92.6 | | | | 13 | 44 13C2-PFOA | 414.9 > 369.7 | 9.05e3 | 1.42e4 | 0.115 | 0.873 | 4.68 | 4.68 | 7.96 | 79.3225 | 72.9 | | | | 14 | 44 13C2-PFOA | 414.9 > 369.7 | 9.05e3 | 1.42e4 | 0.115 | 0.873 | 4.68 | 4.68 | 7.96 | 79.3225 | 72.9 | | | | 15 | -1 | | | | | | | | | | | | | | 16 | 14 PFNA | 463.0 > 418.8 | 5.76e1 | 9.21e3 | 0.115 | | 5.11 | 5.11 | 0.0781 | 1.0165 | | 9.288 | YES | | 17 | 16 L-PFOS | 498.9 > 79.9 | 8.15e2 | 2.97e3 | 0.115 | | 5.08 | 5.19 | 3.44 | 27.5147 | | 2.490 | NO | | 18 | 70 Total PFOS | 498.9 > 79.9 | 8.15e2 | 2.97e3 | 0.115 | | 5.46 | | 3.44 | 27.5147 | | | | | 19 | 18 PFDA | 513 > 468.8 | 1.77e1 | 8.44e3 | 0.115 | | 5.48 | 5.48 | 0.0263 | 0.3506 | | 3.052 | NO | | 20 | 21 L-MeFOSAA | 570 > 419 | | 3.07e3 | 0.115 | | 5.63 | | | | | | | | 21 | 71 Total N-MeFOSAA | 570. > 419 | 0.00e0 | 3.07e3 | 0.115 | | 5.90 | | 0.000 | | | | | | 22 | 25 PFUdA | 563.0 > 518.9 | | 9.91e3 | 0.115 | | 5.81 | | | | | | | | 23 | 45 13C5-PFNA | 468.2 > 422.9 | 9.21e3 | 1.00e4 | 0.115 | 1.006 | 5.11 | 5.11 | 11.5 | 99.3793 | 91.4 | | | | 24 | 47 13C8-PFOS | 507.0 > 79.9 | 2.97e3 | 2.85e3 | 0.115 | 0.968 | 5.19 | 5.19 | 13.0 | 117.0414 | 107.6 | | | | 25 | 47 13C8-PFOS | 507.0 > 79.9 | 2.97e3 | 2.85e3 | 0.115 | 0.968 | 5.19 | 5.19 | 13.0 | 117.0414 | 107.6 | | | | 26 | 48 13C2-PFDA | 515.1 > 469.9 | 8.44e3 | 1.09e4 | 0.115 | 1.125 | 5.48 | 5.48 | 9.69 | 74.9223 | 68.9 | | | | 27 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.07e3 | 1.35e4 | 0.115 | 0.329 | 5.63 | 5.63 | 2.85 | 75.2192 | 69.2 | | | | 28 | 50 d3-N-MeFOSAA | 573.3 > 419 | 3.07e3 | 1.35e4 | 0.115 | 0.329 | 5.63 | 5.63 | 2.85 | 75.2192 | 69.2 | | | | 29 | 51 13C2-PFUdA | 565 > 519.8 | 9.91e3 | 1.35e4 | 0.115 | 1.111 | 5.81 | 5.81 | 9.17 | 71.8299 | 66.0 | | | | 30 | -1 | | | | | | | | | | | | | | 31 | 23 L-EtFOSAA | 584.1 > 419 | | 4.27e3 | 0.115 | | 5.79 | | | | | | | | 32 | 72 Total N-EtFOSAA | 584.1 > 419 | 0.00e0 | 4.27e3 | 0.115 | | 6.06 | | 0.000 | | | | | | 33 | 29 PFTrDA | 662.9 > 618.9 | | 9.35e3 | 0.115 | | 6.32 | | | | | | | | 34 | 27 PFDoA | 612.9 > 569.0 | 7.36e0 | 9.35e3 | 0.115 | | 6.08 | 6.09 | 0.00983 | 0.0709 | | 1.420 | YES | | 35 | 30 PFTeDA | 713.0 > 669.0 | | 8.57e3 | 0.115 | | 6.54 | | | | | | <u> </u> | | 36 | 73 TCDA | 498.3>106.9 | | | 0.115 | | 5.45 | | | | | | , | Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-19.qld Last Altered: Wednesday, December 05, 2018 10:33:01 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:33:09 Pacific Standard Time Name: 181203M1_19, Date: 03-Dec-2018, Time: 18:45:39, ID: 1803676-06 A1-MW-37-SA2D 0.11493, Description: A1-MW-37-SA2D | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|-----------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 37 | 61 13C5-PFHxA | 318 > 272.9 | 1.02e4 | 1.02e4 | 0.115 | 1.000 | 3.56 | 3.56 | 12.5 | 108.7619 | 100.0 | | | | 38 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.27e3 | 1.35e4 | 0.115 | 0.355 | 5.78 | 5.78 | 3.95 | 96.8287 | 89.0 | | | | 39 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.27e3 | 1.35e4 | 0.115 | 0.355 | 5.78 | 5.78 | 3.95 | 96.8287 | 89.0 | | | | 40 | 53 13C2-PFDoA | 615.0 > 569.7 | 9.35e3 | 1.09e4 | 0.115 | 0.993 | 6.08 | 6.08 | 10.7 | 94.1136 | 86.5 | | | | 41 | 53 13C2-PFDoA | 615.0 > 569.7 | 9.35e3 | 1.09e4 | 0.115 | 0.993 | 6.08 | 6.08 | 10.7 | 94.1136 | 86.5 | | | | 42 | 55 13C2-PFTeDA | 715.1 > 669.7 | 8.57e3 | 1.35e4 | 0.115 | 0.749 | 6.54 | 6.54 | 7.94 | 92.1879 | 84.8 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.97e3 | 2.85e3 | 0.115 | 0.968 | 5.19 | 5.19 | 13.0 | 117.0414 | 107.6 | | | | 44 | 63 13C8-PFOA | 420.9 > 376 | 1.42e4 | 1.42e4 | 0.115 | 1.000 | 4.68 | 4.68 | 12.5 | 108.7619 | 100.0 | | | | 45 | -1 | | | | | | | | | | | | | | 46 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.42e3 | 2.42e3 | 0.115 | 1.000 | 4.33 | 4.32 | 12.5 | 108.7619 | 100.0 | | | | 47 | 64 13C9-PFNA | 472.2 > 426.9 | 1.00e4 | 1.00e4 | 0.115 | 1.000 | 5.11 | 5.11 | 12.5 | 108.7619 | 100.0 | | | | 48 | 65 13C4-PFOS | 503 > 79.9 | 2.85e3 | 2.85e3 | 0.115 | 1.000 | 5.19 | 5.19 | 12.5 | 108.7619 | 100.0 | | | | 49 | 66 13C6-PFDA | 519.1 > 473.7 | 1.09e4 | 1.09e4 | 0.115 | 1.000 | 5.48 | 5.48 | 12.5 | 108.7619 | 100.0 | | | | 50 | 67 13C7-PFUdA | 570.1 > 524.8 | 1.35e4 | 1.35e4 | 0.115 | 1.000 | 5.81 | 5.81 | 12.5 | 108.7619 | 100.0 | | | **Quantify Sample Report** Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-19.qld Last Altered: Wednesday, December 05, 2018 10:33:01 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:33:09 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_19, Date: 03-Dec-2018, Time: 18:45:39, ID: 1803676-06 A1-MW-37-SA2D 0.11493, Description: A1-MW-37-SA2D Work Order 1803676 Page 85 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-19.qld Last Altered: Wednesday, December 05, 2018 10:33:01 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:33:09 Pacific Standard Time Name: 181203M1_19, Date: 03-Dec-2018, Time: 18:45:39, ID: 1803676-06 A1-MW-37-SA2D 0.11493, Description: A1-MW-37-SA2D Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-19.qld Last Altered: Wednesday, December 05, 2018 10:33:01 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:33:09 Pacific Standard Time Name: 181203M1_19, Date: 03-Dec-2018, Time: 18:45:39, ID: 1803676-06 A1-MW-37-SA2D 0.11493, Description: A1-MW-37-SA2D Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-19.qld Last Altered: Wednesday, December 05, 2018 10:33:01 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:33:09 Pacific Standard Time Name: 181203M1_19, Date: 03-Dec-2018, Time: 18:45:39, ID: 1803676-06 A1-MW-37-SA2D 0.11493, Description: A1-MW-37-SA2D Page 5 of 6 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-20.qld Last Altered: Wednesday, December 05, 2018 10:34:16 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:34:30 Pacific Standard Time ## Name: 181203M1_20, Date: 03-Dec-2018, Time: 18:56:10, ID: 1803676-07 FRB-20181115 0.11067, Description: FRB-20181115 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 1 | 3 PFBS | 299.0 > 79.7 | | 1.11e3 | 0.111 | | 3.00 | | | | | | | | 2 | 5 PFHxA | 313 > 269 | | 4.85e3 | 0.111 | | 3.56 | | | | | | | | 3 | 7 PFHpA | 363.0 > 318.9 | | 6.56e3 | 0.111 | | 4.19 | | | | | | | | 4 | 8 L-PFHxS | 398.9 > 79.6 | 2.10e0 | 1.04e3 | 0.111 | | 4.33 | 4.33 | 0.0251 | 0.1354 | | 0.873 | YES | | 5 | 68 Total PFHxS | 398.9 > 79.6 | 2.10e0 | 1.04e3 | 0.111 | | 4.58 | | 0.0251 | 0.1354 | | | | | 6 | 11 L-PFOA | 412.8 > 368.9 | 4.22e1 | 1.13e4 | 0.111 | | 4.58 | 4.68 | 0.0467 | | | 5.308 | YES | | 7 | 69 Total PFOA | 412.8 > 368.9 | 4.22e1 | 1.13e4 | 0.111 | | 4.97 | | 0.000 | | | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.11e3 | 2.50e3 | 0.111 | 0.633 | 3.00 | 3.00 | 5.57 | 79.4901 | 70.4 | | | | 9 | 40 13C2-PFHxA | 315 > 270 | 4.85e3 | 1.31e4 | 0.111 | 0.900 | 3.56 | 3.56 | 4.64 | 46.5658 | 103.1 | | | | 10 | 41 13C4-PFHpA | 367.2 > 321.8 | 6.56e3 | 1.31e4 | 0.111 | 0.693 | 4.19 | 4.19 | 6.27 | 81.7878 | 72.4 | | | | 11 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.04e3 | 2.50e3 | 0.111 |
0.476 | 4.33 | 4.33 | 5.22 | 99.1805 | 87.8 | | | | 12 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.04e3 | 2.50e3 | 0.111 | 0.476 | 4.33 | 4.33 | 5.22 | 99.1805 | 87.8 | | | | 13 | 44 13C2-PFOA | 414.9 > 369.7 | 1.13e4 | 1.90e4 | 0.111 | 0.873 | 4.68 | 4.68 | 7.42 | 76.8513 | 68.0 | | | | 14 | 44 13C2-PFOA | 414.9 > 369.7 | 1.13e4 | 1.90e4 | 0.111 | 0.873 | 4.68 | 4.68 | 7.42 | 76.8513 | 68.0 | | | | 15 | -1 | | | | | | | | | | | | | | 16 | 14 PFNA | 463.0 > 418.8 | 6.33e0 | 1.04e4 | 0.111 | | 5.11 | 5.11 | 0.00764 | 0.4818 | | 15.995 | YES | | 17 | 16 L-PFOS | 498.9 > 79.9 | | 2.54e3 | 0.111 | | 5.08 | | | | | | | | 18 | 70 Total PFOS | 498.9 > 79.9 | 0.00e0 | 2.54e3 | 0.111 | | 5.46 | | 0.000 | | | | | | 19 | 18 PFDA | 513 > 468.8 | | 1.06e4 | 0.111 | | 5.48 | | | | | | | | 20 | 21 L-MeFOSAA | 570 > 419 | | 2.99e3 | 0.111 | | 5.63 | | | | | | | | 21 | 71 Total N-MeFOSAA | 570. > 419 | 0.00e0 | 2.99e3 | 0.111 | | 5.90 | | 0.000 | | | | | | 22 | 25 PFUdA | 563.0 > 518.9 | | 1.18e4 | 0.111 | | 5.81 | | | | | | | | 23 | 45 13C5-PFNA | 468.2 > 422.9 | 1.04e4 | 1.40e4 | 0.111 | 1.006 | 5.11 | 5.11 | 9.28 | 83.2948 | 73.7 | | | | 24 | 47 13C8-PFOS | 507.0 > 79.9 | 2.54e3 | 2.68e3 | 0.111 | 0.968 | 5.19 | 5.19 | 11.8 | 110.5907 | 97.9 | | | | 25 | 47 13C8-PFOS | 507.0 > 79.9 | 2.54e3 | 2.68e3 | 0.111 | 0.968 | 5.19 | 5.19 | 11.8 | 110.5907 | 97.9 | | | | 26 | 48 13C2-PFDA | 515.1 > 469.9 | 1.06e4 | 1.54e4 | 0.111 | 1.125 | 5.48 | 5.48 | 8.61 | 69.1849 | 61.3 | | | | 27 | 50 d3-N-MeFOSAA | 573.3 > 419 | 2.99e3 | 1.79e4 | 0.111 | 0.329 | 5.63 | 5.63 | 2.09 | 57.3341 | 50.8 | | | | 28 | 50 d3-N-MeFOSAA | 573.3 > 419 | 2.99e3 | 1.79e4 | 0.111 | 0.329 | 5.63 | 5.63 | 2.09 | 57.3341 | 50.8 | | | | 29 | 51 13C2-PFUdA | 565 > 519.8 | 1.18e4 | 1.79e4 | 0.111 | 1.111 | 5.81 | 5.81 | 8.26 | 67.1601 | 59.5 | | | | 30 | -1 | | | | | | | | | | | | | | 31 | 23 L-EtFOSAA | 584.1 > 419 | | 4.20e3 | 0.111 | | 5.79 | | | | | | | | 32 | 72 Total N-EtFOSAA | 584.1 > 419 | 0.00e0 | 4.20e3 | 0.111 | | 6.06 | | 0.000 | | | | | | 33 | 29 PFTrDA | 662.9 > 618.9 | | 1.14e4 | 0.111 | | 6.32 | | | | | | | | 34 | 27 PFDoA | 612.9 > 569.0 | | 1.14e4 | 0.111 | | 6.08 | | | | | | | | 35 | 30 PFTeDA | 713.0 > 669.0 | | 9.01e3 | 0.111 | | 6.54 | | | | | | I
A | | 36 | 73 TCDA | 498.3>106.9 | | | 0.111 | | 5.45 | | | | | | Ï | MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-20.qld Last Altered: Wednesday, December 05, 2018 10:34:16 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:34:30 Pacific Standard Time Name: 181203M1_20, Date: 03-Dec-2018, Time: 18:56:10, ID: 1803676-07 FRB-20181115 0.11067, Description: FRB-20181115 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|-----------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 37 | 61 13C5-PFHxA | 318 > 272.9 | 1.31e4 | 1.31e4 | 0.111 | 1.000 | 3.56 | 3.56 | 12.5 | 112.9484 | 100.0 | | | | 38 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.20e3 | 1.79e4 | 0.111 | 0.355 | 5.78 | 5.78 | 2.93 | 74.5966 | 66.0 | | | | 39 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.20e3 | 1.79e4 | 0.111 | 0.355 | 5.78 | 5.78 | 2.93 | 74.5966 | 66.0 | | | | 40 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.14e4 | 1.54e4 | 0.111 | 0.993 | 6.08 | 6.08 | 9.24 | 84.1060 | 74.5 | | | | 41 | 53 13C2-PFDoA | 615.0 > 569.7 | 1.14e4 | 1.54e4 | 0.111 | 0.993 | 6.08 | 6.08 | 9.24 | 84.1060 | 74.5 | | | | 42 | 55 13C2-PFTeDA | 715.1 > 669.7 | 9.01e3 | 1.79e4 | 0.111 | 0.749 | 6.54 | 6.53 | 6.29 | 75.8815 | 67.2 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.54e3 | 2.68e3 | 0.111 | 0.968 | 5.19 | 5.19 | 11.8 | 110.5907 | 97.9 | | | | 44 | 63 13C8-PFOA | 420.9 > 376 | 1.90e4 | 1.90e4 | 0.111 | 1.000 | 4.68 | 4.68 | 12.5 | 112.9484 | 100.0 | | | | 45 | -1 | | | | | | | | | | | | | | 46 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.50e3 | 2.50e3 | 0.111 | 1.000 | 4.33 | 4.33 | 12.5 | 112.9484 | 100.0 | | | | 47 | 64 13C9-PFNA | 472.2 > 426.9 | 1.40e4 | 1.40e4 | 0.111 | 1.000 | 5.11 | 5.11 | 12.5 | 112.9484 | 100.0 | | | | 48 | 65 13C4-PFOS | 503 > 79.9 | 2.68e3 | 2.68e3 | 0.111 | 1.000 | 5.19 | 5.19 | 12.5 | 112.9484 | 100.0 | | | | 49 | 66 13C6-PFDA | 519.1 > 473.7 | 1.54e4 | 1.54e4 | 0.111 | 1.000 | 5.48 | 5.48 | 12.5 | 112.9484 | 100.0 | | | | 50 | 67 13C7-PFUdA | 570.1 > 524.8 | 1.79e4 | 1.79e4 | 0.111 | 1.000 | 5.81 | 5.81 | 12.5 | 112.9484 | 100.0 | | | Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-20.qld Last Altered: Wednesday, December 05, 2018 10:34:16 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:34:30 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_20, Date: 03-Dec-2018, Time: 18:56:10, ID: 1803676-07 FRB-20181115 0.11067, Description: FRB-20181115 Work Order 1803676 Page 91 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-20.qld Last Altered: Wednesday, December 05, 2018 10:34:16 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:34:30 Pacific Standard Time Name: 181203M1_20, Date: 03-Dec-2018, Time: 18:56:10, ID: 1803676-07 FRB-20181115 0.11067, Description: FRB-20181115 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-20.qld Last Altered: Wednesday, December 05, 2018 10:34:16 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:34:30 Pacific Standard Time Name: 181203M1_20, Date: 03-Dec-2018, Time: 18:56:10, ID: 1803676-07 FRB-20181115 0.11067, Description: FRB-20181115 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-20.qld **Quantify Sample Report** Last Altered: Wednesday, December 05, 2018 10:34:16 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:34:30 Pacific Standard Time Name: 181203M1_20, Date: 03-Dec-2018, Time: 18:56:10, ID: 1803676-07 FRB-20181115 0.11067, Description: FRB-20181115 Page 5 of 6 Vista Analytical Laboratory L14 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-21.qld Last Altered: Wednesday, December 05, 2018 10:37:06 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:37:17 Pacific Standard Time Name: 181203M1_21, Date: 03-Dec-2018, Time: 19:06:48, ID: 1803676-08 A1-MW-31-SA2 0.1169, Description: A1-MW-31-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|--------------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 1 | 3 PFBS | 299.0 > 79.7 | 5.21e2 | 1.19e3 | 0.117 | | 3.00 | 3.00 | 5.45 | 23.4599 | | 2.977 | NO | | 2 | 5 PFHxA | 313 > 269 | 6.65e3 | 3.71e3 | 0.117 | | 3.56 | 3.56 | 8.97 | 73.2152 | | 14.185 | NO | | 3 | 7 PFHpA | 363.0 > 318.9 | 8.91e1 | 4.90e3 | 0.117 | | 4.19 | 4.19 | 0.227 | 1.6460 | | 18.244 | NO | | 4 | 8 L-PFHxS | 398.9 > 79.6 | 1.64e2 | 1.04e3 | 0.117 | | 4.32 | 4.32 | 1.97 | 8.5498 | | 3.336 | NO | | 5 | 68 Total PFHxS | 398.9 > 79.6 | 1.64e2 | 1.04e3 | 0.117 | | 4.58 | | 1.97 | 8.5498 | | | | | 6 | 11 L-PFOA | 412.8 > 368.9 | 4.34e2 | 8.99e3 | 0.117 | | 4.58 | 4.68 | 0.603 | 3.8801 | | 3.139 | NO | | 7 | 69 Total PFOA | 412.8 > 368.9 | 4.34e2 | 8.99e3 | 0.117 | | 4.97 | | 0.603 | 3.8801 | | | | | 8 | 38 13C3-PFBS | 302. > 98.8 | 1.19e3 | 2.36e3 | 0.117 | 0.633 | 3.00 | 3.00 | 6.32 | 85.3883 | 79.9 | | | | 9 | 40 13C2-PFHxA | 315 > 270 | 3.71e3 | 1.04e4 | 0.117 | 0.900 | 3.56 | 3.56 | 4.48 | 42.5202 | 99.4 | | | | 10 | 41 13C4-PFHpA | 367.2 > 321.8 | 4.90e3 | 1.04e4 | 0.117 | 0.693 | 4.19 | 4.19 | 5.92 | 73.0309 | 68.3 | | | | 11 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.04e3 | 2.36e3 | 0.117 | 0.476 | 4.33 | 4.32 | 5.51 | 99.0229 | 92.6 | | | | 12 | 42 18O2-PFHxS | 403.0 > 102.6 | 1.04e3 | 2.36e3 | 0.117 | 0.476 | 4.33 | 4.32 | 5.51 | 99.0229 | 92.6 | | | | 13 | 44 13C2-PFOA | 414.9 > 369.7 | 8.99e3 | 1.37e4 | 0.117 | 0.873 | 4.68 | 4.68 | 8.23 | 80.6298 | 75.4 | | | | 14 | 44 13C2-PFOA | 414.9 > 369.7 | 8.99e3 | 1.37e4 | 0.117 | 0.873 | 4.68 | 4.68 | 8.23 | 80.6298 | 75.4 | | | | 15 | -1 | | | | | | | | | | | | | | 16 | 14 PFNA | 463.0 > 418.8 | | 8.69e3 | 0.117 | | 5.11 | | | | | | | | 17 | 16 L-PFOS | 498.9 > 79.9 | 1.95e1 | 2.79e3 | 0.117 | | 5.08 | 5.18 | 0.0873 | 1.1606 | | 5.312 | YES | | 18 | 70 Total PFOS | 498.9 > 79.9 | 1.95e1 | 2.79e3 | 0.117 | | 5.46 | | 0.0873 | 1.1606 | | | | | 19 | 18 PFDA | 513 > 468.8 | | 8.51e3 | 0.117 | | 5.48 | | | | | | | | 20 | 21 L-MeFOSAA | 570 > 419 | | 2.93e3 | 0.117 | | 5.63 | | | | | | | | 21 | 71 Total N-MeFOSAA | 570. > 419 | 0.00e0 | 2.93e3 | 0.117 | | 5.90 | | 0.000 | | | | | | 22 | 25 PFUdA | 563.0 > 518.9 | | 1.03e4 | 0.117 | | 5.81 | | | | | | | | 23 | 45 13C5-PFNA | 468.2 > 422.9 | 8.69e3 | 1.03e4 | 0.117 | 1.006 | 5.11 | 5.11 | 10.5 | 89.5856 | 83.8 | | | | 24 | 47 13C8-PFOS | 507.0 > 79.9 | 2.79e3 | 2.71e3 | 0.117 | 0.968 | 5.19 | 5.19 | 12.9 | 113.6414 | 106.3 | | | | 25 | 47 13C8-PFOS | 507.0 > 79.9 | 2.79e3 | 2.71e3 | 0.117 | 0.968 | 5.19 | 5.19 | 12.9 | 113.6414 | 106.3 | | | | 26 | 48 13C2-PFDA | 515.1 > 469.9 | 8.51e3 | 1.14e4 | 0.117 | 1.125 | 5.48 | 5.48 | 9.33 | 70.9290 | 66.3 | | | | 27 | 50 d3-N-MeFOSAA | 573.3 > 419 | 2.93e3 | 1.34e4 | 0.117 | 0.329 | 5.63 | 5.63 | 2.73 | 70.8380 | 66.2 | | | | 28 | 50 d3-N-MeFOSAA | 573.3 > 419 | 2.93e3 | 1.34e4 | 0.117 | 0.329 | 5.63 | 5.63 | 2.73 | 70.8380 | 66.2 | | | | 29 | 51 13C2-PFUdA | 565 > 519.8 | 1.03e4 | 1.34e4 | 0.117 | 1.111 | 5.81 | 5.81 | 9.57 | 73.6676 | 68.9 | | | | 30 | -1 | | | | | | | | | | | | | | 31 | 23 L-EtFOSAA | 584.1 > 419 | | 4.41e3 | 0.117 | | 5.79 | | | | | | | | 32 | 72 Total N-EtFOSAA | 584.1 > 419 | 0.00e0 | 4.41e3 | 0.117 | | 6.06 | | 0.000 | | | | | | 33 | 29 PFTrDA | 662.9 > 618.9 | | 8.74e3 | 0.117 | | 6.32 | | | | | | | | 34 | 27 PFDoA | 612.9 > 569.0 | | 8.74e3 | 0.117 | | 6.08 | | | | | | | | 35 | 30 PFTeDA | 713.0 > 669.0 | | 7.95e3
| 0.117 | | 6.54 | | | | | | , | | 36 | 73 TCDA | 498.3>106.9 | | | 0.117 | | 5.45 | | | | | | Α | Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-21.qld Last Altered: Wednesday, December 05, 2018 10:37:06 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:37:17 Pacific Standard Time Name: 181203M1_21, Date: 03-Dec-2018, Time: 19:06:48, ID: 1803676-08 A1-MW-31-SA2 0.1169, Description: A1-MW-31-SA2 | | # Name | Trace | Area | IS Area | wt/vol | RRF Mean | Pred.RT | RT | Response | Conc. | %Rec | Ion Ratio | Ratio Out? | |----|-----------------|---------------|--------|---------|--------|----------|---------|------|----------|----------|-------|-----------|------------| | 37 | 61 13C5-PFHxA | 318 > 272.9 | 1.04e4 | 1.04e4 | 0.117 | 1.000 | 3.56 | 3.56 | 12.5 | 106.9290 | 100.0 | | | | 38 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.41e3 | 1.34e4 | 0.117 | 0.355 | 5.78 | 5.78 | 4.11 | 98.9322 | 92.5 | | | | 39 | 52 d5-N-EtFOSAA | 589.3 > 419 | 4.41e3 | 1.34e4 | 0.117 | 0.355 | 5.78 | 5.78 | 4.11 | 98.9322 | 92.5 | | | | 40 | 53 13C2-PFDoA | 615.0 > 569.7 | 8.74e3 | 1.14e4 | 0.117 | 0.993 | 6.08 | 6.08 | 9.58 | 82.4999 | 77.2 | | | | 41 | 53 13C2-PFDoA | 615.0 > 569.7 | 8.74e3 | 1.14e4 | 0.117 | 0.993 | 6.08 | 6.08 | 9.58 | 82.4999 | 77.2 | | | | 42 | 55 13C2-PFTeDA | 715.1 > 669.7 | 7.95e3 | 1.34e4 | 0.117 | 0.749 | 6.54 | 6.54 | 7.40 | 84.4581 | 79.0 | | | | 43 | 47 13C8-PFOS | 507.0 > 79.9 | 2.79e3 | 2.71e3 | 0.117 | 0.968 | 5.19 | 5.19 | 12.9 | 113.6414 | 106.3 | | | | 44 | 63 13C8-PFOA | 420.9 > 376 | 1.37e4 | 1.37e4 | 0.117 | 1.000 | 4.68 | 4.68 | 12.5 | 106.9290 | 100.0 | | | | 45 | -1 | | | | | | | | | | | | | | 46 | 62 13C3-PFHxS | 401.8 > 79.9 | 2.36e3 | 2.36e3 | 0.117 | 1.000 | 4.33 | 4.32 | 12.5 | 106.9290 | 100.0 | | | | 47 | 64 13C9-PFNA | 472.2 > 426.9 | 1.03e4 | 1.03e4 | 0.117 | 1.000 | 5.11 | 5.11 | 12.5 | 106.9290 | 100.0 | | | | 48 | 65 13C4-PFOS | 503 > 79.9 | 2.71e3 | 2.71e3 | 0.117 | 1.000 | 5.19 | 5.19 | 12.5 | 106.9290 | 100.0 | | | | 49 | 66 13C6-PFDA | 519.1 > 473.7 | 1.14e4 | 1.14e4 | 0.117 | 1.000 | 5.48 | 5.48 | 12.5 | 106.9290 | 100.0 | | | | 50 | 67 13C7-PFUdA | 570.1 > 524.8 | 1.34e4 | 1.34e4 | 0.117 | 1.000 | 5.81 | 5.81 | 12.5 | 106.9290 | 100.0 | | | **Quantify Sample Report** Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-21.gld Last Altered: Wednesday, December 05, 2018 10:37:06 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:37:17 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18 VAL-PFAS Q4 12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_21, Date: 03-Dec-2018, Time: 19:06:48, ID: 1803676-08 A1-MW-31-SA2 0.1169, Description: A1-MW-31-SA2 Work Order 1803676 Page 97 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-21.qld Last Altered: Wednesday, December 05, 2018 10:37:06 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:37:17 Pacific Standard Time Name: 181203M1_21, Date: 03-Dec-2018, Time: 19:06:48, ID: 1803676-08 A1-MW-31-SA2 0.1169, Description: A1-MW-31-SA2 MM 12/5/2018 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-21.gld Last Altered: Wednesday, December 05, 2018 10:37:06 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:37:17 Pacific Standard Time Name: 181203M1_21, Date: 03-Dec-2018, Time: 19:06:48, ID: 1803676-08 A1-MW-31-SA2 0.1169, Description: A1-MW-31-SA2 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-21.qld Last Altered: Wednesday, December 05, 2018 10:37:06 Pacific Standard Time Printed: Wednesday, December 05, 2018 10:37:17 Pacific Standard Time Name: 181203M1_21, Date: 03-Dec-2018, Time: 19:06:48, ID: 1803676-08 A1-MW-31-SA2 0.1169, Description: A1-MW-31-SA2 ## INJECTION INTERNAL STANDARD (IIS) AREAS, INSTRUMENT BLANKS (IB) **AND** CONTINUTING CALIBRATION VERIFICATIONS CCV) Work Order 1803676 Page 101 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Method: F:\Projects\PFAS.PRO\MethDB\PFAS_RS-12-03-18.mdb 03 Dec 2018 12:52:41 Calibration: 04 Dec 2018 08:45:01 Name: 181203M1_2, Date: 03-Dec-2018, Time: 14:36:50, ID: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------|--------|-------|----------| | 1 | 1 13C4-PFBA | ST181203M1-1 PFC CS0 18K3003 | 8.86e3 | 100.0 | NO | | 2 | 2 13C5-PFHxA | ST181203M1-1 PFC CS0 18K3003 | 1.75e4 | 100.0 | NO | | 3 | 3 13C3-PFHxS | ST181203M1-1 PFC CS0 18K3003 | 2.75e3 | 100.0 | NO | | 4 | 4 13C8-PFOA | ST181203M1-1 PFC CS0 18K3003 | 2.30e4 | 100.0 | NO | | 5 | 5 13C9-PFNA | ST181203M1-1 PFC CS0 18K3003 | 1.71e4 | 100.0 | NO | | 6 | 6 13C4-PFOS | ST181203M1-1 PFC CS0 18K3003 | 3.15e3 | 100.0 | NO | | 7 | 7 13C6-PFDA | ST181203M1-1 PFC CS0 18K3003 | 1.82e4 | 100.0 | NO | | 8 | 8 13C7-PFUdA | ST181203M1-1 PFC CS0 18K3003 | 2.19e4 | 100.0 | NO | Name: 181203M1_3, Date: 03-Dec-2018, Time: 14:47:29, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | _ | _ | NO | Name: 181203M1_4, Date: 03-Dec-2018, Time: 14:58:01, ID: B8K0153-BS1 OPR 0.25, Description: OPR | | # Name | ID | Area | %Rec | Area Out | |---|--------------|----------------------|--------|------|----------| | 1 | 1 13C4-PFBA | B8K0153-BS1 OPR 0.25 | 6.33e3 | 71.4 | NO | | 2 | 2 13C5-PFHxA | B8K0153-BS1 OPR 0.25 | 1.28e4 | 73.1 | NO | | 3 | 3 13C3-PFHxS | B8K0153-BS1 OPR 0.25 | 2.20e3 | 80.2 | NO | | 4 | 4 13C8-PFOA | B8K0153-BS1 OPR 0.25 | 1.75e4 | 76.1 | NO | | 5 | 5 13C9-PFNA | B8K0153-BS1 OPR 0.25 | 1.35e4 | 79.2 | NO | | 6 | 6 13C4-PFOS | B8K0153-BS1 OPR 0.25 | 2.48e3 | 78.6 | NO | | 7 | 7 13C6-PFDA | B8K0153-BS1 OPR 0.25 | 1.52e4 | 83.5 | NO | | 8 | 8 13C7-PFUdA | B8K0153-BS1 OPR 0.25 | 1.77e4 | 81.0 | NO | Name: 181203M1_5, Date: 03-Dec-2018, Time: 15:08:39, ID: B8K0153-MS1 Matrix Spike 0.1068, Description: Matrix Spike | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | B8K0153-MS1 Matrix Spike 0.1068 | 6.20e3 | 70.0 | NO | | 2 | 2 13C5-PFHxA | B8K0153-MS1 Matrix Spike 0.1068 | 1.20e4 | 68.6 | NO | | 3 | 3 13C3-PFHxS | B8K0153-MS1 Matrix Spike 0.1068 | 2.46e3 | 89.6 | NO | | 4 | 4 13C8-PFOA | B8K0153-MS1 Matrix Spike 0.1068 | 1.62e4 | 70.3 | NO | | 5 | 5 13C9-PFNA | B8K0153-MS1 Matrix Spike 0.1068 | 1.17e4 | 68.5 | NO | | 6 | 6 13C4-PFOS | B8K0153-MS1 Matrix Spike 0.1068 | 2.61e3 | 82.9 | NO | | 7 | 7 13C6-PFDA | B8K0153-MS1 Matrix Spike 0.1068 | 1.34e4 | 73.5 | NO | | 8 | 8 13C7-PFUdA | B8K0153-MS1 Matrix Spike 0.1068 | 1.63e4 | 74.4 | NO | Work Order 1803676 Page 102 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_6, Date: 03-Dec-2018, Time: 15:19:12, ID: B8K0153-MSD1 Matrix Spike Dup 0.11122, Description: Matrix Spike Dup | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-------------------------------------|--------|--------|----------| | | # INAITIE | טו | Alea | 70INEC | Alea Out | | 1 | 1 13C4-PFBA | B8K0153-MSD1 Matrix Spike Dup 0.111 | 4.23e3 | 47.8 | YES | | 2 | 2 13C5-PFHxA | B8K0153-MSD1 Matrix Spike Dup 0.111 | 9.19e3 | 52.4 | NO | | 3 | 3 13C3-PFHxS | B8K0153-MSD1 Matrix Spike Dup 0.111 | 2.45e3 | 89.0 | NO | | 4 | 4 13C8-PFOA | B8K0153-MSD1 Matrix Spike Dup 0.111 | 1.41e4 | 61.2 | NO | | 5 | 5 13C9-PFNA | B8K0153-MSD1 Matrix Spike Dup 0.111 | 9.97e3 | 58.3 | NO | | 6 | 6 13C4-PFOS | B8K0153-MSD1 Matrix Spike Dup 0.111 | 2.61e3 | 82.7 | NO | | 7 | 7 13C6-PFDA | B8K0153-MSD1 Matrix Spike Dup 0.111 | 1.14e4 | 63.0 | NO | | 8 | 8 13C7-PFUdA | B8K0153-MSD1 Matrix Spike Dup 0.111 | 1.42e4 | 65.0 | NO | Name: 181203M1_7, Date: 03-Dec-2018, Time: 15:29:51, ID: B8K0153-BLK1 Method Blank 0.25, Description: Method Blank | | # Name | ID | Area | %Rec | Area Out | |---|--------------|--------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | B8K0153-BLK1 Method Blank 0.25 | 6.76e3 | 76.4 | NO | | 2 | 2 13C5-PFHxA | B8K0153-BLK1 Method Blank 0.25 | 1.37e4 | 77.9 | NO | | 3 | 3 13C3-PFHxS | B8K0153-BLK1 Method Blank 0.25 | 2.34e3 | 85.2 | NO | | 4 | 4 13C8-PFOA | B8K0153-BLK1 Method Blank 0.25 | 1.85e4 | 80.4 | NO | | 5 | 5 13C9-PFNA | B8K0153-BLK1 Method Blank 0.25 | 1.33e4 | 77.5 | NO | | 6 | 6 13C4-PFOS | B8K0153-BLK1 Method Blank 0.25 | 2.57e3 | 81.4 | NO | | 7 | 7 13C6-PFDA | B8K0153-BLK1 Method Blank 0.25 | 1.49e4 | 82.1 | NO | | 8 | 8 13C7-PFUdA | B8K0153-BLK1 Method Blank 0.25 | 1.76e4 | 80.4 | NO | Name: 181203M1_8, Date: 03-Dec-2018, Time: 15:40:24, ID: 1803678-01 A1-MW-01-SA2 0.11182, Description: A1-MW-01-SA2 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803678-01 A1-MW-01-SA2 0.11182 | 4.66e3 | 52.6 | NO | | 2 | 2 13C5-PFHxA | 1803678-01 A1-MW-01-SA2 0.11182 | 9.22e3 | 52.6 | NO | | 3 | 3 13C3-PFHxS | 1803678-01 A1-MW-01-SA2 0.11182 | 2.71e3 | 98.7 | NO | | 4 | 4 13C8-PFOA | 1803678-01 A1-MW-01-SA2 0.11182 | 1.41e4 | 61.4 | NO | | 5 | 5 13C9-PFNA | 1803678-01 A1-MW-01-SA2 0.11182 | 1.14e4 | 66.7 | NO | | 6 | 6 13C4-PFOS | 1803678-01 A1-MW-01-SA2 0.11182 | 2.97e3 | 94.1 | NO | | 7 | 7 13C6-PFDA | 1803678-01 A1-MW-01-SA2 0.11182 | 1.32e4 | 72.8 | NO | | 8 | 8 13C7-PFUdA | 1803678-01 A1-MW-01-SA2 0.11182 | 1.62e4 | 74.2 | NO | Name: 181203M1_9, Date: 03-Dec-2018, Time: 15:51:02, ID:
1803678-02 A1-MW-42-SA2 0.11781, Description: A1-MW-42-SA2 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|--------|----------| | | # INGING | טו | Alca | 701100 | Alca Out | | 1 | 1 13C4-PFBA | 1803678-02 A1-MW-42-SA2 0.11781 | 3.93e3 | 44.3 | YES | | 2 | 2 13C5-PFHxA | 1803678-02 A1-MW-42-SA2 0.11781 | 7.20e3 | 41.1 | YES | | 3 | 3 13C3-PFHxS | 1803678-02 A1-MW-42-SA2 0.11781 | 2.35e3 | 85.4 | NO | | 4 | 4 13C8-PFOA | 1803678-02 A1-MW-42-SA2 0.11781 | 1.02e4 | 44.3 | YES | | 5 | 5 13C9-PFNA | 1803678-02 A1-MW-42-SA2 0.11781 | 7.80e3 | 45.6 | YES | | 6 | 6 13C4-PFOS | 1803678-02 A1-MW-42-SA2 0.11781 | 2.52e3 | 80.0 | NO | | 7 | 7 13C6-PFDA | 1803678-02 A1-MW-42-SA2 0.11781 | 9.69e3 | 53.4 | NO | | 8 | 8 13C7-PFUdA | 1803678-02 A1-MW-42-SA2 0.11781 | 1.27e4 | 58.0 | NO | Work Order 1803676 Page 103 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_10, Date: 03-Dec-2018, Time: 16:01:36, ID: 1803678-03 FRB-20181116 0.1036, Description: FRB-20181116 | | # Name | ĪD | Area | %Rec | Area Out | |---|--------------|--------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803678-03 FRB-20181116 0.1036 | 7.24e3 | 81.7 | NO | | 2 | 2 13C5-PFHxA | 1803678-03 FRB-20181116 0.1036 | 1.51e4 | 86.0 | NO | | 3 | 3 13C3-PFHxS | 1803678-03 FRB-20181116 0.1036 | 2.42e3 | 88.2 | NO | | 4 | 4 13C8-PFOA | 1803678-03 FRB-20181116 0.1036 | 2.00e4 | 86.9 | NO | | 5 | 5 13C9-PFNA | 1803678-03 FRB-20181116 0.1036 | 1.46e4 | 85.3 | NO | | 6 | 6 13C4-PFOS | 1803678-03 FRB-20181116 0.1036 | 2.77e3 | 88.0 | NO | | 7 | 7 13C6-PFDA | 1803678-03 FRB-20181116 0.1036 | 1.54e4 | 84.9 | NO | | 8 | 8 13C7-PFUdA | 1803678-03 FRB-20181116 0.1036 | 1.98e4 | 90.5 | NO | Name: 181203M1_11, Date: 03-Dec-2018, Time: 16:12:14, ID: 1803678-04 EB-20181116 0.11772, Description: EB-20181116 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|--------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803678-04 EB-20181116 0.11772 | 8.06e3 | 91.0 | NO | | 2 | 2 13C5-PFHxA | 1803678-04 EB-20181116 0.11772 | 1.56e4 | 89.1 | NO | | 3 | 3 13C3-PFHxS | 1803678-04 EB-20181116 0.11772 | 2.49e3 | 90.7 | NO | | 4 | 4 13C8-PFOA | 1803678-04 EB-20181116 0.11772 | 2.08e4 | 90.5 | NO | | 5 | 5 13C9-PFNA | 1803678-04 EB-20181116 0.11772 | 1.50e4 | 88.0 | NO | | 6 | 6 13C4-PFOS | 1803678-04 EB-20181116 0.11772 | 2.67e3 | 84.6 | NO | | 7 | 7 13C6-PFDA | 1803678-04 EB-20181116 0.11772 | 1.57e4 | 86.7 | NO | | 8 | 8 13C7-PFUdA | 1803678-04 EB-20181116 0.11772 | 1.86e4 | 85.2 | NO | Name: 181203M1_12, Date: 03-Dec-2018, Time: 16:22:46, ID: 1803676-01 A1-MW-11-SA2 0.11626, Description: A1-MW-11-SA2 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803676-01 A1-MW-11-SA2 0.11626 | 4.43e3 | 50.0 | NO | | 2 | 2 13C5-PFHxA | 1803676-01 A1-MW-11-SA2 0.11626 | 8.44e3 | 48.1 | YES | | 3 | 3 13C3-PFHxS | 1803676-01 A1-MW-11-SA2 0.11626 | 2.59e3 | 94.1 | NO | | 4 | 4 13C8-PFOA | 1803676-01 A1-MW-11-SA2 0.11626 | 1.10e4 | 47.9 | YES | | 5 | 5 13C9-PFNA | 1803676-01 A1-MW-11-SA2 0.11626 | 7.74e3 | 45.3 | YES | | 6 | 6 13C4-PFOS | 1803676-01 A1-MW-11-SA2 0.11626 | 2.52e3 | 79.8 | NO | | 7 | 7 13C6-PFDA | 1803676-01 A1-MW-11-SA2 0.11626 | 9.12e3 | 50.2 | NO | | 8 | 8 13C7-PFUdA | 1803676-01 A1-MW-11-SA2 0.11626 | 1.11e4 | 50.9 | NO | Name: 181203M1_13, Date: 03-Dec-2018, Time: 16:33:24, ID: 1803676-02 A1-MW-13-SA2 0.11042, Description: A1-MW-13-SA2 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803676-02 A1-MW-13-SA2 0.11042 | 5.56e3 | 62.8 | NO | | 2 | 2 13C5-PFHxA | 1803676-02 A1-MW-13-SA2 0.11042 | 1.10e4 | 62.8 | NO | | 3 | 3 13C3-PFHxS | 1803676-02 A1-MW-13-SA2 0.11042 | 2.44e3 | 88.8 | NO | | 4 | 4 13C8-PFOA | 1803676-02 A1-MW-13-SA2 0.11042 | 1.45e4 | 63.0 | NO | | 5 | 5 13C9-PFNA | 1803676-02 A1-MW-13-SA2 0.11042 | 1.12e4 | 65.4 | NO | | 6 | 6 13C4-PFOS | 1803676-02 A1-MW-13-SA2 0.11042 | 2.55e3 | 80.8 | NO | | 7 | 7 13C6-PFDA | 1803676-02 A1-MW-13-SA2 0.11042 | 1.27e4 | 69.9 | NO | | 8 | 8 13C7-PFUdA | 1803676-02 A1-MW-13-SA2 0.11042 | 1.51e4 | 69.1 | NO | Work Order 1803676 Page 104 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_14, Date: 03-Dec-2018, Time: 16:43:58, ID: 1803676-03 A1-MW-14-SA2 0.11629, Description: A1-MW-14-SA2 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803676-03 A1-MW-14-SA2 0.11629 | 5.05e3 | 57.0 | NO | | 2 | 2 13C5-PFHxA | 1803676-03 A1-MW-14-SA2 0.11629 | 9.84e3 | 56.1 | NO | | 3 | 3 13C3-PFHxS | 1803676-03 A1-MW-14-SA2 0.11629 | 2.13e3 | 77.6 | NO | | 4 | 4 13C8-PFOA | 1803676-03 A1-MW-14-SA2 0.11629 | 1.35e4 | 58.8 | NO | | 5 | 5 13C9-PFNA | 1803676-03 A1-MW-14-SA2 0.11629 | 1.02e4 | 59.8 | NO | | 6 | 6 13C4-PFOS | 1803676-03 A1-MW-14-SA2 0.11629 | 2.42e3 | 76.9 | NO | | 7 | 7 13C6-PFDA | 1803676-03 A1-MW-14-SA2 0.11629 | 1.16e4 | 64.1 | NO | | 8 | 8 13C7-PFUdA | 1803676-03 A1-MW-14-SA2 0.11629 | 1.41e4 | 64.5 | NO | Name: 181203M1_15, Date: 03-Dec-2018, Time: 16:54:36, ID: 1803676-04 A1-MW-15-SA2 0.11086, Description: A1-MW-15-SA2 | | # Name | ĪD | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803676-04 A1-MW-15-SA2 0.11086 | 5.23e3 | 59.0 | NO | | 2 | 2 13C5-PFHxA | 1803676-04 A1-MW-15-SA2 0.11086 | 9.86e3 | 56.3 | NO | | 3 | 3 13C3-PFHxS | 1803676-04 A1-MW-15-SA2 0.11086 | 2.23e3 | 81.1 | NO | | 4 | 4 13C8-PFOA | 1803676-04 A1-MW-15-SA2 0.11086 | 1.32e4 | 57.4 | NO | | 5 | 5 13C9-PFNA | 1803676-04 A1-MW-15-SA2 0.11086 | 9.26e3 | 54.2 | NO | | 6 | 6 13C4-PFOS | 1803676-04 A1-MW-15-SA2 0.11086 | 2.50e3 | 79.3 | NO | | 7 | 7 13C6-PFDA | 1803676-04 A1-MW-15-SA2 0.11086 | 1.08e4 | 59.7 | NO | | 8 | 8 13C7-PFUdA | 1803676-04 A1-MW-15-SA2 0.11086 | 1.25e4 | 57.3 | NO | Name: 181203M1_16, Date: 03-Dec-2018, Time: 18:13:52, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|--------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | 7.86e0 | 0.0 | YES | | 8 | 8 13C7-PFUdA | IPA | | | NO | Name: 181203M1_17, Date: 03-Dec-2018, Time: 18:24:27, ID: IPA, Description: IPA | | # Name | ID | | Area | %Rec | Area Out | |---|--------------|-----|--|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | | NO | | 4 | 4 13C8-PFOA | IPA | | | | NO | | 5 | 5 13C9-PFNA | IPA | | | | NO | | 6 | 6 13C4-PFOS | IPA | | | | NO | | 7 | 7 13C6-PFDA | IPA | | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | | NO | Work Order 1803676 Page 105 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_18, Date: 03-Dec-2018, Time: 18:35:06, ID: 1803676-05 A1-MW-37-SA2 0.11753, Description: A1-MW-37-SA2 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803676-05 A1-MW-37-SA2 0.11753 | 4.70e3 | 53.1 | NO | | 2 | 2 13C5-PFHxA | 1803676-05 A1-MW-37-SA2 0.11753 | 8.32e3 | 47.5 | YES | | 3 | 3 13C3-PFHxS | 1803676-05 A1-MW-37-SA2 0.11753 | 2.22e3 | 81.0 | NO | | 4 | 4 13C8-PFOA | 1803676-05 A1-MW-37-SA2 0.11753 | 1.14e4 | 49.6 | YES | | 5 | 5 13C9-PFNA | 1803676-05 A1-MW-37-SA2 0.11753 | 7.65e3 | 44.7 | YES | | 6 | 6 13C4-PFOS | 1803676-05 A1-MW-37-SA2 0.11753 | 2.42e3 | 76.7 | NO | | 7 | 7 13C6-PFDA | 1803676-05 A1-MW-37-SA2 0.11753 | 8.27e3 | 45.6 | YES | | 8 | 8 13C7-PFUdA | 1803676-05 A1-MW-37-SA2 0.11753 | 9.42e3 | 43.1 | YES | Name: 181203M1_19, Date: 03-Dec-2018, Time: 18:45:39, ID: 1803676-06 A1-MW-37-SA2D 0.11493, Description: A1-MW-37-SA2D | | # Name | ID | Area | %Rec | Area Out | |---|--------------|----------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803676-06 A1-MW-37-SA2D 0.11493 | 5.65e3 | 63.7 | NO | | 2 | 2 13C5-PFHxA | 1803676-06 A1-MW-37-SA2D 0.11493 | 1.02e4 | 58.2 | NO | | 3 | 3 13C3-PFHxS | 1803676-06 A1-MW-37-SA2D 0.11493 | 2.42e3 | 88.0 | NO | | 4 | 4 13C8-PFOA | 1803676-06 A1-MW-37-SA2D 0.11493 | 1.42e4 | 61.9 | NO | | 5 | 5 13C9-PFNA | 1803676-06 A1-MW-37-SA2D 0.11493 | 1.00e4 | 58.6 | NO | | 6 | 6 13C4-PFOS | 1803676-06 A1-MW-37-SA2D 0.11493 | 2.85e3 | 90.3 | NO | | 7 | 7 13C6-PFDA | 1803676-06 A1-MW-37-SA2D 0.11493 | 1.09e4 | 59.9 | NO | | 8 | 8 13C7-PFUdA | 1803676-06 A1-MW-37-SA2D 0.11493 | 1.35e4 | 61.8 | NO | Name: 181203M1_20, Date: 03-Dec-2018, Time: 18:56:10, ID: 1803676-07 FRB-20181115 0.11067, Description: FRB-20181115 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803676-07 FRB-20181115 0.11067 | 6.27e3 | 70.8 | NO | | 2 | 2 13C5-PFHxA | 1803676-07 FRB-20181115 0.11067 | 1.31e4 | 74.5 | NO | | 3 | 3 13C3-PFHxS | 1803676-07 FRB-20181115 0.11067 | 2.50e3 | 90.9 | NO | | 4 | 4 13C8-PFOA | 1803676-07 FRB-20181115 0.11067 | 1.90e4 | 82.8 | NO | | 5 | 5 13C9-PFNA | 1803676-07 FRB-20181115 0.11067 | 1.40e4 | 81.7 | NO | | 6 | 6 13C4-PFOS | 1803676-07 FRB-20181115 0.11067 | 2.68e3 | 84.9 | NO | | 7 | 7 13C6-PFDA | 1803676-07 FRB-20181115 0.11067
| 1.54e4 | 84.9 | NO | | 8 | 8 13C7-PFUdA | 1803676-07 FRB-20181115 0.11067 | 1.79e4 | 82.0 | NO | Name: 181203M1_21, Date: 03-Dec-2018, Time: 19:06:48, ID: 1803676-08 A1-MW-31-SA2 0.1169, Description: A1-MW-31-SA2 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|--------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803676-08 A1-MW-31-SA2 0.1169 | 5.32e3 | 60.0 | NO | | 2 | 2 13C5-PFHxA | 1803676-08 A1-MW-31-SA2 0.1169 | 1.04e4 | 59.1 | NO | | 3 | 3 13C3-PFHxS | 1803676-08 A1-MW-31-SA2 0.1169 | 2.36e3 | 86.0 | NO | | 4 | 4 13C8-PFOA | 1803676-08 A1-MW-31-SA2 0.1169 | 1.37e4 | 59.5 | NO | | 5 | 5 13C9-PFNA | 1803676-08 A1-MW-31-SA2 0.1169 | 1.03e4 | 60.3 | NO | | 6 | 6 13C4-PFOS | 1803676-08 A1-MW-31-SA2 0.1169 | 2.71e3 | 85.9 | NO | | 7 | 7 13C6-PFDA | 1803676-08 A1-MW-31-SA2 0.1169 | 1.14e4 | 62.8 | NO | | 8 | 8 13C7-PFUdA | 1803676-08 A1-MW-31-SA2 0.1169 | 1.34e4 | 61.5 | NO | Work Order 1803676 Page 106 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_22, Date: 03-Dec-2018, Time: 19:17:20, ID: 1803689-01 Equipment Blank 1 0.25208, Description: Equipment Blank 1 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|--------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803689-01 Equipment Blank 1 0.25208 | 7.56e3 | 85.3 | NO | | 2 | 2 13C5-PFHxA | 1803689-01 Equipment Blank 1 0.25208 | 1.50e4 | 85.6 | NO | | 3 | 3 13C3-PFHxS | 1803689-01 Equipment Blank 1 0.25208 | 2.45e3 | 89.1 | NO | | 4 | 4 13C8-PFOA | 1803689-01 Equipment Blank 1 0.25208 | 1.89e4 | 82.5 | NO | | 5 | 5 13C9-PFNA | 1803689-01 Equipment Blank 1 0.25208 | 1.30e4 | 76.3 | NO | | 6 | 6 13C4-PFOS | 1803689-01 Equipment Blank 1 0.25208 | 2.74e3 | 87.0 | NO | | 7 | 7 13C6-PFDA | 1803689-01 Equipment Blank 1 0.25208 | 1.39e4 | 76.5 | NO | | 8 | 8 13C7-PFUdA | 1803689-01 Equipment Blank 1 0.25208 | 1.64e4 | 75.1 | NO | Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------|--------|-------|----------| | 1 | 1 13C4-PFBA | ST181203M1-2 PFC CS3 18K3006 | 9.48e3 | 107.1 | NO | | 2 | 2 13C5-PFHxA | ST181203M1-2 PFC CS3 18K3006 | 1.87e4 | 106.5 | NO | | 3 | 3 13C3-PFHxS | ST181203M1-2 PFC CS3 18K3006 | 2.72e3 | 99.1 | NO | | 4 | 4 13C8-PFOA | ST181203M1-2 PFC CS3 18K3006 | 2.43e4 | 106.0 | NO | | 5 | 5 13C9-PFNA | ST181203M1-2 PFC CS3 18K3006 | 1.73e4 | 101.1 | NO | | 6 | 6 13C4-PFOS | ST181203M1-2 PFC CS3 18K3006 | 3.21e3 | 101.8 | NO | | 7 | 7 13C6-PFDA | ST181203M1-2 PFC CS3 18K3006 | 1.93e4 | 106.2 | NO | | 8 | 8 13C7-PFUdA | ST181203M1-2 PFC CS3 18K3006 | 2.29e4 | 105.0 | NO | Name: 181203M1_24, Date: 03-Dec-2018, Time: 19:38:28, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | NO | Name: 181203M1_25, Date: 03-Dec-2018, Time: 19:49:07, ID: B8K0190-BSD1 LCSD 0.25, Description: LCSD | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | B8K0190-BSD1 LCSD 0.25 | 4.43e3 | 50.0 | NO | | 2 | 2 13C5-PFHxA | B8K0190-BSD1 LCSD 0.25 | 9.72e3 | 55.4 | NO | | 3 | 3 13C3-PFHxS | B8K0190-BSD1 LCSD 0.25 | 2.44e3 | 88.9 | NO | | 4 | 4 13C8-PFOA | B8K0190-BSD1 LCSD 0.25 | 1.65e4 | 71.9 | NO | | 5 | 5 13C9-PFNA | B8K0190-BSD1 LCSD 0.25 | 1.27e4 | 74.3 | NO | | 6 | 6 13C4-PFOS | B8K0190-BSD1 LCSD 0.25 | 2.78e3 | 88.2 | NO | | 7 | 7 13C6-PFDA | B8K0190-BSD1 LCSD 0.25 | 1.47e4 | 80.8 | NO | | 8 | 8 13C7-PFUdA | B8K0190-BSD1 LCSD 0.25 | 1.77e4 | 80.9 | NO | Work Order 1803676 Page 107 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_26, Date: 03-Dec-2018, Time: 19:59:45, ID: 1803745-03 PFC-AF-01-03-112618 0.24673, Description: PFC-AF-01-03-112618 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803745-03 PFC-AF-01-03-112618 0.2 | 6.62e3 | 74.7 | NO | | 2 | 2 13C5-PFHxA | 1803745-03 PFC-AF-01-03-112618 0.2 | 1.02e4 | 58.0 | NO | | 3 | 3 13C3-PFHxS | 1803745-03 PFC-AF-01-03-112618 0.2 | 1.43e3 | 52.1 | NO | | 4 | 4 13C8-PFOA | 1803745-03 PFC-AF-01-03-112618 0.2 | 1.64e4 | 71.5 | NO | | 5 | 5 13C9-PFNA | 1803745-03 PFC-AF-01-03-112618 0.2 | 1.13e4 | 66.4 | NO | | 6 | 6 13C4-PFOS | 1803745-03 PFC-AF-01-03-112618 0.2 | 4.78e2 | 15.2 | YES | | 7 | 7 13C6-PFDA | 1803745-03 PFC-AF-01-03-112618 0.2 | 1.54e4 | 84.8 | NO | | 8 | 8 13C7-PFUdA | 1803745-03 PFC-AF-01-03-112618 0.2 | 1.87e4 | 85.7 | NO | Name: 181203M1_27, Date: 03-Dec-2018, Time: 20:10:19, ID: 1803746-01 PFC-AF-02-01-112618 0.23986, Description: PFC-AF-02-01-112618 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803746-01 PFC-AF-02-01-112618 0.2 | 4.37e3 | 49.3 | YES | | 2 | 2 13C5-PFHxA | 1803746-01 PFC-AF-02-01-112618 0.2 | 3.30e3 | 18.8 | YES | | 3 | 3 13C3-PFHxS | 1803746-01 PFC-AF-02-01-112618 0.2 | 6.07e2 | 22.1 | YES | | 4 | 4 13C8-PFOA | 1803746-01 PFC-AF-02-01-112618 0.2 | 3.46e3 | 15.1 | YES | | 5 | 5 13C9-PFNA | 1803746-01 PFC-AF-02-01-112618 0.2 | 6.50e3 | 38.0 | YES | | 6 | 6 13C4-PFOS | 1803746-01 PFC-AF-02-01-112618 0.2 | 9.13e2 | 29.0 | YES | | 7 | 7 13C6-PFDA | 1803746-01 PFC-AF-02-01-112618 0.2 | 5.95e3 | 32.8 | YES | | 8 | 8 13C7-PFUdA | 1803746-01 PFC-AF-02-01-112618 0.2 | 1.15e4 | 52.8 | NO | Name: 181203M1_28, Date: 03-Dec-2018, Time: 20:20:57, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | | _ | NO | Name: 181203M1_29, Date: 03-Dec-2018, Time: 20:31:30, ID: 1803746-02 PFC-AF-02-02-112618 0.2365, Description: PFC-AF-02-02-112618 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803746-02 PFC-AF-02-02-112618 0.2 | 6.61e3 | 74.6 | NO | | 2 | 2 13C5-PFHxA | 1803746-02 PFC-AF-02-02-112618 0.2 | 8.03e3 | 45.8 | YES | | 3 | 3 13C3-PFHxS | 1803746-02 PFC-AF-02-02-112618 0.2 | 1.24e3 | 45.0 | YES | | 4 | 4 13C8-PFOA | 1803746-02 PFC-AF-02-02-112618 0.2 | 1.11e4 | 48.2 | YES | | 5 | 5 13C9-PFNA | 1803746-02 PFC-AF-02-02-112618 0.2 | 1.03e4 | 60.3 | NO | | 6 | 6 13C4-PFOS | 1803746-02 PFC-AF-02-02-112618 0.2 | 1.28e3 | 40.6 | YES | | 7 | 7 13C6-PFDA | 1803746-02 PFC-AF-02-02-112618 0.2 | 1.12e4 | 61.6 | NO | | 8 | 8 13C7-PFUdA | 1803746-02 PFC-AF-02-02-112618 0.2 | 1.80e4 | 82.4 | NO | Work Order 1803676 Page 108 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time # Name: 181203M1_30, Date: 03-Dec-2018, Time: 20:42:08, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | NO | Name: 181203M1_31, Date: 03-Dec-2018, Time: 20:52:42, ID: 1803746-03 PFC-AF-02-03-112618 0.23672, Description: PFC-AF-02-03-112618 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803746-03 PFC-AF-02-03-112618 0.2 | 7.97e3 | 89.9 | NO | | 2 | 2 13C5-PFHxA | 1803746-03 PFC-AF-02-03-112618 0.2 | 1.60e4 | 91.0 | NO | | 3 | 3 13C3-PFHxS | 1803746-03 PFC-AF-02-03-112618 0.2 | 2.41e3 | 87.7 | NO | | 4 | 4 13C8-PFOA | 1803746-03 PFC-AF-02-03-112618 0.2 | 2.11e4 | 91.7 | NO | | 5 | 5 13C9-PFNA | 1803746-03 PFC-AF-02-03-112618 0.2 | 1.55e4 | 90.7 | NO | | 6 | 6 13C4-PFOS | 1803746-03 PFC-AF-02-03-112618 0.2 | 2.25e3 | 71.4 | NO | | 7 | 7 13C6-PFDA | 1803746-03 PFC-AF-02-03-112618 0.2 | 1.61e4 | 88.6 | NO | | 8 | 8 13C7-PFUdA | 1803746-03 PFC-AF-02-03-112618 0.2 | 1.82e4 | 83.4 | NO | Name: 181203M1_32, Date: 03-Dec-2018, Time: 21:03:20, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | NO | Name: 181203M1_33, Date: 03-Dec-2018, Time: 21:13:54, ID: 1803762-04 PFC-AF-01-04-112718 0.24232, Description: PFC-AF-01-04-112718 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803762-04 PFC-AF-01-04-112718 0.2 | 3.56e3 | 40.2 | YES | | 2 | 2 13C5-PFHxA | 1803762-04 PFC-AF-01-04-112718 0.2 | 8.35e3 | 47.6 | YES | | 3 | 3 13C3-PFHxS | 1803762-04 PFC-AF-01-04-112718 0.2 | 2.61e3 |
94.9 | NO | | 4 | 4 13C8-PFOA | 1803762-04 PFC-AF-01-04-112718 0.2 | 1.31e4 | 56.8 | NO | | 5 | 5 13C9-PFNA | 1803762-04 PFC-AF-01-04-112718 0.2 | 1.05e4 | 61.4 | NO | | 6 | 6 13C4-PFOS | 1803762-04 PFC-AF-01-04-112718 0.2 | 2.97e3 | 94.1 | NO | | 7 | 7 13C6-PFDA | 1803762-04 PFC-AF-01-04-112718 0.2 | 1.27e4 | 70.0 | NO | | 8 | 8 13C7-PFUdA | 1803762-04 PFC-AF-01-04-112718 0.2 | 1.56e4 | 71.4 | NO | Work Order 1803676 Page 109 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time ## Name: 181203M1_34, Date: 03-Dec-2018, Time: 21:24:32, ID: 1803618-02 1811353-02A 0.2386, Description: 1811353-02A | | # Name | ĪD | Area | %Rec | Area Out | |---|--------------|-------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803618-02 1811353-02A 0.2386 | 6.68e3 | 75.4 | NO | | 2 | 2 13C5-PFHxA | 1803618-02 1811353-02A 0.2386 | 1.34e4 | 76.4 | NO | | 3 | 3 13C3-PFHxS | 1803618-02 1811353-02A 0.2386 | 2.36e3 | 85.7 | NO | | 4 | 4 13C8-PFOA | 1803618-02 1811353-02A 0.2386 | 1.86e4 | 81.1 | NO | | 5 | 5 13C9-PFNA | 1803618-02 1811353-02A 0.2386 | 1.33e4 | 77.8 | NO | | 6 | 6 13C4-PFOS | 1803618-02 1811353-02A 0.2386 | 2.60e3 | 82.4 | NO | | 7 | 7 13C6-PFDA | 1803618-02 1811353-02A 0.2386 | 1.45e4 | 79.7 | NO | | 8 | 8 13C7-PFUdA | 1803618-02 1811353-02A 0.2386 | 1.60e4 | 73.4 | NO | #### Name: 181203M1_35, Date: 03-Dec-2018, Time: 21:35:10, ID: 1803618-01@10X 1811353-01A 0.23448, Description: 1811353-01A | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803618-01@10X 1811353-01A 0.23448 | 6.07e2 | 6.9 | YES | | 2 | 2 13C5-PFHxA | 1803618-01@10X 1811353-01A 0.23448 | 1.32e3 | 7.5 | YES | | 3 | 3 13C3-PFHxS | 1803618-01@10X 1811353-01A 0.23448 | 2.64e2 | 9.6 | YES | | 4 | 4 13C8-PFOA | 1803618-01@10X 1811353-01A 0.23448 | 1.89e3 | 8.2 | YES | | 5 | 5 13C9-PFNA | 1803618-01@10X 1811353-01A 0.23448 | 1.57e3 | 9.2 | YES | | 6 | 6 13C4-PFOS | 1803618-01@10X 1811353-01A 0.23448 | 2.91e2 | 9.2 | YES | | 7 | 7 13C6-PFDA | 1803618-01@10X 1811353-01A 0.23448 | 1.58e3 | 8.7 | YES | | 8 | 8 13C7-PFUdA | 1803618-01@10X 1811353-01A 0.23448 | 1.82e3 | 8.3 | YES | # Name: 181203M1_36, Date: 03-Dec-2018, Time: 21:45:43, ID: IPA, Description: IPA | | # Name | ID | Ar | rea % | Rec | Area Out | |---|--------------|-----|----|-------|-----|----------| | 1 | 1 13C4-PFBA | IPA | | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | | NO | | 4 | 4 13C8-PFOA | IPA | | | | NO | | 5 | 5 13C9-PFNA | IPA | | | | NO | | 6 | 6 13C4-PFOS | IPA | | | | NO | | 7 | 7 13C6-PFDA | IPA | | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | | NO | ## Name: 181203M1_37, Date: 03-Dec-2018, Time: 21:56:21, ID: B8K0215-BS1 OPR 0.125, Description: OPR | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----------------------|--------|------|----------| | 1 | 1 13C4-PFBA | B8K0215-BS1 OPR 0.125 | 6.96e3 | 78.5 | NO | | 2 | 2 13C5-PFHxA | B8K0215-BS1 OPR 0.125 | 1.38e4 | 78.4 | NO | | 3 | 3 13C3-PFHxS | B8K0215-BS1 OPR 0.125 | 2.16e3 | 78.6 | NO | | 4 | 4 13C8-PFOA | B8K0215-BS1 OPR 0.125 | 1.70e4 | 73.8 | NO | | 5 | 5 13C9-PFNA | B8K0215-BS1 OPR 0.125 | 1.21e4 | 70.7 | NO | | 6 | 6 13C4-PFOS | B8K0215-BS1 OPR 0.125 | 2.57e3 | 81.4 | NO | | 7 | 7 13C6-PFDA | B8K0215-BS1 OPR 0.125 | 1.31e4 | 72.4 | NO | | 8 | 8 13C7-PFUdA | B8K0215-BS1 OPR 0.125 | 1.58e4 | 72.5 | NO | Work Order 1803676 Page 110 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time ## Name: 181203M1_38, Date: 03-Dec-2018, Time: 22:06:56, ID: B8K0215-BSD1 LCSD 0.125, Description: LCSD | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | B8K0215-BSD1 LCSD 0.125 | 7.69e3 | 86.8 | NO | | 2 | 2 13C5-PFHxA | B8K0215-BSD1 LCSD 0.125 | 1.52e4 | 86.9 | NO | | 3 | 3 13C3-PFHxS | B8K0215-BSD1 LCSD 0.125 | 2.33e3 | 84.9 | NO | | 4 | 4 13C8-PFOA | B8K0215-BSD1 LCSD 0.125 | 1.95e4 | 85.0 | NO | | 5 | 5 13C9-PFNA | B8K0215-BSD1 LCSD 0.125 | 1.44e4 | 84.3 | NO | | 6 | 6 13C4-PFOS | B8K0215-BSD1 LCSD 0.125 | 2.64e3 | 83.9 | NO | | 7 | 7 13C6-PFDA | B8K0215-BSD1 LCSD 0.125 | 1.56e4 | 85.7 | NO | | 8 | 8 13C7-PFUdA | B8K0215-BSD1 LCSD 0.125 | 1.76e4 | 80.8 | NO | #### Name: 181203M1_39, Date: 03-Dec-2018, Time: 22:17:34, ID: B8K0215-BLK1 Method Blank 0.125, Description: Method Blank | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | B8K0215-BLK1 Method Blank 0.125 | 7.04e3 | 79.5 | NO | | 2 | 2 13C5-PFHxA | B8K0215-BLK1 Method Blank 0.125 | 1.45e4 | 82.5 | NO | | 3 | 3 13C3-PFHxS | B8K0215-BLK1 Method Blank 0.125 | 2.47e3 | 89.8 | NO | | 4 | 4 13C8-PFOA | B8K0215-BLK1 Method Blank 0.125 | 1.78e4 | 77.7 | NO | | 5 | 5 13C9-PFNA | B8K0215-BLK1 Method Blank 0.125 | 1.33e4 | 77.8 | NO | | 6 | 6 13C4-PFOS | B8K0215-BLK1 Method Blank 0.125 | 2.77e3 | 87.7 | NO | | 7 | 7 13C6-PFDA | B8K0215-BLK1 Method Blank 0.125 | 1.44e4 | 79.3 | NO | | 8 | 8 13C7-PFUdA | B8K0215-BLK1 Method Blank 0.125 | 1.73e4 | 79.3 | NO | # Name: 181203M1_40, Date: 03-Dec-2018, Time: 22:28:07, ID: 1803788-01 PFC-AF-01-01-112918 0.11457, Description: PFC-AF-01-01-112918 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803788-01 PFC-AF-01-01-112918 0.11 | 6.61e3 | 74.6 | NO | | 2 | 2 13C5-PFHxA | 1803788-01 PFC-AF-01-01-112918 0.11 | 1.34e4 | 76.5 | NO | | 3 | 3 13C3-PFHxS | 1803788-01 PFC-AF-01-01-112918 0.11 | 2.18e3 | 79.3 | NO | | 4 | 4 13C8-PFOA | 1803788-01 PFC-AF-01-01-112918 0.11 | 1.76e4 | 76.6 | NO | | 5 | 5 13C9-PFNA | 1803788-01 PFC-AF-01-01-112918 0.11 | 1.36e4 | 79.4 | NO | | 6 | 6 13C4-PFOS | 1803788-01 PFC-AF-01-01-112918 0.11 | 2.13e3 | 67.6 | NO | | 7 | 7 13C6-PFDA | 1803788-01 PFC-AF-01-01-112918 0.11 | 1.55e4 | 85.2 | NO | | 8 | 8 13C7-PFUdA | 1803788-01 PFC-AF-01-01-112918 0.11 | 1.70e4 | 77.9 | NO | # Name: 181203M1_41, Date: 03-Dec-2018, Time: 22:38:45, ID: 1803788-02 PFC-AF-01-02-112918 0.11773, Description: PFC-AF-01-02-112918 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803788-02 PFC-AF-01-02-112918 0.11 | 7.44e3 | 84.0 | NO | | 2 | 2 13C5-PFHxA | 1803788-02 PFC-AF-01-02-112918 0.11 | 1.51e4 | 86.4 | NO | | 3 | 3 13C3-PFHxS | 1803788-02 PFC-AF-01-02-112918 0.11 | 2.48e3 | 90.1 | NO | | 4 | 4 13C8-PFOA | 1803788-02 PFC-AF-01-02-112918 0.11 | 2.03e4 | 88.4 | NO | | 5 | 5 13C9-PFNA | 1803788-02 PFC-AF-01-02-112918 0.11 | 1.47e4 | 86.3 | NO | | 6 | 6 13C4-PFOS | 1803788-02 PFC-AF-01-02-112918 0.11 | 2.66e3 | 84.3 | NO | | 7 | 7 13C6-PFDA | 1803788-02 PFC-AF-01-02-112918 0.11 | 1.58e4 | 87.1 | NO | | 8 | 8 13C7-PFUdA | 1803788-02 PFC-AF-01-02-112918 0.11 | 1.82e4 | 83.1 | NO | Work Order 1803676 Page 111 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_42, Date: 03-Dec-2018, Time: 22:49:19, ID: 1803788-03 PFC-AF-01-03-112918 0.11732, Description: PFC-AF-01-03-112918 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803788-03 PFC-AF-01-03-112918 0.11 | 7.74e3 | 87.3 | NO | | 2 | 2 13C5-PFHxA | 1803788-03 PFC-AF-01-03-112918 0.11 | 1.53e4 | 87.2 | NO | | 3 | 3 13C3-PFHxS | 1803788-03 PFC-AF-01-03-112918 0.11 | 2.45e3 | 89.0 | NO | | 4 | 4 13C8-PFOA | 1803788-03 PFC-AF-01-03-112918 0.11 | 2.00e4 | 87.2 | NO | | 5 | 5 13C9-PFNA | 1803788-03 PFC-AF-01-03-112918 0.11 | 1.42e4 | 82.9 | NO | | 6 | 6 13C4-PFOS | 1803788-03 PFC-AF-01-03-112918 0.11 | 2.78e3 | 88.1 | NO | | 7 | 7 13C6-PFDA | 1803788-03 PFC-AF-01-03-112918 0.11 | 1.58e4 | 86.9 | NO | | 8 | 8 13C7-PFUdA | 1803788-03 PFC-AF-01-03-112918 0.11 | 1.77e4 | 81.2 | NO | Name: 181203M1_43, Date: 03-Dec-2018, Time: 22:59:57, ID: ST181203M1-3 PFC CS3 18K3006, Description: PFC CS3 18K3006 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------|--------|-------|----------| | 1 | 1 13C4-PFBA | ST181203M1-3 PFC CS3 18K3006 | 9.50e3 | 107.3 | NO | | 2 | 2 13C5-PFHxA | ST181203M1-3 PFC CS3 18K3006 | 1.96e4 | 111.5 | NO | | 3 | 3 13C3-PFHxS | ST181203M1-3 PFC CS3 18K3006 | 2.88e3 | 104.9 | NO | | 4 | 4 13C8-PFOA | ST181203M1-3 PFC CS3 18K3006 | 2.43e4 | 106.0 | NO | | 5 | 5 13C9-PFNA | ST181203M1-3 PFC CS3 18K3006 | 1.81e4 | 106.0 | NO | | 6 | 6 13C4-PFOS | ST181203M1-3 PFC CS3 18K3006 | 3.25e3 | 103.0 | NO | | 7 | 7 13C6-PFDA | ST181203M1-3 PFC CS3 18K3006 | 1.95e4 | 107.3 | NO | | 8 | 8 13C7-PFUdA | ST181203M1-3 PFC CS3 18K3006 | 2.28e4 | 104.2 | NO | Name: 181203M1_44, Date: 03-Dec-2018, Time: 23:10:29, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | NO | Name: 181203M1_45, Date: 03-Dec-2018, Time: 23:21:08, ID: B8K0197-BS1 OPR 0.125, Description: OPR | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----------------------|--------|------|----------| | 1 | 1 13C4-PFBA | B8K0197-BS1 OPR 0.125 | 6.90e3 | 77.8 | NO | | 2 | 2 13C5-PFHxA | B8K0197-BS1 OPR 0.125 | 1.29e4 | 73.8 | NO | | 3 | 3 13C3-PFHxS | B8K0197-BS1
OPR 0.125 | 2.21e3 | 80.4 | NO | | 4 | 4 13C8-PFOA | B8K0197-BS1 OPR 0.125 | 1.64e4 | 71.3 | NO | | 5 | 5 13C9-PFNA | B8K0197-BS1 OPR 0.125 | 1.07e4 | 62.4 | NO | | 6 | 6 13C4-PFOS | B8K0197-BS1 OPR 0.125 | 1.46e3 | 46.4 | YES | | 7 | 7 13C6-PFDA | B8K0197-BS1 OPR 0.125 | 7.61e3 | 41.9 | YES | | 8 | 8 13C7-PFUdA | B8K0197-BS1 OPR 0.125 | 3.03e3 | 13.9 | YES | Work Order 1803676 Page 112 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time ## Name: 181203M1_46, Date: 03-Dec-2018, Time: 23:31:46, ID: B8K0197-BLK1 Method Blank 0.125, Description: Method Blank | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | B8K0197-BLK1 Method Blank 0.125 | 7.18e3 | 81.0 | NO | | 2 | 2 13C5-PFHxA | B8K0197-BLK1 Method Blank 0.125 | 1.39e4 | 79.4 | NO | | 3 | 3 13C3-PFHxS | B8K0197-BLK1 Method Blank 0.125 | 2.28e3 | 82.8 | NO | | 4 | 4 13C8-PFOA | B8K0197-BLK1 Method Blank 0.125 | 1.72e4 | 74.7 | NO | | 5 | 5 13C9-PFNA | B8K0197-BLK1 Method Blank 0.125 | 1.06e4 | 62.3 | NO | | 6 | 6 13C4-PFOS | B8K0197-BLK1 Method Blank 0.125 | 1.23e3 | 39.0 | YES | | 7 | 7 13C6-PFDA | B8K0197-BLK1 Method Blank 0.125 | 6.64e3 | 36.5 | YES | | 8 | 8 13C7-PFUdA | B8K0197-BLK1 Method Blank 0.125 | 3.04e3 | 13.9 | YES | #### Name: 181203M1_47, Date: 03-Dec-2018, Time: 23:42:19, ID: 1803754-01 CMW-18-01 0.11781, Description: CMW-18-01 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-01 CMW-18-01 0.11781 | 6.67e3 | 75.3 | NO | | 2 | 2 13C5-PFHxA | 1803754-01 CMW-18-01 0.11781 | 1.36e4 | 77.8 | NO | | 3 | 3 13C3-PFHxS | 1803754-01 CMW-18-01 0.11781 | 2.12e3 | 77.2 | NO | | 4 | 4 13C8-PFOA | 1803754-01 CMW-18-01 0.11781 | 1.84e4 | 80.2 | NO | | 5 | 5 13C9-PFNA | 1803754-01 CMW-18-01 0.11781 | 1.26e4 | 73.9 | NO | | 6 | 6 13C4-PFOS | 1803754-01 CMW-18-01 0.11781 | 2.39e3 | 75.7 | NO | | 7 | 7 13C6-PFDA | 1803754-01 CMW-18-01 0.11781 | 1.22e4 | 67.1 | NO | | 8 | 8 13C7-PFUdA | 1803754-01 CMW-18-01 0.11781 | 1.15e4 | 52.5 | NO | # Name: 181203M1_48, Date: 03-Dec-2018, Time: 23:52:57, ID: 1803754-02 CMW-101B 0.11273, Description: CMW-101B | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-02 CMW-101B 0.11273 | 6.96e3 | 78.5 | NO | | 2 | 2 13C5-PFHxA | 1803754-02 CMW-101B 0.11273 | 1.40e4 | 79.8 | NO | | 3 | 3 13C3-PFHxS | 1803754-02 CMW-101B 0.11273 | 2.47e3 | 89.7 | NO | | 4 | 4 13C8-PFOA | 1803754-02 CMW-101B 0.11273 | 1.91e4 | 83.2 | NO | | 5 | 5 13C9-PFNA | 1803754-02 CMW-101B 0.11273 | 1.23e4 | 71.8 | NO | | 6 | 6 13C4-PFOS | 1803754-02 CMW-101B 0.11273 | 2.25e3 | 71.3 | NO | | 7 | 7 13C6-PFDA | 1803754-02 CMW-101B 0.11273 | 1.11e4 | 61.1 | NO | | 8 | 8 13C7-PFUdA | 1803754-02 CMW-101B 0.11273 | 8.02e3 | 36.7 | YES | ## Name: 181203M1_49, Date: 04-Dec-2018, Time: 00:03:30, ID: 1803754-03 MW-97701 0.11474, Description: MW-97701 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-03 MW-97701 0.11474 | 7.11e3 | 80.3 | NO | | 2 | 2 13C5-PFHxA | 1803754-03 MW-97701 0.11474 | 1.37e4 | 78.2 | NO | | 3 | 3 13C3-PFHxS | 1803754-03 MW-97701 0.11474 | 2.26e3 | 82.2 | NO | | 4 | 4 13C8-PFOA | 1803754-03 MW-97701 0.11474 | 1.81e4 | 79.0 | NO | | 5 | 5 13C9-PFNA | 1803754-03 MW-97701 0.11474 | 1.18e4 | 68.8 | NO | | 6 | 6 13C4-PFOS | 1803754-03 MW-97701 0.11474 | 1.56e3 | 49.4 | YES | | 7 | 7 13C6-PFDA | 1803754-03 MW-97701 0.11474 | 8.67e3 | 47.8 | YES | | 8 | 8 13C7-PFUdA | 1803754-03 MW-97701 0.11474 | 5.86e3 | 26.8 | YES | Work Order 1803676 Page 113 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Tuesday, December 04, 2018 08:47:38 Pacific Standard Time # Name: 181203M1_50, Date: 04-Dec-2018, Time: 00:14:08, ID: 1803754-04 MW-97702 0.11219, Description: MW-97702 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-04 MW-97702 0.11219 | 6.98e3 | 78.8 | NO | | 2 | 2 13C5-PFHxA | 1803754-04 MW-97702 0.11219 | 1.40e4 | 80.1 | NO | | 3 | 3 13C3-PFHxS | 1803754-04 MW-97702 0.11219 | 2.33e3 | 84.8 | NO | | 4 | 4 13C8-PFOA | 1803754-04 MW-97702 0.11219 | 1.78e4 | 77.5 | NO | | 5 | 5 13C9-PFNA | 1803754-04 MW-97702 0.11219 | 1.23e4 | 72.1 | NO | | 6 | 6 13C4-PFOS | 1803754-04 MW-97702 0.11219 | 2.36e3 | 74.7 | NO | | 7 | 7 13C6-PFDA | 1803754-04 MW-97702 0.11219 | 1.18e4 | 65.1 | NO | | 8 | 8 13C7-PFUdA | 1803754-04 MW-97702 0.11219 | 8.64e3 | 39.5 | YES | #### Name: 181203M1_51, Date: 04-Dec-2018, Time: 00:24:42, ID: 1803754-05 CSW-3 0.12087, Description: CSW-3 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|--------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-05 CSW-3 0.12087 | 7.35e3 | 83.0 | NO | | 2 | 2 13C5-PFHxA | 1803754-05 CSW-3 0.12087 | 1.41e4 | 80.7 | NO | | 3 | 3 13C3-PFHxS | 1803754-05 CSW-3 0.12087 | 2.53e3 | 92.2 | NO | | 4 | 4 13C8-PFOA | 1803754-05 CSW-3 0.12087 | 1.83e4 | 79.7 | NO | | 5 | 5 13C9-PFNA | 1803754-05 CSW-3 0.12087 | 1.34e4 | 78.6 | NO | | 6 | 6 13C4-PFOS | 1803754-05 CSW-3 0.12087 | 2.41e3 | 76.6 | NO | | 7 | 7 13C6-PFDA | 1803754-05 CSW-3 0.12087 | 1.19e4 | 65.4 | NO | | 8 | 8 13C7-PFUdA | 1803754-05 CSW-3 0.12087 | 7.81e3 | 35.7 | YES | # Name: 181203M1_52, Date: 04-Dec-2018, Time: 00:35:20, ID: 1803754-06 CSW-4 0.11744, Description: CSW-4 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|--------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-06 CSW-4 0.11744 | 7.99e3 | 90.2 | NO | | 2 | 2 13C5-PFHxA | 1803754-06 CSW-4 0.11744 | 1.61e4 | 92.0 | NO | | 3 | 3 13C3-PFHxS | 1803754-06 CSW-4 0.11744 | 2.51e3 | 91.3 | NO | | 4 | 4 13C8-PFOA | 1803754-06 CSW-4 0.11744 | 2.01e4 | 87.5 | NO | | 5 | 5 13C9-PFNA | 1803754-06 CSW-4 0.11744 | 1.37e4 | 80.4 | NO | | 6 | 6 13C4-PFOS | 1803754-06 CSW-4 0.11744 | 2.35e3 | 74.4 | NO | | 7 | 7 13C6-PFDA | 1803754-06 CSW-4 0.11744 | 1.19e4 | 65.6 | NO | | 8 | 8 13C7-PFUdA | 1803754-06 CSW-4 0.11744 | 8.78e3 | 40.2 | YES | ## Name: 181203M1_53, Date: 04-Dec-2018, Time: 00:45:53, ID: 1803754-07 CUD-1 0.11598, Description: CUD-1 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|--------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-07 CUD-1 0.11598 | 7.92e3 | 89.4 | NO | | 2 | 2 13C5-PFHxA | 1803754-07 CUD-1 0.11598 | 1.55e4 | 88.5 | NO | | 3 | 3 13C3-PFHxS | 1803754-07 CUD-1 0.11598 | 2.52e3 | 91.6 | NO | | 4 | 4 13C8-PFOA | 1803754-07 CUD-1 0.11598 | 1.88e4 | 81.8 | NO | | 5 | 5 13C9-PFNA | 1803754-07 CUD-1 0.11598 | 1.22e4 | 71.4 | NO | | 6 | 6 13C4-PFOS | 1803754-07 CUD-1 0.11598 | 1.51e3 | 48.0 | YES | | 7 | 7 13C6-PFDA | 1803754-07 CUD-1 0.11598 | 7.80e3 | 43.0 | YES | | 8 | 8 13C7-PFUdA | 1803754-07 CUD-1 0.11598 | 3.72e3 | 17.0 | YES | Work Order 1803676 Page 114 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_54, Date: 04-Dec-2018, Time: 00:56:31, ID: 1803754-08 CUD-2 0.1153, Description: CUD-2 | | # Name | ĪD | Area | %Rec | Area Out | |---|--------------|-------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-08 CUD-2 0.1153 | 7.25e3 | 81.9 | NO | | 2 | 2 13C5-PFHxA | 1803754-08 CUD-2 0.1153 | 1.41e4 | 80.1 | NO | | 3 | 3 13C3-PFHxS | 1803754-08 CUD-2 0.1153 | 2.45e3 | 89.0 | NO | | 4 | 4 13C8-PFOA | 1803754-08 CUD-2 0.1153 | 1.84e4 | 80.2 | NO | | 5 | 5 13C9-PFNA | 1803754-08 CUD-2 0.1153 | 1.24e4 | 72.8 | NO | | 6 | 6 13C4-PFOS | 1803754-08 CUD-2 0.1153 | 2.14e3 | 67.9 | NO | | 7 | 7 13C6-PFDA | 1803754-08 CUD-2 0.1153 | 1.11e4 | 61.1 | NO | | 8 | 8 13C7-PFUdA | 1803754-08 CUD-2 0.1153 | 7.81e3 | 35.8 | YES | Name: 181203M1_55, Date: 04-Dec-2018, Time: 01:07:05, ID: 1803754-09 CUD-3 0.11905, Description: CUD-3 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|--------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-09 CUD-3 0.11905 | 4.83e3 | 54.5 | NO | | 2 | 2 13C5-PFHxA | 1803754-09 CUD-3 0.11905 | 9.72e3 | 55.4 | NO | | 3 | 3 13C3-PFHxS | 1803754-09 CUD-3 0.11905 | 1.87e3 | 67.9 | NO | | 4 | 4 13C8-PFOA | 1803754-09 CUD-3 0.11905 | 1.24e4 | 53.9 | NO | | 5 | 5 13C9-PFNA | 1803754-09 CUD-3 0.11905 | 8.77e3 | 51.3 | NO | | 6 | 6 13C4-PFOS | 1803754-09 CUD-3 0.11905 | 1.71e3 | 54.3 | NO | | 7 | 7 13C6-PFDA | 1803754-09 CUD-3 0.11905 | 8.40e3 | 46.2 | YES | | 8 | 8 13C7-PFUdA | 1803754-09 CUD-3 0.11905 | 4.44e3 | 20.3 | YES | Name: 181203M1_56, Date: 04-Dec-2018, Time: 01:17:43, ID: 1803754-10 CUD-4 0.11711, Description: CUD-4 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|--------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-10 CUD-4 0.11711 | 6.39e3 | 72.2 | NO | | 2 | 2 13C5-PFHxA | 1803754-10 CUD-4 0.11711 | 1.18e4 | 67.0 | NO | | 3 | 3 13C3-PFHxS | 1803754-10 CUD-4 0.11711 | 2.11e3 | 76.8 | NO | | 4 | 4 13C8-PFOA | 1803754-10 CUD-4 0.11711 | 1.44e4 | 62.6 | NO | | 5 | 5 13C9-PFNA | 1803754-10 CUD-4 0.11711 | 7.88e3 | 46.1 | YES | | 6 | 6 13C4-PFOS | 1803754-10 CUD-4 0.11711 | 1.11e3 | 35.1 | YES | | 7 | 7 13C6-PFDA | 1803754-10 CUD-4 0.11711 | 4.75e3 | 26.1 | YES | | 8 | 8 13C7-PFUdA | 1803754-10 CUD-4 0.11711 | 3.62e3 | 16.6 | YES | Name: 181203M1_57, Date: 04-Dec-2018, Time: 01:28:16, ID: ST181203M1-4 PFC CS3 18K3006, Description: PFC CS3 18K3006 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------|--------|-------|----------
 | 1 | 1 13C4-PFBA | ST181203M1-4 PFC CS3 18K3006 | 9.97e3 | 112.6 | NO | | 2 | 2 13C5-PFHxA | ST181203M1-4 PFC CS3 18K3006 | 1.94e4 | 110.5 | NO | | 3 | 3 13C3-PFHxS | ST181203M1-4 PFC CS3 18K3006 | 2.92e3 | 106.2 | NO | | 4 | 4 13C8-PFOA | ST181203M1-4 PFC CS3 18K3006 | 2.50e4 | 108.7 | NO | | 5 | 5 13C9-PFNA | ST181203M1-4 PFC CS3 18K3006 | 1.81e4 | 105.9 | NO | | 6 | 6 13C4-PFOS | ST181203M1-4 PFC CS3 18K3006 | 3.45e3 | 109.5 | NO | | 7 | 7 13C6-PFDA | ST181203M1-4 PFC CS3 18K3006 | 2.03e4 | 111.8 | NO | | 8 | 8 13C7-PFUdA | ST181203M1-4 PFC CS3 18K3006 | 2.24e4 | 102.4 | NO | Work Order 1803676 Page 115 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time # Name: 181203M1_58, Date: 04-Dec-2018, Time: 01:38:54, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | NO | Name: 181203M1_59, Date: 04-Dec-2018, Time: 01:49:32, ID: 1803762-01 PFC-AF-01-01-112718 0.23808, Description: PFC-AF-01-01-112718 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803762-01 PFC-AF-01-01-112718 0.2 | 5.52e3 | 62.3 | NO | | 2 | 2 13C5-PFHxA | 1803762-01 PFC-AF-01-01-112718 0.2 | 1.08e4 | 61.7 | NO | | 3 | 3 13C3-PFHxS | 1803762-01 PFC-AF-01-01-112718 0.2 | 2.32e3 | 84.5 | NO | | 4 | 4 13C8-PFOA | 1803762-01 PFC-AF-01-01-112718 0.2 | 1.51e4 | 65.8 | NO | | 5 | 5 13C9-PFNA | 1803762-01 PFC-AF-01-01-112718 0.2 | 1.18e4 | 68.8 | NO | | 6 | 6 13C4-PFOS | 1803762-01 PFC-AF-01-01-112718 0.2 | 2.63e3 | 83.4 | NO | | 7 | 7 13C6-PFDA | 1803762-01 PFC-AF-01-01-112718 0.2 | 1.30e4 | 71.8 | NO | | 8 | 8 13C7-PFUdA | 1803762-01 PFC-AF-01-01-112718 0.2 | 1.58e4 | 72.2 | NO | Name: 181203M1_60, Date: 04-Dec-2018, Time: 02:00:05, ID: 1803754-11 Sump 1 0.11876, Description: Sump 1 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-11 Sump 1 0.11876 | 7.74e3 | 87.3 | NO | | 2 | 2 13C5-PFHxA | 1803754-11 Sump 1 0.11876 | 1.55e4 | 88.4 | NO | | 3 | 3 13C3-PFHxS | 1803754-11 Sump 1 0.11876 | 2.61e3 | 95.0 | NO | | 4 | 4 13C8-PFOA | 1803754-11 Sump 1 0.11876 | 1.98e4 | 86.1 | NO | | 5 | 5 13C9-PFNA | 1803754-11 Sump 1 0.11876 | 1.33e4 | 77.8 | NO | | 6 | 6 13C4-PFOS | 1803754-11 Sump 1 0.11876 | 2.49e3 | 79.0 | NO | | 7 | 7 13C6-PFDA | 1803754-11 Sump 1 0.11876 | 1.24e4 | 68.3 | NO | | 8 | 8 13C7-PFUdA | 1803754-11 Sump 1 0.11876 | 8.73e3 | 39.9 | YES | Name: 181203M1_61, Date: 04-Dec-2018, Time: 02:10:44, ID: 1803754-12 Sump 2 0.11443, Description: Sump 2 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|---------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-12 Sump 2 0.11443 | 7.20e3 | 81.3 | NO | | 2 | 2 13C5-PFHxA | 1803754-12 Sump 2 0.11443 | 1.48e4 | 84.3 | NO | | 3 | 3 13C3-PFHxS | 1803754-12 Sump 2 0.11443 | 2.38e3 | 86.5 | NO | | 4 | 4 13C8-PFOA | 1803754-12 Sump 2 0.11443 | 1.96e4 | 85.4 | NO | | 5 | 5 13C9-PFNA | 1803754-12 Sump 2 0.11443 | 1.31e4 | 76.7 | NO | | 6 | 6 13C4-PFOS | 1803754-12 Sump 2 0.11443 | 2.44e3 | 77.4 | NO | | 7 | 7 13C6-PFDA | 1803754-12 Sump 2 0.11443 | 1.29e4 | 71.2 | NO | | 8 | 8 13C7-PFUdA | 1803754-12 Sump 2 0.11443 | 1.02e4 | 46.8 | YES | Work Order 1803676 Page 116 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_62, Date: 04-Dec-2018, Time: 02:21:17, ID: 1803754-13 SW-5 0.11647, Description: SW-5 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-13 SW-5 0.11647 | 7.32e3 | 82.6 | NO | | 2 | 2 13C5-PFHxA | 1803754-13 SW-5 0.11647 | 1.40e4 | 79.8 | NO | | 3 | 3 13C3-PFHxS | 1803754-13 SW-5 0.11647 | 2.35e3 | 85.5 | NO | | 4 | 4 13C8-PFOA | 1803754-13 SW-5 0.11647 | 1.59e4 | 69.4 | NO | | 5 | 5 13C9-PFNA | 1803754-13 SW-5 0.11647 | 1.07e4 | 62.7 | NO | | 6 | 6 13C4-PFOS | 1803754-13 SW-5 0.11647 | 2.16e3 | 68.5 | NO | | 7 | 7 13C6-PFDA | 1803754-13 SW-5 0.11647 | 9.43e3 | 51.9 | NO | | 8 | 8 13C7-PFUdA | 1803754-13 SW-5 0.11647 | 7.46e3 | 34.2 | YES | Name: 181203M1_63, Date: 04-Dec-2018, Time: 02:31:56, ID: 1803754-14 Shelby St. Sump 0.11682, Description: Shelby St. Sump | | # Name | ĪD | Area | %Rec | Area Out | |---|--------------|------------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803754-14 Shelby St. Sump 0.11682 | 7.24e3 | 81.8 | NO | | 2 | 2 13C5-PFHxA | 1803754-14 Shelby St. Sump 0.11682 | 1.38e4 | 78.9 | NO | | 3 | 3 13C3-PFHxS | 1803754-14 Shelby St. Sump 0.11682 | 2.30e3 | 83.6 | NO | | 4 | 4 13C8-PFOA | 1803754-14 Shelby St. Sump 0.11682 | 1.73e4 | 75.4 | NO | | 5 | 5 13C9-PFNA | 1803754-14 Shelby St. Sump 0.11682 | 1.19e4 | 69.8 | NO | | 6 | 6 13C4-PFOS | 1803754-14 Shelby St. Sump 0.11682 | 2.38e3 | 75.5 | NO | | 7 | 7 13C6-PFDA | 1803754-14 Shelby St. Sump 0.11682 | 1.25e4 | 69.1 | NO | | 8 | 8 13C7-PFUdA | 1803754-14 Shelby St. Sump 0.11682 | 1.16e4 | 53.3 | NO | Name: 181203M1_64, Date: 04-Dec-2018, Time: 02:42:29, ID: 1803746-01@150X PFC-AF-02-01-112618 0.23986, Description: PFC-AF-02-01-112618 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|----------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803746-01@150X PFC-AF-02-01-112 | 7.28e1 | 0.8 | YES | | 2 | 2 13C5-PFHxA | 1803746-01@150X PFC-AF-02-01-112 | 1.31e2 | 0.7 | YES | | 3 | 3 13C3-PFHxS | 1803746-01@150X PFC-AF-02-01-112 | 2.54e1 | 0.9 | YES | | 4 | 4 13C8-PFOA | 1803746-01@150X PFC-AF-02-01-112 | 1.59e2 | 0.7 | YES | | 5 | 5 13C9-PFNA | 1803746-01@150X PFC-AF-02-01-112 | 1.31e2 | 0.8 | YES | | 6 | 6 13C4-PFOS | 1803746-01@150X PFC-AF-02-01-112 | 3.64e1 | 1.2 | YES | | 7 | 7 13C6-PFDA | 1803746-01@150X PFC-AF-02-01-112 | 1.76e2 | 1.0 | YES | | 8 | 8 13C7-PFUdA | 1803746-01@150X PFC-AF-02-01-112 | 1.60e2 | 0.7 | YES | Name: 181203M1_65, Date: 04-Dec-2018, Time: 02:53:07, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | NO | Work Order 1803676 Page 117 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time Name: 181203M1_66, Date: 04-Dec-2018, Time: 03:03:39, ID: 1803746-02@10X PFC-AF-02-02-112618 0.2365, Description: PFC-AF-02-02-112618 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|----------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803746-02@10X PFC-AF-02-02-1126 | 9.52e2 | 10.8 | YES | | 2 | 2 13C5-PFHxA | 1803746-02@10X PFC-AF-02-02-1126 | 1.66e3 | 9.4 | YES | | 3 | 3 13C3-PFHxS | 1803746-02@10X PFC-AF-02-02-1126 | 2.50e2 | 9.1 | YES | | 4 | 4 13C8-PFOA | 1803746-02@10X PFC-AF-02-02-1126 | 2.18e3 | 9.5 | YES | | 5 | 5 13C9-PFNA | 1803746-02@10X PFC-AF-02-02-1126 | 1.83e3 | 10.7 | YES | | 6 | 6 13C4-PFOS | 1803746-02@10X PFC-AF-02-02-1126 | 2.85e2 | 9.0 | YES | | 7 | 7 13C6-PFDA | 1803746-02@10X PFC-AF-02-02-1126 | 1.91e3 | 10.5 | YES | | 8 | 8 13C7-PFUdA | 1803746-02@10X PFC-AF-02-02-1126 | 2.35e3 | 10.8 | YES | Name: 181203M1_67, Date: 04-Dec-2018, Time: 03:14:18, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | NO | Name: 181203M1_68, Date: 04-Dec-2018, Time: 03:24:51, ID: 1803746-03@5X PFC-AF-02-03-112618 0.23672, Description: PFC-AF-02-03-112618 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|----------------------------------|--------|------|----------| | 1 | 1 13C4-PFBA | 1803746-03@5X PFC-AF-02-03-11261 | 1.65e3 | 18.6 | YES | | 2 | 2 13C5-PFHxA | 1803746-03@5X PFC-AF-02-03-11261 | 3.38e3 | 19.3 | YES | | 3 | 3 13C3-PFHxS | 1803746-03@5X PFC-AF-02-03-11261 | 5.52e2 | 20.1 | YES | | 4 | 4 13C8-PFOA | 1803746-03@5X PFC-AF-02-03-11261 | 4.32e3 | 18.8 | YES | | 5 | 5 13C9-PFNA | 1803746-03@5X PFC-AF-02-03-11261 | 3.20e3 | 18.7 | YES | | 6 | 6 13C4-PFOS | 1803746-03@5X PFC-AF-02-03-11261 | 5.62e2 | 17.8 | YES | | 7 | 7 13C6-PFDA | 1803746-03@5X PFC-AF-02-03-11261 | 3.53e3 | 19.4 | YES | | 8 | 8 13C7-PFUdA | 1803746-03@5X PFC-AF-02-03-11261 | 3.84e3 | 17.6 | YES | Name: 181203M1_69, Date: 04-Dec-2018, Time: 03:35:29, ID: ST181203M1-5 PFC CS3 18K3006, Description: PFC CS3 18K3006 | | # Name | ID | Area | %Rec | Area Out | |---|--------------|------------------------------|--------|-------|----------| | 1 | 1 13C4-PFBA | ST181203M1-5 PFC CS3 18K3006 | 1.01e4 | 114.5 | NO | | 2 | 2 13C5-PFHxA | ST181203M1-5 PFC CS3 18K3006 | 1.95e4 | 111.2 | NO | | 3 | 3 13C3-PFHxS | ST181203M1-5 PFC CS3 18K3006 | 3.02e3 | 109.8 | NO | | 4 | 4 13C8-PFOA | ST181203M1-5 PFC CS3 18K3006 | 2.59e4 | 112.9 | NO | | 5 | 5 13C9-PFNA | ST181203M1-5 PFC CS3 18K3006 | 1.89e4 | 110.6 | NO | | 6 |
6 13C4-PFOS | ST181203M1-5 PFC CS3 18K3006 | 3.35e3 | 106.4 | NO | | 7 | 7 13C6-PFDA | ST181203M1-5 PFC CS3 18K3006 | 2.04e4 | 112.3 | NO | | 8 | 8 13C7-PFUdA | ST181203M1-5 PFC CS3 18K3006 | 2.27e4 | 104.0 | NO | Work Order 1803676 Page 118 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181203M1\181203M1-IIS.qld Last Altered: Tuesday, December 04, 2018 08:46:15 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:47:38 Pacific Standard Time # Name: 181203M1_70, Date: 04-Dec-2018, Time: 03:46:02, ID: IPA, Description: IPA | | # Name | ID | Area | %Rec | Area Out | |---|--------------|-----|------|------|----------| | 1 | 1 13C4-PFBA | IPA | | | NO | | 2 | 2 13C5-PFHxA | IPA | | | NO | | 3 | 3 13C3-PFHxS | IPA | | | NO | | 4 | 4 13C8-PFOA | IPA | | | NO | | 5 | 5 13C9-PFNA | IPA | | | NO | | 6 | 6 13C4-PFOS | IPA | | | NO | | 7 | 7 13C6-PFDA | IPA | | | NO | | 8 | 8 13C7-PFUdA | IPA | | | NO | Work Order 1803676 Page 119 of 556 Dataset: Untitled Last Altered: Tuesday, December 04, 2018 10:17:20 Pacific Standard Time Printed: Tuesday, December 04, 2018 10:18:02 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 07:50:00 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_3, Date: 03-Dec-2018, Time: 14:47:29, ID: IPA, Description: IPA Work Order 1803676 Page 120 of 556 Dataset: Untitled Last Altered: Tuesday, December 04, 2018 10:17:20 Pacific Standard Time Printed: Tuesday, December 04, 2018 10:18:02 Pacific Standard Time Name: 181203M1_3, Date: 03-Dec-2018, Time: 14:47:29, ID: IPA, Description: IPA Work Order 1803676 Page 121 of 556 **Quantify Sample Report** Vista Analytical Laboratory Dataset: Untitled Last Altered: Tuesday, December 04, 2018 10:17:20 Pacific Standard Time Printed: Tuesday, December 04, 2018 10:18:02 Pacific Standard Time Name: 181203M1_3, Date: 03-Dec-2018, Time: 14:47:29, ID: IPA, Description: IPA Work Order 1803676 Page 122 of 556 Dataset: Untitled Last Altered: Tuesday, December 04, 2018 10:17:20 Pacific Standard Time Printed: Tuesday, December 04, 2018 10:18:02 Pacific Standard Time Name: 181203M1_3, Date: 03-Dec-2018, Time: 14:47:29, ID: IPA, Description: IPA Work Order 1803676 Page 123 of 556 riota riitalyiioal <u>L</u>aboratory Dataset: Untitled Last Altered: Tuesday, December 04, 2018 10:17:20 Pacific Standard Time Printed: Tuesday, December 04, 2018 10:18:02 Pacific Standard Time Name: 181203M1_3, Date: 03-Dec-2018, Time: 14:47:29, ID: IPA, Description: IPA Work Order 1803676 Page 124 of 556 MassLynx MassLynx V4.1 SCN 945 Page 6 of 6 Vista Analytical Laboratory Dataset: Untitled Last Altered: Tuesday, December 04, 2018 10:17:20 Pacific Standard Time Printed: Tuesday, December 04, 2018 10:18:02 Pacific Standard Time Name: 181203M1_3, Date: 03-Dec-2018, Time: 14:47:29, ID: IPA, Description: IPA Work Order 1803676 Page 125 of 556 | | LC Ca | ibratio | n Standard | is Review Ch | eckiist | <u> </u> | 1 | | * | |------------------------------------|----------------------|---------|-------------|----------------|------------------------|------------------|------------------|----------------------------------|---------------------------| | | • | | ION Ratio | Concentration | C-Cals
Name | Sign
Date | Correct
I-Cal | Manual
Integrations | N/A | | Calibration ID: | ST181203M1-1 | () M H | | | d | | | | 4 | | Calibration ID: | | L M H | | | | <u> </u> | D - | _G | ф | | Calibration ID: | | L MH | | | | 1 | | . 🖸 | | | Calibration ID: | | L M H | | | | | <u></u> | □ ⁄ | | | Calibration ID: | -5 | L M H | 1 | | ☑ | | ď | | | | Calibration ID: | | LMH | | | | | | . 🗆 | | | Calibration ID: | | LMH | | | | | | | | | Calibration ID: | | LMH | | | | | | | · 🗖 | | Calibration ID: | | LMH | | | | | | , i | | | Calibration ID: | | LMH | | | | | | . 🗆 | | | Run Log Presen | t | | | | ments: | | | Date: 12/0- | 3/18/ | | # of Samples pe
Instrument Blan | or Sequence Checked: | | | \$68
©40 | 12 FTS 14
12 FTS 13 | 27, ME
27, 61 | ZFTS 143 | 61%, PFTEPA 19
5%, MeFOSAA 13 | 6%, PETED A 149% | | ilS Area Saved Reviewed By: _ | DM 4/110 | | | (D) 61 | 2 FTS 15 | Ολ, Me | FOSAA, 139 | , PFTEDA 15 | 50%
K, PFDS 131%,
E | | ·r | initials/Date | | 1 | | | | | | 1 | | ID: LR - LCSRC | . | | Rev. No.: 1 | Rev. Date: 02/ | 06/2018 | | | | Page: 1 o | Page: 1 of 1 Page 1 of 1 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.qld Last Altered: Printed: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Tuesday, December 04, 2018 11:05:06 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 | | Name | lon Ratio | Ratio out? | |------------|-----------|-----------|------------| | | PFBA | | 1111114 | | 2 | PFPeA | | | | 3 | PFBS | 3.295 | NO | | 4 1 | 4:2 FTS | 1.924 | NO | | 5 | PFHxA | 14.329 | NO | | 6 | PFPeS | 1.425 | NO | | 7 | PFHpA | 13.986 | NO | | 8 | L-PFHx\$ | 2.298 | NO | | 9 | 6:2 FTS | 3.074 | NO | | 10 | L-PFOA | 3.208 | NO | | 11 | PFHpS | 1.959 | NO | | 12 | PFNA | 4.572 | NO | | 13 | PFOSA | 26.635 | NO | | 14 | L-PFOS | 2.053 | NO | | 15 | PFDA | 5.880 | NO | | 16 | 8:2 FTS | 2.741 | NO | | 17 | PFNS | 1.795 | NO | | 18 | L-MeFOSAA | 2.432 | NO | | 19 | L-EtFOSAA | 1.270 | NO | Work Order 1803676 Page 127 of 556 Quantify Sample Summary Report Vista Analytical Laboratory MassLynx MassLynx V4.1 SCN 945 Page 1 of 1 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.qld Last Altered: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Printed: Tuesday, December 04, 2018 11:05:22 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 | | Name | Ion Ratio | Ratio out? | |---------|----------|-----------|------------| | 1番門 - 1 | PFUdA | 9.496 | NO | | 2 | PFDS | 1.734 | NO | | 3 | PFDoA | 9.321 | NO | | 4 | N-MeFOSA | 1.532 | NO | | 5 4 1 | PFTrDA | 26.710 | NO | | 6 | PFTeDA | 14.120 | NO | | 7 | N-EtFOSA | 1.718 | NO | | 8 | PFHxDA | 20.076 | NO | | 9 | PFODA | | 1 | | 10 | N-MeFOSE | | | | 114 8 | N-EtFOSE | | | Work Order 1803676 Page 128 of 556 Page 7 of 9 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-2.qld Last Altered: Tuesday, December 04, 2018 07:51:12 Pacific Standard Time Printed: Tuesday, December 04, 2018 07:52:08 Pacific Standard Time 1 5h 15/4/10 # Name: 181203M1_2, Date: 03-Dec-2018, Time: 14:36:50, ID: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 | # Name | Trace | Area | IS Area | wt/vol | RT | Response | Conc. | %Rec I | Recovery | Ion Ratio | Ratio Out? | |-----------------|---------------|-----------|-----------|--------|------|----------|-------|--------|----------|-----------|---------------------| | 1 PFBA | 213.0 > 168.8 | 594.103 | 7183.595 | 1.00 | 1.43 | 1.034 | 1.0 | 103.7 | NO | | COMPILED THE ENGLIS | | 2 PFPeA | 263.1 > 218.9 | 648.272 | 8275.581 | 1.00 | 2.68 | 0.979 | 1.1 | 108.6 | NO | | | | 3 PFBS | 299.0 > 79.7 | 222.754 | 1320.445 | 1.00 | 3.00 | 2.109 | 1.1 | 109.0 | NO | 3.479 | NO | | 4 4:2 FTS | 327.2>307.2 | 273.948 | 3486.537 | 1.00 | 3.47 | 0.982 | 1.2 | 119.5 | NO | 1.804 | NO | | 5 PFHxA | 313 > 269 | 1287.676 | 6647.235 | 1.00 | 3.56 | 0.969 | 0.9 | 92.4 | NO | 17.720 | NO | | 6 PFPeS | 349.1>80.1 | 132.306 | 1320.445 | 1.00 | 3.76 | 1.252 | 0.9 | 89.1 | NO | 1.110 | NO | | 36 13C3-PFBA | 216.1 > 171.8 | 7183.595 | 8914.291 | 1.00 | 1.43 | 10.073 | 11.7 | 93.6 | NO | | | | 37 13C3-PFPeA | 266. > 221.8 | 8275.581 | 17533.865 | 1.00 | 2.68 | 5.900 | 9.8 | 78.2 | NO | | | | 38 13C3-PFBS | 302. > 98.8 | 1320.445 | 2748.223 | 1.00 | 3.00 | 6.006 | 9.5 | 75.9 | NO | | | | 39 13C2-4:2 FTS | 329.2>308.9 | 3486.537 | 2748.223 | 1.00 | 3.47 | 15.858 | 7.6 | 61.2 | NO | | | | 40 13C2-PFHxA | 315 > 270 | 6647.235 | 17533.865 | 1.00 | 3.56 | 4.739 | 5.3 | 105.3 | NO | | | | 38 13C3-PFBS | 302. > 98.8 | 1320.445 | 2748.223 | 1.00 | 3.00 | 6.006 | 9.5 | 75.9 | NO | | | | -1 | | | | | | | | | | | | | 10 6:2 FTS | 427.1 > 407 | 381.720 | 4173.213 | 1.00 | 4.63 | 1.143 | 1.2 | 117.3 | NO | 3.248 | NO | | 7 PFHpA | 363.0 > 318.9 | 963.224 | 9266.807 | 1.00 | 4.19 | 1.299 | 1.1 | 111.5 | NO | 13.235 | NO | | 8 L-PFHxS | 398.9 > 79.6 | 170.015 | 1138.399 | 1.00 | 4.33 | 1.867 | 0.9 | 94.7 | NO | 1.941 | NO | | 11 L-PFOA | 412.8 > 368.9 | 1968.085 | 16558.258 | 1.00 | 4.68 | 1.486 | 1.2 | 117.7 | NO | 3.115 | NO | | 13 PFHpS | 449 > 80.0 | 231.603 | 3228.403 | 1.00 | 4.78 | 0.897 | 1.1 | 108.3 | NO | 1.787 | NO | | 14 PFNA | 463.0 > 418.8 | 1600.616 | 16381.929 | 1.00 | 5.11 | 1.221 | 1.1 | 114.7 | NO | 4.866 | NO | | 43 13C2-6:2 FTS | 429.1 > 408.9 | 4173.213 | 3152.432 | 1.00 | 4.63 | 16.548 | 9.1 | 72.6 | NO | | | | 41 13C4-PFHpA | 367.2 > 321.8 | 9266.807 | 17533.865 | 1.00 | 4.19 | 6.606 | 9.5 | 76.2 | NO | | | | 42 18O2-PFHxS | 403.0 > 102.6 | 1138.399 | 2748.223 | 1.00 | 4.32 | 5.178 | 10.9 | 87.1 | NO | | | | 44 13C2-PFOA | 414.9 > 369.7 | 16558.258 | 22963.975 | 1.00 | 4.68 | 9.013 | 10.3 | 82.6 | NO | | | | 47 13C8-PFOS | 507.0 > 79.9 | 3228.403 | 3152.432 | 1.00 | 5.19 | 12.801 | 13.2 | 105.8 | NO | | | | 45 13C5-PFNA | 468.2 > 422.9 | 16381.929 | 17092.428 | 1.00 | 5.11 | 11.980 | 11.9 | 95.2 | NO | | | | -1 | | | | | | | | | | | | | 15 PFOSA | 497.9 > 77.9 | 251.192 | 3142.330 | 1.00 | 5.15 | 0.999 | 0.9 | 90.2 | NO | 89.647 | YES | | 16 L-PFOS | 498.9 > 79.9 | 291.984 | 3228.403 | 1.00 | 5.19 | 1.131 | 1.1 | 107.9 | NO | 2.509 | NO | | 18 PFDA | 513 > 468.8 | 1700.253 | 18563.361 | 1.00 | 5.49 | 1.145 | 1.1 | 107.9 | NO
 5.375 | NO | | 19 8:2 FTS | 527 > 506.9 | 414.607 | 3308.934 | 1.00 | 5.46 | 1.566 | 1.2 | 122.9 | NO | 2.794 | NO | | 20 PFNS | 549.1 > 80.1 | 138.970 | 3228.403 | 1.00 | 5.55 | 0.538 | 0.6 | 64.9 | YES | 1.736 | NO | | 21 L-MeFOSAA | 570 > 419 | 726.439 | 5250.850 | 1.00 | 5.64 | 1.729 | 1.2 | 115.9 | NO | 2.250 | NO | | 46 13C8-PFOSA | 506.1 > 77.7 | 3142.330 | 21850.656 | 1.00 | 5.15 | 1.798 | 8.9 | 71.3 | NO | | | | 47 13C8-PFOS | 507.0 > 79.9 | 3228.403 | 3152.432 | 1.00 | 5.19 | 12.801 | 13.2 | 105.8 | NO | | | | 48 13C2-PFDA | 515.1 > 469.9 | 18563.361 | 18159.445 | 1.00 | 5.48 | 12.778 | 11.4 | 90.9 | NO | | | A<70% B7130% > Call 12/4/18 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-2.qld Last Altered: Printed: Tuesday, December 04, 2018 07:51:12 Pacific Standard Time Tuesday, December 04, 2018 07:52:08 Pacific Standard Time Name: 181203M1_2, Date: 03-Dec-2018, Time: 14:36:50, ID: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 | WITH THE | # Name | Trace | Area | IS Area | wt/vol | RT | Response | Conc. | %Rec I | Recovery | Ion Ratio | Ratio Out? | |------------|-----------------|---------------|-----------|-----------|--------|------|----------|-------|--------|----------|-----------|------------| | 36 | 49 13C2-8:2 FTS | 529.1 > 508.7 | 3308.934 | 3152.432 | 1.00 | 5.46 | 13.121 | 12.1 | 96.6 | NO | | | | 37 | 47 13C8-PFOS | 507.0 > 79.9 | 3228.403 | 3152.432 | 1.00 | 5.19 | 12.801 | 13.2 | 105.8 | NO | | | | 8 | 50 d3-N-MeFOSAA | 573.3 > 419 | 5250.850 | 21850.656 | 1.00 | 5.63 | 3.004 | 9.1 | 73.0 | NO | | | | 19 | -1 | | | | | | | | | | | | | 10 | 23 L-EtFOSAA | 584.1 > 419 | 579.442 | 6965.227 | 1.00 | 5.79 | 1.040 | 1.0 | 103.4 | NO | 1.294 | NO | | 1 | 27 PFDoA | 612.9 > 569.0 | 2090.360 | 20266.320 | 1.00 | 6.09 | 1.289 | 1.0 | 97.8 | NO | 7.689 | NO | | 2 | 26 PFDS | 598.8 > 79.9 | 223.746 | 3228.403 | 1.00 | 5.85 | 0.866 | 1.0 | 98.7 | NO | 1.372 | NO | | 3 | 25 PFUdA | 563.0 > 518.9 | 1848.869 | 21335.264 | 1.00 | 5.81 | 1.083 | 1.0 | 100.5 | NO | 10.118 | NO | | 4 | 28 N-MeFOSA | 512.1 > 168.9 | 364.911 | 11082.254 | 1.00 | 6.01 | 4.939 | 4.7 | 94.3 | NO | 1.953 | NO | | 5 | 29 PFTrDA | 662.9 > 618.9 | 1906.586 | 20266.320 | 1.00 | 6.33 | 1.176 | 1.0 | 96.0 | NO | 25.441 | NO | | 6 | 52 d5-N-EtFOSAA | 589.3 > 419 | 6965.227 | 21850.656 | 1.00 | 5.79 | 3.985 | 11.2 | 89.8 | NO | | | | 7 | 53 13C2-PFDoA | 615.0 > 569.7 | 20266.320 | 18159.445 | 1.00 | 6.09 | 13.950 | 14.0 | 112.4 | NO | | | | 8 | 47 13C8-PFOS | 507.0 > 79.9 | 3228.403 | 3152.432 | 1.00 | 5.19 | 12.801 | 13.2 | 105.8 | NO | | | | 9 | 51 13C2-PFUdA | 565 > 519.8 | 21335.264 | 21850.656 | 1.00 | 5.81 | 12.205 | 11.0 | 87.9 | NO | | | | 0 | 54 d3-N-MeFOSA | 515.2 > 168.9 | 11082.254 | 21850.656 | 1.00 | 6.04 | 6.340 | 85.8 | 57.2 | NO | | | | Calcus. | 53 13C2-PFDoA | 615.0 > 569.7 | 20266.320 | 18159.445 | 1.00 | 6.09 | 13.950 | 14.0 | 112.4 | NO | | | | 2 | -1 | | | | | | | | | | | | | 3 | 30 PFTeDA | 713.0 > 669.0 | 1906.702 | 14739.551 | 1.00 | 6.55 | 1.617 | 1.4 | 142.4 | YES | 15.162 | NO | | 1] | 31 N-EtFOSA | 526.1 > 168.9 | 543.886 | 18328.141 | 1.00 | 6.45 | 4.451 | 4.6 | 91.7 | NO | 1.743 | NO | | # | 32 PFHxDA | 813.1 > 768.6 | 776.110 | 6598.428 | 1.00 | 6.86 | 0.588 | 1.0 | 100.4 | NO | 22.077 | NC | | | 33 PFODA | 913.1 > 868.8 | 1331.708 | 6598.428 | 1.00 | 7.08 | 1.009 | 1.2 | 116.3 | NO | | | | 7 | 34 N-MeFOSE | 616.1 > 58.9 | 277.771 | 9568.519 | 1.00 | 6.68 | 4.354 | 5.2 | 103.3 | NO | | | | 3 | 35 N-EtFOSE | 630.1 > 58.9 | 342.496 | 10424.546 | 1.00 | 6.82 | 4.928 | 4.6 | 92.9 | NO | | | | 9 | 55 13C2-PFTeDA | 715.1 > 669.7 | 14739.551 | 21850.656 | 1.00 | 6.55 | 8.432 | 11.3 | 90.1 | NO | | | |) | 56 d5-N-ETFOSA | 531.1 > 168.9 | 18328.141 | 21850.656 | 1.00 | 6.47 | 10.485 | 108.2 | 72.2 | NO | | | | 1 | 57 13C2-PFHxDA | 815 > 769.7 | 6598.428 | 21850.656 | 1.00 | 6.86 | 3.775 | 5.3 | 105.7 | NO | | | | 2 | 57 13C2-PFHxDA | 815 > 769.7 | 6598.428 | 21850.656 | 1.00 | 6.86 | 3.775 | 5.3 | 105.7 | NO | | | | 3 | 58 d7-N-MeFOSE | 623.1 > 58.9 | 9568.519 | 21850.656 | 1.00 | 6.66 | 5.474 | 152.1 | 101.4 | NO | | | | 4 | 59 d9-N-EtFOSE | 639.2 > 58.8 | 10424.546 | 21850.656 | 1.00 | 6.81 | 5.964 | 165.1 | 110.1 | NO | | | | Š | -1 | | | | | | | | | | | | | | 60 13C4-PFBA | 217. > 172 | 8914.291 | 8914.291 | 1.00 | 1.43 | 12.500 | 12.5 | 100.0 | NO | | | | 6
7 | 61 13C5-PFHxA | 318 > 272.9 | 17533.865 | 17533.865 | 1.00 | 3.56 | 12.500 | 12.5 | 100.0 | NO | | | | 8 | 62 13C3-PFHxS | 401.8 > 79.9 | 2748.223 | 2748.223 | 1.00 | 4.32 | 12.500 | 12.5 | 100.0 | NO | | | | 9 | 63 13C8-PFOA | 420.9 > 376 | 22963.975 | 22963.975 | 1.00 | 4.68 | 12.500 | 12.5 | 100.0 | NO | | | | 0 | 64 13C9-PFNA | 472.2 > 426.9 | 17092.428 | 17092.428 | 1.00 | 5.11 | 12.500 | 12.5 | 100.0 | NO | | | Work Order 1803676 Page 130 of 556 Quantify Sample ReportMassLynx MassLynx V4.1 SCN 945Vista Analytical LaboratoryPage 9 of 9 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-2.qld Last Altered: Tuesday, December 04, 2018 07:51:12 Pacific Standard Time Tuesday, December 04, 2018 07:52:08 Pacific Standard Time Name: 181203M1_2, Date: 03-Dec-2018, Time: 14:36:50, ID: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 | # Name | Trace | Area | IS Area | wt/vol | RT | Response | Conc. | %Rec | Recovery Ion Ratio | Ratio Out? | |------------------|---------------|-----------|-----------|--------|------|----------|-------|-------|--------------------|------------| | 71 65 13C4-PFOS | 503 > 79.9 | 3152.432 | 3152.432 | 1.00 | 5.19 | 12.500 | 12.5 | 100.0 | NO | | | 72 66 13C6-PFDA | 519.1 > 473.7 | 18159.445 | 18159.445 | 1.00 | 5.48 | 12.500 | 12.5 | 100.0 | NO | | | 73 67 13C7-PFUdA | 570.1 > 524.8 | 21850.656 | 21850.656 | 1.00 | 5.81 | 12.500 | 12.5 | 100.0 | NO | | Work Order 1803676 Page 131 of 556 Untitled Last Altered: Printed: Tuesday, December 04, 2018 08:03:25 Pacific Standard Time Tuesday, December 04, 2018 08:04:05 Pacific Standard Time Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 07:50:00 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Compound name: PFBA | | # Name | ID | Acq.Date | Aca Time | |-----|----------------|--|-----------|----------| | 1 | 1 181203M1_1 | IPA | 03-Dec-18 | 14:26:17 | | 2 | 2 181203M1_2 | ST181203M1-1 PFC CS0 18K3003 | 03-Dec-18 | 14:36:50 | | 3 | 3 181203M1_3 | IPA | 03-Dec-18 | 14:47:29 | | 4 | 4 181203M1_4 | B8K0153-BS1 OPR 0.25 | 03-Dec-18 | 14:58:01 | | 5 | 5 181203M1_5 | B8K0153-MS1 Matrix Spike 0.1068 | 03-Dec-18 | 15:08:39 | | 6 | 6 181203M1_6 | B8K0153-MSD1 Matrix Spike Dup 0.11122 | 03-Dec-18 | 15:19:12 | | 7 | 7 181203M1_7 | B8K0153-BLK1 Method Blank 0.25 | 03-Dec-18 | 15:29:51 | | 8 | 8 181203M1_8 | 1803678-01 A1-MW-01-SA2 0.11182 | 03-Dec-18 | 15:40:24 | | 9 | 9 181203M1_9 | 1803678-02 A1-MW-42-SA2 0.11781 | 03-Dec-18 | 15:51:02 | | 10 | 10 181203M1_10 | 1803678-03 FRB-20181116 0.1036 | 03-Dec-18 | 16:01:36 | | 11 | 11 181203M1_11 | 1803678-04 EB-20181116 0.11772 | 03-Dec-18 | 16:12:14 | | 12 | 12 181203M1_12 | 1803676-01 A1-MW-11-SA2 0.11626 | 03-Dec-18 | 16:22:46 | | 13 | 13 181203M1_13 | 1803676-02 A1-MW-13-SA2 0.11042 | 03-Dec-18 | 16:33:24 | | 14 | 14 181203M1_14 | 1803676-03 A1-MW-14-SA2 0.11629 | 03-Dec-18 | 16:43:58 | | 15 | 15 181203M1_15 | 1803676-04 A1-MW-15-SA2 0.11086 | 03-Dec-18 | 16:54:36 | | 16 | 16 181203M1_16 | IPA . | 03-Dec-18 | 18:13:52 | | 17 | 17 181203M1_17 | IPA | 03-Dec-18 | 18:24:27 | | 18 | 18 181203M1_18 | 1803676-05 A1-MW-37-SA2 0.11753 | 03-Dec-18 | 18:35:06 | | 19 | 19 181203M1_19 | 1803676-06 A1-MW-37-SA2D 0.11493 | 03-Dec-18 | 18:45:39 | | 20 | 20 181203M1_20 | 1803676-07 FRB-20181115 0.11067 | 03-Dec-18 | 18:56:10 | | 21 | 21 181203M1_21 | 1803676-08 A1-MW-31-SA2 0.1169 | 03-Dec-18 | 19:06:48 | | 22 | 22 181203M1_22 | 1803689-01 Equipment Blank 1 0.25208 | 03-Dec-18 | 19:17:20 | | 23 | 23 181203M1_23 | ST181203M1-2 PFC CS3 18K3006 | 03-Dec-18 | 19:27:59 | | 24 | 24 181203M1_24 | IPA | 03-Dec-18 | 19:38:28 | | 25 | 25 181203M1_25 | B8K0190-BSD1 LCSD 0.25 | 03-Dec-18 | 19:49:07 | | 26 | 26 181203M1_26 | 1803745-03 PFC-AF-01-03-112618 0.24673 | 03-Dec-18 | 19:59:45 | | 27 | 27 181203M1_27 | 1803746-01 PFC-AF-02-01-112618 0.23986 | 03-Dec-18 | 20:10:19 | | 28. | 28 181203M1_28 | IPA | 03-Dec-18 | 20:20:57 | | 29 | 29 181203M1_29 | 1803746-02 PFC-AF-02-02-112618 0.2365 | 03-Dec-18 | 20:31:30 | | 30 | 30 181203M1_30 | IPA | 03-Dec-18 | 20:42:08 | | 31 | 31 181203M1_31 | 1803746-03 PFC-AF-02-03-112618 0.23672 | 03-Dec-18 | 20:52:42 | | 32 | 32 181203M1_32 | IPA | 03-Dec-18 | 21:03:20 | Work Order 1803676 Page 132 of 556 Untitled Last Altered: Printed: Tuesday, December 04, 2018 08:03:25 Pacific Standard Time Tuesday, December 04, 2018 08:04:05 Pacific Standard Time # Compound name: PFBA | CONTRACTOR OF THE SECRETARY CONTRACTOR | Control of the Contro | | Section 1 to the section of | Control of the second of the second of | |--
--|---|-----------------------------|--| | | #/Name | ID at 1 | | Acq.Time | | 33 | 33 181203M1_33 | 1803762-04 PFC-AF-01-04-112718 0.24232 | 03-Dec-18 | 1 | | 34 | 34 181203M1_34 | 1803618-02 1811353-02A 0.2386 | 03-Dec-18 | 21:24:32 | | 35 | 35 181203M1_35 | 1803618-01@10X 1811353-01A 0.23448 | 03-Dec-18 | ſ | | 36 | 36 181203M1_36 | IPA | 03-Dec-18 | 21:45:43 | | 37 | 37 181203M1_37 | B8K0215-BS1 OPR 0.125 | 03-Dec-18 | 21:56:21 | | 38 | 38 181203M1_38 | B8K0215-BSD1 LCSD 0.125 | 03-Dec-18 | 22:06:56 | | 39 | 39 181203M1_39 | B8K0215-BLK1 Method Blank 0.125 | 03-Dec-18 | 22:17:34 | | 40 | 40 181203M1_40 | 1803788-01 PFC-AF-01-01-112918 0.11457 | 03-Dec-18 | 22:28:07 | | 41 | 41 181203M1_41 | 1803788-02 PFC-AF-01-02-112918 0.11773 | 03-Dec-18 | 22:38:45 | | 42 | 42 181203M1_42 | 1803788-03 PFC-AF-01-03-112918 0.11732 | 03-Dec-18 | 22:49:19 | | 43 | 43 181203M1_43 | ST181203M1-3 PFC CS3 18K3006 | 03-Dec-18 | 22:59:57 | | 44 | 44 181203M1_44 | IPA | 03-Dec-18 | 23:10:29 | | 45 | 45 181203M1_45 | B8K0197-BS1 OPR 0.125 | 03-Dec-18 | 23:21:08 | | 46 | 46 181203M1_46 | B8K0197-BLK1 Method Blank 0.125 | 03-Dec-18 | 23:31:46 | | 47 | 47 181203M1_47 | 1803754-01 CMW-18-01 0.11781 | 03-Dec-18 | 23:42:19 | | 48. | 48 181203M1_48 | 1803754-02 CMW-101B 0.11273 | 03-Dec-18 | 23:52:57 | | 49 | 49 181203M1_49 | 1803754-03 MW-97701 0.11474 | 04-Dec-18 | 00:03:30 | | 50 | 50 181203M1_50 | 1803754-04 MW-97702 0.11219 | 04-Dec-18 | 00:14:08 | | 51 | 51 181203M1_51 | 1803754-05 CSW-3 0.12087 | 04-Dec-18 | 00:24:42 | | 52 | 52 181203M1_52 | 1803754-06 CSW-4 0.11744 | 04-Dec-18 | 00:35:20 | | 53 | 53 181203M1_53 | 1803754-07 CUD-1 0.11598 | 04-Dec-18 | 00:45:53 | | 54 | 54 181203M1_54 | 1803754-08 CUD-2 0.1153 | 04-Dec-18 | 00:56:31 | | 55 | 55 181203M1_55 | 1803754-09 CUD-3 0.11905 | 04-Dec-18 | 01:07:05 | | 56 | 56 181203M1_56 | 1803754-10 CUD-4 0.11711 | 04-Dec-18 | 01:17:43 | | 57 | 57 181203M1_57 | ST181203M1-4 PFC CS3 18K3006 | 04-Dec-18 | 01:28:16 | | 58 | 58 181203M1_58 | IPA | 04-Dec-18 | 01:38:54 | | 59 | 59 181203M1_59 | 1803762-01 PFC-AF-01-01-112718 0.23808 | 04-Dec-18 | 01:49:32 | | 60 | 60 181203M1_60 | 1803754-11 Sump 1 0.11876 | 04-Dec-18 | 02:00:05 | | 61 | 61 181203M1_61 | 1803754-12 Sump 2 0.11443 | 04-Dec-18 | 02:10:44 | | 62 | 62 181203M1_62 | 1803754-13 SW-5 0.11647 | 04-Dec-18 | 02:21:17 | | 63 | 63 181203M1_63 | 1803754-14 Shelby St. Sump 0.11682 | 04-Dec-18 | 02:31:56 | | 64 | 64 181203M1_64 | 1803746-01@150X PFC-AF-02-01-112618 0.23986 | 04-Dec-18 | 02:42:29 | | 65 | 65 181203M1_65 | IPA | 04-Dec-18 | 02:53:07 | | 66 | 66 181203M1_66 | 1803746-02@10X PFC-AF-02-02-112618 0.2365 | 04-Dec-18 | 03:03:39 | | 67 | 67 181203M1_67 | IPA | 04-Dec-18 | 03:14:18 | | 68 | 68 181203M1_68 | 1803746-03@5X PFC-AF-02-03-112618 0.23672 | 04-Dec-18 | 03:24:51 | Work Order 1803676 Page 133 of 556 Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960 Vista Analytical Laboratory Dataset: Untitled Last Altered: Printed: Tuesday, December 04, 2018 08:03:25 Pacific Standard Time Tuesday, December 04, 2018 08:04:05 Pacific Standard Time # Compound name: PFBA | #-Name | ID . | Acq.Date Acq.Time | |-------------------|------------------------------|--------------------| | 69 69 181203M1_69 | ST181203M1-5 PFC CS3 18K3006 | 04-Dec-18 03:35:29 | | 70 70 181203M1_70 | IPA_ | 04-Dec-18 03:46:02 | Work Order 1803676 Page 134 of 556 Page 3 of 3 Quantify Sample Report Vista Analytical Laboratory Mas MassLynx MassLynx V4.1 SCN 945 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-2.qld Last Altered: Printed: Dataset: Tuesday, December 04, 2018 07:51:12 Pacific Standard Time Tuesday, December 04, 2018 07:52:08 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 07:33:51 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1 2, Date: 03-Dec-2018, Time: 14:36:50, JD: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-2.gld Last Altered: Printed: Tuesday, December 04, 2018 07:51:12 Pacific Standard Time Tuesday, December 04, 2018 07:52:08 Pacific Standard Time ### Name: 181203M1_2, Date: 03-Dec-2018, Time: 14:36:50, ID: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 136 of 556 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-2.gld Last Altered: Printed: Tuesday, December 04, 2018 07:51:12 Pacific Standard Time Tuesday, December 04, 2018 07:52:08 Pacific Standard Time Name: 181203M1_2, Date: 03-Dec-2018, Time: 14:36:50, ID: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 137 of 556 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-2.qld Last Altered: Printed: Tuesday, December 04, 2018 07:51:12 Pacific Standard Time Tuesday, December 04, 2018 07:52:08 Pacific Standard Time Name: 181203M1_2, Date: 03-Dec-2018, Time: 14:36:50, ID: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 138 of 556 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-2.qld Last Altered: Printed: Tuesday, December 04, 2018 07:51:12 Pacific Standard Time Tuesday, December 04, 2018 07:52:08 Pacific Standard Time Name: 181203M1_2, Date: 03-Dec-2018, Time: 14:36:50, ID: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 139 of 556 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-2.qld Last Altered: Tuesday, December 04, 2018 07:51:12 Pacific Standard Time Printed: Tuesday, December 04, 2018 07:52:08 Pacific Standard Time #### Name: 181203M1_2, Date: 03-Dec-2018, Time: 14:36:50, ID: ST181203M1-1 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 140 of 556 MassLynx MassLynx V4.1 SCN 945 Page 7 of 9 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.qld Last Altered: Printed: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Tuesday, December 04, 2018 11:06:00 Pacific Standard Time John'slallo Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 | | # Name | Trace | Area | IS Area | wt/vol | RT | Response | Conc. | %Rec | Recovery | Ion Ratio F | Ratio Out? | |--------|-----------------|---------------|-----------|-----------|--------|------|----------|-------|-------|----------|-------------|------------| | | 1 PFBA | 213.0 > 168.8 | 7477.563 | 8028.523 | 1.00 | 1.43 | 11.642 | 11.4 | 113.5 | NO | | | | | 2 PFPeA | 263.1 > 218.9 | 7266.049 | 9364.144 | 1.00 | 2.67 | 9.699 | 10.7 | 106.6 | NO | | | | | 3 PFBS | 299.0 > 79.7 | 2526.404 | 1471.533 | 1.00 | 3.00 | 21.461 | 10.7 | 106.5 | NO | 3.295 | NO | | | 4 4:2 FTS | 327.2>307.2 | 3111.898 | 3722.015 | 1.00 | 3.47 | 10.451 | 12.9 | 129.1 | NO | 1.924 | NO | | | 5 PFHxA | 313 > 269 | 14792.119 | 7005.294 | 1.00 | 3.56 | 10.558 | 10.1 | 100.8 | NO | 14.329 | NO | | ď. | 6 PFPeS | 349.1>80.1 | 1672.569 | 1471.533 | 1.00 | 3.77 | 14.208 | 9.6 | 96.4 | NO | 1.425 | NO | | | 36 13C3-PFBA | 216.1 > 171.8 | 8028.523 | 9619.407 | 1.00 | 1.43 | 10.433 | 12.1 | 97.0 | NO | | | | | 37 13C3-PFPeA | 266. > 221.8 | 9364.144 | 18665.287 | 1.00 | 2.68 | 6.271 | 10.4 | 83.1 | NO | | | | | 38 13C3-PFBS | 302. > 98.8 | 1471.533 | 2724.861 | 1.00 | 3.00 | 6.750 | 10.7 | 85.3 | NO | | | | 及體 | 39 13C2-4:2 FTS | 329.2>308.9 | 3722.015 | 2724.861 | 1.00 | 3.47 | 17.074 | 8.2 | 65.9 | NO | | | | | 40 13C2-PFHxA | 315 > 270 | 7005.294 | 18665.287 | 1.00 | 3.56 | 4.691 | 5.2 | 104.2 | NO | | | | | 38 13C3-PFBS | 302. > 98.8 | 1471.533 | 2724.861 | 1.00 | 3.00 | 6.750 | 10.7 | 85.3 | NO | | | | | -1 | | | | | | | | | | | | | | 10 6:2 FTS | 427.1 > 407 | 4540.055 | 4235.966 | 1.00 | 4.63 | 13.397 | 14.2 | 142.3 | YES | 3.074 | NC | | | 7 PFHpA | 363.0 > 318.9 | 10775.200 | 9821.572 | 1.00 | 4.19 | 13.714 | 11.8 | 117.9 | NO | 13.986 | NC | | | 8 L-PFHxS | 398.9 > 79.6 | 2420.715 | 1326.308 |
1.00 | 4.33 | 22.814 | 11.6 | 115.5 | NO | 2.298 | NC | | 100 | 11 L-PFOA | 412.8 > 368.9 | 19806.412 | 16648.301 | 1.00 | 4.68 | 14.871 | 12.2 | 121.6 | NO | 3.208 | NC | | | 13 PFHpS | 449 > 80.0 | 2418.993 | 3391.895 | 1.00 | 4.79 | 8.915 | 10.1 | 101.3 | NO | 1.959 | NC | | Merrin | 14 PFNA | 463.0 > 418.8 | 16458.914 | 16945.578 | 1.00 | 5.11 | 12.141 | 11.0 | 110.0 | NO | 4.572 | NC | | | 43 13C2-6:2 FTS | 429.1 > 408.9 | 4235.966 | 3208.098 | 1.00 | 4.63 | 16.505 | 9.0 | 72.4 | NO | | | | | 41 13C4-PFHpA | 367.2 > 321.8 | 9821.572 | 18665.287 | 1.00 | 4.19 | 6.577 | 9.5 | 75.9 | NO | | | | | 42 18O2-PFHxS | 403.0 > 102.6 | 1326.308 | 2724.861 | 1.00 | 4.33 | 6.084 | 12.8 | 102.3 | NO | | | | | 44 13C2-PFOA | 414.9 > 369.7 | 16648.301 | 24330.898 | 1.00 | 4.68 | 8.553 | 9.8 | 78.4 | NO | | | | | 47 13C8-PFOS | 507.0 > 79.9 | 3391.895 | 3208.098 | 1.00 | 5.19 | 13.216 | 13.7 | 109.2 | NO | | | | | 45 13C5-PFNA | 468.2 > 422.9 | 16945.578 | 17279.703 | 1.00 | 5.11 | 12.258 | 12.2 | 97.5 | NO | | | | | -1 | | | | | | | | | | | | | | 15 PFOSA | 497.9 > 77.9 | 2876.077 | 3250.857 | 1.00 | 5.15 | 11.059 | 9.7 | 97.3 | NO | 26.635 | NO | | | 16 L-PFOS | 498.9 > 79.9 | 2788.231 | 3391.895 | 1.00 | 5.19 | 10.275 | 9.3 | 93.5 | NO | 2.053 | NO | | | 18 PFDA | 513 > 468.8 | 18735.084 | 19004.143 | 1.00 | 5.48 | 12.323 | 11.5 | 114.8 | NO | 5.880 | NO | | | 19 8:2 FTS | 527 > 506.9 | 4597.032 | 3532.716 | 1.00 | 5.46 | 16.266 | 12.6 | 125.6 | NO | 2.741 | NC | | | 20 PFNS | 549.1 > 80.1 | 1788.063 | 3391.895 | 1.00 | 5.54 | 6.589 | 8.5 | 85.2 | NO | 1.795 | NC | | | 21 L-MeFOSAA | 570 > 419 | 8387.563 | 5299.448 | 1.00 | 5.63 | 19.784 | 13.1 | 131.4 | YES | 2.432 | NO | | | 46 13C8-PFOSA | 506.1 > 77.7 | 3250.857 | 22940.582 | 1.00 | 5.15 | 1.771 | 8.8 | 70.3 | NO | | | | | 47 13C8-PFOS | 507.0 > 79.9 | 3391.895 | 3208.098 | 1.00 | 5.19 | 13.216 | 13.7 | 109.2 | NO | | | | | 48 13C2-PFDA | 515.1 > 469.9 | 19004.143 | 19285.031 | 1.00 | 5.48 | 12.318 | 11.0 | 87.6 | NO | | | A)71301 (aH \7/4/18 Page 8 of 9 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.qld Last Altered: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Printed: Tuesday, December 04, 2018 11:06:00 Pacific Standard Time # Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 | | # Name | Trace | Area | IS Area | wt/vol | RT | Response | Conc. | %Rec I | Recovery I | on Ratio | Ratio Out? | |------------|-----------------|---------------|-----------|-----------|--------|------|----------|-------|--------|------------|----------|------------| | 36 | 49 13C2-8:2 FTS | 529.1 > 508.7 | 3532.716 | 3208.098 | 1.00 | 5.45 | 13.765 | 12.7 | 101.4 | NO | | | | 37 | 47 13C8-PFOS | 507.0 > 79.9 | 3391.895 | 3208.098 | 1.00 | 5.19 | 13.216 | 13.7 | 109.2 | NO | | | | 38 | 50 d3-N-MeFOSAA | 573.3 > 419 | 5299.448 | 22940.582 | 1.00 | 5.63 | 2.888 | 8.8 | 70.2 | NO | | | | 39 | -1 | | | | | | | | | | | | | 40 | 23 L-EtFOSAA | 584.1 > 419 | 7023.611 | 7518.429 | 1.00 | 5.79 | 11.677 | 10.8 | 107.7 | NO | 1.270 | NO | | 41 | 27 PFDoA | 612.9 > 569.0 | 22816.193 | 19229.492 | 1.00 | 6.08 | 14.832 | 11.3 | 112.8 | NO | 9.321 | NO | | 1 2 | 26 PFDS | 598.8 > 79.9 | 2750.703 | 3391.895 | 1.00 | 5.85 | 10.137 | 12.4 | 123.9 | NO | 1.734 | NO | | 43 | 25 PFUdA | 563.0 > 518.9 | 17930.164 | 22227.916 | 1.00 | 5.81 | 10.083 | 9.4 | 93.7 | NO | 9.496 | NO | | 14 | 28 N-MeFOSA | 512.1 > 168.9 | 4045.033 | 11135.663 | 1.00 | 6.01 | 54.488 | 51.8 | 103.6 | NO | 1.532 | NO | | 5 | 29 PFTrDA | 662.9 > 618.9 | 21435.748 | 19229.492 | 1.00 | 6.32 | 13.934 | 11.5 | 114.8 | NO | 26.710 | NO | | 16 | 52 d5-N-EtFOSAA | 589.3 > 419 | 7518.429 | 22940.582 | 1.00 | 5.78 | 4.097 | 11.5 | 92.3 | NO | | | | 7 | 53 13C2-PFDoA | 615.0 > 569.7 | 19229.492 | 19285.031 | 1.00 | 6.08 | 12.464 | 12.6 | 100.4 | NO | | | | 18 | 47 13C8-PFOS | 507.0 > 79.9 | 3391.895 | 3208.098 | 1.00 | 5.19 | 13.216 | 13.7 | 109.2 | NO | | | | 19 | 51 13C2-PFUdA | 565 > 519.8 | 22227.916 | 22940.582 | 1.00 | 5.81 | 12.112 | 10.9 | 87.2 | NO | | | | 0 | 54 d3-N-MeFOSA | 515.2 > 168.9 | 11135.663 | 22940.582 | 1.00 | 6.04 | 6.068 | 82.2 | 54.8 | NO | | | | 1 | 53 13C2-PFDoA | 615.0 > 569.7 | 19229.492 | 19285.031 | 1.00 | 6.08 | 12.464 | 12.6 | 100.4 | NO | | | | 2 | -1 | | | | | | | | | | | | | 3 | 30 PFTeDA | 713.0 > 669.0 | 20520.514 | 14602.360 | 1.00 | 6.54 | 17.566 | 15.5 | 155.5 | YES | 14.120 | NO | | 4 | 31 N-EtFOSA | 526.1 > 168.9 | 5635.637 | 18976.705 | 1.00 | 6.45 | 44.546 | 45.9 | 91.8 | NO | 1.718 | NO | | 5 | 32 PFHxDA | 813.1 > 768.6 | 6960.091 | 6723.087 | 1.00 | 6.85 | 5,176 | 9.7 | 97.0 | NO | 20.076 | NO | | 6 | 33 PFODA | 913.1 > 868.8 | 12964.791 | 6723.087 | 1.00 | 7.08 | 9.642 | 11.3 | 112.6 | NO | | | | 7 | 34 N-MeFOSE | 616.1 > 58.9 | 2956.312 | 9818.604 | 1.00 | 6.68 | 45.164 | 49.0 | 97.9 | NO | | | | 8 | 35 N-EtFOSE | 630.1 > 58.9 | 3634.387 | 10124.197 | 1.00 | 6.82 | 53.847 | 51.2 | 102.4 | NO | | | | 9 | 55 13C2-PFTeDA | 715.1 > 669.7 | 14602.360 | 22940.582 | 1.00 | 6.54 | 7.957 | 10.6 | 85.0 | NO | | | | 0 | 56 d5-N-ETFOSA | 531.1 > 168.9 | 18976.705 | 22940.582 | 1.00 | 6.47 | 10.340 | 106.7 | 71.2 | NO | | | | 1 | 57 13C2-PFHxDA | 815 > 769.7 | 6723.087 | 22940.582 | 1.00 | 6.85 | 3.663 | 5.1 | 102.6 | NO | | | | 2 | 57 13C2-PFHxDA | 815 > 769.7 | 6723.087 | 22940.582 | 1.00 | 6.85 | 3.663 | 5.1 | 102.6 | NO | | | | 3 | 58 d7-N-MeFOSE | 623.1 > 58.9 | 9818.604 | 22940.582 | 1.00 | 6.66 | 5.350 | 148.7 | 99.1 | NO | | | | 4 | 59 d9-N-EtFOSE | 639.2 > 58.8 | 10124.197 | 22940.582 | 1.00 | 6.81 | 5.517 | 152.7 | 101.8 | NO | | | | 5 | -1 | | | | | | | | | | | | | 6 | 60 13C4-PFBA | 217. > 172 | 9619.407 | 9619.407 | 1.00 | 1.43 | 12.500 | 12.5 | 100.0 | NO | | | | 7 | 61 13C5-PFHxA | 318 > 272.9 | 18665.287 | 18665.287 | 1.00 | 3.56 | 12.500 | 12.5 | 100.0 | NO | | | | 8 | 62 13C3-PFHxS | 401.8 > 79.9 | 2724.861 | 2724.861 | 1.00 | 4.33 | 12.500 | 12.5 | 100.0 | NO | | | | 9 | 63 13C8-PFOA | 420.9 > 376 | 24330.898 | 24330.898 | 1.00 | 4.68 | 12.500 | 12.5 | 100.0 | NO | | | | 0 | 64 13C9-PFNA | 472.2 > 426.9 | 17279.703 | 17279.703 | 1.00 | 5.11 | 12.500 | 12.5 | 100.0 | NO | | | Work Order 1803676 Page 142 of 556 Page 9 of 9 **Quantify Sample Report** MassLynx MassLynx V4.1 SCN 945 Vista Analytical Laboratory Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.qld Dataset: Last Altered: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Tuesday, December 04, 2018 11:06:00 Pacific Standard Time Printed: # Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 | # Name | Trace | Area | IS Area | wt/vol | RT | Response | Conc. | %Rec | Recovery | Ion Ratio | Ratio Out? | |------------------|---------------|-----------|-----------|--------|------|----------|-------|-------|----------|-----------|------------| | 71 65 13C4-PFOS | 503 > 79.9 | 3208.098 | 3208.098 | 1.00 | 5.19 | 12.500 | 12.5 | 100.0 | NO | | | | 72 66 13C6-PFDA | 519.1 > 473.7 | 19285.031 | 19285.031 | 1.00 | 5.48 | 12.500 | 12.5 | 100.0 | NO | | | | 73 67 13C7-PFUdA | 570.1 > 524.8 | 22940.582 | 22940.582 | 1.00 | 5.81 | 12.500 | 12.5 | 100.0 | NO | | | Work Order 1803676 Page 143 of 556 Untitled Last Altered: Printed: Tuesday, December 04, 2018 08:03:25 Pacific Standard Time Tuesday, December 04, 2018 08:04:05 Pacific Standard Time Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 07:50:00 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Compound name: PFBA | and the second | # Name | David Carlo | Acq.Date | Acq. Time | |--|------------------------|--|-----------|-----------| | | # Name
1 181203M1 1 | IPA | 03-Dec-18 | 14:26:17 | | | 2 181203M1 2 | ST181203M1-1 PFC CS0 18K3003 | 03-Dec-18 | | | Z 1 | - | IPA | 03-Dec-18 | 14:47:29 | | 3 | 3 181203M1_3 | |
| | | 4 | 4 181203M1_4 | B8K0153-BS1 OPR 0.25 | 03-Dec-18 | | | 5 | 5 181203M1_5 | B8K0153-MS1 Matrix Spike 0.1068 | 03-Dec-18 | 15:08:39 | | 6 | 6 181203M1_6 | B8K0153-MSD1 Matrix Spike Dup 0.11122 | 03-Dec-18 | 15:19:12 | | | 7 181203M1_7 | B8K0153-BLK1 Method Blank 0.25 | 03-Dec-18 | 15:29:51 | | 8 | 8 181203M1_8 | 1803678-01 A1-MW-01-SA2 0.11182 | 03-Dec-18 | 15:40:24 | | 9 | 9 181203M1_9 | 1803678-02 A1-MW-42-SA2 0.11781 | 03-Dec-18 | 15:51:02 | | Service of the servic | 10 181203M1_10 | 1803678-03 FRB-20181116 0.1036 | 03-Dec-18 | 16:01:36 | | 11 | 11 181203M1_11 | 1803678-04 EB-20181116 0.11772 | 03-Dec-18 | 16:12:14 | | 12 | 12 181203M1_12 | 1803676-01 A1-MW-11-SA2 0.11626 | 03-Dec-18 | 16:22:46 | | 13 | 13 181203M1_13 | 1803676-02 A1-MW-13-SA2 0.11042 | 03-Dec-18 | 16:33:24 | | 14 | 14 181203M1_14 | 1803676-03 A1-MW-14-SA2 0.11629 | 03-Dec-18 | 16:43:58 | | 15 | 15 181203M1_15 | 1803676-04 A1-MW-15-SA2 0.11086 | 03-Dec-18 | 16:54:36 | | 16 | 16 181203M1_16 | IPA | 03-Dec-18 | 18:13:52 | | 17 | 17 181203M1_17 | IPA | 03-Dec-18 | 18:24:27 | | 18 | 18 181203M1_18 | 1803676-05 A1-MW-37-SA2 0.11753 | 03-Dec-18 | 18:35:06 | | 19 | 19 181203M1_19 | 1803676-06 A1-MW-37-SA2D 0.11493 | 03-Dec-18 | 18:45:39 | | 20 | 20 181203M1_20 | 1803676-07 FRB-20181115 0.11067 | 03-Dec-18 | 18:56:10 | | 21 | 21 181203M1_21 | 1803676-08 A1-MW-31-SA2 0.1169 | 03-Dec-18 | 19:06:48 | | 22 | 22 181203M1_22 | 1803689-01 Equipment Blank 1 0.25208 | 03-Dec-18 | 19:17:20 | | 23 | 23 181203M1_23 | ST181203M1-2 PFC CS3 18K3006 | 03-Dec-18 | 19:27:59 | | 24 | 24 181203M1_24 | IPA | 03-Dec-18 | 19:38:28 | | 25 | 25 181203M1_25 | B8K0190-BSD1 LCSD 0.25 | 03-Dec-18 | 19:49:07 | | 26 | 26 181203M1_26 | 1803745-03 PFC-AF-01-03-112618 0.24673 | 03-Dec-18 | 19:59:45 | | 27 | 27 181203M1_27 | 1803746-01 PFC-AF-02-01-112618 0.23986 | 03-Dec-18 | 20:10:19 | | 28 | 28 181203M1_28 | IPA | 03-Dec-18 | 20:20:57 | | 29 | 29 181203M1_29 | 1803746-02 PFC-AF-02-02-112618 0.2365 | 03-Dec-18 | 20:31:30 | | 29
30 | 30 181203M1_30 | IPA | 03-Dec-18 | 20:42:08 | | 31 | 31 181203M1_31 | 1803746-03 PFC-AF-02-03-112618 0.23672 | 03-Dec-18 | 20:52:42 | | 32 | 32 181203M1_32 | IPA | 03-Dec-18 | 21:03:20 | Work Order 1803676 Page 144 of 556 Untitled Last Altered: Printed: Tuesday, December 04, 2018 08:03:25 Pacific Standard Time Tuesday, December 04, 2018 08:04:05 Pacific Standard Time ### Compound name: PFBA | 39 39 181203M1_39 B8K0215-BLK1 Method Blank 0.125 03-Dec-18 22:17:34 40 40 181203M1_40 1803788-01 PFC-AF-01-01-112918 0.11457 03-Dec-18 22:28:07 41 41 181203M1_41 1803788-02 PFC-AF-01-02-112918 0.11773 03-Dec-18 22:38:45 42 42 181203M1_42 1803788-03 PFC-AF-01-03-112918 0.11732 03-Dec-18 22:49:19 43 43 181203M1_43 ST181203M1-3 PFC CS3 18K3006 03-Dec-18 22:59:57 44 44 181203M1_44 IPA 03-Dec-18 23:10:29 45 45 181203M1_45 B8K0197-BS1 OPR 0.125 03-Dec-18 23:21:08 46 46 181203M1_46 B8K0197-BLK1 Method Blank 0.125 03-Dec-18 23:31:46 47 47 181203M1_47 1803754-01 CMW-18-01 0.11781 03-Dec-18 23:42:19 48 48 181203M1_48 1803754-02 CMW-101B 0.11273 03-Dec-18 23:52:57 49 49 181203M1_49 1803754-03 MW-97701 0.11474 04-Dec-18 00:03:30 50 181203M1_50 1803754-04 MW-97702 0.11219 04-Dec-18 00:24:42 51 181203M1_51 1803754-05 CSW-3 0.12087 04-Dec-18 00:35:20 53 53 181203M1_53 1803754-07 CUD-1 0.11598 04-Dec-18 00:56:31 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 | | | | | | |---|--|----------------|---|---|--| | 34 181203MI_34 1803618-02 1811353-02A 0.2386 03-Dec-18 21:24:32 35 35 181203MI_35 1803618-01@10X 1811353-01A 0.23448 03-Dec-18 21:35:10 36 36 181203MI_36 IPA 03-Dec-18 21:45:43 37 37 181203MI_37 B8K0215-BSD1 LCSID 0.125 03-Dec-18 21:56:21 38 38 181203MI_38 B8K0215-BLK1 Method Blank 0.125 03-Dec-18 22:26:56 39 39 181203MI_40 1803788-01 PFC-AF-01-01-112918 0.11457 03-Dec-18 22:28:07
41 41 181203MI_41 1803788-02 PFC-AF-01-02-112918 0.11773 03-Dec-18 22:38:45 42 42 181203MI_42 18003788-03 PFC-AF-01-03-112918 0.11773 03-Dec-18 22:38:45 43 43 181203MI_43 18181203MI_39 PFC CAS 18K3006 03-Dec-18 22:38:45 44 48 181203MI_44 IPA 03-Dec-18 23:10:29 45 45 181203MI_45 B8K0197-BSLY OPR 0.125 03-Dec-18 23:21:08 46 47 181203MI_46 B8K0197-BSLY OPR 0.125 03-Dec-18 23:21:08 47 | | | | 经产品的 基本的 | The state of s | | 35 181203M1_35 | Walter State Committee Com | _ | | • | | | 35 181203M1_35 | 34 | | | | | | 37 181203M1_37 B8K0215-BS1 OPR 0.125 03-Dec-18 21:56:21 38 181203M1_38 B8K0215-BSD1 LCSD 0.125 03-Dec-18 22:06:56 39 39 181203M1_39 B8K0215-BLK1 Method Blank 0.125 03-Dec-18 22:28:07 40 40 181203M1_40 1803788-01 PFC-AF-01-01-112918 0.11457 03-Dec-18 22:28:07 41 181203M1_41 1803788-02 PFC-AF-01-02-112918 0.11773 03-Dec-18 22:38:45 42 42 181203M1_42 1803788-03 PFC-AF-01-03-112918 0.11773 03-Dec-18 22:38:45 43 43 181203M1_43 ST181203M1-3 PFC CS3 18K3006 03-Dec-18 22:59:57 44 44 181203M1_44 IPA 03-Dec-18 23:10:29 45 45 181203M1_45 B8K0197-BLK1 Method Blank 0.125 03-Dec-18 23:21:029 45 46 181203M1_46 B8K0197-BLK1 Method Blank 0.125 03-Dec-18 23:31:029 46 46 181203M1_46 B8K0197-BLK1 Method Blank 0.125 03-Dec-18 23:31:46 47 181203M1_47 1803754-01 CMW-18-01 0.11781 03-Dec-18 23:52:57 49 48 181203M1_49 1803754-02 CMW-1018 0.11273 03-Dec-18 23:52:57 49 181203M1_49 1803754-03 MW-97701 0.11474 04-Dec-18 00:03:30 50 181203M1_50 1803754-03 MW-97702 0.11219 04-Dec-18 00:04:42 52 181203M1_52 1803754-06 CSW-3 0.12087 04-Dec-18 00:45:53 54 181203M1_52 1803754-06 CSW-4 0.11744 04-Dec-18 00:45:53 54 181203M1_53 1803754-06 CSW-4 0.11744 04-Dec-18 00:56:31 55 181203M1_56 1803754-09 CUD-3 0.11905 04-Dec-18 00:45:53 54 181203M1_56 1803754-09 CUD-2 0.1153 04-Dec-18 00:56:31 57 181203M1_56 1803754-09 CUD-3 0.11905 04-Dec-18 00:56:31 57 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:37:45 59 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:37:45 59 181203M1_56 1803754-13 SW-5 0.11905 04-Dec-18 01:28:16 64 64 181203M1_60 1803754-13 SW-5 0.11647 04-Dec-18 02:00:05 66 66 181203M1_61 1803754-13 SW-5 0.11647 04-Dec-18 02:00:05 66 66 181203M1_64 1803754-13 SW-5 0.11647 04-Dec-18 02:31:56 64 64 181203M1_66 1803754-13 SW-5 0.11647 04-Dec-18 02:31:56 66 66 181203M1_66 1803746-02@10X PFC-AF-02-01-112618 0.2365 04-Dec-18 02:31:56 66 66 181203M1_66 1803746-02@10X PFC-AF-02-01-112618 0.2365 04-Dec-18 02:31:56 66 66 181203M1_67 IPA | 35 | 35 181203M1_35 | _ | •• | | | 38 38 181203M1_38 B8K0215-BSD1 LCSD 0.125 03-Dec-18 22.06:56 39 39 181203M1_39 B8K0215-BLK1 Method Blank 0.125 03-Dec-18 22:17:34 40 40 181203M1_40 1803788-01 PFC-AF-01-01-112918 0.11773 03-Dec-18 22:28:07 41 41 181203M1_42 1803788-03 PFC-AF-01-02-112918 0.11773 03-Dec-18 22:38:45 42 42 181203M1_42 1803788-03 PFC-AF-01-03-112918 0.11773 03-Dec-18 22:49:19 43 43 181203M1_44 PA 03-Dec-18 22:49:19 45 44 181203M1_44 PA 03-Dec-18 22:59:57 44 41 81203M1_46 B8K0197-BST OPR 0.125 03-Dec-18 23:21:09 46 181203M1_46 B8K0197-BST OPR 0.125 03-Dec-18 23:21:19 48 181203M1_49 1803754-01 CMW-18-01 0.11781 03-Dec-18 23:21:19 48 181203M1_49 1803754-02 CMW-101B 0.11273 03-Dec-18 23:52:57 49 181203M1_50 1803754-03 MW-97701 0.11474 | | 36 181203M1_36 | IPA | 03-Dec-18 | 21:45:43 | | 39 39 181203M1_39 B8K0215-BLK1 Method Blank 0.125 03-Dec-18 22:17:34 40 40 181203M1_40 1803788-01 PFC-AF-01-01-112918 0.11457 03-Dec-18 22:28:07 41 41 181203M1_41 1803788-02 PFC-AF-01-02-112918 0.11773 03-Dec-18 22:38:45 42 42 181203M1_42 1803788-03 PFC-AF-01-03-112918 0.11732 03-Dec-18 22:49:19 43 43 181203M1_43 ST181203M1-3 PFC CS3 18K3006 03-Dec-18 22:59:57 44 44 181203M1_44 IPA 03-Dec-18 23:10:29 45 45 181203M1_45 B8K0197-BS1 OPR 0.125 03-Dec-18 23:21:08 46 46 181203M1_46 B8K0197-BS1 OPR 0.125 03-Dec-18 23:21:08 47 47 181203M1_47 1803754-01 CMW-18-01 0.11781 03-Dec-18 23:42:19 48 181203M1_48 1803754-02 CMW-101B 0.11273 03-Dec-18 23:52:57 49 49 181203M1_49 1803754-03 MW-97701 0.11474 04-Dec-18 00:03:30 50 50 181203M1_50 1803754-04 MW-97702 0.11219 04-Dec-18 00:04:42 52 52 181203M1_51 1803754-06 CSW-3 0.12087 04-Dec-18 00:35:20 53 181203M1_53 1803754-07 CUD-1 0.11598 04-Dec-18 00:35:23 54 54 181203M1_53 1803754-06 CUD-2 0.1153 04-Dec-18 00:56:31 55 181203M1_56 1803754-09 CUD-3 0.11905 04-Dec-18 00:56:31 56 181203M1_58 IPA 04-Dec-18 04-Dec-18 01:74:3 57 181203M1_59 1803754-10 CUD-4 0.11711 04-Dec-18 01:74:3 57 181203M1_59 1803754-10 CUD-4 0.11711 04-Dec-18 01:74:3 58 181203M1_59 1803754-10 CUD-3 0.11905 04-Dec-18 01:28:16 58 181203M1_59 1803754-10 CUD-4 0.11711 04-Dec-18 01:74:3 57 181203M1_59 1803754-10 CUD-4 0.11711 04-Dec-18 01:28:16 58 181203M1_59 1803754-11 Sump 1 0.11876 04-Dec-18 01:28:16 59 59 181203M1_59 1803754-12 Sump 2 0.11443 04-Dec-18 02:20:17 63 63 181203M1_60 1803754-12 Sump 2 0.11443 04-Dec-18 02:20:17 64 64 181203M1_61 1803754-13 SW-5 0.11647 04-Dec-18 02:20:17 65 66 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:00:05 66 181203M1_63 1803754-10 CUD-4 0.10-11682 04-Dec-18 02:20:17 66 66 181203M1_64 1803746-02@10X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:20:27 67 67 181203M1_65 1PA 04-Dec-18 02:00:05 66 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.23956 04-Dec-18 02:03:03:09 67 67 181203M1_67 IPA | 37 | 37 181203M1_37 | B8K0215-BS1 OPR 0.125 | 03-Dec-18 | 21:56:21 | | 40 | 38 | 38 181203M1_38 | B8K0215-BSD1 LCSD 0.125 | 03-Dec-18 | 22:06:56 | | 40 | 39 | 39 181203M1_39 | B8K0215-BLK1 Method Blank 0.125 | 03-Dec-18 | 22:17:34 | | 42 | 40 | 40 181203M1_40 | 1803788-01 PFC-AF-01-01-112918 0.11457 | 03-Dec-18 | 22:28:07 | | 43 43 181203M1_43 ST181203M1_3 PFC CS3 18K3006 03-Dec-18 22:59:57 44 44 181203M1_44 IPA 03-Dec-18 23:10:29 45 45 181203M1_45 B8K0197-BS1 OPR 0.125 03-Dec-18 23:21:08 46 46 181203M1_46 B8K0197-BLK1 Method Blank 0.125 03-Dec-18 23:31:46 47 47 181203M1_47 1803754-01 CMW-18-01 0.11781 03-Dec-18 23:42:19 48 48 181203M1_48 1803754-02 CMW-101B 0.11273 03-Dec-18 23:42:19 49 181203M1_49 1803754-02 CMW-101B 0.11273 03-Dec-18 00:03:30 50 50 181203M1_50 1803754-04 MW-97702 0.11219 04-Dec-18 00:03:30 50 50 181203M1_51 1803754-05 CSW-3 0.12087 04-Dec-18 00:24:42 52 52 181203M1_52 1803754-05 CSW-3 0.12087 04-Dec-18 00:35:20 53 53 181203M1_52 1803754-07 CUD-1 0.11598 04-Dec-18 00:55:31 54 48 1203M1_53 1803754-08 CUD-2 0.1153 04-Dec-18 00:56:31 55 5 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:28:16 59 181203M1_59 1803754-10 CUD-4 0.1171876 04-Dec-18 01:28:16 50 60 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:21:17 63 63 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 64 64 181203M1_64 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 65 65 181203M1_65 IPA 04-Dec-18 02:21:17 66 66 181203M1_66 1803754-10 @150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 66 66 181203M1_66 1803754-10 STPC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 67 67 181203M1_66 1803746-02@10X PFC-AF-02-01-112618 0.2365 04-Dec-18 03:03:39 67 67 181203M1_67 IPA | 41 | 41 181203M1_41 | 1803788-02 PFC-AF-01-02-112918 0.11773 | 03-Dec-18 | 22:38:45 | | 44 4 181203M1_44 | 42 | 42 181203M1_42 | 1803788-03 PFC-AF-01-03-112918 0.11732 | 03-Dec-18 | 22:49:19 | | 45 45 181203M1_45 B8K0197-BS1 OPR 0.125 03-Dec-18 23:21:08 46 46 181203M1_46 B8K0197-BLK1 Method Blank 0.125 03-Dec-18 23:31:46 47 47 181203M1_47 1803754-01 CMW-18-01 0.11781 03-Dec-18 23:42:19 48 48 181203M1_48 1803754-02 CMW-101B 0.11273 03-Dec-18 23:52:57 49 49 181203M1_49 1803754-02 MW-97701 0.11474 04-Dec-18 00:03:30 50 50 181203M1_50 1803754-04 MW-97702 0.11219 04-Dec-18 00:24:42 52 52 181203M1_51 1803754-05 CSW-3 0.12087 04-Dec-18 00:24:42 52 52 181203M1_52 1803754-05 CSW-3 0.12087 04-Dec-18 00:35:20 53 53 181203M1_53 1803754-06 CSW-4 0.11744 04-Dec-18 00:35:20 54 54 181203M1_54 1803754-08 CUD-2 0.1153 04-Dec-18 00:56:31 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-09 CUD-3 0.11905 04-Dec-18 01:77:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_59 1803754-10 CUD-4 0.11711 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 02:30:05 61 61 181203M1_60 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_66 1803746-02@10X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 66 66 181203M1_66 1803746-02@10X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 67 67 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.23986 04-Dec-18 02:42:29 68 67 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.23986 04-Dec-18 02:42:29 69 67 181203M1_67 1PA | 43 | 43 181203M1_43 | ST181203M1-3 PFC CS3 18K3006 | 03-Dec-18 | 22:59:57 | | 46 46 181203M1_46 B8K0197-BLK1 Method Blank 0.125 03-Dec-18 23:31:46 47 47 181203M1_47 1803754-01 CMW-18-01 0.11781 03-Dec-18 23:42:19 48 48 181203M1_48 1803754-02 CMW-101B 0.11273 03-Dec-18 23:52:57 49 49 181203M1_49 1803754-03 MW-97701 0.11474 04-Dec-18 00:03:30 50 50 181203M1_50 1803754-04 MW-97702 0.11219 04-Dec-18 00:14:08 51 51 181203M1_51 1803754-05 CSW-3 0.12087 04-Dec-18 00:24:42 52 52 181203M1_52 1803754-06 CSW-4 0.11744 04-Dec-18 00:35:20 53 53 181203M1_53 1803754-07 CUD-1 0.11598 04-Dec-18 00:45:53 54 54 181203M1_53 1803754-09 CUD-2 0.1153 04-Dec-18 01:07:05 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_58 IPA 04-Dec-18 01:28:16 58 58 181203M1_69 1803754-11 Sump 1 0.11876 04-Dec-18 01:28:16 <tr< td=""><td>44</td><td>44 181203M1_44</td><td>IPA</td><td>03-Dec-18</td><td>23:10:29</td></tr<> | 44 | 44 181203M1_44 | IPA | 03-Dec-18 | 23:10:29 | | 47 47 181203M1_47 1803754-01
CMW-18-01 0.11781 03-Dec-18 23:42:19 48 48 181203M1_48 1803754-02 CMW-101B 0.11273 03-Dec-18 23:52:57 49 49 181203M1_49 1803754-03 MW-97701 0.11474 04-Dec-18 00:03:30 50 50 181203M1_50 1803754-05 CSW-3 0.12087 04-Dec-18 00:24:42 51 51 181203M1_51 1803754-06 CSW-4 0.11744 04-Dec-18 00:25:20 52 52 181203M1_52 1803754-06 CSW-4 0.11744 04-Dec-18 00:35:20 53 53 181203M1_53 1803754-06 CSW-4 0.11794 04-Dec-18 00:45:53 54 54 181203M1_54 1803754-06 CW-4 0.11795 04-Dec-18 00:45:53 55 55 181203M1_55 1803754-07 CUD-1 0.11598 04-Dec-18 00:45:53 55 55 181203M1_55 1803754-10 CUD-2 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:28:16 59 59 181203M1_60 1803754-12 Sump 2 0.11443 04-Dec-18 02 | 45 | 45 181203M1_45 | B8K0197-BS1 OPR 0.125 | 03-Dec-18 | 23:21:08 | | 48 | 46 | 46 181203M1_46 | B8K0197-BLK1 Method Blank 0.125 | 03-Dec-18 | 23:31:46 | | 49 49 181203M1_49 1803754-03 MW-97701 0.11474 04-Dec-18 00:03:30 50 50 181203M1_50 1803754-04 MW-97702 0.11219 04-Dec-18 00:14:08 51 51 181203M1_51 1803754-05 CSW-3 0.12087 04-Dec-18 00:24:42 52 52 181203M1_52 1803754-06 CSW-4 0.11744 04-Dec-18 00:35:20 53 53 181203M1_53 1803754-07 CUD-1 0.11598 04-Dec-18 00:45:53 54 54 181203M1_54 1803754-08 CUD-2 0.1153 04-Dec-18 00:56:31 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1_4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:00:05 61 61 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shebp St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 181203M1_65 IPA 04-Dec-18 02:53:07 66 181203M1_66 1803746-01@150X PFC-AF-02-01-112618 0.2365 04-Dec-18 03:03:39 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 47 | 47 181203M1_47 | 1803754-01 CMW-18-01 0.11781 | 03-Dec-18 | 23:42:19 | | 50 50 181203M1_50 1803754-04 MW-97702 0.11219 04-Dec-18 00:14:08 51 51 181203M1_51 1803754-05 CSW-3 0.12087 04-Dec-18 00:24:42 52 52 181203M1_52 1803754-06 CSW-4 0.11744 04-Dec-18 00:35:20 53 53 181203M1_53 1803754-07 CUD-1 0.11598 04-Dec-18 00:45:53 54 54 181203M1_54 1803754-08 CUD-2 0.1153 04-Dec-18 00:56:31 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:00:05 61 61 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 66 181203M1_66 1803746-02@10X PFC-AF-02-01-112618 0.2365 04-Dec-18 03:03:39 67 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 48 | 48 181203M1_48 | 1803754-02 CMW-101B 0.11273 | 03-Dec-18 | 23:52:57 | | 51 51 181203M1_51 1803754-05 CSW-3 0.12087 04-Dec-18 00:24:42 52 52 181203M1_52 1803754-06 CSW-4 0.11744 04-Dec-18 00:35:20 53 53 181203M1_53 1803754-07 CUD-1 0.11598 04-Dec-18 00:45:53 54 54 181203M1_54 1803754-08 CUD-2 0.1153 04-Dec-18 00:56:31 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-12 Sump 2 0.11443 04-Dec-18 02:00:05 61 61 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 | 49 | 49 181203M1_49 | 1803754-03 MW-97701 0.11474 | 04-Dec-18 | 00:03:30 | | 52 52 181203M1_52 1803754-06 CSW-4 0.11744 04-Dec-18 00:35:20 53 53 181203M1_53 1803754-07 CUD-1 0.11598 04-Dec-18 00:45:53 54 54 181203M1_54 1803754-08 CUD-2 0.1153 04-Dec-18 00:56:31 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:21:17 63 63 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:2 | 50 | 50 181203M1_50 | 1803754-04 MW-97702 0.11219 | 04-Dec-18 | 00:14:08 | | 53 53 181203M1_53 1803754-07 CUD-1 0.11598 04-Dec-18 00:45:53 54 54 181203M1_54 1803754-08 CUD-2 0.1153 04-Dec-18 00:56:31 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-De | 51 | 51 181203M1_51 | 1803754-05 CSW-3 0.12087 | 04-Dec-18 | 00:24:42 | | 54 54 181203M1_54 1803754-08 CUD-2 0.1153 04-Dec-18 00:56:31 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 52 | 52 181203M1_52 | 1803754-06 CSW-4 0.11744 | 04-Dec-18 | 00:35:20 | | 55 55 181203M1_55 1803754-09 CUD-3 0.11905 04-Dec-18 01:07:05 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 1PA 04-Dec-18 03:03:39 67 67 181203M1_67 1PA 04-Dec-18 03:03:39 <td>53</td> <td>53 181203M1_53</td> <td>1803754-07 CUD-1 0.11598</td> <td>04-Dec-18</td> <td>00:45:53</td> | 53 | 53 181203M1_53 | 1803754-07 CUD-1 0.11598 | 04-Dec-18 | 00:45:53 | | 56 56 181203M1_56 1803754-10 CUD-4 0.11711 04-Dec-18 01:17:43 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 67 181203M1_67 IPA 04-Dec-18 03:03:39 | 54 | 54 181203M1_54 | 1803754-08 CUD-2 0.1153 | 04-Dec-18 | 00:56:31 | | 57 57 181203M1_57 ST181203M1-4 PFC CS3 18K3006 04-Dec-18 01:28:16 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 55 | 55 181203M1_55 | 1803754-09 CUD-3 0.11905 | 04-Dec-18 | 01:07:05 | | 58 58 181203M1_58 IPA 04-Dec-18 01:38:54 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 67
181203M1_67 IPA 04-Dec-18 03:14:18 | 56 | 56 181203M1_56 | 1803754-10 CUD-4 0.11711 | 04-Dec-18 | 01:17:43 | | 59 59 181203M1_59 1803762-01 PFC-AF-01-01-112718 0.23808 04-Dec-18 01:49:32 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 57 | 57 181203M1_57 | ST181203M1-4 PFC CS3 18K3006 | 04-Dec-18 | 01:28:16 | | 60 60 181203M1_60 1803754-11 Sump 1 0.11876 04-Dec-18 02:00:05 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 58 | 58 181203M1_58 | IPA | 04-Dec-18 | 01:38:54 | | 61 61 181203M1_61 1803754-12 Sump 2 0.11443 04-Dec-18 02:10:44 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 59 | 59 181203M1_59 | 1803762-01 PFC-AF-01-01-112718 0.23808 | 04-Dec-18 | 01:49:32 | | 62 62 181203M1_62 1803754-13 SW-5 0.11647 04-Dec-18 02:21:17 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 60 | 60 181203M1_60 | 1803754-11 Sump 1 0.11876 | 04-Dec-18 | 02:00:05 | | 63 63 181203M1_63 1803754-14 Shelby St. Sump 0.11682 04-Dec-18 02:31:56 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 61 | 61 181203M1_61 | 1803754-12 Sump 2 0.11443 | 04-Dec-18 | 02:10:44 | | 64 64 181203M1_64 1803746-01@150X PFC-AF-02-01-112618 0.23986 04-Dec-18 02:42:29 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 62 | 62 181203M1_62 | 1803754-13 SW-5 0.11647 | 04-Dec-18 | 02:21:17 | | 65 65 181203M1_65 IPA 04-Dec-18 02:53:07 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 63 | 63 181203M1_63 | 1803754-14 Shelby St. Sump 0.11682 | 04-Dec-18 | 02:31:56 | | 66 66 181203M1_66 1803746-02@10X PFC-AF-02-02-112618 0.2365 04-Dec-18 03:03:39 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 64 | 64 181203M1_64 | 1803746-01@150X PFC-AF-02-01-112618 0.23986 | 04-Dec-18 | 02:42:29 | | 67 181203M1_67 IPA 04-Dec-18 03:14:18 | 65 | 65 181203M1_65 | IPA | 04-Dec-18 | 02:53:07 | | | 66 | 66 181203M1_66 | 1803746-02@10X PFC-AF-02-02-112618 0.2365 | 04-Dec-18 | 03:03:39 | | 68 68 181203M1_68 1803746-03@5X PFC-AF-02-03-112618 0.23672 04-Dec-18 03:24:51 | 67 | 67 181203M1_67 | IPA | 04-Dec-18 | 03:14:18 | | AND | 68 | 68 181203M1_68 | 1803746-03@5X PFC-AF-02-03-112618 0.23672 | 04-Dec-18 | 03:24:51 | Work Order 1803676 Page 145 of 556 **Quantify Compound Summary Report** MassLynx MassLynx V4.1 SCN945 SCN960 Page 3 of 3 Vista Analytical Laboratory Dataset: Untitled Last Altered: Tuesday, December 04, 2018 08:03:25 Pacific Standard Time Printed: Tuesday, December 04, 2018 08:04:05 Pacific Standard Time ### Compound name: PFBA | # Name | ID. | Acq.Date | Acq.Time | |-------------------|------------------------------|-----------|----------| | 69 69 181203M1_69 | ST181203M1-5 PFC CS3 18K3006 | 04-Dec-18 | 03:35:29 | | 70 181203M1_70 | IPA | 04-Dec-18 | 03:46:02 | Work Order 1803676 Page 146 of 556 Page 1 of 9 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.gld Last Altered: Printed: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Tuesday, December 04, 2018 11:06:00 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120318.mdb 04 Dec 2018 11:04:18 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 147 of 556 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.qld Last Altered: Printed: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Tuesday, December 04, 2018 11:06:00 Pacific Standard Time ### Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 148 of 556 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.gld Last Altered: Printed: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Tuesday, December 04, 2018 11:06:00 Pacific Standard Time Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 149 of 556 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.qld Last Altered: Printed: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Tuesday, December 04, 2018 11:06:00 Pacific Standard Time Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 150 of 556 Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.qld Last Altered: Printed: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Tuesday, December 04, 2018 11:06:00 Pacific Standard Time Name: 181203M1 23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Dataset: Z:\Projects\PFAS.PRO\Results\181203M1\181203M1-23.qld Last Altered: Printed: Tuesday, December 04, 2018 11:04:20 Pacific Standard Time Tuesday, December 04, 2018 11:06:00 Pacific Standard Time Name: 181203M1_23, Date: 03-Dec-2018, Time: 19:27:59, ID: ST181203M1-2 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 152 of 556 ## **INITIAL CALIBRATION (ICAL)** ### **INCLUDING ASSOCIATED** # INITIAL CALIBRATION VERIFICATION (ICV) AND INSTRUMENT BLANK (IB) Work Order 1803676 Page 153 of 556 Quantify Compound Summary Report Vista Analytical Laboratory MassLynx MassLynx V4.1 SCN945 SCN960 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:34:59 Pacific Standard Time PEDS 0.5 High PTS 4:2 > 100 Page 1 of 10 Method: F:\Projects\PFAS.PRO\Results\181202M2\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Compound name: PFBA Correlation coefficient: r = 0.999881, $r^2 = 0.999762$ Calibration curve: 1.02847 * x + -0.0331845 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None 12/3/18 | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | GoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 1.48 | 134.913 | 7372.417 | 0.229 | 0.3 | 1.9 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 1.48 | 277.801 | 7717.044 | 0.450 | 0.5 | -6.0 | NO | 1.000 | NO | MM | | 3 | 3 181202M2_4 | Standard | 1.000 | 1.48 | 612.269 | 7778.471 | 0.984 | 1.0 | -1.1 | NO | 1.000 | NO | ММ | | 4 | 4 181202M2_5 | Standard | 2.000 | 1.48 | 1305.605 | 8110.343 | 2.012 | 2.0 | -0.6 | NO | 1.000 | NO | ММ | | 5 | 5 181202M2_6 | Standard | 5.000 | 1.47 | 3121.150 | 7882.678 | 4.949 | 4.8 | -3.1 | NO | 1.000 | NO | ММ | | 6 | 6 181202M2_7 | Standard | 10.000 | 1.48 | 6878.893 | 8113.042 | 10.599 | 10.3 | 3.4 | NO | 1.000 | NO | MM | | 7 | 7 181202M2_8 | Standard | 50.000 | 1.48 | 34354.758 | 8040.462 | 53.409 | 52.0 | 3.9 | NO | 1.000 | NO | MM | | 8 | 8 181202M2_9 | Standard | 100.000 | 1.48 | 69451.688 | 8202.403 | 105.840 | 102.9 | 2.9 | NO | 1.000 | NO | MM | | 9 | 9 181202M2_10 | Standard | 250.000 | 1.47 | 156900.391 | 7673.549 | 255.586 | 248.5 | -0.6 | · NO | 1.000 | NO | MM | | 10 | 10 181202M2_11 | Standard | 500.000 | 1.47 | 308846.188 | 7562.084 | 510.518 | 496.4 | -0.7 | NO | 1.000 | NO | ММ | Compound name: PFPeA Coefficient of Determination: R^2 = 0.999945 Calibration curve: -6.16115e-005 * $x^2 + 0.911659 * x + -0.0105295$ Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-------|----------------|----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | 1 4 1 | 1 181202M2_2 | Standard | 0.250 | 2.72 | 239.591 | 12984.617 | 0.231 | 0.3 | 5.8 | NO | 1.000 | NO | ММ | | 2 | 2 181202M2_3 | Standard | 0.500 | 2.73 | 469.504 | 13346.579 | 0.440 | 0.5 | -1.2 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 2.73 | 936.071 | 13256.772 | 0.883 | 1.0 |
-2.0 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 2.73 | 1947.755 | 13901.806 | 1.751 | 1.9 | -3.4 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 2.73 | 4751.345 | 13420.939 | 4.425 | 4.9 | -2.7 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 2.73 | 10304.199 | 13882.929 | 9.278 | 10.2 | 2.0 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 2.73 | 49968.262 | 13496.188 | 46.280 | 51.0 | 1.9 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100,000 | 2.73 | 99809.484 | 13748.945 | 90.743 | 100.2 | 0.2 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 2.73 | 218234.500 | 12276.298 | 222.211 | 247.9 | -0.8 | NO | 1.000 | NO | bb | | 10: | 10 181202M2_11 | Standard | 500.000 | 2.73 | 415402.375 | 11768.877 | 441.209 | 500.9 | 0.2 | NO | 1.000 | NO | bb | 12/3/18 Work Order 1803676 Page 154 of 556 Page 2 of 10 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:34:59 Pacific Standard Time Compound name: PFBS Coefficient of Determination: R^2 = 0.999925 Calibration curve: -0.000222114 * x^2 + 2.02594 * x + -0.0995002 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans; None | SAPERATOR INC. | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----------------|----------------|----------|-----------|------|------------|----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 3.04 | 92.827 | 2440.729 | 0.475 | 0.3 | 13.5 | NO | 1.000 | NO | MM | | 2 | 2 181202M2_3 | Standard | 0.500 | 3.05 | 180.214 | 2510.799 | 0.897 | 0.5 | -1.6 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 3.05 | 371.377 | 2463.662 | 1.884 | 1.0 | -2.1 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 3.05 | 781.729 | 2532.149 | 3.859 | 2.0 | -2.3 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 3.05 | 1876.691 | 2521.420 | 9.304 | 4.6 | -7.1 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 3.05 | 4084.011 | 2565.786 | 19.896 | 9.9 | -1.2 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 3.05 | 19467.154 | 2428.037 | 100.221 | 49.8 | -0.4 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 3.05 | 38211.891 | 2348.185 | 203.412 | 101.6 | 1.6 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 3.05 | 79529.492 | 2027.545 | 490.307 | 248.9 | -0.5 | NO | 1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 3.05 | 143781.125 | 1876.313 | 957.870 | 500.3 | 0.1 | NO | 1.000 | NO | bb | Compound name: 4:2 FTS Coefficient of Determination: R^2 = 0.999815 Calibration curve: -0.00237929 * $x^2 + 0.842016 * x + -0.0207497$ Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|-----------|----------|-------|-------------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 3.51 | 109.529 | 7882.280 | 0.174 | 0.2 | -7.6 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 3.52 | 265.894 | 7786.481 | 0.427 | 0.5 | 6.5 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 3.52 | 535.057 | 7630.461 | 0.877 | 1.1 | 6.9 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 3.52 | 1051.846 | 8139.889 | 1.615 | 2.0 | -2.3 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 3.52 | 2507.162 | 7869.327 | 3.982 | 4.8 | -3.6 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 3.52 | 5258.487 | 8095.176 | 8.120 | 9.9 | -0.5 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 3.52 | 24169.199 | 8293.981 | 36.426 | 50.5 | 1.0 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 3.52 | 43472.684 | 9018.855 | 60.252 | 99.6 | -0.4 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 3.52 | 81386.930 | 10024.722 | 101.483 | | | NO | 1.000 | NO | bbXI | | 10 | 10 181202M2_11 | Standard | 500.000 | 3.52 | 137855.984 | 12827.324 | 134.338 | | | NO | 1.000 | NO | bbXI | Work Order 1803676 Page 155 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:34:59 Pacific Standard Time Compound name: PFHxA Coefficient of Determination: R^2 = 0.999961 Calibration curve: $-0.000229785 * x^2 + 1.04977 * x + -0.00145899$ Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|----------|----------|-------|------|------------|-------|----------|------------| | | 1 181202M2_2 | Standard | 0.250 | 3.61 | 442.024 | 7855.090 | 0.281 | 0.3 | 7.8 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 3.61 | 845.924 | 8046.591 | 0.526 | 0.5 | 0.4 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 3.61 | 1682.095 | 8042.113 | 1.046 | 1.0 | -0.2 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 3.61 | 3333.822 | 8137.367 | 2.048 | 2.0 | -2.3 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 3.61 | 8047.896 | 8193.701 | 4.911 | 4.7 | -6.3 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 3.61 | 17726.943 | 8472.754 | 10.461 | 10.0 | -0.1 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 3.61 | 83481.531 | 8020.125 | 52.045 | 50.1 | 0.3 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 3.61 | 165394.203 | 8088.322 | 102.243 | 99.6 | -0.4 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 3.61 | 353894.375 | 7098.521 | 249.273 | 251.3 | 0.5 | NO | 1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 3.61 | 645112.438 | 6908.174 | 466.920 | 499.4 | -0.1 | NO | 1.000 | NO | bb | Compound name: PFPeS Coefficient of Determination: R^2 = 0.999956 Calibration curve: -0.000349257 * $x^2 + 1.48431 * x + -0.0700599$ Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-----|--------------------------------|----------|-----------|------|-----------|----------|----------|-------|------|------------|-------|----------|------------| | 1 6 | 1 181202M2_2 | Standard | 0.250 | 3.81 | 67.457 | 2440.729 | 0.345 | 0.3 | 12.0 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 3.81 | 127.449 | 2510.799 | 0.635 | 0.5 | -5.1 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 3.81 | 270.296 | 2463.662 | 1.371 | 1.0 | -2.9 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 3.81 | 591.304 | 2532,149 | 2.919 | 2.0 | 0.7 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 3.82 | 1396.097 | 2521.420 | 6.921 | 4.7 | -5.7 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 3.82 | 3031.126 | 2565.786 | 14.767 | 10.0 | 0.2 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 3.81 | 14253.051 | 2428.037 | 73.377 | 50.1 | 0.1 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 3.82 | 27454.484 | 2348.185 | 146.147 | 100.9 | 0.9 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 3.82 | 56405.953 | 2027.545 | 347.748 | 248.9 | -0.4 | NO | 1.000 | NO | bb | | 10 | 10 181 <u>2</u> 02M2 <u>11</u> | Standard | 500.000 | 3.82 | 98352.211 | 1876.313 | 655.223 | 500.4 | 0.1 | NO | 1.000 | NO | bb | Work Order 1803676 Page 156 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:34:59 Pacific Standard Time Compound name: PFHpA Correlation coefficient: r = 0.999759, $r^2 = 0.999518$ Calibration curve: 1.16268 * x + 0.00338901 Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 4.23 | 352.740 | 15520.071 | 0.284 | 0.2 | -3.4 | NO | 1.000 | NO | MM | | 2 | 2 181202M2_3 | Standard | 0.500 | 4.24 | 701.889 | 16419.287 | 0.534 | 0.5 | -8.7 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 4.24 | 1501.204 | 15646.633 | 1.199 | 1.0 | 2.9 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 4.23 | 3035.103 | 16240.967 | 2.336 | 2.0 | 0.3 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 4.24 | 7238.921 | 15769.080 | 5.738 | 4.9 | -1.4 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 4.24 | 15894.581 | 16393.000 | 12.120 | 10.4 | 4.2 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 4.24 | 74308.148 | 15392.018 | 60.346 | 51.9 | 3.8 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 4.24 | 147457.203 | 15534.257 | 118.655 | 102.1 | 2.1 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 4.24 | 315836.250 | 13297.971 | 296.884 | 255.3 | 2.1 | NO |
1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 4.24 | 545762.688 | 11965.380 | 570.148 | 490.4 | -1.9 | NO | 1.000 | NO | bb | Compound name: L-PFHxS Coefficient of Determination: R^2 = 0.999870 Calibration curve: -0.000154579 * $x^2 + 1.97668 * x + -0.00449101$ Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|----------|----------|-------|-------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 4.37 | 79.327 | 1732.264 | 0.572 | 0.3 | 16.7 | NO | 1.000 | NO | MM | | 2 | 2 181202M2_3 | Standard | 0.500 | 4.37 | 151.142 | 1891.561 | 0.999 | 0.5 | 1.5 | NO | 1.000 | NO | MM | | 3 | 3 181202M2_4 | Standard | 1.000 | 4.37 | 262.111 | 1870.489 | 1.752 | 0.9 | -11.2 | NO | 1.000 | NO | ММ | | 4 | 4 181202M2_5 | Standard | 2.000 | 4.37 | 544.216 | 1844.360 | 3.688 | 1.9 | -6.6 | NO | 1.000 | NO | ММ | | 5 | 5 181202M2_6 | Standard | 5.000 | 4.37 | 1432.781 | 1912.521 | 9.364 | 4.7 | -5.2 | NO | 1.000 | NO | ММ | | 6 | 6 181202M2_7 | Standard | 10.000 | 4.37 | 3075.603 | 1921.575 | 20.007 | 10.1 | 1.3 | NO | 1.000 | NO | мм | | 7 | 7 181202M2_8 | Standard | 50.000 | 4.37 | 14800.541 | 1820.151 | 101.644 | 51.6 | 3.3 | NO | 1.000 | NO | мм | | В | 8 181202M2_9 | Standard | 100.000 | 4.37 | 27882.133 | 1781.693 | 195.615 | 99.7 | -0.3 | NO | 1.000 | NO | ММ | | 9 | 9 181202M2_10 | Standard | 250.000 | 4.37 | 61512.297 | 1599.192 | 480.808 | 248.1 | -0.8 | NO | 1.000 | NO | MM | | 10 | 10 181202M2_11 | Standard | 500.000 | 4.37 | 109165.695 | 1434.401 | 951.318 | 500.9 | 0.2 | NO | 1.000 | NO | ММ | Work Order 1803676 Page 157 of 556 Page 5 of 10 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:34:59 Pacific Standard Time Compound name: 6:2 FTS Coefficient of Determination: R^2 = 0.999697 Calibration curve: -0.00272892 * x^2 + 0.980454 * x + -0.00268433 Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None | Complete Com | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |--|----------------|----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 4.67 | 163.560 | 7096.761 | 0.288 | 0.3 | 18.7 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 4.67 | 263.076 | 7354.782 | 0.447 | 0.5 | -8.1 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 4.67 | 501.679 | 6954.629 | 0.902 | 0.9 | -7.5 | NO | 1.000 | NO | bb | | 4 5 | 4 181202M2_5 | Standard | 2.000 | 4.67 | 1161.083 | 7557.635 | 1.920 | 2.0 | -1.4 | NO | 1.000 | NO | bd | | 5 | 5 181202M2_6 | Standard | 5.000 | 4.67 | 2739.949 | 7351.898 | 4.659 | 4.8 | -3.6 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 4.67 | 5745.025 | 7547.463 | 9.515 | 10.0 | -0.2 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 4.67 | 26027.670 | 7612.719 | 42.737 | 50.8 | 1.5 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 4.67 | 47348.418 | 8395.673 | 70.495 | 99.4 | -0.6 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 4.67 | 95698.789 | 10084.581 | 118.620 | | | NO | 1.000 | NO | bbXI | | 10 | 10 181202M2_11 | Standard | 500.000 | 4.67 | 153331.891 | 12500.775 | 153.322 | | | NO | 1.000 | NO | bbXI | Compound name: L-PFOA Coefficient of Determination: R^2 = 0.999937 Calibration curve: -0.000202874 * x^2 + 1.22088 * x + 0.0495571 Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |------|----------------|----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | 1.00 | 1 181202M2_2 | Standard | 0.250 | 4.73 | 624.060 | 21531.906 | 0.362 | 0.3 | 2.5 | NO | 1.000 | NO | MM | | 2 | 2 181202M2_3 | Standard | 0.500 | 4.73 | 1183.986 | 22078.006 | 0.670 | 0.5 | 1.7 | NO | 1.000 | NO | ММ | | 3 | 3 181202M2_4 | Standard | 1.000 | 4.73 | 2345.585 | 22869.809 | 1.282 | 1.0 | 1.0 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 4.72 | 4419.828 | 22788.545 | 2.424 | 1.9 | -2.7 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 4.73 | 10718.562 | 22636.125 | 5.919 | 4.8 | -3.8 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 4.73 | 22599.578 | 23212.086 | 12.170 | 9.9 | -0.6 | NO | 1.000 | NO | bb | | 7 4 | 7 181202M2_8 | Standard | 50.000 | 4.73 | 110083.523 | 22155.025 | 62.110 | 51.3 | 2.5 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 4.73 | 207862.688 | 21661.113 | 119.952 | 99.9 | -0.1 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 4.73 | 456984.938 | 19646.082 | 290.761 | 248.4 | -0.7 | NO | 1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 4.73 | 811261.750 | 18090.129 | 560.569 | 500.8 | 0.2 | NO | 1.000 | NO | bb | Work Order 1803676 Page 158 of 556 Page 6 of 10 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:34:59 Pacific Standard Time Compound name: PFHpS Coefficient of Determination: R^2 = 0.999876 Calibration curve: $-2.31836e-006 * x^2 + 0.886394 * x + -0.0630138$ Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|----------|----------|-------|-------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 4.83 | 30.641 | 3848.352 | 0.100 | 0.2 | -26.7 | NO | 1.000 | NO | MM | | 2 | 2 181202M2_3 | Standard | 0.500 | 4.83 | 158.264 | 4058.103 | 0.487 | 0.6 | 24.2 | NO | 1.000 | NO | мм | | 3 | 3 181202M2_4 | Standard | 1.000 | 4.83 | 246.174 | 3957.430 | 0.778 | 0.9 | -5.2 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 4.83 | 592.132 | 4122.399 | 1.795 | 2.1 | 4.8 | NO | 1.000 | NO | ММ | | 5 | 5 181202M2_6 | Standard | 5.000 | 4.84 | 1385.965 | 3850.568 | 4.499 | 5.1 | 2.9 | NO | 1.000 | NO | MM | | 6 | 6 181202M2_7 | Standard | 10.000 | 4.83 | 2909.841 | 4052.094 | 8.976 | 10.2 | 2.0 | NO | 1.000 | NO | мм | | 7 | 7 181202M2_8 | Standard | 50.000 | 4.84 | 14353.539 | 4143.248 | 43.304 | 48.9 | -2.1 | NO | 1.000 | NO | ММ | | 8 | 8 181202M2_9 | Standard | 100.000 | 4.83 | 27870.904 | 3963.002 | 87.910 | 99.3 | -0.7 | NO | 1.000 | NO | MM | | 9 | 9 181202M2_10 | Standard | 250.000 | 4.84 | 59138.934 | 3309.822 | 223.346 | 252.2 | 0.9 | NO | 1.000 | NO | мм (| | 10 | 10 181202M2_11 | Standard | 500.000 | 4.84 | 103228.875 | 2920.727 | 441.794 | 499.1 | -0.2 | NO | 1.000 | NO | ММ | Compound name: PFNA Coefficient of Determination: R^2 = 0.999876 Calibration curve: -0.000138455 * $x^2 + 1.1098 * x + -0.0515303$ Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-----|----------------
----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 5.16 | 464.966 | 24777.965 | 0.235 | 0.3 | 3.1 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 5.16 | 1028.071 | 24973.412 | 0.515 | 0.5 | 2.0 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.16 | 2087.109 | 26408.809 | 0.988 | 0.9 | -6.3 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.16 | 4605.668 | 25880.568 | 2.224 | 2.1 | 2.6 | NO | 1.000 | NO | bd | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.16 | 10490.705 | 24584.580 | 5.334 | 4.9 | -2.9 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 5.16 | 22218.369 | 25443.154 | 10.916 | 9.9 | -1.1 | NO | 1.000 | NO | bb | | 7 4 | 7 181202M2_8 | Standard | 50.000 | 5.16 | 110190.852 | 24294.938 | 56.694 | 51.5 | 2.9 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.16 | 213279.766 | 24169.063 | 110.306 | 100.7 | 0.7 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 5.16 | 459635.125 | 21666.674 | 265.174 | 246.6 | -1.4 | NO | 1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.16 | 790862.750 | 18948.793 | 521.711 | 501.5 | 0.3 | NO | 1.000 | NO | bb | Work Order 1803676 Page 159 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:34:59 Pacific Standard Time ### Compound name: PFOSA Coefficient of Determination: R^2 = 0.999647 Calibration curve: $-0.000143866 * x^2 + 1.1409 * x + -0.0296806$ Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-----|----------------|----------|-----------|------|------------|----------|----------|-------|-------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 5.19 | 113.305 | 4397.858 | 0.322 | 0.3 | 23.3 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 5.20 | 184.815 | 4324.078 | 0.534 | 0.5 | -1.1 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.20 | 339.186 | 4570.558 | 0.928 | 8.0 | -16.1 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.19 | 784.108 | 4762.950 | 2.058 | 1.8 | -8.5 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.20 | 2061.741 | 4488.806 | 5.741 | 5.1 | 1.2 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 5.20 | 4164.114 | 4699.447 | 11.076 | 9.7 | -2.5 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 5.20 | 20300.318 | 4335.578 | 58.528 | 51.7 | 3.3 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.19 | 40275.316 | 4374.077 | 115.097 | 102.2 | 2.2 | NO | 1.000 | NO | bb | | 9 - | 9 181202M2_10 | Standard | 250.000 | 5.20 | 87737.117 | 4062.946 | 269.931 | 244.1 | -2.3 | NO | 1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.20 | 159040.094 | 3702.655 | 536.912 | 502.5 | 0.5 | NO | 1.000 | NO | bb | Compound name: L-PFOS Correlation coefficient: r = 0.999643, $r^2 = 0.999286$ Calibration curve: 1.10611 * x + -0.0627829 Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Type | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|----------|----------|-------|-------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 5.24 | 54.325 | 3848.352 | 0.176 | 0.2 | -13.5 | NO | 0.999 | NO | MM | | 2 | 2 181202M2_3 | Standard | 0.500 | 5.24 | 153.804 | 4058.103 | 0.474 | 0.5 | -3.0 | NO | 0.999 | NO | ММ | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.24 | 326.463 | 3957.430 | 1.031 | 1.0 | -1.1 | NO | 0.999 | NO | MM | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.24 | 729.285 | 4122.399 | 2.211 | 2.1 | 2.8 | NO | 0.999 | NO | MM | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.24 | 1705.774 | 3850.568 | 5.537 | 5.1 | 1.3 | NO | 0.999 | NO | MM | | 6 | 6 181202M2_7 | Standard | 10.000 | 5.24 | 3557.934 | 4052.094 | 10.976 | 10.0 | -0.2 | NO | 0.999 | NO | MM | | 7 | 7 181202M2_8 | Standard | 50.000 | 5.24 | 17478.543 | 4143.248 | 52.732 | 47.7 | -4.5 | NO | 0.999 | NO | MM | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.24 | 32802.598 | 3963.002 | 103.465 | 93.6 | -6.4 | NO | 0.999 | NO | MM | | 9 | 9 181202M2_10 | Standard | 250.000 | 5.24 | 73542.945 | 3309.822 | 277.745 | 251.2 | 0.5 | NO | 0.999 | NO | MM | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.24 | 131144.078 | 2920.727 | 561.265 | 507.5 | 1.5 | NO | 0.999 | NO | MM | Work Order 1803676 Page 160 of 556 Page 8 of 10 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:34:59 Pacific Standard Time Compound name: PFDA Coefficient of Determination: R^2 = 0.999864 Calibration curve: -0.000210024 * x^2 + 1.07747 * x + -0.0171268 Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | 100 mg | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |--------|----------------|----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | 1. | 1 181202M2_2 | Standard | 0.250 | 5.54 | 476.896 | 24467.730 | 0.244 | 0.2 | -3.2 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 5.54 | 1112.093 | 24309.102 | 0.572 | 0.5 | 9.3 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.54 | 1945.086 | 24717.902 | 0.984 | 0.9 | -7.1 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.54 | 4308.328 | 24989.855 | 2.155 | 2.0 | 0.8 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.54 | 10124.850 | 23998.639 | 5.274 | 4.9 | -1.7 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 5.54 | 21993.205 | 24552.750 | 11.197 | 10.4 | 4.3 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 5.54 | 100961.906 | 24327.094 | 51.877 | 48.6 | -2.8 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.54 | 189927.125 | 22632.824 | 104.896 | 99.3 | -0.7 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 5.54 | 427641.781 | 20613.098 | 259.326 | 253.2 | 1.3 | NO | 1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.54 | 743248.250 | 19158.104 | 484.944 | 498.5 | -0.3 | NO | 1.000 | NO | bb | Compound name: 8:2 FTS Coefficient of Determination: R^2 = 0.999875 Calibration curve: $-0.00465207 * x^2 + 1.3615 * x + -0.0995875$ Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-----|----------------|----------|-----------|------|------------|----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 5.51 | 91.714 | 4317.192 | 0.266 | 0.3 | 7.4 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 5.51 | 174.261 | 4216.907 | 0.517 | 0.5 | -9.4 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.51 | 425.100 | 4281.343 | 1.241 | 1.0 | -1.2 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.50 | 890.316 | 4195.490 | 2.653 | 2.0 | 1.8 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.51 | 2200.972 | 4163.019 | 6.609 | 5.0 | 0.3 | NO | 1.000 | NO | мм | | 6 | 6 181202M2_7 | Standard | 10.000 | 5.51 | 4771.327 | 4494.608 | 13.270 | 10.2 | 1.7 | NO | 1.000 | NO | bb | | 7 4 | 7 181202M2_8 | Standard | 50.000 | 5.51 | 21008.926 | 4695.126 | 55.933 | 49.5 | -0.9 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.50 | 37810.566 | 5268.254 | 89.713 | 100.4 | 0.4 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 5.51 | 78947.742 | 6419.179 | 153.734 | | | NO | 1.000 | NO | bbXI | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.51 | 126751.523 | 7875.880 | 201.170 | | | NO | 1.000 | NO | bbXI | Work Order 1803676 Page 161 of 556 Page 9 of 10 Viola / Waiy Woar Eaborate Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:34:59 Pacific Standard Time Compound name: PFNS Coefficient of Determination: R^2 = 0.999902 Calibration curve: $-2.99188e-005 \times x^2 + 0.768689 \times x + 0.0389701$ Response type: Internal Std (Ref 47), Area \times (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Type | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |------|----------------|----------|-----------|------|-----------|----------|----------|-------|-------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 5.60 | 80.589 | 3848.352 | 0.262 | 0.3 | 15.9 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 5.60 | 143.434 | 4058.103 | 0.442 | 0.5 | 4.8 | NO | 1.000 | NO | ММ | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.60 | 224.090 | 3957.430 | 0.708 | 0.9 | -13.0 | NO | 1.000 | NO | ММ | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.60 | 494.860 | 4122.399 | 1.501 | 1.9 | -4.9 | NO | 1.000 | NO | ММ | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.60 | 1158.318 | 3850.568 | 3.760 | 4.8 | -3.2 | NO | 1.000
 NO | ММ | | 6 | 6 181202M2_7 | Standard | 10.000 | 5.60 | 2549.596 | 4052.094 | 7.865 | 10.2 | 1.9 | NO | 1.000 | NO | ММ | | 7 | 7 181202M2_8 | Standard | 50.000 | 5.60 | 12411.925 | 4143.248 | 37.446 | 48.8 | -2.5 | NO | 1.000 | NO | ММ | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.59 | 24374.139 | 3963.002 | 76.880 | 100.4 | 0.4 | NO | 1.000 | NO | мм | | 9.14 | 9 181202M2_10 | Standard | 250.000 | 5.60 | 50795.039 | 3309.822 | 191.834 | 252.0 | 0.8 | NO | 1.000 | NO | мм | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.60 | 87901.438 | 2920.727 | 376.197 | 499.0 | -0.2 | NO | 1.000 | NO _ | ММ | Compound name: L-MeFOSAA Coefficient of Determination: R^2 = 0.999677 Calibration curve: $-0.000422706 * x^2 + 1.51286 * x + -0.0237577$ Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT. | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|----------|----------|-------|-------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 5.68 | 195.147 | 6993.818 | 0.349 | 0.2 | -1.5 | NO | 1.000 | NO | ММ | | 2 | 2 181202M2_3 | Standard | 0.500 | 5.69 | 452.242 | 7633.335 | 0.741 | 0.5 | 1.1 | NO | 1.000 | NO | ММ | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.68 | 883.719 | 7294.871 | 1.514 | 1.0 | 1.7 | NO | 1.000 | NO | ММ | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.68 | 1878.539 | 7797.862 | 3.011 | 2.0 | 0.4 | NO | 1.000 | NO | MM | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.68 | 3940.500 | 7624.316 | 6.460 | 4.3 | -14.2 | NO | 1.000 | NO | ММ | | 6 | 6 181202M2_7 | Standard | 10.000 | 5.69 | 9250.802 | 7415.011 | 15.595 | 10.4 | 3.5 | NO | 1.000 | NO | ММ | | 7 | 7 181202M2_8 | Standard | 50.000 | 5.68 | 45700.629 | 7329.583 | 77.939 | 52.3 | 4.6 | NO | 1.000 | NO | ММ | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.68 | 85030.906 | 7337.996 | 144.847 | 98.5 | -1.5 | NO | 1.000 | NO | ММ | | 9 | 9 181202M2_10 | Standard | 250.000 | 5.68 | 176891.984 | 6314.114 | 350.192 | 248.8 | -0.5 | NO | 1.000 | NO | MM | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.68 | 304241.375 | 5836.267 | 651.618 | 500.8 | 0.2 | NO | 1.000 | NO | MM | Work Order 1803676 Page 162 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:34:59 Pacific Standard Time #### Compound name: L-EtFOSAA Coefficient of Determination: R^2 = 0.995820 Calibration curve: -0.000217066 * x^2 + 1.09478 * x + -0.0924104 Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-----|----------------|----------|-----------|------|------------|----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 5.84 | 121.103 | 7616.977 | 0.199 | 0.3 | 6.4 | NO | 0.996 | NO | MM | | 2 | 2 181202M2_3 | Standard | 0.500 | 5.84 | 308.076 | 8626.343 | 0.446 | 0.5 | -1.6 | NO | 0.996 | NO | мм | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.84 | 647.943 | 8022.006 | 1.010 | 1.0 | 0.7 | NO | 0.996 | NO | ММ | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.84 | 1422.383 | 8299.833 | 2.142 | 2.0 | 2.1 | NO | 0.996 | NO | мм | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.84 | 3294.604 | 8433.072 | 4.883 | 4.5 | -9.0 | NO | 0.996 | NO | MM | | 6 H | 6 181202M2_7 | Standard | 10.000 | 5.84 | 7358.653 | 8903.206 | 10.331 | 9.5 | -4.6 | NO | 0.996 | NO | ММ | | 7 | 7 181202M2_8 | Standard | 50.000 | 5.84 | 34889.617 | 8164.931 | 53.414 | 49.4 | -1.3 | NO | 0.996 | NO | мм | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.83 | 67239.109 | 6902.745 | 121.762 | 113.9 | 13.9 | NO | 0.996 | NO | MM | | 9 | 9 181202M2_10 | Standard | 250.000 | 5.84 | 131691.859 | 6863.628 | 239.836 | 229.6 | -8.2 | NO | 0.996 | NO | ММ | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.84 | 230774.703 | 5765.883 | 500.302 | 508.3 | 1.7 | NO | 0.996 | NO | MM | Work Order 1803676 Page 163 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Method: F:\Projects\PFAS.PRO\Results\181202M2\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18 VAL-PFAS Q4 12-02-18.cdb 03 Dec 2018 10:25:29 Compound name: PFUdA Coefficient of Determination: R^2 = 0.999432 Calibration curve: -0.000244716 * x^2 + 1.07792 * x + 0.000271046 Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | | 1 181202M2_2 | Standard | 0.250 | 5.86 | 596.648 | 26235.537 | 0.284 | 0.3 | 5.4 | NO | 0.999 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 5.85 | 1103.887 | 26476.957 | 0.521 | 0.5 | -3.3 | NO | 0.999 | NO | ММ | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.86 | 2192.150 | 25791.709 | 1.062 | 1.0 | -1.4 | NO | 0.999 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.85 | 4368.989 | 25476.654 | 2.144 | 2.0 | -0.5 | NO | 0.999 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.85 | 10175.933 | 24894.002 | 5.110 | 4.7 | -5.1 | NO | 0.999 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 5.86 | 22308.275 | 25793.707 | 10.811 | 10.1 | 0.5 | NO | 0.999 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 5.86 | 107501.234 | 24187.443 | 55.556 | 52.2 | 4.3 | NO | 0.999 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.85 | 206746.500 | 23864.383 | 108.292 | 102.9 | 2.9 | NO | 0.999 | NO | ММ | | 9 | 9 181202M2_10 | Standard | 250.000 | 5.86 | 417923.656 | 21247.000 | 245.872 | 241.3 | -3.5 | NO | 0.999 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.86 | 708042.438 | 18395.674 | 481.120 | 504.0 | 0.8 | NO | 0.999 | NO | bb | Compound name: PFDS Coefficient of Determination: R^2 = 0.999683 Calibration curve: 7.56593e-005 * x^2 + 0.811719 * x + 0.0648879 Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | e e e e e e e e e e e e e e e e e e e | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |---------------------------------------|----------------|----------|-----------|------|-----------|----------|----------|-------|-------|------------|-------|----------|------------| | 1 1495 | 1 181202M2_2 | Standard | 0.250 | 5.91 | 22.895 | 3848.352 | 0.074 | 0.0 | -95.3 | YES | 1.000 | NO | bbX | | 2 - | 2 181202M2_3 | Standard | 0.500 | 5.90 | 133.028 | 4058.103 | 0.410 | 0.4 | -15.0 | NO | 1.000 | NO | MM | | 3 | 3 181202M2_4 | Standard | 1.000 | 5.90 | 265.385 | 3957.430 | 0.838 | 1.0 | -4.7 | NO | 1.000 | NO | MM | | 4 | 4 181202M2_5 | Standard | 2.000 | 5.90 | 547.126 | 4122.399 | 1.659 | 2.0 | -1.8 | NO | 1.000 | NO | мм | | 5 | 5 181202M2_6 | Standard | 5.000 | 5.90 | 1374.966 | 3850.568 | 4.464 | 5.4 | 8.3 | NO | 1.000 | NO | ММ | | 6 | 6 181202M2_7 | Standard | 10.000 | 5.90 | 3055.824 | 4052.094 | 9.427 | 11.5 | 15.2 | NO | 1.000 | NO | ММ | | 7 : 0 : | 7 181202M2_8 | Standard | 50.000 | 5.90 | 13406.321 | 4143.248 | 40.446 | 49.5 | -1.0 | NO | 1.000 | NO | MM | | 8 | 8 181202M2_9 | Standard | 100.000 | 5.90 | 25873.787 | 3963.002 | 81.610 | 99.5 | -0.5 | NO | 1.000 | NO | MM | | 9 | 9 181202M2_10 | Standard | 250.000 | 5.90 | 54601.043 | 3309.822 | 206.208 | 248.2 | -0.7 | NO | 1.000 | NO | ММ | | 10 | 10 181202M2_11 | Standard | 500.000 | 5.91 | 99464.773 | 2920.727 | 425.685 | 501.0 | 0.2 | NO | 1.000 | NO | MM | Work Order 1803676 Page 164 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: PFDoA Coefficient of Determination: R^2 = 0.999795 Calibration curve: -0.000443961 * x^2 + 1.32023 * x + -0.000921135 Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT. | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 6.13 | 567.557 | 20802.365 | 0.341 | 0.3 | 3.6 | NO | 1.000 | NO | MM | | 2 | 2 181202M2_3 | Standard | 0.500 | 6.13 | 1145.301 | 21481.756 | 0.666 | 0.5 | 1.1 | NO | 1.000 | NO | ММ | | 3 | 3 181202M2_4 | Standard | 1.000 | 6.13 | 2227.856 | 21130.402 | 1.318 | 1.0 | -0.1 | NO | 1.000 | NO | MM | | 4 | 4 181202M2_5 | Standard | 2.000 | 6.13 | 4570.521 | 22323.697 | 2.559 | 1.9 | -3.0 | NO | 1.000 | NO | ММ | | 5 | 5 181202M2_6 | Standard | 5.000 | 6.13 | 10652.516 | 20750.785 | 6.417 | 4.9 | -2.6 | NO | 1.000 | NO | ММ | | 6 | 6 181202M2_7 | Standard | 10.000 | 6.13 | 23303.625 | 21839.953 | 13.338 | 10.1 | 1.4 | NO | 1.000 | NO | MM | | 7 | 7 181202M2_8 | Standard | 50.000 | 6.13 | 113419.266 | 21577.500 | 65.705 | 50.6 | 1.3 | NO | 1.000 | NO | MM | | 8 | 8 181202M2_9 | Standard | 100.000 | 6.13 | 203830.203 | 20567.094 | 123.881 | 97.0 | -3.0 | NO | 1.000 | NO | MM | | 9 | 9 181202M2_10 | Standard | 250.000 | 6.13 | 455812.531 | 18565.805 | 306.890 | 254.2 | 1.7 | NO | 1.000 | NO | MM | |
10 | 10 181202M2_11 | Standard | 500.000 | 6.13 | 750169.125 | 17127.432 | 547.491 | 498.1 | -0.4 | NO | 1.000 | NO | MM | Compound name: N-MeFOSA Coefficient of Determination: R^2 = 0.998909 Calibration curve: $-7.79408e-005 \times x^2 + 1.05657 \times x + -0.0424732$ Response type: Internal Std (Ref 54), Area \times (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None | 1745 | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |------|----------------|----------|-----------|------|------------|-----------|----------|--------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 1.250 | 6.03 | 142.449 | 18144.518 | 1.178 | 1.2 | -7.6 | NO | 0.999 | NO | bb | | 2 | 2 181202M2_3 | Standard | 2.500 | 6.03 | 322.419 | 18786.895 | 2.574 | 2.5 | -0.9 | NO | 0.999 | NO | bb | | 3 | 3 181202M2_4 | Standard | 5.000 | 6.03 | 660.706 | 19011.893 | 5.213 | 5.0 | -0.5 | NO | 0.999 | NO | bb | | 4 | 4 181202M2_5 | Standard | 10.000 | 6.03 | 1414.699 | 19580.543 | 10.838 | 10.3 | 3.1 | NO | 0.999 | NO | bb | | 5 | 5 181202M2_6 | Standard | 25.000 | 6.03 | 3263.745 | 19617.758 | 24.955 | 23.7 | -5.2 | NO | 0.999 | NO | MM | | 6 | 6 181202M2_7 | Standard | 50.000 | 6.03 | 7168.061 | 19978.711 | 53.818 | 51.2 | 2.3 | NO | 0.999 | NO | MM | | 7 - | 7 181202M2_8 | Standard | 250.000 | 6.03 | 35243.977 | 19302.840 | 273.877 | 264.4 | 5.8 | NO | 0.999 | NO | MM | | 8 | 8 181202M2_9 | Standard | 500.000 | 6.03 | 68360.344 | 19476.980 | 526.470 | 518.1 | 3.6 | NO | 0.999 | NO | MM | | 9 | 9 181202M2_10 | Standard | 1250.000 | 6.03 | 144932.484 | 19001.152 | 1144.134 | 1186.8 | -5.1 | NO | 0.999 | NO | MM | | 10 | 10 181202M2_11 | Standard | 2500.000 | 6.03 | 262093.094 | 18062.113 | 2176.598 | 2533.7 | 1.3 | NO | 0.999 | NO | MM | Work Order 1803676 Page 165 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: PFTrDA Coefficient of Determination: R^2 = 0.999656 Calibration curve: -0.000291719 * x^2 + 1.21601 * x + 0.00941256 Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | 145 H. P. | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-----------|----------------|----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 6.37 | 512.233 | 20802.365 | 0.308 | 0.2 | -1.8 | NO | 1.000 | NO | MM | | 2 | 2 181202M2_3 | Standard | 0.500 | 6.38 | 1023.942 | 21481.756 | 0.596 | 0.5 | -3.5 | NO | 1.000 | NO | MM | | 3 | 3 181202M2_4 | Standard | 1.000 | 6.38 | 2138.060 | 21130.402 | 1.265 | 1.0 | 3.3 | NO | 1.000 | NO | ММ | | 4 | 4 181202M2_5 | Standard | 2.000 | 6.38 | 4198.660 | 22323.697 | 2.351 | 1.9 | -3.7 | NO | 1.000 | NO | ММ | | 5 | 5 181202M2_6 | Standard | 5.000 | 6.38 | 10261.721 | 20750.785 | 6.182 | 5.1 | 1.6 | NO | 1.000 | NO | MM | | 6 | 6 181202M2_7 | Standard | 10.000 | 6.38 | 21745.299 | 21839.953 | 12.446 | 10.3 | 2.5 | NO | 1.000 | NO | MM | | 7 | 7 181202M2_8 | Standard | 50.000 | 6.38 | 104147.984 | 21577.500 | 60.334 | 50.2 | 0.4 | NO | 1.000 | NO | ММ | | 8 | 8 181202M2_9 | Standard | 100.000 | 6.38 | 201551.844 | 20567.094 | 122.497 | 103.3 | 3.3 | NO | 1.000 | NO | MM | | 9 | 9 181202M2_10 | Standard | 250.000 | 6.37 | 413785.844 | 18565.805 | 278.594 | 243.3 | -2.7 | NO | 1.000 | NO | ММ | | 10 | 10 181202M2_11 | Standard | 500.000 | 6.38 | 737003.313 | 17127.432 | 537.882 | 503.0 | 0.6 | NO | 1.000 | NO | MM | Compound name: PFTeDA Coefficient of Determination: R^2 = 0.999493 Calibration curve: $-0.000343362 \times x^2 + 1.13504 \times x + 0.00135132$ Response type: Internal Std (Ref 55), Area \times (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-----|----------------|----------|-----------|------|------------|-----------|----------|-------|------|------------|-------|----------|------------| | | 1 181202M2_2 | Standard | 0.250 | 6.59 | 374.614 | 17269.939 | 0.271 | 0.2 | -4.9 | NO | 0.999 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 6.59 | 795.705 | 16950.785 | 0.587 | 0.5 | 3.2 | NO | 0.999 | NO | bb | | 3 = | 3 181202M2_4 | Standard | 1.000 | 6.59 | 1443.209 | 16748.422 | 1.077 | 0.9 | -5.2 | NO | 0.999 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 6.59 | 3178.300 | 17107.322 | 2.322 | 2.0 | 2.3 | NO | 0.999 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 6.59 | 7282.958 | 16784.055 | 5.424 | 4.8 | -4.3 | NO | 0.999 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 6.59 | 16042.385 | 16552.861 | 12.115 | 10.7 | 7.1 | NO | 0.999 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 6.59 | 75015.461 | 16613.039 | 56.443 | 50.5 | 1.0 | NO | 0.999 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 6.59 | 144170.828 | 15860.967 | 113.621 | 103.3 | 3.3 | NO | 0.999 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 6.58 | 303503.594 | 14903.161 | 254.563 | 242.0 | -3.2 | NO | 0.999 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 6.59 | 533941.000 | 13767.813 | 484.773 | 503.9 | 0.8 | NO | 0.999 | NO | bb | Work Order 1803676 Page 166 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: N-EtFOSA Coefficient of Determination: R^2 = 0.999912 Calibration curve: $-4.97469e-005 \times x^2 + 0.973269 \times x + -0.0114563$ Response type: Internal Std (Ref 56), Area \times (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|-----------|----------|--------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 1.250 | 6.46 | 214.610 | 24911.125 | 1.292 | 1.3 | 7.2 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 2.500 | 6.46 | 403.697 | 25905.633 | 2.338 | 2.4 | -3.4 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 5.000 | 6.46 | 854.446 | 26066.096 | 4.917 | 5.1 | 1.3 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 10.000 | 6.46 | 1711.752 | 26996.768 | 9.511 | 9.8 | -2.1 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 25.000 | 6.46 | 3978.940 | 26445.541 | 22.569 | 23.2 | -7.1 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 50.000 | 6.46 | 8912.416 | 26195.615 | 51.034 | 52.6 | 5.2 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 250.000 | 6.46 | 41638.492 | 26339.674 | 237.124 | 246.8 | -1.3 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 500.000 | 6.46 | 79929.930 | 25286.291 | 474.150 | 500.0 | -0.0 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 1250.000 | 6.46 | 172285.000 | 22605.516 | 1143.205 | 1255.1 | 0.4 | NO | 1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 2500.000 | 6.47 | 303937.313 | 21501.488 | 2120.346 | 2497.4 | -0.1 | NO | 1.000 | NO | bb | Compound name: PFHxDA Coefficient of Determination: R^2 = 0.998811 Calibration curve: -0.000210664 * $x^2 + 0.529999 * x + 0.0560111$ Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD. | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|----------|----------|-------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 0.250 | 6.89 | 224.867 | 6306.773 | 0.178 | 0.2 | -7.7 | NO | 0.999 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 6.89 | 396.255 | 6244.700 | 0.317 | 0.5 | -1.4 | NO | 0.999 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 6.89 | 751.150 | 6307.689 | 0.595 | 1.0 | 1.8 | NO | 0.999 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 6.89 | 1497.283 | 6361.806 | 1.177 | 2.1 | 5.8 | NO | 0.999 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 6.89 | 3143.157 | 6326.135 | 2.484 | 4.6 | -8.2 | NO | 0.999 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 6.89 | 7028.938 | 6280.527 | 5.596 | 10.5 | 5.0 | NO | 0.999 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 6.89 | 33421.703 | 6171.491 | 27.077 | 52.1 | 4.1 | NO | 0.999 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 6.89 | 65299.973 | 6143.526 | 53.145 | 104.5 | 4.5 | NO | 0.999 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 6.89 | 134449.172 | 5907.690 | 113.792 | 236.9 | -5.2 | NO | 0.999 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 6.90 | 243506.438 | 5672.422 | 214.641 | 507.1 | 1.4 | NO | 0.999 | NO | bb | Work Order 1803676 Page 167 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: PFODA Coefficient of Determination: R^2 = 0.998954 Calibration curve: $-0.000288047 * x^2 + 0.858197 * x + 0.0110406$ Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | □ IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----------|----------------|----------|-----------|------|------------|-----------
----------|-------|------|------------|-------|----------|------------| | 1. | 1 181202M2_2 | Standard | 0.250 | 7.12 | 285.334 | 6306.773 | 0.226 | 0.3 | 0.3 | NO | 0.999 | NO | bb | | 2 | 2 181202M2_3 | Standard | 0.500 | 7.12 | 523.242 | 6244.700 | 0.419 | 0.5 | -4.9 | NO | 0.999 | NO | bb | | 3 | 3 181202M2_4 | Standard | 1.000 | 7.12 | 1137.734 | 6307.689 | 0.902 | 1.0 | 3.8 | NO | 0.999 | NO | bb | | 4 | 4 181202M2_5 | Standard | 2.000 | 7.12 | 2230.814 | 6361.806 | 1.753 | 2.0 | 1.6 | NO | 0.999 | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 7.12 | 5189.763 | 6326.135 | 4.102 | 4.8 | -4.5 | NO | 0.999 | NO | bb | | 6 | 6 181202M2_7 | Standard | 10.000 | 7.12 | 11181.271 | 6280.527 | 8.902 | 10.4 | 4.0 | NO | 0.999 | NO | bb | | 7 | 7 181202M2_8 | Standard | 50.000 | 7.12 | 54498.063 | 6171.491 | 44.153 | 52.4 | 4.7 | NO | 0.999 | NO | bb | | 8 | 8 181202M2_9 | Standard | 100.000 | 7.12 | 105825.469 | 6143.526 | 86.128 | 104.0 | 4.0 | NO | 0.999 | NO | bb | | 9 | 9 181202M2_10 | Standard | 250.000 | 7.12 | 221658.438 | 5907.690 | 187.602 | 237.5 | -5.0 | NO | 0.999 | NO | bb | | 10 | 10 181202M2_11 | Standard | 500.000 | 7.12 | 409253.719 | 5672.422 | 360.740 | 506.4 | 1.3 | NO | 0.999 | NO | bb | Compound name: N-MeFOSE Coefficient of Determination: R^2 = 0.999899 Calibration curve: $-2.49953e-005 * x^2 + 0.933355 * x + -0.466455$ Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|------------|----------|----------|--------|------|------------|-------|----------|------------| | 1 | 1 181202M2_2 | Standard | 1.250 | 6.68 | 45.843 | 8924.660 | 0.770 | 1.3 | 6.0 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 2.500 | 6.68 | 117.142 | 9346.182 | 1.880 | 2.5 | 0.6 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 5.000 | 6.68 | 257.799 | 9089.852 | 4.254 | 5.1 | 1.2 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 10.000 | 6.68 | 549.323 | 9784.962 | 8.421 | 9.5 | -4.8 | NO | 1.000 | NO | bb | | 5 | 5 181202M2_6 | Standard | 25.000 | 6.68 | 1393.514 | 9258.698 | 22.576 | 24.7 | -1.2 | NO | 1.000 | NO | bb | | 6 | 6 181202M2_7 | Standard | 50.000 | 6.68 | 2876.454 | 9389.959 | 45.950 | 49.8 | -0.4 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 250.000 | 6.68 | 14698.902 | 9656.651 | 228.323 | 246.8 | -1.3 | NO | 1.000 | NO | MM | | 8 | 8 181202M2_9 | Standard | 500.000 | 6.68 | 28662.500 | 9467.294 | 454.129 | 493.6 | -1.3 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 1250.000 | 6.68 | 67421.727 | 8844.866 | 1143.404 | 1268.6 | 1.5 | NO | 1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 2500.000 | 6.68 | 133156.828 | 9204.148 | 2170.057 | 2491.8 | -0.3 | NO | 1.000 | NO | bb | Work Order 1803676 Page 168 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: N-EtFOSE Coefficient of Determination: R^2 = 0.999728 Calibration curve: $-8.31447e-006 * x^2 + 1.05163 * x + 0.0451426$ Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |---------------|----------------|----------|-----------|------|------------|----------|----------|--------|------|------------|-------|----------|------------| | | 1 181202M2_2 | Standard | 1.250 | 6.83 | 85.578 | 9267.479 | 1.385 | 1.3 | 1.9 | NO | 1.000 | NO | bb | | 2 | 2 181202M2_3 | Standard | 2.500 | 6.82 | 153.289 | 9417.438 | 2.442 | 2.3 | -8.8 | NO | 1.000 | NO | bb | | 3 | 3 181202M2_4 | Standard | 5.000 | 6.82 | 329.378 | 9367.441 | 5.274 | 5.0 | -0.5 | NO | 1.000 | NO | bb | | 4 | 4 181202M2_5 | Standard | 10.000 | 6.82 | 714.828 | 9831.002 | 10.907 | 10.3 | 3.3 | NO | 1.000 | NO | MM | | 5 | 5 181202M2_6 | Standard | 25.000 | 6.82 | 1549.766 | 9178.014 | 25.328 | 24.0 | -3.8 | NO | 1.000 | NO | bb | | 6 .001 | 6 181202M2_7 | Standard | 50.000 | 6.82 | 3544.875 | 9518.834 | 55.861 | 53.1 | 6.2 | NO | 1.000 | NO | bb | | 7 | 7 181202M2_8 | Standard | 250.000 | 6.82 | 16633.693 | 9371.340 | 266.243 | 253.6 | 1.5 | NO | 1.000 | NO | bb | | 8 | 8 181202M2_9 | Standard | 500.000 | 6.82 | 33654.199 | 9438.916 | 534.821 | 510.6 | 2.1 | NO | 1.000 | NO | bb | | 9 | 9 181202M2_10 | Standard | 1250.000 | 6.82 | 77595.289 | 9147.148 | 1272.451 | 1221.7 | -2.3 | NO | 1.000 | NO | bb | | 10 | 10 181202M2_11 | Standard | 2500.000 | 6.83 | 153648.516 | 8901.749 | 2589.073 | 2511.8 | 0.5 | NO | 1.000 | NO | bb | Compound name: 13C3-PFBA Response Factor: 0.860773 RRF SD: 0.0131021, Relative SD: 1.52213 Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|----------|----------|----------|-------|------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 1.47 | 7372.417 | 8755.424 | 10.525 | 12.2 | -2.2 | NO | | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 1.47 | 7717.044 | 8985.498 | 10.735 | 12.5 | -0.2 | NO | | NO | MM | | 3 | 3 181202M2_4 | Standard | 12.500 | 1.47 | 7778.471 | 9024.967 | 10.774 | 12.5 | 0.1 | NO | | NO | MM | | 4 | 4 181202M2_5 | Standard | 12.500 | 1.47 | 8110.343 | 9577.717 | 10.585 | 12.3 | -1.6 | NO | | NO | мм | | 5 | 5 181202M2_6 | Standard | 12.500 | 1.47 | 7882.678 | 9216.354 | 10.691 | 12.4 | -0.6 | NO | | NO | ММ | | 6 | 6 181202M2_7 | Standard | 12.500 | 1.47 | 8113.042 | 9417.552 | 10.769 | 12.5 | 0.1 | NO | | NO | ММ | | 7 | 7 181202M2_8 | Standard | 12.500 | 1.47 | 8040.462 | 9412.593 | 10.678 | 12.4 | -0.8 | NO | | NO | MM | | 8 | 8 181202M2_9 | Standard | 12.500 | 1.47 | 8202.403 | 9230.500 | 11.108 | 12.9 | 3.2 | NO | | NO | ММ | | 9 | 9 181202M2_10 | Standard | 12.500 | 1.47 | 7673.549 | 8827.580 | 10.866 | 12.6 | 1.0 | NO | | NO | ММ | | 10 | 10 181202M2_11 | Standard | 12.500 | 1.47 | 7562.084 | 8699.136 | 10.866 | 12.6 | 1.0 | NO | | NO | ММ | Work Order 1803676 Page 169 of 556 Page 7 of 22 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C3-PFPeA Response Factor: 0.603715 RRF SD: 0.0227005, Relative SD: 3.76013 Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD CoD F | ag x=excluded | |----|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|-----------|---------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 2.72 | 12984.617 | 21884.557 | 7.417 | 12.3 | -1.7 | NO | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 2.73 | 13346.579 | 22519.205 | 7.408 | 12.3 | -1.8 | NO | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 2.73 | 13256.772 | 22580.148 | 7.339 | 12.2 | -2.8 | NO | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 2.73 | 13901.806 | 23437.223 | 7.414 | 12.3 | -1.7 | NO | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 2.73 | 13420.939 | 23364.684 | 7.180 | 11.9 | -4.9 | NO | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 2.73 | 13882.929 | 23122.318 | 7.505 | 12.4 | -0.5 | NO | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 2.73 | 13496.188 | 22645.541 | 7.450 | 12.3 | -1.3 | NO | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 2.73 | 13748.945 | 22215.309 | 7.736 | 12.8 | 2.5 | NO | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 2.73 | 12276.298 | 19415.918 | 7.904 | 13.1 | 4.7 | NO | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 2.73 | 11768.877 | 18135.842 | 8.112 | 13.4 | 7.5 | NO | NO | bb | Compound name: 13C3-PFBS Response Factor: 0.632921 RRF SD: 0.0159996, Relative SD: 2.5279 Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |------|----------------|----------|-----------|------|----------|----------|----------|-------|------|------------|---|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 3.04 | 2440.729 | 3754.038 | 8.127 | 12.8 | 2.7 | NO | THE RESIDENCE AND ASSESSED ASSESSED ASSESSED. | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 3.05 | 2510.799 | 3915.824 | 8.015 | 12.7 | 1.3 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 3.04 | 2463.662 | 4004.437 | 7.690 | 12.2 | -2.8 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 3.04 | 2532.149 | 3967.956 | 7.977 | 12.6 | 8.0 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 3.05 | 2521.420 | 4000.192 | 7.879 | 12.4 | -0.4 | NO | | NO | bb | | 6+4) | 6 181202M2_7 | Standard | 12.500 | 3.05 | 2565.786 | 3978.497 | 8.061 | 12.7 | 1.9 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 3.05 | 2428.037 | 3909.020 | 7.764 | 12.3 | -1.9 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 3.05 | 2348.185 | 3727.478 | 7.875 | 12.4 | -0.5 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 3.05 | 2027.545 | 3357.620 | 7.548 | 11.9 | -4.6 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 3.05 | 1876.313 | 2867.818 | 8.178 | 12.9 | 3.4 | NO | | NO | bb | Work Order 1803676 Page 170 of 556 Page 8 of 22 Vista Analytical Laboratory Dataset:
F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C2-4:2 FTS Response Factor: 2.07354 RRF SD: 0.156529, Relative SD: 7.54885 Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded_ | |------------------|----------------|----------|-----------|------|-----------|----------|----------|-------|-------|------------|-----|----------|-------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 3.51 | 7882.280 | 3754.038 | 26.246 | 12.7 | 1.3 | NO | | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 3.52 | 7786.481 | 3915.824 | 24.856 | 12.0 | -4.1 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 3.52 | 7630.461 | 4004.437 | 23.819 | 11.5 | -8.1 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 3.52 | 8139.889 | 3967.956 | 25.643 | 12.4 | -1.1 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 3.52 | 7869.327 | 4000.192 | 24.590 | 11.9 | -5.1 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 3.52 | 8095.176 | 3978.497 | 25.434 | 12.3 | -1.9 | NO | | NO | bb | | 7 : -: -: | 7 181202M2_8 | Standard | 12.500 | 3.52 | 8293.981 | 3909.020 | 26.522 | 12.8 | 2.3 | NO | | NO · | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 3.52 | 9018.855 | 3727.478 | 30.244 | 14.6 | 16.7 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 3.52 | 10024.722 | 3357.620 | 37.321 | 18.0 | 44.0 | NO | | NO | bbX | | 10 | 10 181202M2_11 | Standard | 12.500 | 3.52 | 12827.324 | 2867.818 | 55.911 | 27.0 | 115.7 | NO | | NO | bbX | Compound name: 13C2-PFHxA Response Factor: 0.900373 RRF SD: 0.0240715, Relative SD: 2.6735 Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT- | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|----------|-----------|----------|-------|------|------------|--------------------|----------|------------| | 1 | 1 181202M2_2 | Standard | 5.000 | 3.61 | 7855.090 | 21884.557 | 4.487 | 5.0 | -0.3 | NO | SHIMMINIAMENTATION | NO | bb | | 2 | 2 181202M2_3 | Standard | 5.000 | 3.61 | 8046.591 | 22519.205 | 4.467 | 5.0 | -0.8 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 5.000 | 3.61 | 8042.113 | 22580.148 | 4.452 | 4.9 | -1.1 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 5.000 | 3.61 | 8137.367 | 23437.223 | 4.340 | 4.8 | -3.6 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 3.61 | 8193.701 | 23364.684 | 4.384 | 4.9 | -2.6 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 5.000 | 3.61 | 8472.754 | 23122.318 | 4.580 | 5.1 | 1.7 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 5.000 | 3.61 | 8020.125 | 22645.541 | 4.427 | 4.9 | -1.7 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 5.000 | 3.61 | 8088.322 | 22215.309 | 4.551 | 5.1 | 1.1 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 5.000 | 3.61 | 7098.521 | 19415.918 | 4.570 | 5.1 | 1.5 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 5.000 | 3.61 | 6908.174 | 18135.842 | 4.761 | 5.3 | 5.8 | NO | | NO | bb | Work Order 1803676 Page 171 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C4-PFHpA Response Factor: 0.693169 RRF SD: 0.0198189, Relative SD: 2.85917 Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |------|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|-----|----------|------------| | 1200 | 1 181202M2_2 | Standard | 12.500 | 4.23 | 15520.071 | 21884.557 | 8.865 | 12.8 | 2.3 | NO | | NO | ММ | | 2 | 2 181202M2_3 | Standard | 12.500 | 4.24 | 16419.287 | 22519.205 | 9.114 | 13.1 | 5.2 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 4.24 | 15646.633 | 22580.148 | 8.662 | 12.5 | -0.0 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 4.23 | 16240.967 | 23437.223 | 8.662 | 12.5 | -0.0 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 4.24 | 15769.080 | 23364.684 | 8.436 | 12.2 | -2.6 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 4.24 | 16393.000 | 23122.318 | 8.862 | 12.8 | 2.3 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 4.24 | 15392.018 | 22645.541 | 8.496 | 12.3 | -1.9 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 4.24 | 15534.257 | 22215.309 | 8.741 | 12.6 | 0.9 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 4.24 | 13297.971 | 19415.918 | 8.561 | 12.4 | -1.2 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 4.24 | 11965.380 | 18135.842 | 8.247 | 11.9 | -4.8 | NO | | NO | bb | Compound name: 18O2-PFHxS Response Factor: 0.475759 RRF SD: 0.0116172, Relative SD: 2.44183 Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|----------|----------|----------|-------|------|------------|-----|----------|------------| | 1. | 1 181202M2_2 | Standard | 12.500 | 4.37 | 1732.264 | 3754.038 | 5.768 | 12.1 | -3.0 | NO | | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 4.37 | 1891.561 | 3915.824 | 6.038 | 12.7 | 1.5 | NO | | NO | MM | | 3 | 3 181202M2_4 | Standard | 12.500 | 4.37 | 1870.489 | 4004.437 | 5.839 | 12.3 | -1.8 | NO | | NO | MM | | 4 | 4 181202M2_5 | Standard | 12.500 | 4.37 | 1844,360 | 3967.956 | 5.810 | 12.2 | -2.3 | NO | | NO | ММ | | 5 | 5 181202M2_6 | Standard | 12.500 | 4.37 | 1912.521 | 4000.192 | 5.976 | 12.6 | 0.5 | NO | | NO | ММ | | 6 | 6 181202M2_7 | Standard | 12.500 | 4.37 | 1921.575 | 3978.497 | 6.037 | 12.7 | 1.5 | NO | | NO | ММ | | 7 | 7 181202M2_8 | Standard | 12.500 | 4.37 | 1820.151 | 3909.020 | 5.820 | 12.2 | -2.1 | NO | | NO | ММ | | 8 | 8 181202M2_9 | Standard | 12.500 | 4.37 | 1781.693 | 3727.478 | 5.975 | 12.6 | 0.5 | NO | | NO | ММ | | 9 | 9 181202M2_10 | Standard | 12.500 | 4.37 | 1599.192 | 3357.620 | 5.954 | 12.5 | 0.1 | NO | | NO | ММ | | 10 | 10 181202M2_11 | Standard | 12.500 | 4.37 | 1434.401 | 2867.818 | 6.252 | 13.1 | 5.1 | NO | | NO | ММ | Work Order 1803676 Page 172 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C2-6:2 FTS Response Factor: 1.82458 RRF SD: 0.102913, Relative SD: 5.64038 Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Type | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|-----------|----------|----------|-------|-------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 4.67 | 7096.761 | 4124.125 | 21.510 | 11.8 | -5.7 | NO | , | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 4.67 | 7354.782 | 4043.074 | 22.739 | 12.5 | -0.3 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 4.67 | 6954.629 | 3968.353 | 21.907 | 12.0 | -3.9 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 4.67 | 7557.635 | 4217.781 | 22.398 | 12.3 | -1.8 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 4.67 | 7351.898 | 4195.018 | 21.907 | 12.0 | -3.9 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 4.67 | 7547.463 | 4019.653 | 23.471 | 12.9 | 2.9 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 4.67 | 7612.719 | 4145.392 | 22.955 | 12.6 | 0.6 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 4.67 | 8395.673 | 4103.915 | 25.572 | 14.0 | 12.1 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 4.67 | 10084.581 | 3697.286 | 34.095 | 18.7 | 49.5 | NO | | NO | bbX | | 10 | 10 181202M2_11 | Standard | 12.500 | 4.67 | 12500.775 | 2980.433 | 52.429 | 28.7 | 129.9 | NO | | NO | bbX | Compound name: 13C2-PFOA Response Factor: 0.872857 RRF SD: 0.0293638, Relative SD: 3.3641 Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|------------------------|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 4.72 | 21531.906 | 25427.918 | 10.585 | 12.1 | -3.0 | NO | Public Control Control | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 4.73 | 22078.006 | 26231.518 | 10.521 | 12.1 | -3.6 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 4.73 | 22869.809 | 26898.668 | 10.628 | 12.2 | -2.6 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 4.72 | 22788.545 | 27182.742 | 10.479 | 12.0 | -4.0 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 4.73 | 22636.125 | 25823.834 | 10.957 | 12.6 | 0.4 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 4.73 | 23212.086 | 26537.365 | 10.934 | 12.5 | 0.2 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 4.73 | 22155.025 | 25198.629 | 10.990 | 12.6 | 0.7 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 4.73 | 21661.113 | 24351.957 | 11.119 | 12.7 | 1.9 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 4.73 | 19646.082 | 21780.797 | 11.275 | 12.9 | 3.3 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 4.73 |
18090.129 | 19460.047 | 11.620 | 13.3 | 6.5 | NO | | NO | bb | Work Order 1803676 Page 173 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C5-PFNA Response Factor: 1.00625 RRF SD: 0.0258214, Relative SD: 2.56611 Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----------|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 5.16 | 24777.965 | 24645.154 | 12.567 | 12.5 | -0.1 | NO | | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.16 | 24973.412 | 24770.145 | 12.603 | 12.5 | 0.2 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.16 | 26408.809 | 25069.092 | 13.168 | 13.1 | 4.7 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.16 | 25880.568 | 26512.268 | 12.202 | 12.1 | -3.0 | NO | | NO | MM | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.16 | 24584.580 | 25536.010 | 12.034 | 12.0 | -4.3 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.16 | 25443.154 | 25328.764 | 12.556 | 12.5 | -0.2 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.16 | 24294.938 | 24528.369 | 12.381 | 12.3 | -1.6 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.16 | 24169.063 | 23726.076 | 12.733 | 12.7 | 1.2 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.16 | 21666.674 | 21062.650 | 12.858 | 12.8 | 2.2 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.16 | 18948.793 | 18684.068 | 12.677 | 12.6 | 0.8 | NO | | NO | bb | Compound name: 13C8-PFOSA Response Factor: 0.201574 RRF SD: 0.0168727, Relative SD: 8.37044 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT. | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |------------|----------------|----------|-----------|------|----------|-----------|----------|-------|-------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 5.20 | 4397.858 | 23137.404 | 2.376 | 11.8 | -5.7 | NO | | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.20 | 4324.078 | 24411.752 | 2.214 | 11.0 | -12.1 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.20 | 4570.558 | 23006.633 | 2.483 | 12.3 | -1.4 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.20 | 4762.950 | 24286.953 | 2.451 | 12.2 | -2.7 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.20 | 4488.806 | 23607.182 | 2.377 | 11.8 | -5.7 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.20 | 4699.447 | 23511.537 | 2.498 | 12.4 | -0.8 | NO | | NO | bb | | 7 11 11 11 | 7 181202M2_8 | Standard | 12.500 | 5.20 | 4335.578 | 22404.008 | 2.419 | 12.0 | -4.0 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.20 | 4374.077 | 20433.953 | 2.676 | 13.3 | 6.2 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.20 | 4062.946 | 18144.816 | 2.799 | 13.9 | 11.1 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.20 | 3702.655 | 15942.904 | 2.903 | 14.4 | 15.2 | NO | | NO | bb | Work Order 1803676 Page 174 of 556 Page 12 of 22 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C8-PFOS Response Factor: 0.967776 RRF SD: 0.0394269, Relative SD: 4.07397 Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD CoD Flag | x=excluded | |----|----------------|----------|-----------|------|----------|----------|----------|-------|------|------------|--------------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 5.24 | 3848.352 | 4124.125 | 11.664 | 12.1 | -3.6 | NO | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.24 | 4058.103 | 4043.074 | 12.546 | 13.0 | 3.7 | NO | NO | ММ | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.24 | 3957.430 | 3968.353 | 12.466 | 12.9 | 3.0 | NO | NO | ММ | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.24 | 4122.399 | 4217.781 | 12.217 | 12.6 | 1.0 | NO | NO | ММ | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.24 | 3850.568 | 4195.018 | 11.474 | 11.9 | -5.2 | NO | NO | MM | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.24 | 4052.094 | 4019.653 | 12.601 | 13.0 | 4.2 | NO | NO | ММ | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.24 | 4143.248 | 4145.392 | 12.494 | 12.9 | 3.3 | NO | NO | ММ | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.24 | 3963.002 | 4103.915 | 12.071 | 12.5 | -0.2 | NO | NO | мм | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.24 | 3309.822 | 3697.286 | 11.190 | 11.6 | -7.5 | NO | NO | мм | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.24 | 2920.727 | 2980.433 | 12.250 | 12.7 | 1.3 | NO | NO | ММ | Compound name: 13C2-PFDA Response Factor: 1.12491 RRF SD: 0.0372448, Relative SD: 3.31091 Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Type | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-----------|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|--------------|----------|------------| | 1 a value | 1 181202M2_2 | Standard | 12.500 | 5.54 | 24467.730 | 21716.037 | 14.084 | 12.5 | 0.2 | NO | A.V. (AB) (1 | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.54 | 24309.102 | 21340.531 | 14.239 | 12.7 | 1.3 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.54 | 24717.902 | 21966.305 | 14.066 | 12.5 | 0.0 | NO | | NO | MM | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.54 | 24989.855 | 23800.488 | 13.125 | 11.7 | -6.7 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.54 | 23998.639 | 21413.693 | 14.009 | 12.5 | -0.4 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.54 | 24552.750 | 22298.768 | 13.764 | 12.2 | -2.1 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.54 | 24327.094 | 21747.414 | 13.983 | 12.4 | -0.6 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.53 | 22632.824 | 20217.711 | 13.993 | 12.4 | -0.5 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.54 | 20613.098 | 17926.432 | 14.373 | 12.8 | 2.2 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.54 | 19158.104 | 15987.726 | 14.979 | 13.3 | 6.5 | NO | | NO | bb | Work Order 1803676 Page 175 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C2-8:2 FTS Response Factor: 1.08628 RRF SD: 0.0947418, Relative SD: 8.72166 Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area) Curve type: RF | in the state of th | # Name | Type | Std. Conc | BT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |--|----------------|----------|-----------|------|----------|----------|----------|-------|-------|------------|-----|----------|------------| | 177 | 1 181202M2_2 | Standard | 12.500 | 5.51 | 4317.192 | 4124.125 | 13.085 | 12.0 | -3.6 | NO | | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.51 | 4216.907 | 4043.074 | 13.037 | 12.0 | -4.0 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.51 | 4281.343 | 3968.353 | 13.486 | 12.4 | -0.7 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.50 | 4195.490 | 4217.781 | 12.434 | 11.4 | -8.4 | NO | | NO | bb |
| 5 | 5 181202M2_6 | Standard | 12.500 | 5.51 | 4163.019 | 4195.018 | 12.405 | 11.4 | -8.6 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.51 | 4494.608 | 4019.653 | 13.977 | 12.9 | 2.9 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.51 | 4695.126 | 4145.392 | 14.158 | 13.0 | 4.3 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.50 | 5268.254 | 4103.915 | 16.046 | 14.8 | 18.2 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.51 | 6419.179 | 3697.286 | 21.702 | 20.0 | 59.8 | NO | | NO | bbX | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.51 | 7875.880 | 2980.433 | 33.032 | 30.4 | 143.3 | NO | | NO | bbX | Compound name: d3-N-MeFOSAA Response Factor: 0.329178 RRF SD: 0.0212176, Relative SD: 6.44565 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|-------|----------|-----------|----------|-------|------|------------|--|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 5.67 | 6993.818 | 23137.404 | 3.778 | 11.5 | -8.2 | NO | HELLATERS OF THE PERSON OF THE RESIDENCE | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.68 | 7633.335 | 24411.752 | 3.909 | 11.9 | -5.0 | NO | | NO | MM | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.68 | 7294.871 | 23006.633 | 3.963 | 12.0 | -3.7 | NO | | NO | MM | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.67 | 7797.862 | 24286.953 | 4.013 | 12.2 | -2.5 | NO | | NO | MM | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.68 | 7624.316 | 23607.182 | 4.037 | 12.3 | -1.9 | NO | | NO | MM | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.68 | 7415.011 | 23511.537 | 3.942 | 12.0 | -4.2 | NO | | NO | MM | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.68 | 7329.583 | 22404.008 | 4.089 | 12.4 | -0.6 | NO | | NO | MM | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.67 | 7337.996 | 20433.953 | 4.489 | 13.6 | 9.1 | NO | | NO | MM | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.68 | 6314.114 | 18144.816 | 4.350 | 13.2 | 5.7 | NO | | NO | MM | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.68 | 5836.267 | 15942.904 | 4.576 | 13.9 | 11.2 | NO | | NO | MM | Work Order 1803676 Page 176 of 556 Page 14 of 22 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C2-PFUdA Response Factor: 1.11124 RRF SD: 0.0449768, Relative SD: 4.04743 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 5.85 | 26235.537 | 23137.404 | 14.174 | 12.8 | 2.0 | NO | ~ | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.86 | 26476.957 | 24411.752 | 13.557 | 12.2 | -2.4 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.86 | 25791.709 | 23006.633 | 14.013 | 12.6 | 0.9 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.85 | 25476.654 | 24286.953 | 13.112 | 11.8 | -5.6 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.85 | 24894.002 | 23607.182 | 13.181 | 11.9 | -5.1 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.86 | 25793.707 | 23511.537 | 13.713 | 12.3 | -1.3 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.86 | 24187.443 | 22404.008 | 13.495 | 12.1 | -2.8 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.85 | 23864.383 | 20433.953 | 14.598 | 13.1 | 5.1 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.85 | 21247.000 | 18144.816 | 14.637 | 13.2 | 5.4 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.86 | 18395.674 | 15942.904 | 14.423 | 13.0 | 3.8 | NO | | NO | bb | Compound name: d5-N-EtFOSAA Response Factor: 0.355107 RRF SD: 0.0163961, Relative SD: 4.61724 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |---------|----------------|----------|-----------|------|----------|-----------|----------|-------|------|------------|---|----------|------------| | 100 300 | 1 181202M2_2 | Standard | 12.500 | 5.83 | 7616.977 | 23137.404 | 4.115 | 11.6 | -7.3 | NO | 302500300000000000000000000000000000000 | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.83 | 8626.343 | 24411.752 | 4.417 | 12.4 | -0.5 | NO | | NO | ММ | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.83 | 8022.006 | 23006.633 | 4.359 | 12.3 | -1.8 | NO | | NO | ММ | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.83 | 8299.833 | 24286.953 | 4.272 | 12.0 | -3.8 | NO | | NO | мм | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.83 | 8433.072 | 23607.182 | 4.465 | 12.6 | 0.6 | NO | | NO | ММ | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.83 | 8903.206 | 23511.537 | 4.733 | 13.3 | 6.6 | NO | | NO | ММ | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.83 | 8164.931 | 22404.008 | 4.556 | 12.8 | 2.6 | NO | | NO | мм | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.83 | 6902.745 | 20433.953 | 4.223 | 11.9 | -4.9 | NO | | NO | ММ | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.83 | 6863.628 | 18144.816 | 4.728 | 13.3 | 6.5 | NO | | NO | мм | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.83 | 5765.883 | 15942.904 | 4.521 | 12.7 | 1.8 | NO | | NO | мм | Work Order 1803676 Page 177 of 556 Page 15 of 22 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C2-PFDoA Response Factor: 0.992933 RRF SD: 0.0404254, Relative SD: 4.07131 Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 6.14 | 20802.365 | 21716.037 | 11.974 | 12.1 | -3.5 | NO | | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 6.14 | 21481.756 | 21340.531 | 12.583 | 12.7 | 1.4 | NO | | NO | MM | | 3 | 3 181202M2_4 | Standard | 12.500 | 6.13 | 21130.402 | 21966.305 | 12.024 | 12.1 | -3.1 | NO | | NO | MM | | 4 | 4 181202M2_5 | Standard | 12.500 | 6.13 | 22323.697 | 23800.488 | 11.724 | 11.8 | -5.5 | NO | | NO | MM | | 5 | 5 181202M2_6 | Standard | 12.500 | 6.14 | 20750.785 | 21413.693 | 12.113 | 12.2 | -2.4 | NO | | NO | ММ | | 6 | 6 181202M2_7 | Standard | 12.500 | 6.13 | 21839.953 | 22298.768 | 12.243 | 12.3 | -1.4 | NO | | NO | MM | | 7 | 7 181202M2_8 | Standard | 12.500 | 6.14 | 21577.500 | 21747.414 | 12.402 | 12.5 | -0.1 | NO | | NO | MM | | 8 | 8 181202M2_9 | Standard | 12.500 | 6.13 | 20567.094 | 20217.711 | 12.716 | 12.8 | 2.5 | NO | | NO | MM | | 9 | 9 181202M2_10 | Standard | 12.500 | 6.14 | 18565.805 | 17926.432 | 12.946 | 13.0 | 4.3 | NO | | NO | MM | | 10 | 10 181202M2_11 | Standard | 12.500 | 6.13 | 17127.432 | 15987.726 | 13.391 | 13.5 | 7.9 | NO | | NO | MM | Compound name: d3-N-MeFOSA Response Factor: 0.0738499 RRF SD: 0.0100246, Relative SD: 13.5743 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD CoD Flag | x=excluded | |---------------|----------------|----------|-----------|------|-----------|-----------|----------|-------|-------|------------|--------------|------------| | 1 | 1 181202M2_2 | Standard | 150.000 | 6.06 | 18144.518 | 23137.404 | 9.803 | 132.7 | -11.5 | NO | NO | bb | | 2 | 2 181202M2_3 | Standard | 150.000 | 6.06 | 18786.895 | 24411.752 | 9.620 | 130.3 | -13.2 | NO | NO | ММ | | 3 | 3 181202M2_4 | Standard | 150.000 | 6.06 | 19011.893 | 23006.633 | 10.330 | 139.9 | -6.8 | NO | NO | мм | | 4 | 4 181202M2_5 | Standard | 150.000 | 6.05 | 19580.543 | 24286.953 | 10.078 | 136.5 | -9.0 | NO | NO | мм | | 5 | 5 181202M2_6 | Standard | 150.000 | 6.06 | 19617,758 | 23607.182 | 10.388 | 140.7 | -6.2 | NO | NO | мм | | 6 | 6 181202M2_7 | Standard | 150.000 | 6.06 | 19978.711 | 23511.537 | 10.622 | 143.8 | -4.1 | NO | NO | мм | | 7.00000000000 | 7 181202M2_8 | Standard | 150.000 | 6.06 | 19302.840 | 22404.008 | 10.770 | 145.8 | -2.8 | NO | NO | мм | | 8 1 5 | 8 181202M2_9 | Standard | 150.000 | 6.05 | 19476.980 | 20433.953 | 11.915 | 161.3 | 7.6 | NO | NO | мм | | 9 | 9 181202M2_10 | Standard | 150.000 | 6.06 | 19001.152 | 18144.816 | 13.090 | 177.3 | 18.2 | NO | NO | мм | | 10 | 10 181202M2_11 | Standard | 150.000 | 6.06 | 18062.113 | 15942.904 | 14.162 | 191.8 | 27.8 | NO | NO | мм | Work Order 1803676 Page 178 of 556 Page 16 of 22 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C2-PFTeDA Response Factor: 0.749079 RRF SD: 0.0558252, Relative SD: 7.45251 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 6.59 | 17269.939 |
23137.404 | 9.330 | 12.5 | -0.4 | NO | | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 6.59 | 16950.785 | 24411.752 | 8.680 | 11.6 | -7.3 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 6.59 | 16748.422 | 23006.633 | 9.100 | 12.1 | -2.8 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 6.59 | 17107.322 | 24286.953 | 8.805 | 11.8 | -6.0 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 6.59 | 16784.055 | 23607.182 | 8.887 | 11.9 | -5.1 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 6.59 | 16552.861 | 23511.537 | 8.800 | 11.7 | -6.0 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 6.59 | 16613.039 | 22404.008 | 9.269 | 12.4 | -1.0 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 6.59 | 15860.967 | 20433.953 | 9.703 | 13.0 | 3.6 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 6.58 | 14903.161 | 18144.816 | 10.267 | 13.7 | 9.6 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 6.59 | 13767.813 | 15942.904 | 10.795 | 14.4 | 15.3 | NO | | NO | bb | Compound name: d5-N-ETFOSA Response Factor: 0.0968703 RRF SD: 0.00748514, Relative SD: 7.72697 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Type | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |-----|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|-----|----------|------------| | 1 7 | 1 181202M2_2 | Standard | 150.000 | 6.48 | 24911.125 | 23137.404 | 13.458 | 138.9 | -7.4 | NO | - | NO | bb | | 2 | 2 181202M2_3 | Standard | 150.000 | 6.48 | 25905.633 | 24411.752 | 13.265 | 136.9 | -8.7 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 150.000 | 6.48 | 26066.096 | 23006.633 | 14.162 | 146.2 | -2.5 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 150.000 | 6.48 | 26996.768 | 24286.953 | 13.895 | 143.4 | -4.4 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 150.000 | 6.48 | 26445.541 | 23607.182 | 14.003 | 144.6 | -3.6 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 150.000 | 6.48 | 26195.615 | 23511.537 | 13.927 | 143.8 | -4.2 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 150.000 | 6.48 | 26339.674 | 22404.008 | 14.696 | 151.7 | 1.1 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 150.000 | 6.48 | 25286.291 | 20433.953 | 15.468 | 159.7 | 6.5 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 150.000 | 6.48 | 22605.516 | 18144.816 | 15.573 | 160.8 | 7.2 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 150.000 | 6.48 | 21501.488 | 15942.904 | 16.858 | 174.0 | 16.0 | NO | | NO | bb | Work Order 1803676 Page 179 of 556 Page 17 of 22 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time ## Compound name: 13C2-PFHxDA Response Factor: 0.714274 RRF SD: 0.080169, Relative SD: 11.2238 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | 1. 美数元的 | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |---------------|----------------|----------|-----------|------|----------|-----------|----------|-------|-------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 5.000 | 6.89 | 6306.773 | 23137.404 | 3.407 | 4.8 | -4.6 | NO | | NO | bb | | 2 | 2 181202M2_3 | Standard | 5.000 | 6.89 | 6244.700 | 24411.752 | 3.198 | 4.5 | -10.5 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 5.000 | 6.89 | 6307.689 | 23006.633 | 3.427 | 4.8 | -4.0 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 5.000 | 6.89 | 6361.806 | 24286.953 | 3.274 | 4.6 | -8.3 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 5.000 | 6.89 | 6326.135 | 23607.182 | 3.350 | 4.7 | -6.2 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 5.000 | 6.89 | 6280.527 | 23511.537 | 3.339 | 4.7 | -6.5 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 5.000 | 6.89 | 6171.491 | 22404.008 | 3.443 | 4.8 | -3.6 | NO | | NO | bb | | 8 4 1 2 4 4 4 | 8 181202M2_9 | Standard | 5.000 | 6.89 | 6143.526 | 20433.953 | 3.758 | 5.3 | 5.2 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 5.000 | 6.89 | 5907.690 | 18144.816 | 4.070 | 5.7 | 14.0 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 5.000 | 6.89 | 5672.422 | 15942.904 | 4.447 | 6.2 | 24.5 | NO | | NO | ММ | ## Compound name: d7-N-MeFOSE Response Factor: 0.0359771 RRF SD: 0.0051661, Relative SD: 14.3594 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | 建筑 | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD CoD F | lag x=excluded | |-----------|----------------|----------|-----------|------|----------|-----------|----------|-------|-------|------------|-----------|----------------| | 1 | 1 181202M2_2 | Standard | 150.000 | 6.67 | 8924.660 | 23137.404 | 4.822 | 134.0 | -10.7 | NO | NO | bb | | 2 | 2 181202M2_3 | Standard | 150.000 | 6.67 | 9346.182 | 24411.752 | 4.786 | 133.0 | -11.3 | NO | NO | bb | | 3 | 3 181202M2_4 | Standard | 150.000 | 6.67 | 9089.852 | 23006.633 | 4.939 | 137.3 | -8.5 | NO | NO | bb | | 4 | 4 181202M2_5 | Standard | 150.000 | 6.67 | 9784.962 | 24286.953 | 5.036 | 140.0 | -6.7 | NO | NO | bb | | 5 | 5 181202M2_6 | Standard | 150.000 | 6.67 | 9258.698 | 23607.182 | 4.902 | 136.3 | -9.2 | NO | NO | bb | | 6 4 | 6 181202M2_7 | Standard | 150.000 | 6.67 | 9389.959 | 23511.537 | 4.992 | 138.8 | -7.5 | NO | NO | bb | | 7 | 7 181202M2_8 | Standard | 150.000 | 6.67 | 9656.651 | 22404.008 | 5.388 | 149.8 | -0.2 | NO | NO | MM | | 8 | 8 181202M2_9 | Standard | 150.000 | 6.67 | 9467.294 | 20433.953 | 5.791 | 161.0 | 7.3 | NO | NO | bb | | 9 | 9 181202M2_10 | Standard | 150.000 | 6.67 | 8844.866 | 18144.816 | 6.093 | 169.4 | 12.9 | NO | NO | bb | | 10 | 10 181202M2_11 | Standard | 150.000 | 6.67 | 9204.148 | 15942.904 | 7.216 | 200.6 | 33.7 | NO | NO | bb | Work Order 1803676 Page 180 of 556 Page 18 of 22 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: d9-N-EtFOSE Response Factor: 0.0361215 RRF SD: 0.00475614, Relative SD: 13.167 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |--------|----------------|----------|-----------|------|----------|-----------|----------|-------|-------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 150.000 | 6.82 | 9267.479 | 23137.404 | 5.007 | 138.6 | -7.6 | NO | | NO | bb | | 2 | 2 181202M2_3 | Standard | 150.000 | 6.82 | 9417.438 | 24411.752 | 4.822 | 133.5 | -11.0 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 150.000 | 6.82 | 9367.441 | 23006.633 | 5.090 | 140.9 | -6.1 | NO | | NO | ММ | | 4 | 4 181202M2_5 | Standard | 150.000 | 6.82 | 9831.002 | 24286.953 | 5.060 | 140.1 | -6.6 | NO | | NO | ММ | | 5 | 5 181202M2_6 | Standard | 150.000 | 6.82 | 9178.014 | 23607.182 | 4.860 | 134.5 | -10.3 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 150.000 | 6.82 | 9518.834 | 23511.537 | 5.061 | 140.1 | -6.6 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 150.000 | 6.82 | 9371.340 | 22404.008 | 5.229 | 144.8 | -3.5 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 150.000 | 6.82 | 9438.916 | 20433.953 | 5.774 | 159.9 | 6.6 | NO | | NO | bb | | 9 1 34 | 9 181202M2_10 | Standard | 150.000 | 6.81 | 9147.148 | 18144.816 | 6.301 | 174.5 | 16.3 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 150.000 | 6.82 | 8901.749 | 15942.904 | 6.979 | 193.2 | 28.8 | NO | | NO | bb | Compound name: 13C4-PFBA Response Factor: 1 RRF SD: 5.23364e-017, Relative SD: 5.23364e-015 Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Type | Std. Conc | RT. | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|----------|----------|----------|-------|------|------------|---|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 1.47 | 8755.424 | 8755.424 | 12.500 | 12.5 | 0.0 | NO | 304-1400-1000-100-100-100-100-100-100-100 | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 1.47 | 8985.498 | 8985.498 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 3 | 3 181202M2_4 | Standard | 12.500 | 1.47 | 9024.967 | 9024.967 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 4 | 4 181202M2_5 | Standard | 12.500 | 1.47 | 9577.717 | 9577.717 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 5 | 5 181202M2_6 | Standard | 12.500 | 1.47 | 9216.354 | 9216.354 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 6 | 6 181202M2_7 | Standard | 12.500 | 1.47 | 9417.552 | 9417.552 | 12.500 | 12.5 | 0.0 | NO | | NO | мм | | 7 | 7 181202M2_8 | Standard | 12.500 | 1.47 | 9412.593 | 9412.593 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 8 | 8 181202M2_9 | Standard | 12.500 | 1.47 | 9230.500 | 9230.500 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 9 | 9 181202M2 10 | Standard | 12.500 | 1.47 | 8827.580 | 8827.580 | 12.500 | 12.5 | 0.0 | NO | | NO | мм | | 10 | 10 181202M2_11 | Standard | 12.500 | 1.47 | 8699.136 | 8699.136 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | Work Order 1803676 Page 181 of 556 Page 19 of 22 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C5-PFHxA Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc
| RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |--------------------|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|-----|----------|------------| | $v^{\prime\prime}$ | 1 181202M2_2 | Standard | 12.500 | 3.60 | 21884.557 | 21884.557 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 3.61 | 22519.205 | 22519.205 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 3.61 | 22580.148 | 22580.148 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 3.61 | 23437.223 | 23437.223 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 3.61 | 23364.684 | 23364.684 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 3.61 | 23122.318 | 23122.318 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 3.61 | 22645.541 | 22645.541 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 3.61 | 22215.309 | 22215.309 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 3.61 | 19415.918 | 19415.918 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 3.61 | 18135.842 | 18135.842 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | Compound name: 13C3-PFHxS Response Factor: 1 RRF SD: 5.23364e-017, Relative SD: 5.23364e-015 Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |--------|----------------|----------|-----------|------|----------|----------|----------|-------|------|------------|------------|----------|------------| | 11135 | 1 181202M2_2 | Standard | 12.500 | 4.37 | 3754.038 | 3754.038 | 12.500 | 12.5 | 0.0 | NO | er (d. 11. | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 4.37 | 3915.824 | 3915.824 | 12.500 | 12.5 | 0.0 | NO | | NO | мм | | 3 | 3 181202M2_4 | Standard | 12.500 | 4.37 | 4004.437 | 4004.437 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 4 1072 | 4 181202M2_5 | Standard | 12.500 | 4.37 | 3967.956 | 3967.956 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 5 | 5 181202M2_6 | Standard | 12.500 | 4.37 | 4000.192 | 4000.192 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 6 | 6 181202M2_7 | Standard | 12.500 | 4.37 | 3978.497 | 3978.497 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 7-2-3- | 7 181202M2_8 | Standard | 12.500 | 4.37 | 3909.020 | 3909.020 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 8 | 8 181202M2_9 | Standard | 12.500 | 4.37 | 3727.478 | 3727.478 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 9 | 9 181202M2_10 | Standard | 12.500 | 4.37 | 3357.620 | 3357.620 | 12.500 | 12.5 | 0.0 | NO | | NO | ММ | | 10 | 10 181202M2_11 | Standard | 12.500 | 4.37 | 2867.818 | 2867.818 | 12.500 | 12.5 | 0.0 | NO | | NO_ | ММ | Work Order 1803676 Page 182 of 556 Page 20 of 22 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C8-PFOA Response Factor: 1 RRF SD: 8.27511e-017, Relative SD: 8.27511e-015 Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD CoD | Flag x=excluded | |----|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|---------|-----------------| | | 1 181202M2_2 | Standard | 12.500 | 4.72 | 25427.918 | 25427.918 | 12.500 | 12.5 | 0.0 | NO | N | O bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 4.73 | 26231.518 | 26231.518 | 12.500 | 12.5 | 0.0 | NO | N | O bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 4.73 | 26898.668 | 26898.668 | 12.500 | 12.5 | 0.0 | NO | N | O bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 4.72 | 27182.742 | 27182.742 | 12.500 | 12.5 | 0.0 | NO | N | O bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 4.73 | 25823.834 | 25823.834 | 12.500 | 12.5 | 0.0 | NO | N | O bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 4.73 | 26537.365 | 26537.365 | 12.500 | 12.5 | 0.0 | NO | N | O bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 4.73 | 25198.629 | 25198.629 | 12.500 | 12.5 | 0.0 | NO | N | D bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 4.72 | 24351.957 | 24351.957 | 12.500 | 12.5 | 0.0 | NO | N | D bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 4.73 | 21780.797 | 21780.797 | 12.500 | 12.5 | 0.0 | NO | N | D bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 4.73 | 19460.047 | 19460.047 | 12.500 | 12.5 | 0.0 | NO | N | D bb | Compound name: 13C9-PFNA Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area) Curve type: RF | (ATEXANDE EN | # Name | Туре | Std. Conc | RT. | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD CoD Flag | x=excluded | |--------------|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|--------------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 5.16 | 24645.154 | 24645.154 | 12.500 | 12.5 | 0.0 | NO | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.16 | 24770.145 | 24770.145 | 12.500 | 12.5 | 0.0 | NO | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.16 | 25069.092 | 25069.092 | 12.500 | 12.5 | 0.0 | NO | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.16 | 26512.268 | 26512.268 | 12.500 | 12.5 | 0.0 | NO | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.16 | 25536.010 | 25536.010 | 12.500 | 12.5 | 0.0 | NO | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.16 | 25328.764 | 25328.764 | 12.500 | 12.5 | 0.0 | NO | NO | bb | | 7: | 7 181202M2_8 | Standard | 12.500 | 5.16 | 24528.369 | 24528.369 | 12.500 | 12.5 | 0.0 | NO | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.16 | 23726.076 | 23726.076 | 12.500 | 12.5 | 0.0 | NO | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.16 | 21062.650 | 21062.650 | 12.500 | 12.5 | 0.0 | NO | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.16 | 18684.068 | 18684.068 | 12.500 | 12.5 | 0.0 | NO | NO | bb | Page 183 of 556 Work Order 1803676 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Compound name: 13C4-PFOS Response Factor: 1 RRF SD: 1.04673e-016, Relative SD: 1.04673e-014 Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|----------|----------|----------|-------|------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 5.24 | 4124.125 | 4124.125 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.24 | 4043.074 | 4043.074 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.24 | 3968.353 | 3968.353 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.24 | 4217.781 | 4217.781 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.24 | 4195.018 | 4195.018 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.24 | 4019.653 | 4019.653 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.24 | 4145.392 | 4145.392 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.24 | 4103.915 | 4103.915 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.24 | 3697.286 | 3697.286 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.24 | 2980.433 | 2980.433 | 12.500 | 12.5 | 0.0 | NO | | NO | MM | Compound name: 13C6-PFDA Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Type | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |----|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|--------------------------------|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 5.54 | 21716.037 | 21716.037 | 12.500 | 12.5 | 0.0 | NO | annananan anan ang Aggaraga da | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.54 | 21340.531 | 21340.531 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.54 | 21966.305 | 21966.305 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.53 | 23800.488 | 23800.488 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.54 | 21413.693 | 21413.693 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.54 | 22298.768 | 22298.768 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.54 | 21747.414 | 21747.414 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.53 | 20217.711 | 20217.711 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 9 | 9 181202M2_10 | Standard | 12.500 | 5.54 | 17926.432 | 17926.432 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.54 | 15987.726 | 15987.726 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | Work Order 1803676 Page 184 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Dataset: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time ## Compound name: 13C7-PFUdA Response Factor: 1 RRF SD: 0, Relative SD:
0 Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area) Curve type: RF | | # Name | Туре | Std. Conc | RT | Area | IS Area | Response | Conc. | %Dev | Conc. Flag | CoD | CoD Flag | x=excluded | |------------------|----------------|----------|-----------|------|-----------|-----------|----------|-------|------|------------|-----|----------|------------| | 1 | 1 181202M2_2 | Standard | 12.500 | 5.85 | 23137.404 | 23137.404 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 2 | 2 181202M2_3 | Standard | 12.500 | 5.86 | 24411.752 | 24411.752 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 3 | 3 181202M2_4 | Standard | 12.500 | 5.86 | 23006.633 | 23006.633 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 4 | 4 181202M2_5 | Standard | 12.500 | 5.85 | 24286.953 | 24286.953 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 5 | 5 181202M2_6 | Standard | 12.500 | 5.85 | 23607.182 | 23607.182 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 6 | 6 181202M2_7 | Standard | 12.500 | 5.86 | 23511.537 | 23511.537 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 7 | 7 181202M2_8 | Standard | 12.500 | 5.85 | 22404.008 | 22404.008 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 8 | 8 181202M2_9 | Standard | 12.500 | 5.85 | 20433.953 | 20433.953 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 9 10 11 11 11 11 | 9 181202M2_10 | Standard | 12.500 | 5.85 | 18144.816 | 18144.816 | 12.500 | 12.5 | 0.0 | NO | | NO | bb | | 10 | 10 181202M2_11 | Standard | 12.500 | 5.86 | 15942.904 | 15942.904 | 12.500 | 12.5 | 0.0 | NO | _ | NO | bb | Work Order 1803676 Page 185 of 556 Page 1 of 1 Dataset: Untitled Last Altered: Monday, December 03, 2018 10:44:14 Pacific Standard Time Printed: Monday, December 03, 2018 10:44:20 Pacific Standard Time Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Compound name: PFBA | | # Name | | Acq.Date | Acq.Time | |----|----------------|-------------------------------|-----------|----------| | 1 | 1 181202M2_1 | IPA | 02-Dec-18 | 18:24:21 | | 2 | 2 181202M2_2 | ST181202M2-1 PFC CS-2 18K3001 | 02-Dec-18 | 18:34:57 | | 3 | 3 181202M2_3 | ST181202M2-2 PFC CS-1 18K3002 | 02-Dec-18 | 18:45:35 | | 4 | 4 181202M2_4 | ST181202M2-3 PFC CS0 18K3003 | 02-Dec-18 | 18:56:07 | | 5 | 5 181202M2_5 | ST181202M2-4 PFC CS1 18K3004 | 02-Dec-18 | 19:06:45 | | 6 | 6 181202M2_6 | ST181202M2-5 PFC CS2 18K3005 | 02-Dec-18 | 19:17:17 | | 7 | 7 181202M2_7 | ST181202M2-6 PFC CS3 18K3006 | 02-Dec-18 | 19:27:56 | | 3 | 8 181202M2_8 | ST181202M2-7 PFC CS4 18K3007 | 02-Dec-18 | 19:38:29 | | 9 | 9 181202M2_9 | ST181202M2-8 PFC CS5 18K3008 | 02-Dec-18 | 19:49:07 | | 10 | 10 181202M2_10 | ST181202M2-9 PFC CS6 18K3009 | 02-Dec-18 | 19:59:40 | | 11 | 11 181202M2_11 | ST181202M2-10 PFC CS6 18K3009 | 02-Dec-18 | 20:10:18 | | 12 | 12 181202M2_12 | IPA | 02-Dec-18 | 20:20:57 | | 13 | 13 181202M2_13 | ICV181202M2-1 PFC ICV 18K3011 | 02-Dec-18 | 20:31:29 | | 14 | 14 181202M2_14 | IPA | 02-Dec-18 | 20:42:08 | Work Order 1803676 Page 186 of 556 MassLynx MassLynx V4.1 SCN945 SCN960 Page 1 of 10 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:34:59 Pacific Standard Time Method: F:\Projects\PFAS.PRO\Results\181202M2\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181202M2_2, Date: 02-Dec-2018, Time: 18:34:57, ID: ST181202M2-1 PFC CS-2 18K3001, Description: PFC CS-2 18K3001 | | # Name | IS# | CoD | CoD Flag %RSD | |--------------------|--------------|-----|--------|---------------| | 1 | 1 PFBA | 36 | 0.9998 | NO | | 2 | 2 PFPeA | 37 | 0.9999 | NO | | 3 | 3 PFBS | 38 | 0.9999 | NO | | 4 | 4 4:2 FTS | 39 | 0.9998 | NO | | 5 | 5 PFHxA | 40 | 1.0000 | NO | | 6 | 6 PFPeS | 38 | 1.0000 | NO | | Zing grandlanda | 7 PFHpA | 41 | 0.9995 | NO | | 8 and applications | 8 L-PFHxS | 42 | 0.9999 | NO | | 9 | 10 6:2 FTS | 43 | 0.9997 | NO | | 10 | 11 L-PFOA | 44 | 0.9999 | NO | | 11 | 13 PFHpS | 47 | 0.9999 | NO | | 12 | 14 PFNA | 45 | 0.9999 | NO | | 13 | 15 PFOSA | 46 | 0.9996 | NO | | 14 | 16 L-PFOS | 47 | 0.9993 | NO | | 15 | 18 PFDA | 48 | 0.9999 | NO | | 16 | 19 8:2 FTS | 49 | 0.9999 | NO | | 17 | 20 PFNS | 47 | 0.9999 | NO | | 18 | 21 L-MeFOSAA | 50 | 0.9997 | NO | | 19 | 23 L-EtFOSAA | 52 | 0.9958 | NO | Work Order 1803676 Page 187 of 556 Page 1 of 20 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Method: F:\Projects\PFAS.PRO\Results\181202M2\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181202M2_2, Date: 02-Dec-2018, Time: 18:34:57, ID: ST181202M2-1 PFC CS-2 18K3001, Description: PFC CS-2 18K3001 | | # Name | IS# | CoD | CoD Flag | %RSD | |----------|-----------------|-----|--------|----------|-----------------| | 1 | 25 PFUdA | 51 | 0.9994 | NO | SNEW PRINCESSES | | 2 | 26 PFDS | 47 | 0.9997 | NO | | | 3 | 27 PFDoA | 53 | 0.9998 | NO | ĺ | | 4 | 28 N-MeFOSA | 54 | 0.9989 | NO | | | 5 martin | 29 PFTrDA | 53 | 0.9997 | NO | | | 6 | 30 PFTeDA | 55 | 0.9995 | NO | | | 7 | 31 N-EtFOSA | 56 | 0.9999 | NO | | | 8 | 32 PFHxDA | 57 | 0.9988 | NO | | | 9 | 33 PFODA | 57 | 0.9990 | NO | ĺ | | 10 | 34 N-MeFOSE | 58 | 0.9999 | NO | | | 11 | 35 N-EtFOSE | 59 | 0.9997 | NO | | | 12 | 36 13C3-PFBA | 60 | | NO | 1.522 | | 13 | 37 13C3-PFPeA | 61 | | NO | 3.760 | | 14 | 38 13C3-PFBS | 62 | | NO | 2.528 | | 15 | 39 13C2-4:2 FTS | 62 | | NO | 7.549 | | 16 | 40 13C2-PFHxA | 61 | | NO | 2.673 | | 17 - 7 | 41 13C4-PFHpA | 61 | | NO | 2.859 | | 18 | 42 18O2-PFHxS | 62 | | NO | 2.442 | | 19 | 43 13C2-6:2 FTS | 65 | | NO | 5.640 | | 20 | 44 13C2-PFOA | 63 | | NO | 3.364 | | 21 | 45 13C5-PFNA | 64 | | NO | 2.566 | | 22 | 46 13C8-PFOSA | 67 | | NO | 8.370 | | 23 | 47 13C8-PFOS | 65 | | NO | 4.074 | | 24 | 48 13C2-PFDA | 66 | | NO | 3.311 | | 25 | 49 13C2-8:2 FTS | 65 | | NO | 8.722 | | 26 | 50 d3-N-MeFOSAA | 67 | | NO | 6.446 | | 27 | 51 13C2-PFUdA | 67 | | NO | 4.047 | | 28 | 52 d5-N-EtFOSAA | 67 | | NO | 4.617 | | 29 | 53 13C2-PFDoA | 66 | | NO | 4.071 | | 30 | 54 d3-N-MeFOSA | 67 | | NO | 13.574 | | 31 | 55 13C2-PFTeDA | 67 | | NO | 7.453 | | 32 | 56 d5-N-ETFOSA | 67 | | NO | 7.727 | Page 188 of 556 Work Order 1803676 Quantify Sample Summary Report Vista Analytical Laboratory MassLynx WassLynx V4.1 SCN945 SCN960 Page 2 of 20 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:35:13 Pacific Standard Time Name: 181202M2_2, Date: 02-Dec-2018, Time: 18:34:57, ID: ST181202M2-1 PFC CS-2 18K3001, Description: PFC CS-2 18K3001 | | # Name | IS# | CoD CoD Flag | %RSD | |----|----------------|-----|--------------|--------| | 33 | 57 13C2-PFHxDA | 67 | NO | 11.224 | | 34 | 58 d7-N-MeFOSE | 67 | NO | 14.359 | | 35 | 59 d9-N-EtFOSE | 67 | NO | 13.167 | | 36 | 60 13C4-PFBA | 60 | NO | 0.000 | | 37 | 61 13C5-PFHxA | 61 | NO | 0.000 | | 38 | 62 13C3-PFHxS | 62 | NO | 0.000 | | 39 | 63 13C8-PFOA | 63 | NO | 0.000 | | 40 | 64 13C9-PFNA | 64 | NO | 0.000 | | 41 | 65 13C4-PFOS | 65 | NO | 0.000 | | 42 | 66 13C6-PFDA | 66 | NO | 0.000 | | 43 | 67 13C7-PFUdA | 67 | NO | 0.000 | Work Order 1803676 Page 189 of 556 Page 1 of 1 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:33:55 Pacific Standard Time Method: F:\Projects\PFAS.PRO\Results\181202M2\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181202M2_7, Date: 02-Dec-2018, Time: 19:27:56, ID: ST181202M2-6 PFC CS3 18K3006, Description: PFC CS3 18K3006 | June 11 | Name | Ion Ratio | Ratio out? | |---------|-----------|------------------------------|------------| | 1 | PFBA | AND PLANT MARKET ST. DEC. 21 | | | 2 | PFPeA | | | | 3 | PFBS | 2.553 | NO | | 4 | 4:2 FTS | 1.732 | NO | | 5 | PFHxA | 15.761 | NO | | 6 | PFPeS | 1.535 | NO | | 7 | PFHpA | 52.646 | NO | | 8 | L-PFHxS | 1.723 | NO | | 9 | 6:2 FTS | 2.895 | NO | | 10 | L-PFOA | 3.277 | NO | | 11. | PFHpS | 1.648 | NO | | 12 | PFNA | 7.039 | NO | | 13 | PFOSA | 39.000 | NO | | 14 | L-PFOS | 1.863 | NO | | 15 | PFDA | 8.175 | NO | | 16 | 8:2 FTS | 2.252 | NO | | 17 | PFNS | 1.614 | NO | | 18 | L-MeFOSAA | 2.443 | NO | | 19 | L-EtFOSAA | 1.294 | NO | Work Order 1803676 Page 1 of 1 _ . Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:34:11 Pacific Standard Time Method: F:\Projects\PFAS.PRO\Results\181202M2\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181202M2_7, Date: 02-Dec-2018, Time: 19:27:56, ID: ST181202M2-6 PFC CS3 18K3006, Description: PFC CS3 18K3006 | | Name | lon Ratio | Ratio out? | |----|----------|-----------|------------| | 1 | PFUdA | 18.285 | NO | | 2 | PFDS | 1.799 | NO | | 3 | PFDoA | 9.726 | NO | | 4 | N-MeFOSA | 1.522 | NO | | 5 | PFTrDA | 43.805 | NO | | 6 | PFTeDA | 11.853 | NO | | 7 | N-EtFOSA | 1.474 | NO | | 8 | PFHxDA | 36.004 | NO | | 9 | PFODA | | | | 10 | N-MeFOSE | | | | 11 | N-EtFOSE | | | Work Order 1803676 Page 191 of 556 Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Method: F:\Projects\PFAS.PRO\Results\181202M2\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08
Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Compound name: PFBA Correlation coefficient: r = 0.999881, $r^2 = 0.999762$ Calibration curve: 1.02847 * x + -0.0331845 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: PFPeA Coefficient of Determination: R^2 = 0.999945 Calibration curve: -6.16115e-005 * $x^2 + 0.911659 * x + -0.0105295$ Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 193 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: PFBS Coefficient of Determination: R^2 = 0.999925 Calibration curve: -0.000222114 * x^2 + 2.02594 * x + -0.0995002 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Page 194 of 556 Work Order 1803676 Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: 4:2 FTS Coefficient of Determination: R^2 = 0.999815 Calibration curve: -0.00237929 * x^2 + 0.842016 * x + -0.0207497 Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 195 of 556 MassLynx MassLynx V4.1 SCN945 SCN960 Page 5 of 19 Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: PFHxA Coefficient of Determination: R^2 = 0.999961 Calibration curve: -0.000229785 * x^2 + 1.04977 * x + -0.00145899 Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: PFPeS Coefficient of Determination: R^2 = 0.999956 Calibration curve: -0.000349257 * x^2 + 1.48431 * x + -0.0700599 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 197 of 556 Tiota / Tialy troat Labora F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Dataset: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: PFHpA Correlation coefficient: r = 0.999759, r² = 0.999518 Calibration curve: 1.16268 * x + 0.00338901 Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 MassLynx WassLynx V4.1 SCN945 SCN960 Page 8 of 19 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: L-PFHxS Coefficient of Determination: R^2 = 0.999870 Calibration curve: -0.000154579 * x^2 + 1.97668 * x + -0.00449101 Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1803676 Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: 6:2 FTS Coefficient of Determination: R^2 = 0.999697 Calibration curve: $-0.00272892 \times x^2 + 0.980454 \times x + -0.00268433$ Response type: Internal Std (Ref 43), Area \times (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 200 of 556 MassLynx WassLynx V4.1 SCN945 SCN960 Page 10 of 19 Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: L-PFOA Coefficient of Determination: R^2 = 0.999937 Calibration curve: -0.000202874 * x^2 + 1.22088 * x + 0.0495571 Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: PFHpS Coefficient of Determination: R^2 = 0.999876 Calibration curve: $-2.31836e-006 * x^2 + 0.886394 * x + -0.0630138$ Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 202 of 556 Vista Analytical Laboratory Q1 Page 12 of 19 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Dataset: Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:06 Pacific Standard Time Printed: Compound name: PFNA Coefficient of Determination: R^2 = 0.999876 Calibration curve: -0.000138455 * x^2 + 1.1098 * x + -0.0515303 Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Page 203 of 556 Work Order 1803676 , Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: PFOSA Coefficient of Determination: R^2 = 0.999647 Calibration curve: -0.000143866 * x^2 + 1.1409 * x + -0.0296806 Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 204 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: L-PFOS Correlation coefficient: r = 0.999643, $r^2 = 0.999286$ Calibration curve: 1.10611 * x + -0.0627829 Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 205 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: PFDA Coefficient of Determination: R^2 = 0.999864 Calibration curve: $-0.000210024 * x^2 + 1.07747 * x + -0.0171268$ Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: 8:2 FTS Coefficient of Determination: R^2 = 0.999875 Calibration curve: -0.00465207 * x^2 + 1.3615 * x + -0.0995875 Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 207 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Dataset: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: PFNS Coefficient of Determination: R^2 = 0.999902 Calibration curve: $-2.99188e-005 * x^2 + 0.768689 * x + 0.0389701$ Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Page 18 of 19 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: L-MeFOSAA Coefficient of Determination: R^2 = 0.999677 Calibration curve: $-0.000422706 * x^2 + 1.51286 * x + -0.0237577$ Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None Page 19 of 19 Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:06 Pacific Standard Time Compound name: L-EtFOSAA Coefficient of Determination: R^2 = 0.995820 Calibration curve: -0.000217066 * x^2 + 1.09478 * x + -0.0924104 Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 1 of 11 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018
11:43:24 Pacific Standard Time Method: F:\Projects\PFAS.PRO\Results\181202M2\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Compound name: PFUdA Coefficient of Determination: R^2 = 0.999432 Calibration curve: $-0.000244716 \times x^2 + 1.07792 \times x + 0.000271046$ Response type: Internal Std (Ref 51), Area \times (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Page 2 of 11 Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: PFDS Coefficient of Determination: R^2 = 0.999683 Calibration curve: 7.56593e-005 * x^2 + 0.811719 * x + 0.0648879 Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 212 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: PFDoA Coefficient of Determination: R^2 = 0.999795 Calibration curve: -0.000443961 * x^2 + 1.32023 * x + -0.000921135 Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: N-MeFOSA Coefficient of Determination: R^2 = 0.998909 Calibration curve: -7.79408e-005 * x^2 + 1.05657 * x + -0.0424732 Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None Vista Analytical Laboratory Q1 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: PFTrDA Coefficient of Determination: R^2 = 0.999656 Calibration curve: $-0.000291719 \times x^2 + 1.21601 \times x + 0.00941256$ Response type: Internal Std (Ref 53), Area \times (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 215 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: PFTeDA Coefficient of Determination: R^2 = 0.999493 Calibration curve: $-0.000343362 * x^2 + 1.13504 * x + 0.00135132$ Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 216 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: N-EtFOSA Coefficient of Determination: R^2 = 0.999912 Calibration curve: -4.97469e-005 * $x^2 + 0.973269 * x + -0.0114563$ Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 217 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: PFHxDA Coefficient of Determination: R^2 = 0.998811 Calibration curve: -0.000210664 * x^2 + 0.529999 * x + 0.0560111 Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: PFODA Coefficient of Determination: R^2 = 0.998954 Calibration curve: -0.000288047 * x^2 + 0.858197 * x + 0.0110406 Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 10 of 11 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: N-MeFOSE Coefficient of Determination: R^2 = 0.999899 Calibration curve: -2.49953e-005 * $x^2 + 0.933355$ * x + -0.466455 Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 220 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 11:43:24 Pacific Standard Time Compound name: N-EtFOSE Coefficient of Determination: R^2 = 0.999728 Calibration curve: -8.31447e-006 * $x^2 + 1.05163 * x + 0.0451426$ Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area) Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None Work Order 1803676 Page 221 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Method: F:\Projects\PFAS.PRO\Results\181202M2\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181202M2 2, Date: 02-Dec-2018, Time: 18:34:57, ID: ST181202M2-1 PFC CS-2 18K3001, Description: PFC CS-2 18K3001 Work Order 1803676 Page 222 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_2, Date: 02-Dec-2018, Time: 18:34:57, ID: ST181202M2-1 PFC CS-2 18K3001, Description: PFC CS-2 18K3001 Work Order 1803676 Page 223 of 556 , F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Dataset: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2 2, Date: 02-Dec-2018, Time: 18:34:57, ID: ST181202M2-1 PFC CS-2 18K3001, Description: PFC CS-2 18K3001 Work Order 1803676 Page 224 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_2, Date: 02-Dec-2018, Time: 18:34:57, ID: ST181202M2-1 PFC CS-2 18K3001, Description: PFC CS-2 18K3001 Work Order 1803676 Page 225 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: N Printed: N Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_2, Date: 02-Dec-2018, Time: 18:34:57, ID: ST181202M2-1 PFC CS-2 18K3001, Description: PFC CS-2 18K3001 Work Order 1803676 Page 226 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: 5.500 6.000 5.500 6.000 Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_2, Date: 02-Dec-2018, Time: 18:34:57, ID: ST181202M2-1 PFC CS-2 18K3001, Description: PFC CS-2 18K3001 Work Order 1803676 Page 227 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2_3, Date: 02-Dec-2018, Time: 18:45:35, ID: ST181202M2-2 PFC CS-1 18K3002, Description: PFC CS-1 18K3002 Work Order 1803676 Page 228 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_3, Date: 02-Dec-2018, Time: 18:45:35, ID: ST181202M2-2 PFC CS-1 18K3002, Description: PFC CS-1 18K3002 Work Order 1803676 Page 229 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_3, Date: 02-Dec-2018, Time: 18:45:35, ID: ST181202M2-2 PFC CS-1 18K3002, Description: PFC CS-1 18K3002 Work Order 1803676 Page 230 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_3, Date: 02-Dec-2018, Time: 18:45:35, ID: ST181202M2-2 PFC CS-1 18K3002, Description: PFC CS-1 18K3002 Work Order 1803676 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time # Name: 181202M2_3, Date: 02-Dec-2018, Time: 18:45:35, ID: ST181202M2-2 PFC CS-1 18K3002, Description: PFC CS-1 18K3002 Work Order 1803676 Page 232 of 556 6.000 5.500 5.500 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time − min 6.000 Name: 181202M2_3, Date: 02-Dec-2018, Time: 18:45:35, ID: ST181202M2-2 PFC CS-1 18K3002, Description: PFC CS-1 18K3002 Work Order 1803676 Page
233 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time # Name: 181202M2_4, Date: 02-Dec-2018, Time: 18:56:07, ID: ST181202M2-3 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 234 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time ## Name: 181202M2_4, Date: 02-Dec-2018, Time: 18:56:07, ID: ST181202M2-3 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 235 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2 4, Date: 02-Dec-2018, Time: 18:56:07, ID: ST181202M2-3 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 236 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2 4, Date: 02-Dec-2018, Time: 18:56:07, ID: ST181202M2-3 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 237 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_4, Date: 02-Dec-2018, Time: 18:56:07, ID: ST181202M2-3 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Page 238 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_4, Date: 02-Dec-2018, Time: 18:56:07, ID: ST181202M2-3 PFC CS0 18K3003, Description: PFC CS0 18K3003 Work Order 1803676 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time ### Name: 181202M2_5, Date: 02-Dec-2018, Time: 19:06:45, ID: ST181202M2-4 PFC CS1 18K3004, Description: PFC CS1 18K3004 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2 5, Date: 02-Dec-2018, Time: 19:06:45, ID: ST181202M2-4 PFC CS1 18K3004, Description: PFC CS1 18K3004 Work Order 1803676 Page 241 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2_5, Date: 02-Dec-2018, Time: 19:06:45, ID: ST181202M2-4 PFC CS1 18K3004, Description: PFC CS1 18K3004 Work Order 1803676 Page 242 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2 5, Date: 02-Dec-2018, Time: 19:06:45, ID: ST181202M2-4 PFC CS1 18K3004, Description: PFC CS1 18K3004 Work Order 1803676 Page 243 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Dataset: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_5, Date: 02-Dec-2018, Time: 19:06:45, ID: ST181202M2-4 PFC CS1 18K3004, Description: PFC CS1 18K3004 Work Order 1803676 Page 244 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_5, Date: 02-Dec-2018, Time: 19:06:45, ID: ST181202M2-4 PFC CS1 18K3004, Description: PFC CS1 18K3004 Work Order 1803676 Page 245 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2_6, Date: 02-Dec-2018, Time: 19:17:17, ID: ST181202M2-5 PFC CS2 18K3005, Description: PFC CS2 18K3005 Work Order 1803676 Page 246 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time ## Name: 181202M2 6, Date: 02-Dec-2018, Time: 19:17:17, ID: ST181202M2-5 PFC CS2 18K3005, Description: PFC CS2 18K3005 Work Order 1803676 Page 247 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_6, Date: 02-Dec-2018, Time: 19:17:17, ID: ST181202M2-5 PFC CS2 18K3005, Description: PFC CS2 18K3005 Work Order 1803676 Page 248 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2_6, Date: 02-Dec-2018, Time: 19:17:17, ID: ST181202M2-5 PFC CS2 18K3005, Description: PFC CS2 18K3005 Work Order 1803676 Page 249 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Work Order 1803676 Page 250 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time ## Name: 181202M2_6, Date: 02-Dec-2018, Time: 19:17:17, ID: ST181202M2-5 PFC CS2 18K3005, Description: PFC CS2 18K3005 Work Order 1803676 6.000 5.500 6.000 5.500 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time ### Name: 181202M2_7, Date: 02-Dec-2018, Time: 19:27:56, ID: ST181202M2-6 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 252 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2 7, Date: 02-Dec-2018, Time: 19:27:56, ID: ST181202M2-6 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 253 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_7, Date: 02-Dec-2018, Time: 19:27:56, ID: ST181202M2-6 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 254 of 556 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2 7, Date: 02-Dec-2018, Time: 19:27:56, ID: ST181202M2-6 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 255 of 556 Printed: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2 7, Date: 02-Dec-2018, Time: 19:27:56, ID: ST181202M2-6 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 256 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_7, Date: 02-Dec-2018, Time: 19:27:56, ID: ST181202M2-6 PFC CS3 18K3006, Description: PFC CS3 18K3006 Work Order 1803676 Page 257 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_8, Date: 02-Dec-2018, Time: 19:38:29, ID: ST181202M2-7 PFC CS4 18K3007, Description: PFC CS4 18K3007 Work Order 1803676 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time ### Name: 181202M2_8, Date: 02-Dec-2018, Time: 19:38:29, ID: ST181202M2-7 PFC CS4 18K3007, Description: PFC CS4 18K3007 Work Order 1803676 Page 259 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time ### Name: 181202M2_8, Date: 02-Dec-2018, Time: 19:38:29, ID: ST181202M2-7 PFC CS4 18K3007, Description: PFC CS4 18K3007 Work Order 1803676 Page 260 of 556 Detect: F/Drojects/DEAC DDO/Decylts/ Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2_8, Date: 02-Dec-2018, Time: 19:38:29, ID: ST181202M2-7 PFC CS4 18K3007, Description: PFC CS4 18K3007 Work Order 1803676 Page 261 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time # Name: 181202M2_8, Date: 02-Dec-2018, Time: 19:38:29, ID: ST181202M2-7 PFC CS4 18K3007, Description: PFC CS4 18K3007 Work Order
1803676 Page 262 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2_8, Date: 02-Dec-2018, Time: 19:38:29, ID: ST181202M2-7 PFC CS4 18K3007, Description: PFC CS4 18K3007 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2_9, Date: 02-Dec-2018, Time: 19:49:07, ID: ST181202M2-8 PFC CS5 18K3008, Description: PFC CS5 18K3008 Work Order 1803676 Page 264 of 556 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2 9, Date: 02-Dec-2018, Time: 19:49:07, ID: ST181202M2-8 PFC CS5 18K3008, Description: PFC CS5 18K3008 Work Order 1803676 Page 265 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_9, Date: 02-Dec-2018, Time: 19:49:07, ID: ST181202M2-8 PFC CS5 18K3008, Description: PFC CS5 18K3008 Work Order 1803676 Page 266 of 556 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_9, Date: 02-Dec-2018, Time: 19:49:07, ID: ST181202M2-8 PFC CS5 18K3008, Description: PFC CS5 18K3008 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2 9, Date: 02-Dec-2018, Time: 19:49:07, ID: ST181202M2-8 PFC CS5 18K3008, Description: PFC CS5 18K3008 Work Order 1803676 Page 268 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2_9, Date: 02-Dec-2018, Time: 19:49:07, ID: ST181202M2-8 PFC CS5 18K3008, Description: PFC CS5 18K3008 Work Order 1803676 Page 269 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_10, Date: 02-Dec-2018, Time: 19:59:40, ID: ST181202M2-9 PFC CS6 18K3009, Description: PFC CS6 18K3009 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time # Name: 181202M2_10, Date: 02-Dec-2018, Time: 19:59:40, ID: ST181202M2-9 PFC CS6 18K3009, Description: PFC CS6 18K3009 Work Order 1803676 Page 271 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_10, Date: 02-Dec-2018, Time: 19:59:40, ID: ST181202M2-9 PFC CS6 18K3009, Description: PFC CS6 18K3009 Work Order 1803676 Page 272 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.gld Last Altered: Dataset: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_10, Date: 02-Dec-2018, Time: 19:59:40, ID: ST181202M2-9 PFC CS6 18K3009, Description: PFC CS6 18K3009 Work Order 1803676 Page 273 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2 10, Date: 02-Dec-2018, Time: 19:59:40, ID: ST181202M2-9 PFC CS6 18K3009, Description: PFC CS6 18K3009 Work Order 1803676 Page 274 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_10, Date: 02-Dec-2018, Time: 19:59:40, ID: ST181202M2-9 PFC CS6 18K3009, Description: PFC CS6 18K3009 Work Order 1803676 Page 275 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_11, Date: 02-Dec-2018, Time: 20:10:18, ID: ST181202M2-10 PFC CS6 18K3009, Description: PFC CS7 18K3010 Work Order 1803676 Page 276 of 556 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Monday, December 03, 2018 10:27:10 Pacific Standard Time Printed: Monday, December 03, 2018 10:27:36 Pacific Standard Time #### Name: 181202M2 11, Date: 02-Dec-2018, Time: 20:10:18, ID: ST181202M2-10 PFC CS6 18K3009, Description: PFC CS7 18K3010 Work Order 1803676 Page 277 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_11, Date: 02-Dec-2018, Time: 20:10:18, ID: ST181202M2-10 PFC CS6 18K3009, Description: PFC CS7 18K3010 Work Order 1803676 Page 278 of 556 Page 58 of 60 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_11, Date: 02-Dec-2018, Time: 20:10:18, ID: ST181202M2-10 PFC CS6 18K3009, Description: PFC CS7 18K3010 Work Order 1803676 Page 279 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_11, Date: 02-Dec-2018, Time: 20:10:18, ID: ST181202M2-10 PFC CS6 18K3009, Description: PFC CS7 18K3010 Work Order 1803676 Page 280 of 556 Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-CRV.qld Last Altered: Printed: Monday, December 03, 2018 10:27:10 Pacific Standard Time Monday, December 03, 2018 10:27:36 Pacific Standard Time Name: 181202M2_11, Date: 02-Dec-2018, Time: 20:10:18, ID: ST181202M2-10 PFC CS6 18K3009, Description: PFC CS7 18K3010 Work Order 1803676 Page 281 of 556 Page 7 of 9 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-ICV.qld Last Altered: Monday, December 03, 2018 10:56:51 Pacific Standard Time Printed: Monday, December 03, 2018 10:58:27 Pacific Standard Time ### Name: 181202M2_13, Date: 02-Dec-2018, Time: 20:31:29, ID: ICV181202M2-1 PFC ICV 18K3011, Description: PFC ICV 18K3011 | | # Name | Trace | Area | IS Area | wt/vol | RT | Response | Conc. | %Rec | Recovery | on Ratio | Ratio Out? | |------------|-----------------|---------------|-----------|-----------|--------|------|----------|-------|-------|----------|--|------------| | 1 | 1 PFBA | 213.0 > 168.8 | 6140.405 | 7883.377 | 1.00 | 1.47 | 9.736 | 9.5 | 95.0 | NO | A COLOR OF THE STATE STA | | | 2 | 2 PFPeA | 263.1 > 218.9 | 9020.201 | 13594.861 | 1.00 | 2.73 | 8.294 | 9.1 | 91.1 | NO | | | | 3 | 3 PFBS | 299.0 > 79.7 | 3115.221 | 2497.661 | 1.00 | 3.05 | 15.591 | 7.8 | 77.5 | NO | 2.577 | NO | | 4 | 4 4:2 FTS | 327.2>307.2 | 4357.904 | 7872.859 | 1.00 | 3.52 | 6.919 | 8.4 | 84.4 | NO | 1.689 | NO | | 5 | 5 PFHxA | 313 > 269 | 15517.643 | 8090.420 | 1.00 | 3.61 | 9.590 | 9.2 | 91.6 | NO | 16.075 | NO | | 6 | 6 PFPeS | 349.1>80.1 | 2413.071 | 2497.661 | 1.00 | 3.82 | 12.077 | 8.2 | 82.0 | NO | 1.481 | NO | | 7 | 36
13C3-PFBA | 216.1 > 171.8 | 7883.377 | 9233.056 | 1.00 | 1.47 | 10.673 | 12.4 | 99.2 | NO | | | | 8 | 37 13C3-PFPeA | 266. > 221.8 | 13594.861 | 22850.570 | 1.00 | 2.73 | 7.437 | 12.3 | 98.5 | NO | | | | 9 | 38 13C3-PFBS | 302. > 98.8 | 2497.661 | 4034.381 | 1.00 | 3.05 | 7.739 | 12.2 | 97.8 | NO | | | | 10 | 39 13C2-4:2 FTS | 329.2>308.9 | 7872.859 | 4034.381 | 1.00 | 3.52 | 24.393 | 11.8 | 94.1 | NO | | | | 11. | 40 13C2-PFHxA | 315 > 270 | 8090.420 | 22850.570 | 1.00 | 3.61 | 4.426 | 4.9 | 98.3 | NO | | | | 12 | 38 13C3-PFBS | 302. > 98.8 | 2497.661 | 4034.381 | 1.00 | 3.05 | 7.739 | 12.2 | 97.8 | NO | | | | 13 | -1 | | | | | | | | | | | | | 14 | 10 6:2 FTS | 427.1 > 407 | 4946.854 | 7317.706 | 1.00 | 4.67 | 8.450 | 8.8 | 88.4 | NO | 3.162 | NO | | 15 | 7 PFHpA | 363.0 > 318.9 | 14006.358 | 15581.168 | 1.00 | 4.24 | 11.237 | 9.7 | 96.6 | NO | 56.596 | NO | | 16 | 8 L-PFHxS | 398.9 > 79.6 | 2397.661 | 1760.062 | 1.00 | 4.37 | 17.028 | 8.6 | 86.2 | NO | 1.699 | NO | | 17 | 11 L-PFOA | 412.8 > 368.9 | 19962.924 | 22960.176 | 1.00 | 4.73 | 10.868 | 8.9 | 88.7 | NO | 3.291 | NO | | 18 | 13 PFHpS | 449 > 80.0 | 2535.390 | 4001.654 | 1.00 | 4.84 | 7.920 | 9.0 | 90.1 | NO | 1.639 | NO | | 19 | 14 PFNA | 463.0 > 418.8 | 20263.572 | 25965.410 | 1.00 | 5.16 | 9.755 | 8.8 | 88.5 | NO | 7.594 | NO | | 20 | 43 13C2-6:2 FTS | 429.1 > 408.9 | 7317.706 | 4113.747 | 1.00 | 4.67 | 22.236 | 12.2 | 97.5 | NO | | } | | 21 | 41 13C4-PFHpA | 367.2 > 321.8 | 15581.168 | 22850.570 | 1.00 | 4.24 | 8.523 | 12.3 | 98.4 | NO | | | | 22 | 42 18O2-PFHxS | 403.0 > 102.6 | 1760.062 | 4034.381 | 1.00 | 4.37 | 5.453 | 11.5 | 91.7 | NO | | | | 23 | 44 13C2-PFOA | 414.9 > 369.7 | 22960.176 | 25120.416 | 1.00 | 4.73 | 11.425 | 13.1 | 104.7 | NO | | | | 24 | 47 13C8-PFOS | 507.0 > 79.9 | 4001.654 | 4113.747 | 1.00 | 5.24 | 12.159 | 12.6 | 100.5 | NO | | | | 25 | 45 13C5-PFNA | 468.2 > 422.9 | 25965.410 | 24353.928 | 1.00 | 5.16 | 13.327 | 13.2 | 106.0 | NO | | | | 26 | - 1 | | | | | | | | | | | | | 27 | 15 PFOSA | 497.9 > 77.9 | 3759.528 | 4451.726 | 1.00 | 5.20 | 10.556 | 9.3 | 92.9 | NO | 31.998 | NO | | 28 | 16 L-PFOS | 498.9 > 79.9 | 2800.970 | 4001.654 | 1.00 | 5.24 | 8.749 | 8.0 | 79.7 | NO | 1.789 | NO | | 29 | 18 PFDA | 513 > 468.8 | 18661.449 | 24121.828 | 1.00 | 5.54 | 9.670 | 9.0 | 90.1 | NO | 8.733 | NO | | 30 . | 19 8:2 FTS | 527 > 506.9 | 4210.729 | 4017.639 | 1.00 | 5.51 | 13.101 | 10.0 | 100.4 | NO | 2.486 | NO | | 31 | 20 PFNS | 549.1 > 80.1 | 2107.343 | 4001.654 | 1.00 | 5.60 | 6.583 | 8.5 | 85.2 | NO | 1.583 | NO | | 32 | 21 L-MeFOSAA | 570 > 419 | 9752.607 | 8318.344 | 1.00 | 5.68 | 14.655 | 9.7 | 97.3 | NO | 2.887 | NO | | 33 | 46 13C8-PFOSA | 506.1 > 77.7 | 4451.726 | 22712.641 | 1.00 | 5.20 | 2.450 | 12.2 | 97.2 | NO | | | | 34 | 47 13C8-PFOS | 507.0 > 79.9 | 4001.654 | 4113.747 | 1.00 | 5.24 | 12.159 | 12.6 | 100.5 | NO | | | | 35 | 48 13C2-PFDA | 515.1 > 469.9 | 24121.828 | 22907.691 | 1.00 | 5.54 | 13.163 | 11.7 | 93.6 | NO | | | | 36 | 49 13C2-8:2 FTS | 529.1 > 508.7 | 4017.639 | 4113.747 | 1.00 | 5.51 | 12.208 | 11.2 | 89.9 | NO_ | | | AR 12/3/18 12/3/18 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-ICV.qld Last Altered: Printed: Monday, December 03, 2018 10:56:51 Pacific Standard Time Monday, December 03, 2018 10:58:27 Pacific Standard Time Name: 181202M2_13, Date: 02-Dec-2018, Time: 20:31:29, ID: ICV181202M2-1 PFC ICV 18K3011, Description: PFC ICV 18K3011 AR 12/3/18 | | # Name | Trace | Area | IS Area | wt/vol | RT. | Response | Conc. | %Rec | Recovery | Ion Ratio | Ratio Out? | |----|-----------------|-----------------------|-----------|-----------|--------|------|----------|-------|--------------|----------|--|------------| | 37 | 47 13C8-PFOS | 507.0 > 79.9 | 4001.654 | 4113.747 | 1.00 | 5.24 | 12.159 | 12.6 | 100.5 | NO | ON THE RESERVE OF THE PROPERTY | | | 38 | 50 d3-N-MeFOSAA | 573.3 > 419 | 8318.344 | 22712.641 | 1.00 | 5.68 | 4.578 | 13.9 | 111.3 | NO | | | | 39 | -1 | | | | | | | | | | | | | 40 | 23 L-EtFOSAA | 584.1 > 419 | 7838.116 | 8216.018 | 1.00 | 5.84 | 11.925 | 11.0 | 110.0 | NO | 1.522 | NO | | 41 | 27 PFDoA | 612.9 > 569.0 | 21371.295 | 19717.238 | 1.00 | 6.13 | 13.549 | 10.3 | 103.0 | NO | 10.832 | NO | | 42 | 26 PFDS | 598.8 > 79.9 | 2304.488 | 4001.654 | 1.00 | 5.90 | 7.199 | 8.8 | 87.8 | NO | 1.663 | NO | | 43 | 25 PFUdA | 563.0 > 518.9 | 19848.904 | 24738.699 | 1.00 | 5.86 | 10.029 | 9.3 | 93.2 | NO | 19.696 | NO | | 44 | 28 N-MeFOSA | 512.1 > 168.9 | | 19386.414 | 1.00 | | | | \bigcirc | NO | | | | 45 | 29 PFTrDA | 662.9 > 618.9 | 19942.900 | 19717.238 | 1.00 | 6.37 | 12.643 | 10.4 | 104.2 | NO | 50.720 | NO | | 46 | 52 d5-N-EtFOSAA | 589.3 > 419 | 8216.018 | 22712.641 | 1.00 | 5.83 | 4.522 | 12.7 | 101.9 | NO | | | | 47 | 53 13C2-PFDoA | 615.0 > 569.7 | 19717.238 | 22907.691 | 1.00 | 6.13 | 10.759 | 10.8 | 86.7 | NO | | | | 48 | 47 13C8-PFOS | 507.0 > 79.9 | 4001.654 | 4113.747 | 1.00 | 5.24 | 12.159 | 12.6 | 100.5 | NO | | | | 49 | 51 13C2-PFUdA | 565 > 519.8 | 24738.699 | 22712.641 | 1.00 | 5.85 | 13.615 | 12.3 | 98.0 | NO | | | | 50 | 54 d3-N-MeFOSA | 515.2 > 168.9 | 19386.414 | 22712.641 | 1.00 | 6.06 | 10.669 | 144.5 | 96.3 | NO | | | | 51 | 53 13C2-PFDoA | 615.0 > 569.7 | 19717.238 | 22907.691 | 1.00 | 6.13 | 10.759 | 10.8 | 86.7 | NO | | | | 52 | -1 | | | | | | | | | | | | | 53 | 30 PFTeDA | 713.0 > 669.0 | 14206.638 | 16409.135 | 1.00 | 6.59 | 10.822 | 9.6 | 95.6 | NO | 12.177 | NO | | 54 | 31 N-EtFOSA | 526.1 > 168.9 | | 25249.637 | 1.00 | | | | A |) NO | | | | 55 | 32 PFHxDA | 813. 1 > 768.6 | | 6116.390 | 1.00 | | | | ーデ | NO | | | | 56 | 33 PFODA | 913.1 > 868.8 | | 6116.390 | 1.00 | | | | | NO | | | | 57 | 34 N-MeFOSE | 616.1 > 58.9 | | 8805.960 | 1.00 | | | | l l | NO | | | | 58 | 35 N-EtFOSE | 630.1 > 58.9 | | 9315.738 | 1.00 | | | | \downarrow | NO | | | | 59 | 55 13C2-PFTeDA | 715.1 > 669.7 | 16409.135 | 22712.641 | 1.00 | 6.59 | 9.031 | 12.1 | 96.4 | NO | | | | 60 | 56 d5-N-ETFOSA | 531.1 > 168.9 | 25249.637 | 22712.641 | 1.00 | 6.48 | 13.896 | 143.5 | 95.6 | NO | | | | 61 | 57 13C2-PFHxDA | 815 > 769.7 | 6116.390 | 22712.641 | 1.00 | 6.89 | 3.366 | 4.7 | 94.3 | NO | | | | 62 | 57 13C2-PFHxDA | 815 > 769.7 | 6116.390 | 22712.641 | 1.00 | 6.89 | 3.366 | 4.7 | 94.3 | NO | | | | 63 | 58 d7-N-MeFOSE | 623.1 > 58.9 | 8805.960 | 22712.641 | 1.00 | 6.67 | 4.846 | 134.7 | 89.8 | NO | | | | 64 | 59 d9-N-EtFOSE | 639.2 > 58.8 | 9315.738 | 22712.641 | 1.00 | 6.82 | 5.127 | 141.9 | 94.6 | NO | | | | 65 | 1 41, -1 | | | | | | | | | | | | | 66 | 60 13C4-PFBA | 217. > 172 | 9233.056 | 9233.056 | 1.00 | 1.47 | 12.500 | 12.5 | 100.0 | NO | | | | 67 | 61 13C5-PFHxA | 318 > 272.9 | 22850.570 | 22850.570 | 1.00 | 3.61 | 12.500 | 12.5 | 100.0 | NO | | | | 68 | 62 13C3-PFHxS | 401.8 > 79.9 | 4034.381 | 4034.381 | 1.00 | 4.37 | 12.500 | 12.5 | 100.0 | NO | | | | 69 | 63 13C8-PFOA | 420.9 > 376 | 25120.416 | 25120.416 | 1.00 | 4.73 | 12.500 | 12.5 | 100.0 | NO | | | | 70 | 64 13C9-PFNA | 472.2 > 426.9 | 24353.928 | 24353.928 | 1.00 | 5.16 | 12.500 | 12.5 | 100.0 | NO | | | | 71 | 65 13C4-PFOS | 503 > 79.9 | 4113.747 | 4113.747 | 1.00 | 5.24 | 12.500 | 12.5 | 100.0 | NO | | | | 72 | 66 13C6-PFDA | 519.1 > 473.7 | 22907.691 | 22907.691 | 1.00 | 5.54 | 12.500 | 12.5 | 100.0 | NO | | | Quantify Sample ReportMassLynx MassLynx V4.1 SCN945 SCN960Page 9 of 9Vista Analytical Laboratory Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-ICV.qld Last Altered: Monday, December 03, 2018 10:56:51 Pacific Standard Time Printed: Monday, December 03, 2018 10:58:27 Pacific Standard Time Mioriday, December 03, 2018 10:58:27 Pacific Standard Time # Name: 181202M2_13, Date: 02-Dec-2018, Time: 20:31:29, ID: ICV181202M2-1 PFC ICV 18K3011, Description: PFC ICV 18K3011 | # Name | Trace | Area | IS Area | wt/vol | RT | Response | Conc. | %Rec F | Recovery 1 | on Ratio Ratio Out? | |------------------|---------------|-----------|-----------|--------|------|----------|-------
--------|------------|---------------------| | 73 67 13C7-PFUdA | 570.1 > 524.8 | 22712.641 | 22712.641 | 1.00 | 5.85 | 12.500 | 12.5 | 100.0 | NO | | Work Order 1803676 Page 284 of 556 , Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-ICV.gld Last Altered: Printed: Monday, December 03, 2018 10:56:51 Pacific Standard Time Monday, December 03, 2018 10:58:27 Pacific Standard Time Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4 12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181202M2_13, Date: 02-Dec-2018, Time: 20:31:29, ID: ICV181202M2-1 PFC ICV 18K3011, Description: PFC ICV 18K3011 Work Order 1803676 Page 285 of 556 • F:\Projects\PFAS.PRO\Results\181202M2\181202M2-ICV.qld Last Altered: Printed: Dataset: Monday, December 03, 2018 10:56:51 Pacific Standard Time Monday, December 03, 2018 10:58:27 Pacific Standard Time Name: 181202M2_13, Date: 02-Dec-2018, Time: 20:31:29, ID: ICV181202M2-1 PFC ICV 18K3011, Description: PFC ICV 18K3011 Work Order 1803676 Page 286 of 556 F:\Projects\PFAS.PRO\Results\181202M2\181202M2-ICV.gld Last Altered: Printed: Monday, December 03, 2018 10:56:51 Pacific Standard Time Monday, December 03, 2018 10:58:27 Pacific Standard Time Name: 181202M2_13, Date: 02-Dec-2018, Time: 20:31:29, ID: ICV181202M2-1 PFC ICV 18K3011, Description: PFC ICV 18K3011 Work Order 1803676 Page 287 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-ICV.qld Last Altered: Printed: Monday, December 03, 2018 10:56:51 Pacific Standard Time Monday, December 03, 2018 10:58:27 Pacific Standard Time Name: 181202M2_13, Date: 02-Dec-2018, Time: 20:31:29, ID: ICV181202M2-1 PFC ICV 18K3011, Description: PFC ICV 18K3011 Work Order 1803676 Page 288 of 556 Dataset: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-ICV.qld Last Altered: Printed: Monday, December 03, 2018 10:56:51 Pacific Standard Time Monday, December 03, 2018 10:58:27 Pacific Standard Time ### Name: 181202M2 13, Date: 02-Dec-2018, Time: 20:31:29, ID: ICV181202M2-1 PFC ICV 18K3011, Description: PFC ICV 18K3011 Work Order 1803676 Page 289 of 556 Dataset: Printed: F:\Projects\PFAS.PRO\Results\181202M2\181202M2-ICV.qld Last Altered: Monday, December 03, 2018 10:56:51 Pacific Standard Time Monday, December 03, 2018 10:58:27 Pacific Standard Time Name: 181202M2_13, Date: 02-Dec-2018, Time: 20:31:29, ID: ICV181202M2-1 PFC ICV 18K3011, Description: PFC ICV 18K3011 Work Order 1803676 Page 290 of 556 Vista Analytical Laboratory Dataset: Untitled Last Altered: Monday, December 03, 2018 12:05:26 Pacific Standard Time Printed: Monday, December 03, 2018 12:05:53 Pacific Standard Time Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_120218.mdb 03 Dec 2018 10:27:08 Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_12-02-18.cdb 03 Dec 2018 10:25:29 Name: 181202M2_12, Date: 02-Dec-2018, Time: 20:20:57, ID: IPA, Description: IPA Work Order 1803676 Page 291 of 556 Vista Analytical Laboratory Dataset: Untitled Last Altered: Monday, December 03, 2018 12:05:26 Pacific Standard Time Printed: Monday, December 03, 2018 12:05:53 Pacific Standard Time Name: 181202M2_12, Date: 02-Dec-2018, Time: 20:20:57, ID: IPA, Description: IPA Work Order 1803676 Page 292 of 556 Dataset: Untitled Last Altered: Monday, December 03, 2018 12:05:26 Pacific Standard Time Printed: Monday, December 03, 2018 12:05:53 Pacific Standard Time Name: 181202M2_12, Date: 02-Dec-2018, Time: 20:20:57, ID: IPA, Description: IPA Work Order 1803676 Page 293 of 556 Dataset: Untitled Last Altered: Monday, December 03, 2018 12:05:26 Pacific Standard Time Printed: Monday, December 03, 2018 12:05:53 Pacific Standard Time Name: 181202M2 12, Date: 02-Dec-2018, Time: 20:20:57, ID: IPA, Description: IPA Work Order 1803676 Page 294 of 556 Vista Analytical Laboratory Dataset: Untitled Last Altered: Monday, December 03, 2018 12:05:26 Pacific Standard Time Printed: Monday, December 03, 2018 12:05:53 Pacific Standard Time Name: 181202M2_12, Date: 02-Dec-2018, Time: 20:20:57, ID: IPA, Description: IPA Work Order 1803676 Page 295 of 556 ŕ Dataset: Untitled Last Altered: Monday, December 03, 2018 12:05:26 Pacific Standard Time Printed: Monday, December 03, 2018 12:05:53 Pacific Standard Time Name: 181202M2_12, Date: 02-Dec-2018, Time: 20:20:57, ID: IPA, Description: IPA 5.500 6.000 5.500 6.000 Work Order 1803676 Page 296 of 556 # **TUNE CHECKS** Work Order 1803676 Page 297 of 556 Calibration Report - MS1 Static Page 1 of 6 Printed: Mon Dec 03 13:46:15 2018 Work Order 1803676 Page 298 of 556 Mon Dec 03 13:47:25 2018 Work Order 1803676 Page 299 of 556 Mon Dec 03 13:48:39 2018 Work Order 1803676 Page 300 of 556 Mon Dec 03 13:49:49 2018 Work Order 1803676 Page 301 of 556 Mon Dec 03 13:51:00 2018 Work Order 1803676 Page 302 of 556 Mon Dec 03 13:52:27 2018 Work Order 1803676 Page 303 of 556 # **STANDARDS** Work Order 1803676 Page 304 of 556 # **Analytical Standard Record** # Vista Analytical Laboratory # 18J1502 | Parent Standards used in this standard: | | | | | | |---|---------------|-----------|--------------|-----------|-------| | Standard | Description | Prepared | Prepared By | Expires | (mls) | | 18F2208 | 13C2-4:2 FTS | 22-Jun-18 | ** Vendor ** | 01-Sep-22 | 1.07 | | 18F2209 | 13C2-6:2 FTS | 22-Jun-18 | ** Vendor ** | 16-Feb-23 | 1.05 | | 18F2210 | 13C2-8:2 FTS | 22-Jun-18 | ** Vendor ** | 24-Jan-23 | 1.04 | | 18F2211 | 13C3-PFBA | 22-Jun-18 | ** Vendor ** | 14-Dec-22 | 1 | | 18F2212 | 13C2-PFDA | 22-Jun-18 | ** Vendor ** | 16-Feb-23 | 1 | | 18F2213 | 13C2-PFUdA | 22-Jun-18 | ** Vendor ** | 22-Nov-21 | 1 | | 18F2214 | 13C2-PFTeDA | 22-Jun-18 | ** Vendor ** | 30-Nov-22 | 1 | | 18F2215 | 13C5-PFNA | 22-Jun-18 | ** Vendor ** | 14-Dec-22 | 1 | | 18F2216 | 13C2-PFDoA | 22-Jun-18 | ** Vendor ** | 16-Feb-23 | 1 | | 18F2217 | 13C4-PFHpA | 22-Jun-18 | ** Vendor ** | 03-May-22 | 1 | | 18F2218 | 13C2-PFOA | 22-Jun-18 | ** Vendor ** | 26-Oct-22 | 1 | | 18F2219 | 13C3-PFPeA | 22-Jun-18 | ** Vendor ** | 20-Mar-22 | 1 | | 18F2220 | 13C8-FOSA-I | 22-Jun-18 | ** Vendor ** | 11-Oct-22 | 1 | | 18F2221 | d3-N-Me-FOSAA | 22-Jun-18 | ** Vendor ** | 08-Nov-22 | 1 | | 18F2222 | d5-N-EtFOSAA | 22-Jun-18 | ** Vendor ** | 08-Nov-22 | 1 | | 18F2223 | 13C3-PFBS | 22-Jun-18 | ** Vendor ** | 15-Feb-23 | 1.076 | | 18F2224 | 13C8-PFOS | 22-Jun-18 | ** Vendor ** | 08-Nov-22 | 1.05 | | 18F2225 | 18O2-PFHxS | 22-Jun-18 | ** Vendor ** | 22-Mar-23 | 1.058 | | 18F2226 | 13C2-PFHxDA | 22-Jun-18 | ** Vendor ** | 13-Jul-22 | 0.4 | | 18F2227 | 13C2-PFHxA | 22-Jun-18 | ** Vendor ** | 27-Oct-22 | 0.4 | | Description: | PFC - IS | Expires: | 15-Oct-20 | |---------------------|----------|--------------|------------------------| | Standard Type: | Reagent | Prepared: | 15-Oct-18 | | Solvent: | MeOH | Prepared By: | Giana R. Bilotta | | Final Volume (mls): | 40 | Department: | LCMS | | Vials: | 1 | Last Edit: | 15-Oct-18 08:57 by GRB | | Analyte | CAS Number | Concentration | Units | | |--------------|------------|---------------|-------|--| | 13C3-PFBA | | 1.25 | ug/mL | | | 13C2-6:2 FTS | | 1.25 | ug/mL | | | 13C2-8:2 FTS | | 1.25 | ug/mL | | | 13C2-PFDA | | 1.25 | ug/mL | | | 13C2-PFDoA | | 1.25 | ug/mL | | | 13C2-PFHxA | | 0.5 | ug/mL | | | 13C2-PFHxDA | | 0.5 | ug/mL | | | 13C2-PFOA | | 1.25 | ug/mL | | | 13C2-4:2 FTS | | 1.25 | ug/mL | | | 13C2-PFUnA | | 1.25 | ug/mL | | | d5-EtFOSAA | | 1.25 | ug/mL | | | 13C3-PFBS | | 1.25 | ug/mL | | | 13C3-PFPeA | | 1.25 | ug/mL | | | | | | | | Page 1 of 2 # **Analytical Standard Record** # Vista Analytical Laboratory # 18J1502 Description: PFC - IS Expires: 15-Oct-20 Standard Type: Reagent Prepared: 15-Oct-18 Solvent: Prepared By: МеОН Giana R. Bilotta Final Volume (mls): 40 Department: LCMS Vials: 1 Last Edit: 15-Oct-18 08:57 by GRB | Analyte | CAS Number | Concentration | Units | |-------------|------------|---------------|-------| | 13C4-PFHpA | | 1.25 | ug/mL | | 13C5-PFNA | | 1.25 | ug/mL | | 13C8-PFOS | | 1.25 | ug/mL | | 13C8-PFOSA | | 1.25 | ug/mL | | 18O2-PFHxS | | 1.25 | ug/mL | | d3-MeFOSAA | | 1.25 | ug/mL | | 13C2-PFTeDA | | 1.25 | ug/mL | Work Order 1803676 Page 306 of 556 # CERTIFICATE OF ANALYSIS DOCUMENTATION PRODUCT CODE: M2-4:2FTS LOT NUMBER: M242FTS0817 COMPOUND: Sodium 1H,1H,2H,2H-perfluoro-[1,2-13C] hexane sulfonate STRUCTURE: CAS #: Not available F C C C 13C 13 SO₃ Na **MOLECULAR FORMULA:** 13C, 12C, H, F, SO, Na **MOLECULAR WEIGHT:** 352.12 **CONCENTRATION:** $50.0 \pm 2.5 \,\mu \text{g/ml}$ (Na salt) SOLVENT(S): Methanol $46.7 \pm 2.3 \,\mu g/ml$ (M2-4:2FTS anion) ISOTOPIC PURITY: ≥99% ¹³C (1,2-13C₃) CHEMICAL PURITY: LAST TESTED: (mm/dd/yyyy) >98% 09/01/2017 09/01/2017 EXPIRY DATE: (mm/dd/yyyy) RECOMMENDED STORAGE: Refrigerate ampoule ### **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### **ADDITIONAL INFORMATION:** See page 2 for further details. • The native 4:2FTS contains 4.22% of ³⁴S (due to natural isotopic abundance) therefore both native 4:2FTS and M2-4:2FTS will produce signals in the m/z 329 to m/z 309 channel during SRM analysis. We recommend using the m/z 329 to m/z 81 transition to monitor for M2-4:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 09/29/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### **HAZARDS**: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be
exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** | Conditions | for Figure 1: | | | |---------------|--|--|---| | LC:
MS: | Waters Acquity Ultra Performance LC
Micromass Quattro <i>micro</i> API MS | | - | | | raphic Conditions | MS Parameters | | | Column: | Acquity UPLC BEH Shield RP ₁₈ | | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (225 - 850 amu) | | | Mobile phase: | se: Gradient | Source: Electrospray (negative) | | | | Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O | Capillary Voltage (kV) = 3.00 | | | | (both with 10 mM NH ₄ OAc buffer) | Cone Voltage (V) = 25.00 | | | | Ramp to 90% organic over 8 min | Cone Gas Flow (I/hr) = 100 | | | | and hold for 1 min before returning | Desolvation Gas Flow (I/hr) = 750 | | | | to initial conditions in 0.5 min. | And the state of t | | | | Time: 10 min | | | | Flow: | 300 µl/min | | | Injection: Direct loop injection 10 μl (500 ng/ml M2-4:2FTS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H,O (both with 10 mM NH OAc buffer) Flow: 300 µl/min ### MS Parameters Collision Gas (mbar) = 3.28e-3 Collision Energy (eV) = 25 M242FTS0817 (4 of 4) # **CERTIFICATE OF ANALYSIS** DOCUMENTATION PRODUCT CODE: M2-6:2FTS LOT NUMBER: M262FTS0218 COMPOUND: Sodium 1H,1H,2H,2H-perfluoro-[1,2-13C,]octane sulfonate STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C, 12C, H4F, SO, Na MOLECULAR WEIGHT: 452.13 **CONCENTRATION:** $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) 47.5 ± 2.4 µg/ml (M2-6:2FTS anion) SOLVENT(S): Methanol CHEMICAL PURITY: >98% **ISOTOPIC PURITY:** ≥99% 13C LAST TESTED: (mm/dd/yyyy) 02/16/2018 (1,2-13C2) EXPIRY DATE: (mm/dd/yyyy) 02/16/2023 RECOMMENDED STORAGE: Refrigerate ampoule ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### **ADDITIONAL INFORMATION:** See page 2 for further details. The native 6:2FTS contains 4.22% of 34S (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the m/z 429 to m/z 409 channel during SRM analysis. We recommend using the m/z 429 to m/z 81 transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 03/07/2018 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled
compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{x}(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 18F2209 Injection: Direct loop injection 10 µl (500 ng/ml M2-6:2FTS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) ### **MS Parameters** Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 25 Flow: 300 µl/min # CERTIFICATE OF ANALYSIS DOCUMENTATION PRODUCT CODE: M2-8:2FTS LOT NUMBER: M282FTS0118 COMPOUND: Sodium 1H,1H,2H,2H-perfluoro-[1,2-13C]decane sulfonate STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** ¹³C₂¹²C₈H₄F₁₇SO₃Na **MOLECULAR WEIGHT:** 552.15 CONCENTRATION: $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) Methanol $47.9 \pm 2.4 \,\mu g/ml$ (M2-8:2FTS anion) SOLVENT(S): **CHEMICAL PURITY:** >98% >99% 13C LAST TESTED: (mm/dd/yyyy) 01/24/2018 ISOTOPIC PURITY: (1,2-13C,) EXPIRY DATE: (mm/dd/yyyy) 01/24/2023 RECOMMENDED STORAGE: Refrigerate ampoule ### **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### ADDITIONAL INFORMATION: See page 2 for further details. The native 8:2FTS contains 4.22% of 34S (due to natural isotopic abundance) therefore both native 8:2FTS and M2-8:2FTS will produce signals in the m/z 529 to m/z 509 channel during SRM analysis. We recommend using the m/z 529 to m/z 81 transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com Certified By: B.G. Chittim, General Manager Date: 01/26/2018 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 18F2210 Injection: Direct loop injection 10 µl (500 ng/ml M2-8:2FTS) Mobile phase: Isocratic 80% (80:20
MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) ### MS Parameters Collision Gas (mbar) = 3.43e-3 Collision Energy (eV) = 25 Flow: 300 μl/min # CERTIFICATE OF ANALYSIS DOCUMENTATION PRODUCT CODE: M3PFBA LOT NUMBER: M3PFBA1217 COMPOUND: Perfluoro-n-[2,3,4-13C] butanoic acid CAS #: Not available STRUCTURE: F 13 C 13 C OH MOLECULAR FORMULA: 13C, 12CHF, O, 1 **MOLECULAR WEIGHT:** 217.02 CONCENTRATION: $50 \pm 2.5 \,\mu g/ml$ SOLVENT(S): Methanol CHEMICAL PURITY: >98% **ISOTOPIC PURITY:** ≥99%¹³C (2,3,4-¹³C₃) Water (<1%) LAST TESTED: (mm/dd/yyyy) 12/14/2017 EXPIRY DATE: (mm/dd/yyyy) 12/14/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ### **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains $\sim 0.2\%$ of perfluoro-n-[13 C₃]propanoic acid and also contains $\sim 1.0\%$ of perfluoro-n-[13 C₄]butanoic acid due to the naturally occurring isotopic abundance of 13 C in the unlabelled carbon atom. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 12/22/2017 (mm/dd/yyyy) Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com 18F2211 ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2, \dots, x_n$$ on which it depends is: $$u_\varepsilon(y(x_1, x_2, \dots, x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Injection: Direct loop injection 10 μl (500 ng/ml M3PFBA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H,O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min ### **MS Parameters** Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 10 # CERTIFICATE OF ANALYSIS DOCUMENTATION PRODUCT CODE: **MPFDA** Perfluoro-n-[1,2-13C3]decanoic acid LOT NUMBER: MPFDA0218 **COMPOUND:** STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C212C8HF19O2 **CONCENTRATION:** 50 ± 2.5 µg/ml MOLECULAR WEIGHT: 516.07 Methanol SOLVENT(S): Water (<1%) **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 02/16/2018 EXPIRY DATE: (mm/dd/yyyy) 02/16/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ISOTOPIC PURITY: ≥99% 13C (1,2-13C2) # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains < 0.1% of ¹³C₄-PFNA. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 03/07/2018 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. # **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u(y), of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ...
x_n)) = \sqrt{\sum_{i=1}^n u(y_i, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** | LC: | Waters Acquity Ultra Performance LC | | |---------------|--|---------------------------------------| | MS: | Micromass Quattro micro API MS | | | Chromatogra | phic Conditions | MS Parameters | | Column: | Acquity UPLC BEH Shield RP,8 | | | | 1.7 μm, 2.1 x 100 mm | Experiment: Full Scan (150 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O | Capillary Voltage (kV) = 3.00 | | | (both with 10 mM NH,OAc buffer) | Cone Voltage (V) = 15.00 | | | Ramp to 90% organic over 7 min and hold for 2 min | Cone Gas Flow (I/hr) = 50 | | | before returning to initial conditions in 0.5 min. | Desolvation Gas Flow (I/hr) = 750 | | | Time: 10 min | | | Flow: | 300 µl/min | | 10 µl (500 ng/ml MPFDA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min #### **MS Parameters** Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 13 Form#:27, Issued 2004-11-10 Revision#:5, Revised 2018-01-22 MPFDA0218 (4 of 4) PRODUCT CODE: MPFUdA LOT NUMBER: MPFUdA1116 COMPOUND: Perfluoro-n-[1,2-13C,]undecanoic acid CAS #: Not available STRUCTURE: **MOLECULAR FORMULA:** 13C, 12C, HF,,O, **MOLECULAR WEIGHT:** ISOTOPIC PURITY: 566.08 CONCENTRATION: 50 ± 2.5 µg/ml SOLVENT(S): Methanol Water (<1%) >99% 13C (1,2-13C₂) **CHEMICAL PURITY:** >98% 11/22/2016 LAST TESTED: (mm/dd/yyyy) EXPIRY DATE: (mm/dd/yyyy) 11/22/2021 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Presence of 1-13C,-PFUdA (~1%; see Figure 2), 2-13C,-PFUdA (~1%), and PFUdA (~0.2%; see Figure 2) are due to the isotopic purity of the ¹³C-precursor. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: Chittim Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### **HAZARDS**: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u(y), of a value y and the uncertainty of the independent parameters $x_1, x_2, ... x_n$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 10 μl (500 ng/ml MPFUdA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH, OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.46e-3 Collision Energy (eV) = 11 eOH:ACN) / 20% H₂O Collision Energy (eV) PRODUCT CODE: M2PFTeDA LOT NUMBER: M2PFTeDA1117 COMPOUND: Perfluoro-n-[1,2-13C2]tetradecanoic acid STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C212C12HF27O2 **MOLECULAR WEIGHT:** 716.10 **CONCENTRATION:** $50 \pm 2.5 \,\mu g/ml$ SOLVENT(S): Methanol **CHEMICAL PURITY:** >98% Water (<1%) ≥99% 13C LAST TESTED: (mm/dd/yyyy) 11/30/2017 **ISOTOPIC PURITY:** (1,2-13C₂) EXPIRY DATE: (mm/dd/yyyy) 11/30/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place #### DOCUMENTATION/ DATA ATTACHED: Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G.
Chittim, General Manager Date: 12/01/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. **HAZARDS:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** | 10. | Waters Acquity Ultra Performance LC | | |---------------|---|---------------------------------------| | LC:
MS: | Micromass Quattro micro API MS | | | | 40.4 | W4 2000000 | | | phic Conditions | MS Parameters | | Column: | Acquity UPLC BEH Shield RP ₁₈ | | | | 1.7 μm, 2.1 x 100 mm | Experiment: Full Scan (225 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 65% (80:20 MeOH:ACN) / 35% H ₂ O | Capillary Voltage (kV) = 3.00 | | | (both with 10 mM NH ₄ OAc buffer) | Cone Voltage (V) = 15.00 | | | Ramp to 90% organic over 7.5 min and hold for 1.5 min | Cone Gas Flow (I/hr) = 100 | | | before returning to initial conditions in 0.5 min. | Desolvation Gas Flow (I/hr) = 750 | | | Time: 10 min | | | Flow: | 300 µl/min | | 10 µl (500 ng/ml M2PFTeDA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H2O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min #### MS Parameters Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 14 Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 M2PFTeDA1117 (4 of 4) rev0 PRODUCT CODE: **MPFNA** LOT NUMBER: MPFNA1217 COMPOUND: Perfluoro-n-[1,2,3,4,5-13C,]nonanoic acid CAS #: Not available STRUCTURE: **MOLECULAR FORMULA:** 13C, 12C, HF, O, **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ **MOLECULAR WEIGHT:** 469.04 SOLVENT(S): Methanol Water (<1%) >99%13C **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 12/14/2017 EXPIRY DATE: (mm/dd/yyyy) 12/14/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place **ISOTOPIC PURITY:** $(1,2,3,4,5^{-13}C_5)$ # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) #### **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. # **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{x}(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate
of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ## LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** MPFNA1217 (2 of 4) rev0 | Conditions f | or Figure 1: | | |---------------|--|---------------------------------------| | LC:
MS: | Waters Acquity Ultra Performance LC
Micromass Quattro <i>micro</i> API MS | | | Chromatogra | phic Conditions | MS Parameters | | Column: | Acquity UPLC BEH Shield RP,18 | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (150 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 55% (80:20 MeOH:ACN) / 45% H ₂ O | Capillary Voltage (kV) = 2.00 | | | (both with 10 mM NH ₄ OAc buffer) | Cone Voltage (V) = 15.00 | | | Ramp to 90% organic over 7 min and hold for 2 min | Cone Gas Flow (I/hr) = 50 | | | before returning to initial conditions in 0.5 min. | Desolvation Gas Flow (I/hr) = 750 | | | Time: 10 min | | | Flow: | 300 µl/min | | Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 300 µl/min Flow: MPFNA1217 (4 of 4) PRODUCT CODE: **MPFDoA** LOT NUMBER: MPFDoA0218 COMPOUND: Perfluoro-n-[1,2-13C2]dodecanoic acid STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** ¹³C₂¹²C₁₀HF₂₃O₂ **MOLECULAR WEIGHT:** 616.08 **CONCENTRATION:** 50 ± 2.5 μg/ml SOLVENT(S): Methanol Water (<1%) ISOTOPIC PURITY: ≥99% ¹³C (1,2-¹³C₂) CHEMICAL PURITY: LAST TESTED: (mm/dd/yyyy) >98% 02/16/2018 EXPIRY DATE: (mm/dd/yyyy) 02/16/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 02/23/2018 (mm/dd/yyyy) Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com 18F2Z16 #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. # HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y_i,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Injection: Direct loop injection 10 µl (500 ng/ml MPFDoA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H,O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min #### **MS Parameters** Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 13 PRODUCT CODE: M4PFHpA COMPOUND: Perfluoro-n-[1,2,3,4-13C₄]heptanoic acid STRUCTURE: LOT NUMBER: M4PFHpA0517 CAS #: Not available MOLECULAR FORMULA: 13C, 12C, HF, O, **MOLECULAR WEIGHT:** 368.03 **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 05/03/2017 EXPIRY DATE: (mm/dd/yyyy) 05/03/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place **ISOTOPIC PURITY:** >99%13C (1,2,3,4-13C) ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) #### **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 05/11/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA Form#:27, Issued 2004-11-10 #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used
by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ..., x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ..., x_n)) = \sqrt{\sum_{i=1}^n u(y_i, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** | | Miles A M. 1160 - Destaurant 1.0 | | |---------------|--|---------------------------------------| | LC: | Waters Acquity Ultra Performance LC Micromass Quattro micro API MS | | | MS: | Micromass Quattro micro AFT M3 | | | Chromatogra | phic Conditions | MS Parameters | | Column: | Acquity UPLC BEH Shield RP, 8 | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (225 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O | Capillary Voltage (kV) = 2.00 | | | (both with 10 mM NH OAc buffer) | Cone Voltage (V) = 15.00 | | | Ramp to 90% organic over 8 min and hold for 1 min | Cone Gas Flow (I/hr) = 50 | | | before returning to initial conditions in 0.5 min. | Desolvation Gas Flow (I/hr) = 750 | | | Time: 10 min | | | Flow: | 300 µl/min | | 10 μl (500 ng/ml M4PFHpA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH, OAc buffer) Flow: 300 µl/min #### **MS Parameters** Collision Gas (mbar) = 3.46e-3 Collision Energy (eV) = 9 Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 M4PFHpA0517 (4 of 4) PRODUCT CODE: M2PFOA LOT NUMBER: M2PFOA1017 COMPOUND: Perfluoro-n-[1,2-13C2]octanoic acid STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C212C6HF15O2 MOLECULAR WEIGHT: 416.05 **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ SOLVENT(S): Methanol Water (<1%) ISOTOPIC PURITY: ≥99%13C (1,2-13C₂) **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 10/26/2017 EXPIRY DATE: (mm/dd/yyyy) 10/26/2022 **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 10/30/2017 INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_\varepsilon(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to
NIST. For certain products, traceability to international interlaboratory studies has also been established. **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** M2PFOA1017 (2 of 4) 10 μl (500 ng/ml M2PFOA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.28e-3 Collision Energy (eV) = 10 Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 M2PFOA1017 (4 of 4) PRODUCT CODE: M3PFPeA LOT NUMBER: M3PFPeA0417 COMPOUND: Perfluoro-n-[3,4,5-13C3]pentanoic acid CAS #: Not available STRUCTURE: **MOLECULAR FORMULA:** 13C, 12C, HF, O, **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ MOLECULAR WEIGHT: 267.02 SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% **ISOTOPIC PURITY:** >99% 13C (3,4,5-13C₂) LAST TESTED: (mm/dd/yyyy) 04/20/2017 EXPIRY DATE: (mm/dd/yyyy) 04/20/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains $\sim 0.95\%$ of perfluoro-n-[13 C $_3$]butanoic acid and 0.05% of perfluoro-1-pentanoic acid. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 04/24/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{o}(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Injection: Di Direct loop injection 10 µI (500 ng/ml M3PFPeA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H,O (both with 10 mM NH, OAc buffer) Flow: 300 µl/min #### MS Parameters Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 9 PRODUCT CODE: M8FOSA-I COMPOUND: Perfluoro-1-[13Cg]octanesulfonamide LOT NUMBER: M8FOSA1017I STRUCTURE: CAS #: Not available SO2NH2 **MOLECULAR FORMULA:** 13C, H, F, NO, S CONCENTRATION: $50 \pm 2.5 \, \mu g/ml$ **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 10/11/2017 EXPIRY DATE: (mm/dd/yyyy) 10/11/2022 RECOMMENDED STORAGE: Refrigerate ampoule **MOLECULAR WEIGHT:** SOLVENT(S): 507.09 **ISOTOPIC PURITY:** Isopropanol >99% 13C (13Cg) # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) #### **ADDITIONAL INFORMATION:** See page 2 for further details. Contains ~ 1.1% of perfluoro-1-[$^{13}C_4$]octanesulfonamide and ~ 0.01% of perfluoro-1-[13C,]heptanesulfonamide. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 10/20/2017 (8F2220 ## INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ## HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate
internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### UNCERTAINTY: The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x}_i, \mathbf{x}_2,...\mathbf{x}_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 10 µl (500 ng/ml M8FOSA-I) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min #### MS Parameters Collision Gas (mbar) = 3.43e-3 Collision Energy (eV) = 30 PRODUCT CODE: d3-N-MeFOSAA LOT NUMBER: d3NMeFOSAA1117 COMPOUND: N-methyl-d3-perfluoro-1-octanesulfonamidoacetic acid STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** C,D,H,F,,NO,S **MOLECULAR WEIGHT:** 574.23 **CONCENTRATION:** $50 \pm 2.5 \,\mu g/ml$ SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% **ISOTOPIC PURITY:** ≥98% ²H_a LAST TESTED: (mm/dd/yyyy) 11/08/2017 EXPIRY DATE: (mm/dd/yyyy) 11/08/2022 RECOMMENDED STORAGE: Refrigerate ampoule # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 11/16/2017 ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_{i}, x_{2}, ... x_{n} \text{ on which it depends is:} \qquad u_{c}(y(x_{1}, x_{2}, ... x_{n})) = \sqrt{\sum_{i=1}^{n} u(y, x_{i})^{2}}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). Injection: Direct loop injection 10 µl (500 ng/ml d3-N-MeFOSAA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H2O (both with 10 mM NH OAc buffer) Flow: 300 µl/min ### **MS Parameters** Collision Gas (mbar) = 3.43e-3 Collision Energy (eV) = 20 PRODUCT CODE: d5-N-EtFOSAA LOT NUMBER: d5NEtFOSAA1117 COMPOUND: N-ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** C,2D,H3F,7NO,S MOLECULAR WEIGHT: 590.26 **CONCENTRATION:** $50 \pm 2.5 \,\mu g/ml$ SOLVENT(S): Methanol CHEMICAL PURITY: >98% **ISOTOPIC PURITY:** Water (<1%) ≥98% 2H_e LAST TESTED: (mm/dd/yyyy) 11/08/2017 EXPIRY DATE: (mm/dd/yyyy) 11/08/2022 RECOMMENDED STORAGE: Refrigerate ampoule ### DOCUMENTATION/ DATA ATTACHED: Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 11/16/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax:
519-822-2849 • info@well-labs.com ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). Injection: Direction: Direct loop injection 10 μl (500 ng/ml d5-N-EtFOSAA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min ### MS Parameters Collision Gas (mbar) = 3.50e-3 Collision Energy (eV) = 20 PRODUCT CODE: M3PFBS LOT NUMBER: M3PFBS0218 COMPOUND: Sodium perfluoro-1-[2,3,4-13C] butanesulfonate STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C, 12CF, SO, Na **MOLECULAR WEIGHT:** 325.06 **CONCENTRATION:** $50.0 \pm 2.5 \,\mu\text{g/ml}$ (Na salt) SOLVENT(S): Methanol CHEMICAL PURITY: >98% ISOTOPIC PURITY: ≥99% 13C LAST TESTED: (mm/dd/yyyy) 02/15/2018 (2,3,4-13C₃) EXPIRY DATE: (mm/dd/yyyy) 02/15/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place $46.5 \pm 2.3 \,\mu\text{g/ml}$ (M3PFBS anion) ### **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### **ADDITIONAL INFORMATION:** See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 02/16/2018 INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $x_i, x_2,...x_n$ on which it depends is: $u_{\varepsilon}(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB;
AR-1523). Injection: Direct loop injection 10 µl (500 ng/ml M3PFBS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min ### MS Parameters Collision Gas (mbar) = 3.17e-3 Collision Energy (eV) = 25 PRODUCT CODE: M8PFOS LOT NUMBER: M8PFOS1117 **COMPOUND:** Sodium perfluoro-1-[13C,]octanesulfonate STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C, F, SO, Na **CONCENTRATION:** 50.0 ± 2.5 μg/ml (Na salt) 47.8 ± 2.4 μg/ml (M8PFOS anion) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 11/08/2017 EXPIRY DATE: (mm/dd/yyyy) 11/08/2022 **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place MOLECULAR WEIGHT: 530.05 SOLVENT(S): Methanol ISOTOPIC PURITY: >99% 13C (13C_o) ### **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### ADDITIONAL INFORMATION: See page 2 for further details. Contains ~ 0.3% of sodium perfluoro-1-[13C,]heptanesulfonate (13C,-PFHpS) and ~ 0.8% of sodium perfluoro-1-[13C]octanesulfonate (MPFOS). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 11/22/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{k}(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). LC: Waters Acquity Ultra Performance LC MS: Micromass Quattro micro API MS Chromatographic Conditions Column: Acquity UPLC BEH Shield RP, 18 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 50% (80:20 MeOH:ACN) / 50% H₂O (both with 10 mM NH OAc buffer) Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min. Time: 10 min Flow: 300 µl/min ### MS Parameters Experiment: Full Scan (225 - 850 amu) Source: Electrospray (negative) Capillary Voltage (kV) = 3.00 Cone Voltage (V) = 60.00 Cone Gas Flow (l/hr) = 50 Desolvation Gas Flow (l/hr) = 750 Injection: Direct loop injection 10 μl (500 ng/ml M8PFOS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H,O (both with 10 mM NH₄OAc buffer) 300 µl/min Flow: ### MS Parameters Collision Gas (mbar) = 3.46e-3 Collision Energy (eV) = 40 PRODUCT CODE: **MPFHxS** LOT NUMBER: MPFHxS0318 COMPOUND: Sodium perfluoro-1-hexane[18O,]sulfonate STRUCTURE: CAS #: 1585941-14-5 S18O216O-Na+ **MOLECULAR FORMULA:** C₆F₁₃S¹⁸O₂¹⁶ONa MOLECULAR WEIGHT: 426.10 **CONCENTRATION:** $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) SOLVENT(S): Methanol CHEMICAL PURITY: >98% 03/22/2018 LAST TESTED: (mm/dd/yyyy) EXPIRY DATE: (mm/dd/yyyy) 03/22/2023 **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place $47.3 \pm 2.4 \mu g/ml$ (MPFHxS anion) ISOTOPIC PURITY: >94% (18O₂) ### **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### ADDITIONAL INFORMATION: See page 2 for further details. The response factor for MPFHxS ($C_6F_{13}S^{18}O_2^{16}O^2$) has been observed to be up to 10% lower than for PFHxS $(C_{_6}F_{_{13}}S^{_{16}}O_{_3})$ when both compounds are injected together. This difference may vary between instruments. Contains ~ 1.0% of sodium perfluoro-1-octane[180,]sulfonate (180,-PFOS) and ~ 0.3% of sodium perfluoro-1-heptane[18O,]sulfonate (18O,-PFHpS). Due to the isotopic purity of the starting material (18O2 >94%), MPFHxS contains ~ 0.3% of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 06/07/2018 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the
homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_1(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_{\varepsilon}(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the Iatest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **MS Parameters** Collision Gas (mbar) = 3.64e-3 Injection: On-column (MPFHxS) Mobile phase: Same as Figure 1 Flow: 300 µl/min PRODUCT CODE: M2PFHxDA LOT NUMBER: M2PFHxDA0717 COMPOUND: Perfluoro-n-[1,2-13C2]hexadecanoic acid CAS #: Not available STRUCTURE: **MOLECULAR FORMULA:** 13C212C14HF31O2 CONCENTRATION: 50 ± 2.5 µg/ml **MOLECULAR WEIGHT:** SOLVENT(S): Methanol 816.11 CHEMICAL PURITY: LAST TESTED: (mm/dd/yyyy) >98% 07/13/2017 EXPIRY DATE: (mm/dd/yyyy) 07/13/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place **ISOTOPIC PURITY:** Water (<1%) ≥99% 13C (1,2-13C₂) ### **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains ~ 0.3% of native perfluoro-n-hexadecanoic acid. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 07/14/2017 18F2ZZ6 INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_i},~\mathbf{x_2}...\mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). Injection: Direct loop injection 10 μl (500 ng/ml M2PFHxDA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H2O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min ### MS Parameters Collision Gas (mbar) = 3.28e-3 Collision Energy (eV) = 15 PRODUCT CODE: **MPFHxA** LOT NUMBER: MPFHxA1017 COMPOUND: Perfluoro-n-[1,2-13C2]hexanoic acid STRUCTURE: CAS #: Not available MOLECULAR FORMULA: ¹³C₂¹²C₄HF₁₁O₂ MOLECULAR WEIGHT: 316.04 **CONCENTRATION:** $50 \pm 2.5 \,\mu \text{g/ml}$ SOLVENT(S): Methanol Water (<1%) ISOTOPIC PURITY: ≥99%¹³C (1,2-¹³C₂) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 10/27/2017 EXPIRY DATE: (mm/dd/yyyy) 10/27/2022 RECOMMENDED STORAGE: **DOCUMENTATION/ DATA ATTACHED:** Store ampoule in a cool, dark place Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains < 0.1% of perfluoro-n-hexanoic acid and < 0.3% of perfluoro-n-octanoic acid. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 10/30/2017 (mm/dd/vvvv) ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### **HAZARDS**: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of
according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{x}(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). Injection: Direct loop injection 10 μI (500 ng/ml MPFHxA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H2O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min ### MS Parameters Collision Gas (mbar) = 3.58e-3 Collision Energy (eV) = 10 ## **Analytical Standard Record** ## Vista Analytical Laboratory ### 18J1505 | Standard | Description | Prepared | Prepared By | Expires | (mls) | |----------|----------------|-----------|--------------|-----------|-------| | 18E0707 | PFDoA | 07-May-18 | ** Vendor ** | 18-Apr-23 | 0.4 | | 18E0708 | PFBA | 07-May-18 | ** Vendor ** | 14-Dec-22 | 0.4 | | 18E0709 | PFPeA | 07-May-18 | ** Vendor ** | 16-Feb-23 | 0.4 | | 18E0710 | PFHxA | 07-May-18 | ** Vendor ** | 27-Sep-22 | 0.4 | | 18E0711 | PFDA | 07-May-18 | ** Vendor ** | 14-Dec-22 | 0.4 | | 18E0712 | PFUdA | 07-May-18 | ** Vendor ** | 21-Sep-22 | 0.4 | | 18E0713 | PFTrDA | 07-May-18 | ** Vendor ** | 02-May-22 | 0.4 | | 18E0714 | PFHpA | 07-May-18 | ** Vendor ** | 27-Sep-22 | 0.4 | | 18E0715 | PFOA | 07-May-18 | ** Vendor ** | 16-Feb-23 | 0.4 | | 18E0716 | PFNA | 07-May-18 | ** Vendor ** | 20-Jul-22 | 0.4 | | 18E0717 | PFTeDA | 07-May-18 | ** Vendor ** | 21-Sep-22 | 0.4 | | 18E0718 | PFHxDA | 07-May-18 | ** Vendor ** | 13-Jul-22 | 0.4 | | 18E0719 | PFODA | 07-May-18 | ** Vendor ** | 13-Jul-22 | 0.4 | | 18E0720 | L-PFBS | 07-May-18 | ** Vendor ** | 21-Sep-22 | 0.454 | | 18E0721 | L-PFPeS | 07-May-18 | ** Vendor ** | 11-Jan-22 | 0.428 | | 18E0722 | L-PFHpS | 07-May-18 | ** Vendor ** | 01-Sep-22 | 0.42 | | 18E0723 | L-PFNS | 07-May-18 | ** Vendor ** | 27-Sep-22 | 0.418 | | 18E0724 | L-PFDS | 07-May-18 | ** Vendor ** | 08-Nov-22 | 0.415 | | 18E0725 | br-PFHxSK | 07-May-18 | ** Vendor ** | 04-Jan-22 | 0.44 | | 18E0726 | br-PFOSK anion | 07-May-18 | ** Vendor ** | 12-Jan-22 | 0.431 | | 18E0727 | 4:2 FTS | 07-May-18 | ** Vendor ** | 12-Dec-21 | 0.43 | | 18E0728 | 6:2FTS | 07-May-18 | ** Vendor ** | 03-Apr-23 | 0.422 | | 18E0729 | 8:2FTS | 07-May-18 | ** Vendor ** | 24-Jan-23 | 0.418 | | 18E0730 | FOSA-I | 07-May-18 | ** Vendor ** | 01-Sep-22 | 0.4 | | 18E0731 | br-NMeFOSAA | 07-May-18 | ** Vendor ** | 17-Jan-23 | 0.4 | | 8E0732 | br-NEtFOSAA | 07-May-18 | ** Vendor ** | 17-Jan-23 | 0.4 | | 1810762 | N-MeFOSA-M | 07-Sep-18 | ** Vendor ** | 07-May-23 | 2 | | 810763 | N-EtFOSA-M | 07-Sep-18 | ** Vendor ** | 07-May-23 | 2 | | 18I0764 | N-MeFOSE-M | 07-Sep-18 | ** Vendor ** | 04-Jun-23 | 2 | | 18I0765 | N-EtFOSE-M | 07-Sep-18 | ** Vendor ** | 14-Dec-22 | 2 | | Description: | PFC NS Stock | Expires: | 15-Oct-20 | |---------------------|---------------|--------------|------------------------| | Standard Type: | Analyte Spike | Prepared: | 15-Oct-18 | | Solvent: | MeOH | Prepared By: | Giana R. Bilotta | | Final Volume (mls): | 20 | Department: | LCMS | | Vials: | 1 | Last Edit: | 15-Oct-18 14:52 by GRB | | | | | | | PFOS and PFHxS linear and branched components | | | | | |---|------------|---------------|-------|---| | As of 5/27/18, MeFOSAA and EtFOSAA include Linear and Branched. | CAS Number | Concentration | Units | ╛ | | L-PFOA | | 1 | ug/mL | | | L-PFTrDA | | 1 | ug/mL | | | L-PFHpA | | 1 | ug/mL | | | L-PFHpS | | 1 | ug/mL | | Work Order 1803676 Page 387 of 556 ### **Analytical Standard Record** ### Vista Analytical Laboratory ### 18J1505 LCMS Description: PFC NS Stock Expires: 15-Oct-20 Standard Type: Analyte Spike Prepared: 15-Oct-18 Solvent: Prepared By: МеОН Giana R. Bilotta Final Volume (mls): Department: Vials: Last Edit: 15-Oct-18 14:52 by GRB 1 | PFOS and PFHxS linear and branched components | |---| | As of 5/27/18, MeFOSAA and EtFOSAA include L | 20 | As of 5/27/18, MeFOSAA and EtFOSAA include Linear and Branched. | CAS Number | Concentration | Units | |---|-------------|---------------|-------| | L-PFHxA | | 1 | ug/mL | | L-PFHxDA | | 1 | ug/mL | | L-PFHxS | | 0.812 | ug/mL | | L-PFDoA | | 1 | ug/mL | | L-PFNS | 68259-12-1 | 1 | ug/mL | | L-PFDA | | 1 | ug/mL | | L-PFODA | | 1 | ug/mL | | L-PFOS | | 0.789 | ug/mL | | L-PFOSA | | 1 | ug/mL | | L-PFPeA | | 1 | ug/mL | | L-PFPeS | 2706-91-4 | 1 | ug/mL | | 4:2 FTS | 757124-72-4 | 1 | ug/mL | | L-PFNA | | 1 | ug/mL | | L-4:2 FTS | 75124-72-4 | 1 | ug/mL | | 6:2 FTS | 27619-97-2 | 1 | ug/mL | | 8:2 FTS | 39108-34-4 | 1 | ug/mL | | Br-EtFOSAA | | 0.224 | ug/mL | | Br-MeFOSAA | | 0.24 | ug/mL | | Br-PFHxS | 3871-99-6 | 0.189 | ug/mL | | EtFOSA | 4151-50-2 | 5 | ug/mL | | L-PFDS | | 1 | ug/mL | | EtFOSE | 1691-99-2 | 5 | ug/mL | | L-PFUnA | | 1 | ug/mL | | L-6:2 FTS | | 1 | ug/mL | | L-8:2FTS | | 1 | ug/mL | | L-EtFOSAA | 2991-50-6 | 0.776 | ug/mL | | L-MeFOSAA | 2355-31-9 | 0.76 | ug/mL | | L-PFBA | | 1 | ug/mL | | L-PFBS | | 1 | ug/mL | | EtFOSAA | 2991-50-6 | 1 | ug/mL | | Total EtFOSAA | | 1 | ug/mL | | L-PFTeDA | | 1 | ug/mL | | PFOSA | 754-91-6 | 1 | ug/mL | | PFPeA | 2706-90-3 | 1 | ug/mL | | | | | | ### **Analytical Standard Record** ### Vista Analytical Laboratory ### 18J1505 Description:PFC NS StockExpires:15-Oct-20Standard Type:Analyte SpikePrepared:15-Oct-18Solvent:MeOHPrepared By:Giana R. Bilotta Final Volume (mls): 20 Department: LCMS Vials: 1 Last Edit: 15-Oct-18 14:52 by GRB | PFOS and PFHxS linear and branched components | | | | |---|------------|---------------|-------| | As of 5/27/18, MeFOSAA and EtFOSAA include Linear and Branched. | CAS Number | Concentration | Units | | PFPeS | 2706-91-4 | 1 | ug/mL | | PFTeDA | 376-06-7 | 1 | ug/mL | | PFTrDA | 72629-94-8 | 1 | ug/mL | | PFODA | 16517-11-6 | 1 | ug/mL | | Total 6:2 FTS | | 1 | ug/mL | | PFOA | 335-67-1 | 1 | ug/mL | | Total MeFOSAA | | 1 | ug/mL | | Total PFDS | | 1 | ug/mL | | Total PFHpS | | 1 | ug/mL | | Total PFHxS | | 1 | ug/mL | | Total PFOA | | 1 | ug/mL | | Total PFOS | | 1 | ug/mL | | PFUnA | 2058-94-8 | 1 | ug/mL | | PFHpA | 375-85-9 | 1 | ug/mL | | MeFOSA | 31506-32-8 | 5 | ug/mL | | MeFOSAA | 2355-31-9 | 1 | ug/mL | | MeFOSE | 24448-09-7 | 5 | ug/mL | | PFBA | 375-22-4 | 1 | ug/mL | | PFBS | 375-73-5 | 1 | ug/mL | | PFDA | 335-76-2 | 1 | ug/mL
 | PFOS | 1763-23-1 | 1 | ug/mL | | PFDS | 335-77-3 | 1 | ug/mL | | Total PFUnA | | 1 | ug/mL | | PFHpS | 375-92-8 | 1 | ug/mL | | PFHxA | 307-24-4 | 1 | ug/mL | | PFHxDA | 67905-19-5 | 1 | ug/mL | | PFHxS | 355-46-4 | 1 | ug/mL | | PFNA | 375-95-1 | 1 | ug/mL | | PFNS | 68259-12-1 | 1 | ug/mL | | PFDoA | 307-55-1 | 1 | ug/mL | Work Order 1803676 Page 389 of 556 PRODUCT CODE: **PFDoA** LOT NUMBER: PFDoA0418 COMPOUND: Perfluoro-n-dodecanoic acid STRUCTURE: CAS #: 307-55-1 **MOLECULAR FORMULA:** C, HF, O, MOLECULAR WEIGHT: 614.10 **CONCENTRATION:** 50 ± 2.5 µg/ml SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 04/18/2018 EXPIRY DATE: (mm/dd/yyyy) 04/18/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ### **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (SIR) Figure 2: LC/MS Data (Mass Spectrum) Figure 3: LC/MS/MS Data (Selected MRM Transitions) ### ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 04/24/2018 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com 18E0707 ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u(y), of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. ### EXPIRY DATE / PERIOD OF VALIDITY: Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Page 391 of 556 PFDoA0418 (2 of 4) Form#:27, Issued 2004-11-10 Revision#:5, Revised 2018-01-22 Figure 2: PFDoA; LC/MS Data (Mass Spectrum) LC: Waters Acquity Ultra Performance LC MS: Waters Xevo TQ-S micro MS **Chromatographic Conditions** Column: Acquity UPLC BEH Shield RP, 18 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 60% (80:20 MeOH:ACN) / 40% H₂O (both with 10 mM NH, OAc buffer) Ramp to 85% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min. Time: 12 min Flow: 300 µl/min ### MS Parameters Experiments: SIR of 10 channels Full Scan (250 - 850 amu) Source: Electrospray (negative) Capillary Voltage (kV) = 0.50 Cone Voltage (V) = 5 (variable for SIR (2-12)) Desolvation Temperature (°C) = 500 Desolvation Gas Flow (I/hr) = 750 PFDoA; LC/MS/MS Data (Selected MRM Transitions) Figure 3: On-column (PFDoA) Injection: Mobile phase: Same as Figure 1 Flow: 300 µl/min **MS Parameters** Collision Gas (mbar) = 3.47e-3 Collision Energy (eV) = 12 PRODUCT CODE: **PFBA** LOT NUMBER: PFBA1217 COMPOUND: Perfluoro-n-butanoic acid STRUCTURE: CAS #: 375-22-4 **MOLECULAR FORMULA:** CAHFO2 **CONCENTRATION:** $50 \pm 2.5 \,\mu g/ml$ **MOLECULAR WEIGHT:** 214.04 SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 12/14/2017 EXPIRY DATE: (mm/dd/yyyy) 12/14/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ### DOCUMENTATION/ DATA ATTACHED: Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ### **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 12/18/2017 ### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ###
UNCERTAINTY: The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_s(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). PFBA; LC/MS/MS Data (Selected MRM Transitions) Figure 2: # Conditions for Figure 2: Injection: Flow: Direct loop injection 10 µl (500 ng/ml PFBA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% $\rm H_2O$ (both with 10 mM $\rm NH_4OAc$ buffer) 300 µl/min #### **MS Parameters** Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 10 Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 PRODUCT CODE: **PFPeA** LOT NUMBER: PFPeA0218 **COMPOUND:** Perfluoro-n-pentanoic acid CAS #: 2706-90-3 STRUCTURE: MOLECULAR FORMULA: C,HF,O, **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ MOLECULAR WEIGHT: SOLVENT(S): 264.05 Methanol Water (<1%) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 02/16/2018 02/16/2023 EXPIRY DATE: (mm/dd/yyyy) RECOMMENDED STORAGE: Store ampoule in a cool, dark place #### DOCUMENTATION/ DATA ATTACHED: Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains ~ 0.3% of Perfluoro-n-heptanoic acid (PFHpA) and ~ 0.2% of C_sH₂F_sO₂ (hydrido - derivative) as measured by 19F NMR. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 02/20/2018 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ## HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u(y), of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ## LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** PFPeA0218 (2 of 4) rev0 | Conditions for | r Figure 1: | | |----------------------------|--|---------------------------------------| | LC:
MS: | Waters Acquity Ultra Performance LC
Micromass Quattro <i>micro</i> API MS | | | Chromatographic Conditions | | MS Parameters | | Column: | Acquity UPLC BEH Shield RP ₁₈ | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (150 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 30% (80:20 MeOH:ACN) / 70% H ₂ O | Capillary Voltage (kV) = 2.50 | | | (both with 10 mM NH ₄ OAc buffer) | Cone Voltage (V) = 15.00 | | | Ramp to 90% organic over 7 min and hold for 1.5 min | Cone Gas Flow (I/hr) = 100 | | | before returning to initial conditions in 0.5 min.
Time: 10 min | Desolvation Gas Flow (I/hr) = 750 | | Flow: | 300 μl/min | | Figure 2: PFPeA; LC/MS/MS Data (Selected MRM Transitions) Injection: Direct loop injection 10 µl (500 ng/ml PFPeA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H,O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min ## MS Parameters Collision Gas (mbar) = 3.28e-3 Collision Energy (eV) = 9 PRODUCT CODE: **PFHxA** LOT NUMBER: PFHxA0917 **COMPOUND:** Perfluoro-n-hexanoic acid STRUCTURE: CAS #: 307-24-4 **MOLECULAR FORMULA:** CHF,O, MOLECULAR WEIGHT: 314.05 **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ SOLVENT(S): Methanol Water (<1%) **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 09/27/2017 EXPIRY DATE: (mm/dd/yyyy) 09/27/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data
(Selected MRM Transitions) ## **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains ~ 1.0% of branched isomers. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 11/01/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{x}(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_e(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y_i,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** # Conditions for Figure 2: Injection: Direct loop injection 10 μI (500 ng/ml PFHxA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min ## **MS Parameters** Collision Gas (mbar) = 3.46e-3 Collision Energy (eV) = 10 PRODUCT CODE: **PFDA** LOT NUMBER: PFDA1217 COMPOUND: Perfluoro-n-decanoic acid STRUCTURE: CAS #: 335-76-2 **MOLECULAR FORMULA:** C,0HF,9O2 **MOLECULAR WEIGHT:** 514.08 **CONCENTRATION:** 50 ± 2.5 µg/ml SOLVENT(S): Methanol Water (<1%) **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 12/14/2017 EXPIRY DATE: (mm/dd/yyyy) 12/14/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains ~ 0.2% of perfluoro-n-nonanoic acid (PFNA). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 12/18/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ## **HAZARDS:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ## **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ## **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in
the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** | Conditions for | or Figure 1: | | |----------------------------|--|---------------------------------------| | LC:
MS: | Waters Acquity Ultra Performance LC
Micromass Quattro <i>micro</i> API MS | | | Chromatographic Conditions | | MS Parameters | | Column: | Acquity UPLC BEH Shield RP ₁₈ | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (150 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 55% (80:20 MeOH:ACN) / 45% H ₂ O | Capillary Voltage (kV) = 3.00 | | | (both with 10 mM NH ₂ OAc buffer) | Cone Voltage (V) = 15.00 | | | Ramp to 90% organic over 7 min and hold for | Cone Gas Flow (I/hr) = 50 | | | 2 min before returning to initial conditions in 0.5 min. Time: 10 min | Desolvation Gas Flow (I/hr) = 750 | | Flow: | 300 μl/min | | Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions) ## Conditions for Figure 2: Injection: Direct loop injection 10 µl (500 ng/ml PFDA) To pri (coo rightii 1 1 5/1) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₂OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.35e-3 Collision Energy (eV) = 13 PRODUCT CODE: **PFUdA** LOT NUMBER: PFUdA0917 **COMPOUND:** Perfluoro-n-undecanoic acid CAS #: 2058-94-8 STRUCTURE: **MOLECULAR FORMULA:** C, HF, O, **MOLECULAR WEIGHT:** 564.09 **CONCENTRATION:** 50 ± 2.5 µg/ml SOLVENT(S): Methanol Water (<1%) **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 09/21/2017 EXPIRY DATE: (mm/dd/yyyy) 09/21/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 09/22/2017 Page 410 of 556 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_n(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ## **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Injection: Direct loop injection 10 µl (500 ng/ml PFUdA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H2O (both with 10 mM NH OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.46e-3 Collision Energy (eV) = 11 PRODUCT CODE: PFTrDA LOT NUMBER: PFTrDA0517 COMPOUND: Perfluoro-n-tridecanoic acid STRUCTURE: CAS #: 72629-94-8 **MOLECULAR FORMULA:** C, HF, O, MOLECULAR WEIGHT: 664.11 **CONCENTRATION:** 50 ± 2.5 µg/ml SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 05/02/2017 EXPIRY DATE: (mm/dd/yyyy) 05/02/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains ~ 0.1% of PFUdA ($C_{11}HF_{21}O_2$), ~ 0.4% of PFDoA ($C_{12}HF_{23}O_2$), and ~ 0.1% of PFTeDA (C₁₄HF₂₇O₂). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 05/04/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ## HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also
confirmed using HRGC/HRMS and/or LC/MS/MS. ## HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u_c(y), of a value y and the uncertainty of the independent parameters $$x_1, x_2, ...x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### EXPIRY DATE / PERIOD OF VALIDITY: Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). ^{**}For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Work Order 1803676 Page 415 of 556 Figure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions) Injection: Direct loop injection 10 μl (500 ng/ml PFTrDA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.17e-3 Collision Energy (eV) = 15 PRODUCT CODE: **PFHpA** LOT NUMBER: PFHpA0917 COMPOUND: Perfluoro-n-heptanoic acid CAS #: 375-85-9 STRUCTURE: MOLECULAR FORMULA: C, HF, O, **MOLECULAR WEIGHT:** 364.06 $50 \pm 2.5 \,\mu g/ml$ SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: CONCENTRATION: >98% LAST TESTED: (mm/dd/yyyy) 09/27/2017 EXPIRY DATE: (mm/dd/yyyy) 09/27/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 09/29/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{x}(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** ## Conditions for Figure 2: Injection: Direct loop injection 10 μl (500 ng/ml PFHpA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH, OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.43e-3 Collision Energy (eV) = 11 **PRODUCT CODE:** **PFOA** LOT NUMBER: PFOA0218 COMPOUND: Perfluoro-n-octanoic acid STRUCTURE: CAS #: 335-67-1 **MOLECULAR FORMULA:** C,HF,O, **MOLECULAR WEIGHT:** 414.07 $50 \pm 2.5 \, \mu g/ml$ **CONCENTRATION:** SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy)
02/16/2018 EXPIRY DATE: (mm/dd/yyyy) 02/16/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) #### ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 02/20/2018 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2, ...x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### EXPIRY DATE / PERIOD OF VALIDITY: Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ## LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** PFOA0218 (2 of 4) Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions) Injection: Direct loop injection 10 μl (500 ng/ml PFOA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min #### **MS Parameters** Collision Gas (mbar) = 3.35e-3 Collision Energy (eV) = 10 PRODUCT CODE: **PFNA** LOT NUMBER: PFNA0717 **COMPOUND:** Perfluoro-n-nonanoic acid CAS #: 375-95-1 STRUCTURE: C, HF, O, $50 \pm 2.5 \, \mu g/ml$ MOLECULAR WEIGHT: SOLVENT(S): 464.08 Methanol Water (<1%) CHEMICAL PURITY: **CONCENTRATION:** >98% LAST TESTED: (mm/dd/yyyy) MOLECULAR FORMULA: 07/20/2017 EXPIRY DATE: (mm/dd/yyyy) 07/20/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains ~ 0.1% of perfluoro-n-octanoic acid (PFOA), < 0.1% of perfluoro-n-heptanoic acid (PFHpA), and < 0.1% of perfluoro-n-undecanoic acid (PFUdA). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 07/24/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. ## **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_1(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ...x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For
certain products, traceability to international interlaboratory studies has also been established. #### EXPIRY DATE / PERIOD OF VALIDITY: Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ## LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** | Conditions 1 | for Figure 1: | | |----------------------------|--|---------------------------------------| | LC:
MS: | Waters Acquity Ultra Performance LC
Micromass Quattro <i>micro</i> API MS | | | Chromatographic Conditions | | MS Parameters | | Column: | Acquity UPLC BEH Shield RP, 8 | | | | 1.7 μm, 2.1 x 100 mm | Experiment: Full Scan (225 - 850 amu) | | Mobile phase: | e: Gradient | Source: Electrospray (negative) | | | Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O | Capillary Voltage (kV) = 2.00 | | | (both with 10 mM NH ₄ OAc buffer) | Cone Voltage (V) = 15.00 | | | Hold for 1 min. Ramp to 90% organic over 7 min and hold | Cone Gas Flow (I/hr) = 50 | | | for 1 min before returning to initial conditions in 0.5 min. Time: 10 min | Desolvation Gas Flow (I/hr) = 750 | | Flow: | 300 μl/min | | ## Conditions for Figure 2: Injection: Direct loop injection 10 μI (500 ng/ml PFNA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH, OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.50e-3 Collision Energy (eV) = 11 PRODUCT CODE: PFTeDA LOT NUMBER: PFTeDA0917 **COMPOUND:** Perfluoro-n-tetradecanoic acid STRUCTURE: CAS #: 376-06-7 **MOLECULAR FORMULA:** C14HF27O2 **MOLECULAR WEIGHT:** 714.11 **CONCENTRATION:** $50 \pm 2.5 \,\mu g/ml$ SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 09/21/2017 EXPIRY DATE: (mm/dd/yyyy) 09/21/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place #### **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains ~ 0.2% of PFDoA ($C_{12}HF_{23}O_2$) and ~ 0.2% of PFPeDA ($C_{15}HF_{29}O_2$). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 09/21/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ## HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u_c(y), of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ## TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Work Order 1803676 Page 431 of 556 LC: Waters Acquity Ultra Performance LC MS: Micromass Quattro micro API MS # **Chromatographic Conditions** Column: Acquity UPLC BEH Shield RP, 8 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 55% (80:20 MeOH:ACN) / 45% H₂O (both with 10 mM NH, OAc buffer) Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min. Time: 10 min Flow: 300 µl/min # MS Parameters Experiment: Full Scan (150 - 850 amu) Source: Electrospray (negative) Capillary Voltage (kV) = 3.00 Cone Voltage (V) = 15.00 Cone Gas Flow (l/hr) = 60 Desolvation Gas Flow (l/hr) = 750 Page 432 of 556 PFTeDA; LC/MS/MS Data (Selected MRM Transitions) Figure 2: Injection: Direct loop injection 10 µl (500 ng/ml PFTeDA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH OAc buffer) Flow: 300 µl/min # **MS Parameters** Collision Gas (mbar) = 3.46e-3 Collision Energy (eV) = 14 PRODUCT CODE: PFHxDA LOT NUMBER: PFHxDA0717 COMPOUND: Perfluoro-n-hexadecanoic acid STRUCTURE: CAS #: 67905-19-5 **MOLECULAR FORMULA:** C, HF, O, **MOLECULAR WEIGHT:** 814.13 **CONCENTRATION:** 50 ± 2.5 µg/ml SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 07/13/2017 EXPIRY DATE: (mm/dd/yyyy) 07/13/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) #### ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 08/04/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. # **HAZARDS:**
This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. # HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. # **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y_i, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** # Conditions for Figure 2: Injection: Direct loop injection 10 µl (500 ng/ml PFHxDA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.13e-3 Collision Energy (eV) = 15 Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 PRODUCT CODE: **PFODA** LOT NUMBER: PFODA0717 COMPOUND: Perfluoro-n-octadecanoic acid STRUCTURE: CAS #: 16517-11-6 **MOLECULAR FORMULA:** C, HF, O, MOLECULAR WEIGHT: 914.14 **CONCENTRATION:** 50 ± 2.5 µg/ml SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 07/13/2017 EXPIRY DATE: (mm/dd/yyyy) 07/13/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # DOCUMENTATION/ DATA ATTACHED: Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 07/14/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. # HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_{\epsilon}(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI
Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** PFODA0717 (2 of 4) Figure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions) Injection: Direct loop injection 10 μl (500 ng/ml PFODA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 15 NH₄OAc buffer) PRODUCT CODE: L-PFBS LOT NUMBER: **MOLECULAR WEIGHT:** SOLVENT(S): LPFBS0917 **COMPOUND:** Potassium perfluoro-1-butanesulfonate CAS #: 29420-49-3 338.19 Methanol STRUCTURE: **MOLECULAR FORMULA:** C₄F₉SO₃K $50.0 \pm 2.5 \,\mu g/ml$ (K salt) 44.2 ± 2.2 µg/ml (PFBS anion) **CHEMICAL PURITY:** CONCENTRATION: >98% LAST TESTED: (mm/dd/yyyy) EXPIRY DATE: (mm/dd/yyyy) 09/21/2017 09/21/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # ADDITIONAL INFORMATION: See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 09/22/2017 (mm/dd/yyyy) Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. # HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u(y), of a value y and the uncertainty of the independent parameters $$x_1, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** LPFBS0917 (2 of 4) | LC: | Waters Acquity Ultra Performance LC | | |---------------|--|---------------------------------------| | MS: | Micromass Quattro micro API MS | | | Chromatogra | phic Conditions | MS Parameters | | Column: | Acquity UPLC BEH Shield RP | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (150 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O | Capillary Voltage (kV) = 3.00 | | | (both with 10 mM NH ₄ OAc buffer) | Cone Voltage (V) = 40.00 | | | Ramp to 90% organic over 7 min and hold for 2 min | Cone Gas Flow (I/hr) = 50 | | | before returning to initial conditions in 0.5 min. | Desolvation Gas Flow (I/hr) = 750 | | | Time: 10 min | | | Flow: | 300 µl/min | | # Conditions for Figure 2: Injection: Direct loop injection 10 µl (500 ng/ml L-PFBS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 25 Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 PRODUCT CODE: L-PFPeS LOT NUMBER: MOLECULAR WEIGHT: SOLVENT(S): LPFPeS0117 COMPOUND: Sodium perfluoro-1-pentanesulfonate CAS #: 630402-22-1 372.09 Methanol STRUCTURE: MOLECULAR FORMULA: C₅F₄SO₃Na $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) $46.9 \pm 2.3 \,\mu\text{g/ml}$ (PFPeS anion) CHEMICAL PURITY: **CONCENTRATION:** >98% LAST TESTED: (mm/dd/yyyy) 01/11/2017 01/11/2022 EXPIRY DATE: (mm/dd/yyyy) RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 09/06/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. # HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD.
New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** LPFPeS0117 (2 of 4) rev1 | LC: | Waters Acquity Ultra Performance LC | | |---------------|---|---------------------------------------| | MS: | Micromass Quattro micro API MS | | | Chromatogra | phic Conditions | MS Parameters | | Column: | Acquity UPLC BEH Shield RP,8 | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (225 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O | Capillary Voltage (kV) = 3.00 | | | (both with 10 mM NH OAc buffer) | Cone Voltage (V) = 50.00 | | | Ramp to 90% organic over 7.5 min and hold for 1.5 min | Cone Gas Flow (I/hr) = 60 | | | before returning to initial conditions over 0.5 min. | Desolvation Gas Flow (I/hr) = 750 | | | Time: 10 min | | | Flow: | 300 µl/min | | Injection: Direct loop injection 10 µl (500 ng/ml L-PFPeS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 30 PRODUCT CODE: L-PFHpS LOT NUMBER: MOLECULAR WEIGHT: SOLVENT(S): LPFHpS0817 **COMPOUND:** Sodium perfluoro-1-heptanesulfonate CAS #: Not available 472.10 Methanol STRUCTURE: **MOLECULAR FORMULA:** C,F,SO,Na $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) $47.6 \pm 2.4 \mu g/ml$ (PFHpS anion) **CHEMICAL PURITY:** **CONCENTRATION:** >98% LAST TESTED: (mm/dd/yyyy) 09/01/2017 EXPIRY DATE: (mm/dd/yyyy) 09/01/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place #### DOCUMENTATION/ DATA ATTACHED: Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # ADDITIONAL INFORMATION: See page 2 for further details. Contains ~ 0.2% of L-PFHxS ($C_{g}F_{13}SO_{g}Na$) and ~ 0.1% of L-PFOS ($C_{g}F_{17}SO_{g}Na$). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 09/07/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u(y), of a value y and the uncertainty of the independent parameters $$x_j, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Work Order 1803676 Page 451 of 556 | Conditions for Figu | ire | 1: | |---------------------|-----|----| |---------------------|-----|----| LC: Waters Acquity Ultra Performance LC MS: Micromass Quattro micro API MS **Chromatographic Conditions** Column: Acquity UPLC BEH Shield RP,18 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 50%
(80:20 MeOH:ACN) / 50% H₂O (both with 10 mM NH₄OAc buffer) Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min. Time: 10 min Flow: 300 µl/min # **MS Parameters** Experiment: Full Scan (225 - 850 amu) Source: Electrospray (negative) Capillary Voltage (kV) = 2.00 Cone Voltage (V) = 60.00 Cone Gas Flow (l/hr) = 60 Desolvation Gas Flow (l/hr) = 750 Injection: Direct loop injection 10 μl (500 ng/ml L-PFHpS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H,O (both with 10 mM NH, OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.35e-3 Collision Energy (eV) = 35 PRODUCT CODE: L-PFNS LOT NUMBER: MOLECULAR WEIGHT: SOLVENT(S): LPFNS0917 **COMPOUND:** Sodium perfluoro-1-nonanesulfonate STRUCTURE: CAS #: 98789-57-2 572.12 Methanol **MOLECULAR FORMULA:** **CONCENTRATION:** C₉F₁₉SO₃Na 50.0 ± 2.5 μg/ml (Na salt) $48.0 \pm 2.4 \mu g/ml$ (PFNS anion) CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 09/27/2017 EXPIRY DATE: (mm/dd/yyyy) 09/27/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # ADDITIONAL INFORMATION: See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 09/28/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. # **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** LPFNS0917 (2 of 4) Injection: Direct loop injection 10 μl (500 ng/ml L-PFNS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.50e-3 Collision Energy (eV) = 45 PRODUCT CODE: L-PFDS LOT NUMBER: **MOLECULAR WEIGHT:** SOLVENT(S): LPFDS1117 **COMPOUND:** Sodium perfluoro-1-decanesulfonate STRUCTURE: CAS #: 2806-15-7 622.13 Methanol **MOLECULAR FORMULA:** C₁₀F₂₁SO₃Na $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) $48.2 \pm 2.4 \mu g/ml$ (PFDS anion) CHEMICAL PURITY: **CONCENTRATION:** >98% LAST TESTED: (mm/dd/yyyy) EXPIRY DATE: (mm/dd/yyyy) 11/08/2017 11/08/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # ADDITIONAL INFORMATION: See page 2 for further details. Contains ~ 0.9% of sodium perfluoro-1-dodecanesulfonate (L-PFDoS). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 11/16/2017 The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. # **HAZARDS:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u_(y), of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum
combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** | Conditions fo | or Figure 1: | | |---------------|--|---| | LC:
MS: | Waters Acquity Ultra Performance LC
Micromass Quattro <i>micro</i> API MS | | | Chromatogra | phic Conditions | MS Parameters | | Column: | Acquity UPLC BEH Shield RP, | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (225 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O | Capillary Voltage (kV) = 3.00 | | | (both with 10 mM NH,OAc buffer) | Cone Voltage (V) = 70.00 | | | Ramp to 90% organic over 7 min and hold for | Cone Gas Flow (I/hr) = 50 | | | 2 min before returning to initial conditions in 0.5 min. | Desolvation Gas Flow (I/hr) = 750 | | | Time: 10 min | 100-00000000000000000000000000000000000 | | Flow: | 300 μl/min | | Injection: Direct loop injection 10 µl (500 ng/ml L-PFDS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH, OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.46e-3 Collision Energy (eV) = 50 Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 LPFDS1117 (4 of 4) # br-PFHxSK Potassium Perfluorohexanesulfonate Solution/Mixture of Linear and Branched Isomers PRODUCT CODE: br-PFHxSK LOT NUMBER: brPFHxSK0117 CONCENTRATION: 50.0 ± 2.5 μg/ml (total potassium salt) 45.5 ± 2.3 µg/ml (total PFHxS anion) SOLVENT(S): Methanol DATE PREPARED: (mm/dd/yyyy) 01/03/2017 LAST TESTED: (mm/dd/yyyy) 01/04/2017 **EXPIRY DATE:** (mm/dd/yyyy) 01/04/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DESCRIPTION:** The chemical purity has been determined to be ≥98% perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A. # **DOCUMENTATION/ DATA ATTACHED:** Table A: Isomeric Components and Percent Composition by 19F-NMR Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS Data (SIR) Figure 3: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains ~ 0.5% of perfluoro-1-pentanesulfonate and ~ 0.2% of perfluoro-1-octanesulfonate. CAS#: 3871-99-6 (for linear isomer; potassium salt). #### FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $x_1, x_2,...x_n$ on which it depends is: $$u_{\epsilon}(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^{n} u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Table A: br-PFHxSK; Isomeric Components and Percent Composition (by 19F-NMR)* | Isomer | Name | Structure | Percent
Composition
by ¹⁹ F-NMR | |--------|---|--|--| | 1 | Potassium perfluoro-1-hexanesulfonate | CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ SO ₃ -K+ | 81.1 | | 2 | Potassium 1-trifluoromethylperfluoropentanesulfonate** | CF ₃ CF ₂ CF ₂ CF ₂ CFSO ₃ -K ⁺
CF ₃ | 2.9 | | 3 | Potassium 2-trifluoromethylperfluoropentanesulfonate | CF ₃ CF ₂ CF ₂ CFCF ₂ SO ₃ -K ⁺
CF ₃ | 1.4 | | 4 | Potassium 3-trifluoromethylperfluoropentanesulfonate | CF ₃ CF ₂ CFCF ₂ CF ₂ SO ₃ -K ⁺
CF ₃ | 5.0 | | 5 | Potassium 4-trifluoromethylperfluoropentanesulfonate | CF ₃ CFCF ₂ CF ₂ CF ₂ SO ₃ -K+
CF ₃ | 8.9 | | 6 | Potassium 3,3-di(trifluoromethyl)perfluorobutanesulfonate | CF ₃
CF ₃ CCF ₂ CF ₂ SO ₃ -K+
CF ₃ | 0.2 | | 7 | Other Unidentified Isomers | | 0.5 | Percent of total perfluorohexanesulfonate isomers only. Systematic Name: Potassium
perfluorohexane-2-sulfonate. Certified By: B.G. Chittim Date: 01/20/2017 (mm/dd/yyyy) Form#:13, Issued 2004-11-10 Revision#:3, Revised 2015-03-24 Figure 2: br-PFHxSK; LC/MS Data (SIR) # Conditions for Figure 2: LC: Waters Acquity Ultra Performance LC MS: Micromass Quattro micro API MS Chromatographic Conditions Column: Acquity UPLC BEH Shield RP, 8 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 20% (80:20 MeOH:ACN) / 80% H₂O (both with 10 mM NH₄OAc buffer) Ramp to 50% organic over 14 min. Ramp to 90% organic over 3 min and hold for 1.5 min before returning to initial conditions in 0.5 min. Time: 20 min Flow: 300 µl/min # MS Parameters Experiment: SIR (6 channels) Source: Electrospray (negative) Capillary Voltage (kV) = 3.00 Cone Voltage (V) = variable (15-62) Cone Gas Flow (I/hr) = 60 Desolvation Gas Flow (I/hr) = 750 Injection: Direct loop injection 10 µl (500 ng/ml br-PFHxSK) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH, OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.35e-3 Collision Energy (eV) = 30 # br-PFOSK Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers PRODUCT CODE: br-PFOSK LOT NUMBER: brPFOSK0117 **CONCENTRATION:** $50 \pm 2.5 \mu g/ml$ (total potassium salt) $46.4 \pm 2.3 \,\mu\text{g/ml}$ (total PFOS anion) SOLVENT(S): Methanol DATE PREPARED: (mm/dd/yyyy) 01/09/2017 LAST TESTED: (mm/dd/yyyy) 01/12/2017 EXPIRY DATE: (mm/dd/yyyy) 01/12/2022 **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place # **DESCRIPTION:** The chemical purity has been determined to be ≥98% perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A. ## **DOCUMENTATION/ DATA ATTACHED:** Table A: Isomeric Components and Percent Composition by 19F-NMR Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS Data (SIR) Figure 3: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution. CAS#: 2795-39-3 (for linear isomer; potassium salt). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. #### UNCERTAINTY: The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{x}(y)$, of a value y and the uncertainty of the independent parameters $x_1, x_2,...x_n$ on which it depends is: $$u_{\epsilon}(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^{n} u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** brPFOSK0117 (2 of 6) Form#:13, Issued 2004-11-10 Revision#:3, Revised 2015-03-24 Table A: br-PFOSK; Isomeric Components and Percent Composition (by 19F-NMR)* | Isomer | Name | Structure | Percent
Composition
by ¹⁹ F-NMR | |--------|---|---|--| | 1 | Potassium perfluoro-1-octanesulfonate | CF3CF2CF2CF2CF2CF2CF2CF2SO3-K+ | 78.8 | | 2 | Potassium 1-trifluoromethylperfluoroheptanesulfonate** | CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CFSO ₃ -K ⁺ CF ₃ | 1.2 | | 3 | Potassium 2-trifluoromethylperfluoroheptanesulfonate | CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ CFCF ₂ SO ₃ -K ⁺ CF ₃ | 0.6 | | 4 | Potassium 3-trifluoromethylperfluoroheptanesulfonate | CF ₃ CF ₂ CF ₂ CF ₂ CFCF ₂ CF ₂ SO ₃ -K+
CF ₃ | 1.9 | | 5 | Potassium 4-trifluoromethylperfluoroheptanesulfonate | CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ SO ₃ -K ⁺ CF ₃ | 2.2 | | 6 | Potassium 5-trifluoromethylperfluoroheptanesulfonate | CF ₃ CF ₂ CFCF ₂ CF ₂ CF ₂ CF ₂ SO ₃ -K+
CF ₃ | 4.5 | | 7 | Potassium 6-trifluoromethylperfluoroheptanesulfonate | CF ₃ CFCF ₂ CF ₂ CF ₂ CF ₂ CF ₂ SO ₃ -K+
CF ₃ | 10.0 | | 8 | Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate | CF ₃
CF ₃ CCF ₂ CF ₂ CF ₂ CF ₂ SO ₃ ·K ⁺
CF ₃
CF ₃ | 0.2 | | 9 | Potassium 4,4-di(trifluoromethyl)perfluorohexanesulfonate | CF3CF2CCF2CF2CF2SO3-K+ | 0.03 | | 10 | Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate | CF ₃ CF ₃ CF ₃ CF ₃ CFCFCF ₂ CF ₂ CF ₂ SO ₃ -K ⁺ CF ₃ | 0.4 | | 11 | Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate | CF ₃
CF ₃ CFCF ₂ CFCF ₂ CF ₂ SO ₃ -K ⁺
CF ₃ | 0.07 | ^{*} Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2. ** Systematic Name: Potassium perfluorooctane-2-sulfonate. Certified By: B.G. Chittim Date: 01/20/2017 Form#:13, Issued 2004-11-10 Revision#:3, Revised 2015-03-24 Work Order 1803676 Figure 2: br-PFOSK; LC/MS Data (SIR) #### Conditions for Figure 2: MS: LC: Waters Acquity Ultra Performance LC Micromass Quattro micro API MS # Chromatographic Conditions: Column: Acquity UPLC BEH Shield RP₁₈ (1.7 µm, 2.1 x 100 mm) Injection: 1.0 µg/ml of br-PFOSK Mobile Phase: Gradient 45% (80:20 MeOH:ACN) / 55% H₂O (both with 10 mM NH₄OAc buffer) Ramp to 90% organic over 15 min and hold for 3 min. Return to initial conditions over 1 min. Time: 20 min Flow: 300 µl/min #### MS Conditions: SIR (ES⁻) Source = 110 °C Desolvation = 325 °C Cone Voltage = 60V Injection: On-column **MS Parameters** Mobile phase: Same as Figure 2 Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 11-50 (variable) Flow: 300 µl/min PRODUCT CODE: 4:2FTS LOT NUMBER: 42FTS1216 **COMPOUND:** Sodium 1H,1H,2H,2H-perfluorohexane sulfonate STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** C_EH_AF_QSO₃Na **MOLECULAR WEIGHT:** 350.13 CONCENTRATION: $50.0 \pm
2.5 \,\mu g/ml$ (Na salt) $46.7 \pm 2.3 \,\mu \text{g/ml}$ (4:2FTS anion) SOLVENT(S): Methanol CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 12/12/2016 EXPIRY DATE: (mm/dd/yyyy) 12/12/2021 RECOMMENDED STORAGE: Refrigerate ampoule # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim Date: 12/21/2016 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_x(y)$, of a value y and the uncertainty of the independent parameters $x_1, x_2,...x_n$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** LC: Waters Acquity Ultra Performance LC MS: Micromass Quattro micro API MS # **Chromatographic Conditions** Column: Acquity UPLC BEH Shield RP,18 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 50% (80:20 MeOH:ACN) / 50% H₂O (both with 10 mM NH,OAc buffer) Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min. Time: 10 min Flow: 300 µl/min # MS Parameters Experiment: Full Scan (150 - 850 amu) Source: Electrospray (negative) Capillary Voltage (kV) = 3.00 Cone Voltage (V) = 25.00 Cone Gas Flow (l/hr) = 100 Desolvation Gas Flow (l/hr) = 750 # **Conditions for Figure 2:** Injection: Direct loop injection 10 µl (500 ng/ml 4:2FTS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 25 Form#:27, Issued 2004-11-10 Revision#:3, Revised 2015-03-24 42FTS1216 (4 of 4) PRODUCT CODE: 6:2FTS LOT NUMBER: 62FTS0418 COMPOUND: Sodium 1H,1H,2H,2H-perfluorooctane sulfonate STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** C₈H₄F₁₃SO₃Na MOLECULAR WEIGHT: 450.15 **CONCENTRATION:** $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) $47.4 \pm 2.4 \,\mu g/ml$ (6:2FTS anion) SOLVENT(S): Methanol **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 04/03/2018 EXPIRY DATE: (mm/dd/yyyy) 04/03/2023 RECOMMENDED STORAGE: Refrigerate ampoule #### DOCUMENTATION/ DATA ATTACHED: Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains ~ 0.3% of sodium 1H,1H,2H,2H-perfluorodecane sulfonate (8:2FTS). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 04/09/2018 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the
Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ## LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Figure 2: 6:2FTS; LC/MS/MS Data (Selected MRM Transitions) PRODUCT CODE: 8:2FTS LOT NUMBER: 82FTS0118 COMPOUND: Sodium 1H,1H,2H,2H-perfluorodecane sulfonate STRUCTURE: **CAS #:** Not available **MOLECULAR FORMULA:** C₁₀H₄F₁₇SO₃Na **MOLECULAR WEIGHT:** 550.16 CONCENTRATION: $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) $47.9 \pm 2.4 \,\mu g/ml$ (8:2FTS anion) SOLVENT(S): Methanol **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 01/24/2018 EXPIRY DATE: (mm/dd/yyyy) 01/24/2023 RECOMMENDED STORAGE: Refrigerate ampoule # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) #### **ADDITIONAL INFORMATION:** See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 01/31/2018 (mm/dd/yyyy) Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u_c(y), of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). ^{**}For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Waters Acquity Ultra Performance LC LC: Micromass Quattro micro API MS MS: # **Chromatographic Conditions** Acquity UPLC BEH Shield RP,18 Column: 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 50% (80:20 MeOH:ACN) / 50% H,O (both with 10 mM NH,OAc buffer) Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min. Time: 10 min Flow: 300 µl/min # **MS Parameters** Experiment: Full Scan (225 - 850 amu) Source: Electrospray (negative) Capillary Voltage (kV) = 3.00 Cone Voltage (V) = 30.00 Cone Gas Flow (I/hr) = 100 Desolvation Gas Flow (I/hr) = 750 Figure 2: 8:2FTS; LC/MS/MS Data (Selected MRM Transitions) Injection: Direct loop injection 10 µl (500 ng/ml 8:2FTS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 25 Form#:27, Issued 2004-11-10 Revision#:5, Revised 2018-01-22 82FTS0118 (4 of 4) PRODUCT CODE: FOSA-I LOT NUMBER: FOSA0817I COMPOUND: Perfluoro-1-octanesulfonamide CAS #: 754-91-6 STRUCTURE: SO,NH, MOLECULAR FORMULA: C,H,F,,NO,S **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 09/01/2017 09/01/2022 EXPIRY DATE: (mm/dd/yyyy) RECOMMENDED STORAGE: Refrigerate ampoule **MOLECULAR WEIGHT:** SOLVENT(S): 499.14 Isopropanol # DOCUMENTATION/ DATA ATTACHED: Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 09/14/2017 (mm/dd/yyyy) Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### **HAZARDS:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.
SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_a(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ... x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). ^{**}For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Work Order 1803676 Page 487 of 556 | Conditions for | or Figure 1: | | |----------------|---|---------------------------------------| | LC:
MS: | Waters Acquity Ultra Performance LC Micromass Quattro <i>micro</i> API MS | | | Chromatogra | phic Conditions | MS Parameters | | Column: | Acquity UPLC BEH Shield RP18 | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (225 - 850 amu) | | Mobile phase | Gradient | Source: Electrospray (negative) | | | Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O | Capillary Voltage (kV) = 2.50 | | | (both with 10 mM NH OAc buffer) | Cone Voltage (V) = 40.00 | | | Ramp to 90% organic over 8 min and hold for 1 min | Cone Gas Flow (I/hr) = 50 | | | before returning to initial conditions in 0.5 min. | Desolvation Gas Flow (I/hr) = 750 | | | Time: 10 min | | | Flow: | 300 µl/min | | Figure 2: FOSA-I; LC/MS/MS Data (Selected MRM Transitions) Injection: Direct loop injection 10 µl (500 ng/ml FOSA-l) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% $\rm{H_{2}O}$ (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.20e-3 Collision Energy (eV) = 30 # br-NMeFOSAA N-Methylperfluorooctanesulfonamidoacetic Acid Solution/Mixture of Linear and Branched Isomers PRODUCT CODE: br-NMeFOSAA LOT NUMBER: brNMeFOSAA0118 **CONCENTRATION:** $50.0 \pm 2.5 \,\mu g/ml$ SOLVENT(S): Methanol/Water (<1%) DATE PREPARED: (mm/dd/yyyy) 01/10/2018 01/17/2018 LAST TESTED: (mm/dd/yyyy) 147/2022 EXPIRY DATE: (mm/dd/yyyy) 01/17/2023 **RECOMMENDED STORAGE:** Refrigerate ampoule #### **DESCRIPTION:** The chemical purity has been determined to be ≥98% N-methylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A. # **DOCUMENTATION/ DATA ATTACHED:** Table A: Isomeric Components and Percent Composition by 19F-NMR Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS Data (SIR) Figure 3: LC/MS/MS Data (Selected MRM Transitions) #### ADDITIONAL INFORMATION: - See page 2 for further details. - Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u_c(y), of a value y and the uncertainty of the independent parameters $$x_1, x_2, ...x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^n u(y_i, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability
to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ## LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** brNMeFOSAA0118 (2 of 6) rev0 Table A: br-NMeFOSAA; Isomeric Components and Percent Composition (by 19F-NMR)* | Isomer | Name | Structure | Percent
Composition
by ¹⁹ F-NMR | |--------|--|---|--| | 1 | N-methylperfluoro-1-octanesulfonamidoacetic acid | CF ₃ (CF ₂) ₇ SO ₂ NCH ₂ CO ₂ H
CH ₃ | 76.0 | | 2 | N-methylperfluoro-3-methylheptanesulfonamidoacetic acid | $\begin{array}{ccc} \operatorname{CF_3(CF_2)_3CF(CF_2)_2SO_2NCH_2CO_2H} \\ \operatorname{CF_3} & \operatorname{CH_3} \end{array}$ | 0.7 | | 3 | N-methylperfluoro-4-methylheptanesulfonamidoacetic acid | CF ₃ (CF ₂) ₂ CF(CF ₂) ₃ SO ₂ NCH ₂ CO ₂ H
CF ₃ CH ₃ | 2.0 | | 4 | N-methylperfluoro-5-methylheptanesulfonamidoacetic acid | CF ₃ CF ₂ CF(CF ₂) ₄ SO ₂ NCH ₂ CO ₂ H
CF ₃ CH ₃ | 6.0 | | 5 | N-methylperfluoro-6-methylheptanesulfonamidoacetic acid | $\begin{array}{ccc} \operatorname{CF_3CF(CF_2)_5SO_2NCH_2CO_2H} \\ \operatorname{CF_3} & \operatorname{CH_3} \end{array}$ | 14.0 | | 6 | N-methylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid | $\begin{array}{c}CF_3\\I\\CF_3C(CF_2)_4SO_2NCH_2CO_2H\\CF_3\\CH_3\end{array}$ | 0.2 | | 7 | Other Unidentified Isomers | | 1.1 | ^{*} Percent of total N-methylperfluorooctanesulfonamidoacetic acid isomers only. Certified By: B.G. Chittim, General Manager Date: 03/22/2018 Figure 1: br-NMeFOSAA; LC/MS Data (TIC and Mass Spectrum) | LC: | Waters Acquity Ultra Performance LC | | |---------------|--|---------------------------------------| | MS: | Micromass Quattro micro API MS | | | Chromatogra | phic Conditions | MS Parameters | | Column: | Acquity UPLC BEH Shield RP | | | | 1.7 µm, 2.1 x 100 mm | Experiment: Full Scan (225 - 850 amu) | | Mobile phase: | Gradient | Source: Electrospray (negative) | | | Start: 55% (80:20 MeOH:ACN) / 45% H ₂ O | Capillary Voltage (kV) = 3.00 | | | (both with 10 mM NH,OAc buffer) | Cone Voltage (V) = 35.00 | | | Ramp to 90% organic over 7 min and hold for | Cone Gas Flow (I/hr) = 50 | | | 2 min before returning to initial conditions in 0.5 min. | Desolvation Gas Flow (I/hr) = 750 | | | Time: 10 min | | | Flow: | 300 µl/min | | Form#:13, Issued 2004-11-10 Revision#:5, Revised 2018-01-22 brNMeFOSAA0118 (4 of 6) rev0 # Conditions for Figure 2: LC: Waters Acquity Ultra Performance LC MS: Micromass Quattro micro API MS Chromatographic Conditions Column: Acquity UPLC BEH Shield RP 18 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 55% (80:20 MeOH:ACN) / 45% H₂O (both with 10 mM NH₄OAc buffer) Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min. Time: 10 min Flow: 300 µl/min #### **MS Parameters** Experiment: SIR (7 channels) Source: Electrospray (negative) Capillary Voltage (kV) = 3.00 Cone Voltage (V) = 15-60 Cone Gas Flow (l/hr) = 50 Desolvation Gas Flow (l/hr) = 750 Figure 3: br-NMeFOSAA; LC/MS/MS Data (Selected MRM Transitions) *Note: N-MeFOSA is formed by in-source fragmentation. | Conditions for Figure 3: | | | |--------------------------|---------------------|--| | Injection: | On-column | MS Parameters | | Mobile phas | e: Same as Figure 2 | Collision Gas (mbar) = 3.39e-3
Collision Energy (eV) = 11-40 (variable) | | Flow: | 300 μl/min | | # br-NEtFOSAA N-Ethylperfluorooctanesulfonamidoacetic Acid Solution/Mixture of Linear and Branched Isomers PRODUCT CODE: br-NEtFOSAA **LOT NUMBER:** brNEtFOSAA0118 **CONCENTRATION:** 50.0 ± 2.5 µg/ml SOLVENT(S): Methanol/Water (<1%) DATE PREPARED: (mm/dd/yyyy) 01/10/2018 LAST TESTED: (mm/dd/yyyy) 01/17/2018 EXPIRY DATE: (mm/dd/yyyy) 01/17/2023 RECOMMENDED STORAGE: Refrigerate ampoule # **DESCRIPTION:** The chemical purity has been determined to be ≥98% N-ethylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A. #### **DOCUMENTATION/ DATA ATTACHED:** Table A: Isomeric Components and Percent Composition by 19F-NMR Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS Data (SIR) Figure 3: LC/MS/MS Data (Selected MRM Transitions) #### ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, u_c(y), of a value y and the uncertainty of the independent parameters $$x_1, x_2,...x_n$$ on which it depends is: $$u_e(y(x_1, x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and
purity specifications. # **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** brNEtFOSAA0118 (2 of 6) rev0 br-NEtFOSAA; Isomeric Components and Percent Composition (by 19F-NMR)* Table A: | Isomer | Name | Structure | Percent
Composition
by ¹⁹ F-NMR | |--------|---|---|--| | 1 | N-ethylperfluoro-1-octanesulfonamidoacetic acid | CF ₃ (CF ₂) ₇ SO ₂ NCH ₂ CO ₂ H
C ₂ H ₅ | 77.5 | | 2 | N-ethylperfluoro-3-methylheptanesulfonamidoacetic acid | $\begin{array}{cccc} {\rm CF_3(CF_2)_3CF(CF_2)_2SO_2NCH_2CO_2H} \\ {\rm CF_3} & {\rm C_2H_5} \end{array}$ | 2.3 | | 3 | N-ethylperfluoro-4-methylheptanesulfonamidoacetic acid | $\begin{array}{cccc} {\rm CF_3(CF_2)_2CF(CF_2)_3SO_2NCH_2CO_2H} \\ {\rm CF_3} & {\rm C_2H_5} \end{array}$ | 2.2 | | 4 | N-ethylperfluoro-5-methylheptanesulfonamidoacetic acid | $\begin{array}{ccc} \operatorname{CF_3CF_2CF(CF_2)_4SO_2NCH_2CO_2H} \\ \operatorname{CF_3} & \operatorname{C_2H_5} \end{array}$ | 5.4 | | 5 | N-ethylperfluoro-6-methylheptanesulfonamidoacetic acid | $\begin{array}{ccc} \operatorname{CF_3CF(CF_2)_5SO_2NCH_2CO_2H} \\ \operatorname{CF_3} & \operatorname{C_2H_5} \end{array}$ | 10.4 | | 6 | N-ethylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid $ \begin{array}{c} CF_3 \\ CF_3 C (CF_2)_4 SO_2 NCH_2 CO_2 H \\ CF_3 \\ CF_3 \\ C_2 H_5 \end{array} $ | | 0.3 | | 7 | ethylperfluoro-4,5-dimethylhexanesulfonamidoacetic acid $ \begin{array}{c} CF_3 \\ CF_3CFCF(CF_2)_3SO_2NCH_2CO_2H \\ CF_3 \\ CF_3 \\ C_2H_5 \end{array} $ | | 0.3 | | 8 | N-ethylperfluoro-3,5-dimethylhexanesulfonamidoacetic acid | $\begin{array}{c} CF_3 \\ CF_3CFCF_2CF(CF_2)_2SO_2NCH_2CO_2H \\ CF_3 \\ \end{array}$ | 0.3 | | 9 | Other Unidentified Isomers | | 1.3 | Percent of total N-ethylperfluorooctanesulfonamidoacetic acid isomers only. Certified By: B.G. Chittim, General Manager Date: 03/22/2018 Form#:13, Issued 2004-11-10 Revision#:5, Revised 2018-01-22 Page 499 of 556 Conditions for Figure 2: Figure 3: br-NEtFOSAA; LC/MS/MS Data (Selected MRM Transitions) *Note: N-EtFOSA is formed by in-source fragmentation. | Conditions for Figure 3: | | | |--------------------------|----------------------|--| | Injection: | On-column | MS Parameters | | Mobile phas | se: Same as Figure 2 | Collision Gas (mbar) = 3.39e-3
Collision Energy (eV) = 11-40 (variable) | | Flow: | 300 µl/min | | PRODUCT CODE: N-MeFOSA-M N-methylperfluoro-1-octanesulfonamide LOT NUMBER: MOLECULAR WEIGHT: SOLVENT(S): NMeFOSA0518M 513.17 Methanol STRUCTURE: COMPOUND: CAS #: 31506-32-8 **MOLECULAR FORMULA:** $C_9H_4F_{17}NO_2S$ **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 05/31/2018 EXPIRY DATE: (mm/dd/yyyy) 05/31/2023 **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 06/07/2018 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com (8I0762 #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ..., x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ..., x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 8I6762 18I076Z Figure 2: N-MeFOSA-M; LC/MS/MS Data (Selected MRM Transitions) Injection: On-column (N-MeFOSA-M) Mobile phase: Same as Figure 1 Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.37e-3 Collision Energy (eV) = 24 PRODUCT CODE: N-EtFOSA-M N-ethylperfluoro-1-octanesulfonamide LOT NUMBER: **MOLECULAR WEIGHT:** SOLVENT(S): NEtFOSA0518M 527.20 Methanol STRUCTURE: **COMPOUND:** CAS #: 4151-50-2 **MOLECULAR FORMULA:** C,0H,F,NO,S **CONCENTRATION:** $50 \pm 2.5 \,\mu g/ml$ **CHEMICAL PURITY:** >98% LAST TESTED: (mm/dd/yyyy) 05/31/2018 EXPIRY DATE: (mm/dd/yyyy) 05/31/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains ~ 0.5% branched isomers of N-ethylperfluorooctanesulfonamide. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 06/12/2018 (mm/dd/yyyy) Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 •
info@well-labs.com Page 506 of 556 (8I0763 #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** [8I6763 1810763 Figure 2: N-EtFOSA-M; LC/MS/MS Data (Selected MRM Transitions) Injection: On-column (N-EtFOSA-M) 300 µl/min Mobile phase: Same as Figure 1 Flow: MS Parameters Collision Gas (mbar) = 3.37e-3 Collision Energy (eV) = 24 PRODUCT CODE: N-MeFOSE-M LOT NUMBER: NMeFOSE0418M COMPOUND: 2-(N-methylperfluoro-1-octanesulfonamido)-ethanol STRUCTURE: CAS #: 24448-09-7 MOLECULAR FORMULA: C,H,F,NO,S **MOLECULAR WEIGHT:** SOLVENT(S): 557.22 Methanol **CONCENTRATION:** CHEMICAL PURITY: $50 \pm 2.5 \, \mu g/ml$ >98% LAST TESTED: (mm/dd/yyyy) 05/17/2018 (HRGC/LRMS) 05/03/2018 (LC/MS) EXPIRY DATE: (mm/dd/yyyy) 05/17/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum) Figure 2: LC/MS Data (TIC and Mass Spectrum) Figure 3: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 05/25/2018 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com # INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. # HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. # **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_o(y)$, of a value y and the uncertainty of the independent parameters $$x_{1}, x_{2},...x_{n}$$ on which it depends is: $$u_{c}(y(x_{1},x_{2},...x_{n})) = \sqrt{\sum_{i=1}^{n} u(y,x_{i})^{2}}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY:
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 18I0764 # HRGC/LRMS: Agilent 7890A (HRGC) Agilent 5975C (LRMS) # **Chromatographic Conditions:** Column: 30 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W Injector: 250 °C (Splitless Injection) Oven: 100 °C (5 min) 10 °C/min to 325 °C 325 °C (20 min) Ionization: EI+ Detector: 250 °C Full Scan (50-1000 amu) 18I0764 Injection: On-column (N-MeFOSE-M) **MS Parameters** Mobile phase: Same as Figure 2 Collision Gas (mbar) = 3.47e-3 Collision Energy (eV) = 36 Flow: 300 µl/min PRODUCT CODE: N-EtFOSE-M LOT NUMBER: NEtFOSE0518M COMPOUND: 2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol STRUCTURE: CAS #: 1691-99-2 **MOLECULAR FORMULA:** C, H, F, NO, S MOLECULAR WEIGHT: 571.25 **CONCENTRATION:** $50 \pm 2.5 \,\mu g/ml$ SOLVENT(S): Methanol CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 06/04/2018 (HRGC/LRMS) 05/30/2018 (LC/MS) EXPIRY DATE: (mm/dd/yyyy) 06/04/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum) Figure 2: LC/MS Data (TIC and Mass Spectrum) Figure 3: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 06/04/2018 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com (8I0765 # INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ...x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** # (8I0765 Figure 1: N-EtFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum) # HRGC/LRMS: Agilent 7890A (HRGC) Agilent 5975C (LRMS) # **Chromatographic Conditions:** Column: 30 m DB-5 (0.25 mm id, 0.25 μm film thickness) Agilent J&W Injector: 250 °C (Splitless Injection) Oven: 100 °C (5 min) 10 °C/min to 325 °C 325 °C (20 min) Ionization: EI+ Detector: 250 °C Full Scan (50-1000 amu) Waters Acquity Ultra Performance LC LC: MS: Waters Xevo TQ-S micro MS # **Chromatographic Conditions** Acquity UPLC BEH C, Column: 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 70% MeOH / 30% H₂O Ramp to 85% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min. Time: 12 min Flow: 300 µl/min # MS Parameters Experiment: Full Scan (300 - 850 amu) Source: Electrospray (negative) Capillary Voltage (kV) = 2.00 Cone Voltage (V) = 65.00 Desolvation Temperature (°C) = 450 Desolvation Gas Flow (I/hr) = 750 Figure 3: N-EtFOSE-M; LC/MS/MS Data (Selected MRM Transitions) Injection: On-column (N-EtFOSE-M) Mobile phase: Same as Figure 2 Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.45e-3 Collision Energy (eV) = 32 # **Analytical Standard Record** # Vista Analytical Laboratory # 18J1503 | Parent Standards used in this standard: | | | | | | | |---|-------------|-----------|--------------|-----------|-------|--| | Standard | Description | Prepared | Prepared By | Expires | (mls) | | | 18F2228 | 13C2-FOUEA | 22-Jun-18 | ** Vendor ** | 14-Nov-19 | 1 | | | 18F2229 | 13C4-PFBA | 22-Jun-18 | ** Vendor ** | 16-Feb-23 | 1 | | | 18F2230 | 13C6-PFDA | 22-Jun-18 | ** Vendor ** | 17-Oct-22 | 1 | | | 18F2231 | 13C9-PFNA | 22-Jun-18 | ** Vendor ** | 23-May-22 | 1 | | | 18F2232 | 13C7-PFUdA | 22-Jun-18 | ** Vendor ** | 13-Jul-22 | 1 | | | 18F2233 | 13C5-PFHxA | 22-Jun-18 | ** Vendor ** | 17-Oct-22 | 1 | | | 18F2234 | 13C3-PFHxS | 22-Jun-18 | ** Vendor ** | 05-Jul-22 | 1.06 | | | 18F2235 | 13C4-PFOS | 22-Jun-18 | ** Vendor ** | 15-Feb-23 | 1.05 | | | 18F2236 | 13C8-PFOA | 22-Jun-18 | ** Vendor ** | 05-Jul-22 | 1.02 | | Description: PFC-RS Standard Type: Reagent Solvent: MeOH Final Volume (mls): 40 Vials: 1 Expires: 15-Oct-20 Prepared: 15-Oct-18 Prepared By: Giana R. Bilotta Department: LCMS Last Edit: 15-Oct-18 08:57 by GRB | Analyte | CAS Number | Concentration | Units | |------------|------------|---------------|-------| | 13C9-PFNA | | 1.25 | ug/mL | | 13C8-PFOA | | 1.25 | ug/mL | | 13C7-PFUnA | | 1.25 | ug/mL | | 13C6-PFDA | | 1.25 | ug/mL | | 13C5-PFHxA | | 1.25 | ug/mL | | 13C4-PFOS | | 1.25 | ug/mL | | 13C4-PFBA | | 1.25 | ug/mL | | 13C3-PFHxS | | 1.25 | ug/mL | | 13C2-FOUEA | | 1.25 | ug/mL | Work Order 1803676 Page 520 of 556 PRODUCT CODE: **MFOUEA** LOT NUMBER: MFOUEA1117 **COMPOUND:** 2H-Perfluoro-[1,2-13C]-2-decenoic acid STRUCTURE: CAS #: Not available MOLECULAR FORMULA: 13C, 12C, H, F, O, **MOLECULAR WEIGHT:** 460.08 **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ SOLVENT(S): Anhydrous
Isopropanol CHEMICAL PURITY: >98% **ISOTOPIC PURITY:** ≥99% 13C (1,2-13C2) LAST TESTED: (mm/dd/yyyy) 11/14/2017 EXPIRY DATE: (mm/dd/yyyy) 11/14/2019 RECOMMENDED STORAGE: Refrigerate ampoule # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2-13C_a]-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 11/15/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com 18 F2228 #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{x}(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # EXPIRY DATE / PERIOD OF VALIDITY: Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 18F2228 Mobile phase: Gradient Source: Electrospray (negative) Start: 55% (80:20 MeOH:ACN) / 45% H₂O Capillary Voltage (kV) = 3.00 (both with 10 mM NH₄OAc buffer) Cone Voltage (V) = 14.00 Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min. Desolvation Gas Flow (l/hr) = 750 Time: 10 min Flow: 300 µl/min Conditions for Figure 1: Injection: Direct loop injection 10 μl (500 ng/ml MFOUEA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH, OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 21 PRODUCT CODE: **MPFBA** LOT NUMBER: MPFBA0218 COMPOUND: Perfluoro-n-[1,2,3,4-13C₄]butanoic acid STRUCTURE: CAS #: Not available MOLECULAR FORMULA: 13C, HF, O, MOLECULAR WEIGHT: 218.01 **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ SOLVENT(S): **ISOTOPIC PURITY:** Methanol Water (<1%) (1,2,3,4-13C₄) **CHEMICAL PURITY:** >98% >99%13C LAST TESTED: (mm/dd/yyyy) 02/16/2018 EXPIRY DATE: (mm/dd/yyyy) 02/16/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 02/22/2018 INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. HANDLING: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_i}, \, \mathbf{x_2}, ... \mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5%
(calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** # Conditions for Figure 1: LC: Waters Acquity Ultra Performance LC MS: Micromass Quattro micro API MS # **Chromatographic Conditions** Column: Acquity UPLC BEH Shield RP 18 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 30% (80:20 MeOH:ACN) / 70% H₂O (both with 10 mM NH OAc buffer) Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min. Time: 10 min Flow: 300 µl/min # **MS Parameters** Experiment: Full Scan (150 - 850 amu) Source: Electrospray (negative) Capillary Voltage (kV) = 3.00 Cone Voltage (V) = 10.00 Cone Gas Flow (l/hr) = 100 Desolvation Gas Flow (l/hr) = 750 Injection: Direct loop injection 10 μl (500 ng/ml MPFBA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min # MS Parameters Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 10 PRODUCT CODE: M6PFDA LOT NUMBER: M6PFDA1017 COMPOUND: Perfluoro-n-[1,2,3,4,5,6-13C] decanoic acid STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** **CONCENTRATION:** 13C 12C HF 19O 2 $50 \pm 2.5 \, \mu g/ml$ MOLECULAR WEIGHT: ISOTOPIC PURITY: SOLVENT(S): 520.04 Methanol Water (<1%) >99% 13C (1,2,3,4,5,6-13C₆) CHEMICAL PURITY: >98% 10/17/2017 LAST TESTED: (mm/dd/yyyy) EXPIRY DATE: (mm/dd/yyyy) 10/17/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # DOCUMENTATION/ DATA ATTACHED: Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 10/20/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com (8F2230 # INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. # **HAZARDS:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. # HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1}, \mathbf{x_2}, ... \mathbf{x_n}$$ on which it depends is: $$u_c\left(y(x_1, x_2, ... x_n)\right) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. # TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 18F2230 Injection: Direct loop injection 10 μI (500 ng/mI M6PFDA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min #### MS Parameters Collision Gas (mbar) = 3.24e-3 Collision Energy (eV) = 13 PRODUCT CODE: M9PFNA LOT NUMBER: M9PFNA0517 **COMPOUND:** Perfluoro-n-[13C]nonanoic acid STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C, HF, O, **MOLECULAR WEIGHT:** 473.01 (13C_o) **CONCENTRATION:** $50 \pm 2.5 \, \mu g/ml$ SOLVENT(S): Methanol Water (<1%) CHEMICAL PURITY: >98% **ISOTOPIC PURITY:** >99% 13C LAST TESTED: (mm/dd/yyyy) 05/23/2017 EXPIRY DATE: (mm/dd/yyyy) 05/23/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains ~ 0.9% of ${}^{13}C_{5}{}^{12}C_{4}HF_{17}O_{2}$ (MPFNA). FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 05/25/2017 18F2231 # INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel
familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. # SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1}, \, \mathbf{x_2}, ... \mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Injection: Direct loop injection 10 μl (500 ng/ml M9PFNA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min Collision Gas (mbar) = 3.20e-3 Collision Energy (eV) = 11 PRODUCT CODE: M7PFUdA LOT NUMBER: M7PFUdA0717 **COMPOUND:** STRUCTURE: Perfluoro-n-[1,2,3,4,5,6,7-13C₇]undecanoic acid CAS #: Not available **MOLECULAR FORMULA:** 13C, 12C, HF, O, MOLECULAR WEIGHT: 571.04 CONCENTRATION: $50 \pm 2.5 \,\mu g/ml$ SOLVENT(S): Methanol **CHEMICAL PURITY:** >98% **ISOTOPIC PURITY:** Water (<1%) >99% 13C $(1,2,3,4,5,6,7-{}^{13}C_{7})$ LAST TESTED: (mm/dd/yyyy) 07/13/2017 EXPIRY DATE: (mm/dd/yyyy) 07/13/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) # **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 07/14/2017 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com # **INTENDED USE:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. # **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $$x_{i}, x_{2},...x_{n}$$ on which it depends is: $$u_{c}(y(x_{1},x_{2},...x_{n})) = \sqrt{\sum_{i=1}^{n}u(y,x_{i})^{2}}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. # EXPIRY DATE / PERIOD OF VALIDITY: Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. # LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global,
ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 18F223Z Injection: Direct loop injection 10 µl (500 ng/ml M7PFUdA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min #### MS Parameters Collision Gas (mbar) = 3.28e-3 Collision Energy (eV) = 11 # CERTIFICATE OF ANALYSIS DOCUMENTATION PRODUCT CODE: M5PFHxA LOT NUMBER: M5PFHxA1017 COMPOUND: Perfluoro-n-[1,2,3,4,6-13C] hexanoic acid STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C, 12C, HF, O, **CONCENTRATION:** $50 \pm 2.5 \,\mu g/ml$ **MOLECULAR WEIGHT:** 319.02 SOLVENT(S): Methanol Water (<1%) $(1,2,3,4,6^{-13}C_5)$ CHEMICAL PURITY: >98% **ISOTOPIC PURITY:** ≥99% 13C LAST TESTED: (mm/dd/yyyy) 10/17/2017 EXPIRY DATE: (mm/dd/yyyy) 10/17/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## **ADDITIONAL INFORMATION:** See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 10/18/2017 ## INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ## HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ## TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. ## **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** #### Conditions for Figure 1: LC: Waters Acquity Ultra Performance LC MS: Micromass Quattro micro API MS Column: Acquity UPLC BEH Shield RP₁₈ **MS Parameters** 1.7 µm, 2.1 x 100 mm Experiment: Full Scan (225 - 850 amu) Mobile phase: Gradient Source: Electrospray (negative) Start: 40% (80:20 MeOH:ACN) / 60% H₂O Capillary Voltage (kV) = 2.00 (both with 10 mM NH₄OAc buffer) Cone Voltage (V) = 15.00 Ramp to 90% organic over 7 min and hold for 2 min Cone Gas Flow (I/hr) = 100 before returning to initial conditions in 0.5 min. Desolvation Gas Flow (I/hr) = 750 Time: 10 min Flow: 300 µl/min Injection: Direct loop injection 10 μl (500 ng/ml M5PFHxA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min #### MS Parameters Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 9 # **CERTIFICATE OF ANALYSIS** DOCUMENTATION PRODUCT CODE: M3PFHxS LOT NUMBER: M3PFHxS0717 COMPOUND: Sodium perfluoro-1-[1,2,3-13C]hexanesulfonate STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C, 12C, F, SO, Na **MOLECULAR WEIGHT:** 425.07 **CONCENTRATION:** $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) SOLVENT(S): Methanol CHEMICAL PURITY: >98% LAST TESTED: (mm/dd/yyyy) 07/05/2017 EXPIRY DATE: (mm/dd/yyyy) RECOMMENDED STORAGE: 07/05/2022 Store ampoule in a cool, dark place $47.3 \pm 2.4 \mu g/ml$ (M3PFHxS anion) **ISOTOPIC PURITY:** ≥99% ¹³C (1,2,3-13C_a) ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) #### **ADDITIONAL INFORMATION:** See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 07/14/2017 18F2234 #### **INTENDED USE:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. ### **HAZARDS**: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ## HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability
and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{o}(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Direct loop injection Injection: 10 μl (500 ng/ml M3PFHxS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH,OAc buffer) Flow: 300 µl/min **MS Parameters** Collision Gas (mbar) = 3.43e-3 # **CERTIFICATE OF ANALYSIS** DOCUMENTATION PRODUCT CODE: **MPFOS** LOT NUMBER: MPFOS0218 COMPOUND: Sodium perfluoro-1-[1,2,3,4-13C₄]octanesulfonate STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** ¹³C₄¹²C₄F₁₇SO₃Na MOLECULAR WEIGHT: 526.08 **CONCENTRATION:** $50.0 \pm 2.5 \,\mu g/ml$ (Na salt) $47.8 \pm 2.4 \mu g/ml$ (MPFOS anion) SOLVENT(S): Methanol **CHEMICAL PURITY:** >98% **ISOTOPIC PURITY:** ≥99% ¹³C LAST TESTED: (mm/dd/yyyy) 02/15/2018 (1,2,3,4-13C) EXPIRY DATE: (mm/dd/yyyy) 02/15/2023 RECOMMENDED STORAGE: Store ampoule in a cool, dark place # **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## **ADDITIONAL INFORMATION:** See page 2 for further details. Contains ~ 0.6% Sodium perfluoro-1-[1,2,3-13C]heptanesulfonate. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 02/20/2018 (8F2235 #### INTENDED USE: The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ## **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_i, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** ## Conditions for Figure 1: Waters Acquity Ultra Performance LC LC: MS: Micromass Quattro micro API MS Chromatographic Conditions Acquity UPLC BEH Shield RP18 Column: 1.7 µm, 2.1 x 100 mm Mobile phase: Gradient Start: 50% (80:20 MeOH:ACN) / 50% H₂O (both with 10 mM NH OAc buffer) Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min. Time: 10 min 300 µl/min Flow: ## MS Parameters Experiment: Full Scan (150 - 850 amu) Source: Electrospray (negative) Capillary Voltage (kV) = 3.00 Cone Voltage (V) = 60.00 Cone Gas Flow (I/hr) = 50 Desolvation Gas Flow (I/hr) = 750 Injection: Direct loop injection 10 μl (500 ng/ml MPFOS) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min ## MS Parameters Collision Gas (mbar) = 3.28e-3 Collision Energy (eV) = 40 # CERTIFICATE OF ANALYSIS DOCUMENTATION PRODUCT CODE: M8PFOA LOT NUMBER: M8PF0A0717 COMPOUND: Perfluoro-n-[13C,]octanoic acid STRUCTURE: CAS #: Not available **MOLECULAR FORMULA:** 13C HF . O. **MOLECULAR WEIGHT:** 422.01 $(^{13}C_{8})$ **CONCENTRATION:** $49 \pm 2.45 \, \mu g/ml$ SOLVENT(S): Methanol **CHEMICAL PURITY:** 97.9% (M8PFOA) 2.1% (MPFOA [M+4]) **ISOTOPIC PURITY:** Water (<1%) ≥99% 13C LAST TESTED: (mm/dd/yyyy)
07/05/2017 EXPIRY DATE: (mm/dd/yyyy) 07/05/2022 RECOMMENDED STORAGE: Store ampoule in a cool, dark place ## **DOCUMENTATION/ DATA ATTACHED:** Figure 1: LC/MS Data (TIC and Mass Spectrum) Figure 2: LC/MS/MS Data (Selected MRM Transitions) ## ADDITIONAL INFORMATION: See page 2 for further details. Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester. Contains < 0.1% of native perfluoro-n-octanoic acid (PFOA) and ~ 2.1% of [M+4] perfluoro-n-octanoic acid. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 07/14/2017 18F2236 ### **INTENDED USE:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains. #### HAZARDS: This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### SYNTHESIS / CHARACTERIZATION: Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### HOMOGENEITY: Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2,...x_n$$ on which it depends is: $$u_c(y(x_1, x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. ## LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### QUALITY MANAGEMENT: This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** 8F2236 Injection: Direct loop injection 10 μl (500 ng/ml M8PFOA) Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H,O (both with 10 mM NH₄OAc buffer) Flow: 300 µl/min ### **MS Parameters** Collision Gas (mbar) = 3.28e-3 Collision Energy (eV) = 10 ``` "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "375-73- 5","PFBS","0.184","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "307-24- 4","PFHxA","0.460","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2","537 MOD","RES","1803676-01","Vista","375-85- 9", "PFHpA", "0.0352", "ug/L", "", "0.00431", "CRDL", "", "TRG", "", "", "0.00860", "CRDL", "YES", "0.00295", "YE "A1-MW-11-SA2","537 MOD","RES","1803676-01","Vista","355-46- 4","PFHxS","0.109","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2","537 MOD","RES","1803676-01","Vista","335-67- 1","PFOA","0.0349","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2","537 MOD","RES","1803676-01","Vista","375-95- 1","PFNA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "1763-23- 1","PFOS","0.00916","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "335-76- 2","PFDA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "2355-31- 9","NMeFOSAA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "2991-50- 6","NEtFOSAA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "2058-94- 8","PFUnA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2","537 MOD","RES","1803676-01","Vista","307-55- 1","PFDoA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2","537 MOD","RES","1803676-01","Vista","72629-94- 8","PFTrDA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2","537 MOD","RES","1803676-01","Vista","376-06- 7","PFTeDA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-11-SA2","537 MOD","RES","1803676-01","Vista","13C3-PFBS","13C3- PFBS","72.0","%R","","","CRDL","","IS","72.0","","","CRDL","","" "A1-MW-11-SA2","537 MOD","RES","1803676-01","Vista","13C2-PFHxA","13C2- PFHxA","101","%R","","","CRDL","","IS","101","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "13C4-PFHpA", "13C4- PFHpA","73.1","%R","","","CRDL","","IS","73.1","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "1802-PFHxS", "1802- PFHxS","89.8","%R","","","CRDL","","IS","89.8","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "13C2-PFOA", "13C2- PFOA","72.8","%R","","","CRDL","","IS","72.8","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "13C5-PFNA", "13C5- PFNA","82.2","%R","","","CRDL","","IS","82.2","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "13C8-PFOS", "13C8- PFOS","113","%R","","","CRDL","","IS","113","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "13C2-PFDA", "13C2- PFDA","64.7","%R","","","CRDL","","IS","64.7","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "d3-MeFOSAA", "d3- MeFOSAA","84.5","%R","","","CRDL","","IS","84.5","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "d5-EtFOSAA", "d5- EtFOSAA","105","%R","","","CRDL","","IS","105","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "13C2-PFUnA", "13C2- PFUnA","62.2","%R","","","CRDL","","IS","62.2","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "13C2-PFDoA", "13C2- PFDoA","82.2","%R","","","CRDL","","IS","82.2","","","CRDL","","" "A1-MW-11-SA2", "537 MOD", "RES", "1803676-01", "Vista", "13C2-PFTeDA", "13C2- ``` ``` PFTeDA","87.9","%R","","","CRDL","","IS","87.9","","","CRDL","","" "A1-MW-13-SA2","537 MOD","RES","1803676-02","Vista","375-73- 5","PFBS","0.259","ug/L","","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2","537 MOD","RES","1803676-02","Vista","307-24-
4","PFHxA","0.655","ug/L","","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "375-85- 9","PFHpA","0.105","ug/L","","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "355-46- 4","PFHxS","0.368","ug/L","","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "335-67- 1","PFOA","0.0695","ug/L","","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "375-95- 1","PFNA","0.00455","ug/L","U","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2","537 MOD","RES","1803676-02","Vista","1763-23- 1","PFOS","0.107","ug/L","","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "335-76- 2","PFDA","0.00455","ug/L","U","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2","537 MOD","RES","1803676-02","Vista","2355-31- 9","NMeFOSAA","0.00455","ug/L","U","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2","537 MOD","RES","1803676-02","Vista","2991-50- 6","NEtFOSAA","0.00455","ug/L","U","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "2058-94- 8","PFUnA","0.00455","ug/L","U","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2","537 MOD","RES","1803676-02","Vista","307-55- 1", "PFDoA", "0.00455", "ug/L", "U", "0.00455", "CRDL", "", "TRG", "", "", "0.00906", "CRDL", "YES", "0.00310", "YES", "CRDL", "YES", "YES" "A1-MW-13-SA2","537 MOD","RES","1803676-02","Vista","72629-94- 8","PFTrDA","0.00455","ug/L","U","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "376-06- 7","PFTeDA","0.00455","ug/L","U","0.00455","CRDL","","TRG","","","0.00906","CRDL","YES","0.00310" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "13C3-PFBS", "13C3- PFBS","66.2","%R","","","CRDL","","IS","66.2","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "13C2-PFHxA", "13C2- PFHxA","97.8","%R","","","CRDL","","IS","97.8","","","CRDL","","" "A1-MW-13-SA2","537 MOD","RES","1803676-02","Vista","13C4-PFHpA","13C4- PFHpA","71.0","%R","","","CRDL","","IS","71.0","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "1802-PFHxS", "1802- PFHxS","82.6","%R","","","CRDL","","IS","82.6","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "13C2-PFOA", "13C2- PFOA","74.6","%R","","","CRDL","","IS","74.6","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "13C5-PFNA", "13C5- PFNA","79.4","%R","","","CRDL","","IS","79.4","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "13C8-PFOS", "13C8- PFOS","97.4","%R","","","CRDL","","IS","97.4","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "13C2-PFDA", "13C2- PFDA","63.0","%R","","","CRDL","","IS","63.0","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "d3-MeFOSAA", "d3- MeFOSAA","60.4","%R","","","CRDL","","IS","60.4","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "d5-EtFOSAA", "d5- EtFOSAA", "84.3", "%R", "", "CRDL", "", "IS", "84.3", "", "", "CRDL", "", "" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "13C2-PFUnA", "13C2- PFUnA","65.0","%R","","","CRDL","","IS","65.0","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "13C2-PFDoA", "13C2- PFDoA","85.0","%R","","","CRDL","","IS","85.0","","","CRDL","","" "A1-MW-13-SA2", "537 MOD", "RES", "1803676-02", "Vista", "13C2-PFTeDA", "13C2- ``` ``` PFTeDA","80.1","%R","","","CRDL","","IS","80.1","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "375-73- 5","PFBS","0.101","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2","537 MOD","RES","1803676-03","Vista","307-24- 4","PFHxA","0.327","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2","537 MOD","RES","1803676-03","Vista","375-85- 9","PFHpA","0.0658","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "355-46- 4","PFHxS","0.253","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "335-67- 1", "PFOA", "0.0527", "ug/L", "", "0.00431", "CRDL", "", "TRG", "", "", "0.00860", "CRDL", "YES", "0.00295", "YES", "CRDL", "YES", "YE "A1-MW-14-SA2","537 MOD","RES","1803676-03","Vista","375-95- 1","PFNA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "1763-23- 1","PFOS","0.0604","ug/L","","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "335-76- 2","PFDA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "2355-31- 9","NMeFOSAA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "2991-50- 6","NEtFOSAA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2","537 MOD","RES","1803676-03","Vista","2058-94- 8","PFUnA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2","537 MOD","RES","1803676-03","Vista","307-55- 1", "PFDoA", "0.00431", "ug/L", "U", "0.00431", "CRDL", "", "TRG", "", "", "0.00860", "CRDL", "YES", "0.00295", "Y "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "72629-94- 8","PFTrDA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00860","CRDL","YES","0.00295" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "376-06- 7", "PFTeDA", "0.00431", "ug/L", "U", "0.00431", "CRDL", "", "TRG", "", "", "0.00860", "CRDL", "YES", "0.00295", "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "13C3-PFBS", "13C3- PFBS","76.6","%R","","","CRDL","","IS","76.6","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "13C2-PFHxA", "13C2- PFHxA","103","%R","","","CRDL","","IS","103","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "13C4-PFHpA", "13C4- PFHpA","74.6","%R","","","CRDL","","IS","74.6","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "1802-PFHxS", "1802- PFHxS", "86.2", "%R", "", "CRDL", "", "IS", "86.2", "", "", "CRDL", "", "" "A1-MW-14-SA2","537 MOD","RES","1803676-03","Vista","13C2-PFOA","13C2- PFOA","77.7","%R","","","CRDL","","IS","77.7","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "13C5-PFNA", "13C5- PFNA","87.0","%R","","","CRDL","","IS","87.0","","","CRDL","","" "A1-MW-14-SA2","537 MOD","RES","1803676-03","Vista","13C8-PFOS","13C8- PFOS","98.8","%R","","","CRDL","","IS","98.8","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "13C2-PFDA", PFDA","69.9","%R","","","CRDL","","IS","69.9","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "d3-MeFOSAA", "d3- MeFOSAA","65.0","%R","","","CRDL","","IS","65.0","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "d5-EtFOSAA", "d5- EtFOSAA", "84.1", "%R", "", "CRDL", "", "IS", "84.1", "", "", "CRDL", "", "" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "13C2-PFUnA", "13C2- PFUnA","66.6","%R","","","CRDL","","IS","66.6","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "13C2-PFDoA", " PFDoA","87.4","%R","","","CRDL","","IS","87.4","","","CRDL","","" "A1-MW-14-SA2", "537 MOD", "RES", "1803676-03", "Vista", "13C2-PFTeDA", "13C2- ``` ``` PFTeDA","76.8","%R","","","CRDL","","IS","76.8","","","CRDL","","" "A1-MW-15-SA2","537 MOD","RES","1803676-04","Vista","375-73- 5","PFBS","0.363","ug/L","","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2","537 MOD","RES","1803676-04","Vista","307-24- 4", "PFHxA", "0.596", "ug/L", "", "0.00450", "CRDL", "", "TRG", "", "", "0.00902", "CRDL", "YES", "0.00309", "VES", "VES" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "375-85- 9","PFHpA","0.0773","ug/L","","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "355-46- 4","PFHxS","0.322","ug/L","","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "335-67- 1","PFOA","0.190","ug/L","","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "375-95- 1","PFNA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "1763-23- 1","PFOS","0.0185","ug/L","","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "335-76- 2","PFDA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2","537 MOD","RES","1803676-04","Vista","2355-31- 9","NMeFOSAA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2","537 MOD","RES","1803676-04","Vista","2991-50- 6","NEtFOSAA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2","537 MOD","RES","1803676-04","Vista","2058-94- 8","PFUnA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2","537 MOD","RES","1803676-04","Vista","307-55- 1", "PFDoA",
"0.00450", "ug/L", "U", "0.00450", "CRDL", "", "TRG", "", "", "0.00902", "CRDL", "YES", "0.00309", "CRDL", "YES", "V., "YES", "YES", "V., "YES", "YES "A1-MW-15-SA2","537 MOD","RES","1803676-04","Vista","72629-94- 8","PFTrDA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "376-06- 7","PFTeDA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00902","CRDL","YES","0.00309" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "13C3-PFBS", "13C3- PFBS","75.2","%R","","","CRDL","","IS","75.2","","","CRDL","","" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "13C2-PFHxA", "13C2- PFHxA","106","%R","","","CRDL","","IS","106","","","CRDL","","" "A1-MW-15-SA2","537 MOD","RES","1803676-04","Vista","13C4-PFHpA","13C4- PFHpA","73.7","%R","","","CRDL","","IS","73.7","","","CRDL","","" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "1802-PFHxS", "1802- PFHxS","88.0","%R","","","CRDL","","IS","88.0","","","CRDL","","" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "13C2-PFOA", "13C2- PFOA","76.7","%R","","","CRDL","","IS","76.7","","","CRDL","","" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "13C5-PFNA", "13C5- PFNA", "86.4", "%R", "", "", "CRDL", "", "IS", "86.4", "", "", "CRDL", "", "" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "13C8-PFOS", "13C8- PFOS","104","%R","","","CRDL","","IS","104","","","CRDL","","" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "13C2-PFDA", "13C2- PFDA","69.8","%R","","","CRDL","","IS","69.8","","","CRDL","","" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "d3-MeFOSAA", "d3- MeFOSAA","70.3","%R","","","CRDL","","IS","70.3","","","CRDL","","" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "d5-EtFOSAA", "d5- EtFOSAA","92.5","%R","","","CRDL","","IS","92.5","","","CRDL","","" "A1-MW-15-SA2","537 MOD","RES","1803676-04","Vista","13C2-PFUnA","13C2- PFUnA","71.1","%R","","","CRDL","","IS","71.1","","","CRDL","","" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "13C2-PFDoA", "13C2- PFDoA","88.7","%R","","","CRDL","","IS","88.7","","","CRDL","","" "A1-MW-15-SA2", "537 MOD", "RES", "1803676-04", "Vista", "13C2-PFTeDA", "13C2- ``` ``` PFTeDA","92.4","%R","","","CRDL","","IS","92.4","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "375-73- 5","PFBS","0.151","ug/L","","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2","537 MOD","RES","1803676-05","Vista","307-24- 4","PFHxA","0.520","ug/L","","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2","537 MOD","RES","1803676-05","Vista","375-85- 9", "PFHpA", "0.0856", "ug/L", "", "0.00424", "CRDL", "", "TRG", "", "", "0.00851", "CRDL", "YES", "0.00291", "YE "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "355-46- 4","PFHxS","0.438","ug/L","","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2","537 MOD","RES","1803676-05","Vista","335-67- 1", "PFOA", "0.0599", "ug/L", "", "0.00424", "CRDL", "", "TRG", "", "", "0.00851", "CRDL", "YES", "0.00291", "CRDL", "YES", "0.00291", "CRDL", "YES", "0.00291", "CRDL", "YES", "0.00291", "CRDL", "YES", "0.00424", "CRDL", "YES", "0.004291", "YES", "CRDL", "YES", "YES "A1-MW-37-SA2","537 MOD","RES","1803676-05","Vista","375-95- 1","PFNA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "1763-23- 1","PFOS","0.0288","ug/L","","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "335-76- 2","PFDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2","537 MOD","RES","1803676-05","Vista","2355-31- 9","NMeFOSAA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "2991-50- 6","NEtFOSAA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2","537 MOD","RES","1803676-05","Vista","2058-94- 8","PFUnA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2","537 MOD","RES","1803676-05","Vista","307-55- 1","PFDoA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "72629-94- 8","PFTrDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "376-06- "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "13C3-PFBS", "13C3- PFBS","80.6","%R","","","CRDL","","IS","80.6","","","CRDL","","" "A1-MW-37-SA2","537 MOD","RES","1803676-05","Vista","13C2-PFHxA","13C2- PFHxA","104","%R","","","CRDL","","IS","104","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "13C4-PFHpA", "13C4- PFHpA","72.7","%R","","","CRDL","","IS","72.7","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "1802-PFHxS", "1802- PFHxS","92.3","%R","","","CRDL","","IS","92.3","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "13C2-PFOA", "13C2- PFOA","70.8","%R","","","CRDL","","IS","70.8","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "13C5-PFNA", "13C5- PFNA","85.1","%R","","","CRDL","","IS","85.1","","","CRDL","","" "A1-MW-37-SA2","537 MOD","RES","1803676-05","Vista","13C8-PFOS","13C8- PFOS","112","%R","","","CRDL","","IS","112","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "13C2-PFDA", "13C2- PFDA","68.0","%R","","","CRDL","","IS","68.0","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "d3-MeFOSAA", "d3- MeFOSAA","95.5","%R","","","CRDL","","IS","95.5","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "d5-EtFOSAA", "d5- EtFOSAA","127","%R","","","CRDL","","IS","127","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "13C2-PFUnA", "13C2- PFUnA","76.6","%R","","","CRDL","","IS","76.6","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "13C2-PFDoA", " PFDoA","96.4","%R","","","CRDL","","IS","96.4","","","CRDL","","" "A1-MW-37-SA2", "537 MOD", "RES", "1803676-05", "Vista", "13C2-PFTeDA", "13C2- ``` ``` PFTeDA","113","%R","","","CRDL","","IS","113","","","CRDL","","" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","375-73- 5","PFBS","0.150","ug/L","","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","307-24- 4","PFHxA","0.529","ug/L","","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","375-85- 9","PFHpA","0.0830","ug/L","","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","355-46- 4","PFHxS","0.429","ug/L","","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "335-67- 1", "PFOA", "0.0555", "ug/L", "", "0.00435", "CRDL", "", "TRG", "", "", "0.00870", "CRDL", "YES", "0.00298", "CRDL", "Ug/L", "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "375-95- 1","PFNA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","1763-23- 1","PFOS","0.0275","ug/L","","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","335-76- 2","PFDA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","2355-31- "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","2991-50- 6","NEtFOSAA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","2058-94- 8","PFUnA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","307-55- "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","72629-94- 8","PFTrDA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","376-06- 7","PFTeDA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00870","CRDL","YES","0.00298" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "13C3-PFBS", "13C3- PFBS","78.5","%R","","","CRDL","","IS","78.5","","","CRDL","","" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "13C2-PFHxA", "13C2- PFHxA","104","%R","","","CRDL","","IS","104","","","CRDL","","" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","13C4-PFHpA","13C4- PFHpA","75.5","%R","","","CRDL","","IS","75.5","","","CRDL","","" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","1802-PFHxS","1802- PFHxS","92.6","%R","","","CRDL","","IS","92.6","","","CRDL","","" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "13C2-PFOA", "13C2- PFOA","72.9","%R","","","CRDL","","IS","72.9","","","CRDL","","" "A1-MW-37-SA2D","537 MOD","RES","1803676-06","Vista","13C5-PFNA","13C5- PFNA","91.4","%R","","","CRDL","","IS","91.4","","","CRDL","","" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "13C8-PFOS", "13C8- PFOS","108","%R","","","CRDL","","IS","108","","","CRDL","","" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "13C2-PFDA", "13C2- PFDA","68.9","%R","","","CRDL","","IS","68.9","","","CRDL","","" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "d3-MeFOSAA", "d3- MeFOSAA","69.2","%R","","","CRDL","","IS","69.2","","","CRDL","","" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","89.0","%R","","","CRDL","","IS","89.0","","","CRDL","","" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "13C2-PFUnA", "13C2- PFUnA","66.0","%R","","","CRDL","","IS","66.0","","","CRDL","","" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "13C2-PFDoA", "13C2- PFDoA","86.5","%R","","","CRDL","","IS","86.5","","","CRDL","","" "A1-MW-37-SA2D", "537 MOD", "RES", "1803676-06", "Vista", "13C2-PFTeDA", "13C2- ``` ``` PFTeDA","84.8","%R","","","CRDL","","IS","84.8","","","CRDL","","" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "375-73- 5","PFBS","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115","537 MOD","RES","1803676-07","Vista","307-24- 4","PFHxA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "375-85- 9","PFHpA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "355-46- 4","PFHxS","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115","537 MOD","RES","1803676-07","Vista","335-67- "FRB-20181115","537 MOD","RES","1803676-07","Vista","375-95- 1","PFNA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "1763-23- 1","PFOS","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "335-76- 2","PFDA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "2355-31- 9","NMeFOSAA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "2991-50- 6","NEtFOSAA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "2058-94- 8","PFUnA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "307-55- 1","PFDoA","0.00450","ug/L","U","0.00450","CRDL","","TRG","","","0.00904","CRDL","YES","0.00309" "FRB-20181115","537 MOD","RES","1803676-07","Vista","72629-94- "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "376-06- "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "13C3-PFBS", "13C3- PFBS","70.4","%R","","","CRDL","","IS","70.4","","","CRDL","","" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "13C2-PFHxA", "13C2- PFHxA","103","%R","","","CRDL","","IS","103","","","CRDL","","" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "13C4-PFHpA", "13C4- PFHpA","72.4","%R","","","CRDL","","IS","72.4","","","CRDL","","" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "1802-PFHxS", "1802- PFHxS","87.8","%R","","","CRDL","","IS","87.8","","","CRDL","","" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "13C2-PFOA", "13C2- PFOA", "68.0", "%R", "", "", "CRDL", "", "IS", "68.0", "", "", "CRDL", "", "" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "13C5-PFNA", "13C5- PFNA","73.7","%R","","","CRDL","","IS","73.7","","","CRDL","","" "FRB-20181115","537 MOD","RES","1803676-07","Vista","13C8-PFOS","13C8- PFOS","97.9","%R","","","CRDL","","IS","97.9","","","CRDL","","" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "13C2-PFDA", PFDA","61.3","%R","","","CRDL","","IS","61.3","","","CRDL","","" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "d3-MeFOSAA", "d3- MeFOSAA", "50.8", "%R", "", "", "CRDL", "", "IS", "50.8", "", "", "CRDL", "", "" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "d5-EtFOSAA", "d5- EtFOSAA", "66.0", "%R", "", "CRDL", "", "IS", "66.0", "", "", "CRDL", "", "" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "13C2-PFUnA", "13C2- PFUnA","59.5","%R","","","CRDL","","IS","59.5","","","CRDL","","" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "13C2-PFDoA", "13C2- PFDoA","74.5","%R","","","CRDL","","IS","74.5","","","CRDL","","" "FRB-20181115", "537 MOD", "RES", "1803676-07", "Vista", "13C2-PFTeDA", "13C2- ``` ``` PFTeDA","67.2","%R","","","CRDL","","IS","67.2","","","CRDL","","" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","375-73- 5","PFBS","0.0235","ug/L","","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","307-24- 4","PFHxA","0.0732","ug/L","","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","375-85- 9","PFHpA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "355-46- 4","PFHxS","0.00855","ug/L","","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "335-67- 1","PFOA","0.00388","ug/L","J","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "375-95- 1","PFNA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","1763-23- 1","PFOS","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","335-76- 2","PFDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","2355-31- 9","NMeFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","2991-50- 6","NEtFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","2058-94- 8","PFUnA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","307-55- "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","72629-94- 8","PFTrDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "376-06- 7","PFTeDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "13C3-PFBS", "13C3- PFBS","79.9","%R","","","CRDL","","IS","79.9","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "13C2-PFHxA", "13C2- PFHxA","99.4","%R","","","CRDL","","IS","99.4","","","CRDL","","" "A1-MW-31-SA2","537 MOD","RES","1803676-08","Vista","13C4-PFHpA","13C4- PFHpA","68.3","%R","","","CRDL","","IS","68.3","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "1802-PFHxS", "1802- PFHxS","92.6","%R","","","CRDL","","IS","92.6","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "13C2-PFOA", "13C2- PFOA","75.4","%R","","","CRDL","","IS","75.4","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "13C5-PFNA", "13C5- PFNA","83.8","%R","","","CRDL","","IS","83.8","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "13C8-PFOS", "13C8- PFOS","106","%R","","","CRDL","","IS","106","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "13C2-PFDA", "13C2- PFDA","66.3","%R","","","CRDL","","IS","66.3","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "d3-MeFOSAA", "d3- MeFOSAA", "66.2", "%R", "", "", "CRDL", "", "IS", "66.2", "", "", "CRDL", "", "" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "d5-EtFOSAA", "d5- EtFOSAA","92.5","%R","","","CRDL","","IS","92.5","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "13C2-PFUnA", "13C2- PFUnA","68.9","%R","","","CRDL","","IS","68.9","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "13C2-PFDoA", "13C2- PFDoA","77.2","%R","","","CRDL","","IS","77.2","","","CRDL","","" "A1-MW-31-SA2", "537 MOD", "RES", "1803676-08", "Vista", "13C2-PFTeDA", "13C2- ``` ``` PFTeDA","79.0","%R","","","CRDL","","IS","79.0","","","CRDL","","" "B8K0153-BLK1", "537 MOD", "RES", "B8K0153-BLK1", "Vista", "375-73- 5","PFBS","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","307-24- 4","PFHxA","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","375-85- "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","355-46- "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","335-67- "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","375-95- 1","PFNA","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","1763-23- 1","PFOS","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","335-76- 2","PFDA","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","2355-31- 9","NMeFOSAA","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","2991-50- 6","NEtFOSAA","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","2058-94- 8","PFUnA","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","307-55- "B8K0153-BLK1", "537 MOD", "RES", "B8K0153-BLK1",
"Vista", "72629-94- 8","PFTrDA","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1", "537 MOD", "RES", "B8K0153-BLK1", "Vista", "376-06- 7","PFTeDA","0.00200","ug/L","U","0.00200","CRDL","","TRG","","","0.00400","CRDL","YES","0.00137" "B8K0153-BLK1", "537 MOD", "RES", "B8K0153-BLK1", "Vista", "13C3-PFBS", "13C3- PFBS","75.9","%R","","","CRDL","","IS","75.9","","","CRDL","","" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","13C2-PFHxA","13C2- PFHxA","95.6","%R","","","CRDL","","IS","95.6","","","CRDL","","" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","13C4-PFHpA","13C4- PFHpA","72.6","%R","","","CRDL","","IS","72.6","","","CRDL","","" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","18O2-PFHxS","18O2- PFHxS","83.7","%R","","","CRDL","","IS","83.7","","","CRDL","","" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","13C2-PFOA","13C2- PFOA", "74.8", "%R", "", "", "CRDL", "", "IS", "74.8", "", "", "CRDL", "", "" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","13C5-PFNA","13C5- PFNA","95.2","%R","","","CRDL","","IS","95.2","","","CRDL","","" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","13C8-PFOS","13C8- PFOS","98.6","%R","","","CRDL","","IS","98.6","","","CRDL","","" "B8K0153-BLK1", "537 MOD", "RES", "B8K0153-BLK1", "Vista", "13C2-PFDA", "13C2- PFDA","79.0","%R","","","CRDL","","IS","79.0","","","CRDL","","" "B8K0153-BLK1", "537 MOD", "RES", "B8K0153-BLK1", "Vista", "d3-MeFOSAA", "d3- MeFOSAA","58.7","%R","","","CRDL","","IS","58.7","","","CRDL","","" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","d5-EtFOSAA","d5- EtFOSAA","74.5","%R","","","CRDL","","IS","74.5","","","CRDL","","" "B8K0153-BLK1", "537 MOD", "RES", "B8K0153-BLK1", "Vista", "13C2-PFUnA", "13C2- PFUnA","75.5","%R","","","CRDL","","IS","75.5","","","CRDL","","" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","13C2-PFDoA","13C2- PFDoA","86.4","%R","","","CRDL","","IS","86.4","","","CRDL","","" "B8K0153-BLK1","537 MOD","RES","B8K0153-BLK1","Vista","13C2-PFTeDA","13C2- ``` ``` PFTeDA","72.4","%R","","","CRDL","","IS","72.4","","","CRDL","","" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","375-73- 5", "PFBS", "0.0413", "ug/L", "", "0.00200", "CRDL", "", "SPK", "103", "", "0.00400", "CRDL", "YES", "0.00137", "CRDL", "SPK", "103", "", "0.00400", "CRDL", "YES", "VES", " "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","307-24- 4","PFHxA","0.0371","ug/L","","0.00200","CRDL","","SPK","92.6","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "375-85- 9","PFHpA","0.0455","ug/L","","0.00200","CRDL","","SPK","114","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "355-46- 4","PFHxS","0.0428","ug/L","","0.00200","CRDL","","SPK","107","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "335-67- 1","PFOA","0.0473","ug/L","","0.00200","CRDL","","SPK","118","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "375-95- 1","PFNA","0.0420","ug/L","","0.00200","CRDL","","SPK","105","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","1763-23- 1","PFOS","0.0380","ug/L","","0.00200","CRDL","","SPK","95.1","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","335-76- 2","PFDA","0.0431","ug/L","","0.00200","CRDL","","SPK","108","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","2355-31- 9","NMeFOSAA","0.0452","ug/L","","0.00200","CRDL","","SPK","113","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","2991-50- 6","NEtFOSAA","0.0406","ug/L","","0.00200","CRDL","","SPK","101","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","2058-94- 8","PFUnA","0.0354","ug/L","","0.00200","CRDL","","SPK","88.5","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "307-55- 1","PFDoA","0.0396","ug/L","","0.00200","CRDL","","SPK","99.1","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "72629-94- 8","PFTrDA","0.0429","ug/L","","0.00200","CRDL","","SPK","107","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "376-06- 7","PFTeDA","0.0559","ug/L","H","0.00200","CRDL","","SPK","140","","0.00400","CRDL","YES","0.00137" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "13C3-PFBS", "13C3- PFBS","81.5","%R","","","CRDL","","IS","81.5","","","CRDL","","" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "13C2-PFHxA", "13C2- PFHxA","104","%R","","","CRDL","","IS","104","","","CRDL","","" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","13C4-PFHpA","13C4- PFHpA","80.3","%R","","","CRDL","","IS","80.3","","","CRDL","","" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","18O2-PFHxS","18O2- PFHxS","96.0","%R","","","CRDL","","IS","96.0","","","CRDL","","" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","13C2-PFOA","13C2- PFOA","76.2","%R","","","CRDL","","IS","76.2","","","CRDL","","" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","13C5-PFNA","13C5- PFNA", "86.5", "%R", "", "", "CRDL", "", "IS", "86.5", "", "", "CRDL", "", "" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","13C8-PFOS","13C8- PFOS","105","%R","","","CRDL","","IS","105","","","CRDL","","" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","13C2-PFDA","13C2- PFDA","70.0","%R","","","CRDL","","IS","70.0","","","CRDL","","" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","d3-MeFOSAA","d3- MeFOSAA", "52.8", "%R", "", "", "CRDL", "", "IS", "52.8", "", "", "CRDL", "", "" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "d5-EtFOSAA", "d5- EtFOSAA","67.2","%R","","","CRDL","","IS","67.2","","","CRDL","","" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","13C2-PFUnA","13C2- PFUnA","68.3","%R","","","CRDL","","IS","68.3","","","CRDL","","" "B8K0153-BS1", "537 MOD", "RES", "B8K0153-BS1", "Vista", "13C2-PFDoA", "13C2- PFDoA","78.4","%R","","","CRDL","","IS","78.4","","","CRDL","","" "B8K0153-BS1","537 MOD","RES","B8K0153-BS1","Vista","13C2-PFTeDA","13C2- ``` - PFTeDA","72.9","%R","","","CRDL","","IS","72.9","","","CRDL","","" - "4663.3803","CTO 17F3803 Yuma","A1-MW-11-SA2","11/15/2018 09:06","AQ","1803676-01","","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 16:22","Vista","COA","","","1","","","","","B8K0153","B8K0153","S8L0005","S8L0005","1803676","11/19/2018 09:55","12/06/2018 00:00" - "4663.3803","CTO 17F3803 Yuma","A1-MW-13-SA2","11/15/2018 08:20","AQ","1803676-02","","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 16:33", "Vista", "COA", "", "", "", "", "", "", "B8K0153", "B8K0153", "S8L0005", "S8L0005", "1803676", "11/19/2018 09:55", "12/06/2018 00:00" - "4663.3803","CTO 17F3803 Yuma","A1-MW-14-SA2","11/15/2018 10:53","AQ","1803676-03","","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 16:43","Vista","COA","","","1","","","","","B8K0153","B8K0153","S8L0005","S8L0005","1803676","11/19/2018 09:55","12/06/2018 00:00" - "4663.3803","CTO 17F3803 Yuma","A1-MW-15-SA2","11/15/2018 10:07","AQ","1803676-04","","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 16:54","Vista","COA","","","","","","","","B8K0153","B8K0153","S8L0005","S8L0005","1803676","11/19/2018 09:55","12/06/2018 00:00" - "4663.3803","CTO 17F3803 Yuma","A1-MW-37-SA2","11/15/2018 11:54","AQ","1803676-05","","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 18:35","Vista","COA","","","1","","","","","B8K0153","B8K0153","S8L0005","S8L0005","1803676","11/19/2018 09:55","12/06/2018 00:00" - "4663.3803","CTO 17F3803 Yuma","A1-MW-37-SA2D","11/15/2018 12:04","AQ","1803676-06","","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 18:45","Vista","COA","","","1","","","","B8K0153","B8K0153","S8L0005","S8L0005","1803676","11/19/2018 09:55","12/06/2018 00:00" - "4663.3803","CTO 17F3803 Yuma","FRB-20181115","11/15/2018 14:30","AQ","1803676-07","","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 18:56", "Vista", "COA", "", "", "", "", "", "B8K0153", "B8K0153", "S8L0005", "S8L0005", "1803676", "11/19/2018 09:55", "12/06/2018 00:00" - "4663.3803","CTO 17F3803 Yuma","A1-MW-31-SA2","11/15/2018 14:16","AQ","1803676-08","","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 19:06","Vista","COA","","","1","","","","B8K0153","B8K0153","S8L0005","S8L0005","1803676","11/19/2018 09:55","12/06/2018 00:00" - "4663.3803","CTO 17F3803 Yuma","B8K0153-BLK1","","AQ","B8K0153-BLK1","MB","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 15:29","Vista","COA","","","1","","","","","B8K0153","B8K0153","S8L0005","S8L0005","1803676","","12/06/2018 00:00" - "4663.3803","CTO 17F3803 Yuma","B8K0153-BS1","","AQ","B8K0153-BS1","LCS","","","537 MOD","Gen Prep","RES","11/30/2018 08:40","12/03/2018 - 14:58","Vista","COA","","","1","","","","","B8K0153","B8K0153","S8L0005","S8L0005","1803676","","12/06/2018 00:00" # LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099 Tetra Tech EC, Inc. July 24, 2018 17885 Von Karman Avenue, Suite 500 Irvine, CA 92614 ATTN: Ms. Sabina Sudoko SUBJECT: MCAS Yuma, CTO 17F3803, Data Validation Dear Ms. Sudoko, Enclosed are the final validation reports for the fractions listed below. These SDGs were received on July 6, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis. ## LDC Project #42613: ### SDG # Fraction 280-110058-1, 280-110112-1 280-110226-1, 280-110291-1 280-110353-1, L1818881 L1819087, L1819352 L1819562, L1820050 L1820175, 1801024 1801037, 1801039 1801054, 1801071 1801084 Volatiles, 1,4-Dioxane, Wet Chemistry, Perfluorinated Alkyl Acids The data validation was performed under Stage 2B & 4 guidelines. The analyses were
validated using the following documents, as applicable to each method: - Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona; April 2018 - U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1; 2017 - USEPA National Functional Guidelines for Superfund Organic Methods Data Review; January 2017 - USEPA National Functional Guidelines for Inorganic Superfund Data Review; January 2017 - EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014 Please feel free to contact us if you have any questions. Sincerely, Shauna McKellar Project Manager/Chemist 8,817 pages-ADV (1,4-Dioxane Stage 2B) Attachment 1 LDC #42613 (Tetra Tech-EC, Inc.-Irvine, CA / MCAS Yuma, CTO 17F3803) ADR/Stage 4 NEDD 80/20 PO# 1153059 ,4-Diox CI,SO, Fe II (8270D (3500 PFAs NO₃-N DATE DATE VOA Нα LDC SDG# REC'D DUE (8260B) -SIM) (537)(9056A) -Fe B) (9040C) | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s w s ws w s w s w s w Matrix: Water/Soil 07/06/18 07/27/18 6 0 5 0 5 0 5 280-110058-1 07/27/18 7 В 280-110112-1 07/06/18 0 6 0 6 0 6 0 С 9 0 6 0 6 0 6 280-110226-1 07/06/18 07/27/18 0 6 7 0 6 D 280-110291-1 07/06/18 07/27/18 0 6 0 07/27/18 5 F 0 3 0 3 0 3 280-110353-1 07/06/18 0 5 0 L1818881 07/06/18 07/27/18 6 G L1819087 07/06/18 07/27/18 0 5 Н L1819352 07/06/18 07/27/18 0 L1819562 07/06/18 07/27/18 8 0 07/27/18 L1820050 07/06/18 0 L1820175 07/06/18 07/27/18 1 0 1801024 07/06/18 07/27/18 6 0 0 Μ 1801037 07/06/18 07/27/18 1801037 07/06/18 07/27/18 8 0 Μ 6 Ν 1801039 07/06/18 07/27/18 0 0 1801054 07/06/18 07/27/18 9 0 Р 07/06/18 07/27/18 5 0 1801071 Q 07/06/18 07/27/18 0 1801084 0 26 26 0 26 0 0 0 0 T/SM Total # Data Validation Report MCAS Yuma, CTO 17F3803 SDGs: 280-110058-1, 280-110112-1, 280-110226-1, 280-110291-1, 280-110353-1, L1818881, L1819087, L1819352, L1819562, L1820050, L1820175, 1801024, 1801037, 1801039, 1801054, 1801071, and 1801084 Prepared for **Tetra Tech EC, Inc.** 17885 Von Karman Avenue, Suite 500 Irvine, CA 92614 Prepared by Laboratory Data Consultants, Inc 2701 Loker Ave West, Suite 220 Carlsbad, CA 92010 July 24, 2018 ## INTRODUCTION This Data Validation Report (DVR) presents Stage 2B and Stage 4 data validation results for samples collected during the May 2018 sampling period. Data validation was performed in accordance with the Final Sampling and Analysis Plan (SAP) for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), a modified outline of the US EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017), and a modified outline of the US EPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (January 2017). Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B 1,4-Dioxane by EPA SW 846 Method 8270D utilizing Selective Ion Monitoring (SIM) Perfluorinated Alkyl Acids (PFAs) by EPA Method 537 Modified ### Wet Chemistry: Chloride, Nitrate as Nitrogen, and Sulfate by EPA SW 846 Method 9056A Ferrous Iron by Standard Method 3500-Fe B pH by EPA SW 846 Method 9040C For samples reviewed by automated data review, the sample identification and methods of analyses performed on each sample is presented in Attachment 1. Overall data qualification summary is presented in Attachment 2. Stage 2B Automated Data Review outliers are presented in Enclosure I. DVRs for samples on which Stage 4 validation was performed are presented in Enclosure II. Validation for 1,4-Dioxane was performed manually and DVRs for Stage 2B and Stage 4 manual validation are also presented in Enclosure II. All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results for sample holding times, initial and continuing calibrations, laboratory blanks, initial and continuing calibration blanks (ICB/CCBs), surrogates, matrix spike/matrix spike duplicates (MS/MSD), laboratory control sample/laboratory control sample duplicates (LCS/LCSD), ongoing precision recovery (OPR), internal standards, trip blanks, equipment blanks, field rinsate blanks, and field duplicates. Approximately 20 percent of samples were subjected to Stage 4 evaluation as indicated in Attachment 1, which comprises a review of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. Automated data review was performed on all QC summary results using the Automated Data Review (ADR) software program (LDC, 2013) with the exception of the calibrations, ICB/CCBs, and internal standards, and all QC for 1,4-Dioxane, which were validated manually. Quality assurance (QA)/QC criteria specified in the SAP, DoD QSM, and NFGs were incorporated with the program's reference library to assess compliance with project requirements. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not applicable): Data did not warrant qualification since detected results only are affected and the compound was not detected in the associated samples. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt & Technical Holding Times All samples were received in good condition with the following exceptions: | SDG/
Method | Sample | Compound | Finding | Criteria | Flag | A or P | |------------------------|--------------|---------------|---------|--|------|--------| | 280-110291-1/
8260B | A1-MW-23-SA1 | All compounds | | There should be no headspace in the sample containers. | , | A | The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures upon receipt by the laboratory met validation criteria with the exception of one cooler in SDG L1818881 that was reported at 7.9°C. No data was qualified based on the cooler temperature. All technical holding time requirements were met with the exception of twenty-five samples for pH and twenty-one samples for ferrous iron. Due to grossly exceeded holding times (e.g., >2x recommended holding time), 15 ferrous iron results were qualified as rejected (R). Additionally, the remainder of the data were qualified as detected estimated (J) or non-detected estimated (UJ) as applicable. The details regarding the qualification of data are provided in Enclosures I and II. ## II. Instrument Performance Check A tune was performed at 12 hour intervals as required by the methods. All ion abundance requirements were met. ## III. Initial Calibration and Initial Calibration Verification All criteria for the initial calibration and initial calibration verifications of each method were met. ## IV. Continuing Calibration All criteria for the continuing calibration of each method were met with the exception of one continuing calibration for PFAs. Since the outlier was associated with laboratory QC and there were no associated client samples, no data were qualified. # V. Laboratory Blanks Laboratory blanks were performed as required by the methods. No contaminant concentrations were detected in the laboratory blanks reviewed by the ADR software program with the exception of one blank for chloride and sulfate. The associated sample results were not detected or were significantly greater than the concentrations found in the blanks, therefore no data were qualified. The details are presented in Enclosure I. No contaminant concentrations were detected in the initial or continuing calibration blanks with the following exceptions: | SDG/
Method | Laboratory
Blank ID | Analyte | Maximum
Concentration | Associated Samples | |------------------------|------------------------|---------------------|----------------------------|--| | 280-110226-1/
9056A | ICB/CCB | Nitrate as Nitrogen | 0.04663 mg/L | A1-MW-42-SA1
A1-MW-54-SA1
A1-PZ-19-SA1
A1-MW-52-SA1
A1-MW-01-SA1
A1-MW-31-SA1 | | 280-110291-1/
9056A | ICB/CCB | Sulfate | 0.2460 mg/L | A1-MW-14-SA1
A1-MW-23-SA1
A1-MW-55-SA1 | | 280-110353-1/
9056A | ICB/CCB | Chloride
Sulfate | 0.5385 mg/L
0.6554 mg/L | A1-MW-13-SA1
A1-MW-11-SA1
A1-MW-15-SA1 | Sample
concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were not detected or were significantly greater than the concentrations found in the associated blanks. # VI. Field Blank Samples Five trip blanks were collected and analyzed for VOCs. No contaminants were found. One equipment blank was collected and analyzed for VOCs and PFAs. No contaminants were found. Five field rinsate blanks were collected and analyzed for PFAs. No contaminants were found. # VII. Surrogate Spikes Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the exception of sample 16-HS-03-SA1 in SDG 280-110112-1 for VOCs. The associated sample results were qualified as detected estimated (J) or non-detected estimated (UJ) as applicable. The details regarding the qualification of data are provided in Enclosure I. ## IX. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the exception of one MS/MSD pair for 1,1-dichloroethene, two MS/MSD pairs for several PFAs, three MS/MSD pairs for chloride and sulfate, and three MS/MSD pairs for ferrous iron. The ferrous iron results in samples 16-HS-03-SA1 and A1-MW-31-SA1 were qualified as rejected (R) due to MS/MSD %Rs grossly outside QC limits (i.e., \leq 30%). The remainder of the associated sample results were qualified as detected estimated (J) or non-detected estimated (UJ) as applicable. No data were qualified where sample concentrations were significantly greater (>4x) than the spike amount. The details regarding the qualification of data are provided in Enclosures I and II. # X. Duplicate Sample Analysis Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. # XII. Laboratory Control Samples/Ongoing Precision Recovery Laboratory control samples (LCS) and laboratory control sample duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits. Ongoing precision recovery (OPR) samples were analyzed as required by Method 537 Mod. Percent recoveries (%R) were within QC limits with the exception of two OPR for PFTrDA. No data were qualified due to high %Rs since the associated results were non-detected. The details are presented in Enclosures I and II. ## XIII. Field Duplicate Samples Two field duplicate pairs were collected and analyzed for all methods. All RPDs were within QC limits. RPDs were not calculated when sample results in one or both samples were less than 5X the limit of quantitation (LOQ). The field duplicate result comparisons are provided in Enclosures I and II. ## XIV. Internal Standards All internal standard areas and retention times were within QC limits with the following exceptions: | SDG/
Method | Sample | Internal
Standards | %R (Limits) | Compound | Flag | A or P | |-----------------|---------------|---------------------------|--------------|----------|----------------------|--------| | 1801024/
537 | A1-MW-51-SA1 | ¹³ C3-PFBS | 247 (50-150) | PFBS | J (all detects) | Р | | 1801024/
537 | A1-MW-51-SA1 | ¹³ C3-NEtFOSAA | 151 (50-150) | NEtFOSAA | UJ (all non-detects) | Р | | 1801037/
537 | A1-MW-18-SA1 | ¹³ C3-PFBS | 170 (50-150) | PFBS | J (all detects) | Р | | 1801037/
537 | 16-MW-08-SA1 | ¹³ C3-PFBS | 187 (50-150) | PFBS | J (all detects) | Р | | 1801037/
537 | A1-MW-19-SA1 | ¹³ C3-PFBS | 214 (50-150) | PFBS | J (all detects) | Р | | 1801037/
537 | A1-MW-37-SA1 | ¹³ C3-PFBS | 228 (50-150) | PFBS | J (all detects) | Р | | 1801037/
537 | A1-MW-37-SA1D | ¹³ C3-PFBS | 161 (50-150) | PFBS | J (all detects) | Р | | SDG/
Method | Sample | Internal
Standards | %R (Limits) | Compound | Flag | A or P | |-----------------|---------------|-----------------------|--------------|----------|-----------------|--------| | 1801037/
537 | 16-HS-03-SA1 | ¹³ C3-PFBS | 154 (50-150) | PFBS | J (all detects) | Р | | 1801037/
537 | 16-MW-09-SA1 | ¹³ C3-PFBS | 153 (50-150) | PFBS | J (all detects) | Р | | 1801037/
537 | 16-MW-06-SA1 | ¹³ C3-PFBS | 214 (50-150) | PFBS | J (all detects) | Р | | 1801039/
537 | A1-MW-13-SA1 | ¹³ C3-PFBS | 419 (50-150) | PFBS | J (all detects) | Р | | 1801039/
537 | A1-MW-11-SA1 | ¹³ C3-PFBS | 271 (50-150) | PFBS | J (all detects) | Р | | 1801039/
537 | A1-MW-14-SA1 | ¹³ C3-PFBS | 527 (50-150) | PFBS | J (all detects) | Р | | 1801039/
537 | A1-MW-15-SA1 | ¹³ C3-PFBS | 235 (50-150) | PFBS | J (all detects) | Р | | 1801039/
537 | A1-MW-25-SA1 | ¹³ C3-PFBS | 428 (50-150) | PFBS | J (all detects) | Р | | 1801054/
537 | A1-MW-42-SA1 | ¹³ C3-PFBS | 310 (50-150) | PFBS | J (all detects) | Р | | 1801054/
537 | A1-MW-54-SA1 | ¹³ C3-PFBS | 175 (50-150) | PFBS | J (all detects) | Р | | 1801054/
537 | A1-MW-53-SA1 | ¹³ C3-PFBS | 154 (50-150) | PFBS | J (all detects) | Р | | 1801054/
537 | A1-PZ-19-SA1 | ¹³ C3-PFBS | 182 (50-150) | PFBS | J (all detects) | Р | | 1801054/
537 | A1-MW-52-SA1 | ¹³ C3-PFBS | 211 (50-150) | PFBS | J (all detects) | Р | | 1801054/
537 | A1-MW-01-SA1 | ¹³ C3-PFBS | 192 (50-150) | PFBS | J (all detects) | Р | | 1801054/
537 | A1-MW-01-SA1D | ¹³ C3-PFBS | 204 (50-150) | PFBS | J (all detects) | Р | | 1801054/
537 | A1-MW-31-SA1 | ¹³ C3-PFBS | 254 (50-150) | PFBS | J (all detects) | Р | | 1801071/
537 | A1-MW-27-SA1 | ¹³ C3-PFBS | 174 (50-150) | PFBS | J (all detects) | Р | | SDG/
Method | Sample | Internal
Standards | %R (Limits) | Compound | Flag | A or P | |-----------------|--------------|-----------------------|--------------|----------|----------------------|--------| | 1801071/
537 | A1-MW-07-SA1 | ¹³ C3-PFBS | 209 (50-150) | PFBS | J (all detects) | Р | | 1801071/
537 | A1-MW-55-SA1 | ¹³ C3-PFBS | 165 (50-150) | PFBS | UJ (all non-detects) | Р | #### XV. Compound Quantitation The laboratory reporting limits were evaluated. All laboratory reporting limits met the specified requirements. All compounds reported below the LOQ as detected by the laboratory were qualified as detected estimated (J). The details regarding the qualification of data are provided in Enclosures I and II. #### XVI. Overall Assessment of Data The analysis was conducted within all specifications of the method. Due to severe holding time exceedances and MS/MSD %Rs, data were qualified as rejected in fifteen samples. Due to headspace, data were qualified as estimated in one sample. Due to holding time exceedances, data were qualified as estimated in twenty-five samples. Due to surrogate %R, data were qualified as estimated in one sample. Due to MS/MSD %R and RPD, data were qualified as estimated in three samples. Due to internal standard %R, data were qualified as estimated in twenty-five samples. Due to results below the LOQ, data were qualified as estimated in twenty-six samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Data flags are summarized and are presented as Attachment 2. ## Attachment 1 Sample Cross Reference | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 22-May-2018 | TB-20180522 | 280-110058-1 | ТВ | METHOD | 8260B | Stage 2B | | 22-May-2018 | A1-MW-51-SA1 | 1801024-01 | N | Gen Prep | 537 MOD | Stage 2B | | 22-May-2018 | A1-MW-51-SA1 | 280-110058-2 | N | METHOD | 8260B | Stage 2B | | 22-May-2018 | A1-MW-51-SA1 | 280-110058-2 | N | METHOD | 9040C | Stage 2B | | 22-May-2018 | A1-MW-51-SA1 | 280-110058-2 | N | METHOD | 9056A | Stage 2B | | 22-May-2018 | A1-MW-51-SA1 | 280-110058-2 | N | METHOD | SM3500 Fe B D | Stage 2B | | 22-May-2018 | A1-MW-51-SA1DUP | 280-110058-2DUP | DUP | METHOD | SM3500 Fe B D | Stage 2B | | 22-May-2018 | A1-MW-51-SA1MS | 280-110058-2MS | MS | METHOD | 8260B | Stage 2B | | 22-May-2018 | A1-MW-51-SA1MS | 280-110058-2MS | MS | METHOD | SM3500 Fe B D | Stage 2B | | 22-May-2018 | A1-MW-51-SA1MSD | 280-110058-2MSD | MSD | METHOD | 8260B | Stage 2B | | 22-May-2018 | A1-MW-51-SA1MSD | 280-110058-2MSD | MSD | METHOD | SM3500 Fe B D | Stage 2B | | 22-May-2018 | A1-MW-50-SA1 | 1801024-02 | N | Gen Prep | 537 MOD | Stage 2B | | 22-May-2018 | A1-MW-50-SA1 | 280-110058-3 | N | METHOD | 8260B | Stage 2B | | 22-May-2018 | A1-MW-50-SA1 | 280-110058-3 | N | METHOD | 9040C | Stage 2B | | 22-May-2018 | A1-MW-50-SA1 | 280-110058-3 | N | METHOD | 9056A | Stage 2B | | 22-May-2018 | A1-MW-50-SA1 | 280-110058-3 | N | METHOD | SM3500 Fe B D | Stage 2B | | 22-May-2018 | A1-MW-50-SA1DUP | 280-110058-3DUP | DUP | METHOD | 9040C | Stage 2B | | 22-May-2018 | A1-MW-49-SA1 | 1801024-03 | N | Gen Prep | 537 MOD | Stage 2B | | 22-May-2018 | A1-MW-49-SA1 | 280-110058-4 | N | METHOD | 8260B | Stage 2B | | 22-May-2018 | A1-MW-49-SA1 | 280-110058-4 | N | METHOD | 9040C | Stage 2B | | 22-May-2018 | A1-MW-49-SA1 | 280-110058-4 | N | METHOD | 9056A | Stage 2B | | 22-May-2018 | A1-MW-49-SA1 | 280-110058-4 | N | METHOD | SM3500 Fe B D | Stage 2B | | 22-May-2018 | A1-MW-05-SA1 | 1801024-04 | N | Gen Prep | 537 MOD | Stage 2B | | 22-May-2018 | A1-MW-05-SA1 | 280-110058-5 | N | METHOD | 8260B | Stage 2B | | 22-May-2018 | A1-MW-05-SA1 | 280-110058-5 | N | METHOD | 9040C | Stage 2B | | 22-May-2018 | A1-MW-05-SA1 | 280-110058-5 | N | METHOD | 9056A | Stage 2B | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 22-May-2018 | A1-MW-05-SA1 | 280-110058-5 | N
 METHOD | SM3500 Fe B D | Stage 2B | | 22-May-2018 | A1-MW-04-SA1 | 1801024-05 | N | Gen Prep | 537 MOD | Stage 2B | | 22-May-2018 | A1-MW-04-SA1 | 280-110058-6 | N | METHOD | 8260B | Stage 2B | | 22-May-2018 | A1-MW-04-SA1 | 280-110058-6 | N | METHOD | 9040C | Stage 2B | | 22-May-2018 | A1-MW-04-SA1 | 280-110058-6 | N | METHOD | 9056A | Stage 2B | | 22-May-2018 | A1-MW-04-SA1 | 280-110058-6 | N | METHOD | SM3500 Fe B D | Stage 2B | | 22-May-2018 | FRB-20180522 | 1801024-06 | FRB | Gen Prep | 537 MOD | Stage 2B | | 23-May-2018 | TB-20180523 | 280-110112-1 | ТВ | METHOD | 8260B | Stage 4 | | 23-May-2018 | A1-MW-18-SA1 | 1801037-01 | N | Gen Prep | 537 MOD | Stage 4 | | 23-May-2018 | A1-MW-18-SA1 | 280-110112-2 | N | METHOD | 8260B | Stage 4 | | 23-May-2018 | A1-MW-18-SA1 | 280-110112-2 | N | METHOD | 9040C | Stage 4 | | 23-May-2018 | A1-MW-18-SA1 | 280-110112-2 | N | METHOD | 9056A | Stage 4 | | 23-May-2018 | A1-MW-18-SA1 | 280-110112-2 | N | METHOD | SM3500 Fe B D | Stage 4 | | 23-May-2018 | A1-MW-18-SA1DUP | 280-110112-2DUP | DUP | METHOD | 9056A | Stage 4 | | 23-May-2018 | A1-MW-18-SA1MS | 280-110112-2MS | MS | METHOD | 9056A | Stage 4 | | 23-May-2018 | A1-MW-18-SA1MSD | 280-110112-2MSD | MSD | METHOD | 9056A | Stage 4 | | 23-May-2018 | 16-MW-06-SA1 | 1801037-08 | N | Gen Prep | 537 MOD | Stage 4 | | 23-May-2018 | 16-MW-09-SA1 | 1801037-07 | N | Gen Prep | 537 MOD | Stage 4 | | 23-May-2018 | 16-MW-08-SA1 | 1801037-02 | N | Gen Prep | 537 MOD | Stage 4 | | 23-May-2018 | 16-MW-08-SA1 | 280-110112-3 | N | METHOD | 8260B | Stage 4 | | 23-May-2018 | 16-MW-08-SA1 | 280-110112-3 | N | METHOD | 9040C | Stage 4 | | 23-May-2018 | 16-MW-08-SA1 | 280-110112-3 | N | METHOD | 9056A | Stage 4 | | 23-May-2018 | 16-MW-08-SA1 | 280-110112-3 | N | METHOD | SM3500 Fe B D | Stage 4 | | 23-May-2018 | A1-MW-19-SA1 | 1801037-03 | N | Gen Prep | 537 MOD | Stage 4 | | 23-May-2018 | A1-MW-19-SA1 | 280-110112-4 | N | METHOD | 8260B | Stage 4 | | 23-May-2018 | A1-MW-19-SA1 | 280-110112-4 | N | METHOD | 9040C | Stage 4 | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 23-May-2018 | A1-MW-19-SA1 | 280-110112-4 | N | METHOD | 9056A | Stage 4 | | 23-May-2018 | A1-MW-19-SA1 | 280-110112-4 | N | METHOD | SM3500 Fe B D | Stage 4 | | 23-May-2018 | A1-MW-37-SA1 | 1801037-04 | N | Gen Prep | 537 MOD | Stage 4 | | 23-May-2018 | A1-MW-37-SA1 | 280-110112-6 | N | METHOD | 8260B | Stage 4 | | 23-May-2018 | A1-MW-37-SA1 | 280-110112-6 | N | METHOD | 9040C | Stage 4 | | 23-May-2018 | A1-MW-37-SA1 | 280-110112-6 | N ₁ | METHOD | 9056A | Stage 4 | | 23-May-2018 | A1-MW-37-SA1 | 280-110112-6 | N | METHOD | SM3500 Fe B D | Stage 4 | | 23-May-2018 | A1-MW-37-SA1D | 1801037-05 | FD | Gen Prep | 537 MOD | Stage 4 | | 23-May-2018 | A1-MW-37-SA1D | 280-110112-5 | FD | METHOD | 8260B | Stage 4 | | 23-May-2018 | 16-HS-03-SA1 | 1801037-06 | N | Gen Prep | 537 MOD | Stage 4 | | 23-May-2018 | 16-HS-03-SA1 | 280-110112-7 | N | METHOD | 8260B | Stage 4 | | 23-May-2018 | 16-HS-03-SA1 | 280-110112-7 | N | METHOD | 9040C | Stage 4 | | 23-May-2018 | 16-HS-03-SA1 | 280-110112-7 | N | METHOD | 9056A | Stage 4 | | 23-May-2018 | 16-HS-03-SA1 | 280-110112-7 | N | METHOD | SM3500 Fe B D | Stage 4 | | 23-May-2018 | 16-HS-03-SA1DUP | 280-110112-7DUP | DUP | METHOD | 9056A | Stage 4 | | 23-May-2018 | 16-HS-03-SA1DUP | 280-110112-7DUP | DUP | METHOD | SM3500 Fe B D | Stage 4 | | 23-May-2018 | 16-HS-03-SA1MS | 280-110112-7MS | MS | METHOD | 8260B | Stage 4 | | 23-May-2018 | 16-HS-03-SA1MS | 280-110112-7MS | MS | METHOD | 9056A | Stage 4 | | 23-May-2018 | 16-HS-03-SA1MS | 280-110112-7MS | MS | METHOD | SM3500 Fe B D | Stage 4 | | 23-May-2018 | 16-HS-03-SA1MSD | 280-110112-7MSD | MSD | METHOD | 8260B | Stage 4 | | 23-May-2018 | 16-HS-03-SA1MSD | 280-110112-7MSD | MSD | METHOD | 9056A | Stage 4 | | 23-May-2018 | 16-HS-03-SA1MSD | 280-110112-7MSD | MSD | METHOD | SM3500 Fe B D | Stage 4 | | 23-May-2018 | FRB-20180523 | 1801037-09 | FRB | Gen Prep | 537 MOD | Stage 2B | | 24-May-2018 | A1-MW-13-SA1 | 1801039-01 | N | Gen Prep | 537 MOD | Stage 2B | | 24-May-2018 | A1-MW-11-SA1 | 1801039-02 | N | Gen Prep | 537 MOD | Stage 2B | | 24-May-2018 | A1-MW-14-SA1 | 1801039-03 | N | Gen Prep | 537 MOD | Stage 2B | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 24-May-2018 | A1-MW-15-SA1 | 1801039-04 | N | Gen Prep | 537 MOD | Stage 2B | | 24-May-2018 | A1-MW-25-SA1 | 1801039-07 | N | Gen Prep | 537 MOD | Stage 2B | | 24-May-2018 | FRB-20180524 | 1801039-08 | FRB | Gen Prep | 537 MOD | Stage 2B | | 25-May-2018 | TB-20180525 | 280-110226-12 | ТВ | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-MW-42-SA1 | 1801054-01 | N | Gen Prep | 537 MOD | Stage 2B | | 25-May-2018 | A1-MW-42-SA1 | 280-110226-1 | N | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-MW-42-SA1 | 280-110226-1 | N | METHOD | 9040C | Stage 2B | | 25-May-2018 | A1-MW-42-SA1 | 280-110226-1 | N | METHOD | 9056A | Stage 2B | | 25-May-2018 | A1-MW-42-SA1 | 280-110226-1 | N | METHOD | SM3500 Fe B D | Stage 2B | | 25-May-2018 | A1-MW-54-SA1 | 1801054-02 | N | Gen Prep | 537 MOD | Stage 2B | | 25-May-2018 | A1-MW-54-SA1 | 280-110226-2 | N | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-MW-54-SA1 | 280-110226-2 | N | METHOD | 9040C | Stage 2B | | 25-May-2018 | A1-MW-54-SA1 | 280-110226-2 | N | METHOD | 9056A | Stage 2B | | 25-May-2018 | A1-MW-54-SA1 | 280-110226-2 | N | METHOD | SM3500 Fe B D | Stage 2B | | 25-May-2018 | A1-MW-53-SA1 | 1801054-03 | N | Gen Prep | 537 MOD | Stage 2B | | 25-May-2018 | A1-MW-53-SA1 | 280-110226-3 | N | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-MW-53-SA1MS | 280-110226-3MS | MS | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-MW-53-SA1MSD | 280-110226-3MSD | MSD | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-PZ-19-SA1 | 1801054-04 | N | Gen Prep | 537 MOD | Stage 2B | | 25-May-2018 | A1-PZ-19-SA1 | 280-110226-4 | N | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-PZ-19-SA1 | 280-110226-4 | N | METHOD | 9040C | Stage 2B | | 25-May-2018 | A1-PZ-19-SA1 | 280-110226-4 | N | METHOD | 9056A | Stage 2B | | 25-May-2018 | A1-PZ-19-SA1 | 280-110226-4 | N | METHOD | SM3500 Fe B D | Stage 2B | | 25-May-2018 | A1-MW-52-SA1 | 1801054-05 | N | Gen Prep | 537 MOD | Stage 2B | | 25-May-2018 | A1-MW-52-SA1 | 280-110226-5 | N | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-MW-52-SA1 | 280-110226-5 | N | METHOD | 9040C | Stage 2B | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 25-May-2018 | A1-MW-52-SA1 | 280-110226-5 | N | METHOD | 9056A | Stage 2B | | 25-May-2018 | A1-MW-52-SA1 | 280-110226-5 | N | METHOD | SM3500 Fe B D | Stage 2B | | 25-May-2018 | A1-MW-52-SA1DUP | 280-110226-5DUP | DUP | METHOD | 9056A | Stage 2B | | 25-May-2018 | A1-MW-52-SA1MS | 280-110226-5MS | MS | METHOD | 9056A | Stage 2B | | 25-May-2018 | A1-MW-52-SA1MSD | 280-110226-5MSD | MSD | METHOD | 9056A | Stage 2B | | 25-May-2018 | A1-MW-01-SA1 | 1801054-06 | N | Gen Prep | 537 MOD | Stage 2B | | 25-May-2018 | A1-MW-01-SA1 | 280-110226-6 | N | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-MW-01-SA1 | 280-110226-6 | N | METHOD | 9040C | Stage 2B | | 25-May-2018 | A1-MW-01-SA1 | 280-110226-6 | N | METHOD | 9056A | Stage 2B | | 25-May-2018 | A1-MW-01-SA1 | 280-110226-6 | N | METHOD | SM3500 Fe B D | Stage 2B | | 25-May-2018 | A1-MW-01-SA1D | 1801054-07 | FD | Gen Prep | 537 MOD | Stage 2B | | 25-May-2018 | A1-MW-01-SA1D | 280-110226-7 | FD | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-MW-31-SA1 | 1801054-08 | N | Gen Prep | 537 MOD | Stage 2B | | 25-May-2018 | A1-MW-31-SA1 | 280-110226-8 | N | METHOD | 8260B | Stage 2B | | 25-May-2018 | A1-MW-31-SA1 | 280-110226-8 | N | METHOD | 9040C | Stage 2B | | 25-May-2018 | A1-MW-31-SA1 | 280-110226-8 | N | METHOD | 9056A | Stage 2B | | 25-May-2018 | A1-MW-31-SA1 | 280-110226-8 | N | METHOD | SM3500 Fe B D | Stage 2B | | 25-May-2018 | A1-MW-31-SA1DUP | 280-110226-8DUP | DUP | METHOD | SM3500 Fe B D | Stage 2B | | 25-May-2018 | A1-MW-31-SA1MS | 280-110226-8MS | MS | METHOD | SM3500 Fe B D | Stage 2B | | 25-May-2018 | A1-MW-31-SA1MSD | 280-110226-8MSD | MSD | METHOD | SM3500 Fe B D | Stage 2B | | 25-May-2018 | FRB-20180525 | 1801054-09 | FRB | Gen Prep | 537 MOD | Stage 2B | | 30-May-2018 | TB-20180530 | 280-110291-1 | ТВ | METHOD | 8260B | Stage 2B | | 30-May-2018 | A1-MW-27-SA1 | 1801071-01 | N | Gen Prep | 537 MOD | Stage 2B | | 30-May-2018 | A1-MW-27-SA1 | 280-110291-6 | N | METHOD | 8260B | Stage 2B | | 30-May-2018 | A1-MW-27-SA1 | 280-110291-6 | N | METHOD | 9040C | Stage 2B | | 30-May-2018 | A1-MW-27-SA1 | 280-110291-6 | N | METHOD | 9056A | Stage 2B | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |----------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 30-May-2018 | A1-MW-27-SA1 | 280-110291-6 | N | METHOD | SM3500 Fe B D | Stage 2B | | 30-May-2018 | A1-MW-25-SA1 | 280-110291-5 | N | METHOD | 8260B | Stage 2B | | 30-May-2018 | A1-MW-25-SA1 | 280-110291-5 | N | METHOD | 9040C | Stage 2B | | 30-May-2018 | A1-MW-25-SA1 | 280-110291-5 | N | METHOD | 9056A | Stage 2B | | 30-May-2018 | A1-MW-25-SA1 | 280-110291-5 | N | METHOD | SM3500 Fe B D | Stage 2B | | 30-May-2018 | A1-MW-55-SA1 | 1801071-02 | N | Gen Prep | 537 MOD | Stage 2B | | 30-May-2018 | A1-MW-55-SA1 | 280-110291-4 | N | METHOD | 8260B | Stage 2B
 | 30-May-2018 | A1-MW-55-SA1 | 280-110291-4 | N | METHOD | 9040C | Stage 2B | | 30-May-2018 | A1-MW-55-SA1 | 280-110291-4 | N | METHOD | 9056A | Stage 2B | | 30-May-2018 | A1-MW-55-SA1 | 280-110291-4 | N | METHOD | SM3500 Fe B D | Stage 2B | | 30-May-2018 | A1-MW-23-SA1 | 1801071-03 | N | Gen Prep | 537 MOD | Stage 2B | | 30-May-2018 | A1-MW-23-SA1 | 280-110291-3 | N | METHOD | 8260B | Stage 2B | | 30-May-2018 | A1-MW-23-SA1 | 280-110291-3 | N | METHOD | 9040C | Stage 2B | | 30-May-2018 | A1-MW-23-SA1 | 280-110291-3 | N | METHOD | 9056A | Stage 2B | | 30-May-2018 | A1-MW-23-SA1 | 280-110291-3 | N | METHOD | SM3500 Fe B D | Stage 2B | | 30-May-2018 | A1-MW-07-SA1 | 1801071-04 | N | Gen Prep | 537 MOD | Stage 2B | | 30-May-2018 | A1-MW-07-SA1 | 280-110291-7 | N | METHOD | 8260B | Stage 2B | | 30-May-2018 | A1-MW-07-SA1 | 280-110291-7 | N | METHOD | 9040C | Stage 2B | | 30-May-2018 | A1-MW-07-SA1 | 280-110291-7 | N | METHOD | 9056A | Stage 2B | | 30-May-2018 | A1-MW-07-SA1 | 280-110291-7 | N | METHOD | SM3500 Fe B D | Stage 2B | | 30-May-2018 | A1-MW-14-SA1 | 280-110291-2 | N | METHOD | 8260B | Stage 2B | | 30-May-2018 | A1-MW-14-SA1 | 280-110291-2 | N | METHOD | 9040C | Stage 2B | | 30-May-2018 | A1-MW-14-SA1 | 280-110291-2 | N | METHOD | 9056A | Stage 2B | | 30-May-2018 | A1-MW-14-SA1 | 280-110291-2 | N | METHOD | SM3500 Fe B D | Stage 2B | | 30-May-2018 | A1-MW-14-SA1DUP | 280-110291-2DUP | DUP | METHOD | 9056A | Stage 2B | | 30- M ay-2018 | A1-MW-14-SA1MS | 280-110291-2MS | MS | METHOD | 9056A | Stage 2B | MS = Matrix Spike MSD = Matrix Spike Duplicate EB = Equipment Blank | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 30-May-2018 | A1-MW-14-SA1MSD | 280-110291-2MSD | MSD | METHOD | 9056A | Stage 2B | | 30-May-2018 | FRB-20180530 | 1801071-05 | FRB | Gen Prep | 537 MOD | Stage 2B | | 31-May-2018 | TB-20180531 | 280-110353-1 | ТВ | METHOD | 8260B | Stage 2B | | 31-May-2018 | A1-MW-13-SA1 | 280-110353-2 | N | METHOD | 8260B | Stage 2B | | 31-May-2018 | A1-MW-13-SA1 | 280-110353-2 | N | METHOD | 9040C | Stage 2B | | 31-May-2018 | A1-MW-13-SA1 | 280-110353-2 | N | METHOD | 9056A | Stage 2B | | 31-May-2018 | A1-MW-13-SA1 | 280-110353-2 | N | METHOD | SM3500 Fe B D | Stage 2B | | 31-May-2018 | A1-MW-11-SA1 | 280-110353-3 | Ņ | METHOD | 8260B | Stage 2B | | 31-May-2018 | A1-MW-11-SA1 | 280-110353-3 | N | METHOD | 9040C | Stage 2B | | 31-May-2018 | A1-MW-11-SA1 | 280-110353-3 | N | METHOD | 9056A | Stage 2B | | 31-May-2018 | A1-MW-11-SA1 | 280-110353-3 | N | METHOD | SM3500 Fe B D | Stage 2B | | 31-May-2018 | A1-MW-11-SA1DUP | 280-110353-3DUP | DUP | METHOD | 9040C | Stage 2B | | 31-May-2018 | A1-MW-15-SA1 | 280-110353-4 | N | METHOD | 8260B | Stage 2B | | 31-May-2018 | A1-MW-15-SA1 | 280-110353-4 | N | METHOD | 9040C | Stage 2B | | 31-May-2018 | A1-MW-15-SA1 | 280-110353-4 | N | METHOD | 9056A | Stage 2B | | 31-May-2018 | A1-MW-15-SA1 | 280-110353-4 | N | METHOD | SM3500 Fe B D | Stage 2B | | 31-May-2018 | EB-20180531 | 1801084-01 | EB | Gen Prep | 537 MOD | Stage 2B | | 31-May-2018 | EB-20180531 | 280-110353-5 | ЕВ | METHOD | 8260B | Stage 2B | | 31-May-2018 | 16-HS-03-SA1MS | B8E0244-MS1 | MS | Gen Prep | 537 MOD | Stage 4 | | 31-May-2018 | A1-MW-53-SA1MS | B8E0244-MS2 | MS | Gen Prep | 537 MOD | Stage 2B | | 31-May-2018 | 16-HS-03-SA1MSD | B8E0244-MSD1 | MSD | Gen Prep | 537 MOD | Stage 4 | | 31-May-2018 | A1-MW-53-SA1MSD | B8E0244-MSD2 | MSD | Gen Prep | 537 MOD | Stage 2B | | | | | | | | | ## Attachment 2 Overall Data Qualification Summary Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | Method Category: EM | Borne Tarley | 4.46 | 4.4 | | erell' (2) | 242.55 | | | ale service est | |--|---|--------------------|-----------|------------------|------------|------------|--------------|------------------------|-----------------| | The second secon | | en la servicio | | | | | | | | | Method: 9040C | | F/22/20 | | | 4Q | | A desired to | rei Vien | | | Sample ID:A1-MW-04-SA1 | Collec | ted:PM |)18 2:06: | | nalysis 1 | ype:RES | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-05-SA1 | 5/22/2018 1:19:00 Collected: PM Analysis Type: RES/TOT Dilution: 1 | | | | | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID: A4 BAW 40 SA4 | 5/22/2018 12:20:00 Collected:PM Analysis Type: RES/TOT Dilution: 1 | | | | | | | | | | Sample ID:A1-MW-49-SA1 Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.8 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-50-SA1 | Collec | 5/22/20
ted: AM | 18 11:30 | | nalveie 1 | Гуре: RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.7 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-51-SA1 | Collec | 5/22/20
ted: AM | 018 10:14 | 4:00
<i>A</i> | nalysis i | Гуре:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | РН | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Method Category: GENCHEM Method: 9056A | | | | | ΑQ | | | | | | Sample ID:A1-MW-49-SA1 | Collec | 5/22/20
ted:PM | 018 12:2 | | nalysis | Type:RE | тот | | Dilution: 10 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | NITRATE Project Name and Number: 4663.3803 - CTO 17F3803 Yuma Page 1 of 14 ADR version 1.9.0.325 7/24/2018 8:01:24 AM LOD 2.82 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110058-1 Laboratory: TA DEN eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | SDG: 280-110058-1 | | SEE A | 4 | | | | | | | |--------------------------|---------------------------|--------------------|-----------|------------|-----------|-------------|-------|------------------------|----------------| | Method Category: GENCHEM | ulderro
decimal i vale | | | in the | | 新 集制 | | film
Sept 33. | | | Method: SM3500 Fe B D | | | Mat | trix: | AQ | | | | | | Sample ID:A1-MW-04-SA1 | Collec | 5/22/20
ted:PM |)18 2:06: | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0751 | J HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | J | RI, StoA | | Sample ID:A1-MW-05-SA1 | Collec | 5/22/20
ted:PM | 1:19: | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0617 | JHF | 0.0500 | LOD | 0.200 | LOQ | mg/L | J | RI, StoA | | Sample ID:A1-MW-49-SA1 | Collec | 5/22/20
ted:PM | 18 12:20 | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD |
0.200 | LOQ | mg/L | UJ | StoA | | Sample ID:A1-MW-50-SA1 | Collec | 5/22/20
ted: AM | 18 11:30 | | nalysis 1 | ype:RE | S/TOT | ` | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-51-SA1 | Collec | 5/22/20
ted: AM | 18 10:14 | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0563 | J HF F1 | 0.0500 | LOD | 0.200 | LOQ | mg/L | J | RI, Ms, StoA | | Sample ID:A1-MW-50-SA1 | Collec | 5/22/2018 11:30
Collected: AM | | Analysis Type: RES | | | | Dilution: 1 | | |------------------------|---------------|----------------------------------|-------|--------------------|------|------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | 1,1-DICHLOROETHENE | 0.643 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | 0.400 LOD Matrix: AQ 1.00 LOQ J RΙ Page 2 of 14 Method Category: TRICHLOROETHENE Method: Project Name and Number: 4663.3803 - CTO 17F3803 Yuma VOA 8260B ADR version 1.9.0.325 7/24/2018 8:01:24 AM 0.903 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN SDG: 280-110058-1 | Method Category: | VOA | | | | | | | | | | |----------------------|--------|--------------------|-------------|------|---------|-----------------|----|--|----------------|--------| | Method: | 8260B | | | Matr | ix: | AQ | | | | | | Sample ID:A1-MW-51-S | Collec | 5/22/20
ted: AM | 018 10:14:0 | | nalysis | <i>Type:</i> RE | s | | Dilution: 1 | | | Amalista | | Lab | Lab | | DL | 5, | RL | | Data
Review | Reason | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |--------------------|---------------|-------------|-------|------------|------|------------|-------|------------------------|----------------| | 1,1-DICHLOROETHENE | 0.629 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | TRICHLOROETHENE | 0.571 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | SDG: 280-110112-1 | Method Category: | EM | 19 2 | THE CONTRACT OF SECTION | garba Mila da ka | | |------------------|-------|-------------|-------------------------|------------------|--| | Method: | 9040C | Matrix: | AQ | | | | Sample ID:16-HS-03-SA1 | Collec | 5/23/20
ted:PM | J18 2:19: | | nalysis 1 | Type:RE | S/TOT | Dilution: 1 | | | |------------------------|---------------|-------------------|-----------|------------|-----------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PH | 8.2 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | | Sample ID:16-MW-08-SA1 | Collec | 5/23/20
ted: AM | 018 11:09 | | nalysis | Type:RE | Dilution: 1 | | | |------------------------|---------------|--------------------|-----------|------------|---------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | | | 5/23/2 | 018 9:00: | :00 | | | | | | |------------------------|---------------|---------------|-----------|------------|---------|------------|-------------|------------------------|----------------| | Sample ID:A1-MW-18-SA1 | Collec | Collected: AM | | | nalysis | Type: RE | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.7 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | Sample ID:A1-MW-19-SA1 | Collec | 5/23/20
ted:PM | 018 12:03 | | nalysis 1 | Type:RE | Dilution: 1 | | | |------------------------|---------------|-------------------|-----------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.7 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/24/2018 8:01:24 AM ADR version 1.9.0.325 Page 3 of 14 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN SDG: 280-110112-1 Method Category: EM Method: 9040C Matrix: AQ | Sample ID:A1-MW-37-SA1 Analyte | Collec | 5/23/2
ted:PM | 018 1:16 | | nalysis | Type: RE | Dilution: 1 | | | |--------------------------------|---------------|------------------|----------|------------|---------|------------|-------------|------------------------|----------------| | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | РН | 7.7 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | Method Category: GENCHEM Method: 9056A Matrix: AQ 5/23/2018 2:19:00 Collected:PM Sample ID:16-HS-03-SA1 Analysis Type: RE2/TOT Dilution: 50 Data Lab Lab DL RL Review Reason Analyte DL Result Qual Type RL Type Units Qual Code Sulfate 2120 25.0 LOD F1 250 LOQ mg/L Ms Method Category: GENCHEM Method: SM3500 Fe B D Matrix: AQ | Sample ID:16-HS-03-SA1 | Collec | 5/23/2018 2:19
Collected:PM | | | | ype:RE | s/TOT | Dilution: 1 | | | |------------------------|---------------|--------------------------------|--------|------------|-------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | Ms | | 5/23/2018 11:09:00 Collected: AM Analysis Type: RES/TOT Sample ID:16-MW-08-SA1 Dilution: 1 Data Lab DL RL Review Lab Reason DL RLUnits Qual Analyte Result Qual Type Type Code Ferrous Iron 0.0403 J HF 0.0500 LOD 0.200 LOQ mg/L J RI 5/23/2018 9:00:00 Sample ID:A1-MW-18-SA1 Collected: AM Analysis Type: RES/TOT Dilution: 1 Data DL RL Lab Lab Review Reason DL RL Analyte Result Qual **Type** Type Units Qual Code 0.0215 J HF 0.0500 LOD 0.200 LOQ J RI, StoA Ferrous Iron mg/L Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/24/2018 8:01:24 AM ADR version 1.9.0.325 Page 4 of 14 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110112-1 Ferrous Iron Laboratory: TA DEN RΙ eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver mg/L | Method Category: | GENCHEM | | a dest | | Property (| ###
| | | | Same Office | |----------------------|---------------|---------------|-------------------|-----------|------------|-----------|------------|-------|------------------------|----------------| | Method: | SM3500 Fe B D | | | Ma | trix: / | 4Q | | | | ente il di | | Sample ID:A1-MW-37-S | A1 | Collec | 5/23/20
ted:PM | 018 1:16: | | nalysis | Type: RES | S/TOT | E | Dilution: 1 | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Method Category: | VOA | | | | | | | E-MS. | | is the | |------------------|-------|--|--------------------------|-------|----|-------------|--|--------------|------------|--------| | Method: | 8260B | | IVI a
5/23/2018 2:19: | trix: | AQ | and Alleria | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
25.25.22 | A services | | 0.0500 LOD 0.200 LOQ J HF 0.166 | Sample ID:16-HS-03-SA1 | Collec | Collected: PM | | | nalysis | Type: RE | Dilution: 1 | | | |------------------------|---------------|---------------|-------|------------|---------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | 1,1-DICHLOROETHENE | 0.800 | U F1 F2 | 0.800 | LOD | 1.00 | LOQ | ug/L | UJ | Ms, Surr | | TETRACHLOROETHENE | 0.400 | U | 0.400 | LOD | 1.00 | LOQ | ug/L | UJ | Surr | | TRICHLOROETHENE | 0.400 | U | 0.400 | LOD | 1.00 | LOQ | ug/L | UJ | Surr | | Sample ID:16-MW-08-SA1 | 5/23/2018 11
Collected: AM | | | | nalysis 1 | Гуре: RES | Dilution: 1 | | | |------------------------|-------------------------------|-------------|-------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | TETRACHLOROETHENE | 0.669 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | | 5/23/2018 9:00:00 | | | | | | | | | |------------------------|---------------|-------------------|-------|------------|-----------|-------------|-------|------------------------|----------------|--| | Sample ID:A1-MW-18-SA1 | Collec | Collected: AM | | | nalysis 1 | Dilution: 1 | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL_ | RL
Type | Units | Data
Review
Qual | Reason
Code | | | 1,1-DICHLOROETHENE | 0.452 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | | Sample ID:A1-MW-19-SA1 | 5/23/2018 12:03
Collected:PM | | | | nalysis 1 | Type:RE | Dilution: 1 | | | |------------------------
---------------------------------|-------------|-------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | TRICHLOROETHENE | 0.424 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/24/2018 8:01:24 AM ADR version 1.9.0.325 Page 5 of 14 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110112-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN Page 6 of 14 | SDG: 280-110112-1 | great great | And | 19 | garden () ()
An order | 200 | A. 124-5 | | Section 19 | A Market State of Sta | | | | | |---|---|--|---|--|---|--|---|--|--|--|--|--|--| | Wethod Category: VOA Wethod: 8260B | | | y med | rix: | AQ. | | | | | | | | | | Netriou. 6260B | | Elaala | Mei
18 1:16: | | 1 U | | *** | | | | | | | | Sample ID:A1-MW-37-SA1 | Collec | ted:PM | 710 1:10: | | nalysis 1 | ype:RES | 3 | | Dilution: 1 | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | | | FRICHLOROETHENE | 0.624 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | | | | Sample ID:A1-MW-37-SA1D | Collec | 5/23/20
ted:PM | 18 1:26: | | | ype:RES | | 1 | Dilution: 1 | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | | | TRICHLOROETHENE | 0.652 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | | | | SDG: 280-110226-1 | | | | ALC: | | | | | 30 | | | | | | Method Category: EM | | | | | | | 100 mg | | | | | | | | Wethod: 9040C | | Matrix: AQ | | | | | | | | | | | | | Sample ID:A1-MW-01-SA1 | 5/25/2018 1:56:00 Collected:PM Analysis Type:RES/TOT Dilution: 1 | | | | | | | | | | | | | | Analyte | Lab | Lab | | DL | | RL | 1 | Data
Review | Reason | | | | | | | Resuit | Quai | DL | Type | RL | Type | Units | | | | | | | | | Result 7.9 | Qual
HF | <i>DL</i> 0.1 | <i>Type</i> LOD | RL
0.1 | <i>Type</i> | <i>Units</i>
SU | Qual
J | Code
StoA | | | | | | PH | 7.9 | HF
5/25/20 | - 75ths | LOD | 0.1 | LOQ | SU | Qual | Code
StoA | | | | | | PH
Sample ID:A1-MW-31-SA1 | 7.9 | HF | 0.1 | LOD | 0.1 | DOMESTIC TO THE STREET | SU | Qual | Code | | | | | | emple ID:A1-MW-31-SA1 | 7.9 Collect | HF
5/25/20
ted:PM
Lab | 0.1
18 2:49: | LOD OO A DL | 0.1
nalysis 1 | LOQ
Type:RES | SU
S/TOT | Qual J Data Review | StoA Dilution: 1 Reason | | | | | | PH Sample ID:A1-MW-31-SA1 Analyte PH | 7.9 Collect Lab Result 8.0 | HF
5/25/20
ted: PM
Lab
Qual | 0.1
018 2:49: | LOD OO A DL Type LOD OO | 0.1 nalysis 1 RL 0.1 | LOQ
Type: RES
RL
Type | SU
S/TOT
Units | Qual J Data Review Qual J | Code StoA Dilution: 1 Reason Code | | | | | | PH Sample ID:A1-MW-31-SA1 Analyte PH Sample ID:A1-MW-42-SA1 | 7.9 Collect Lab Result 8.0 | HF 5/25/20 sted: PM Lab Qual HF 5/25/20 | 0.1
018 2:49:
DL
0.1 | LOD OO A DL Type LOD OO | 0.1 nalysis 1 RL 0.1 | LOQ Type: RES RL Type LOQ | SU
S/TOT
Units | Qual J Data Review Qual J | Code StoA Dilution: 1 Reason Code StoA | | | | | | PH Sample ID:A1-MW-31-SA1 Analyte PH Sample ID:A1-MW-42-SA1 | 7.9 Collect Lab Result 8.0 Collect Lab | HF 5/25/20 ted:PM Lab Qual HF 5/25/20 ted:AM | 0.1
918 2:49:
DL
0.1
918 7:56: | LOD DL Type LOD OO A DL DL | 0.1 nalysis 1 RL 0.1 nalysis 1 | LOQ Type: RES RL Type LOQ Type: RES | SU S/TOT Units SU S/TOT | Qual J Data Review Qual J Data Review | Code StoA Dilution: 1 Reason Code StoA Dilution: 1 Reason | | | | | | Analyte Cample ID:A1-MW-31-SA1 Analyte Cample ID:A1-MW-42-SA1 Analyte CH | 7.9 Collect Lab Result 8.0 Collect Lab Result 7.9 | HF 5/25/20 ted:PM Lab Qual HF 5/25/20 ted:AM Lab Qual HF | 0.1
018 2:49:
DL
0.1
018 7:56: | LOD DL Type LOD A DL Type LOD LOD LOD OO A DL Type LOD | 0.1 nalysis 1 RL 0.1 nalysis 1 RL 0.1 | LOQ Type: RES RL Type LOQ Type: RES RL Type | SU S/TOT Units S/TOT Units S/TOT S/TOT Units | Qual J Data Review Qual J Data Review Qual J | Code StoA Dilution: 1 Reason Code StoA Dilution: 1 Reason Code | | | | | | PH Sample ID:A1-MW-31-SA1 Analyte PH Sample ID:A1-MW-42-SA1 Analyte PH Sample ID:A1-MW-52-SA1 | 7.9 Collect Lab Result 8.0 Collect Lab Result 7.9 | HF 5/25/20 ted: PM Lab Qual HF 5/25/20 ted: AM Lab Qual HF 5/25/20 | 0.1
018 2:49:
DL
0.1
018 7:56:
DL
0.1 | LOD DL Type LOD A DL Type LOD LOD LOD OO A DL Type LOD | 0.1 nalysis 1 RL 0.1 nalysis 1 RL 0.1 | LOQ Type: RES RL Type LOQ Type: RES RL Type LOQ LOQ | SU S/TOT Units S/TOT Units S/TOT S/TOT Units | Qual J Data Review Qual J Data Review Qual J | Code StoA Dilution: 1 Reason Code StoA Dilution: 1 Reason Code StoA | | | | | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma ADR version 1.9.0.325 7/24/2018 8:01:24 AM Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | SDG: 280-110226-1 | |-------------------| | | | | | | | | | | | | | | | GBG: 200-110220 1 | | 400 | 34 (A) | 198 | | | 100 | Sept. | | | |--|---------------|--------------------|----------|------------|---------|------------|-------|------------------------|----------------|--| | Method Category: EM | | | | | | | 4-20 | | | | | Method: 9040C | | | Ma | trix: i | 4Q | | | The West | | | | 5/25/2018 9:09:00 Sample ID:A1-MW-54-SA1 Collected: AM Analysis Type: RES/TOT Diluti | | | | | | | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | | Sample ID:A1-PZ-19-SA1 | Collec | 5/25/20
ted: AM | 18 11:59 | | nalysis | Type:RE | S/TOT | | Dilution: 1 | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | | Method Category: | GENCHEM | | | | |------------------|---------|---------|----|------------| | Method: | 9056A | Matrix: | AQ | NERGHER OF | | Sample ID:A1-MW-52-SA1 | Collec | 5/25/2018 1:00
Collected:PM | | | nalysis | Type:RE | Dilution: 5 | | | |------------------------|---------------|--------------------------------|------|------------|---------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | CHLORIDE | 500 | F1 | 2.50 | LOD | 15.0 | Log | ma/L | J | Ms | | Sample ID:A1-MW-54-SA1 | Collec | 5/25/2018 9:09:
Collected: AM | | | :00
Analysis Type:RES/TOT | | | | Dilution: 1 | | | |------------------------|---------------|----------------------------------|-------|------------|------------------------------|------------|-------|------------------------|----------------|--|--| | Analyte
 Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | NITRATE | 0.343 | J | 0.100 | LOD | 0.500 | LOQ | mg/L | J | RI | | | | Method Category: | GENCHEM | | |------------------|---------------|------------| | Method: | SM3500 Fe B D | Matrix: AQ | | Sample ID:A1-MW-01-SA1 | Collected: PM | | | | nalysis 1 | ype:RE | Dilution: 1 | | | |------------------------|---------------|-------------|--------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | 5/25/2018 1:56:00 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/24/2018 8:01:24 AM ADR version 1.9.0.325 Page 7 of 14 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | SDG: 280-110226 | | |-----------------|--| | | | | SDG; 280-110226-1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 17.4 | | | September 1 | e de la | A STATE OF THE STA | All Marie | | | | |---------------------------------------|--|--------------------|-----------|----------------|-------------|---|--|---|---------------------------|--|--| | Method Category: GENCHEM | Alle de la cue | | | in profits | | 10.2 | and Telegrom | 1. SWW | (all selfs)
Existences | | | | Method: SM3500 Fe B | D | | Mat | trix: | AQ | | | | 1 March 4 7 12 | | | | Sample ID:A1-MW-31-SA1 | Collec | 5/25/2
ted:PM | 018 2:49: | | nalysis 1 | ype: RES | s/тот | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | Ms, StoA | | | | Sample ID:A1-MW-42-SA1 | Collec | 5/25/29
ted: AM | 018 7:56: | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | Sample ID:A1-MW-52-SA1 | 5/25/2018 1:00:00 Collected:PM Analysis Type:RES/TOT Dilution: 1 | | | | | | | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | Sample ID:A1-MW-54-SA1 | Collec | 5/25/2
ted: AM | 018 9:09: | 00
<i>A</i> | nalysis 1 | vpe:RES | S/TOT | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | Sample ID:A1-PZ-19-SA1 | Collec | 5/25/2
ted: AM | 018 11:59 | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.198 | J HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | J | RI, StoA | | | | Method Category: VOA
Method: 8260B | | | - | not produced | AQ | Affantie | | NAME OF THE PARTY | | | | | Sample ID:A1-MW-31-SA1 | Collec | 5/25/2
ted:PM | 018 2:49: | | nalysis 1 | vpe:RF | S | | Dilution: 1 | | | | a | Lab | Lab | - | DL | Dr. | RL | | Data
Review | Reason | | | TRICHLOROETHENE Analyte Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/24/2018 8:01:24 AM ADR version 1.9.0.325 Page 8 of 14 DL 0.400 Туре LOD RL 1.00 Туре LOQ Units ug/L Qual J Code RΙ Qual Result 0.353 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110226-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | Method Category: VOA
Method: 8260B Matrix: AQ | | | 5/25/2018 7 | ·56·00 | | | | | |--|------------------|-------|-------------|---------|----|----------------|-------------|--| | Method Category: VOA | Method: | 8260B | | Matrix: | AQ | | ariti saari | | | | Method Category: | VOA | | | | and the second | | | | Sample ID:A1-MW-42-SA1 | Collec | Collected: AM | | | Analysis Type: RES | | | | Dilution: 1 | | | |------------------------|---------------|---------------|-------|------------|--------------------|------------|-------|------------------------|----------------|--|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | 1,1-DICHLOROETHENE | 0.298 | j | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | | | TRICHLOROETHENE | 0.415 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | | Commis ID:A4 BRIAL FO CA4 | Calla | 5/25/2018 1:00:00
Collected:PM Analysis Type:RES | | | | | | | Dillerit e e e 4 | |---------------------------------|---------------|---|-------|------------|------|------------|-------|------------------------|-------------------------------| | Sample ID:A1-MW-52-SA1 Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Dilution: 1
Reason
Code | | 1,1-DICHLOROETHENE | 0.507 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | TRICHLOROETHENE | 0.627 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | Sample ID:A1-PZ-19-SA1 Analyte | Collec |
5/25/2018 11:59:00
Collected:AM Analysis Type:RES | | | | | | | | |---------------------------------|---------------|--|-------|------------|------|------------|-------|------------------------|----------------| | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | TRICHLOROETHENE | 0.269 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | STATE OF STATE OF | A STATE OF THE STA | A STATE OF THE STATE OF THE STATE OF | CASTRON CONTRACTOR OF THE SECOND | | |-------------------|--|--------------------------------------|----------------------------------|--| | Method Category: | EM | | | | | Method: | 9040C | Matrix | : AQ | | | Sample ID:A1-MW-07-SA1 | Collec | 5/30/2018 12:06
Collected: PM | | | | Type:RE | Dilution: 1 | | | |------------------------|---------------|----------------------------------|-----|------------|-----|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | E/20/2049 4.29.00 | Sample ID:A1-MW-14-SA1 | Collected: PM | | | | nalysis 1 | ype:RES | Dilution: 1 | | | |------------------------|---------------|-------------|-----|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | SDG: 280-110291-1 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/24/2018 8:01:24 AM ADR version 1.9.0.325 Page 9 of 14 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1, Prep280-110355-1, Prep280-110355-1, Prep280-110055-1, Prep280-110055-1, Prep280-11005-1, Prep280-11005-11005-11005-11005-11005-11005-11005-110 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN Dilution: 1 | Method Category: EM Method: 9040C Matrix: AQ Sample ID:A1-MW-23-SA1 Collected:AM DL Type RL Type Units Review Qual DL Type RL Type Units Type Reson Code Type Reson Type Reson Qual T | Prep280-110226-1, Prep280-110291-1, SDG: 280-110291-1 | | • | | EWAFF | ivanie. | | _ | | OIVIA - Denve | |--|---|---------|--------------------|-----------|-----------------|------------------|-----------------------|--------------|---------|----------------| | Matrix M | SDG, 280-110291-1 | | | 4 | en ingenerale * | an in the second | Account to the second | 400 | | | | Sample ID:A1-MW-23-SA1 Collected: AM | Method Category: EM | 6.1.281 | | | a. 107 | | | | a Stand | | | Collected: AM | Method: 9040C | | . (BA) (# | Mat | trix: i | AQ | | e periodical | | | | Result R | Sample ID:A1-MW-23-SA1 | Collec | 5/30/20
ted: AM | 018 11:10 | | nalysis 1 | Гуре: RES | S/TOT | | Dilution: 1 | | Collected: AM | Analyte | Lab | Lab | DL | DL | | RL | | Review | | | Collected: AM | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Collected: Am | Sample ID:A1-MW-25-SA1 | Collec | 5/30/20
ted: AM | 018 9:12: | | nalysis 1 | Type:RE | S/TOT | | Dilution: 1 | | Collected: AM | Analyte | | | DL | | RL | | Units | Review | | | Collected: AM | РН | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | Analyte Lab Result Qual DL Type RL Type Units Qual Code | Sample ID:A1-MW-27-SA1 | | | | | | | | | | | Sample ID:A1-MW-55-SA1 Collected: AM Lab Result Qual DL Type RL Type Units Reson Qual Code PH 7.9 HF 0.1 LOD SIM3500 Fe B D Matrix: AQ Sample ID:A1-MW-07-SA1 Collected: PM Analysis Type: RES/TOT Dilution: 1 Data Review Reason Qual Code PH Matrix: AQ Simple ID:A1-MW-07-SA1 Collected: PM Analysis Type: RES/TOT Dilution: 1 Data Review Reason Analysis Type: RES/TOT Dilution: 1 Data Review Reason Analysis Type: RES/TOT Dilution: 1 Data Review Reason Analysis Type: RES/TOT Dilution: 1 | Analyte | | | DL | | RL | | Units | Review | | | Analyte Collected: AM Lab Result Re | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | Analyte Lab Result Qual DL Type RL Type Units Qual Code PH 7.9 HF 0.1 LOD 0.1 LOQ SU J StoA Method Category: GENCHEM Method: SM3500 Fe B D Sample ID:A1-MW-07-SA1 Lab Lab Lab Result Qual DL Type RL Type Units Qual Code Lab Lab Lab DL DL Type RL Type Units Qual Reson Code Result Qual DL Type RL Type Units Qual Reson Code Reson Reson Code Reson Reson Code | Sample ID:A1-MW-55-SA1 | Collec | 5/30/20
ted: AM | 018 10:16 | 5:00
A | nalysis 1 | Гуре: RE | S/TOT | | Dilution: 1 | | Method: SM3500 Fe B D Matrix: AQ 5/30/2018 12:06:00 Collected: PM Analysis Type: RES/TOT Dilution: 1 Lab Lab Lab Result Qual DL Type RL Type Units Qual Code | Analyte | 1 | 1 | DL | 1 | RL | | Units | Review | | | Method: SM3500 Fe B D Matrix: AQ Sample ID:A1-MW-07-SA1 Collected: PM Analysis Type: RES/TOT Dilution: 1 Lab Lab DL RL RL Review Reason Review Reason Qual Code | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Method: SM3500 Fe B D Matrix: AQ Sample ID:A1-MW-07-SA1 Collected: PM Analysis Type: RES/TOT Dilution: 1 Lab Lab DL RL RL Review Reason Review Reason Qual Code | Mothed Category: GENCHEM | | | | | | 42.72 | , and a | | Will State How | | Sample ID:A1-MW-07-SA1 Collected: PM Analysis Type: RES/TOT Dilution: 1 Lab Lab DL DL RL Review Reason Result Qual DL Type RL Type Units Qual Code | | | | Ma | trix: | AQ | 130 | | | | | Lab Lab DL RL Review Reason Result Qual DL Type RL Type Units Qual Code | Sample ID:A1-MW-07-SA1 | Collec | | 018 12:06 | | nalysis | Type:RE | s/TOT | | Dilution: 1 | | errous Iron 0.0500 U HF 0.0500 LOD 0.200 LOQ mg/L R StoA | Analyte | Lab | Lab | DL | | RL | | Units
 Review | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |--------------|---------------|-------------|--------|------------|-------|------------|-------|------------------------|----------------| | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | Collected: PM 5/30/2018 1:38:00 Analysis Type: RES/TOT Sample ID:A1-MW-14-SA1 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma ^{*} denotes a non-reportable result Laboratory: TA DEN Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 | | 1029 | | |--|------|--| | | | | | | | | | | | | | Method: SM3500 Fe B D | Allen Agencia | | Mat | rix: | ΑQ | | | | | | | |---|---------------|---|------------|------------|-----------|------------|-------|------------------------|----------------|--|--| | Sample ID:A1-MW-23-SA1 | Collec | 5/30/2018 11:10:00 Collected: AM Analysis Type: RES/TOT | | | | | | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | 5/30/2018 9:12:00 Sample ID:A1-MW-25-SA1 Collected: AM Analysis Type: RES/TOT Dilution: 1 | | | | | | | | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.123 | J HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | J | RI, StoA | | | | Sample ID:A1-MW-27-SA1 | Collec | 5/30/20
ted: AM | 018 8:18:0 | | nalysis T | ype:RE | S/TOT | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | Sample ID:A1-MW-55-SA1 | Collec | 5/30/20
ted: AM | 018 10:16 | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | Method Category: VC | PA | | | | |---------------------|-----|-------------------|--------------|--| | Method: 820 | 60B | <i>Matrix:</i> AQ | A Section of | THE STATE OF | 5/30/2018 12:06:00 Sample ID:A1-MW-07-SA1 Collected: PM Analysis Type: RES Dilution: 1 | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |--------------------|---------------|-------------|-------|------------|------|------------|-------|------------------------|----------------| | 1,1-DICHLOROETHENE | 0.405 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | TRICHLOROETHENE | 0.797 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | 5/30/2018 1:38:00 Collected: PM Analysis Type: RES Sample ID:A1-MW-14-SA1 Dilution: 1 Data RL Lab Lab DL Review Reason DL Type RL Type Units Qual Code Analyte Result Qual RΙ 0.800 LOD 1.00 LOQ ug/L J 1,1-DICHLOROETHENE 0.898 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma Page 11 of 14 7/24/2018 8:01:24 AM ADR version 1.9.0.325 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110291-1 Laboratory: TA DEN eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method Category: | VOA | | ge engiller en | F. A. K. A. Str. | | |------------------|-------|---------|----------------|------------------|--| | Method: | 8260B | Matrix: | AQ | | | | Sample ID:A1-MW-14-SA1 | Collec | 5/30/2018 1:38:0
Collected:PM | | | nalysis î | Type:RE | Dilution: 1 | | | |------------------------|---------------|----------------------------------|-------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | TRICHLOROETHENE | 0.876 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | | 5/30/2018 11:10:00 | | | | | | | | |------------------------|---------------|--------------------|-------|------------|-----------|------------|-------------|------------------------|----------------| | Sample ID:A1-MW-23-SA1 | Collected: AM | | | A | nalysis 1 | ype:RE | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | 1,1-DICHLOROETHENE | 0.800 | U | 0.800 | LOD | 1.00 | LOQ | ug/L | UJ | Headspace | | TETRACHLOROETHENE | 0.400 | U | 0.400 | LOD | 1.00 | LOQ | ug/L | υJ | Headspace | | TRICHLOROETHENE | 0.400 | U | 0.400 | LOD | 1.00 | LOQ | ug/L | UJ | Headspace | | | | 5/30/2018 9:12:00 | | | | | | | | |------------------------|---------------|-------------------|-------|------------|---------|------------|-------|------------------------|----------------| | Sample ID:A1-MW-25-SA1 | Collec | ted: AM | | A | nalysis | Type: RES | 5 | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | 1,1-DICHLOROETHENE | 0.204 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | TRICHLOROETHENE | 0.418 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | | (1) A THE STATE OF O | | |------------------|-------|---
--| | Method Category: | ΞM | | | | Method: | 9040C | Matrix: AQ | The second secon | | Sample ID:A1-MW-11-SA1 | Collec | 5/31/2018 8:2
Collected: AM | | | | 24:00 Analysis Type:RES/TOT | | | | | |------------------------|---------------|--------------------------------|-----|------------|-----|-----------------------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PH | 8.1 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | | | 5/31/2018 7:43:00 | | | | | | | | | | |------------------------|-------------------|-------------|-----|------------|---------|------------|-------|------------------------|----------------|--| | Sample ID:A1-MW-13-SA1 | Collected: AM | | | | nalysis | Type: RE | S/TOT | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | ^{*} denotes a non-reportable result SDG: 280-110353-1 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma ADR version 1.9.0.325 Page 12 of 14 7/24/2018 8:01:24 AM Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver SU LOQ Laboratory: TA DEN StoA SDG: 280-110353-1 РΗ Method Category: EM Method: 9040C Matrix: AQ 5/31/2018 9:16:00 Sample ID:A1-MW-15-SA1 Collected: AM Analysis Type: RES/TOT Dilution: 1 Data DL Lab Lab RL Review Reason Analyte Result Qual DL RL Units Type Туре Qual Code | Method Category: | GENCHEM | | | |------------------|---------------|------------|--| | Method: | SM3500 Fe B D | Matrix: AQ | | 0.1 LOD HF 8.1 | Sample ID:A1-MW-11-SA1 | Collec | 5/31/2018 8:24:0
Collected: AM | | | nalysis 1 | Type:RE | Dilution: 1 | | | |------------------------|---------------|-----------------------------------|--------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-13-SA1 | Collected: AM | | | A | nalysis 1 | ype:RES | Dilution: 1 | | | |------------------------|---------------|-------------|--------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | 5/31/2018 7:43:00 | | | 5/31/2018 9:16:00 | | | | | | | | | | |------------------------|---------------|-------------------|--------|------------|-----------|------------|-------|------------------------|----------------|--|--| | Sample ID:A1-MW-15-SA1 | Collec | ted: AM | | Α | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | Method Category: | VOA | and the state of t | | |------------------|-------|--|--| | Method: | 8260B | Matrix: AQ | | 5/31/2018 9:16:00 | Sample ID:A1-MW-15-SA1 | Collec | ted: AM | | | nalysis 1 | Type: RES | 3 | ı | Dilution: 1 | |------------------------|---------------|-------------|-------|------------|-----------|------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | TRICHLOROETHENE | 0.321 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/24/2018 8:01:24 AM ADR version 1.9.0.325 Page 13 of 14 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN #### **Reason Code Legend** | Reason Code | Description | |--------------|--| | Headspace | Preservation | | Mb | Method Blank Contamination | | Ms | Matrix Spike Lower Estimation | | Ms | Matrix Spike Lower Rejection | | Ms | Matrix Spike Precision | | Preservation | Preservation | | RI | Reporting Limit Trace Value | | StoA | Sampling to Analysis Estimation | | StoA | Sampling to Analysis Rejection | | Surr | Surrogate/Tracer Recovery Lower Estimation | 7/24/2018 8:01:24 AM ADR version 1.9.0.325 Page 14 of 14 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 1801024, 1801037, 1801039, Laboratory: Vista EDD Filename: 1801024, 1801037, 1801039, 1801054, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista 1801071, 1801084 SDG: 1801024 Method Category: SVOA Method: **537 MOD** Matrix: 5/22/2018 2:06:00 | Sample ID:A1-MW-04-SA1 Analyte | Collec | Collected:PM | | | Inalysis T | ype:RE | Dilution: 1 | | | |---------------------------------|---------------|--------------|---------|------------|------------|------------|-------------|------------------------|----------------| | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PFOA | 0.00333 | J | 0.00508 | LOD | 0.00812 | LOQ | ug/L | J | RI | | PFOS | 0.00161 | J | 0.00508 | LOD | 0.00812 | LOQ | ug/L | J | RI | 5/22/2018 1:19:00 | Sample ID:A1-MW-05-SA1 | Collec | Collected: PM | | | Analysis Type: RES | | | | Dilution: 1 | | | |------------------------|---------------|---------------|---------|------------
--------------------|------------|-------|------------------------|----------------|--|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | PFHpA | 0.000917 | J | 0.00525 | LOD | 0.00842 | LOQ | ug/L | J | RI | | | | PFHxS | 0.00278 | J | 0.00525 | LOD | 0.00842 | LOQ | ug/L | J | RI | | | 5/22/2018 12:20:00 | Sample ID:A1-MW-49-SA1 | Collec | ted:PM | | A | Inalysis T | ype:RE | S | | Dilution: 1 | |------------------------|---|------------------------------|---------|------------------|------------------|------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | 2 | and the second second second | | Service Services | CAMPA CONTRACTOR | W. 1965 | | 2000 | 10000 | | PFBS | 0.00627 | J | 0.00508 | LOD | 0.00812 | LOQ | ug/L | J | RI | 5/22/2018 10:14:00 Sample ID:A1-MW-51-SA1 Collected: AM Analysis Type: RES Dilution: 1 | | | , ,,,,,,, | | | | | | | | | |----------|---------------|-------------|---------|------------|---------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | NEtFOSAA | 0.00521 | U | 0.00521 | LOD | 0.00836 | LOQ | ug/L | υJ | ls | | | PFBS | 0.0613 | | 0.00521 | LOD | 0.00836 | LOQ | ug/L | J | ls | | | PFOS | 0.00303 | J | 0.00521 | LOD | 0.00836 | LOQ | ug/L | J | RI | | SDG: 1801037 Method Category: SVOA **537 MOD** Method: Matrix: AQ 5/23/2018 2:19:00 Sample ID:16-HS-03-SA1 Collected: PM Analysis Type: RES Dilution: 1 | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |---------|---------------|-------------|---------|------------|---------|------------|-------|------------------------|----------------| | PFBS | 0.582 | | 0.00500 | LOD | 0.00803 | LOQ | ug/L | J | ls | | PFHxS | 0.150 | | 0.00500 | LOD | 0.00803 | LOQ | ug/L | J | Ms | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/19/2018 12:54:59 PM ADR version 1.9.0.325 Page 1 of 7 Lab Reporting Batch ID: 1801024, 1801037, 1801039, Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084 SDG: 1801037 | | | 5/23/2018 2:19:00 | |----------------|---------|-------------------| | Method: | 537 MOD | Matrix: AQ | | Method Categor | y: SVOA | | | Sample ID:16-HS-03-SA1 | Collec | ted:PM | | | Analysis T | ype:RE | S | ı | Dilution: 1 | |------------------------|---------------|-------------|---------|------------|------------|------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PEOA | 0.0218 | | 0.00500 | LOD | 0.00803 | LOQ | ug/L | J | Ms | | PFHpA | 0.198 | | 0.00500 | LOD | 0.00803 | LOQ | ug/L | J | Ms, Ms | | | | 5/23/2018 9:50:00 | | | | | | | | |------------------------|---------------|-------------------|---------|------------|------------|------------|-------|------------------------|----------------| | Sample ID:16-MW-06-SA1 | Collec | ted: AM | | A | Inalysis T | ype:RE | S | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PFBS | 0.112 | | 0.00563 | LOD | 0.00897 | LOQ | ug/L | J | ls | | PFOS | 0.00227 | J | 0.00563 | LOD | 0.00897 | LOQ | ug/L | J | RI | | 0 4 10 40 2004 00 00 4 | 0 # | 5/23/2018 11:09:00 | | | | | | | | | |------------------------|---------------|--------------------|---------|------------|-----------|------------|-------|------------------------|----------------|--| | Sample ID:16-MW-08-SA1 | Collec | Collected: AM | | | nalysis T | ype: KE | 5 | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFBS | 1.29 | | 0.00543 | LOD | 0.00870 | LOQ | ug/L | J | ls | | | PFNA | 0.00102 | J | 0.00543 | LOD | 0.00870 | LOQ | ug/L | J | RI | | | | 5/23/2018 10:15:00 | | | | | | | | | | |------------------------|--------------------|-------------|---------|--------------------|---------|------------|-------|------------------------|----------------|--| | Sample ID:16-MW-09-SA1 | Collec | ted: AM | | Analysis Type: RES | | | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFBS | 0.124 | | 0.00543 | LOD | 0.00871 | LOQ | ug/L | J | ls | | | PFDA | 0.00440 | J | 0.00543 | LOD | 0.00871 | LOQ | ug/L | J | RI | | | PFNA | 0.00326 | J | 0.00543 | LOD | 0.00871 | LOQ | ug/L | J | RI | | | | | 5/23/2018 9:00:00 | | | | | | | | | |------------------------|---------------|-------------------|---------|--------------------|---------|------------|-------|------------------------|----------------|--| | Sample ID:A1-MW-18-SA1 | Collec | ted: AM | | Analysis Type: RES | | | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFBS | 0.0244 | | 0.00553 | LOD | 0.00888 | LOQ | ug/L | J | ls | | | PFOA | 0.00187 | J | 0.00553 | LOD | 0.00888 | LOQ | ug/L | j | RI | | | PFOS | 0.00437 | J | 0.00553 | LOD | 0.00888 | LOQ | ug/L | J | RI | | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/19/2018 12:54:59 PM ADR version 1.9.0.325 Page 2 of 7 Lab Reporting Batch ID: 1801024, 1801037, 1801039, EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084 Method Category: SDG: 1801037 SVOA Method: 537 MOD Matrix: AQ Laboratory: Vista eQAPP Name: SW RAC 6 CTO 3803 YUMA - Vista 5/23/2018 12:03:00 Collected:PM Sample ID:A1-MW-19-SA1 Analysis Type: RES Dilution: 1 Data DL Lab Lab RL Review Reason Analyte Result Qual DL Units Type RL Type Qual Code PFBS 0.0166 0.00530 LOD 0.00846 LOQ ug/L ls PFDA 0.00727 LOD 0.00846 J 0.00530 LOQ ug/L RI 5/23/2018 1:16:00 Sample ID:A1-MW-37-SA1 Collected: PM Analysis Type: RES Dilution: 1 | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |---------|---------------|-------------|---------|------------|---------|------------|-------|------------------------|----------------| | PFBS | 0.230 | | 0.00525 | LOD | 0.00839 | LOQ | ug/L | J | ls | | PFNA | 0.00170 | J | 0.00525 | LOD | 0.00839 | LOQ | ug/L | J | RI | 5/23/2018 1:26:00 Sample ID:A1-MW-37-SA1D Collected: PM Analysis Type: RES Dilution: 1 | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |---------|---------------|-------------|---------|------------|---------|------------|-------|------------------------|----------------| | PFBS | 0.252 | | 0.00539 | LOD | 0.00862 | LOQ | ug/L | J | ls | | PFNA | 0.00210 | J | 0.00539 | LOD | 0.00862 | LOQ | ug/L | J | RI | | PFUnA | 0.00135 | J | 0.00539 | LOD | 0.00862 | LOQ | ug/L | J | RI | SDG: 1801039 Method Category: SVOA Method: 537 MOD Matrix: AQ 5/24/2018 8:51:00 Sample ID:A1-MW-11-SA1 Collected: AM Analysis Type: RES Dilution: 1 | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |---------|---------------|-------------|---------|------------|---------|------------|-------|------------------------|----------------| | PFOS | 0.00359 | J | 0.00539 | LOD | 0.00860 | LOQ | ug/L | J | RI | | PFBS | 0.109 | | 0.00539 | LOD | 0.00860 | LOQ | ug/L | J | ls | 5/24/2018 7:44:00 Sample ID:A1-MW-13-SA1 Collected: AM Analysis Type: RES Dilution: 1 | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |---------|---------------|-------------|---------|------------|---------|------------|-------|------------------------|----------------| | PFBS | 0.318 | | 0.00568 | LOD | 0.00912 | LOQ | ug/L | J | ls | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/19/2018 12:54:59 PM ADR version 1.9.0.325 Page 3 of 7 Lab Reporting Batch ID: 1801024, 1801037, 1801039, EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084 SDG: 1801039 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Laboratory: Vista | Method Category: | SVOA | | 200000 | |------------------|---------|-------------------|--------| | Method: | 537 MOD | <i>Matrix:</i> AQ | | | Sample ID:A1-MW-14-SA1 | Collec | 5/24/2018 10:05:
Collected: AM | | | Analysis Type: RES | | | | Dilution: 1 | | | |------------------------|---------------|-----------------------------------|---------|------------|--------------------|------------|-------|------------------------|----------------|--|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | PFBS | 0.118 | | 0.00558 | LOD | 0.00893 | LOQ | ug/L | J | ls | | | | Sample ID:A1-MW-15-SA1 | Collec | 5/24/2018 11:11:00
Collected: AM Analysis Type: RES | | | | | | Dilution: 1 | | | |------------------------|---------------|--|---------|------------|---------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFBS | 0.523 | | 0.00558 | LOD | 0.00889 | LOQ | ug/L | J | ls | | | | | 5/24/2 | 018 2:18:0 | 00 | | | | | | | |------------------------|---------------|--------------|------------
------------|--------------------|------------|-------|------------------------|----------------|--| | Sample ID:A1-MW-25-SA1 | Collec | Collected:PM | | | Analysis Type: RES | | | | Dilution: 1 | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFBS | 0.355 | | 0.00553 | LOD | 0.00889 | LOQ | ug/L | J | ls | | | | | | The state of s | Control Special Control Control | |------------------|---------|------------|--|---------------------------------| | Method Category: | SVOA | | The Control of Co | | | Method: | 537 MOD | Matrix: AQ | | i. | | Sample ID:A1-MW-01-SA1 | Collec | 5/25/2018 1:56:0
Collected:PM | | | Analysis Type: RES | | | | Dilution: 1 | | | |------------------------|---------------|----------------------------------|---------|------------|--------------------|------------|-------|------------------------|----------------|--|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | PFBS | 0.0524 | | 0.00568 | LOD | 0.00907 | LOQ | ug/L | J | ls | | | | PFHpA | 0.00225 | J | 0.00568 | LOD | 0.00907 | LOQ | ug/L | J | RI | | | | Sample ID:A1-MW-01-SA1D | Collec | 5/25/2018 2:06:0
Collected:PM | | | nalysis T | ype:RE | 5 | Dilution: 1 | | | |-------------------------|---------------|----------------------------------|---------|------------|-----------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFBS | 0.0557 | | 0.00534 | LOD | 0.00854 | LOQ | ug/L | J | ls | | | PFHpA | 0.00273 | J | 0.00534 | LOD | 0.00854 | LOQ | ug/L | J | RI | | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/19/2018 12:54:59 PM ADR version 1.9.0.325 Page 4 of 7 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 1801024, 1801037, 1801039, EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084 SDG: 1801054 Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista | Method: | 537 MOD | Matrix: AQ | |-----------------|---------|------------| | Method Category | : SVOA | | | Sample ID:A1-MW-31-SA1 | Collec | Collected: PM | | | Inalysis T | ype:RE | Dilution: 1 | | | |------------------------|---------------|---------------|---------|------------|------------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PFBS | 0.0634 | | 0.00553 | LOD | 0.00887 | LOQ | ug/L | J | ls | | PFHpA | 0.00851 | J | 0.00553 | LOD | 0.00887 | LOQ | ug/L | J | RI | | | | 5/25/2018 7:56:00 | | | | | | | | | | |------------------------|---------------|-------------------|---------|------------|--------------------|------------|-------|------------------------|----------------|--|--| | Sample ID:A1-MW-42-SA1 | Collec | Collected: AM | | | Analysis Type: RES | | | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | PFBS | 0.292 | | 0.00553 | LOD | 0.00887 | LOQ | ug/L | J | ls | | | | PFOS | 0.00186 | J | 0.00553 | LOD | 0.00887 | LOQ | ug/L | J | RI | | | | | | 5/25/2018 1:00:00 | | | | | | | | | | |------------------------|---------------|-------------------|---------|--------------------|---------|------------|-------|------------------------|----------------|--|--| | Sample ID:A1-MW-52-SA1 | Collected: PM | | | Analysis Type: RES | | | | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | PFBS | 0.146 | | 0.00543 | LOD | 0.00869 | LOQ | ug/L | J | ls | | | | Sample ID:A1-MW-53-SA1 | Collec | Collected: AM | | | Inalysis T | ype:RE | 3 | | Dilution: 1 | | | |------------------------|---------------|---------------|---------|------------|------------|------------|-------|------------------------|----------------|--|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | PFBS | 0.551 | | 0.00548 | LOD | 0.00878 | LOQ | ug/L | J | ls | | | | PFOS | 0.00188 | J | 0.00548 | LOD | 0.00878 | LOQ | ug/L | J | RI | | | 5/25/2018 10:14:00 | | | 5/25/2018 9:09:00 | | | | | | | | | |------------------------|---------------|-------------------|---------|--------------------|---------|------------|-------|------------------------|----------------|--| | Sample ID:A1-MW-54-SA1 | Collected: AM | | | Analysis Type: RES | | | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFBS | 0.536 | | 0.00558 | LOD | 0.00892 | LOQ | ug/L | J | ls | | | PFOS | 0.00652 | J | 0.00558 | LOD | 0.00892 | LOQ | ug/L | J | RI | | | Sample ID:A1-PZ-19-SA1 | Collec | 018 11:59 | | nalysis T | ype:RES | Dilution: 1 | | | | |------------------------|---------------|-------------|---------|------------|---------|-------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PFBS | 0.0152 | N OSTRAG | 0.00534 | LOD | 0.00852 | LOQ | ug/L | J | ls | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/19/2018 12:54:59 PM ADR version 1.9.0.325 Page 5 of 7 Lab Reporting Batch ID: 1801024, 1801037, 1801039, 801054, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Laboratory: Vista EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084 SDG: 1801054 | Method Category: | SVOA | and the second second | | |------------------|---------|-----------------------|--| | Method: | 537 MOD | Matrix: AQ | | 5/25/2018 11:59:00 Collected: AM Sample ID:A1-PZ-19-SA1 Analysis Type: RES Dilution: 1 Data DL Lab Lab RLReview Reason Analyte Result Qual DL Type RL Type Units Qual Code PFHpA 0.00326 J 0.00534 LOD 0.00852 LOQ ug/L RI J PFOA 0.00756 0.00534 LOD 0.00852 LOQ J RI ug/L PFOS 0.00115 J 0.00534 LOD 0.00852 LOQ J RI ug/L SDG: 1801071 | Method Category: | SVOA | | | |------------------|---------|------------|--| | Method: | 537 MOD | Matrix: AQ | | E/20/2049 42:06:00 | Sample ID:A1-MW-07-SA1 | Collec | Collected:PM | | | nalysis T | ype:RE | Dilution: 1 | | | |------------------------|---------------|--------------|---------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PFBS | 0.112 | | 0.00525 | LOD | 0.00840 | LOQ | ug/L | J | ls | | | | 5/30/2018 11:10:00 | | | | | | | | | | |------------------------|---------|--------------------|---------|------|--------------------|------|-------|----------------|-------------|--|--| | Sample ID:A1-MW-23-SA1 | Collec | Collected: AM | | | Analysis Type: RES | | | | Dilution: 1 | | | | | Lab | Lab | | DL | | _RL | | Data
Review | Reason | | | | Analyte | Result | Qual | DL | Туре | RL | Туре | Units | Qual | Code | | | | PFHxS | 0.00581 | J | 0.00548 | LOD | 0.00874 | LOQ | ug/L | J | RI | | | | Sample ID:A1-MW-27-SA1 | Collec | 5/30/2018 8:18:00 Collected: AM Analysis Type: RES | | | | | \$ | Dilution: 1 | | | |------------------------|---------------|--|---------|-----------------------------|---------|-----|------|-------------|------------------------------|--| | Analyte | Lab
Result | Lab Lab | | DL RL DL Type RL Type Units | | | | | Data Review Reason Qual Code | | | PFBS | 0.0819 | | 0.00534 | LOD | 0.00854 | LOQ | ug/L | J | ls | | | | 5/30/2018 10:16:00 | | | | | | | | | |
------------------------|--------------------|-------------|---------|--------------------|---------|------------|-------|------------------------|----------------|--| | Sample ID:A1-MW-55-SA1 | Collected: AM | | | Analysis Type: RES | | | | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFBS | 0.00548 | U | 0.00548 | LOD | 0.00875 | LOQ | ug/L | ΠΊ | ls | | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/19/2018 12:54:59 PM ADR version 1.9.0.325 Page 6 of 7 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 1801024, 1801037, 1801039, Laboratory: Vista EDD Filename: 1801024, 1801037, 1801039, 1801054, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista 1801071, 1801084 #### **Reason Code Legend** | Reason Code | Description | |-------------|---| | Is | Internal Standard Estimation | | Lcs | Laboratory Control Spike Upper Estimation | | Ms | Matrix Spike Lower Estimation | | Ms | Matrix Spike Lower Rejection | | Ms | Matrix Spike Precision | | Ms | Matrix Spike Upper Estimation | | RI | Reporting Limit Trace Value | ^{*} denotes a non-reportable result #### **Enclosure I** #### **Stage 2B ADR Outliers** (Including Manual Review Outliers) # Quality Control Outlier Reports 280-110058-1 ## QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-110058-1 Laboratory: TA DEN EDD Filename: 280-110058-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: | 9040C | | entities and the second se | Line and the second | Preparation N | lethod: METHOD | |-------------------|--------------------------------|------------------------------|--|---------------------|--|-------------------------| | Matrix: | AQ | Marie Marie | | ALUMON AND A | Larry Carrier | Control Control Control | | 20 1 F 1 MONTH OF | and the first of the second of | To the state of the state of | | | A STATE OF THE STA | | | Sample ID | Type | Actual | Criteria | Units | Flag | |---------------------------|----------------------|--------|----------|-------|-----------------| | A1-MW-04-SA1 (RES/TOT) | Sampling To Analysis | 226.00 | 24.00 | HOURS | J (all detects) | | A1-MW-05-SA1 (RES/TOT) | | 319.25 | 24.00 | HOURS | | | A1-MW-49-SA1 (RES/TOT) | | 227.75 | 24.00 | HOURS | | | A1-MW-50-SA1 (RES/TOT) | | 228.25 | 24.00 | HOURS | | | A1-MW-50-SA1DUP (RES/TOT) | | 228.50 | 24.00 | HOURS | | | A1-MW-51-SA1 (RES/TOT) | | 229.25 | 24.00 | HOURS | , | | Method: SM3500 Fe B D | | Preparation Method: METHOL | |-----------------------|--|---| | Matrix: AQ | | 21 A 12 | | Sample ID | Type | Actual | Criteria | Units | Flag | |---------------------------|----------------------|--------|----------|-------|---------------------| | A1-MW-04-SA1 (RES/TOT) | Sampling To Analysis | 45.75 | 24.00 | HOURS | J(all detects) | | A1-MW-05-SA1 (RES/TOT) | | 46.50 | 24.00 | HOURS | UJ(all non-detects) | | A1-MW-49-SA1 (RES/TOT) | | 47.50 | 24.00 | HOURS | | | A1-MW-50-SA1 (RES/TOT) | Carrelina T. Anabaia | 48.25 | 24.00 | HOURS | J(all detects) | | A1-MW-51-SA1 (RES/TOT) | Sampling To Analysis | 49.50 | 24.00 | HOURS | R(all non-detects) | | A1-MW-51-SA1DUP (RES/TOT) | | 49.50 | 24.00 | HOURS | ((dii non dotooto) | | A1-MW-51-SA1MS (RES/TOT) | | 49.50 | 24.00 | HOURS | | | A1-MW-51-SA1MSD (RES/TOT) | | 49.50 | 24.00 | HOURS | | Project Name and Number: 4663.3803 - CTO 1/15/2803/34703 AM ADR version 1.9.0.325 Page 1 of 1 ## Matrix Spike/Matrix Spike Duplicate Outlier Report Lab Reporting Batch ID: 280-110058-1 Laboratory: TA DEN EDD Filename: 280-110058-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: SM3500 Fe | BD | | | | | | | |---|--------------|----------|-----------|--------------|-----------------|-----------------------|---| | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | A1-MW-51-SA1MS
A1-MW-51-SA1MSD
(A1-MW-51-SA1) | Ferrous Iron | 38 | 39 | 85.00-113.00 | - | Ferrous Iron | J (all detects)
UJ (all non-detects) | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/19/2018 7:25:35 AM ADR version 1.9.0.325 Page 1 of 1 ### Reporting Limit Outliers Lab Reporting Batch ID: 280-110058-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN EDD Filename: 280-110058-1 Method: 8260B Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|---------------------------------------|-------------|----------------|--------------------|------------|--------------|-----------------| | A1-MW-50-SA1 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.643
0.903 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-51-SA1 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.629
0.571 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | Method: 9056A Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|---------|-------------|--------|--------------------|------------|-------|-----------------| | A1-MW-49-SA1 | NITRATE | J | 2.82 | 5.00 | LOQ | mg/L | J (all detects) | Method: SM3500 Fe B D Matrix: AC | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|--------------|-------------|--------|--------------------|------------|-------|-----------------| | A1-MW-04-SA1 | Ferrous Iron | JHF | 0.0751 | 0.200 | LOQ | mg/L | J (all detects) | | A1-MW-05-SA1 | Ferrous Iron | JHF | 0.0617 | 0.200 | LOQ | mg/L | J (all detects) | | A1-MW-51-SA1 | Ferrous Iron | J HF
F1 | 0.0563 | 0.200 | LOQ | mg/L | J (all detects) | | LDC #: 42613A1 | VALIDATION COMPLETENESS WORKSHEET | |--------------------------------|--| | SDG #: 280-110058-1 | ADR | | Laboratory: Test America, Inc. | | 2nd Reviewer: METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---------------|----------------------| | l. | Sample receipt/Technical holding times | \rightarrow | | | II. | GC/MS Instrument performance check | A | | | 111. | Initial calibration/ICV | AA | REDX 1570. 101 = 20% | | IV. | Continuing calibration | A | RED<1570. 101 ≤2070 | | V | Laboratory Blanks | N | | | VI. | Field blanks | ND | TB=/. | | VII. | Surrogate spikes | N | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | IX. | Laboratory control samples | N | | | X. | Field duplicates | l vi | | | XI. | Internal standards | A | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|-----------------|--------|----------| | 1 | TB-20180522 | 280-110058-1 | Water | 05/22/18 | | 2 | A1-MW-51-SA1 | 280-110058-2 | Water | 05/22/18 | | 3 | A1-MW-50-SA1 | 280-110058-3 | Water | 05/22/18 | | 4 | A1-MW-49-SA1 | 280-110058-4 | Water | 05/22/18 | | 5 | A1-MW-05-SA1 | 280-110058-5 | Water | 05/22/18 | | 6 | A1-MW-04-SA1 | 280-110058-6 | Water | 05/22/18 | | 7 | A1-MW-51-SA1MS | 280-110058-2MS | Water | 05/22/18 | | 8 | A1-MW-51-SA1MSD | 280-110058-2MSD | Water |
05/22/18 | | 9 | | | | | | 10 | | | | | | NOL | cs. | | | | |----------|----------------|------|------|------| | | | | | | | 11 | | | | | | I | |
 |
 |
 | | 11 | | | | | | Ш | | | | | ## LDC #: 42613A6 VALIDATION COMPLETENESS WORKSHEET SDG #: 280-110058-1 ADR Laboratory: Test America, Inc. | Date: 7/18/ | g
B | |-------------------------|--------| | Page:of | Ĺ | | Reviewer: | _ | | 2nd Reviewer: <u>kv</u> | _ | METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B) pH (EPA SW846 Method (9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|---|----------| | 1. | Sample receipt/Technical holding times | A | | | ll. | Initial calibration | A | | | III. | Calibration verification | A | | | IV | Laboratory Blanks | A | | | V | Field blanks | | | | VI. | Matrix Spike/Matrix Spike Duplicates | N | | | VII. | Duplicate sample analysis | N | | | VIII. | Laboratory control samples | N | | | IX. | Field duplicates | | | | X. | Sample result verification | N | | | ΧI | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|-----------------|--------|----------| | 1 | A1-MW-51-SA1 | 280-110058-2 | Water | 05/22/18 | | 2 | A1-MW-50-SA1 | 280-110058-3 | Water | 05/22/18 | | 3 | A1-MW-49-SA1 | 280-110058-4 | Water | 05/22/18 | | 4 | A1-MW-05-SA1 | 280-110058-5 | Water | 05/22/18 | | 5 | A1-MW-04-SA1 | 280-110058-6 | Water | 05/22/18 | | 6 | A1-MW-51-SA1MS | 280-110058-2MS | Water | 05/22/18 | | 7 | A1-MW-51-SA1MSD | 280-110058-2MSD | Water | 05/22/18 | | 8 | A1-MW-51-SA1DUP | 280-110058-2DUP | Water | 05/22/18 | | 9 | A1-MW-50-SA1DUP | 280-110058-3DUP | Water | 05/22/18 | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | Notes: |
 | | | |--------|------|------|--| | | | | | | | |
 | | | | | | | LDC#: 4261316 #### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: 1 of 1 Reviewer: CR 2nd reviewer: KW All circled methods are applicable to each sample. | Sample ID | Parameter | |-----------|--| | 1-5 | PH) TDS(C) F(NO) NO2(SO4)O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4(Fet) | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | Q(:6,7 | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (Fe2+) | | 8 | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO(Fe2+) | | 9. | DH) TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | - t | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIk CN NH ₃ TKN TOC Cr6+ CIO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH_TDS_CLE_NO_NO_SO_O-PO_AIK_CN_NH_TKN_TOC_Cr6+ ClO_ | | Comments: | | | | | |-----------|------|------|------|--| | |
 |
 |
 |
 |
 | | # Quality Control Outlier Reports 280-110112-1 ### QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-110112-1 Laboratory: TA DEN EDD Filename: 280-110112-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9040C
Matrix: AQ | Pre | paration Method: METHOD | | | | |--|----------------------|--|---|---|-----------------| | Sample ID | Туре | Actual | Criteria | Units | Flag | | 16-HS-03-SA1 (RES/TOT)
16-MW-08-SA1 (RES/TOT)
A1-MW-18-SA1 (RES/TOT)
A1-MW-19-SA1 (RES/TOT)
A1-MW-37-SA1 (RES/TOT) | Sampling To Analysis | 201.25
204.25
206.25
203.25
202.25 | 24.00
24.00
24.00
24.00
24.00 | HOURS
HOURS
HOURS
HOURS
HOURS | J (all detects) | | Method: SM3500 Fe B D | | | | Pr | eparation Method: METHOD | |------------------------|----------------------|--------|----------|-------|---------------------------------------| | Matrix: AQ Sample ID | Type | Actual | Criteria | Units | Flag | | A1-MW-18-SA1 (RES/TOT) | Sampling To Analysis | 26.85 | 24.00 | HOURS | J(all detects)
UJ(all non-detects) | ADR version 1.9.0.325 Page 1 of 1 #### Surrogate Outlier Report Lab Reporting Batch ID: 280-110112-1 Laboratory: TA DEN EDD Filename: 280-110112-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 8260E
Matrix: AQ | | | AND TO SHARE SHEET OF THE | | | |------------------------------|------------|----------------------|---------------------------|-----------------------|--------------------------------------| | Sample ID
(Analysis Type) | Surrogate | Sample
% Recovery | % Recovery
Limits | Affected
Compounds | Flag | | 16-HS-03-SA1 | TOLUENE-D8 | 75 | 89.00-112.00 | All Target Analytes | J (all detects) UJ (all non-detects) | 7/19/2018 10:57:41 AM ADR version 1.9.0.325 Page 1 of 1 #### Matrix Spike/Matrix Spike Duplicate Outlier Report Lab Reporting Batch ID: 280-110112-1 **Laboratory: TA DEN** eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver EDD Filename: 280-110112-1 Method: SM3500 Fe B D Matrix: AQ | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | |---|--------------|----------|-----------|--------------|-----------------|-----------------------|--| | 16-HS-03-SA1MS
16-HS-03-SA1MSD
(16-HS-03-SA1) | Ferrous Iron | 1 | 0 | 85.00-113.00 | - | Ferrous Iron | J (all detects)
R (all non-detects) | Method: 8260B Matrix: AQ | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | |---|--------------------|----------|-----------|--------------|-----------------|-----------------------|---------------------------------------| | 16-HS-03-SA1MS
16-HS-03-SA1MSD
(16-HS-03-SA1) | 1,1-DICHLOROETHENE | 56 | 33 | 71.00-131.00 | 53 (20.00) | 1,1-DICHLOROETHENE | J(all detects)
UJ(all non-detects) | Method: 9056A Matrix: AQ | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | |---|---------------------|----------|-----------|------------------------------|-----------------|-----------------------|---------------------------------------| | 16-HS-03-SA1MSD
(16-HS-03-SA1) | Sulfate | - | 86 | 87.00-112.00 | - | Sulfate | J(all detects)
UJ(all non-detects) | | A1-MW-18-SA1MS
A1-MW-18-SA1MSD
(A1-MW-18-SA1) | CHLORIDE
Sulfate | 50
73 | 45
72 | 87.00-111.00
87.00-112.00 | - | CHLORIDE
Sulfate | No Qual, >4x | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/19/2018 8:15:43 AM ADR version 1.9.0.325 Page 1 of 1 ### Reporting Limit Outliers Lab Reporting Batch ID: 280-110112-1 Laboratory: TA DEN EDD Filename: 280-110112-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: 8260B Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |---------------|--------------------|-------------|--------|--------------------|------------|-------|-----------------| | 16-MW-08-SA1 | TETRACHLOROETHENE | J | 0.669 | 1.00 | LOQ | ug/L | J (all detects) | | A1-MW-18-SA1 | 1,1-DICHLOROETHENE | J | 0.452 | 1.00 | LOQ | ug/L | J (all detects) | | A1-MW-19-SA1 | TRICHLOROETHENE | J | 0.424 | 1.00 | LOQ | ug/L | J (all detects) | | A1-MW-37-SA1 | TRICHLOROETHENE | J | 0.624 | 1.00 | LOQ | ug/L | J (all detects) | | A1-MW-37-SA1D | TRICHLOROETHENE | J | 0.652 | 1.00 | LOQ | ug/L | J (all detects) | Method: SM3500 Fe B D Matrix: AC | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|--------------|-------------|--------|--------------------|------------|-------|-----------------| | 16-MW-08-SA1 | Ferrous Iron | JHF | 0.0403 | 0.200 | LOQ | mg/L | J (all
detects) | | A1-MW-18-SA1 | Ferrous Iron | JHF | 0.0215 | 0.200 | LOQ | mg/L | J (all detects) | | A1-MW-37-SA1 | Ferrous Iron | JHF | 0.166 | 0.200 | LOQ | mg/L | J (all detects) | ## Field Duplicate RPD Report Lab Reporting Batch ID: 280-110112-1 **Laboratory: TA DEN** EDD Filename: 280-110112-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: 8260B Matrix: AQ | | Concentr | ation (ug/L) | | | | |-----------------|--------------|---------------|---------------|--------------|-----------------------| | Analyte | A1-MW-37-SA1 | A1-MW-37-SA1D | Sample
RPD | eQAPP
RPD | Flag | | TRICHLOROETHENE | 0.624 | 0.652 | NC | 30.00 | No Qualifiers Applied | 7/19/2018 8:51:33 AM ADR version 1.9.0.325 Page 1 of 1 # Quality Control Outlier Reports 280-110226-1 #### QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-110226-1 **Laboratory: TA DEN** eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver EDD Filename: 280-110226-1 | Method: 9040C
Matrix: AQ | | | | | reparation Method: METHOD | |--|----------------------|--|--|--|---------------------------| | Sample ID | Type | Actual | Criteria | Units | Flag | | A1-MW-01-SA1 (RES/TOT)
A1-MW-31-SA1 (RES/TOT)
A1-MW-42-SA1 (RES/TOT)
A1-MW-52-SA1 (RES/TOT)
A1-MW-54-SA1 (RES/TOT)
A1-PZ-19-SA1 (RES/TOT) | Sampling To Analysis | 154.50
154.00
160.25
155.50
159.25
156.50 | 24.00
24.00
24.00
24.00
24.00
24.00 | HOURS
HOURS
HOURS
HOURS
HOURS
HOURS | J (all detects) | | <i>Type</i>
g To Analysis | Actual 452.25 | Criteria | Units | Flag | |------------------------------|--|---|---|--| | g To Analysis | 452.25 | 24.00 | | | | | 451.25
451.25
452.25
451.25
452.25
451.50
452.25
458.25
453.25 | 24.00
24.00
24.00
24.00
24.00
24.00
24.00
24.00
24.00 | HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS | J(all detects)
R(all non-detects) | | | | 452.25
451.25
452.25
451.50
452.25 | 452.25 24.00 451.25 24.00 452.25 24.00 451.50 24.00 452.25 24.00 458.25 24.00 453.25 24.00 457.00 24.00 | 452.25 24.00 HOURS
451.25 24.00 HOURS
452.25 24.00 HOURS
451.50 24.00 HOURS
452.25 24.00 HOURS
452.25 24.00 HOURS
458.25 24.00 HOURS
453.25 24.00 HOURS
457.00 24.00 HOURS | Page 1 of 1 ADR version 1.9.0.325 #### Matrix Spike/Matrix Spike Duplicate Outlier Report Lab Reporting Batch ID: 280-110226-1 Laboratory: TA DEN EDD Filename: 280-110226-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9056A | | | | |---------------|--|--|--| | Matrix: AQ | | | | | | | | | | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | |---|---------------------|----------|-----------|------------------------------|-----------------|-----------------------|------------------------------------| | A1-MW-52-SA1MS
A1-MW-52-SA1MSD
(A1-MW-52-SA1) | CHLORIDE
Sulfate | -
75 | 84
70 | 87.00-111.00
87.00-112.00 | - | CHLORIDE
Sulfate** | J (all detects)
** No Qual, >4x | Method: SM3500 Fe B D Matrix: AQ QC Sample ID | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | |---|--------------|----------|-----------|--------------|-----------------|-----------------------|--------------------------------------| | A1-MW-31-SA1MS
A1-MW-31-SA1MSD
(A1-MW-31-SA1) | Ferrous Iron | 21 | 21 | 85.00-113.00 | - | Ferrous iron | J(all detects)
R(all non-detects) | 7/19/2018 7:30:08 AM ADR version 1.9.0.325 Page 1 of 1 #### Reporting Limit Outliers Lab Reporting Batch ID: 280-110226-1 Laboratory: TA DEN EDD Filename: 280-110226-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: 8260B Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|---------------------------------------|-------------|----------------|--------------------|------------|--------------|-----------------| | A1-MW-31-SA1 | TRICHLOROETHENE | J | 0.353 | 1.00 | LOQ | ug/L | J (all detects) | | A1-MW-42-SA1 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.298
0.415 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-52-SA1 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.507
0.627 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-PZ-19-SA1 | TRICHLOROETHENE | J | 0.269 | 1.00 | LOQ | ug/L | J (all detects) | Method: 9056A Matrix: AC | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|---------|-------------|--------|--------------------|------------|-------|-----------------| | A1-MW-54-SA1 | NITRATE | J | 0.343 | 0.500 | LOQ | mg/L | J (all detects) | Method: SM3500 Fe B D Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|--------------|-------------|--------|--------------------|------------|-------|-----------------| | A1-PZ-19-SA1 | Ferrous Iron | J HF | 0.198 | 0.200 | LOQ | mg/L | J (all detects) | 7/19/2018 7:38:31 AM ADR version 1.9.0.325 Page 1 of 1 | LDC #: 42613C1 | VALIDATION COMPLETENESS WORKSHEET | |--------------------------------|-----------------------------------| | SDG #: 280-110226-1 | ADR | | Laboratory: Test America, Inc. | | Reviewer: 2nd Reviewer: METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----------|----------------------| | 1. | Sample receipt/Technical holding times | | | | II. | GC/MS Instrument performance check | Ã | | | III. | Initial calibration/ICV | AIA | RSOS 1570. 10/5 207, | | IV. | Continuing calibration | A | ecx ≤ 20/ 20/0 | | V. | Laboratory Blanks | N | | | VI. | Field blanks | NA | TB = 9 | | VII. | Surrogate spikes | N | , | | VIII. | Matrix spike/Matrix spike duplicates | N | | | IX. | Laboratory control samples | N | | | X. | Field duplicates | ND | D=6+T | | XI. | Internal standards | A | (MS/NSD- FSaulf) | | XII. | Compound quantitation RL/LOQ/LODs | N | • / | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----------------|-----------------|-----------------|--------|----------| | 1 | A1-MW-42-SA1 | 280-110226-1 | Water | 05/25/18 | | 2 | A1-MW-54-SA1 | 280-110226-2 | Water | 05/25/18 | | 3 | A1-MW-53-SA1 | 280-110226-3 | Water | 05/25/18 | | 4 | A1-PZ-19-SA1 | 280-110226-4 | Water | 05/25/18 | | 5 | A1-MW-52-SA1 | 280-110226-5 | Water | 05/25/18 | | 6 ₁ | A1-MW-01-SA1 | 280-110226-6 | Water | 05/25/18 | | 7 | A1-MW-01-SA1D | 280-110226-7 | Water | 05/25/18 | | 8 | A1-MW-31-SA1 | 280-110226-8 | Water | 05/25/18 | | 9 | TB-20180525 | 280-110226-12 | Water | 05/25/18 | | 10 | A1-MW-53-SA1MS | 280-110226-3MS | Water | 05/25/18 | | 11 | A1-MW-53-SA1MSD | 280-110226-3MSD | Water | 05/25/18 | | 12 | | | | | | 13 | | | | | #### **VALIDATION COMPLETENESS WORKSHEET** ADR SDG #: 280-110226-1 Laboratory: Test America, Inc. 42613C6 LDC #: Reviewer: 2nd Reviewer: METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B) pH (EPA SW846 Method (9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|------------| | I. | Sample receipt/Technical holding times | A,- | | | 11 | Initial calibration | A | | | III. | Calibration verification | A | | | IV | Laboratory Blanks | ASW | | | V | Field blanks | | | | VI. | Matrix Spike/Matrix Spike Duplicates | N | 7/8:50474x | | VII. | Duplicate sample analysis | N | 9. | | VIII. | Laboratory control samples | N | | | IX. | Field duplicates | _ | | | X. | Sample result verification | N | | | _xı_ | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: Client ID Matrix Lab ID Date A1-MW-42-SA1 280-110226-1 Water 05/25/18 Water 2 A1-MW-54-SA1 280-110226-2 05/25/18 A1-PZ-19-SA1 280-110226-4 Water 05/25/18 A1-MW-52-SA1 280-110226-5 Water 05/25/18 5 A1-MW-01-SA1 280-110226-6 Water 05/25/18 6 A1-MW-31-SA1 280-110226-8 Water 05/25/18 A1-MW-52-SA1MS 280-110226-5MS Water 05/25/18 8 A1-MW-52-SA1MSD 280-110226-5MSD Water 05/25/18 9 A1-MW-52-SA1DUP 280-110226-5DUP Water 05/25/18 10 A1-MW-31-SA1MS1 280-110226-8MS1
Water 05/25/18 11 A1-MW-31-SA1MSD1 280-110226-8MSD1 Water 05/25/18 A1-MW-31-SA1DUP1 12 280-110226-8DUP2 Water 05/25/18 13 A1-MW-31-SA1MS2 Water 280-110226-8MS2 05/25/18 14 A1-MW-31-SA1MSD2 280-110226-8MSD2 Water 05/25/18 A1-MW-31-SA1DUP2 280-110226-8DUP2 15 Water 05/25/18 16 Notes: LDC#: 4261366 #### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: 1 of 1 Reviewer: CR 2nd reviewer: W All circled methods are applicable to each sample. | Sample ID | Parameter | |---------------------------------------|---| | | PH) TDS(CT)F (NO3)NO2(SO)O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (Fe ²⁺) | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | JC:7,8_ | pH TDS(C) F NO3 NO2(SO)O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | 9 | pH TDS (C) F NO $_3$ NO $_2$ (SO) O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$ | | ۱۱ر۱۱ | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ FOZT | | 12 | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 Fe2+ | | 13,14 | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (FeZ+) | | 15 | PH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (Fe2+) | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄ | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | · · · · · · · · · · · · · · · · · · · | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | ph TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | ph TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO NO SO O PO AIK CN NH TKN TOC Cr6+ ClO | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | - | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLE NO, NO, SO, O-PO, Alk CN NH, TKN TOC Cr6+ ClO, | | Comments: | | | |-----------|------|--| | | | | | | | | | |
 | | LDC #: 42613C6 #### **VALIDATION FINDINGS WORKSHEET Blanks** | _ | |------------------| | Page:of | | Reviewer: | | 2nd Reviewer: KK | METHOD:Inorganics, Method See Cover | Conc. units | s: <u>mg/l</u> | | Associated Samples: All | | | | | | | | | |-------------|----------------|----------|-------------------------|---------|--|--|--|--|--|--|--| | Analyte | Blank ID | Blank ID | Blank | | | | | | | | | | | PB | ICB/CCB | Action Limit | No gual | | | | | | | | | | Analyte | Blank ID | Blank ID | Blank | | |
 | | | | |---|---------|----------|-------------------|--------------|------------------|--|------|--|--|--| | | | РВ | ICB/CCB
(mg/L) | Action Limit | No qual
(>5x) | | | | | | | N | O3-N | | 0.04663 | 0.23315 | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". # Quality Control Outlier Reports 280-110291-1 ### QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-110291-1 Laboratory: TA DEN EDD Filename: 280-110291-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: | 9040C | | Commenced to the second of | ATTENDED | Preparation Method: Mi | ETHOL | |---------|-------|------------|--|----------|------------------------|----------| | Matrix: | AQ | The second | | | | Art Alle | | | | | | | | | | Sample ID | Type | Actual | Criteria | Units | Flag | |------------------------|----------------------|--------|----------|-------|-----------------| | A1-MW-07-SA1 (RES/TOT) | Sampling To Analysis | 78.25 | 24.00 | HOURS | J (all detects) | | A1-MW-14-SA1 (RES/TOT) | | 76.25 | 24.00 | HOURS | , | | A1-MW-23-SA1 (RES/TOT) | | 79.00 | 24.00 | HOURS | | | A1-MW-25-SA1 (RES/TOT) | | 81.00 | 24.00 | HOURS | | | A1-MW-27-SA1 (RES/TOT) | | 82.00 | 24.00 | HOURS | | | A1-MW-55-SA1 (RES/TOT) | | 79.75 | 24.00 | HOURS | | | Method: | SM3500 Fe B D | | | a de la companya | Preparation Method: METHOD | |---------|---------------|-------------------------|------------------|---|--| | Matrix: | AQ | The same of the same of | 1.60% Land (\$1. | | A STATE OF THE PARTY PAR | | Sample ID | Type | Actual | Criteria | Units | Flag | |--|----------------------|--|--|--|--------------------------------------| | A1-MW-07-SA1 (RES/TOT)
A1-MW-14-SA1 (RES/TOT)
A1-MW-23-SA1 (RES/TOT)
A1-MW-25-SA1 (RES/TOT)
A1-MW-27-SA1 (RES/TOT)
A1-MW-55-SA1 (RES/TOT) | Sampling To Analysis |
334.25
332.50
335.00
337.00
338.00
336.00 | 24.00
24.00
24.00
24.00
24.00
24.00 | HOURS
HOURS
HOURS
HOURS
HOURS
HOURS | J(all detects)
R(all non-detects) | Project Name and Number: 4663.3803 - CTO 1/2F/2808 /Y38102 AM ADR version 1.9.0.325 ### Reporting Limit Outliers Lab Reporting Batch ID: 280-110291-1 EDD Filename: 280-110291-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN Method: 8260B Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|---------------------------------------|-------------|----------------|--------------------|------------|--------------|-----------------| | A1-MW-07-SA1 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.405
0.797 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-14-SA1 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.898
0.876 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-25-SA1 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.204
0.418 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | Method: SM3500 Fe B D Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|--------------|-------------|--------|--------------------|------------|-------|-----------------| | A1-MW-25-SA1 | Ferrous Iron | J HF | 0.123 | 0.200 | LOQ | mg/L | J (all detects) | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/24/2018 7:39:53 AM ADR version 1.9.0.325 Page 1 of 1 | SDG# | :_ 42613D1 | N COMP | LETEN
ADR | ESS WORKSHEE | ı | Date: //e//
Page: /of /
Reviewer: // | |--------|--|------------------------------------|--------------|---|-------------------|--| | иЕТН | OD: GC/MS Volatiles (EPA SW 846 Met | hod 8260B |) | | 2110 1 | veviewei. | | | amples listed below were reviewed for ea
ion findings worksheets. | ch of the fo | llowing v | alidation areas. Valida | tion findings are | noted in attached | | | Validation Area | | | Com | ments | | | 1. | Sample receipt/Technical holding times | WA | | | | | | II. | GC/MS Instrument performance check | A | | | | | | HI. | Initial calibration/ICV | AA | ₹ <i>5</i> 5 | o≤ 1570. | 10V == | 20/0 | | IV. | Continuing calibration / EN | A | æ | V = 20/90/0 | | / | | V. | Laboratory Blanks | N | | / 6 | - | | | VI. | Field blanks | NO | 790 | = | | | | VII. | Surrogate spikes | N | | / | | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | | | | łX. | Laboratory control samples | N, | | | | | | Χ. | Field duplicates | N | | | | | | XI. | Internal standards | A | | | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | XIII. | Target compound identification | N | | | | | | XIV. | System performance | N | | | | | | XV. | Overall assessment of data | N | | | | | | ote: | N = Not provided/applicable R = Rin | lo compounds
sate
ield blank | detected | D = Duplicate
TB = Trip blank
EB = Equipment bl | OTHER: | rce blank | | | Client ID | | | Lab ID | Matrix | Date | | | TB-20180530 | | | 280-110291-1 | Water | 05/30/18 | | 1 | 41-MW-14-SA1 | | | 280-110291-2 | Water | 05/30/18 | | | A1-MW-23-SA1 | | | 280-110291-3 | Water | 05/30/18 | | / | A1-MW-55-SA1 | | | 280-110291-4 | Water | 05/30/18 | | / | A1-MW-25-SA1 | | | 280-110291-5 | Water | 05/30/18 | | / | 41-MW-27-SA1 | 280-110291-6 | Water | 05/30/18 | | | | / | 41-MW-07-SA1 | 280-110291-7 | Water | 05/30/18 | otes: | | | | | | | | \bot | | | | | | | | | | | | | | | #### VALIDATION FINDINGS WORKSHEET Technical Holding Times Alhcircled dates have exceeded the technical holding times. N N/A Were all cooler temperatures within validation criteria? VN N/A Were air bubbles > 1/4 inch or was headspace present in the vials? | METHOD : GC/M | S VOA (EPA SV | V 846 Method | 8260B) | | | | | |---------------|---------------|--------------|---------------------------------------|-----------------|---------------|--------------------|-----------| | Sample ID | Matrix | Preserved | Sampling Date | Extraction date | Analysis date | Total #
of Days | Qualifier | | 3 (NO) | Head | lsace | - >6 mn | | | | MAR | | | • | · · · · · · · · · · · · · · · · · · · | · | | | | | | | - | | | | | | | | | т и при уните | <u> </u> | #### **TECHNICAL HOLDING TIME CRITERIA** Water unpreserved: Aromatic within 7 days, non-aromatic within 14 days of sample collection. Water preserved: Within 14 days of sample collection. Soil: Within 14 days of sample collection. HT.1SB ## LDC #: 42613D6 VALIDATION COMPLETENESS WORKSHEET SDG #: 280-110291-1 ADR Laboratory: Test America, Inc. METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B) pH (EPA SW846 Method (9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|----------| | l. | Sample receipt/Technical holding times | A,- | | | Ħ | Initial calibration | A | | | 111. | Calibration verification | A | | | IV | Laboratory Blanks | SW | | | V | Field blanks | | | | VI. | Matrix Spike/Matrix Spike Duplicates | N | | | VII. | Duplicate sample analysis | N | | | VIII. | Laboratory control samples | N | | | IX. | Field duplicates | | | | X. | Sample result verification | N | | | xı | Overall assessment of data | L N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |-----|-----------------|-----------------|--------|----------| | 1 | A1-MW-14-SA1 | 280-110291-2 | Water | 05/30/18 | | 2 | A1-MW-23-SA1 | 280-110291-3 | Water | 05/30/18 | | 3 | A1-MW-55-SA1 | 280-110291-4 | Water | 05/30/18 | | 4 | A1-MW-25-SA1 | 280-110291-5 | Water | 05/30/18 | | 5 | A1-MW-27-SA1 | 280-110291-6 | Water | 05/30/18 | | 6 | A1-MW-07-SA1 | 280-110291-7 | Water | 05/30/18 | | 7 | A1-MW-14-SA1MS | 280-110291-2MS | Water | 05/30/18 | | 8 | A1-MW-14-SA1MSD | 280-110291-2MSD | Water | 05/30/18 | | 9 | A1-MW-14-SA1DUP | 280-110291-2DUP | Water | 05/30/18 | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16_ | | | | | Notes: LDC #: 4261306 #### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference | Page:_ | <u> 1 of 1 </u> | |-------------|---| | Reviewer:_ | CR | | 2nd reviewe | er: RV | All circled methods are applicable to each sample. | Sample ID | Parameter (24) | |--|--| | 1-6 | PH TDS (C) F (NO) NO (SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (FC2+) | | 66.46 | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | Q(:7,8 | pH TDS (C) F (NO) NO2(SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | 9 | pH TDS (CI)F (NO, NO SO) O-PO, AIK CN NH3 TKN TOC Cr6+ CIO, | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | -1 | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | 5. · · · · · · · · · · · · · · · · · · · | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄ | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO ₂ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₂ TKN TOC Cr6+ ClO ₄ | | Comments: |
 | |
 | | |-----------|------|------|------|-------| | | | | | | | | | | | | | |
 |
 |
 |
_ | LDC #: 42613D6 ## VALIDATION FINDINGS WORKSHEET Blanks | 1 | / | |----------------|----------| | Page:_ | of | | Reviewer:_ | <u>C</u> | | 2nd Reviewer:_ | KK | METHOD:Inorganics, Method See Cover Conc. units: mg/L Associated Samples: 1-3 | Analyte | Blank ID | Blank ID | Blank
| | | | | | | |---------|----------|-------------------|--------------|------------------|--|--|--|--|--| | · 安山 | РВ | ICB/CCB
(mg/L) | Action Limit | No qual
(>5x) | | | | | | | SO4 | | 0.2460 | 1.23 | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". # Quality Control Outlier Reports 280-110353-1 #### QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-110353-1 EDD Filename: 280-110353-1 Laboratory: TA DEN eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9040C Preparation Method: METHOD Matrix: AQ | | | | | | | | |---|----------------------|--------------------------------------|----------------------------------|----------------------------------|--------------------------------------|--|--| | Sample ID | Туре | Actual | Criteria | Units | Flag | | | | A1-MW-11-SA1 (RES/TOT)
A1-MW-11-SA1DUP (RES/TOT)
A1-MW-13-SA1 (RES/TOT)
A1-MW-15-SA1 (RES/TOT) | Sampling To Analysis | 111.75
111.75
112.50
110.50 | 24.00
24.00
24.00
24.00 | HOURS
HOURS
HOURS
HOURS | J (all detects) | | | | Method: SM3500 Fe B D
Matrix: AQ | | | | Pre | paration Method: METHOL | | | | Sample ID | Туре | Actual | Criteria | Units | Flag | | | | A1-MW-11-SA1 (RES/TOT)
A1-MW-13-SA1 (RES/TOT)
A1-MW-15-SA1 (RES/TOT) | Sampling To Analysis | 313.75
314.50
313.00 | 24.00
24.00
24.00 | HOURS
HOURS
HOURS | J(all detects)
R(all non-detects) | | | ### Method Blank Outlier Report Lab Reporting Batch ID: 280-110353-1 Laboratory: TA DEN EDD Filename: 280-110353-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9056A
Matrix: AQ | | | | | |-----------------------------|----------------------|---------------------|----------------------------|--| | Method Blank
Sample ID | Analysis Date | Analyte | Result | Associated
Samples | | MB 280-417070/6 | 6/1/2018 12:10:00 PM | CHLORIDE
Sulfate | 0.5189 mg/L
0.6146 mg/L | A1-MW-11-SA1
A1-MW-13-SA1
A1-MW-15-SA1 | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 7/19/2018 8:22:42 AM ADR version 1.9.0.325 Page 1 of 1 ### Reporting Limit Outliers Lab Reporting Batch ID: 280-110353-1 Laboratory: TA DEN EDD Filename: 280-110353-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 82 | 0B | | | | | | | |------------|---------|-------------|--------|--------------------|------------|-------|------| | Matrix: AC | | | | | | | | | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | 0.321 1.00 LOQ ug/L J (all detects) A1-MW-15-SA1 TRICHLOROETHENE | SDG a
Labor | OC #: 42613E1 VALIDATION COMPLETENESS WORKSHEET OG #: 280-110353-1 ADR ADR | | | | | | | | | |----------------|--|----------------------------------|----------|----------|---|------------|------------------------|----------------|--| | The s | HOD: GC/MS Volatiles (EPA SW 846 Met
amples listed below were reviewed for eaction findings worksheets. | | | ⁄alidat | tion areas. Validatio | n fir | ndings are note | ed in attached | | | | Validation Area | | | | Comm | ents | S | | | | l. | Sample receipt/Technical holding times | A | | | | | | | | | II. | GC/MS Instrument performance check | A | | | | | | | | | III. | Initial calibration/ICV | A/A | PO |) < | 1570. | <u>C</u> | 1<>>07 | d d | | | IV. | Continuing calibration | A | Ce | √= | 20/50/0 | | / | | | | V. | Laboratory Blanks | ,
N | | | | | | | | | VI. | Field blanks | ND | TR | s = / | 1. 23= | · <u> </u> | | | | | VII. | Surrogate spikes | N | | | | | | | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | | | | | | | IX. | Laboratory control samples | N | | | | | | | | | X. | Field duplicates | N | | | | | | | | | XI. | Internal standards | A | | | | | | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | | | | XIII. | Target compound identification | N | | | | | | | | | XIV. | System performance | N | | | | | | | | | XV. | Overall assessment of data | N | | | | | | | | | Note: | N = Not provided/applicable R = Rin | o compounds
sate
eld blank | detected | | D = Duplicate
TB = Trip blank
EB = Equipment blan | k | SB=Source bl
OTHER: | ank | | | | Client ID | | | | Lab ID | N | latrix | Date | | | 1 | TB-20180531 | | | | 280-110353-1 | V | Vater | 05/31/18 | | | | A1-MW-13-SA1 | | | | 280-110353-2 | Vater | 05/31/18 | | | | | A1-MW-11-SA1 | | | | 280-110353-3 | Vater | 05/31/18 | | | | | A1-MW-15-SA1 | | | | 280-110353-4 | Vater | 05/31/18 | | | | | EB-20180531 | | | | 280-110353-5 Water (| | | | | | 6 | | | | | | | | | | | 7 | | | | | | | | | | | 8 | | | | | | | | | | | Notes | <u>: </u> | | <u> </u> | <u> </u> | | 1 | | 7 | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | ## LDC #: 42613E6 VALIDATION COMPLETENESS WORKSHEET SDG #: 280-110353-1 ADR Laboratory: Test America, Inc. | Date: 7/R/16 | |------------------| | Page:of | | Reviewer: | | 2nd Reviewer: KV | METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B) pH (EPA SW846 Method (9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-----------|--|-----|----------| | <u>l.</u> | Sample receipt/Technical holding times | A,- | | | 11 | Initial calibration | A | | | .111. | Calibration verification | A | | | IV | Laboratory Blanks | SW | | | <u></u> | Field blanks | | | | VI. | Matrix Spike/Matrix Spike Duplicates | N | | | VII. | Duplicate sample analysis | N | | | VIII. | Laboratory control samples | N | | | IX. | Field duplicates | | | | X. | Sample result verification | N | | | xı_ | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|-----------------|--------|----------| | 1 | A1-MW-13-SA1 | 280-110353-2 | Water | 05/31/18 | | 2 | A1-MW-11-SA1 | 280-110353-3 | Water | 05/31/18 | | 3 | A1-MW-15-SA1 | 280-110353-4 | Water | 05/31/18 | | 4 | A1-MW-11-SA1DUP | 280-110353-3DUP | Water | 05/31/18 | | 5 | | | | | | 6 | | | | | | 7 | | | | | | 8 | | | | | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16 | | | | | Notes: LDC#: 42613E6 #### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: 1 of 1 Reviewer: CR 2nd reviewer: KW All circled methods are applicable to each sample. | Sample ID | Parameter Parameter | |----------------|--| | | pH) TDS(C) F (NO) NO2 (SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (FC2T) | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | Will (| pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | y (| pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | <u> </u> | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | · | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | · | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CLF NO, NO, SO, O-PO, Alk CN NH, TKN TOC Cr6+ ClO, | | Comments: |
 | |
 | |-----------|------|--|------| | |
 | |
 | LDC #: 42613E6_ ## VALIDATION FINDINGS WORKSHEET Blanks | Page: | _of | |---------------|-----| | Reviewer:_ | | | 2nd Reviewer: | WK | METHOD:Inorganics, Method See Cover Conc. units: mg/L Associated Samples: All | Analyte | Blank ID | Blank ID | Blank | | | | | | | |---------|----------|-------------------|--------------|------------------|--|--|--|--|--| | | РВ | ICB/CCB
(mg/L) | Action Limit | No qual
(>5x) | | | | | | | CI | | 0.5385 | 2.6925 | | | | | | | | SO4 | | 0.6554 | 3.277 | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT
CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". # Quality Control Outlier Reports 1801024 ### Lab Control Spike/Lab Control Spike Duplicate Outlier Report Lab Reporting Batch ID: 1801024 Laboratory: Vista EDD Filename: 1801024 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD Matrix: AQ | QC Sample ID
(Associated
Samples) | Compound | LCS
%R | LCSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | |---|----------|-----------|------------|--------------|-----------------|-----------------------|-----------------| | B8E0250-BS1
(A1-MW-04-SA1
A1-MW-05-SA1
A1-MW-49-SA1
A1-MW-50-SA1
A1-MW-51-SA1
FRB-20180522) | PFTrDA | 138 | - | 70.00-130.00 | - | PFTrDA | J (all detects) | 7/19/2018 11:57:01 AM ADR version 1.9.0.325 Page 1 of 1 # Reporting Limit Outliers Lab Reporting Batch ID: 1801024 Laboratory: Vista EDD Filename: 1801024 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD *Matrix:* AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|----------------|-------------|---------------------|--------------------|------------|--------------|-----------------| | A1-MW-04-SA1 | PFOA
PFOS | J
J | 0.00333
0.00161 | 0.00812
0.00812 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-05-SA1 | PFHpA
PFHxS | J | 0.000917
0.00278 | 0.00842
0.00842 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-49-SA1 | PFBS | J | 0.00627 | 0.00812 | LOQ | ug/L | J (all detects) | | A1-MW-51-SA1 | PFOS | J | 0.00303 | 0.00836 | LOQ | ug/L | J (all detects) | | LDC #: 42613L96 | VALIDATION COMPLETENESS WORKSHEET | |-----------------|-----------------------------------| | SDG #: 1801024 | ADR | Laboratory: Vista Analytical Laboratory METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) Modified) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|--------------------------------| | 1. | Sample receipt/Technical holding times | A | | | 11. | GC/MS Instrument performance check | 4 | | | 111. | Initial calibration/ICV | AA | RSOX 26/0. Y. True /101 = 30/0 | | IV. | Continuing calibration | * | RSOX 26/0. Y. True /101 = 30/0 | | V. | Laboratory Blanks | N | / * | | VI. | Field blanks | NO | FRB=6 | | VII. | Surrogate spikes | N | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | IX. | Laboratory control samples | N | | | Χ. | Field duplicates | N | | | XI. | Internal standards | 1/1 | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N_ | | | XIV. | System performance | N | | | XV. | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | Client ID | Lab ID | Matrix | Date | |--------------|--|---|---| | A1-MW-51-SA1 | 1801024-01 | Water | 05/22/18 | | A1-MW-50-SA1 | 1801024-02 | Water | 05/22/18 | | A1-MW-49-SA1 | 1801024-03 | Water | 05/22/18 | | A1-MW-05-SA1 | 1801024-04 | Water | 05/22/18 | | A1-MW-04-SA1 | 1801024-05 | Water | 05/22/18 | | FRB-20180522 | 1801024-06 | Water | 05/22/18 | | | | | | | | | | | | | | | | | | A1-MW-51-SA1 A1-MW-50-SA1 A1-MW-49-SA1 A1-MW-05-SA1 A1-MW-04-SA1 | A1-MW-51-SA1 1801024-01 A1-MW-50-SA1 1801024-02 A1-MW-49-SA1 1801024-03 A1-MW-05-SA1 1801024-04 A1-MW-04-SA1 1801024-05 | A1-MW-51-SA1 1801024-01 Water A1-MW-50-SA1 1801024-02 Water A1-MW-49-SA1 1801024-03 Water A1-MW-05-SA1 1801024-04 Water A1-MW-04-SA1 1801024-05 Water | | MOLE | ъ. | |
 |
 | | |------|------------|---|------|------|--| | | B8E0250-B4 | ¥ | #### **VALIDATION FINDINGS WORKSHEET Internal Standards** | Page:_ | <u>of</u> | |---------------|-----------| | Reviewer:_ | 9 | | 2nd Reviewer: | KIL | METHOD: LC/MS PFCs Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y/N/A Were all internal standard area counts within 50-150% limits? Y/N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? | / | N/A | T | | us within +/- 30 seconds of the reter | T the associated callula | T | |--|-------------|------------------|----------------------|---------------------------------------|--------------------------|----------------| | # | Date | Sample ID | Internal
Standard | Area (Limits) | RT (Limits) | Qualifications | | | | B8E0XD-B49 | 13C2-PFUnA | AT.6 (50-150) | | VINA | | | | , | | | | 1/1 | | | | 1 (dots) | 13C3-PFB5 | 247 | | (PTBS) | | | | 1 (dets)
(ND) | 13C3-PFBS | 15/ | | (Z+FOSA) | | | | <u></u> | | | | | # Quality Control Outlier Reports 1801037 ### Matrix Spike/Matrix Spike Duplicate Outlier Report Lab Reporting Batch ID: 1801037 Laboratory: Vista EDD Filename: 1801037 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD Matrix: AQ | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | |---|---|---|------------------------------|--|-----------------------------|---|-----------------| | 16-HS-03-SA1MS
16-HS-03-SA1MSD
(16-HS-03-SA1) | NMeFOSAA
PFDA
PFDoA
PFHPA
PFHXS
PFOA
PFTrDA | -
132
136
140
146
131
136 | -
-
-
-
-
133 | 70.00-130.00
70.00-130.00
70.00-130.00
70.00-130.00
70.00-130.00
70.00-130.00
70.00-130.00 | 49.6 (30.00)
-
- | NMEFOSAA
PFDA
PFDoA
PFHpA
PFHxS
PFOA
PFTrDA | J (all detects) | | 16-HS-03-SA1MS
16-HS-03-SA1MSD
(16-HS-03-SA1) | PFHXA
PFBS | -21
182 | - | 70.00-130.00
70.00-130.00 | 329 (30.00)
45.9 (30.00) | PFHxA
PFBS | No Qual, >4x | 7/19/2018 12:01:47 PM ADR version 1.9.0.325 Page 1 of 1 ### Lab Control Spike/Lab Control Spike Duplicate Outlier Report Lab Reporting Batch ID: 1801037 Laboratory: Vista EDD Filename: 1801037 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista | Method: 537 MOD
Matrix: AQ | | le. | | | | | | |--|----------|-----------|------------|--------------|-----------------|-----------------------|-----------------| | QC Sample ID
(Associated
Samples) | Compound | LCS
%R | LCSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | B8E0244-BS1
(16-HS-03-SA1
16-MW-06-SA1
16-MW-09-SA1
16-MW-09-SA1
A1-MW-18-SA1
A1-MW-19-SA1
A1-MW-37-SA1
A1-MW-37-SA1D
FRB-20180523) | PFTrDA | 153 | - | 70.00-130.00 | - | PFTrDA | J (all detects) | 7/19/2018 12:02:26 PM ADR version 1.9.0.325 Page 1 of 1 # Reporting Limit Outliers Lab Reporting Batch ID: 1801037 EDD Filename: 1801037 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Laboratory: Vista Method: 537 MOD *Matrix:* AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |---------------|---------------|-------------|--------------------|--------------------|------------|--------------|-----------------| | 16-MW-06-SA1 | PFOS | J | 0.00227 | 0.00897 | LOQ | ug/L | J (all detects) | | 16-MW-08-SA1 | PFNA | J | 0.00102 | 0.00870 | LOQ | ug/L | J (all detects) | | 16-MW-09-SA1 | PFDA
PFNA | J | 0.00440
0.00326 | 0.00871
0.00871 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-18-SA1 | PFOA
PFOS | J | 0.00187
0.00437 | 0.00888
0.00888 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-19-SA1 | PFDA | J | 0.00727 | 0.00846 | LOQ | ug/L | J (all detects) | | A1-MW-37-SA1 | PFNA | J | 0.00170 | 0.00839 | LOQ | ug/L | J (all detects) | | A1-MW-37-SA1D | PFNA
PFUnA | J | 0.00210
0.00135 | 0.00862
0.00862 | LOQ
LOQ | ug/L
ug/L | J (all detects) | ### Field Duplicate RPD Report Lab Reporting Batch ID: 1801037 Laboratory: Vista EDD Filename: 1801037 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD AQ Matrix: Concentration (ug/L) eQAPP Sample A1-MW-37-SA1 A1-MW-37-SA1D RPD RPD Analyte Flag PFBS 30.00 0.230 0.252 NC 30.00 PFHpA 0.0328 0.0322 PFHxA 1.66 30.00 1.71 3 0.152 2 30.00 **PFHxS** 0.155 No Qualifiers Applied PFNA 0.00170 0.00210 NC 30.00 NC 30.00 PFOA 0.0196 0.0203 NC NC PFOS 0.0458 0.0416 30.00 PFUnA 0.00839 U 0.00135 30.00 7/19/2018 11:59:15 AM
ADR version 1.9.0.325 Page 1 of 1 #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 42613M96 SDG #: 1801037 Laboratory: Vista Analytical Laboratory ADR/Stage 4 Reviewer: 2nd Reviewer: KUC METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) Marked) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|--------------|---------------------------------| | 1. | Sample receipt/Technical holding times | 1 | | | II. | GC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | AIA | | | IV. | Continuing calibration | A | | | V. | Laboratory Blanks | N | Not reviewed for ADR validation | | VI. | Field blanks | ND | FRB=9 | | VII. | Surrogate spikes | N | Not reviewed for ADR validation | | VIII. | Matrix spike/Matrix spike duplicates | | Not reviewed for ADR validation | | IX. | Laboratory control samples | ₩ | Not reviewed for ADR validation | | X. | Field duplicates | w | D=4+5 | | XI. | Internal standards | W | Not reviewed for ADR validation | | XII. | Compound quantitation RL/LOQ/LODs | N | Not reviewed for ADR validation | | XIII. | Target compound identification | | Not reviewed for ADR validation | | XIV. | System performance | | Not reviewed for ADR validation | | XV. | Overall assessment of data | \downarrow | Not reviewed for ADR validation | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |----|-----------------|---------------|--------|----------| | 1_ | A1-MW-18-SA1** | 1801037-01** | Water | 05/23/18 | | 2 | 16-MW-08-SA1** | 1801037-02** | Water | 05/23/18 | | 3 | A1-MW-19-SA1** | 1801037-03** | Water | 05/23/18 | | 4, | A1-MW-37-SA1** | 1801037-04** | Water | 05/23/18 | | 5 | A1-MW-37-SA1D** | 1801037-05** | Water | 05/23/18 | | 6 | 16-HS-03-SA1** | 1801037-06** | Water | 05/23/18 | | 7 | 16-MW-09-SA1** | 1801037-07** | Water | 05/23/18 | | 8 | 16-MW-06-SA1** | 1801037-08** | Water | 05/23/18 | | 9 | FRB-20180523 | 1801037-09 | Water | 05/23/18 | | 10 | 16-HS-03-SA1MS | 1801037-06MS | Water | 05/23/18 | | 11 | 16-HS-03-SA1MSD | 1801037-06MSD | Water | 05/23/18 | | 12 | | | | | | 13 | 2820244-B4 | | | | | 14 | , | | | | LDC #4-615496 #### VALIDATION FINDINGS WORKSHEET Internal Standards | Page:_ | / of_ <i>_</i> | |---------------|-----------------------| | Reviewer: | 9 | | 2nd Reviewer: | bete | METHOD: LC/MS PFCs Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were all internal standard area counts within 50-150% limits? Were the retention times of the internal standards within +/- 30 Y)N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? | YUN | 14// \ | T T T T T T T T T T T T T T T T T T T | Internal | rds within +/- 30 seconds of the retention | on times of the associated callbr | ation standard? | |--------|--------|---------------------------------------|--|--|---|-----------------| | # | Date | Sample ID | Standard | Area (Limits) | RT (Limits) | Qualifications | | | | 1 idets | 13C3-PFBS | 170 (50-150) | | JAHAP (PFBS | | | | / | | 10-7 | | | | | | 2 | | 187 | | | | | | 3 | | 214 | | | | | | | | | | | | | | | | 228 | | | | | | | | | | | | | | 5 | | 16) | | | | | | 6 | | 154 | | | | | | | | | | | | | | 7 | | 153 | | | | | | | | <u> </u> | *************************************** | | | | | 8 | | 214 | | <u> </u> | | - | | | | | | | | | | | | | | | | | | 10 (Ms) | | 167 | | No Cenal | | | | | 1 | | | | | | | 11 (MSD) | <u> </u> | 165 | \Box | | | | | | | | | | | <u> </u> | | | | # LDC#.43613M96 # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> Page: _/ of _/ Reviewer: ______ 2nd Reviewer: ______ METHOD: PFCs | | Concentrat | ion (ug/L) | (≤30) | | |----------|------------|------------|---------|------| | Compound | 4 | 5 | RPD | Qual | | PFBS | 0.230 | 0.252 | 9 | · | | PFHxA | 1.66 | 1.71 | 3 | | | PFHpA | 0.0328 | 0.0322 | 2 NC | | | PFHxS | 0.155 | 0.152 | 2 | | | PFOA | 0.0196 | 0.0203 | 4 NC | | | PFNA | 0.00170 | 0.00210 | 21- NC | | | PFOS | 0.0458 | 0.0416 | -10- NC | | | PFUnA | 0.00525U | 0.00135 | NC | | V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\42613M96.wpd # Quality Control Outlier Reports 1801039 # Reporting Limit Outliers Lab Reporting Batch ID: 1801039 Laboratory: Vista EDD Filename: 1801039 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD *Matrix:* AQ | matrix. Ad | 3-1-23-34-45 | | | A Contractor and a contractor | | 5,000,000,000 | | |--------------|--------------|-------------|---------|-------------------------------|------------|---------------|-----------------| | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | | A1-MW-11-SA1 | PFOS | J | 0.00359 | 0.00860 | LOQ | ug/L | J (all detects) | | LDC# | :_ 42613N96 | TION COMP | LETENESS WORKSHEET | | Date: 7/13 | |---------|--|---|--|--------|------------------| | | ± 1801039 | | ADR | | Page: /of / | | | atory: Vista Analytical Laboratory | | | | Reviewer: | | The sa | OD: LC/MS Perfluorinated Alkyl Ac | | · | | Reviewer: /// | | validat | ion findings worksheets. | | | | | | | Validation Area | | Comm | nents | | | 1. | Sample receipt/Technical holding times | A | | | | | H. | GC/MS Instrument performance check | \triangle | | | | | III. | Initial calibration/ICV | AIA | | | | | IV. | Continuing calibration | | | | | | V. | Laboratory Blanks | N | | | | | VI. | Field blanks | NO | TRB=6 | | | | VII. | Surrogate spikes | N | | | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | | | IX. | Laboratory control samples | N | | | | | X. | Field duplicates | N | | | | | XI. | Internal standards | Sav | | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | XIII. | Target compound identification | N | | | | | XIV. | System performance | N | | | | | XV. | Overall assessment of data | N | | | | | Note: | N = Not provided/applicable | ND = No compounds
R = Rinsate
B = Field blank | detected D = Duplicate TB = Trip blank EB = Equipment blan | OTHER | urce blank
:: | | | Client ID | | Lab ID | Matrix | Date | | 1 A | 41-MW-13-SA1 | | 1801039-01 | Water | 05/24/18 | | 2 A | A1-MW-11-SA1 | | 1801039-02 | Water | 05/24/18 | | 3 A | A1-MW-14-SA1 | | 1801039-03 | Water | 05/24/18 | | | | | | 1 | | | | Client ID | Lab ID | Matrix | Date | |---|--------------|------------|--------|----------| | 1 | A1-MW-13-SA1 | 1801039-01 | Water | 05/24/18 | | 2 | A1-MW-11-SA1 | 1801039-02 | Water | 05/24/18 | | 3 | A1-MW-14-SA1 | 1801039-03 | Water | 05/24/18 | | 4 | A1-MW-15-SA1 | 1801039-04 | Water | 05/24/18 | | 5 | A1-MW-25-SA1 | 1801039-07 | Water | 05/24/18 | | 6 | FRB-20180524 | 1801039-08 | Water | 05/24/18 | | 7 | | | | | | 8 | | | | | | 9 | | | | | | \$870004 BK | | | | |-------------|--|--|--| | 7 | | | | | | | | | | | | | | #### VALIDATION FINDINGS WORKSHEET Internal Standards | Page:_ | <u>_/</u> of | |--------------|--------------| | Reviewer: | 7 | | nd Reviewer. | INK | METHOD: LC/MS PFCs Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y/N/A Were all internal standard area counts within 50-150% limits? YN N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? | # | Date | Sample ID | Internal
Standard | Area (Limits) | RT (Limits) | Qualifications | |---|-------------|-----------------|----------------------|---------------|-------------|----------------| | | | 1 (dets) | 13C3-PFBS | 419 (50-150) | | VINA (PFBS | | | | 2 | | 27/ | | | | | | 3 | _ | <i>(</i> -27) | | | | | | 3 | | 527 | | | | | | + V | | 235 | | | | | | 5 (HD)
(Pet) | | 4-8 | | ₩ | | | | (Pet) | | | | | | | | | | | | | | | # Quality Control Outlier Reports 1801054 ### Matrix Spike/Matrix Spike Duplicate Outlier Report Lab Reporting Batch ID: 1801054 Laboratory: Vista EDD Filename: 1801054 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD Matrix: AQ | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | |---|------------------------|------------|---------------------|--|-----------------|-----------------------|-----------------| | A1-MW-53-SA1MS
A1-MW-53-SA1MSD
(A1-MW-53-SA1) | NMeFOSAA
PFTrDA | 141 | -
148 | 70.00-130.00
70.00-130.00 | 32.9 (30.00) | NMeFOSAA
PFTrDA | J (all detects) | | A1-MW-53-SA1MS
A1-MW-53-SA1MSD
A1-MW-53-SA1) | PFBS
PFHxS
PFHxA | 141
232 | 37.7
58.4
175 | 70.00-130.00
70.00-130.00
70.00-130.00 | | | No Qual, >4x | 7/19/2018 12:37:11 PM ADR version 1.9.0.325 Page 1 of 1 ### Lab Control Spike/Lab Control Spike Duplicate Outlier Report Lab Reporting Batch ID: 1801054 Laboratory: Vista EDD Filename: 1801054 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista | Method: 537 MOD
Matrix: AQ | | | | | | | |
--|----------|-----------|------------|--------------|-----------------|-----------------------|-----------------| | QC Sample ID
(Associated
Samples) | Compound | LCS
%R | LCSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | B8E0244-BS1
(A1-MW-01-SA1
A1-MW-01-SA1D
A1-MW-31-SA1
A1-MW-42-SA1
A1-MW-52-SA1
A1-MW-53-SA1
A1-MW-54-SA1
A1-PZ-19-SA1
FRB-20180525) | PFTrDA | 153 | - | 70.00-130.00 | - | PFTrDA | J (all detects) | 7/19/2018 12:33:48 PM ADR version 1.9.0.325 Page 1 of 1 # Reporting Limit Outliers Lab Reporting Batch ID: 1801054 Laboratory: Vista EDD Filename: 1801054 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |---------------|-----------------------|-------------|-------------------------------|-------------------------------|-------------------|----------------------|-----------------| | A1-MW-01-SA1 | PFHpA | J | 0.00225 | 0.00907 | LOQ | ug/L | J (all detects) | | A1-MW-01-SA1D | PFHpA | J | 0.00273 | 0.00854 | LOQ | ug/L | J (all detects) | | A1-MW-31-SA1 | PFHpA | J | 0.00851 | 0.00887 | LOQ | ug/L | J (all detects) | | A1-MW-42-SA1 | PFOS | J | 0.00186 | 0.00887 | LOQ | ug/L | J (all detects) | | A1-MW-53-SA1 | PFOS | J | 0.00188 | 0.00878 | LOQ | ug/L | J (all detects) | | A1-MW-54-SA1 | PFOS | J | 0.00652 | 0.00892 | LOQ | ug/L | J (all detects) | | A1-PZ-19-SA1 | PFHpA
PFOA
PFOS | J | 0.00326
0.00756
0.00115 | 0.00852
0.00852
0.00852 | LOQ
LOQ
LOQ | ug/L
ug/L
ug/L | J (all detects) | ### Field Duplicate RPD Report Lab Reporting Batch ID: 1801054 Laboratory: Vista EDD Filename: 1801054 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD Matrix: AQ | | Concentra | ation (ug/L) | | | | |------------------------|--------------------------------------|---------------------------------------|--------------------|----------------------------------|-----------------------| | Analyte | A1-MW-01-SA1 | A1-MW-01-SA1D | Sample
RPD | eQAPP
RPD | Flag | | PFBS PFHpA PFHxA PFHxS | 0.0524
0.00225
0.101
0.0230 | 0.0557
0.00273
0.0971
0.0238 | 6
NC
4
NC | 30.00
30.00
30.00
30.00 | No Qualifiers Applied | 7/19/2018 12:31:45 PM ADR version 1.9.0.325 Page 1 of 1 | LDC | #: | 42613096 | | |-----|----|----------|--| | | | | | #### **VALIDATION COMPLETENESS WORKSHEET** **ADR** SDG #: 1801054 Laboratory: Vista Analytical Laboratory METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) Modified) Reviewer 2nd Reviewer: The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----------|---------------------------------| | 1 | Sample receipt/Technical holding times | A | | | 11. | GC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | AA | \$55 = 20% . Y = TWO /10V = 30% | | IV. | Continuing calibration | # | CEV & 2070 | | V. | Laboratory Blanks | N | 6 | | VI. | Field blanks | NO | TRF = 9 | | VII. | Surrogate spikes | N | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | IX. | Laboratory control samples | N | | | X. | Field duplicates | W | B=6+7 | | XI. | Internal standards | ŹN . | , | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |------------|-----------------|---------------|--------|----------| | 1 | A1-MW-42-SA1 | 1801054-01 | Water | 05/25/18 | | 2 | A1-MW-54-SA1 | 1801054-02 | Water | 05/25/18 | | 3 | A1-MW-53-SA1 | 1801054-03 | Water | 05/25/18 | | 4 | A1-PZ-19-SA1 | 1801054-04 | Water | 05/25/18 | | 5 | A1-MW-52-SA1 | 1801054-05 | Water | 05/25/18 | | 6 , | A1-MW-01-SA1 | 1801054-06 | Water | 05/25/18 | | 7 | A1-MW-01-SA1D | 1801054-07 | Water | 05/25/18 | | 8 | A1-MW-31-SA1 | 1801054-08 | Water | 05/25/18 | | 9 | FRB-20180525 | 1801054-09 | Water | 05/25/18 | | 10 | A1-MW-53-SA1MS | 1801054-03MS | Water | 05/25/18 | | 11 | A1-MW-53-SA1MSD | 1801054-03MSD | Water | 05/25/18 | | 12 | | | | | | 13 | | | | | | 14 | B860244-B4 | | | | # LDC#: 43613096 # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> METHOD: PFCs | | Concentration (ug/L) 6 7 | | (≤30) | | |----------|--------------------------|---------|--------|------| | Compound | | | RPD | Qual | | PFBS | 0.0524 | 0.0557 | 6 | | | PFHxA | 0.101 | 0.0971 | 4 | | | PFHpA | 0.00225 | 0.00273 | 28° NC | | | PFHxS | 0.0230 | 0.0238 | 2 NC | | V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\42613O96.wpd LDC #:4263096 #### **VALIDATION FINDINGS WORKSHEET Internal Standards** 2nd Reviewer: METHOD: LC/MS PFCs Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were all internal standard area counts within 50-150% limits? Y N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? | | N/A_ | | Internal | as within +/- 30 seconds of the reten | and three of the decediated calls | Tation clarification. | |----------|---------------------------------------|-----------|---------------------------------------|---------------------------------------|-----------------------------------|-----------------------| | # | Date | Sample ID | Standard | Area (Limits) | RT (Limits) | Qualifications | | | | 1 (fots) | 13C3-PT\$5 | 310 (50-150) | | VULT (PFB | | | | | | | | 1// | | | | 2 (dets) | | 175 | | | | + | | - | | 1 = 1 | | // | | | | 3 / | | 154 | | | | | | 10 (MS) | | 169 | | No Cara | | | | 10000 | | 12/ | | Nowa | | | | 11 (MSD) | | 161 | | | | | | 4 0 4 3 | | | | | | | | 4 (dets) | | 182 | | 1/U1 & IPFBS | | | | 5 | | 211 | | | | \dashv | · · · · · · · · · · · · · · · · · · · | | | 21) | | | | | | 6 | | 192 | | | | | | | | | | | | | | 7 | | 204 | | | | _ | | | | | | | | | | 8 | V | 254 | | | | \dashv | | | · · · · · · · · · · · · · · · · · · · | \perp | | | | | | | | \dashv | | | | | | | | | | | | | | | # Quality Control Outlier Reports 1801071 # Reporting Limit Outliers Lab Reporting Batch ID: 1801071 Laboratory: Vista EDD Filename: 1801071 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD *Matrix:* AQ | Matrix: AQ | | | | | | | | | |--------------|---------|-------------|---------|--------------------|------------|-------|-----------------|--| | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | | | A1-MW-23-SA1 | PFHxS | J | 0.00581 | 0.00874 | LOQ | ug/L | J (all detects) | | | DC #: | 42613P96 VAL | IDATION COMP | LETENESS \ | VORKSHEET | | Date: 7/2 | |---------|--|--|------------|--|-------------------------------|------------| | | : 1801071 | | ADR | | 1 | Page: /et/ | | | tory: Vista Analytical Laborator | <u>y</u> _ | | | Rev | iewer: | | he sa | OD: LC/MS Perfluorinated Alky imples listed below were review ion findings worksheets. | | | | 2nd Rev
i findings are not | | | alluati | | | T | | | | | | Validation Area | <u> </u> |] | Comme | nts | | | l. | Sample receipt/Technical holding tim | nes 🗡 | | | | | | 11. | GC/MS Instrument performance che | ck A | | | | | | III. | Initial calibration/ICV | A,A | | | | | | IV. | Continuing calibration | | | | | | | V. | Laboratory Blanks | N | | | | | | VI. | Field blanks | NO | FRB = | 5 | | | | VII. | Surrogate spikes | N | | | | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | | | | IX. | Laboratory control samples | N , | | | | | | Χ. | Field duplicates | N | | | | | | XI. | Internal standards | Źv | | | | | | XII. | Compound quantitation RL/LOQ/LOI | Ds N | | | | | | XIII. | Target compound identification | N | | | | | | XIV. | System performance | N | | | | | | XV. | Overall assessment of data | N | | | | | | ote: | A = Acceptable N = Not provided/applicable SW = See worksheet | ND = No compounds
R = Rinsate
FB = Field blank | | D = Duplicate
TB = Trip blank
EB = Equipment blank | SB=Source I
OTHER: | olank | | | Client ID | | L | ab ID | Matrix | Date | | A | \1-MW-27-SA1 | | 1 | 801071-01 | Water | 05/30/18 | | . A | A1-MW-55-SA1 | | 1 | 801071-02 | Water | 05/30/18 | | A | A1-MW-23-SA1 | | 1 | 801071-03 | Water | 05/30/18 | | | 4 800 07 004 | | | 901071 04 | Motor | 05/20/40 | | | Client ID |
 | | Lab ID | | Matrix | Date | |----------|--------------|------|------|------------|------------|--------|----------| | | A1-MW-27-SA1 | |
 | 1801071-01 | \v | Vater | 05/30/18 | | 2 | A1-MW-55-SA1 | |
 | 1801071-02 | \v | Vater | 05/30/18 | | 3 | A1-MW-23-SA1 | |
 | 1801071-03 | ν | Vater | 05/30/18 | | 1 | A1-MW-07-SA1 |
 |
 | 1801071-04 | \ <u>v</u> | Vater | 05/30/18 | | 5 | FRB-20180530 | |
 | 1801071-05 | V | Vater | 05/30/18 | | 3 | |
 | | | <u> </u> | | | | 7 | | | | | | | | | 3 | | |
 | | | | | | <u> </u> | |
 | | | | | | | otes |): | ヿ | | | | | | | | #### TARGET COMPOUND WORKSHEET #### METHOD: PFOS/PFOAs | WETHOD: PFUS/PFUAS | | | |--|---|------|
| A. Perfluorohexanoic acid (PFHxA) | | | | B. Perfluoroheptanoic acid (PFHpA) | · | | | C. Perfluorooctanoic acid (PFOA) | ` | | | D. Perfluorononanoic acid (PFNA) | | | | E. Perfluorodecanoic acid (PFDA) | | | | F. Perfluoroundecanoic acid (PFUnA) | | | | G. Perfluorododecanoic acid (PFDoA) | | | | H. Perfluorotridecanoic acid (PFTriDA) | | | | I. Perfluorotetradecanoic acid (PFTeDA) | | | | J. Perfluorobutanesulfonic acid (PFBS) | | | | K. Perfluorohexanesulfonic acid (PFHxS) | | | | L. Perfluoroheptanesulfonic acid (PFHpS) | | | | M. Perfluorooctanesulfonic acid (PFOS) | | | | N.Perfluorodecanesulfonic acid (PFDS) | | | | O. Perfluorooctane Sulfonamide (FOSA) | | | | P. Perfluorobutanoic acid (PFBA) | | | | Q. Perfluoropentanoic acis (PFPeA) | | | | R. 6:2FTS | | | | S. 8:2 FTS | | | | T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) | | | | U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) | | | | | | | | | | | | | | **** | | | | | | | | | LDC #12613796 # VALIDATION FINDINGS WORKSHEET Internal Standards | Page:_ | of | |----------------|-----| | Reviewer:_ | 9 | | 2nd Reviewer:_ | KLL | METHOD: LC/MS PFCs Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". XN N/A Were all internal standard area counts within 50-150% limits? Y)N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? | Y/N | INA | vere the retention times | or the internal standar | as witnin +/- 30 seconds of the reter | THOU THES OF THE ASSOCIATED CAMPIAN | on standard? | |---------------|------|--------------------------|--|---------------------------------------|-------------------------------------|----------------| | # | Date | Sample ID | Internal
Standard | Area (Limits) | RT (Limits) | Qualifications | | | | 1 (dets) | 13C3-PFBS | | | MY (PFBS) | | | | / | | 1.5 | | / / / / / | | | | 2 (ND) | | 165 | | | | \vdash | | 4 (dets) |]/ | 209 | 1 | | | | | T (2413) | V | ┢═╅ | # Quality Control Outlier Reports 1801084 | | :42613Q96 | N COMP | LETENES
ADR | SS WORKSHEE | ΞΤ | Date: 7/3/ | |--|---|----------------------------------|------------------------------|--|--|----------------------------| | | atory: <u>Vista Analytical Laboratory</u> | | ADN | | , | Page: //of //
Reviewer: | | | | | | 43 | | Reviewer: | | METH | OD: LC/MS Perfluorinated Alkyl Acids (E | PA Metho | d 537)Mudlik | fied) | | | | | amples listed below were reviewed for ear
ion findings worksheets. | ch of the fo | ollowing valid | dation areas. Valida | ation findings are | noted in attache | | | Validation Area Comments | | | | | | | I. | Sample receipt/Technical holding times | A | | | | | | II. | GC/MS Instrument performance check | A | | | | | | III. | Initial calibration/ICV | AA | A #50<20/0. Y2 mo/ICV = 30/0 | | | | | | Continuing calibration | W | | | | -/0 | | IV. | | | ECV = 30 /250/30 | | | | | V. | Laboratory Blanks | N
1 T | <u> </u> | 1 | | | | VI. | Field blanks | ND | 28=/ | | | | | VII. | Surrogate spikes | N | , | | | | | VIII. | Matrix spike/Matrix spike duplicates N | | | | | | | IX. | Laboratory control samples | N , | | | | | | X. | Field duplicates | N | | ····· | ······································ | | | XI. | Internal standards | A | | | | | | XII. | Compound quantitation RL/LOQ/LODs | | | | | | | XIII. | Target compound identification | N | | | | | | XIV. | System performance | N | | | | | | XV. | Overall assessment of data | N | - | | | | | Note: | A = Acceptable ND = N
N = Not provided/applicable R = Rin | o compounds
sate
eld blank | detected | D = Duplicate
TB = Trip blank
EB = Equipment b | OTHER: | rce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 1 | EB-20180531 | | | 1801084-01 | Water | 05/31/18 | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | | | | | | | | | 7 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | lg l l l l l l l l l l l l l l l l l l | | | | | | | | J. | 28F0069-B4-1 | | | | | | | <u> </u> | | | | | | | #### TARGET COMPOUND WORKSHEET #### **METHOD: PFOS/PFOAs** | WIETHOD: PFOS/PFOAS | | | |--|---|--| | A. Perfluorohexanoic acid (PFHxA) | | | | B. Perfluoroheptanoic acid (PFHpA) | | | | C. Perfluorooctanoic acid (PFOA) | | | | D. Perfluorononanoic acid (PFNA) | | | | E. Perfluorodecanoic acid (PFDA) | | | | F. Perfluoroundecanoic acid (PFUnA) | | | | G. Perfluorododecanoic acid (PFDoA) | | | | H. Perfluorotridecanoic acid (PFTriDA) | | | | I. Perfluorotetradecanoic acid (PFTeDA) | · | | | J. Perfluorobutanesulfonic acid (PFBS) | | | | K. Perfluorohexanesulfonic acid (PFHxS) | | | | L. Perfluoroheptanesulfonic acid (PFHpS) | | | | M. Perfluorooctanesulfonic acid (PFOS) | | | | N.Perfluorodecanesulfonic acid (PFDS) | | | | O. Perfluorooctane Sulfonamide (FOSA) | | | | P. Perfluorobutanoic acid (PFBA) | | | | Q. Perfluoropentanoic acis (PFPeA) | | | | R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS) | | | | S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS) | | | | T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) | | | | U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) | #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration** 2nd Reviewer: // METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a continuing calibration standard analyzed after every 10 injections for each instrument? Were all continuing calibration percent differences (%D) ≤30 %? X N/A Y IN N/A | # | Date | Standard ID 1806/7141-104 | Compound | Finding %D
(Limit: <u><</u> 30.0%) | Finding RRF
(Limit:) | Associated Samples | Qualifications | |---|---------|---------------------------|----------|--|--------------------------|--------------------|----------------| | | 4/18/18 | 18061741-104 | d3-T | 55.2 B | 5070 | MB | 7/W/F(T) | | | // | , , , , , , , | | | , | | 77 | | | | | | | | | : | | | | | | | | 9 | - | | | | | | | | | | | | | | | | | | | <u></u> | | | | | | | , | :' | | | | | | | | | | | | | | | | · | <u> </u> | | # Enclosure II Manual Stage 2B and Stage 4 Data Validation Reports # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 **LDC Report Date:** July 16, 2018 Parameters: Volatiles Validation Level: Stage 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-110112-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | TB-20180523 | 280-110112-1 | Water | 05/23/18 | | A1-MW-18-SA1 | 280-110112-2 | Water | 05/23/18 | | 16-MW-08-SA1 | 280-110112-3 | Water | 05/23/18 | | A1-MW-19-SA1 | 280-110112-4 | Water | 05/23/18 | | A1-MW-37-SA1D | 280-110112-5 | Water | 05/23/18 | | A1-MW-37-SA1 | 280-110112-6 | Water | 05/23/18 | | 16-HS-03-SA1 | 280-110112-7 | Water | 05/23/18 | | 16-HS-03-SA1MS | 280-110112-7MS | Water | 05/23/18 | | 16-HS-03-SA1MSD | 280-110112-7MSD | Water | 05/23/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was
reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. # III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. ### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample TB-20180523 was identified as a trip blank. No contaminants were found. # VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions: | Sample | Surrogate | %R (Limits) | Affected
Compound | Flag | A or P | |--------------|------------|-------------|----------------------|----------------------|--------| | 16-HS-03-SA1 | Toluene-d8 | 75 (89-112) | All compounds | UJ (all non-detects) | Α | # VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions: | Spike ID
(Associated Samples) | Compound | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |--------------------------------------|--------------------|---------------------|----------------------|----------------------|--------| | 16-HS-03-SA1MS/MSD
(16-HS-03-SA1) | 1,1-Dichloroethene | 56 (71-131) | 33 (71-131) | UJ (all non-detects) | А | Relative percent differences (RPD) were within QC limits with the following exceptions: | Spike ID
(Associated Samples) | Compound | RPD
(Limits) | Flag | A or P | |--------------------------------------|--------------------|-----------------|------|--------| | 16-HS-03-SA1MS/MSD
(16-HS-03-SA1) | 1,1-Dichloroethene | 53 (≤20) | NA | - | # IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. # X. Field Duplicates Samples A1-MW-37-SA1 and A1-MW-37-SA1D were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ug/L) | | | | | |-----------------|----------------------|--------------|----------------|------|--------| | Compound | A1-MW-37-SA1D | A1-MW-37-SA1 | RPD (Limits) | Flag | A or P | | Trichloroethene | 0.652 | 0.624 | Not calculable | - | - | RPDs were not calculated when sample results in one or both samples were less than 5x the limit of quantitation (LOQ). #### XI. Internal Standards All internal standard areas and retention times were within QC limits. # XII. Compound Quantitation All compound quantitations met validation criteria. All compounds reported below the limit of quantitation (LOQ) were qualified as follows: | Sample | Finding | Flag | A or P | |---|---------------------------------------|-----------------|--------| | A1-MW-18-SA1
16-MW-08-SA1
A1-MW-19-SA1
A1-MW-37-SA1D
A1-MW-37-SA1 | All compounds reported below the LOQ. | J (all detects) | А | # XIII. Target Compound Identifications All target compound identifications met validation criteria. ### XIV. System Performance The system performance was acceptable. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to surrogate %R, MS/MSD %R, and results below the LOQ, data were qualified as estimated in six samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. # MCAS Yuma, CTO 17F3803 Volatiles - Data Qualification Summary - SDG 280-110112-1 | Sample | Compound | Flag | A or P | Reason | |---|---------------------------------------|----------------------|--------|--| | 16-HS-03-SA1 | All compounds | UJ (all non-detects) | Α | Surrogates (%R) | | 16-HS-03-SA1 | 1,1-Dichloroethene | UJ (all non-detects) | Α | Matrix spike/Matrix spike duplicate (%R) | | A1-MW-18-SA1
16-MW-08-SA1
A1-MW-19-SA1
A1-MW-37-SA1D
A1-MW-37-SA1 | All compounds reported below the LOQ. | J (all detects) | А | Compound quantitation | MCAS Yuma, CTO 17F3803 Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-110112-1 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 Volatiles - Field Blank Data Qualification Summary - SDG 280-110112-1 No Sample Data Qualified in this SDG | LDC #:42613B1 | VALIDATION COMPLETENESS WORKSHEET | | |--------------------------------|-----------------------------------|--| | SDG #: 280-110112-1 | Stage 4 | | | Laboratory: Test America, Inc. | | | 2nd Reviewer: METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|--------|-------------------------------| | l. | Sample receipt/Technical holding times | A | | | II. | GC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | AA | #50 < 1570. ICV = 2/0 | | IV. | Continuing calibration | A | $250 \le 1570$. $ CV = 20/0$ | | V. | Laboratory Blanks | A | / / | | VI. | Field blanks | ND | TB= | | VII. | Surrogate spikes | W | | | VIII. | Matrix spike/Matrix spike duplicates | W | | | IX. | Laboratory control samples | A | 165
D=5+6 | | Χ. | Field duplicates | w | D=5+6 | | XI. | Internal standards | A | | | XII. | Compound quantitation RL/LOQ/LODs | A | | | XIII. | Target compound identification | A | | | XIV. | System performance | A | | | XV. | Overall assessment of data | \Box | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet R = Rinsate ND = No compounds detected FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|-----------------|--------|----------| | 1 | TB-20180523 | 280-110112-1 | Water | 05/23/18 | | 2 | A1-MW-18-SA1 | 280-110112-2 | Water | 05/23/18 | | 3 | 16-MW-08-SA1 | 280-110112-3 | Water | 05/23/18 | | 4 | A1-MW-19-SA1 | 280-110112-4 | Water | 05/23/18 | | 5 | A1-MW-37-SA1D | 280-110112-5 | Water | 05/23/18 | | 6 | A1-MW-37-SA1 | 280-110112-6 | Water | 05/23/18 | | 7 | 16-HS-03-SA1 | 280-110112-7 | Water | 05/23/18 | | 8 | 16-HS-03-SA1MS | 280-110112-7MS | Water | 05/23/18 | | 9 | 16-HS-03-SA1MSD | 280-110112-7MSD | Water | 05/23/18 | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | LDC #: 42613B/ # VALIDATION FINDINGS CHECKLIST Page: /of Action Reviewer: / Compared Page: / Of Action Reviewer: Method: Volatiles (EPA SW 846 Method 8260B) | Validation Area | Yes | No | NA | Findings/Comments | |--|----------|---------
--|--| | I. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. GC/MS Instrument performance check | | | 10 THE TOTAL SECTION AND ADDRESS OF ADDRESS OF THE TOTAL SECTION AND ADDRESS OF THE TOTAL SECTION AND ADDRESS OF THE TOTAL SECTION ADDRESS OF THE TOTAL SECTION AND ADDRESS OF THE T | And the second s | | Were the BFB performance results reviewed and found to be within the specified criteria? | / | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | Illa. Initial calibration | | sales 2 | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20 %/15% and relative response factors (RRF) \geq 0.05? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | _ | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | / | | | | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | / | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | / | | | | VI Field blanks | | 100 | | | | Were field blanks were identified in this SDG? | / | | | | | Were target compounds detected in the field blanks? | | / | | | | VII, Surrogate spikes | 1 | 1 | Ī | 1
1 | | Were all surrogate percent recovery (%R) within QC limits? | <u> </u> | / | | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | | | · | LDC#: 456/38/ # VALIDATION FINDINGS CHECKLIST | Validation Area | Yes | No | NA | Findings/Comments | |--|-------------------------|------|----|--| | VIII. Matrix spike/Matrix spike duplicates | 9 977
10
10
10 | 14 B | | property Capital Capit | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | • | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | / | | | | IX. Laboratory control samples | 9-1 | | H. | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | \ | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | - | | XI. Internal standards | | | | | | Were internal standard
area counts within -50% to +100% of the associated calibration standard? | | | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | | | | XII. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | / | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | / | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data | | 174 | | | | Overall assessment of data was found to be acceptable. | | | | | # TARGET COMPOUND WORKSHEET # METHOD: VOA | A. Chloromethane | AA. Tetrachloroethene | AAA. 1,3,5-Trimethylbenzene | AAAA. Ethyl tert-butyl ether | A1. 1,3-Butadiene | |------------------------------|---------------------------------|--|-----------------------------------|----------------------------| | B. Bromomethane | BB. 1,1,2,2-Tetrachloroethane | BBB. 4-Chlorotoluene | BBBB. tert-Amyl methyl ether | B1. Hexane | | C. Vinyl choride | CC. Toluene | CCC: tert-Butylbenzene | CCCC. 1-Chlorohexane | C1. Heptane | | D. Chloroethane | DD. Chlorobenzene | DDD. 1,2,4-Trimethylbenzene | DDDD. Isopropyl alcohol | D1. Propylene | | E. Methylene chloride | EE. Ethylbenzene | EEE. sec-Butylbenzene | EEEE. Acetonitrile | E1. Freon 11 | | F. Acetone | FF. Styrene | FFF. 1,3-Dichlorobenzene | FFFF. Acrolein | F1. Freon 12 | | G. Carbon disulfide | GG. Xylenes, total | GGG. p-Isopropyltoluene | GGGG. Acrylonitrile | G1. Freon 113 | | H. 1,1-Dichloroethene | HH. Vinyl acetate | HHH. 1,4-Dichlorobenzene | HHHH. 1,4-Dioxane | H1. Freon 114 | | I. 1,1-Dichloroethane | II. 2-Chloroethylvinyl ether | III. n-Butylbenzene | IIII. Isobutyl alcohol | I1. 2-Nitropropane | | J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane | JJJ. 1,2-Dichlorobenzene | JJJJ. Methacrylonitrile | J1. Dimethyl disulfide | | K. Chloroform | KK. Trichlorofluoromethane | KKK. 1,2,4-Trichlorobenzene | KKKK. Propionitrile | K1. 2,3-Dimethyl pentane | | L. 1,2-Dichloroethane | LL. Methyl-tert-butyl ether | LLL. Hexachlorobutadiene | LLLL. Ethyl ether | L1. 2,4-Dimethyl pentane | | M. 2-Butanone | MM. 1,2-Dibromo-3-chloropropane | MMM. Naphthalene | MMMM. Benzyl chloride | M1. 3,3-Dimethyl pentane | | N. 1,1,1-Trichloroethane | NN. Methyl ethyl ketone | NNN. 1,2,3-Trichlorobenzene | NNNN. lodomethane | N1. 2-Methylpentane | | O. Carbon tetrachloride | OO. 2,2-Dichloropropane | OOO. 1,3,5-Trichlorobenzene | OOOO.1,1-Difluoroethane | O1. 3-Methylpentane | | P. Bromodichloromethane | PP. Bromochloromethane | PPP. trans-1,2-Dichloroethene | PPPP. Tetrahydrofuran | P1. 3-Ethylpentane | | Q. 1,2-Dichloropropane | QQ. 1,1-Dichloropropene | QQQ. cis-1,2-Dichloroethene | QQQQ. Methyl acetate | Q1. 2,2-Dimethylpentane | | R. cis-1,3-Dichloropropene | RR. Dibromomethane | RRR. m,p-Xylenes | RRRR. Ethyl acetate | R1. 2,2,3- Trimethylbutane | | S. Trichloroethene | SS. 1,3-Dichloropropane | SSS. o-Xylene | SSSS. Cyclohexane | S1. 2,2,4-Trimethylpentane | | T. Dibromochloromethane | TT. 1,2-Dibromoethane | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methylcyclohexane | T1. 2-Methylhexane | | U. 1,1,2-Trichloroethane | UU. 1,1,1,2-Tetrachloroethane | UUU. 1,2-Dichlorotetrafluoroethane | UUUU. Allyl chloride | U1. Nonanal | | V. Benzene | VV. Isopropylbenzene | VVV. 4-Ethyltoluene | VVVV. Methyl methacrylate | V1. 2-Methylnaphthalene | | W. trans-1,3-Dichloropropene | WW. Bromobenzene | WWW. Ethanol | WWWW. Ethyl methacrylate | W1. Methanol | | X. Bromoform | XX. 1,2,3-Trichloropropane | XXX. Di-isopropyl ether | XXXX. cis-1,4-Dichloro-2-butene | X1. 1,2,3-Trimethylbenzene | | Y. 4-Methyl-2-pentanone | YY. n-Propylbenzene | YYY. tert-Butanol | YYYY. trans-1,4-Dichloro-2-butene | Y1. | | Z. 2-Hexanone | ZZ. 2-Chlorotoluene | ZZZ. tert-Butyl alcohol | ZZZZ. Pentachloroethane | Z1. | # **VALIDATION FINDINGS WORKSHEET Surrogate Spikes** | Page:_ | | |---------------|----| | Reviewer: | 7 | | 2nd Reviewer: | KK | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) | Please see qualifications below for all que | iestions answered "N". Not applicable (| questions are identified as "N/A". | |---|---|------------------------------------| |---|---|------------------------------------| Were all surrogate %R within QC limits? If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria? | # | Date | Sample ID | Surrogate | %Recovery (Limits) | Qualifications | |----------|------|-----------|-----------|--------------------|----------------| | | | 7 | TOL | 75 (89412) | JUN/A (ND) | | | | | | () | | | <u> </u> | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | ļ | | | | () | | | | | | | () | | | | | | | (| | | | | | | () | | | | | | | () | | | | | , | | () | | | | | | | () | | | ļ | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | <u> </u> | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | () | | | | | | | | | (TOL) = Toluene-d8 (DCE) = 1,2-Dichloroethane-d4 (DFM) = Dibromofluoromethane (BFB) = Bromofluorobenzene # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates | Page:_ | /of | |---------------|-----| | Reviewer: | 9 | | 2nd Reviewer: | ILK | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". (<u>/Y)</u>N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | # D | ate | MS/MSD ID | Compound | MS
%R (Limits) | MSD
%R (Limits) | RPD (Limits) | Associated Samples | Qualifications | |-----|-----|-----------|----------|-------------------|--------------------|--------------|--------------------|----------------| | | | 8/9 | 1 +1 | 56 (TI-131) | 33 (TI-131) | | 7(ND) | JAH A | | | | / | H | () | () | 53(520) | | That's A | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | ()_ | () | () | | | | | | | | () | () | () | | | | | | **** | | () | () | () | | | | _ | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | , , | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | | | | | | () | () | () | | | # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> Page: / of / Reviewer: 9 2nd Reviewer: K/K METHOD: GCMS VOA 8260B | | Concentration (ug/L) | | (≤30) | Qual | |----------|----------------------|-------|-------|------| | Compound | 5 6 | | RPD | Quai | | s | 0.652 | 0.624 | 4NC | | V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\42613B1.wpd LDC #: # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | Page:_ | of | |---------------|----------| | Reviewer: | <u>a</u> | | 2nd Reviewer: | KK | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard %RSD = 100 * (S/X) X = Mean of the RRFs | <u></u> | A - Weall of the RRFS | | | | | | | | | | |---------|-----------------------|---------------------|--|-------------------------|--------------------------|--------------------------|--------------------------|----------------|--------------|--| | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | | | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(<i>/O</i> std) | RRF
(<i>/ D</i> std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | | 1 | | -/118 | (1st internal standard) | 0.3187 | 0.3187 | 0.3149 | 0.3149 | 4.8 | 4.8 | | | | 1982 | 5/16/18 | (2nd internal standard) | 1.3348 | | | 1.3 25 / | 3 5 | 4.8 | | | | (RI) | , | (3rd internal standard) | | | | / | | | | | | | | (4th internal standard) | | | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | | (4th internal standard) | | | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | | (4th internal standard) | | | | | | | | | 4 | | | (1st
internal standard) | | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | | (4th internal standard) | | | | | | | | Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 426/37 # VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page:_ | | |----------------|--------| | Reviewer:_ | \sim | | 2nd Reviewer:_ | KK | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF Where: ave. RRF = initial calibration average RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard $C_x = Concentration of compound,$ $C_{is} = Concentration of internal stand$ | # | Standard ID | Calibration
Date | Compound (Reference internal Standard) | Average RRF | Reported
RRF
(CC) | Recalculated
RRF
(CC) | Reported
%D | Recalculated
%D | |---|-------------|---------------------|--|-------------|-------------------------|-----------------------------|----------------|--------------------| | 1 | R1-35 | 6/4/18 | (1st internal standard) | 0.3149 | 0.33/2 | 0.3312 | 5.3 | 3.2 | | | | 9410 | AA (2nd internal standard) | 1.375/ | 1.401 | 1.401 | 5.7 | 5.7 | | | | | (3rd internal standard) | | | / | | | | | | | (4th internal standard) | | | | | | | 2 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | · | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | | | | | | 4 | | | (1st internal standard) | | | | | | | | | | (2nd internal standard) | | | | | | | | | | (3rd internal standard) | | | | | | | | | | (4th internal standard) | | 376.1 | | | | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | /of_/_ | |---------------|--------| | Reviewer: | 9 | | 2nd reviewer: | we | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) | The percent recoveries (%F | R) of surrogates | were recalculated for the co | mpounds identified belo | ow using the following | g calculation: | |----------------------------|------------------|------------------------------|-------------------------|------------------------|----------------| |----------------------------|------------------|------------------------------|-------------------------|------------------------|----------------| % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | 11.5 | /2.2 | 106 | 106 | 0 | | 1,2-Dichloroethane-d4 | 1 | W.L | 108 | 108 | 1 | | Toluene-d8 | | 11.5 | .100 | 100 | | | Bromofluorobenzene | V | 11.6 | 100 | 100 | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification 2nd Reviewer: & METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentration RPD = IMSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD sample: _ | Compound | Ad | oike
ded | Sample
Concentration
() | Spiked S
Concen | | Matrix Percent R | | Matrix Spike | | | S/MSD
RPD | |--------------------|------|-------------|--------------------------------|--------------------|-------|------------------|--------|--------------|--------|----------|--------------| | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | 1,1-Dichloroethene | 5.00 | 5.00 | ND | 2.T95 | 1.6=9 | 36 | 56 | 33 | 33 | 53 | 53 | | Trichloroethene | V | V | V | 4.863 | 4.489 | 97 | 91 | 90 | 90 | 8 | 8 | | Benzene | | | | | | 11 | | | | | | | Toluene | | | | : | | | | | | | | | Chlorobenzene | | | | | | | | | | | | | Comments: Refer to Matrix Spike/Matrix Spike | Duplicates findings worksheet for | list of qualifications and ass | <u>ociated samples when rep</u> | orted results do not agree | within 10.0% | |--|-----------------------------------|--------------------------------|---------------------------------|----------------------------|--------------| | of the recalculated results. | LDC #:42434 # **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | Page:_ | of | |--------------|------| | Reviewer: | 9 | | nd Reviewer: | 15/5 | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration | | Sr | oike | Spiked S | Sample | LC | s | LC: | SD. | LCS/ | LCSD | |--------------------|------------|------|---------------|--------|------------------|---------|------------------|---------|----------|--------------| | Compound | Ad
(Ne | ded | Concentration | | Percent Recovery | | Percent Recovery | | RPD | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | 1,1-Dichloroethene | 5.00 | NA | 5.615 | NA | 112 | 112 | | - | | | | Trichloroethene | V | V | 5.111 | V | 102 | 10> | | | | | | Benzene | | | | _ | | | | | | | | Toluene | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | | | Comments: Refer to Laborato | ory Control Sample findings v | orksheet for list of qualificati | ons and associated sample | es when reported results | do not agree within 10.0% | of the | |-----------------------------|-------------------------------|----------------------------------|---------------------------|--------------------------|---------------------------|--------| | recalculated results. | | | | | | | | | | | | , | | | LDC #: 42638 # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | | |---------------|----| | Reviewer: | a | | 2nd reviewer: | KK | | J | Υ / | N | <u>N/A</u> | Were all reported results recalculated and verified for all level IV samples? | |---|------------|---|------------|---| | Ţ | <u>y</u> Z | N | N/A
N/A | Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | | Concen | tratio | $n = \frac{(A_s)(I_s)(DF)}{(A_s)(RRF)(V_s)(\%S)}$ | Example: | |----------------|--------|--|---| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample
I.D, | | A_{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = $(2788)(2.3)(3.3)(3.3)(3.3)(3.3)(3.3)(3.3)(3.3$ | | RRF | = | Relative response factor of the calibration standard. | 201771 0.74 | | V _o | _ = | Volume or weight of sample pruged in milliliters (ml) or grams (g). | = 0.452 14 | | Df | = | Dilution factor. | , | | %S | = | Percent solids, applicable to soils and solid matrices only. | | | | only. | | | | | |---|-----------|---------------------------------------|---------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration | Calculated
Concentration
() | Qualification | | | ے | Н | 0.452 | · · · · · · · · · · · · · · · · · · · | · | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 LDC Report Date: July 19, 2018 Parameters: Wet Chemistry Validation Level: Stage 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-110112-1 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | A1-MW-18-SA1 | 280-110112-2 | Water | 05/23/18 | | 16-MVV-08-SA1 | 280-110112-3 | Water | 05/23/18 | | A1-MW-19-SA1 | 280-110112-4 | Water | 05/23/18 | | A1-MW-37-SA1 | 280-110112-6 | Water | 05/23/18 | | .16-HS-03-SA1 | 280-110112-7 | Water | 05/23/18 | | A1-MW-18-SA1MS | 280-110112-2MS | Water | 05/23/18 | | A1-MW-18-SA1MSD | 280-110112-2MSD | Water | 05/23/18 | | A1-MW-18-SA1DUP | 280-110112-2DUP | Water | 05/23/18 | | 16-HS-03-SA1MS | 280-110112-7MS | Water | 05/23/18 | | 16-HS-03-SA1MSD | 280-110112-7MSD | Water | 05/23/18 | | 16-HS-03-SA1DUP | 280-110112-7DUP | Water | 05/23/18 | | 16-HS-03-SA1DLMS | 280-110112-7DLMS | Water | 05/23/18 | | 16-HS-03-SA1DLMSD | 280-110112-7DLMSD | Water | 05/23/18 | | 16-HS-03-SA1DLDUP | 280-110112-7DLDUP | Water | 05/23/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056A Ferrous Iron by Standard Method 3500-Fe B pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |--|--------------|--|---|-----------------|--------| | A1-MW-18-SA1
16-MW-08-SA1
A1-MW-19-SA1
A1-MW-37-SA1
16-HS-03-SA1 | рН | 8 days | 24 hours | J (all detects) | Р | | A1-MW-18-SA1 | Ferrous Iron | 26.85 hours | 24 hours | J (all detects) | Р | #### II. Initial Calibration All criteria for the initial calibration of each method were met. # III. Continuing Calibration Continuing calibration frequency and analysis criteria were met for each method when applicable. # IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks. #### V. Field Blanks No field blanks were identified in this SDG. # VI. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions: | Spike ID
(Associated Samples) | Analyte | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |--------------------------------------|--------------|---------------------|----------------------|---------------------|--------| | 16-HS-03-SA1MS/MSD
(16-HS-03-SA1) | Sulfate | 88 (87-112) | 86 (87-112) | J (all detects) | Α | | 16-HS-03-SA1MS/MSD
(16-HS-03-SA1) | Ferrous Iron | 1 (85-113) | 0 (85-113) | R (all non-detects) | А | For A1-MW-18-SA1MS/MSD, no data were qualified for Chloride and Sulfate percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration. Relative percent differences (RPD) were within QC limits. # VII. Duplicate Sample Analysis Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. # VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # IX. Field Duplicates No field duplicates were identified in this SDG. # X. Sample Result Verification All sample result verifications were acceptable. All analytes reported below the limit of quantitation (LOQ) were qualified as follows: | Sample | Finding | Flag | A or P | |--|--------------------------------------|-----------------|--------| | A1-MW-18-SA1
16-MW-08-SA1
A1-MW-37-SA1 | All analytes reported below the LOQ. | J (all detects) | A | #### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. Due to MS/MSD %R, data were rejected in one sample. Due to technical holding time, MS/MSD %R, and results below the LOQ, data were qualified as estimated in five samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. # MCAS Yuma, CTO 17F3803 Wet Chemistry - Data Qualification Summary - SDG 280-110112-1 | Sample | Analyte | Flag | A or P | Reason | |--|--------------------------------------|---------------------|--------|--| | A1-MW-18-SA1
16-MW-08-SA1
A1-MW-19-SA1
A1-MW-37-SA1
16-HS-03-SA1 | рН | J (all detects) | Р | Technical holding times | | A1-MW-18-SA1 | Ferrous Iron | J (all detects) | Р | Technical holding times | | 16-HS-03-SA1 | Sulfate | J (all detects) | Α | Matrix spike/Matrix spike duplicate (%R) | | 16-HS-03-SA1 | Ferrous Iron | R (all non-detects) | А | Matrix spike/Matrix spike duplicate (%R) | | A1-MW-18-SA1
16-MW-08-SA1
A1-MW-37-SA1 | All analytes reported below the LOQ. | J (all detects) | А | Sample result verification | MCAS Yuma, CTO 17F3803 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-110112-1 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-110112-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 42613B6 SDG #: 280-110112-1 Statge 4 | Date: <u>7/18/</u> 1 | |----------------------| | Page:\of_\ | | Reviewer: | | 2nd Reviewer: Ku | Laboratory: Test America, Inc. METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B) pH (EPA SW846 Method (9040C) The samples listed
below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|--------|---------------------| | l. | Sample receipt/Technical holding times | ARW | | | | Initial calibration | A | | | 111. | Calibration verification | A | | | IV | Laboratory Blanks | A | | | V | Field blanks | N | | | VI. | Matrix Spike/Matrix Spike Duplicates | BW_ | 10/11/C1,50y:7/874x | | VII. | Duplicate sample analysis | A | , | | VIII. | Laboratory control samples | A | LCSLO | | IX. | Field duplicates | \sim | (4,5)a | | X. | Sample result verification | A | | | xı | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |--------------|-----------------|-------------------------|--------|----------| | 1 | A1-MW-18-SA1 | 280-110112-2 | Water | 05/23/18 | | 2 | 16-MW-08-SA1 | 280-110112-3 | Water | 05/23/18 | | 3 | A1-MW-19-SA1 | 280-110112-4 | Water | 05/23/18 | | - | A1-MVV-37-SA1D | 280-110112-5 | Water | 05/23/18 | | 5 | A1-MW-37-SA1 | 280-110112-6 | Water | 05/23/18 | | 3 | 16-HS-03-SA1 | 280-110112-7 | Water | 05/23/18 | | 7 | A1-MW-18-SA1MS | 280-110112-2 M S | Water | 05/23/18 | | 3 | A1-MW-18-SA1MSD | 280-110112-2MSD | Water | 05/23/18 | | 9 | A1-MW-18-SA1DUP | 280-110112-2DUP | Water | 05/23/18 | | 10 | 16-HS-03-SA1MS | 280-110112-7MS | Water | 05/23/18 | | 11 | 16-HS-03-SA1MSD | 280-110112-7MSD | Water | 05/23/18 | | 12 | 16-HS-03-SA1DUP | 280-110112-7DUP | Water | 05/23/18 | | 13 | *60LMS | | | | | 14 | J. 160 | | | | | 45 | 1 000 | | | | Notes: # **VALIDATION FINDINGS CHECKLIST** Page: of a Reviewer: 0 2nd Reviewer: KK Method:Inorganics (EPA Method Selcovery | Method:Inorganics (EPA Method OCECOVO) | | | | | |--|-----|----|----------------|-------------------| | Validation Area | Yes | No | NA | Findings/Comments | | I. Technical holding times | | | | | | All technical holding times were met. | | V | <u> </u> | | | II. Calibration | | | , - | | | Were all instruments calibrated daily, each set-up time? | | | | | | Were the proper number of standards used? | | | | | | Were all initial calibration correlation coefficients ≥ 0.995? | / | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | | | | | | Were titrant checks performed as required? (Level IV only) | | | / | | | Were balance checks performed as required? (Level IV only) | | | _ | | | III. Blanks | | | , | | | Was a method blank associated with every sample in this SDG? | _ | | _ | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | | / | | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | | | | | | V. Laboratory control samples | | | | | | Was an LCS anaylzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | / | | <u> </u> | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | Were performance evaluation (PE) samples performed? | | / | | X | | Were the performance evaluation (PE) samples within the acceptance limits? | | | / | | # **VALIDATION FINDINGS CHECKLIST** Page: 0 of 0 Reviewer: 02 2nd Reviewer: K/< | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|------------|-------------------| | VII. Sample Result Verification | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | Were detection limits < RL? | | | | | | VIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | | IX. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | | | | | Target analytes were detected in the field duplicates. | | | / | | | X. Field blanks | | | _ . | | | Field blanks were identified in this SDG. | | | | | | Target analytes were detected in the field blanks. | | | | | # VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: 1 of 1 Reviewer: CR 2nd reviewer: MC All circled methods are applicable to each sample. | Sample ID | Parameter pH) TDS(C) F (NO3) NO2 (SO4) O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 (Fe ²⁺) | |-----------|--| | 1-7,5,6 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | R:10 | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS (CI) F NO ₃ NO ₂ (SO ₄)O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | 9 | pH TDS(C) F NO ₃ NO ₂ (SO ₄)O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | 10,11 | pH TDS CD F (NO) NO SO O-PO AIK CN NH TKN TOC Cr6+ CIO (Fe2+) | | 17 | ph TDS(C)F(NO3)NO2(SO4)O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | 1314 | PH TDS (CI)F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | 15 | pH TDS(C)F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ | | | pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄ | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4 | | | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 | | | pH_TDS_CL_E_NONOSO_O-POAlk_CN_NHTKN_TOC_Cr6+_ClO | | Comments: |
 | | |-----------|------|--| | | | | LDC #: 4261336 # **VALIDATION FINDINGS WORKSHEET Technical Holding Times** | Page: <u> </u> | of_ | |----------------|------| | Reviewer: | a | | 2nd reviewer: | KK | All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method? N N/A Were all cooler temperatures within validation criteria? | Method: | | 9040C
pH | | | SM 3500 FE B | | | | |-------------------------|------------------|------------------|-------------------------------|-----------------|------------------|------------------|-----------|--| | Parameters | Parameters: | | pH | | | Ferrous Iron | | | | Technical holding time: | | 1 11 Ch CC 24 1 | | | 2 | 4 hrs | | | | Sample ID | Sampling
date | Analysis
date | Time
- Exceeded | Qualifier | Analysis
date | Time
Exceeded | Qualifier | | | All Cock | | 5/31/18 | Edays | Qualifier JUJA | | | | | | | | | | | | | | | | 1 (Det) | 5/23/18 | | | | 5/24/18 | 26.85 lms | J/WJ/P | | | | (09:00) | | | | (11:51) | <u> </u> | · | LDC#: 4261386 # VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates | Page: <u>\</u> | of\ | |----------------|----------| | Reviewer:_ | <u>ر</u> | | 2nd Reviewer: | KK | | METHOD: Inor | organics, EPA Method | nd Reviewer: <u>IVI</u> | |-----------------------------|---|-------------------------| | Please see qua | ualifications below for all questions answered "N". Not applicable questions are identified as "N/A". | | | <u>Ŷ</u> N N/A | Was a matrix spike analyzed
for each matrix in this SDG? | | | Ŷ <u>N</u> N/A
Y (N) N/A | Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike control limits of 75-125? | oncentration by a facto | | _ | of 4 or more, no action was taken. | • | | Ý)N N/A | Were all duplicate sample relative percent differences (RPD) ≤ 20% for water samples and <35% for soil samples? | | LEVEL IV ONLY: YN N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. | | MS/MSD ID | Matrix | Analyte | MS
%Recovery | MSD
%Recovery | RPD (Limits) | Associated Samples | Qualifications | |--------------|-----------|--------|--------------|-------------------------|------------------|---------------------------------------|--------------------|----------------| | H | 10/11 | | Sh | 88101-112 | 86 | | | J/J/A (Det) | | H | 10/11 | | Ferois Fee | 88(87-112)
1 (85-13) | Ö | | 6 | JRIA (M) | | H | | | Ferrous Iron | 1(2)(3) | | | | JINTH CMU) | | Н | | | 10000000 | | | | | | | П | | | | | | | | | | П | · | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | Ш | | | | | | | | | | Ш | | | | | | | | | | H | | | | | | I | | | | Н | | | | | | | | | | Ш | | | | | | | | | | Н | | | | | | | | | | \mathbb{H} | | | | | | | | | | \mathbb{H} | | | | | | | | | | \mathbb{H} | | | | | | | | | | \mathbb{H} | | | | | | | | | | Comments: | 7/8:C1,504 | 74X | | | | |-----------|------------|-----|--|--|--| | | | | | | | | | | | | | | LDC #: 426386 True # Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification | Page:_ | ر
 | f | |---------|-------|----| | Reviewe | r: | 2 | | nd Revi | ewer: | KK | | Method: Inorganics, Method | See Cover | | |---------------------------------------|----------------------------|---| | The correlation coefficient (r) for t | he calibration of <u>C</u> | was recalculated.Calibration date: 3/31/18 | | An initial or continuing calibration | verification percent r | recovery (%R) was recalculated for each type of analysis using the following formula: | | %R = Found X 100 | Where, | Found = concentration of each analyte measured in the analysis of the ICV or CCV solution | True = concentration of each analyte in the ICV or CCV source | | | | | | Recalculated | Reported | Acceptable | |--------------------------|---------|----------|--------------|------------|---------------------|---------------------|------------| | Type of analysis | Analyte | Standard | Conc. (mg/L) | Area | r or r ² | r or r ² | (Y/N) | | Initial calibration | | s1 | 1.0 | 16911296 | | | | | | | s2 | 2.5 | 43759132 | 1.000 | 1.000 | | | | | s3 | 5 | 85841374 | | | Ĭ. | | | C/ | s4 | 60 | 1053445301 | | | 1 | | | | s5 | 120 | 2068634717 | | | | | | | s6 | 200 | 3433898767 | | | | | Calibration verification | NO3 N | ICV | 4 | 3,93 | 98 | 98 | | | Calibration verification | SOy | SCCV | 100 | 1. 601 | 109 | 102 | | | Calibration verification | Fezt | CCU | 1.0 | 1,0666 | 107 | 107 | | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within | |--| | 10.0% of the recalculated results | | | LDC #: 4 2613 B6 # VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | 1 | | ı | |----------------|----|---| | Page: <u>√</u> | of | | | Reviewer: | 0 | > | | 2nd Reviewer: | KK | | | METHOD: Inorganics, Meth | thod See carel | |--------------------------|----------------| | | | Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = \frac{Found}{True} \times 100$ Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = |S-D| \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration | Sample ID | Type of Analysis | Element | Found / S
(units) | True / D
(units) | Recalculated
%R / RPD | Reported
%R / RPD | Acceptable
(Y/N) | |-----------|---------------------------|---------|----------------------|---------------------|--------------------------|----------------------|---------------------| | LCS | Laboratory control sample | Fenous | 2,2416 | 200 | 112 | 112 | Y | | 10 | Matrix spike sample | NOZN | (SSR-SR) | 16 | 100 | 100 | | | 12 | Duplicate sample | 504 | 42.4 | 36,4 | 10 | 10 | + | | Comments: | | | | | |-----------|-------------|------|------|--| | | | | | | | | | | | | | | |
 |
 | | LDC #: 42613 B6 # **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification Page: of Reviewer: CR 2nd reviewer: KK | METHOD: Inorganics, Method See we | | | |---|---|--------------------------------------| | Please see qualifications below for all questions X N N/A | answered "N". Not applicable of calculated correctly? range of the instruments? e CRQL? | questions are identified as "N/A". | | Compound (analyte) results forrecalculated and verified using the following equ | Cl | reported with a positive detect were | | Concentration = = 1 6553610 x - 44011 & | Recalculation: 1079969301 + 4 | 40112 x 50 = 3263,3mg/L | | | | | | | | |----------|-----------|------------|-------------------------------------|--------------------------------------|---------------------------------------| | # | Sample ID | Analyte | Reported
Concentration
(Mgl) | Calculated
Concentration
(MML) | Acceptable
(Y/N) | | | 1 | pt (SU) | 7.7 | 7,7 | 4 | | | \alpha | Ferrassian | 00403 | 00403 | | | | <u> </u> | L Cl | 3260 | 3240 | | | | ,5 | NO3N | 7,26 | 7,26 | | | | 6 | Sa | 9190 | 3190 | A | · · · · · · · · · · · · · · · · · · · | | | | | | | | | <u> </u> | | | | | | 1 | | | | | | | | | | | ļ | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | |]] |] | | | | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma, CTO 17F3803 **LDC Report Date:** July 19, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1818881 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | A1-MW-51-SA1 | L1818881-01 | Water | 05/22/18 | | A1-MW-50-SA1 | L1818881-02 | Water | 05/22/18 | | A1-MW-49-SA1 | L1818881-03 | Water | 05/22/18 | | A1-MW-05-SA1 | L1818881-04 | Water | 05/22/18 | | A1-MW-04-SA1 | L1818881-05 | Water | 05/22/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory
deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition. The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for all samples were reported at 7.9°C upon receipt by the laboratory. No data was qualified based on the cooler temperature. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. # IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks No field blanks were identified in this SDG. # VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. # VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. # IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. ### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. ### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. ## XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1818881 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1818881 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1818881 No Sample Data Qualified in this SDG | | #:L1818881 | Stage 2B | | | Page: tof/ | | | |------------|---|-----------------|----------------|----------------------------------|---------------------------------------|---|--| | Labo | ratory: <u>Alpha Analytical, Inc.</u> | | | | | Reviewer: //
Reviewer:_ <i>K/</i> / | | | MET | HOD: GC/MS 1,4-Dioxane (EPA SW 846 | Method 82 | 70D-SIM) | | | . to 11011 | | | The | samples listed below were reviewed for ea | ach of the fo | ollowina valid | ation areas Valida | tion findings are | noted in attached | | | | ation findings worksheets. | acii oi tile it | onowing valid | ation areas. Valida | tion infairigs are | noted in attached | | | <u> </u> | | | | | | · · · · · · · · · · · · · · · · · · · | | | | Validation Area | <u> </u> | | | ments | | | | l. | Sample receipt/Technical holding times | A | Temp | Q 7.90 | <u></u> | | | | <u>II.</u> | GC/MS Instrument performance check | A | / | | | | | | 111. | Initial calibration/ICV | AA | RSD. | ×1570. | 10/5: | ≥ 0/ ₆ | | | IV. | Continuing calibration ZV | A | CCV: | = 20/50/ | <i>y</i> | / - | | | V. | Laboratory Blanks | A | | | | | | | VI. | Field blanks | N | | | | | | | VII. | Surrogate spikes | A | | | · · · · · · · · · · · · · · · · · · · | | | | VIII | | N | 0,5 | | | | | | IX. | Laboratory control samples | A | Lest | > | | | | | Χ. | Field duplicates | N | | | | | | | XI. | Internal standards | A | | | | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | | XIII. | | N | | | | | | | XIV. | | A | | | | | | | XV. | Overall assessment of data | 1 | | | | | | | Note: | N = Not provided/applicable R = Ri | | s detected | D = Duplicate
TB = Trip blank | OTHER | irce blank
: | | | | SW = See worksheet FB = F | ield blank | | EB = Equipment bl | ank
——————— | | | | | Client ID | | | Lab ID | Matrix | Date | | | 1 | A1-MW-51-SA1 | | | L1818881-01 | Water | 05/22/18 | | | 2 | A1-MW-50-SA1 | | | L1818881-02 | Water | 05/22/18 | | | 3 | A1-MW-49-SA1 | | | L1818881-03 | Water | 05/22/18 | | | 4 | A1-MW-05-SA1 | | | L1818881-04 | Water | 05/22/18 | | | 5 | A1-MW-04-SA1 | | | L1818881-05 | Water | 05/22/18 | | | 6 | | | | | | | | | 7 | | | | | | | | | 8 | | | | | | | | | Notes | S: | **VALIDATION COMPLETENESS WORKSHEET** LDC #: 42613F2b # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 LDC Report Date: July 16, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 4 Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1819087 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | A1-MW-18-SA | L1819087-01 | Water | 05/23/18 | | 16-MW-08-SA1 | L1819087-02 | Water | 05/23/18 | | A1-MW-19-SA1 | L1819087-03 | Water | 05/23/18 | | A1-MW-37-SA1 | L1819087-04 | Water | 05/23/18 | | A1-MW-37-SA1D | L1819087-05 | Water | 05/23/18 | | 16-HS-03-SA1 | L1819087-06 | Water | 05/23/18 | | 16-HS-03-SA1MS | L1819087-06MS | Water | 05/23/18 | | 16-HS-03-SA1MSD | L1819087-06MSD | Water | 05/23/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. # IV. Continuing Calibration
Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks No field blanks were identified in this SDG. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. # VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # X. Field Duplicates Samples A1-MW-37-SA1 and A1-MW-37-SA1D were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | Concentration (ng/L) | | | | | |-------------|--------------|----------------------|--------------|------|--------|--| | Compound | A1-MW-37-SA1 | A1-MW-37-SA1D | RPD (Limits) | Flag | A or P | | | 1,4-Dioxane | 7780 | 7500 | 4 (≤30) | - | - | | #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations were within validation criteria. # XIII. Target Compound Identifications All target compound identifications were within validation criteria. # XIV. System Performance The system performance was acceptable. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1819087 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1819087 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1819087 No Sample Data Qualified in this SDG | SDG
Laboi | #:42613G2bVALIDATION #:L1819087 ratory: Alpha Analytical, Inc HOD: GC/MS 1,4-Dioxane (EPA SW 846) | (| Stage 4 | S WORKSHEET | | Date: 7/2//
Page: / of /
Reviewer: Q
Reviewer: KK | |--------------|---|---------------------------------------|-----------------|--|---------------------------------------|--| | | amples listed below were reviewed for e
ation findings worksheets. | each of the fo | ollowing valida | tion areas. Validatior | n findings are | e noted in attached | | | Validation Area | | | Comme | ents | | | 1 | Sample receipt/Technical holding times | A | | | | | | II. | GC/MS Instrument performance check | A | | | | | | III. | Initial calibration/ICV | AA | ₹550€ | 1570. IEV | $1 \leq 2\delta $ | 9 | | IV. | Continuing calibration | A | ecve | 20/50/0 | | | | V. | Laboratory Blanks | ★ | | | | | | VI. | Field blanks | N | | | | | | VII. | Surrogate spikes | A | | | | | | VIII. | Matrix spike/Matrix spike duplicates | Ą | | | | | | IX. | Laboratory control samples | \triangleleft | LCSD | | | | | X. | Field duplicates | W | D=4+ | 5 | | | | XI. | Internal standards | A | | | | | | XII. | Compound quantitation RL/LOQ/LODs | Ā | | | | | | XIII. | Target compound identification | 1 7 | | | · · · · · · · · · · · · · · · · · · · | | | XIV. | System performance | A | | | | | | XV. | Overall assessment of data | 1 1 | | | | | | Note: | A = Acceptable ND = N = Not provided/applicable R = R | No compounds
insate
Field blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blank | SB=So
OTHER | urce blank
k: | | | Client ID | | | Lab ID | Matrix | Date | | 1 | A1-MW-18-SA | | | L1819087-01 | Water | 05/23/18 | | 2 | 16-MW-08-SA1 | | | L1819087-02 | Water | 05/23/18 | | 3 | A1-MW-19-SA1 | | | L1819087-03 | Water | 05/23/18 | | 4 , | A1-MW-37-SA1 | | | L1819087-04 | Water | 05/23/18 | | 5 | A1-MW-37-SA1D | | | L1819087-05 | Water | 05/23/18 | | 6 | 16-HS-03-SA1 | | | L1819087-06 | Water | 05/23/18 | | 7 | 16 HS 02 SA1MS | | | 1 1910097 OGMC | Motor | 05/02/40 | | 16-HS-03-SA1MSD | | | L1819087-06MSD | Water | 05/23/18 | | |-----------------|--|--|--|-------|----------|--| | | | | | | | | <u> </u> | | L_L | | | | | | | | | | # **VALIDATION FINDINGS CHECKLIST** Page: /of-> Reviewer: O Method: Semivolatiles (EPA SW 846 Method 8270C-SIM) | Validation Area | Yes | No | NA | Findings/Comments | |--|---------|------------|--------|-------------------| | I. Technical holding times | | | | g- | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. GC/MS Instrument performance check (Not required) | | | 9.00 | | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | / | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | i ii ii. | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) \geq 0.05? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990? | | | | | | IIIb, Initial Calibration Verification | | ı | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | | | | | Were all percent differences (%D) ≤20% or percent recoveries (%R) 80-120%? | | NICHE TANK | | | | IV. Continuing calibration | 14 year | I | T T | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05? | | <u> </u> | | | | V. Laboratory Blanks | | T | T | T | | Was a laboratory blank associated with every sample in this SDG? | / | | ļ | | | Was a laboratory blank analyzed for each matrix and concentration? | / | ļ | ļ
 | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | 1 | / | 1 | | | VI. Field blanks | 100 | | , dili | | | Were field blanks identified in this SDG? | ļ | / | | | | Were target compounds detected in the field blanks? VII. Surrogate spikes | 146 | | / | 1 | | Were all surrogate percent differences (%R) within QC limits? | | | | | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | | | | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | # **VALIDATION FINDINGS CHECKLIST** Page: Of A Reviewer: Q 2nd Reviewer: W | Validation Area | Yes | No | NA | Findings/Comments | |--|------|--------------|-------------|---| | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | •
- | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | , | | | IX. Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | _ | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | 10.5 | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | | | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | | | | XII. Compound quantitation | | | -0
-25-7 | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | / | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | Le Clifferin | | e en alice de la companya de la comp | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | / | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | / | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | 75 - 12 - 12
- 12 - 12 - 12 - 12 - 12 - 1 | | System performance was found to be acceptable. | / | | | | | XV, Overall assessment of data | , | / | *** | | | Overall assessment of data was found to be acceptable. | | | | | # **VALIDATION FINDINGS WORKSHEET** # METHOD: GC/MS SVOA | METHOD. COMO OVOR | | | | | |---------------------------------|---------------------------------|----------------------------------|---|-----| | A. Phenol | AA. 2-Chloronaphthalene | AAA. Butylbenzylphthalate | AAAA. Dibenzothiophene | A1. | | B. Bis (2-chloroethyl) ether | BB. 2-Nitroaniline | BBB. 3,3'-Dichlorobenzidine | BBBB. Benzo(a)fluoranthene | B1. | | C. 2-Chlorophenol | CC. Dimethylphthalate | CCC. Benzo(a)anthracene | CCCC. Benzo(b)fluorene | C1. | | D. 1,3-Dichlorobenzene | DD. Acenaphthylene | DDD. Chrysene | DDDD. cis/trans-Decalin | D1. | | E. 1,4-Dichlorobenzene | EE. 2,6-Dinitrotoluene | EEE. Bis(2-ethylhexyl)phthalate | EEEE. Biphenyl | E1. | | F. 1,2-Dichlorobenzene | FF. 3-Nitroaniline | FFF. Di-n-octylphthalate | FFFF. Retene | F1. | | G. 2-Methylphenol | GG. Acenaphthene | GGG. Benzo(b)fluoranthene | GGGG. C30-Hopane | G1. | | H. 2,2'-Oxybis(1-chloropropane) | HH. 2,4-Dinitrophenol | HHH. Benzo(k)fluoranthene | HHHH. 1-Methylphenanthrene | H1. | | I. 4-Methylphenol | II. 4-Nitrophenol | III. Benzo(a)pyrene | IIII. 1,4-Dioxane | 11. | | J. N-Nitroso-di-n-propylamine | JJ. Dibenzofuran | JJJ. Indeno(1,2,3-cd)pyrene | JJJJ. Acetophenone | J1. | | K. Hexachloroethane | KK. 2,4-Dinitrotoluene | KKK. Dibenz(a,h)anthracene | KKKK. Atrazine | K1. | | L. Nitrobenzene | LL. Diethylphthalate | LLL. Benzo(g,h,i)perylene | LLLL. Benzaldehyde | L1. | | M. Isophorone | MM. 4-Chlorophenyl-phenyl ether | MMM. Bis(2-Chloroisopropyl)ether | MMMM. Caprolactam | M1. | | N. 2-Nitrophenol | NN. Fluorene | NNN. Aniline | NNNN. 2,6-Dichlorophenol | N1. | | O. 2,4-Dimethylphenol | OO. 4-Nitroaniline | OOO. N-Nitrosodimethylamine | OOOO. 1,2-Diphenylhydrazine | 01. | | P. Bis(2-chloroethoxy)methane | PP. 4,6-Dinitro-2-methylphenol | PPP. Benzoic Acid | PPPP. 3-Methylphenol | P1. | | Q. 2,4-Dichlorophenol | QQ. N-Nitrosodiphenylamine | QQQ. Benzyl alcohol | QQQQ. 3&4-Methylphenol | Q1. | | R. 1,2,4-Trichlorobenzene | RR. 4-Bromophenyl-phenylether | RRR. Pyridine | RRRR. 4-Dimethyldibenzothiophene (4MDT) | R1. | | S. Naphthalene | SS. Hexachlorobenzene | SSS. Benzidine | SSSS. 2/3-Dimethyldibenzothiophene (4MDT) | S1. | | T. 4-Chloroaniline | TT. Pentachlorophenol | TTT. 1-Methylnaphthalene | TTTT. 1-Methyldibenzothiophene (1MDT) | T1. | | U. Hexachlorobutadiene | UU. Phenanthrene | UUU.Benzo(b)thiophene | ບບບບ. | U1. | | V. 4-Chioro-3-methylphenol | VV. Anthracene | VVV.Benzonaphthothiophene | vvv. | V1. | | W. 2-Methylnaphthalene | WW. Carbazole | WWW.Benzo(e)pyrene | www. | W1. | | X. Hexachlorocyclopentadiene | XX. Di-n-butylphthalate | XXX. 2,6-Dimethylnaphthalene | XXXX. | X1. | | Y. 2,4,6-Trichlorophenol | YY. Fluoranthene | YYY. 2,3,5-Trimethylnaphthalene | YYYY. | Y1. | | Z. 2,4,5-Trichlorophenol | ZZ. Pyrene | ZZZ. Perylene | ZZZZ. | Z1. | # LDC#: 43434 # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> | Page:/ | of | |----------------|----| | Reviewer: | 9_ | | 2nd Reviewer:_ | KK | METHOD: GCMS SVOA 8270D-SIM | | Concentration (ng/L) | | (≤30) | Qual | |-------------|----------------------|------|-------|------| | Compound | 4 | 5 | RPD | Quai | | 1,4-Dioxane | 7780 | 7500 | 4 | | V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\42613G2b.wpd # VALIDATION FINDINGS WORKSHEET **Initial Calibration Calculation Verification** | | Page:_ | ∠ or <u></u> ∠ | |-------|------------|-----------------------| | F | Reviewer:_ | 9 | | 2nd F | Reviewer: | KK | METHOD: GC/MS BNA (EPA SW 846 Method 8270C-SIM) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard average RRF = sum of the RRFs/number of standards A_x = Area of compound, C_x = Concentration of compound, %RSD = 100 * (S/X) S = Standard deviation of the RRFs, X = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|--|---------------------------|-------------------|--------------------------|--------------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(<i>50</i> 0 std) | RRF
(50 0 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | KAZ | 5/29/18 | //// (1st internal standard) | 1.618 | 1.618 | 1.686 | 1.686 | 7.57 | 7.57 | | | | | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | - | | | | : | Phenanthrene (4th internal standard) | | | | | | | | | | | Chrysene (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | 2 | 14Z | 4/1/18 | //// (1st internal standard) | 1.471 | 1.471 | 1.437 | 1.437 | 4.02 | 4.02 | | | | 91110 | Naphthalene (2nd internal standard) | | | | | | | | | | | Fluorene (3rd internal standard) | | | | | | | | | | | Phenanthrene (4th internal standard) | | | | | · | | | | | | Chrysene (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | <u> </u> | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | | Naphthalene (2nd internal standard) | | | | | ·
 | | | | | | Fluorene (3rd internal standard) | | | | | | · | | | | | Phenanthrene (4th internal standard) | | | | | ····· | | | | | | Chrysene (5th internal standard) | | | | | | | | | | | Benzo(a)pyrene (6th internal standard) | | | | | | | | Comments: | : Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree with | <u>iin 10.0% of the recalculated</u> | |-----------|---|--------------------------------------| | results. | | | | | | | | | | | # **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | | Page:_ | \angle | of \angle | | |-------|-----------|----------|-------------|--| | F | Reviewer: | _ | 2_ | | | 2nd F | Reviewer: | U | K | | METHOD: GC/MS BNA (EPA SW 846 Method 8270C-SIM) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF Where: ave. RRF = initial calibration average RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF $A_v =$ Area of compound, $C_{\mathbf{x}} =$ Concentration of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard Reported Recalculated Reported Recalculated Calibration Compound (Reference Internal Average RRF **RRF RRF** %D %D Date Standard) (initial) (CC) (CC) Standard ID 1.686 F606011802 (1st internal standard) (2nd internal standard) Naphthalene (3rd internal standard) Fluorene Phenanthrene (4th internal standard) (5th internal standard) Benzo(a)pyrene (6th internal standard) F1606051817 6/51 1.437 1.538 1.538 (1st internal standard) Naphthalene (2nd internal standard) Fluorene (3rd internal standard) Phenanthrene (4th internal standard) (5th internal standard) Benzo(a)pyrene (6th internal standard) (1st internal standard) Naphthalene (2nd internal standard) Fluorene (3rd internal standard) Phenanthrene (4th internal standard) Chrysene (5th internal standard) Benzo(a)pyrene (6th internal standard) | Comments: Refer to | Continuing Calibration | n findings worksheet fo | r list of qualifications | and associated s | samples when reporte | d results do not agree | within 10.0% of the | |-----------------------|------------------------|-------------------------|--------------------------|------------------|----------------------|------------------------|---------------------| | recalculated results. | | | | | | | | | | | | | | | | | # VALIDATION FINDINGS WORKSHEET Surrogate Results Verification | Page:_ | / of_/_ | |---------------|----------------| | Reviewer:_ | q | | 2nd reviewer: | | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C-SIM) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID:___/ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | · | | | | | 1.4-Diaxane-d8 | 500 | 98.326 | 20 | 20 | 0 | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | • | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | Sample ID: | | Surrogate
Spiked | . Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference |
------------------|---------------------|----------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | # VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification | rage | <u></u> | |---------------|---------| | Reviewer: | 9_ | | 2nd Reviewer: | KK | METHOD: GC/MS (EPA SW 846 Method 8270C-SIM) | The percent recoveries (%R) and Relative Percent | Difference (RPD) of the matrix spike and matri | ix spike duplicate were recalculated for the compounds i | identified below | |--|--|--|------------------| | using the following calculation: | | | | % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration MSDC = Matrix spike duplicate concentration MS/MSD samples: ___ | Compound | Ad | ike
ded
S/4 | Sample
Concentration | Spiked Sample
Concentration
(MS//) | | Matrix Spike Percent Recovery | | Matrix Spike Duplicate Percent Recovery | | MS/MSD
RPD | | |--------------|------|-------------------|-------------------------|--|-----|-------------------------------|--------|---|--------|---------------|--------------| | | M.S. | /
MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Acenaphthene | | · | | | | | | | | | | | Pyrene | | | | | | | | | | | | | 1.4-Diexare | 5/00 | 5/60 | 3270 | 8340 | 860 | 99 | 99 | 106 | 106 | # | 4 | | | | | | , | | | , | | | | | | | · | | | | | | | | | | | | | | · | Comments: Refer to Matrix Spike/Mat | <u>rix Spike Duplicates findings works</u> | heet for list of qualification | <u>ns and associated sample</u> | <u>s when reported results</u> | <u>s do not agree within 10.0</u> | % | |-------------------------------------|--|--------------------------------|---------------------------------|--------------------------------|-----------------------------------|---| | of the recalculated results. | #### VALIDATION FINDINGS WORKSHEET # Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page:_ | ∠ ot ∠ | |---------------|----------------------| | Reviewer: | 9 | | 2nd Reviewer: | KIL | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C-SIM) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA) Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS/LCSD samples: NG/120650 | Compound | Ad | oike
Ided . | Conce | oike
entration | | CS
Recovery | ry Percent Recovery | | L CS/I CSD
RPD | | |--------------|------|----------------|-------|-------------------|----------|----------------|---------------------|--------|-------------------|--------------| | | LCS | LCSD | LCS | LCSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Acenaphthene | | | | | | | | | | | | Pyrene | | | | | | | | | | | | 1.4-Dioxane | 5000 | 5000 | 5640 | 5660 | 113 | 113 | //3 | 113 | 0 | 0 | , , | | | | | | | | Comments: Refer to Laboratory Control Sample/Laboratory (| <u> Control Sample Duplicates</u> | findings worksheet for list o | of qualifications and associate | ed samples when reported | |--|-----------------------------------|-------------------------------|---------------------------------|--------------------------| | results do not agree within 10.0% of the recalculated results. | | | | | | | | | | | # **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification** | Page:_ | of | |----------------|----| | Reviewer: | 9_ | | 2nd reviewer:_ | KK | METHOD: GC/MS PAHs (EPA SW 846 Method 8270D-SIM) | M | N | N/A | |--------------|---|-----| | \mathbb{Z} | N | N/A | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Conce | ntratic | $n = \frac{(A_{v})(I_{s})(V_{t})(DF)(2.0)}{(A_{is})(RRF)(V_{o})(V_{t})(\%S)}$ | Example: | |----------------|---------|---|--------------------------------| | A_{x} | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D. 1, 1.4-Bioxan | | A_{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = $(-376)(500)(5)(1)(1)$ | | V_{o} | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | 990/ 1.000 1.3 | | V_{l} | = | Volume of extract injected in microliters (ul) | = 1261.1 NS/L | | V_{t} | = | Volume of the concentrated extract in microliters (ul) | | | Df | = | Dilution Factor. | | | %S | = | Percent solids, applicable to soil and solid matrices only. | | | 2.0 | = Factor of 2 to accoun | nt for GPC cleanup | | | | | |----------|-------------------------|---|--------------------|-------------------------------------|------------------------------------|---------------| | # | Sample ID | Compound | | Reported
Concentration
(NS/L) | Calculated
Concentration
() | Qualification | | | / | 1.4 - Diox | au O | 1260 | | | | | | / | | | · | - | | | | | ļ | | | | , | | | | ļ | | | | | | | | <u></u> | | | | | | | | | | | | | | | | | | | | | - | v a. 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ļ | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 **LDC Report Date:** July 19, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1819352 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | A1-MW-13-SA1 | L1819352-01 | Water | 05/24/18 | | A1-MW-11-SA1 | L1819352-02 | Water | 05/24/18 | | A1-MW-14-SA1 | L1819352-03 | Water | 05/24/18 | | A1-MW-15-SA1 | L1819352-04 | Water | 05/24/18 | | A1-MW-25-SA1 | L1819352-07 | Water | 05/24/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P
(protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. # IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks No field blanks were identified in this SDG. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. # VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ## IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. # XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### **XIV. System Performance** Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1819352 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1819352 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1819352 No Sample Data Qualified in this SDG | SDG | #:42613H2bVALIDATIO
#:L1819352
ratory:_Alpha Analytical, Inc | | LETEN
tage 2E | | WORKSHEET | | P
Revie | Date: 7/23/12
age: _/of /
ewer: | |-------|---|----------------------------------|-------------------------|----------|--|------------|------------------------|---------------------------------------| | MET | HOD: GC/MS 1,4-Dioxane (EPA SW 846 | Method 82 | 70D-SIM | 1) | | | Zna Revie | ewer:_ KK _ | | | camples listed below were reviewed for ea
ation findings worksheets. | ch of the fo | ollowing v | /alidat | ion areas. Validation | n fir | idings are note | ed in attached | | | Validation Area | | | | Comme | ents | | | | I. | Sample receipt/Technical holding times | A | | | | | | | | II. | GC/MS Instrument performance check | Ø | _ | | | | - | | | III. | Initial calibration/ICV | AA | ₹8 | 5254 | \$1570. 10
\$ 20/507 | 21 | (£20) | 0 | | IV. | Continuing calibration | A | 00 | <u> </u> | 20/50/ | 0 | | | | V. | Laboratory Blanks | \$ | | | / / | | | | | VI. | Field blanks | | | | | | | | | VII. | Surrogate spikes | 4 | | | | | | | | VIII. | Matrix spike/Matrix spike duplicates | N | 05 | | | | | | | IX. | Laboratory control samples | \$ | 105 | 13 | | | | | | Χ. | Field duplicates | N | | 1 | | | | | | XI. | Internal standards | A | | | | | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | | | XIII. | Target compound identification | N | | | | | | | | XIV. | System performance | N | | | | | | | | XV. | Overall assessment of data | À | 11 | | | | | | | Note: | N = Not provided/applicable R = Rin | o compounds
sate
eld blank | detected | | D = Duplicate
TB = Trip blank
EB = Equipment blank | | SB=Source bl
OTHER: | ank | | | Client ID | | | | Lab ID | N | latrix | Date | | 1 | A1-MW-13-SA1 | | | | L1819352-01 | <u> </u> v | Vater | 05/24/18 | | 2 | A1-MW-11-SA1 | | | | L1819352-02 | V | Vater | 05/24/18 | | 3 | A1-MW-14-SA1 | | - | | L1819352-03 | V | Vater | 05/24/18 | | 4 | A1-MW-15-SA1 | | | | L1819352-04 | V | Vater | 05/24/18 | | 5 | A1-MW-25-SA1 | | | | L1819352-07 | <u> </u> v | Vater | 05/24/18 | | 6 | | | | | | | | | | 7 | | | | | | \perp | | | | 8 | | | | | | | | | | Notes | S: | | - | Ī | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | L | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 LDC Report Date: July 19, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1819562 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | A1-MW-42-SA1 | L1819562-01 | Water | 05/25/18 | | A1-MW-54-SA1 | L1819562-02 | Water | 05/25/18 | | A1-MW-53-SA1 | L1819562-03 | Water | 05/25/18 | | A1-PZ-19-SA1 | L1819562-04 | Water | 05/25/18 | | A1-MW-52-SA1 | L1819562-05 | Water | 05/25/18 | | A1-MW-01-SA1 | L1819562-06 | Water | 05/25/18 | | A1-MW-01-SA1D | L1819562-07 | Water | 05/25/18 | | A1-MW-31-SA1 | L1819562-08 | Water | 05/25/18 | | A1-MW-53-SA1MS | L1819562-03MS | Water | 05/25/18 | | A1-MW-53-SA1MSD | L1819562-03MSD | Water | 05/25/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was
performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. # V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks No field blanks were identified in this SDG # VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. # VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## X. Field Duplicates Samples A1-MW-01-SA1 and A1-MW-01-SA1D were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentr | ation (ug/L) | | | | |-------------|--------------|---------------|--------------|------|--------| | Compound | A1-MW-01-SA1 | A1-MW-01-SA1D | RPD (Limits) | Flag | A or P | | 1,4-Dioxane | 1840 | 1880 | 2 (≤30) | - | - | #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1819562 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1819562 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1819562 No Sample Data Qualified in this SDG # LDC #: 42613I2b VALIDATION COMPLETENESS WORKSHEET Stage 2B SDG #: <u>L1819562</u> Laboratory: <u>Alpha Analytical, Inc.</u> Date: 7/3/13 Page: _/ of _/___ Reviewer: ____ 2nd Reviewer: _____ METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | National Association Association | | Q = | |-------|--|-------------|---------------------------------------| | | Validation Area | | Comments | | l | Sample receipt/Technical holding times | A | | | II. | GC/MS Instrument performance check | 1 | | | HI. | Initial calibration/ICV | AA | PSO < 15%. 10/ < >0% | | IV. | Continuing calibration | A | RSO 15/0. 1€V ≤ 20/0
CCV ≤ 20/60/1 | | V. | Laboratory Blanks | \forall | | | VI. | Field blanks | N | | | VII. | Surrogate spikes | A | | | VIII. | Matrix spike/Matrix spike duplicates | A | | | IX. | Laboratory control samples | \triangle | 105/0 | | X. | Field duplicates | M | D=6+7 | | XI. | Internal standards | A | / | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | A | | Note: A = Ac A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|----------------|--------|----------| | 1 | A1-MW-42-SA1 | L1819562-01 | Water | 05/25/18 | | 2 | A1-MW-54-SA1 | L1819562-02 | Water | 05/25/18 | | 3 | A1-MW-53-SA1 | L1819562-03 | Water | 05/25/18 | | 4 | A1-PZ-19-SA1 | L1819562-04 | Water | 05/25/18 | | 5 | A1-MW-52-SA1 | L1819562-05 | Water | 05/25/18 | | 6, | A1-MW-01-SA1 | L1819562-06 | Water | 05/25/18 | | 7 | A1-MW-01-SA1D | L1819562-07 | Water | 05/25/18 | | 8 | A1-MW-31-SA1 | L1819562-08 | Water | 05/25/18 | | 9 | A1-MW-53-SA1MS | L1819562-03MS | Water | 05/25/18 | | 10 | A1-MW-53-SA1MSD | L1819562-03MSD | Water | 05/25/18 | | 11 | | | | | | 12 | | | | | | 13 | | | | | # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> METHOD: GCMS SVOA 8270D-SIM | | Concentration (ng/L) | | (≤30) | Ovel | |-------------|----------------------|------|-------|------| | Compound | 6 | 7 | RPD | Qual | | 1,4-Dioxane | 1840 | 1880 | 2 | | V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\42613I2b.wpd # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 LDC Report Date: July 19, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1820050 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | A1-MW-27-SA1 | L1820050-01 | Water | 05/30/18 | | A1-MW-55-SA1 | L1820050-02 | Water | 05/30/18 | | A1-MW-23-SA1 | L1820050-03 | Water | 05/30/18 | | A1-MW-07-SA1 | L1820050-04 | Water | 05/30/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. # IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks No field blanks were identified in this SDG. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. # VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and
therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. # IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. # XII. Compound Quantitation All compounds reported below the reporting limit (RL) were qualified as follows: | Sample | Finding | Flag | A or P | |--------------|--------------------------------------|-----------------|--------| | A1-MW-23-SA1 | All compounds reported below the RL. | J (all detects) | Α | Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to results below the RL, data were qualified as estimated in one sample. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. # MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1820050 | Sample | Compound | Flag | A or P | Reason | |--------------|--------------------------------------|-----------------|--------|-----------------------| | A1-MW-23-SA1 | All compounds reported below the RL. | J (all detects) | Α | Compound quantitation | MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1820050 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1820050 No Sample Data Qualified in this SDG | SDG
_abor | #:_L1820050
ratory:_Alpha Analytical, Inc | S | tage 2B | S WORKSHEET | 1 | Date: 7/2/1 Page: // of // Reviewer: // Reviewer: // | |--------------|---|-------------------------------------|----------------|---|-----------------|--| | METH | HOD: GC/MS 1,4-Dioxane (EPA SW 846 | Method 82 | 70D-SIM) | | | | | | samples listed below were reviewed for ea
ation findings worksheets. | ch of the fo | ollowing valid | lation areas. Validatio | on findings are | noted in attached | | | Validation Area | | | Comm | nents | | | I. | Sample receipt/Technical holding times | A | | | | | | II. | GC/MS Instrument performance check | A | | | | | | III. | Initial calibration/ICV | AA | RSD | < 1570. | [eV= | 20/0 | | IV. | Continuing calibration | A_ | ecv | = 20/50/ | <i>)</i> | | | V. | Laboratory Blanks | A | | | | | | VI. | Field blanks | $\overline{\mathcal{N}}$ | | | | | | VII. | Surrogate spikes | 4 | | | | | | VIII. | Matrix spike/Matrix spike duplicates | \mathcal{N} | CS | | | | | IX. | Laboratory control samples | \triangle | 1001 | <u></u> | | | | X . | Field duplicates | N | 7 | | | | | XI. | Internal standards | A | | | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | XIII. | Target compound identification | N | | | | | | XIV. | System performance | N | | | | | | XV. | Overall assessment of data | \triangleleft | | | | | | Note: | N = Not provided/applicable R = Rin | lo compounds
nsate
ield blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blar | OTHER | urce blank
: | | | Client ID | | | Lab ID | Matrix | Date | | 1 | A1-MW-27-SA1 | | | L1820050-01 | Water | 05/30/18 | | 2 | A1-MW-55-SA1 | | | L1820050-02 | Water | 05/30/18 | | 3 | A1-MW-23-SA1 | | | L1820050-03 | Water | 05/30/18 | | 4 | A1-MW-07-SA1 | | | L1820050-04 | Water | 05/30/18 | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | Votes | s: | -+ | | | | | 1 1 | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma, CTO 17F3803 LDC Report Date: July 19, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1820175 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | EB-20180531 | L1820175-01 | Water | 05/31/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. ### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB-20180531 was identified as an equipment blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO
17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1820175 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1820175 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1820175 No Sample Data Qualified in this SDG | SDG #
Labora | t: <u>L1820175</u>
atory: <u>Alpha Analytical, Inc.</u> | S | tage 2B | S WORKSHEET | F | Date: 7/3/
Page: / of /
Reviewer:
Reviewer: // | | |-----------------|---|--|---------------------------------------|--|-------------------------|---|--| | | IOD: GC/MS 1,4-Dioxane (EPA SW 846 I
amples listed below were reviewed for eac | | | lation areas. Validati | on findings are | noted in attached | | | | alidation findings worksheets. | | | | | | | | | Validation Area | | | Comr | nents | | | | 1. | Sample receipt/Technical holding times | A | | | | | | | II. | GC/MS Instrument performance check | Ď | | | | | | | Ш. | Initial calibration/ICV | AIA | #S0: | < 1570. | 10V=== | 70 | | | IV. | Continuing calibration | 4 | ect = | = 20/50) | 3 | | | | V. | Laboratory Blanks | 4 | | | | | | | VI. | Field blanks | ND | AP = | | | | | | VII. | Surrogate spikes | A | | | · | | | | VIII. | Matrix spike/Matrix spike duplicates | N | 05 | | | | | | IX. | Laboratory control samples | A | 105/- | B | | | | | X. | Field duplicates | N | / | | | | | | XI. | Internal standards | A | | | | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | | XIII. | Target compound identification | N/_ | | | | | | | XIV. | System performance | $\mid \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | | | | | | | XV. | Overall assessment of data | A | | | | | | | Note: | N = Not provided/applicable R = Rins | o compounds
sate
eld blank | detected | D = Duplicate
TB = Trip blank
EB = Equipment bla | SB=Sour
OTHER:
nk | ce blank | | | | Client ID | | | Lab ID | Matrix | Date | | | 1 E | EB-20180531 | | | L1820175-01 | Water | 05/31/18 | | | 2 | | | | | | | | | 3 | | | | | | | | | 4 | | | · · · · · · · · · · · · · · · · · · · | | | | | | 5 | | | | | | | | | 6 | | | | | | | | | 7 | | | | | | | | | 8 | | | | | | | | | Notes: | | | | | | | | | | | | | | | | | | + | | | | | | | | | | | | | | 1 1 | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 **LDC Report Date:** July 16, 2018 Parameters: Perfluorinated Alkyl Acids Validation Level: Stage 4 Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1801037 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | A1-MW-18-SA1 | 1801037-01 | Water | 05/23/18 | | 16-MW-08-SA1 | 1801037-02 | Water | 05/23/18 | | A1-MW-19-SA1 | 1801037-03 | Water | 05/23/18 | | A1-MW-37-SA1 | 1801037-04 | Water | 05/23/18 | | A1-MW-37-SA1D | 1801037-05 | Water | 05/23/18 | | 16-HS-03-SA1 | 1801037-06 | Water | 05/23/18 | | 16-MVV-09-SA1 | 1801037-07 | Water | 05/23/18 | | 16-MW-06-SA1 | 1801037-08 | Water | 05/23/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 Modified All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was checked as applicable. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. For each calibration point, the percent differences (%D) for their true value were less than or equal to 30.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. ### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample FRB-20180523 was identified as a field rinsate blank. No contaminants were found. ### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions: | Spike ID
(Associated Samples) | Compound | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |--------------------------------------|-------------------------|--|------------------------|---|--------| | 16-HS-03-SA1MS/MSD
(16-HS-03-SA1) | PFHpA
PFHxS
PFOA | 140 (70-130)
146 (70-130)
131 (70-130) | -
-
- | J (all detects) J (all detects) J (all detects) | A | | 16-HS-03-SA1MS/MSD
(16-HS-03-SA1) | PFDA
PFDoA
PFTrDA | 132 (70-130)
136 (70-130)
136 (70-130) | -
-
133 (70-130) | NA | - | Relative percent differences (RPD) were within QC limits with the following exceptions: | Spike ID
(Associated Samples) | Compound | RPD
(Limits) | Flag | A or P | |--------------------------------------|----------|-----------------|-----------------|--------| | 16-HS-03-SA1MS/MSD
(16-HS-03-SA1) | PFHpA | 49.6 (≤30) | J (all detects) | A | | 16-HS-03-SA1MS/MSD
(16-HS-03-SA1) | NMeFOSAA | 41.1 (≤30) | NA | - | For 16-HS-03-SA1MS/MSD, no data were qualified for PFBS and PFHxA percent recoveries (%R) and relative percent differences (RPD) outside the QC limits since the parent sample results were greater than 4X the spike concentration. #### VIII. Ongoing Precision Recovery Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions: | OPR ID
(Associated Samples) | Compound | %R (Limits) | Flag | A or P | |---|----------|--------------|------|--------| | B8E0244-BS1
(All samples in SDG 1801037) | PFTrDA | 153 (70-130) | NA | - | #### IX. Field Duplicates Samples A1-MW-37-SA1 and A1-MW-37-SA1D were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ug/L) | | | | | |----------|----------------------|---------------|----------------|----------|--------| | Compound | A1-MW-37-SA1 | A1-MW-37-SA1D | RPD (Limits) | Flag | A or P | | PFBS | 0.230 | 0.252 | 9 (≤30) | · - | - | | PFHxA | 1.66 | 1.71 | 3 (≤30) | <u>-</u> | - | | PFHpA | 0.0328 | 0.0322 | Not calculable | - | - | | PFHxS | 0.155 | 0.152 | 2
(≤30) | - | - | | PFOA | 0.0196 | 0.0203 | Not calculable | - | - | | PFNA | 0.00170 | 0.00210 | Not calculable | - | - | | PFOS | 0.0458 | 0.0416 | Not calculable | - | - | | PFUnA | 0.00525U | 0.00135 | Not calculable | - | - | RPDs were not calculated when sample results in one or both samples were less than 5x the limit of quantitation (LOQ). # X. Internal Standards All internal standard areas and retention times were within QC limits with the following exceptions: | Sample | Internal
Standards | Area (Limits) | Affected
Compound | Flag | A or P | |---------------|-----------------------|---------------|----------------------|-----------------|--------| | A1-MW-18-SA1 | ¹³ C3-PFBS | 170 (50-150) | PFBS | J (all detects) | Р | | 16-MW-08-SA1 | ¹³ C3-PFBS | 187 (50-150) | PFBS | J (all detects) | Р | | A1-MW-19-SA1 | ¹³ C3-PFBS | 214 (50-150) | PFBS | J (all detects) | Р | | A1-MW-37-SA1 | ¹³ C3-PFBS | 228 (50-150) | PFBS | J (all detects) | Р | | A1-MW-37-SA1D | ¹³ C3-PFBS | 161 (50-150) | PFBS | J (all detects) | Р | | 16-HS-03-SA1 | ¹³ C3-PFBS | 154 (50-150) | PFBS | J (all detects) | Р | | 16-MW-09-SA1 | ¹³ C3-PFBS | 153 (50-150) | PFBS | J (all detects) | Р | | 16-MW-06-SA1 | ¹³ C3-PFBS | 214 (50-150) | PFBS | J (all detects) | Р | ### XI. Compound Quantitation All compound quantitations met validation criteria. All compounds reported below the limit of quantitation (LOQ) were qualified as follows: | Sample | Finding | Flag | A or P | |---|---------------------------------------|-----------------|--------| | A1-MW-18-SA1
16-MW-08-SA1
A1-MW-19-SA1
A1-MW-37-SA1
A1-MW-37-SA1D
16-MW-09-SA1
16-MW-06-SA1 | All compounds reported below the LOQ. | J (all detects) | А | ### XII. Target Compound Identifications All target compound identifications met validation criteria. ## XIII. System Performance The system performance was acceptable. ### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to MS/MSD %R and RPD, internal standard %R, and results below the LOQ, data were qualified as estimated in eight samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. # MCAS Yuma, CTO 17F3803 Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1801037 | Sample | Compound | Flag | A or P | Reason | |---|---------------------------------------|---|--------|---| | 16-HS-03-SA1 | PFHpA
PFHxS
PFOA | J (all detects) J (all detects) J (all detects) | A | Matrix spike/Matrix spike
duplicate (%R) | | 16-HS-03-SA1 | PFHpA | J (all detects) | Α | Matrix spike/Matrix spike duplicate (RPD) | | A1-MW-18-SA1
16-MW-08-SA1
A1-MW-19-SA1
A1-MW-37-SA1
A1-MW-37-SA1D
16-HS-03-SA1
16-MW-09-SA1
16-MW-06-SA1 | PFBS | J (all detects) | Р | Internal standards (%R) | | A1-MW-18-SA1
16-MW-08-SA1
A1-MW-19-SA1
A1-MW-37-SA1
A1-MW-37-SA1D
16-MW-09-SA1
16-MW-06-SA1 | All compounds reported below the LOQ. | J (all detects) | А | Compound quantitation | # MCAS Yuma, CTO 17F3803 Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1801037 No Sample Data Qualified in this SDG # MCAS Yuma, CTO 17F3803 Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1801037 No Sample Data Qualified in this SDG # LDC #: 42613M96 VALIDATION COMPLETENESS WORKSHEET SDG #: 1801037 Stage 4 Reviewer: _____ Laboratory: Vista Analytical Laboratory METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) Monthsol) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |------------------|--|--------------|--------------------------------------| | 1. | Sample receipt/Technical holding times | A | | | II. | GC/MS Instrument performance check | \ | | | III. | Initial calibration/ICV | AA | RSO = 20/0. Y True value /ICV = 30/0 | | IV. | Continuing calibration | # | acv = 30% | | V. | Laboratory Blanks | A | | | VI. | Field blanks | NO | TRB=9 | | -∨II. | Surrogate spikes | \mathbb{A} | | | VIII. | Matrix spike/Matrix spike duplicates | W | | | IX. | Laboratory control samples | W | OPR | | Χ. | Field duplicates | W | 8=4+5 | | XI. | Internal standards | w | | | XII. | Compound quantitation RL/LOQ/LODs | A | | | XIII. | Target compound identification | A | | | XIV. | System performance | A | | | XV. | Overall assessment of data | | | Note: A = Acceptable N = Not provided/applicable R = Rir ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |----|-----------------|---------------|--------|----------| | 1 | A1-MW-18-SA1** | 1801037-01** | Water | 05/23/18 | | 2 | 16-MW-08-SA1** | 1801037-02** | Water | 05/23/18 | | 3 | A1-MW-19-SA1** | 1801037-03** | Water | 05/23/18 | | 4 | A1-MW-37-SA1** | 1801037-04** | Water | 05/23/18 | | 5 | A1-MW-37-SA1D** | 1801037-05** | Water | 05/23/18 | | 6 | 16-HS-03-SA1** | 1801037-06** | Water | 05/23/18 | | 7 | 16-MW-09-SA1** | 1801037-07** | Water | 05/23/18 | | 8 | 16-MW-06-SA1** | 1801037-08** | Water | 05/23/18 | | 9 | FRB-20180523 | 1801037-09 | Water | 05/23/18 | | 10 | 16-HS-03-SA1MS | 1801037-06MS | Water | 05/23/18 | | 11 | 16-HS-03-SA1MSD | 1801037-06MSD | Water | 05/23/18 | | 12 | | | | | | 13 | | | | | | 14 | | | | | ### **VALIDATION FINDINGS CHECKLIST** Page: / of Page: / Of Page: // Method: LC/MS PFOS/PFOAs (EPA Method 537M) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|---|---------------------|--| | J. Technical holding times | 101 | | 1981 | | | All technical holding times were met. | | | | | | Cooler temperature criteria was met. | | | | | | II. LC/MS instrument performance check | | | | | | Were the instrument performance reviewed and found to be within the specified criteria? | / | 1 | | | | Were all samples analyzed within the 12 hour clock criteria? | | | Sec. 10. | | | Illa. Initial calibration | | eti ya | en e | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | (| | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990? | | | | | | Were the S/N ratio for all compounds within validation criteria? | | | | | | Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard? | / | | and Connect Limited | | | IIIb.Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | ` | | Were all percent differences (%D) ≤ 30% | | | | | | IV. Continuing calibration | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Was a continuing calibration analyzed daily? | / | | | | | Were all percent differences (%D) ≤ 30% | | | | | | Were the S/N ratio for all compounds within validation criteria? | / | | | | | Were all the retention times within the acceptance windows? | | | | en e | | V. Laboratory Blanks | Γ | ı | ı | | | Was a method
blank associated with every sample in this SDG? | / | | | | | Was a method blank analyzed for each matrix and concentration? | / | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Field blanks were identified in this SDG. | / | | | | | Target compounds were detected in the field blanks. | | | | | | VII. Surrogate spikes | T | | | | | Were all surrogate %R within the QC limits? | | | | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | CONTRACTOR OF THE PARTY | / | | | VIII. Matrix spike/Matrix spike duplicates | | | | | # VALIDATION FINDINGS CHECKLIST Page: of 2 Reviewer: 0 2nd Reviewer: Kik | Validation Area | \ | N. | MA | Findings (Comments | |--|-----|----|----|--------------------| | | Yes | No | NA | Findings/Comments | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | / | | | | IV. Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | ļ | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | | | | | Target compounds were detected in the field duplicates. | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within acceptance limits? | | | | | | XII. Target compound identification | | 19 | | | | Were the retention times of reported detects within the RT windows? | | | | | | XIII. Compound quantitation/CRQLs | | 1 | | | | Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data | 1 | | 1 | | | Overall assessment of data was found to be acceptable. | / | | | | # TARGET COMPOUND WORKSHEET #### METHOD: PFOS/PFOAs | WETHOD: PFOS/PFOAS | | | | |--|---|---|---| | A. Perfluorohexanoic acid (PFHxA) | | | | | B. Perfluoroheptanoic acid (PFHpA) | | | | | C. Perfluorooctanoic acid (PFOA) | · | | | | D. Perfluorononanoic acid (PFNA) | | | | | E. Perfluorodecanoic acid (PFDA) | | | | | F. Perfluoroundecanoic acid (PFUnA) | | | | | G. Perfluorododecanoic acid (PFDoA) | | | | | H. Perfluorotridecanoic acid (PFTriDA) | | | | | I. Perfluorotetradecanoic acid (PFTeDA) | | | | | J. Perfluorobutanesulfonic acid (PFBS) | | | | | K. Perfluorohexanesulfonic acid (PFHxS) | | i | | | L. Perfluoroheptanesulfonic acid (PFHpS) | | | | | M. Perfluorooctanesulfonic acid (PFOS) | | | | | N.Perfluorodecanesulfonic acid (PFDS) | | | | | O. Perfluorooctane Sulfonamide (FOSA) | | | | | P. Perfluorobutanoic acid (PFBA) | | | | | Q. Perfluoropentanoic acis (PFPeA) | | | | | R. 6:2FTS | | | | | S. 8:2 FTS | | | | | T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) | | | | | U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) | | | | | | | , | | | | | | | | | | | · | | | | | | | | | | | LDC #: 42613 M96 # VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates/Duplicates Reviewer: A METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) | Please see qualifications below for all questions answered "N". Not applicable questions are identified a | as "N | N// | |---|-------|-----| |---|-------|-----| Y N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG? Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? Were all duplicate sample relative percent differences (RPD) or differences within QC limits? | # | Date | MS/MSD/DUP ID | Compound | MS
%R (Limits) | MSD
%R (Limits) | RPD
(Limits) | Associated Samples | Qualifications | |----------|------|---------------|----------|-------------------|--------------------|-----------------------|--------------------|----------------| | | | 10/11 | PFBS | 182(70-130) | | 45.9 (=30)
329 (V) | 6 (dets) | No Cenal >4xxx | | | | | PFHPA | -210(1/5 | | 329 (V) | | | | | | | PFHPA | 140 (TO-130) | | | | blots A | | | | | PFHXS | 1461) | | | | | | | | | PFOA | 131() | | | V | | | | | | PFDA | 132() | | | (ND) | | | ļ | | | PFDOA | B6()
B6() | | | | | | | | | PFHPA | 136 (\) | 133 (70-130) | 406. 130 | V | 1 | | | | | | | | 49.6(= 30) | (dets) | Jet A | | | | | MeFOSAA | | | 41.1 (V) | (ND) | d | , | <u> </u> | | | | | | | | | # VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) | Page: _ | | |---------------|----| | Reviewer: | 9 | | 2nd Reviewer: | KK | METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a LCS required? Y/N N/A Were the LCS percent Y/N) N/A Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | # | LCS/LCSD ID | Compound | LCS
%R (Limits) | LCSD
%R (Limits) | RPD (Limits) | Associated Samples | Qualifications | |---|-------------|----------|--------------------|---------------------|--------------|--------------------|----------------| | | B860-14-85 | | (') | () | () | | | | | 13 | | () | () | \ (() | | | | | | | () | () | () | | | | | | | () | () | () | | | | | B820241B | PFTYDA | 153 (70-130) | () | () | A11 (NO) | USAP | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | | | | † | <u> </u> | | | | · | () | () | () | | | | | | | () | | (-) | | | | | | | () | | () | | | | | | | () | () | () | | | | | | | () | (') | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | , | | | | | () | | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | # LDC#: 4-263M96 # VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> Page: / of / Reviewer: / 2nd Reviewer: / K METHOD: PFCs | | Concentration (ug/L) 4 5 | | (≤30) | | |----------|--------------------------|---------|-------|------| | Compound | | | RPD | Qual | | PFBS | 0.230 | 0.252 | 9 | | | PFHxA | 1.66 | 1.71 | 3 | | | PFHpA | 0.0328 | 0.0322 | 2 NC | | | PFHxS | 0.155 | 0.152 | 2 | | | PFOA | 0.0196 | 0.0203 | NC | | | PFNA | 0.00170 | 0.00210 | 24 NC | | | PFOS | 0.0458 | 0.0416 | 20 NC | | | PFUnA | 0.00525U | 0.00135 | NC | | V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\42613M96.wpd # **VALIDATION FINDINGS WORKSHEET Internal Standards** | Page:_ | of | |---------------|----| | Reviewer:_ | 9 | | 2nd Reviewer: | KK | METHOD: LC/MS PFCs Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were all internal standard area counts within 50-150% limits? Y)N N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? | # | Date | Sample ID | Internal
Standard | Area (Limits) | RT (Limits) | Qualifications | |---|------|-----------|----------------------|---------------|-------------|----------------| | | | 1 (dets) | 13C3-PFBS | 170 (50-150) | | JAHAP LPFBS | | | | 2 | | 187 | | / | | | - | 3 | | 214 | | | | | | | | 228 | | | | | | 4 | | | | | | | | 5 | | 16) | | | | | | 6 | | 154 | | | | | | 7 | | 153 | | | | | | 8 | | 214 | | <u> </u> | | | | | | | | | | | | 10 (US) | | 167 | | No Ceral | | | | 11 (NSD) | V | 165 | | | | 1 | LDC #: \$63N 96 # Validation Findings Worksheet Initial Calibration Calculation Verification Method: PFCs (EPA Method 537) | Calibration | | and the second s | | (Y) | (X) | (X^2) | |-------------|-------------------
--|-------------|-----------|-------|--------| | Date | Instrument/Column | Compound | Standard | Response | Conc. | Conc. | | 6/6/2018 | M2 | PFBS | 0 | 0.51953 | 0.25 | 0.0625 | | | | | s1 | 0.9040925 | 0.5 | 0.25 | | | | | \$ 2 | 1.9572675 | 1 | 1 | | | | | s3 | 3.7049862 | 2 | 4 | | | | | s4 | 10.06541 | 5 | 25 | | | | | s5 | 19.886856 | 10 | 100 | | | | | s6 | 99.722347 | 50 | 2500 | | | | | s7 | 204.60758 | 100 | 10000 | | | | | s8 | 513.09516 | 250 | 62500 | | | | | s 9 | 1017.3084 | 500 | 250000 | | Regression Output | Calcı | ulated | Report | ed | |------------------------------------|-------------|--------------|---------|-------------| | Constant | С | -0.63805 | С | -0.0700934 | | Std Err of Y Est | | | | | | R Squared | | 0.9999897 | | 0.9999340 | | Degrees of Freedom | | | | | | | b | а | b | а | | X Coefficient(s) | 2.063159148 | -5.34413E-05 | 2.03725 | 2.30679E-06 | | Std Err of Coef. | | | | | | | | | | | | Correlation Coefficient | | 0.99995 | | | | Coefficient of Determination (r^2) | | 0.999990 | | | LDC #: 42613M96 # Validation Findings Worksheet Initial Calibration Calculation Verification Method: PFCs (EPA Method 537) | Calibration | | | | (Y) | (X) | (X^2) | |-------------|-------------------|----------|------------|-------------|-------|--------| | Date | Instrument/Column | Compound | Standard | Response | Conc. | Conc. | | 6/6/2018 | M2 | PFOA | 0 | 0.2482712 | 0.25 | 0.0625 | | | | | s1 | 0.5747737 | 0.5 | 0.25 | | | | | s 2 | 1.0592625 | 1 | 1 | | | | | s3 | 1.846235 | 2 | 4 | | | | | s4 | 4.6900387 | 5 | 25 | | | | | s 5 | 10.243193 | 10 | 100 | | | | | s6 | 51.521462 | 50 | 2500 | | | | | s7 | 93.85144027 | 100 | 10000 | | | | | s8 | 228.044994 | 250 | 62500 | | | | | s9 | 451.7265496 | 500 | 250000 | | Regression Output | Calcu | ılated | Report | ted | |------------------------------------|-------------|-------------|----------|--------------| | Constant | С | 0.76340 | С | 0.0441882 | | Std Err of Y Est | | | | | | R Squared | | 0.9998726 | | 0.9994240 | | Degrees of Freedom | | | | | | | b | а | b | а | | X Coefficient(s) | 0.931889278 | -6.1517E-05 | 0.964706 | -0.000132122 | | Std Err of Coef. | | | | | | : | | | | | | Correlation Coefficient | | 0,999936 | | | | Coefficient of Determination (r^2) | | 0.999873 | | | LDC #: 436BM96 # Validation Findings Worksheet Initial Calibration Calculation Verification Page: 3 of 3 Reviewer: 2 2nd Reviewer: KK Method: PFCs (EPA Method 537) | Calibration | | | | (Y) | (X) | (X^2) | |-------------|-------------------|----------|------------|-------------|-------|--------| | Date | Instrument/Column | Compound | Standard | Response | Conc. | Conc. | | 6/13/2018 | M2 | PFHxA | 0 | 0.4266035 | 0.25 | 0.0625 | | | | | s1 | 0.97093 | 0.5 | 0.25 | | | | | s2 | 1.9639255 | 11 | 1 | | | | | s3 | 3.6634565 | 2 | 4 | | | | | s4 | 8.4481905 | 5 | 25 | | | | | s 5 | 15.881127 | 10 | 100 | | | | | s6 | 85.352945 | 50 | 2500 | | | | | s7 | 154.4073192 | 100 | 10000 | | | | | s8 | 412.8312447 | 250 | 62500 | | | | | s9 | 789.7483287 | 500 | 250000 | | Regression Output | Calci | ulated | Reported | | | |------------------------------------|-------------|--------------|----------|--------------|--| | Constant | С | -0.57068 | С | 0.0713566 | | | Std Err of Y Est | | | | | | | R Squared | | 0.9997320 | | 0.9993330 | | | Degrees of Freedom | | | | | | | | b | а | b | а | | | X Coefficient(s) | 1.676648676 | -0.000187679 | 1.64736 | -0.000124659 | | | Std Err of Coef. | | | | | | | | | | | | | | Correlation Coefficient | | 0.999866 | | | | | Coefficient of Determination (r^2) | | 0.999732 | | | | # **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | | Page:_ | or | |-----|-----------|----| | | Reviewer: | 9 | | 2nd | Reviewer: | KK | METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_{is} = Area of associated internal standard A_x = Area of compound, C_x = Concentration of compound, C_{is} = Concentration of internal standard | | | | | : | | Reported | Recalculated | Reported | Recalculated | |---|--------------|---------------------|-----------------|--------------------------|--------------------------|-------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Refer | rence Internal Standard) | Average
RRF (initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | 18060THD-3 | 3/7/3 | PFBS | (1st internal standard) | 1.0 | 0.913 | 0.911 | 2.7. | 8.9 | | | | , | PFOA | (2nd internal standard) | 1.0 | 1.05 | 1.06 | 3.4 | 5.8 | | | | | | (3rd internalstandard) | | | | | | | 2 | 1866142.28 | 6/7/18 | PFB5 | (1st internal standard) | 10.0 | 9.27 | 9.27 | 7.3 | 7.3 | | | | , , | PFOA . | (2nd internal standard) | 10.0 | 9.52 | 9.53 | 4.8 | 4.7 | | | | | | (3rd internalstandard) | | | | | / | | 3 | 1866014-45 | 6/1/18 | #\$S | (1st internal standard) | 1.0 | 0.885 | 0.884 | 11.5 | 11.8 | | | | 7 / | PTOA | (2nd internal standard) | 1.0 | 1.10 | 1.10 | 9.8 | 10.1 | | | | | | (3rd internalstandard) | | | | | | | 4 | 1806 LAND 40 | 6/13/8 | PPHX A | (1st internal standard) | 10.0 | 10.4 | 10.4 | 4.2 | 4.5 | | | | / / | | (2nd internal standard) | | | | | | | | | | | (3rd internalstandard) | | | | | | | Comments: | Refer to Continuing | Calibration findings | worksheet for list | of qualifications a | and associated sar | nples when repo | rted results do n | <u>ot agree withi</u> | n 10.0% o | f the | |----------------|---------------------|----------------------|--------------------|---------------------|--------------------|-----------------|-------------------|-----------------------|-----------|-------| | recalculated r | esults | | · | | | <u> </u> | · . | # VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | ot | |---------------|----| | Reviewer: | 9 | | 2nd Reviewer: | KK | METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) | The percent recoveries (%R) and Relative Percent Difference | ce (RPD) of the matrix spike and m | natrix spike duplicate we | e recalculated for the compounds identified below | |---|------------------------------------|---------------------------|---| | using the following calculation: | | | | % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SC = Sample concentation RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration SA = Spike added MSDC = Matrix spike duplicate concentration MS/MSD samples: 10/11 | Compound | Ad | oike
ded
(64) | Sample
Concentration
() | Spiked Sample Concentration Percent Recovery | | Matrix Spike Duplicate Percent Recovery | | MS/MSD
RPD | | | | |----------|-------|---------------------|--------------------------------|---|-------|---|--------|---------------|--------|----------|--------------| | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | PFBS | 0.000 | 0.0883 | 0.582 | 0.746 | 0.682 | 182 | 13/ | 114 | 113 | 45.9 | 45.9 | | FAOA | V | | 0.0218 | it | 0.113 | 131 | 131 | 103 | 103 | 23.9 | 239 | <i>-</i> |
 | | | | | | | | | | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings wo | orksheet for list of qualifications and | <u>associated samples when reported</u> | <u>d results do not agree within 10.0%</u> | |---|---|---|--| | of the recalculated results. | | | | | | | | | | | | | | | | | | | # VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page:or | |------------------| | Reviewer: | | 2nd Reviewer: KK | METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS/LCSD samples: BBED244-B5/ | Compound | Ad | ike
ded
) | Conce | oike
nt/ation | | CS
Recovery | L CSD Percent Recovery | | I CS/I CSD | | |---|--------|-----------------|--------|------------------|----------|----------------|------------------------|---------|------------|--------------| | Charles A sub-section (1) and the section | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | PTBS | 0.0800 | NA | 0.0918 | NA | 115 | 115 | | | | | | PFOA | V | • | 0.0941 | V | 118 | 118 | | | | | | | | | | | | | :
: | | | | | | | | | | | | | | | · | w · | Comments: | Refer to Laborato | ry Control | Sample/Labor | atory Contro | l Sample Dι | uplicates fi | ndings wo | rksheet for | list of g | ualificatio | ns and a | ssociated | samples v | when re | ported | |---------------|---------------------|-------------|-----------------|--------------|-------------|--------------|-----------|-------------|-----------|-------------|----------|-----------|-----------|---------|--------| | results do no | ot agree within 10. | 0% of the r | recalculated re | sults. | | | | | | | | | | | - | · | | | | | | | | | | | | | | | # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | | |---------------|----| | Reviewer: | 9 | | 2nd reviewer: | KK | METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) Factor of 2 to account for GPC cleanup | ł | ሻ | N | N/A | |---|---|---|-----| | | Y | N | N/A | 2.0 Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Conce | entratio | on = $(A_{s})(I_{s})(V_{s})(DF)(2.0)$
$(A_{s})(RRF)(V_{s})(V_{s})(%S)$ | Example: | |----------------|----------|---|--| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D, TTDA : | | A_{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | 100/ 100 25 100 100 X125 | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc10.964706+ (0.964706)-14x(-0.00013217)(-0.004) | | V _° | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | ()(2)(-0.000)(32/2)(0.1/3) | | V _i | = | Volume of extract injected in microliters (ul) | = 1.87 ns/2
= 0.00187 Mp | | V_t | = | Volume of the concentrated extract in microliters (ul) | 7 , | | Df | = | Dilution Factor. | - 10018-7 Meb. | | %S | = | Percent solids, applicable to soil and solid matrices | -0.00/0// | | # | Sample ID | Compound | Reported
Concentration | Calculated
Concentration
() | Qualification | |---|--
--|---------------------------|------------------------------------|---------------| | | 1 | PFOA | 0.00187 | | | | | , | | | | | | | | | | <u> </u> | | | | | and the second s | , | in the second se | | | | | | | | | | | | | | | | | | | Tetra Tech EC, Inc. January 2, 2019 17885 Von Karman Avenue, Suite 500 Irvine, CA 92614 ATTN: Ms. Sabina Sudoko SUBJECT: MCAS Yuma, CTO 3803, Data Validation Dear Ms. Sudoko, Enclosed are the final validation reports for the fractions listed below. These SDGs were received on December 10, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis. #### LDC Project #43888: ### SDG # Fraction 280-116898-1, 280-116942-1 280-117007-1, 280-117103-1 280-117110-1, L1846366 L1846592, L1846856 L1847243, L1847316 1803615, 1803626 1803659, 1803676 1803678 Volatiles, 1,4-Dioxane, Wet Chemistry, Perfluoroalkyl and Polyfluoroalkyl Substances The data validation was performed under Stage 2B & 4 guidelines. The analyses were validated using the following documents, as applicable to each method: - Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona; April 2018 - U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1; 2017 - USEPA National Functional Guidelines for Superfund Organic Methods Data Review; January 2017 - USEPA National Functional Guidelines for Inorganic Superfund Data Review; January 2017 - EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014 Please feel free to contact us if you have any questions. Sincerely, Shauna McKellar Project Manager/Chemist Attachment 1 5,417 pages-ADV LDC #43888 (Tetra Tech-EC, Inc.-Irvine, CA / MCAS Yuma, CTO 3803) Stage 2B/4 ADR/NEDD 80/20 PO# 1153059 (3) (3) ,4-Diox CI,SO, Fe II (8270D (3500 VOA PFAs NO₃-N DATE DATE Нα LDC SDG# REC'D DUE (8260B) -SIM) (9056A) -Fe B) (9040C) (537)| w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w s w s ws w s w s w s w s w s w Matrix: Water/Soil 12/10/18 01/02/19 0 0 280-116898-1 280-116898-1 Α 12/10/18 01/02/19 8 0 6 0 6 0 6 0 0 В 01/02/19 9 0 0 280-116942-1 12/10/18 С 7 0 6 280-117007-1 12/10/18 01/02/19 6 0 0 6 0 D 12/10/18 01/02/19 8 0 6 0 6 0 6 280-117103-1 0 4 0 2 0 2 0 2 280-117110-1 12/10/18 01/02/19 0 F L1846366 12/10/18 01/02/19 1 0 F 0 L1846366 12/10/18 01/02/19 G L1846592 12/10/18 01/02/19 8 0 01/02/19 6 Н 12/10/18 L1846856 7 L1847243 12/10/18 01/02/19 0 3 L1847316 12/10/18 01/02/19 0 0 1803615 12/10/18 01/02/19 1803615 12/10/18 01/02/19 8 0 1803626 12/10/18 01/02/19 9 0 7 Μ 1803659 12/10/18 01/02/19 0 Ν 01/02/19 8 0 1803676 12/10/18 0 1803678 12/10/18 01/02/19 4 0 32 0 37 0 28 0 28 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T/SM 0 Total # Data Validation Report MCAS Yuma, CTO 3803 SDGs: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1, L1846366, L1846592, L1846856, L1847243, L1847316, 1803615, 1803626, 1803659, 1803676, and 1803678 Prepared for **Tetra Tech EC, Inc.** 17885 Von Karman Avenue, Suite 500 Irvine, CA 92614 Prepared by Laboratory Data Consultants, Inc 2701 Loker Ave West, Suite 220 Carlsbad, CA 92010 January 2, 2019 #### INTRODUCTION This Data Validation Report (DVR) presents Stage 2B and Stage 4 data validation results for samples collected during the November 2018 sampling period. Data validation was performed in accordance with the Final Sampling and Analysis Plan (SAP) for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), a modified outline of the US EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017), and a modified outline of the US EPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (January 2017). Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B 1,4-Dioxane by EPA SW 846 Method 8270D utilizing Selective Ion Monitoring (SIM) Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by EPA Method 537 Modified #### Wet Chemistry: Chloride, Nitrate as Nitrogen, and Sulfate by EPA SW 846 Method 9056A Ferrous Iron by Standard Method 3500-Fe B pH by EPA SW 846 Method 9040C For samples reviewed by automated data review, the sample identification and methods of analyses performed on each sample is presented in Attachment 1. Overall data qualification summary is presented in Attachment 2. Stage 2B Automated Data Review outliers are presented in Enclosure I. DVRs for samples on which Stage 4 validation was performed are presented in Enclosure II. Validation for 1,4-Dioxane was performed manually and DVRs for Stage 2B and Stage 4 manual validation are also presented in Enclosure II. All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results for sample holding times, initial and continuing calibrations, laboratory blanks, initial and continuing calibration blanks (ICB/CCBs), surrogates, matrix spike/matrix spike duplicates (MS/MSD), laboratory control sample/laboratory control sample duplicates (LCS/LCSD), ongoing precision recovery (OPR), internal standards, trip blanks, equipment blanks, field rinsate blanks, and field duplicates. Approximately 20 percent of samples were subjected to Stage 4 evaluation as indicated in Attachment 1, which comprises a review of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. Automated data review was performed on all QC summary results using the Automated Data Review (ADR) software program (LDC, 2013) with the exception of the calibrations, ICB/CCBs, and internal standards, and all QC for 1,4-Dioxane, which were validated manually. Quality assurance (QA)/QC criteria specified in the SAP, DoD QSM, and NFGs were incorporated with the program's reference library to assess compliance with project requirements. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not applicable): Data did not warrant qualification since detected results only are affected and the compound was not detected in the associated samples. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to
indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt & Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met with the exception of eight samples for PFAs, twenty-eight samples for pH, one sample for nitrate as N, and twenty-eight samples for ferrous iron. Due to grossly exceeded holding times (e.g., >2x recommended holding time), 23 ferrous iron results were qualified as rejected (R). The remainder of the data were qualified as detected estimated (J) and non-detected estimated (UJ) as applicable. The details regarding the qualification of data are provided in Enclosures I and II. #### II. Instrument Performance Check A tune was performed at 12 hour intervals as required by the methods. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification All criteria for the initial calibration and initial calibration verifications of each method were met. #### IV. Continuing Calibration All criteria for the continuing calibration verifications of each method were met with the following exceptions: | SDG/
Method | Date | Compound | %D
(Limits) | Associated
Samples | Flag | A or P | |----------------------|----------|----------|----------------|---|----------------------|--------| | 1803676/
537 Mod. | 12/03/18 | PFTeDA | 42.4 (≤30) | A1-MW-11-SA2
A1-MW-13-SA2
A1-MW-14-SA2
A1-MW-15-SA2
A1-MW-37-SA2
A1-MW-37-SA2D
FRB-20181115
A1-MW-31-SA2 | UJ (all non-detects) | A | | 1803678/
537 Mod. | 12/03/18 | PFTeDA | 42.4 (≤30) | A1-MW-01-SA2
A1-MW-42-SA2
FRB-20181116
EB-20181116 | UJ (all non-detects) | Α | #### V. Laboratory Blanks Laboratory blanks were performed as required by the methods. No contaminant concentrations were detected in the laboratory blanks reviewed by the ADR software program with the exception of several blanks for chloride, nitrate as N, and sulfate. The associated sample results were not detected or were significantly greater than the concentrations found in the blanks, therefore no data were qualified. The details are presented in Enclosures I and II. No contaminant concentrations were detected in the initial or continuing calibration blanks with the following exceptions: | SDG/
Method | Laboratory
Blank ID | Analyte | Maximum
Concentration | Associated Samples | |------------------------|------------------------|--------------------------------|-----------------------------|--| | 280-116898-1/
9056A | ICB/CCB | Nitrate as Nitrogen
Sulfate | 0.04526 mg/L
0.3841 mg/L | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-MW-51-SA2
A1-PZ-19-SA2
A1-MW-52-SA2 | | 280-116942-1/
9056A | ICB/CCB | Sulfate | 0.6931 mg/L | 16-HS-03-SA2
16-MW-06-SA2
16-MW-08-SA2
16-MW-09-SA2
A1-MW-19-SA2 | | 280-116942-1/
9056A | ICB/CCB | Chloride | 0.3086 mg/L | 16-MW-06-SA2
16-MW-08-SA2
16-MW-09-SA2
A1-MW-53-SA2 | | 280-117007-1/
9056A | ICB/CCB | Chloride | 0.2558 mg/L | A1-MW-07-SA2
A1-MW-23-SA2
A1-MW-25-SA2
A1-MW-27-SA2
A1-MW-55-SA2 | | 280-117007-1/
9056A | ICB/CCB | Chloride | 0.2618 mg/L | A1-MW-54-SA2 | | 280-117103-1/
9056A | ICB/CCB | Chloride
Sulfate | 0.2982 mg/L
0.4094 mg/L | A1-MW-11-SA2
A1-MW-13-SA2
A1-MW-14-SA2
A1-MW-15-SA2
A1-MW-37-SA2
A1-MW-31-SA2 | | 280-117103-1/
9056A | ICB/CCB | Nitrate as N | 0.04805 mg/L | A1-MW-11-SA2
A1-MW-13-SA2
A1-MW-14-SA2
A1-MW-15-SA2
A1-MW-37-SA2 | | 280-117103-1/
9056A | ICB/CCB | Nitrate as N | 0.04749 mg/L | A1-MW-31-SA2 | | 280-117110-1/
9056A | ICB/CCB | Chloride
Sulfate | 0.6147 mg/L
0.3987 mg/L | A1-MW-42-SA2 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were not detected or were significantly greater than the concentrations found in the associated blanks. #### VI. Field Blank Samples Five trip blanks were collected and analyzed for VOCs. No contaminants were found. One equipment blank was collected and analyzed for VOCs and PFAs. No contaminants were found. Five field rinsate blanks were collected and analyzed for PFAs. No contaminants were found. #### VII. Surrogate Spikes Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the exception of sample EB-20181116 in SDG 280-117110-1 for VOCs. No data were qualified due to high %Rs since the associated results were non-detected. #### IX. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the exception of one MS/MSD pair for 1,1-dichloroethene, one MS/MSD pair for PFTeDA, one MS/MSD pair for sulfate, three MS/MSD pairs for ferrous iron. The ferrous iron results in sample A1-MW-42-SA2 was qualified as rejected (R) due to MS/MSD %Rs grossly outside QC limits (i.e., < 30%). The remainder of the associated sample results were qualified as detected estimated (J) or non-detected estimated (UJ) as applicable. The details regarding the qualification of data are provided in Enclosures I and II. #### X. Duplicate Sample Analysis Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. #### XII. Laboratory Control Samples/Ongoing Precision Recovery Laboratory control samples (LCS) and laboratory control sample duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits. Ongoing precision recovery (OPR) samples were analyzed as required by Method 537 Mod. Percent recoveries (%R) were within QC limits with the exception of two OPR samples for PFTeDA. No data were qualified due to high %Rs since the associated results were non-detected. The details are presented in Enclosure I. #### XIII. Field Duplicate Samples Three field duplicate pairs were collected and analyzed for all methods. All RPDs were within QC limits. RPDs were not calculated when sample results in one or both samples were less than 5X the limit of quantitation (LOQ). The field duplicate result comparisons are provided in Enclosures I and II. #### XIV. Internal Standards/Labeled Compounds All internal standard areas and retention times were within QC limits. All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits. #### XV. Compound Quantitation The laboratory reporting limits were evaluated. All laboratory reporting limits met the specified requirements. The laboratory indicated that the parent/product transition ion ratios met laboratory requirements with the following exceptions: | SDG/Method | Sample | Compound | Finding | |--------------|--|---|---| | 1803615/537M | A1-MW-05-SA2
A1-MW-50-SA2
A1-PZ-19-SA2 | All compounds qualified 'Q' by the laboratory | The parent/product transition ion ratio was outside of the 70-130% laboratory limits. | | 1803626/537M | A1-MW-53-SA2 | All compounds qualified 'Q' by the laboratory | The parent/product transition ion ratio was outside of the 70-130% laboratory limits. | | 1803659/537M | A1-MW-25-SA2
A1-MW-54-SA2 | All compounds qualified 'Q' by the laboratory | The parent/product transition ion ratio was outside of the 70-130% laboratory limits. | | 1803678/537M | A1-MW-01-SA2 | All compounds qualified 'Q' by the laboratory | The parent/product transition ion ratio was outside of the 70-130% laboratory limits. | Since there are no established transition ion ratio requirements in the validation documents for this project, using professional judgment, no data were qualified. All compounds reported below the LOQ as detected by the laboratory were qualified as detected estimated (J). The details regarding the qualification of data are provided in Enclosures I and II. #### XVI. Overall Assessment of Data The analysis was conducted within all specifications of the method. Due to severe holding time exceedances, data were qualified as rejected in twenty-three samples. Due to gross MS/MSD %R exceedance, data were qualified as rejected in one sample. Due to holding time exceedances, data were qualified as estimated in thirty samples. Due to CCV %D, data were qualified as estimated in twelve samples. Due to MS/MSD %R, data were qualified as estimated in one sample. Due to results below the LOQ, data were qualified as estimated in twenty-two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Data flags are summarized and are presented as Attachment 2. # Attachment 1 Sample Cross Reference | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|--------------------------|----------------|----------------|----------------------|-----------------| | 12-Nov-2018 | TB-20181112 | 280-116898-7 | ТВ | METHOD | 8260B | Stage 2B | | 12-Nov-2018 | A1-MW-49-SA2 | 1803615-03 | N | Gen Prep | 537 MOD | Stage 4 | | 12-Nov-2018 | A1-MW-49-SA2 | 280-116898-3 | N | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-MW-49-SA2 | 280-116898-3 | N | METHOD | 9040C | Stage 4 | | 12-Nov-2018 | A1-MW-49-SA2 | 280-116898-3 | N | METHOD |
9056A | Stage 4 | | 12-Nov-2018 | A1-MW-49-SA2 | 280-116898-3 | N | METHOD | SM3500 Fe B D | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2 | 1803615-04 | N | Gen Prep | 537 MOD | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2 | 280-116898-4 | N | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2 | 280-116898-4 | N | METHOD | 9040C | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2 | 280-116898- 4 | N | METHOD | 9056A | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2 | 280-116898-4 | N | METHOD | SM3500 Fe B D | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2DUP | 280-116898-4DUP | DUP | METHOD | 9056A | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2MS | 280-116898-4MS | MS | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2MS | 280-116898-4MS | MS | METHOD | 9056A | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2MSD | 280-116898-4MSD | MSD | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2MSD | 280-116898-4MSD | MSD | METHOD | 9056A | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2D | 1803615-05 | FD | Gen Prep | 537 MOD | Stage 4 | | 12-Nov-2018 | A1-MW-50-SA2D | 280-116898-5 | FD | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-MW-51-SA2 | 1803615-06 | N | Gen Prep | 537 MOD | Stage 4 | | 12-Nov-2018 | A1-MW-51-SA2 | 280-116898-6 | N | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-MW-51-SA2 | 280-116898-6 | N | METHOD | 9040C | Stage 2B | | 12-Nov-2018 | A1-MW-51-SA2 | 280-116898-6 | N | METHOD | 9056A | Stage 2B | | 12-Nov-2018 | A1-MW-51-SA2 | 280-116898-6 | N | METHOD | SM3500 Fe B D | Stage 2B | | 12-Nov-2018 | A1-MW-04-SA2 | 1803615-01 | N | Gen Prep | 537 MOD | Stage 4 | | 12-Nov-2018 | A1-MW-04-SA2 | 280-116898-1 | N | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-MW-04-SA2 | 280-116898-1 | N | METHOD | 9040C | Stage 4 | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 12-Nov-2018 | A1-MW-04-SA2 | 280-116898-1 | N | METHOD | 9056A | Stage 4 | | 12-Nov-2018 | A1-MW-04-SA2 | 280-116898-1 | N | METHOD | SM3500 Fe B D | Stage 4 | | 12-Nov-2018 | A1-PZ-19-SA2 | 1803615-09 | N | Gen Prep | 537 MOD | Stage 4 | | 12-Nov-2018 | A1-PZ-19-SA2 | 280-116898-8 | N | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-PZ-19-SA2 | 280-116898-8 | N | METHOD | 9040C | Stage 4 | | 12-Nov-2018 | A1-PZ-19-SA2 | 280-116898-8 | N | METHOD | 9056A | Stage 4 | | 12-Nov-2018 | A1-PZ-19-SA2 | 280-116898-8 | N | METHOD | SM3500 Fe B D | Stage 4 | | 12-Nov-2018 | A1-MW-52-SA2 | 1803615-07 | N | Gen Prep | 537 MOD | Stage 4 | | 12-Nov-2018 | A1-MW-52-SA2 | 280-116898-9 | N | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-MW-52-SA2 | 280-116898-9 | N | METHOD | 9040C | Stage 4 | | 12-Nov-2018 | A1-MW-52-SA2 | 280-116898-9 | N | METHOD | 9056A | Stage 4 | | 12-Nov-2018 | A1-MW-52-SA2 | 280-116898-9 | N | METHOD | SM3500 Fe B D | Stage 4 | | 12-Nov-2018 | A1-MW-05-SA2 | 1803615-02 | N | Gen Prep | 537 MOD | Stage 4 | | 12-Nov-2018 | A1-MW-05-SA2 | 280-116898-2 | N | METHOD | 8260B | Stage 4 | | 12-Nov-2018 | A1-MW-05-SA2 | 280-116898-2 | N | METHOD | 9040C | Stage 4 | | 12-Nov-2018 | A1-MW-05-SA2 | 280-116898-2 | N | METHOD | 9056A | Stage 4 | | 12-Nov-2018 | A1-MW-05-SA2 | 280-116898-2 | N | METHOD | SM3500 Fe B D | Stage 4 | | 12-Nov-2018 | FRB-20181112 | 1803615-08 | FRB | Gen Prep | 537 MOD | Stage 2B | | 13-Nov-2018 | TB-20181113 | 280-116942-7 | ТВ | METHOD | 8260B | Stage 2B | | 13-Nov-2018 | 16-MW-06-SA2 | 1803626-02 | N | Gen Prep | 537 MOD | Stage 2B | | 13-Nov-2018 | 16-MW-06-SA2 | 280-116942-2 | N | METHOD | 8260B | Stage 2B | | 13-Nov-2018 | 16-MW-06-SA2 | 280-116942-2 | N | METHOD | 9040C | Stage 2B | | 13-Nov-2018 | 16-MW-06-SA2 | 280-116942-2 | N | METHOD | 9056A | Stage 2B | | 13-Nov-2018 | 16-MW-06-SA2 | 280-116942-2 | N | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | 16-MW-06-SA2DUP | 280-116942-2DUP | DUP | METHOD | 9056A | Stage 2B | | 13-Nov-2018 | 16-MW-06-SA2MS | 280-116942-2MS | MS | METHOD | 9056A | Stage 2B | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 13-Nov-2018 | 16-MW-06-SA2MSD | 280-116942-2MSD | MSD | METHOD | 9056A | Stage 2B | | 13-Nov-2018 | A1-MW-18-SA2 | 1803626-05 | N | Gen Prep | 537 MOD | Stage 2B | | 13-Nov-2018 | A1-MW-18-SA2 | 280-116942-5 | Ν | METHOD | 8260B | Stage 2B | | 13-Nov-2018 | A1-MW-18-SA2 | 280-116942-5 | N | METHOD | 9040C | Stage 2B | | 13-Nov-2018 | A1-MW-18-SA2 | 280-116942-5 | N | METHOD | 9056A | Stage 2B | | 13-Nov-2018 | A1-MW-18-SA2 | 280-116942-5 | N | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | A1-MW-19-SA2 | 1803626-06 | N | Gen Prep | 537 MOD | Stage 2B | | 13-Nov-2018 | A1-MW-19-SA2 | 280-116942-6 | N | METHOD | 8260B | Stage 2B | | 13-Nov-2018 | A1-MW-19-SA2 | 280-116942-6 | N | METHOD | 9040C | Stage 2B | | 13-Nov-2018 | A1-MW-19-SA2 | 280-116942-6 | N | METHOD | 9056A | Stage 2B | | 13-Nov-2018 | A1-MW-19-SA2 | 280-116942-6 | N | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | 16-HS-03-SA2 | 1803626-01 | N | Gen Prep | 537 MOD | Stage 2B | | 13-Nov-2018 | 16-HS-03-SA2 | 280-116942-1 | N | METHOD | 8260B | Stage 2B | | 13-Nov-2018 | 16-HS-03-SA2 | 280-116942-1 | N | METHOD | 9040C | Stage 2B | | 13-Nov-2018 | 16-HS-03-SA2 | 280-116942-1 | N | METHOD | 9056A | Stage 2B | | 13-Nov-2018 | 16-HS-03-SA2 | 280-116942-1 | N | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | 16-HS-03-SA2D | 1803626-09 | FD | Gen Prep | 537 MOD | Stage 2B | | 13-Nov-2018 | 16-HS-03-SA2D | 280-116942-9 | FD | METHOD | 8260B | Stage 2B | | 13-Nov-2018 | 16-MW-08-SA2 | 1803626-03 | N | Gen Prep | 537 MOD | Stage 2B | | 13-Nov-2018 | 16-MW-08-SA2 | 280-116942-3 | N | METHOD | 8260B | Stage 2B | | 13-Nov-2018 | 16-MW-08-SA2 | 280-116942-3 | N | METHOD | 9040C | Stage 2B | | 13-Nov-2018 | 16-MW-08-SA2 | 280-116942-3 | N | METHOD | 9056A | Stage 2B | | 13-Nov-2018 | 16-MW-08-SA2 | 280-116942-3 | N | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | 16-MW-09-SA2 | 1803626-04 | N | Gen Prep | 537 MOD | Stage 2B | | 13-Nov-2018 | 16-MW-09-SA2 | 280-116942-4 | N | METHOD | 8260B | Stage 2B | | 13-Nov-2018 | 16-MW-09-SA2 | 280-116942-4 | N | METHOD | 9040C | Stage 2B | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 13-Nov-2018 | 16-MW-09-SA2 | 280-116942-4 | N | METHOD | 9056A | Stage 2B | | 13-Nov-2018 | 16-MW-09-SA2 | 280-116942-4 | N | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | 16-MW-09-SA2DUP | 280-116942-4DUP | DUP | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | 16-MW-09-SA2MS | 280-116942-4MS | MS | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | 16-MW-09-SA2MSD | 280-116942-4MSD | MSD | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | A1-MW-53-SA2 | 1803626-08 | N | Gen Prep | 537 MOD | Stage 2B | | 13-Nov-2018 | A1-MW-53-SA2 | 280-116942-8 | N | METHOD | 8260B | Stage 2B | | 13-Nov-2018 | A1-MW-53-SA2 | 280-116942-8 | N | METHOD | 9040C | Stage 2B | | 13-Nov-2018 | A1-MW-53-SA2 | 280-116942-8 | N | METHOD | 9056A | Stage 2B | | 13-Nov-2018 | A1-MW-53-SA2 | 280-116942-8 | N | METHOD | SM3500 Fe B D | Stage 2B | | 13-Nov-2018 | FRB-20181113 | 1803626-07 | FRB | Gen Prep | 537 MOD | Stage 2B | | 14-Nov-2018 | TB-20181114 | 280-117007-6 | ТВ | METHOD | 8260B | Stage 2B | | 14-Nov-2018 | A1-MW-07-SA2 | 1803659-01 | N | Gen Prep | 537 MOD | Stage 2B | | 14-Nov-2018 | A1-MW-07-SA2 | 280-117007-1 | N | METHOD | 8260B | Stage 2B | | 14-Nov-2018 | A1-MW-07-SA2 | 280-117007-1 | N | METHOD | 9040C | Stage 2B | | 14-Nov-2018 | A1-MW-07-SA2 | 280-117007-1 | N | METHOD | 9056A | Stage 2B | | 14-Nov-2018 | A1-MW-07-SA2 | 280-117007-1 | N | METHOD | SM3500 Fe B D | Stage 2B | | 14-Nov-2018 | A1-MW-07-SA2MS | 280-117007-1MS | MS | METHOD | 8260B | Stage 2B | | 14-Nov-2018 | A1-MW-07-SA2MSD | 280-117007-1MSD | MSD | METHOD | 8260B | Stage 2B | | 14-Nov-2018 | A1-MW-23-SA2 | 1803659-02 | N | Gen Prep | 537 MOD | Stage 2B | | 14-Nov-2018 | A1-MW-23-SA2 | 280-117007-2 | N | METHOD | 8260B | Stage 2B | | 14-Nov-2018 | A1-MW-23-SA2 | 280-117007-2 | N | METHOD | 9040C | Stage 2B | | 14-Nov-2018 | A1-MW-23-SA2 | 280-117007-2 | N | METHOD | 9056A | Stage 2B | | 14-Nov-2018 | A1-MW-23-SA2 | 280-117007-2 | N | METHOD | SM3500 Fe B D | Stage 2B | | 14-Nov-2018 | A1-MW-55-SA2 | 1803659-05 | N | Gen Prep | 537 MOD | Stage 2B | | 14-Nov-2018 | A1-MW-55-SA2 | 280-117007-5 | N | METHOD | 8260B | Stage 2B | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 14-Nov-2018 | A1-MW-55-SA2 | 280-117007-5 | N | METHOD | 9040C | Stage 2B | | 14-Nov-2018 | A1-MW-55-SA2 | 280-117007-5 | N | METHOD | 9056A | Stage 2B | | 14-Nov-2018 | A1-MW-55-SA2 | 280-117007-5 | N | METHOD | SM3500 Fe B D | Stage 2B | | 14-Nov-2018 | A1-MW-25-SA2 | 1803659-03 | N | Gen Prep | 537 MOD | Stage 2B | | 14-Nov-2018 | A1-MW-25-SA2 | 280-117007-3 | N | METHOD | 8260B | Stage 2B | | 14-Nov-2018 | A1-MW-25-SA2 | 280-117007-3 | N | METHOD | 9040C | Stage 2B | | 14-Nov-2018 | A1-MW-25-SA2 | 280-117007-3 | N | METHOD | 9056A | Stage 2B | | 14-Nov-2018 | A1-MW-25-SA2 | 280-117007-3 | N | METHOD | SM3500 Fe B D | Stage 2B | | 14-Nov-2018 | A1-MW-27-SA2 | 1803659-04 | N | Gen Prep | 537 MOD | Stage 2B | | 14-Nov-2018 | A1-MW-27-SA2 | 280-117007-4 | N | METHOD | 8260B | Stage 2B | | 14-Nov-2018 | A1-MW-27-SA2 | 280-117007-4 | N | METHOD | 9040C | Stage 2B | | 14-Nov-2018 | A1-MW-27-SA2 | 280-117007-4 | N |
METHOD | 9056A | Stage 2B | | 14-Nov-2018 | A1-MW-27-SA2 | 280-117007-4 | N | METHOD | SM3500 Fe B D | Stage 2B | | 14-Nov-2018 | FRB-20181114 | 1803659-07 | FRB | Gen Prep | 537 MOD | Stage 2B | | 14-Nov-2018 | A1-MW-54-SA2 | 1803659-06 | N | Gen Prep | 537 MOD | Stage 2B | | 14-Nov-2018 | A1-MW-54-SA2 | 280-117007-7 | N | METHOD | 8260B | Stage 2B | | 14-Nov-2018 | A1-MW-54-SA2 | 280-117007-7 | N | METHOD | 9040C | Stage 2B | | 14-Nov-2018 | A1-MW-54-SA2 | 280-117007-7 | N | METHOD | 9056A | Stage 2B | | 14-Nov-2018 | A1-MW-54-SA2 | 280-117007-7 | N | METHOD | SM3500 Fe B D | Stage 2B | | 14-Nov-2018 | A1-MW-54-SA2DUP | 280-117007-7DUP | DUP | METHOD | SM3500 Fe B D | Stage 2B | | 14-Nov-2018 | A1-MW-54-SA2MS | 280-117007-7MS | MS | METHOD | SM3500 Fe B D | Stage 2B | | 14-Nov-2018 | A1-MW-54-SA2MSD | 280-117007-7MSD | MSD | METHOD | SM3500 Fe B D | Stage 2B | | 15-Nov-2018 | TB-20181115 | 280-117103-7 | ТВ | METHOD | 8260B | Stage 2B | | 15-Nov-2018 | A1-MW-13-SA2 | 1803676-02 | N | Gen Prep | 537 MOD | Stage 2B | | 15-Nov-2018 | A1-MW-13-SA2 | 280-117103-2 | N | METHOD | 8260B | Stage 2B | | 15-Nov-2018 | A1-MW-13-SA2 | 280-117103-2 | N | METHOD | 9040C | Stage 2B | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------|--| | 15-Nov-2018 | A1-MW-13-SA2 | 280-117103-2 | N | METHOD | 9056A | Stage 2B | | | 15-Nov-2018 | A1-MW-13-SA2 | 280-117103-2 | N | METHOD | SM3500 Fe B D | Stage 2B | | | 15-Nov-2018 | A1-MW-11-SA2 | 1803676-01 | N | Gen Prep | 537 MOD | Stage 2B | | | 15-Nov-2018 | A1-MW-11-SA2 | 280-117103-1 | N | METHOD | 8260B | Stage 2B | | | 15-Nov-2018 | A1-MW-11-SA2 | 280-117103-1 | N | METHOD | 9040C | Stage 2B | | | 15-Nov-2018 | A1-MW-11-SA2 | 280-117103-1 | N | METHOD | 9056A | Stage 2B | | | 15-Nov-2018 | A1-MW-11-SA2 | 280-117103-1 | N | METHOD | SM3500 Fe B D | Stage 2B | | | 15-Nov-2018 | A1-MW-15-SA2 | 1803676-04 | N | Gen Prep | 537 MOD | Stage 2B | | | 15-Nov-2018 | A1-MW-15-SA2 | 280-117103-4 | N | METHOD | 8260B | Stage 2B | | | 15-Nov-2018 | A1-MW-15-SA2 | 280-117103-4 | N | METHOD | 9040C | Stage 2B | | | 15-Nov-2018 | A1-MW-15-SA2 | 280-117103-4 | N | METHOD | 9056A | Stage 2B | | | 15-Nov-2018 | A1-MW-15-SA2 | 280-117103-4 | N | METHOD | SM3500 Fe B D | Stage 2B | | | 15-Nov-2018 | A1-MW-14-SA2 | 1803676-03 | N | Gen Prep | 537 MOD | Stage 2B | | | 15-Nov-2018 | A1-MW-14-SA2 | 280-117103-3 | N | METHOD | 8260B | Stage 2B | | | 15-Nov-2018 | A1-MW-14-SA2 | 280-117103-3 | N | METHOD | 9040C | Stage 2B | | | 15-Nov-2018 | A1-MW-14-SA2 | 280-117103-3 | N | METHOD | 9056A | Stage 2B | | | 15-Nov-2018 | A1-MW-14-SA2 | 280-117103-3 | N | METHOD | SM3500 Fe B D | Stage 2B | | | 15-Nov-2018 | A1-MW-14-SA2DUP | 280-117103-3DUP | DUP | METHOD | 9040C | Stage 2B | | | 15-Nov-2018 | A1-MW-37-SA2 | 1803676-05 | N | Gen Prep | 537 MOD | Stage 2B | | | 15-Nov-2018 | A1-MW-37-SA2 | 280-117103-5 | N | METHOD | 8260B | Stage 2B | | | 15-Nov-2018 | A1-MW-37-SA2 | 280-117103-5 | N | METHOD | 9040C | Stage 2B | | | 15-Nov-2018 | A1-MW-37-SA2 | 280-117103-5 | N | METHOD | 9056A | Stage 2B | | | 15-Nov-2018 | A1-MW-37-SA2 | 280-117103-5 | N | METHOD | SM3500 Fe B D | Stage 2B | | | 15-Nov-2018 | A1-MW-37-SA2D | 1803676-06 | FD | Gen Prep | 537 MOD | Stage 2B | | | 15-Nov-2018 | A1-MW-37-SA2D | 280-117103-6 | FD | METHOD | 8260B | Stage 2B | | | 15-Nov-2018 | A1-MW-31-SA2 | 1803676-08 | N | Gen Prep | 537 MOD | Stage 2B | | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|-----------------|----------------|----------------|----------------------|-----------------| | 15-Nov-2018 | A1-MW-31-SA2 | 280-117103-8 | N | METHOD | 8260B | Stage 2B | | 15-Nov-2018 | A1-MW-31-SA2 | 280-117103-8 | N | METHOD | 9040C | Stage 2B | | 15-Nov-2018 | A1-MW-31-SA2 | 280-117103-8 | N | METHOD | 9056A | Stage 2B | | 15-Nov-2018 | A1-MW-31-SA2 | 280-117103-8 | N | METHOD | SM3500 Fe B D | Stage 2B | | 15-Nov-2018 | FRB-20181115 | 1803676-07 | FRB | Gen Prep | 537 MOD | Stage 2B | | 16-Nov-2018 | TB-20181116 | 280-117110-3 | TB | METHOD | 8260B | Stage 2B | | 16-Nov-2018 | A1-MW-01-SA2 | 1803678-01 | N | Gen Prep | 537 MOD | Stage 2B | | 16-Nov-2018 | A1-MW-01-SA2 | 280-117110-1 | N | METHOD | 8260B | Stage 2B | | 16-Nov-2018 | A1-MW-01-SA2 | 280-117110-1 | N | METHOD | 9040C | Stage 2B | | 16-Nov-2018 | A1-MW-01-SA2 | 280-117110-1 | N | METHOD | 9056A | Stage 2B | | 16-Nov-2018 | A1-MW-01-SA2 | 280-117110-1 | N | METHOD | SM3500 Fe B D | Stage 2B | | 16-Nov-2018 | A1-MW-01-SA2MS | 280-117110-1MS | MS | METHOD | 8260B | Stage 2B | | 16-Nov-2018 | A1-MW-01-SA2MSD | 280-117110-1MSD | MSD | METHOD | 8260B | Stage 2B | | 16-Nov-2018 | A1-MW-42-SA2 | 1803678-02 | N | Gen Prep | 537 MOD | Stage 2B | | 16-Nov-2018 | A1-MW-42-SA2 | 280-117110-2 | N | METHOD | 8260B | Stage 2B | | 16-Nov-2018 | A1-MW-42-SA2 | 280-117110-2 | N | METHOD | 9040C | Stage 2B | | 16-Nov-2018 | A1-MW-42-SA2 | 280-117110-2 | N | METHOD | 9056A | Stage 2B | | 16-Nov-2018 | A1-MW-42-SA2 | 280-117110-2 | N | METHOD | SM3500 Fe B D | Stage 2B | | 16-Nov-2018 | A1-MW-42-SA2DUP | 280-117110-2DUP | DUP | METHOD | SM3500 Fe B D | Stage 2B | | 16-Nov-2018 | A1-MW-42-SA2MS | 280-117110-2MS | MS | METHOD | SM3500 Fe B D | Stage 2B | | 16-Nov-2018 | A1-MW-42-SA2MSD | 280-117110-2MSD | MSD | METHOD | SM3500 Fe B D | Stage 2B | | 16-Nov-2018 | FRB-20181116 | 1803678-03 | FRB | Gen Prep | 537 MOD | Stage 2B | | 16-Nov-2018 | EB-20181116 | 1803678-04 | ЕВ | Gen Prep | 537 MOD | Stage 2B | | 16-Nov-2018 | EB-20181116 | 280-117110-4 | EB | METHOD | 8260B | Stage 2B | | 19-Nov-2018 | A1-MW-50-SA2MS | B8K0091-MS1 | MS | Gen Prep | 537 MOD | Stage 4 | | 19-Nov-2018 | A1-MW-50-SA2MSD | B8K0091-MSD1 | MSD | Gen Prep | 537 MOD | Stage 4 | | Date
Collected | Field Sample ID | Lab Sample ID | Sample
Type | Prep
Method | Analytical
Method | Review
Level | |-------------------|-----------------|---------------|----------------|----------------|----------------------|-----------------| | 30-Nov-2018 | A1-MW-01-SA2MS | B8K0153-MS1 | MS | Gen Prep | 537 MOD | Stage 2B | | 30-Nov-2018 | A1-MW-01-SA2MSD | B8K0153-MSD1 | MSD | Gen Prep | 537 MOD | Stage 2B | # Attachment 2 Overall Data Qualification Summary Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | SDG: 280-116898-1 | The Marie Contract | en general general ge | market the | | | Brain F- | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | All Control of | an de Marie
Se Adrie | |------------------------|---------------------------|-----------------------|------------|-------------------|--|------------|---------------------------------------|------------------------|-------------------------| | Method Category: EM | | | | | i de la constitución const | | | W. 1945 | TOTAL TOTAL | | Method: 9040C | | | | trix: | AQ. | | | | N. S. William | | Sample ID:A1-MW-04-SA2 | Collec | 11/12/2
ted: AM | 2018 11:4 | 10:00
<i>A</i> | nalysis ī | Type: RES | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-05-SA2 | Collec | 11/12/2
ted:PM | 2018 2:24 | | nalysis 1 | Гуре: RES | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-49-SA2 | Collec | 11/12/2
ted: AM | 2018 8:32 | | nalysis 1 | Гуре: RES |
S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-50-SA2 | Collec | 11/12/2
ted: AM | 2018 9:25 | | nalysis | Type:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.8 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-51-SA2 | Collec | 11/12/2
ted: AM | 2018 10:4 | 16:00
<i>A</i> | nalysis | Type:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | Sample ID:A1-MW-52-SA2 | Collec | 11/12/2
ted:PM | 2018 1:39 | | nalysis ' | Type: RES | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | tale. See See Contact and | 12/8 Webbs | | CM 0.75 | 100 | 4440B | | 10 m | 3000 | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma Page 1 of 15 ADR version 1.9.0.325 12/21/2018 9:21:17 AM ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN SDG: 280-116898-1 Method Category: EΜ 9040C Method: Matrix: AQ 11/12/2018 12:43:00 Sample ID:A1-PZ-19-SA2 Collected: PM Analysis Type: RES/TOT Dilution: 1 Data DL Lab Lab RL Review Reason Analyte Result Qual DL Type RL Type Units Qual Code PH 8.0 HF LOD LOQ StoA | Sample ID:A1-PZ-19-SA2 | 2 | 11/12/2018
Collected: PM | 3 12:43:00 | Analysis Type: RES/TOT | Dilution: 2 | |------------------------|---------|-----------------------------|------------|------------------------|-------------| | Method: | 9056A | | Matrix: | AQ | | | Method Category: | GENCHEM | | 图 医水肿 | | | | Sample ID:A1-PZ-19-SA2 | Collected: PM | | | Analysis Type: RES/TOT | | | | Dilution: 2 | | | |--|---------------|-------------|-----------------|--|----------------------|------------------------|------------------|--|--------------------------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | All the second s | | S 25 2 | 100 / Own TPO / | SAME SAME OF THE PARTY P | A 14 (A) (A) (A) (A) | to the second state of | - NAME OF STREET | 99 m. 17 | BESIGNAL TO THE REAL PROPERTY. | | | NITRATE | 0.896 | JB | 0.200 | LOD | 1.00 | LOQ | mg/L | J | RI | | | Method Catego | ry: GENCHEM | | | | | | E Berlin | | | | |-----------------|---------------|----------------------------------|-----|-----|-----------------------------|----|----------|-------------|----------------|--------| | Method: | SM3500 Fe B D | | | Mat | rix: | AQ | | de alberta | Total Control | | | Sample ID:A1-MW | /-04-SA2 | 11/12/2018 11:4
Collected: AM | | | 0:00 Analysis Type: RES/TOT | | | Dilution: 1 | | | | | | Lab | Lab | | DL | | RL | | Data
Review | Reason | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |--------------|---------------|-------------|-----------|------------|-------|------------|-------|------------------------|----------------| | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | 11/12/ | 2018 2:24 | :00 | | | | | | | Sample ID:A1-MW-05-SA2 | Collected: PM | | | Analysis Type: RES/TOT | | | | Dilution: 1 | | | |------------------------|---------------|-------------|--------|------------------------|-------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | Ferrous Iron | 0.119 | JHF | 0.0500 | LOD | 0.200 | LOQ | mg/L | J | RI, StoA | | | Sample ID:A1-MW-49-SA2 | Collec | 2018 8:32 | :32:00 Analysis Type:RES/TOT | | | | Dilution: 1 | | | |------------------------|---------------|-------------|------------------------------|------------|-------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/21/2018 9:21:17 AM ADR version 1.9.0.325 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | G: 2 | | | | |------|--|--|--| | | | | | | | | | | | | | | | | Method Category: GENCHEM | 1 | | | | | | | and the second | | |--------------------------|---------------|--------------------
--|--|---|------------|-------|------------------------|----------------| | Method: SM3500 Fe B D | | | Mat | trix: | AQ | | | | | | Sample ID:A1-MW-50-SA2 | Collec | 2018 9:25 | | nalysis T | ype:RE | S/TOT | | Dilution: 1 | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.380 | HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | J | StoA | | Sample ID:A1-MW-51-SA2 | Collec | 11/12/:
ted: AM | 2018 10:4 | | nalysis 1 | ype:RES | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0278 | JHF | 0.0500 | LOD | 0.200 | LOQ | mg/L | J | RI, StoA | | Sample ID:A1-MW-52-SA2 | Collec | 11/12/2
ted:PM | 2018 1:39 | | nalysis 1 | ype:RES | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | UHF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-PZ-19-SA2 | Collec | 11/12/:
ted:PM | 2018 12:4 | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | PME NATION BROWN | COLUMN TO SERVICE STATE OF THE | The second secon | MATERIAL STATE OF THE | | | | | | Method Category: VOA | | | | |----------------------|------------|-----------|--| | Method: 8260 | B <i>M</i> | atrix: AQ | | 11/12/2018 9:25:00 mala IDIA4 MINI EO SA2 Dilution 4 | Sample ID:A1-NW-50-5A2 | Collec | Collected: AM | | | Analysis Type: RES | | | | Dilution: 1 | | | |------------------------|---------------|---------------|-------|------------|--------------------|------------|-------|------------------------|----------------|--|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | 1,1-DICHLOROETHENE | 0.564 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | | | TRICHLOROETHENE | 0.780 | j | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | 11/12/2018 9:35:00 | Sample ID:A1-MW-50-SA2D | Collected: AM | | | Analysis Type:RES | | | | Dilution: 1 | | | |-------------------------|---------------|-------------|-------|-------------------|------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | 1,1-DICHLOROETHENE | 0.630 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma Page 3 of 15 ADR version 1.9.0.325 12/21/2018 9:21:17 AM Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | | | | 98-1 | |--|--|--|------| | | | | | | | | | | | | | | | SDG: 280-116942-1 | | | 11/12/2018 9:35:00 | |------------------|-------|--------------------| | Wethod: | 8260B | Matrix: AQ | | Method Category: | VOA | | | Sample ID:A1-MW-50-SA2D | Collected: AM | | | | nalysis | Type:RE | Dilution: 1 | | | |-------------------------|---------------|-------------|-------|------------|---------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | TRICHLOROETHENE | 0.949 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | Sample ID:A1-MW-52-SA2 | Collec | Collected: PM Analysis Type: F | | | | | RES Dilution: 1 | | | | |------------------------|---------------|--------------------------------|-------
------------|------|------------|-----------------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | 1,1-DICHLOROETHENE | 0.458 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | | TRICHLOROETHENE | 0.811 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | Sample ID:A1-PZ-19-SA2 | Collected:PM Analysis Type:RES | | | | | S | Dilution: 1 | | | |------------------------|--------------------------------|-------------|-------|------------|------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | TRICHLOROETHENE | 0.430 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | Method: | 9040C | Matrix: AQ | | |------------------|---|------------|--| | Method Category: | EM | | | | | 三种位于 3.14.15.15.10.10.16.15.15.14.45.16 | | The state of s | | Sample ID:16-HS-03-SA2 | Collec | 11/13/2018 12:00:00 Collected:PM Analysis Type: RES/TC | | | | S/TOT | OT Dilution: 1 | | | |------------------------|---------------|---|-----|------------|-----|------------|----------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 8.4 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | Sample ID:16-MW-06-SA2 | 11/13/2018 9:38:00 Collected: Am Analysis Type: RES/TO | | | | | з/тот | Dilution: 1 | | | |------------------------|---|-------------|-----|------------|-----|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 8.2 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/21/2018 9:21:17 AM ADR version 1.9.0.325 Page 4 of 15 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1 280-117110-1 Laboratory: TA DEN eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | 280-117103-1, 280-117110-1 SDG: 280-116942-1 | | | | - Jakari | Sala Sala | | igents. | A CONTRACTOR | The Section Section 2 | |--|---|--------------------|-----------|---------------|-----------|------------|--------------------|------------------------|-----------------------| | Method Category: EM | Andrew (Alberta) | | | | | | | | | | And the second s | | | | | | | de de la
Granda | | | | Method: 9040C | | | | | AQ | | | | | | Sample ID:16-MW-08-SA2 | Collec | 11/13/2
ted:PM | 2018 1:00 | | nalysis i | Type: RES | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:16-MW-09-SA2 | Collec | 11/13/2
ted:PM | 2018 1:44 | | nalysis | Type:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-18-SA2 | 11/13/2018 10:31:00 Collected: AM Analysis Type: RES/TOT Dilution: 1 | | | | | | | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.8 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-19-SA2 | Collec | 11/13/2
ted: AM | 018 11:1 | 15:00
A | nalvsis ' | Type:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-53-SA2 | Collec | 11/13/2
ted:PM | 2018 2:54 | | nalysis ' | Type: RE | s/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Method Category: GENCHEM Method: 9056A | | | Ma | trix: | AQ | Hint III | | | | | Sample ID:16-MW-06-SA2 | Collec | 11/13/2
ted: AM | 2018 9:38 | B:00 <i>A</i> | nalysis | Type: RE | тот | | Dilution: 10 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | | Data
Review
Qual | Reason
Code | Sulfate Project Name and Number: 4663.3803 - CTO 17F3803 Yuma ADR version 1.9.0.325 Page 5 of 15 12/21/2018 9:21:17 AM 5.00 695 LOD 50.0 mg/L ^{*} denotes a non-reportable result Laboratory: TA DEN eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, **GENCHEM** 280-117103-1, 280-117110-1 SDG: 280-116942-1 Method Category: GENCHEM Method Category: Method: 9056A Matrix: AQ | Sample ID:A1-MW-18-SA2 | Collec | 11/13/2018 10:31:00
Collected:AM Analysis Type:RES/TOT | | | | | | | Dilution: 5 | | |------------------------|---------------|---|-------|------------|------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | NITRATE | 11.0 | Н | 0.500 | LOD | 2.50 | LOQ | mg/L | J | StoA | | | wethou. | SIVISSOUTE B D | The second of th | - pr 7:654 - | IVICI | 111 | -12 | | | 20.70-1- | | |-------------------
----------------|--|--------------|--------|------------|-------|------------|-------|------------------------|----------------| | Sample ID:16-HS-0 | 3-SA2 | 11/13/2018 12:00:00
Collected:PM Analysis Type: RES/TOT D | | | | | | | | Dilution: 1 | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:16-MW-06-SA2 | Collec | 11/13/2018 9:38:00
eted:AM Analysis Type:RES/TOT | | | | | S/TOT | Dilution: 1 | | | |------------------------|---------------|---|--------|------------|-------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | Sample ID:16-MW-08-SA2 | Collec | 11/13/2018 1:00:00
Collected:PM Analysis Type:RES/TO | | | | | S/TOT | Dilution: 1 | | | |------------------------|---------------|---|--------|------------|-------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | 0-#- | | 2018 1:44 | | | | COT | | Dilarii a 4 | |---------------------------------|---------------|-------------|-----------|------------|-----------|------------|-------|------------------------|----------------| | Sample ID:16-MW-09-SA2 Analyte | Collec | ted:PM | | A | nalysis 1 | ype: KE | 5/101 | | Dilution: 1 | | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF F1 | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-18-SA2 | Collec | 2018 10:3 | | nalysis 1 | ype:RE | Dilution: 1 | | | | |------------------------|---------------|-------------|--------|------------|--------|-------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma ADR version 1.9.0.325 Page 6 of 15 12/21/2018 9:21:17 AM Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | SD | | | | |----|--|--|--| Method Category: GENCHEM | | | | | | | | | | |--------------------------|---------------|--------------------|-----------|------------|-----------|------------|-------|------------------------|----------------| | Method: SM3500 Fe B D | | A 100 CO. | IVIat | trix: I | AQ | | | | | | Sample ID:A1-MW-19-SA2 | Collec | 11/13/:
ted: AM | 2018 11:1 | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-53-SA2 | Collec | 11/13/:
ted:PM | 2018 2:54 | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | UHF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | | | 11/13/2018 9:38:00 | |------------------|-------|--------------------| | Method: | 8260B | Matrix: AQ | | Method Category: | VOA | | | Sample ID:16-MW-06-SA2 Analyte | Collec | Collected: AM | | | nalysis 1 | Type:RE | Dilution: 1 | | | | |---------------------------------|---------------|---------------|-------|------------|-----------|------------|-------------|------------------------|----------------|-----| | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | TRICHLOROETHENE | 0.195 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | 200 | | | | 11/13/2018 1:00:00 | | | | | | | | | |---------------------------------|---------------|--------------------|-------|------------|---------|-------------|-------|------------------------|----------------|------| | Sample ID:16-MW-08-SA2 Analyte | Collec | Collected:PM | | | nalysis | Dilution: 1 | | | | | | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | TETRACHLOROETHENE | 0.538 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | 2000 | | Sample ID:16-MW-09-SA2 Analyte | Collec | 11/13/2018 1:44
Collected:PM | | | nalysis 1 | Type:RE | Dilution: 1 | | | |---------------------------------|---------------|---------------------------------|-------|------------|-----------|------------|-------------|------------------------|----------------| | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | TETRACHLOROETHENE | 0.271 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | 11/13/2018 11:15:00 | | | | | | | | | |-----------------------------------|---------------------|---------------|-------|------------|-----------|------------|-------------|------------------------|----------------| | Sample ID:A1-MW-19-SA2
Analyte | Collec | Collected: AM | | | nalysis T | Type: RES | Dilution: 1 | | | | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | TRICHLOROETHENE | 0.545 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma Page 7 of 15 12/21/2018 9:21:17 AM ADR version 1.9.0.325 Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | CONTRACTOR OF THE PERSON NAMED IN CONTRA | Contract Con | TO ALLOWAN AND A | | CONTRACTOR ASSESSMENT |
--|--|------------------|----------------|-----------------------| | SDG | · 00 | ~ 4 | 4 7 A | 07 4 | | | 100 mg / 100 mg | NO 95586-38 | 80 186486 1811 | 8 2 0 2 | | | | | | | | SBS: 200-117007-1 | | Sales Sales | | March 1 | 100 | Market . | | 12. 16. 16. | ngar Pali Pali | | |------------------------|--|--------------------|-----------|------------------------------|-----------|------------|------------------------|------------------------|----------------|--| | Method Category: EM | Andrew Commencer Commencer | 129 | l la A | And And | 4.1 | | | PC Visit | | | | Method: 9040C | | | | trix: | 4Q | AND T | | ar number | | | | | | 11/14/2 | 2018 9:07 | | | | | | | | | Sample ID:A1-MW-07-SA2 | Collec | ted: AM | Γ | A | nalysis 1 | Type: RES | S/TOT | | Dilution: 1 | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | SU | j | StoA | | | Sample ID:A1-MW-23-SA2 | 11/14/2018 10:03:00 ample ID:A1-MW-23-SA2 Collected: AM Analysis Type: RES/TOT Dilution: 1 | | | | | | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL. | RL
Type | Units | Data
Review
Qual | Reason
Code | | | РН | 7.9 | HF | 0.1 | LOD | 0.1 | LOQ | SU | j | StoA | | | Sample ID:A1-MW-25-SA2 | 11/14/2018 12:15:00 Collected:PM Analysis Type: RES/TOT Dilution: 1 | | | | | | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | | Sample ID:A1-MW-27-SA2 | Collec | 11/14/2
ted:PM | 2018 1:03 | | nalysis 1 | Type: RES | S/TOT | | Dilution: 1 | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | | Sample ID:A1-MW-54-SA2 | Collec | 11/14/2
ted:PM | 2018 3:17 | | nalysis 1 | Type: RES | S/TOT | | Dilution: 1 | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | | Sample ID:A1-MW-55-SA2 | Collec | 11/14/2
ted: AM | 2018 11:0 | | nalysis 1 | Type: RE | s/TOT | | Dilution: 1 | | | Analista | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | Analyte | | | | managed to the second second | | 0.00 | TO SHOULD BE SHOULD BE | | | | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/21/2018 9:21:17 AM ADR version 1.9.0.325 Page 8 of 15 ^{*} denotes a non-reportable result Laboratory: TA DEN Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver 280-117103-1, 280-117110-1 | SDG | : 280 | -117 | 70 <i>C</i> | 7-1 | |-----|-------|------|-------------|-----| | - | | 300 | Section. | 200 | | Method Category: GE | NCHEM | | | To Applicate | à | | | | | | |------------------------|--|---|--------------------|--------------
--|------------------------------|--------------|-------------|------------------------|--------------------------| | Method: SN | 13500 Fe B D | Service Control | | Mat | rix: I | ٩Q | | A desir | | | | Sample ID:A1-MW-07-SA2 | | Collec | 11/14/2
ted: AM | 2018 9:07 | | nalysis T | wa. RF9 | S/TOT | | Dilution: 1 | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | TOTAL STATE OF THE | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-23-SA2 | | 11/14/2018 10:03:00 Collected:AM Analysis Type: RES/TOT | | | | | | Dilution: 1 | | | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-25-SA2 | | Collec | 11/14/2
ted:PM | 2018 12:1 | | nalysis 1 | ype:RES | s/TOT | | Dilution: 1 | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-27-SA2 | | Collec | 11/14/2
ted:PM | 2018 1:03 | | nalysis 1 | vpe:RES | S/TOT | | Dilution: 1 | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | And a second sec | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-54-SA2 | | Collec | 11/14/2
ted:PM | 2018 3:17 | :00
<i>A</i> | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | | 0.0500 | U HF F1 | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-55-SA2 | | Collec | 11/14/2
ted: AM | 2018 11:0 | | nalysis 1 | ype:RE | S/TOT | | Dilution: 1 | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | | | 339 | 4.50 (A.50 (| 1000 TO 1000 AT 1000 AT 1000 | S25/206/2017 | | A77.6064990535.00002 | No. of the second second | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma ADR version 1.9.0.325 Page 9 of 15 12/21/2018 9:21:17 AM ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | G: 2 | | | | |------|--|--|--| | | | | | | Method Category: | VOA | | | | At Francisco (Control of Control | |------------------|-------|--|-----------|---|---| | Method: | 8260B | | Matrix: A | 2 | | | Sample ID:A1-MW-07-SA2 Analyte | Collec | 11/14/2018 9:07
Collected: дм | | | | Гуре: RES | Dilution: 1 | | | |---------------------------------|---------------|----------------------------------|-------|------------|------|------------|-------------|------------------------|----------------| | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | 1,1-DICHLOROETHENE | 0.357 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | TRICHLOROETHENE | 0.826 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | | | | 11/14/ | 2018 12:1 | 5:00 | | | | | | | |------------------------|---------------|---------------|-----------|------------|------|------------|-------|------------------------|----------------|--| | Sample ID:A1-MW-25-SA2 | Collec | Collected: PM | | | | Type:RE | S | Dilution: 1 | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | 1,1-DICHLOROETHENE | 0.273 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | | TRICHLOROETHENE | 0.539 | J | 0.400 | LOD | 1.00 | LOQ | ua/L | J | Ri | | SDG: 280-117103-1 | Method Category: | EM | | |------------------|-------|------------| | Method: | 9040C | Matrix: AQ | | Sample ID:A1-MW-11-SA2 | Collec | 6:00
<i>A</i> | nalysis | Type: RE | Dilution: 1 | | | | | |------------------------|---------------|------------------|---------|------------|-------------|------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | 8.1 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-13-SA2 | Collec | 11/15/2018 8:20
Collected: AM | | | | | 20:00 Analysis Type: RES/TOT | | | | | |------------------------|---------------|----------------------------------|-----|------------|-----|------------|------------------------------|------------------------|----------------|--|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | PH | 80 | HF | 0.1 | LOD | 0.1 | Loo | SU | J | StoA | | | | | | 11/15/2018 10:53:00 Collected: AM Analysis Type: RES/TO | | | | | | | B#-44 | | | |------------------------|---------------|--|-----|------------|---------|------------|-------------|------------------------|----------------|--|--| | Sample ID:A1-MW-14-SA2 | Collec | Collected: AM | | | nalysis | ype: RE | Dilution: 1 | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | PH | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | su | J | StoA | | | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/21/2018 9:21:17 AM ADR version 1.9.0.325 Page 10 of 15 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1,
280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN | SDG: 280-11710 | | |----------------|--| | | | | Method Category: EM | | | | | | | | | | | |------------------------|------------|---|------------------------|----------|------------|-----------|------------|-------|------------------------|----------------| | Method: 90400 | The Action | | Managaran
Managaran | Ma | trix: | 4Q | | | | | | Sample ID:A1-MW-15-SA2 | | 11/15/2018 10:07:00
Collected: AM Analysis Type: RES/TOT | | | | | | | | | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | | 8.1 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Sample ID:A1-MW-31-SA2 | | Collec | 11/15/2
ted:PM | 018 2:16 | | nalysis 1 | Type:RE | S/TOT | | Dilution: 1 | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PH | | 8.0 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | 11/15/2018 11:54:00 Collected: AM Sample ID:A1-MW-37-SA2 Analysis Type: RES/TOT Dilution: 1 | Analyte | Lab
Result | Lab
Qual | DL, | DL
Type | RL | RL
Type | Units | Review
Qual | Reason
Code | |---------|---------------|-------------|-----|------------|-----|------------|-------|----------------|----------------| | PH | 7.8 | HF | 0.1 | LOD | 0.1 | LOQ | SU | J | StoA | | Method Category: | GENCHEM | | | |------------------|---------------|------------|--| | Method: | SM3500 Fe B D | Matrix: AQ | | | Sample ID:A1-MW-11-SA2 | Collec | 11/15/2018 9:06:00 Collected: AM Analysis Type: RES/TOT | | | | | | | Dilution: 1 | | | |------------------------|---------------|--|--------|------------|-------|------------|-------|------------------------|----------------|--|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | l R | StoA | | | 11/15/2018 8:20:00 Collected: AM Sample ID:A1-MW-13-SA2 Dilution: 1 Analysis Type: RES/TOT Data DL Lab Lab RL Review Reason Units Analyte Result Qual DL Type RL Type Qual Code 0.0500 U HF 0.0500 LOD 0.200 LOQ R StoA Ferrous Iron 11/15/2018 10:53:00 | Sample ID:A1-MW-14-SA2 | Collected: AM | | | A. | nalysis T | ype:RES | Dilution: 1 | | | |------------------------|---------------|-------------|--------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma Page 11 of 15 ADR version 1.9.0.325 12/21/2018 9:21:17 AM Lab Reporting Batch ID: 280-116898-1, 280-116942-1, Laboratory: TA DEN EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver SDG: 280-117103-1 | Method Category: GENCHEM | | | | | C1704 | | | | 建制成 型 | |--------------------------|--|------------------|-----------|------------|-----------|-------------|-------|------------------------|----------------| | Wethod: SM3500 Fe B D | A. A | | Mat | trix: | AQ | 煤土金 | 4 | | | | Sample ID:A1-MW-15-SA2 | 11/15/2018 10:07
Collected: AM | | | | nalysis 1 | ype:RE | | Dilution: 1 | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-31-SA2 | Collec | :00
<i>A</i> | nalysis 1 | ype:RE | S/TOT | Dilution: 1 | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | StoA | | Sample ID:A1-MW-37-SA2 | Collec | 11/15/
ted:AM | 2018 11:5 | | nalysis 1 | Dilution: 1 | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL_ | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.156 | JHF | 0.0500 | LOD | 0.200 | LOQ | mg/L | J | RI, StoA | | | | 11/15/ | 2018 10:53:00 | | | | | |------------------|-------|--------|---------------|-------|----|----------|--| | Method: | 8260B | | Matrix: | AQ | 48 | a agrani | | | Method Category: | VOA | | | A 202 | | | | | Sample ID:A1-MW-14-SA2 | Collec | Collected: AM | | | nalysis i | Type:RE | Dilution: 1 | | | |------------------------|---------------|---------------|-------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | 1,1-DICHLOROETHENE | 0.635 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | TRICHLOROFTHENE | 0.728 | .1 | 0.400 | LOD | 1.00 | 100 | ug/l | | RI | | | | 11/15/2018 10:07:00 | | | | | | | | | | |------------------------|---------------|---------------------|-------|-----|---------------|------------|-------------|---|----------------|--|--| | Sample ID:A1-MW-15-SA2 | Collec | Collected: AM | | | nalysis i | Type: RE | Dilution: 1 | | | | | | Analyte | Lab
Result | | | | DL
Type RL | RL
Type | Units | | Reason
Code | | | | TRICHLOROETHENE | 0.426 | J | 0.400 | LOD | 1.00 | LOQ | ua/L | J | RI | | | | Sample ID:A1-MW-37-SA2 | Collec | ted: AM | | Α | nalysis 1 | ype: RES | 3 | <u> </u> | Dilution: 1 | |------------------------|---------------|-------------|-------|------------|-----------|------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | 1,1-DICHLOROETHENE | 0.379 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/21/2018 9:21:17 AM ADR version 1.9.0.325 Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN SDG: 280-117103-1 Method Category: VOA Method: 8260B Matrix: AQ 11/15/2018 11:54:00 Sample ID:A1-MW-37-SA2 Collected: AM Analysis Type: RES Dilution: 1 | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |-----------------|---------------|-------------|-------|------------|------|------------|-------|------------------------|----------------| | TRICHLOROETHENE | 0.914 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | 11/15/2018 12:04:00 Sample ID:A1-MW-37-SA2D Collected: PM Analysis Type: RES Dilution: 1 | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | |--------------------|---------------|-------------|-------|------------|------|------------|-------|------------------------|----------------| | 1,1-DICHLOROETHENE | 0.373 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | TRICHLOROETHENE | 0.909 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | SDG: 280-117110-1 Method Category: EM Method: 9040C Matrix: AQ 11/16/2018 8:12:00 Collected: AM Analysis Type: RES/TOT Sample ID:A1-MW-01-SA2 Dilution: 1 Data DL RL Review Reason Lab Lab DL RL Units Qual Code Result Type Type Analyte Qual 8.0 HF 0.1 LOD 0.1 LOQ ١. StoA РΗ 11/16/2018 9:17:00 Collected: AM Analysis Type: RES/TOT Dilution: 1 Sample ID:A1-MW-42-SA2 Data RL DL Review Reason Lab Lab Result Qual DL Type RL Type Units Qual Code Analyte LOQ SU 8.0 HF LOD StoA PH 0.1 J Method Category: GENCHEM Method: SM3500 Fe B D Matrix: AQ 11/16/2018 8:12:00 Collected: AM Analysis Type: RES/TOT Dilution: 1 Sample ID:A1-MW-01-SA2 Data Review Lab Lab DL RL Reason DL Type RL Type Units Qual Code Analyte Result Qual 0.0500 LOD 0.200 LOQ R StoA 0.0500 U HF mg/L Ferrous Iron Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/21/2018 9:21:17 AM ADR version 1.9.0.325 Page 13 of 15 ^{*} denotes a non-reportable result Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Laboratory: TA DEN SDG: 280-117110-1 Method Category: GENCHEM Method: SM3500 Fe B D Matrix: AQ 11/16/2018 9:17:00 | Sample ID:A1-MW-42-SA2 | Collec | Collected: AM | | | nalysis 1 | ype:RE | Dilution: 1 | | | |------------------------|---------------|---------------|--------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | Ferrous Iron | 0.0500 | U HF F1 | 0.0500 | LOD | 0.200 | LOQ | mg/L | R | Ms, StoA | Method Category: VOA Method: 8260B Matrix: AQ 11/16/2018 9:17:00 | Sample ID:A1-MW-42-SA2 | Collected: AM | | | | nalysis 1 | Type:RE | Dilution: 1 | | | |------------------------|---------------|-------------|-------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | 1,1-DICHLOROETHENE | 0.238 | J | 0.800 | LOD | 1.00 | LOQ | ug/L | J | RI | | TRICHLOROETHENE | 0.367 | J | 0.400 | LOD | 1.00 | LOQ | ug/L | J | RI | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/21/2018 9:21:17 AM ADR version 1.9.0.325 Page 14 of 15 ^{*} denotes a non-reportable result Lab Reporting Batch ID:
280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1 Laboratory: TA DEN eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver #### **Reason Code Legend** | Reason Code | Description | |-------------|--| | Mb | Method Blank Contamination | | Ms | Matrix Spike Lower Estimation | | Ms | Matrix Spike Lower Rejection | | Ms | Matrix Spike Precision | | RI | Reporting Limit Trace Value | | StoA | Sampling to Analysis Estimation | | StoA | Sampling to Analysis Rejection | | Surr | Surrogate/Tracer Recovery Upper Estimation | | | | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/21/2018 9:21:17 AM ADR version 1.9.0.325 Page 15 of 15 ^{*} denotes a non-reportable result | 1803676, 1803678
EDD Filename: Prep1803615, Prep180 | 3626 Prop1 | | | - 0 4 | DD N | 014/ 1 | 2400 | | oratory: Vist | |--|---|-------------------|----------------------|----------------|-----------------------|------------|---------|------------------------|--| | Prep1803676, Prep1803678
SDG: 1803615 | 5020, Frepr | · | | | | | YAC 6_0 | 310 3803 | YUMA - Vist | | Method Category: SVOA | | | | Also Swings of | ALC: N | 130
20 | | | The second secon | | Method: 537 MOD | | | Mat | rix: | AQ | | | and three | | | Sample ID:A1-MW-04-SA2 | Collec | 11/12/
ted:AM | 2018 11.4 | n٠ | nalysis T | ype:RE | 3 | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PFOA | 0.00646 | J | 0.00442 | LOD | 0.00881 | LOQ | ug/L | J | RI | | Sample ID:A1-MW-05-SA2 | 11/12/2018 2・24・ด
Collected:PM Analysis Type:RES Dilution: 1 | | | | | | | | | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PFHxS | 0.00359 | J, Q | 0.00431 | LOD | 0.00864 | LOQ | ug/L | J | RI | | Sample ID:A1-MW-50-SA2 | Collec | 11/12/:
ted:AM | 2018 9:25 | | nalysis T | imo · PE | 2 | | Dilution: 1 | | Sample ID.A 1-NW-30-3A2 | Conec | ted. Alvi | | | lialysis i | ype, NL | | Data | Dilution. 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Review
Qual | Reason
Code | | PFHpA | 0.00474 | J, Q | 0.00446 | LOD | 0.00894 | LOQ | ug/L | J | RI | | Sample ID:A1-MW-50-SA2D | Collec | 11/12/
ted:AM | 2018 9:35 | | nalysis T | vpe:RE | 3 | | Dilution: 1 | | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | PFHpA | 0.00494 | J | 0.00439 | LOD | 0.00874 | LOQ | ug/L | J | RI | | Sample ID:A1-MW-52-SA2 | Collec | 11/12/
ted:PM | 2018 1:39 | | nalysis T | vne:RF: | 3 | | Dilution: 1 | | | Lab | Lab | | DL | | RL | | Data
Review | Reason | | Analyte | Result | Qual | DL | Type | RL | Type | Units | Qual | Code | | PFOS Sample ID:A1.P7.19.SA2 | 0.00356 | 11/12/
:ted:PM | 0.00435
2018 12-4 | | 0.00872
Inalysis 7 | LOQ | ug/L | J | RI Dilution: 1 | | Sample ID:A1-PZ-19-SA2 Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | PFHpA PFOS SDG: 1803626 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/28/2018 11:47:26 AM ADR version 1.9.0.325 Page 1 of 8 0.00442 0.00442 J, Q LOD LOD 0.00884 0.00884 LOQ LOQ ug/L ug/L J RI RI 0.00548 0.00321 ^{*} denotes a non-reportable result Laboratory: Vista 1803676, 1803678 EDD Filename: Prep1803615, Prep1803626, Prep1803659, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Prep1803676, Prep1803678 SDG: 1803626 Method Category: SVOA **537 MOD** AQ Method: Matrix: 11/13/2018 9:38:0 Sample ID:16-MW-06-SA2 Collected: AM Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL Type RL Type Units Qual Code PFOS 0.00582 0.00417 LOD 0.00835 LOQ RI 11/13/2018 1-44-0 Sample ID:16-MW-09-SA2 Collected: PM Analysis Type: RES Dilution: 1 Data DL Lab Lab RLReview Reason Analyte Result Qual DL Type RL Туре Units Qual Code PFOA 0.00449 J 0.00427 LOD 0.00852 LOQ ug/L RI J 0.00503 PFOS J 0.00427 LOD 0.00852 LOQ ug/L J RI 11/13/2018 10:31: Sample ID:A1-MW-18-SA2 Collected: AM Analysis Type: RES Dilution: 1 Data Lab Lab DL Reason RL Review Analyte Result Qual DL RL Units Qual Code Type Type PFOA 0.00309 0.00427 LOD 0.00856 LOQ RI 11/13/2018 11:15: Collected: AM Sample ID:A1-MW-19-SA2 Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason <u>Re</u>sult Qual DL RL Units Qual Code Analyte Type Type PFDA 0.00721 0.00431 LOD 0.00861 LOQ RΙ ug/L LOD 0.00861 LOQ PFNA 0.00398 0.00431 ug/L RI 11/13/2018 2:54:0 Sample ID:A1-MW-53-SA2 Collected:PM Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Units Result Qual DL Type RL Type Qual Code Analyte 0.00400 0.00420 LOD 0.00841 RI PFOS SDG: 1803659 | Method Category: | SVOA | | | |------------------|---------|--------|------| | Method: | 537 MOD | Matrix | c AQ | 11/14/2018 10:03: Dilution: 1 Sample ID:A1-MW-23-SA2 Collected: AM Analysis Type: RES Data Review Lab Lab DL RL Reason Result Qual DL Type RL Туре Units Qual Code Analyte 0.00594 0.00424 LOD 0.00849 LOQ **PFHxS** Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/28/2018 11:47:26 AM ADR version 1.9.0.325 Page 2 of 8 ^{*} denotes a non-reportable result 1803676, 1803678 EDD Filename: Prep1803615, Prep1803626, Prep1803659, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Laboratory: Vista Prep1803676, Prep1803678 SDG: 1803676 SVOA Method Category: Method: **537 MOD** Matrix: #### 11/15/2018 9:06:0 AQ | Sample ID:A1-MW-11-SA2 | Collec | Dilution: 1 | | | | | | | | |------------------------|---------------|-------------|---------|------------|---------|------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | NEtFOSAA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | NMeFOSAA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | PFBS | 0.184 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | | PFDA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | PFDoA | 0.00431 | C | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | PFHpA | 0.0352 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | | PFHxA | 0.460 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | | PFHxS | 0.109 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | | PFNA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | PFOS | 0.00916 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | j | StoE | | PFTeDA | 0.00431 | C | 0.00431 | LOD | 0.00860 | LOQ | ug/L | ΟJ | StoE, Ccv | | PFTrDA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | PFUnA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | ΟJ | StoE | | PFOA | 0.0349 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | #### 11/15/2018 8:20:0 | Sample ID:A1-MW-13-SA2 | Collec | Collected: AM | | | | ype:RES | S | Dilution: 1 | | | |------------------------|---------------|---------------|---------|------------|---------|------------|----------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | NEtFOSAA | 0.00455 | U | 0.00455 | LOD | 0.00906 | LOQ | ug/L | UJ | StoE | | | NMeFOSAA | 0.00455 | U | 0.00455 | LOD | 0.00906 | LOQ | ug/L | UJ | StoE | | | PFBS | 0.259 | | 0.00455 | LOD | 0.00906 | LOQ | ug/L | J | StoE | | | PFDA | 0.00455 | U | 0.00455 | LOD | 0.00906 | LOQ | ug/L | UJ | StoE | | | PFDoA | 0.00455 | U | 0.00455 | LOD | 0.00906 | LOQ | ug/L | ΟĴ | StoE | | | PFHpA | 0.105 | | 0.00455 | LOD | 0.00906 | LOQ | ug/L | J | StoE | | | PFHxA | 0.655 | | 0.00455 | LOD |
0.00906 | LOQ | ug/L | J | StoE | | | PFHxS | 0.368 | | 0.00455 | LOD | 0.00906 | LOQ | ug/L | J | StoE | | | PFNA | 0.00455 | U | 0.00455 | LOD | 0.00906 | LOQ | ug/L | UJ | StoE | | | PFOA | 0.0695 | | 0.00455 | LOD | 0.00906 | LOQ | ug/L | J | StoE | | | PFOS | 0.107 | | 0.00455 | LOD | 0.00906 | LOQ | ug/L | J | StoE | | | PFTeDA | 0.00455 | U | 0.00455 | LOD | 0.00906 | LOQ | ug/L | UJ | StoE, Ccv | | | PFTrDA | 0.00455 | U | 0.00455 | LOD | 0.00906 | LOQ | ug/L | UJ | StoE | | | PFUnA | 0.00455 | U | 0.00455 | LOD | 0.00906 | LOQ | ug/L | UJ | StoE | | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma Page 3 of 8 12/28/2018 11:47:26 AM ADR version 1.9.0.325 1803676, 1803678 EDD Filename: Prep1803615, Prep1803626, Prep1803659, Prep1803676, Prep1803678 SDG: 1803676 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Laboratory: Vista Method Category: SVOA Method: **537 MOD** Matrix: AQ 11/15/2018 10:53: | Sample ID:A1-MW-14-SA2 | Collec | ted:AM | | Α | nalysis T | ype:RES | Dilution: 1 | | | |------------------------|---------------|-------------|---------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | NEtFOSAA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | NMeFOSAA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | PFBS | 0.101 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | | PFDA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | PFDoA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | PFHpA | 0.0658 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | | PFHxA | 0.327 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | | PFHxS | 0.253 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | | PFNA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | ΟJ | StoE | | PFOA | 0.0527 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | J | StoE | | PFOS | 0.0604 | | 0.00431 | LOD | 0.00860 | LOQ | ug/L | j | StoE | | PFTeDA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE, Ccv | | PFTrDA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | | PFUnA | 0.00431 | U | 0.00431 | LOD | 0.00860 | LOQ | ug/L | UJ | StoE | 11/15/2018 10:07: | Sample ID:A1-MW-15-SA2 | Collec | ted:AM | A | nalysis T | ype:RES | Dilution: 1 | | | | |------------------------|---------------|-------------|---------|------------|---------|-------------|-------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | NEtFOSAA | 0.00450 | U | 0.00450 | LOD | 0.00902 | LOQ | ug/L | UJ | StoE | | NMeFOSAA | 0.00450 | U | 0.00450 | LOD | 0.00902 | LOQ | ug/L | UJ | StoE | | PFBS | 0.363 | | 0.00450 | LOD | 0.00902 | LOQ | ug/L | J | StoE | | PFDA | 0.00450 | U | 0.00450 | LOD | 0.00902 | LOQ | ug/L | ΠΊ | StoE | | PFDoA | 0.00450 | U | 0.00450 | LOD | 0.00902 | LOQ | ug/L | UJ | StoE | | PFHpA | 0.0773 | | 0.00450 | LOD | 0.00902 | LOQ | ug/L | J | StoE | | PFHxA | 0.596 | | 0.00450 | LOD | 0.00902 | LOQ | ug/L | J | StoE | | PFHxS | 0.322 | | 0.00450 | LOD | 0.00902 | LOQ | ug/L | J | StoE | | PFNA | 0.00450 | U | 0.00450 | LOD | 0.00902 | LOQ | ug/L | UJ | StoE | | PFOA | 0.190 | | 0.00450 | LOD | 0.00902 | LOQ | ug/L | J | StoE | | PFOS | 0.0185 | | 0.00450 | LOD | 0.00902 | LOQ | ug/L | J | StoE | | PFTeDA | 0.00450 | U | 0.00450 | LOD | 0.00902 | LOQ | ug/L | UJ | StoE, Ccv | | PFTrDA | 0.00450 | U | 0.00450 | LOD | 0.00902 | LOQ | ug/L | UJ | StoE | | PFUnA | 0.00450 | U | 0.00450 | LOD | 0.00902 | LOQ | ug/L | UJ | StoE | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma Page 4 of 8 12/28/2018 11:47:26 AM ADR version 1.9.0.325 1803676, 1803678 EDD Filename: Prep1803615, Prep1803626, Prep1803659, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Laboratory: Vista Prep1803676, Prep1803678 SDG: 1803676 Method Category: SVOA Cample ID.A4 BRAI 24 CA2 Method: 537 MOD Matrix: AQ 11/15/2018 2:16:0 | Sample ID:A1-MW-31-SA2 | Collec | Collected:PM | | | | ype:RES | Dilution: 1 | | | |------------------------|---------------|--------------|---------|------------|---------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | NEtFOSAA | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | UJ | StoE | | NMeFOSAA | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | UJ | StoE | | PFBS | 0.0235 | | 0.00427 | LOD | 0.00855 | LOQ | ug/L | J | StoE | | PFDA | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | UJ | StoE | | PFDoA | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | ΠΊ | StoE | | PFHpA | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | UJ | StoE | | PFHxA | 0.0732 | | 0.00427 | LOD | 0.00855 | LOQ | ug/L | J | StoE | | PFHxS | 0.00855 | | 0.00427 | LOD | 0.00855 | LOQ | ug/L | J | StoE | | PFNA | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | UJ | StoE | | PFOA | 0.00388 | J | 0.00427 | LOD | 0.00855 | LOQ | ug/L | J | RI, StoE | | PFOS | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | ΟJ | StoE | | PFTeDA | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | UJ | StoE, Ccv | | PFTrDA | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | UJ | StoE | | PFUnA | 0.00427 | U | 0.00427 | LOD | 0.00855 | LOQ | ug/L | UJ | StoE | 11/15/2018 11:54 | Sample ID:A1-MW-37-SA2 | Collec | Collected: AM | | | | | Analysis Type:RES | | | | | |------------------------|---------------|---------------|---------|------------|---------|------------|-------------------|------------------------|----------------|--|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | | NEtFOSAA | 0.00424 | U | 0.00424 | LOD | 0.00851 | LOQ | ug/L | UJ | StoE | | | | NMeFOSAA | 0.00424 | U | 0.00424 | LOD | 0.00851 | LOQ | ug/L | υJ | StoE | | | | PFBS | 0.151 | | 0.00424 | LOD | 0.00851 | LOQ | ug/L | J | StoE | | | | PFDA | 0.00424 | U | 0.00424 | LOD | 0.00851 | LOQ | ug/L | UJ | StoE | | | | PFDoA | 0.00424 | U | 0.00424 | LOD | 0.00851 | LOQ | ug/L | UJ | StoE | | | | PFHpA | 0.0856 | | 0.00424 | LOD | 0.00851 | LOQ | ug/L | J | StoE | | | | PFHxA | 0.520 | | 0.00424 | LOD | 0.00851 | LOQ | ug/L | J | StoE | | | | PFHxS | 0.438 | | 0.00424 | LOD | 0.00851 | LOQ | ug/L | J | StoE | | | | PFNA | 0.00424 | U | 0.00424 | LOD | 0.00851 | LOQ | ug/L | UJ | StoE | | | | PFOA | 0.0599 | | 0.00424 | LOD | 0.00851 | LOQ | ug/L | J | StoE | | | | PFOS | 0.0288 | | 0.00424 | LOD | 0.00851 | LOQ | ug/L | J | StoE | | | | PFTeDA | 0.00424 | Ü | 0.00424 | LOD | 0.00851 | LOQ | ug/L | UJ | StoE, Ccv | | | | PFTrDA | 0.00424 | כ | 0.00424 | LOD | 0.00851 | LOQ | ug/L | UJ | StoE | | | | PFUnA | 0.00424 | U | 0.00424 | LOD | 0.00851 | LOQ | ug/L | UJ | StoE | | | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/28/2018 11:47:26 AM ADR version 1.9.0.325 1803676, 1803678 EDD Filename: Prep1803615, Prep1803626, Prep1803659, Prep1803676, Prep1803678 SDG: 1803676 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Laboratory: Vista Method Category: SVOA Method: 537 MOD Matrix: AQ 11/15/2018 12:04: | Sample ID:A1-MW-37-SA2D | Collec | Collected:PM | | | | ype:RES | Dilution: 1 | | | |-------------------------|---------------|--------------|---------|------------|---------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | NEtFOSAA | 0.00435 | Ú | 0.00435 | LOD | 0.00870 | LOQ | ug/L | UJ | StoE | | NMeFOSAA | 0.00435 | U | 0.00435 | LOD | 0.00870 | LOQ | ug/L | UJ | StoE | | PFBS | 0.150 | | 0.00435 | LOD | 0.00870 | LOQ | ug/L | J | StoE | | PFDA | 0.00435 | U | 0.00435 | LOD | 0.00870 | LOQ | ug/L | UJ | StoE | | PFDoA | 0.00435 | Ü | 0.00435 | LOD | 0.00870 | LOQ | ug/L | ΠΊ | StoE | | PFHpA | 0.0830 | | 0.00435 | LOD | 0.00870 | LOQ | ug/L | J | StoE | | PFHxA | 0.529 | | 0.00435 | LOD | 0.00870 | LOQ | ug/L | J | StoE | | PFHxS | 0.429 | | 0.00435 | LOD | 0.00870 | LOQ | ug/L | J | StoE | | PFNA | 0.00435 | U | 0.00435 | LOD | 0.00870 | LOQ | ug/L | ΟJ | StoE | | PFOA | 0.0555 | | 0.00435 | LOD | 0.00870 | LOQ | ug/L | J | StoE | | PFOS | 0.0275 | | 0.00435 | LOD | 0.00870 | LOQ | ug/L | J | StoE | | PFTeDA | 0.00435 | U | 0.00435 | LOD | 0.00870 | LOQ | ug/L | υJ | StoE, Ccv | | PFTrDA | 0.00435 | U | 0.00435 | LOD | 0.00870 | LOQ | ug/L | UJ | StoE | | PFUnA | 0.00435 | U | 0.00435 | LOD | 0.00870 | LOQ | ug/L | UJ | StoE | 11/15/2018 2:30:0 | Sample ID:FRB-20181115 | Collec | ted:PM | | Α | nalysis T | ype:RES | Dilution: 1 | | | |------------------------|---------------|-------------|---------|------------|-----------|------------|-------------|------------------------|----------------| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | NEtFOSAA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | NMeFOSAA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFBS | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFDA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFDoA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFHpA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFHxA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFHxS | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFNA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFOA | 0.00450 | U | 0.00450
 LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFOS | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFTeDA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE, Ccv | | PFTrDA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | | PFUnA | 0.00450 | U | 0.00450 | LOD | 0.00904 | LOQ | ug/L | UJ | StoE | ^{*} denotes a non-reportable result Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/28/2018 11:47:26 AM ADR version 1.9.0.325 Page 6 of 8 # Data Qualifier Summary 1803676, 1803678 EDD Filename: Prep1803615, Prep1803626, Prep1803659, Prep1803676, Prep1803678 SDG: 1803678 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Laboratory: Vista | Method Category | y: SVOA | | | | | | | er \$1 | | Mark J | |-------------------|---------|---|-------------------|------------|------------|------------|-------------|--------|--|----------------| | Method: | 537 MOD | | | Mat | trix: | AQ | | | Company of the Compan | | | Sample ID:A1-MW-0 |)1-SA2 | 11/16/201ጸ Ջ·12·Ո
Collected:AM Analysis Type:RES | | | | | Dilution: 1 | | | | | Analyte | | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reasor
Code | | PFTeDA | | 0.00446 | U | 0.00446 | LOD | 0.00894 | LOQ | ug/L | UJ | Ccv | | Sample ID:A1-MW-4 | 12-SA2 | Collec | 11/16
:ted: AM | /2018 9-17 | | Analysis T | vne ·RF | | | Dilution: 1 | | Lab | Lab | | DL | | D/ | | Data | _ | |---------|------|-----------|-------------------|---------|-------------------------------|-----------------------------------|--|---| | Result | Qual | DL | Туре | RL | RL
Type | Units | Review
Qual | Reason
Code | | 0.00424 | U | 0.00424 | LOD | 0.00849 | LOQ | ug/L | UJ | Ccv | | | |).00424 U | 0.00424 U 0.00424 | | 0.00424 U 0.00424 LOD 0.00849 | 0.00424 U 0.00424 LOD 0.00849 LOQ | 0.00424 U 0.00424 LOD 0.00849 LOQ ug/L | 0.00424 U 0.00424 LOD 0.00849 LOQ ug/L UJ | | Sample ID:EB-20181116 | Collected: AM | | | Analysis Type:RES | | | | Dilution: 1 | | | |-----------------------|---------------|-------------|---------|-------------------|---------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFTeDA | 0.00424 | U | 0.00424 | LOD | 0.00849 | LOQ | ug/L | UJ | Ccv | | | Sample ID:FRB-20181116 | Collected: AM | | | Analysis Type: RES | | | | Dilution: 1 | | | |------------------------|---------------|-------------|---------|--------------------|---------|------------|-------|------------------------|----------------|--| | Analyte | Lab
Result | Lab
Qual | DL | DL
Type | RL | RL
Type | Units | Data
Review
Qual | Reason
Code | | | PFTeDA | 0.00481 | U | 0.00481 | LOD | 0.00965 | LOQ | ug/L | UJ | Ccv | | Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/28/2018 11:47:26 AM ADR version 1.9.0.325 ^{*} denotes a non-reportable result ## Data Qualifier Summary 1803676, 1803678 EDD Filename: Prep1803615, Prep1803626, Prep1803659, Prep1803676, Prep1803678 Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista #### **Reason Code Legend** | Reason Code | Description | |-------------|---| | Ccv | Continuing Calibration Verification Percent Difference Lower Estimation | | Lcs | Laboratory Control Spike Upper Estimation | | Ms | Matrix Spike Precision | | Ms | Matrix Spike Upper Estimation | | RI | Reporting Limit Trace Value | | StoE | Sampling to Extraction Estimation | ^{*} denotes a non-reportable result #### **Enclosure I** ### **Stage 2B ADR Outliers** (Including Manual Review Outliers) # Quality Control Outlier Reports 280-116898-1 # QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-116898-1 Laboratory: TA DEN EDD Filename: 280-116898-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9040C Preparation Method: MI
Matrix: AQ | | | | | | | | | |--|----------------------|--------|----------|-------|-----------------|--|--|--| | Sample ID | Туре | Actual | Criteria | Units | Flag | | | | | A1-MW-04-SA2 (RES/TOT) | Sampling To Analysis | 267.00 | 24.00 | HOURS | J (all detects) | | | | | A1-MW-05-SA2 (RES/TOT) | | 335.00 | 24.00 | HOURS | | | | | | A1-MW-49-SA2 (RES/TOT) | | 341.00 | 24.00 | HOURS | | | | | | A1-MW-50-SA2 (RES/TOT) | | 270.00 | 24.00 | HOURS | | | | | | A1-MW-51-SA2 (RES/TOT) | | 268.75 | 24.00 | HOURS | | | | | | A1-MW-52-SA2 (RES/TOT) | | 265.75 | 24.00 | HOURS | | | | | | A1-PZ-19-SA2 (RES/TOT) | | 336.75 | 24.00 | HOURS | | | | | | Method: SM3500 Fe | e B D | | Preparation Method: METHOD | |-------------------|-------|--|----------------------------| | Matrix: AQ | | The second secon | | | Sample ID | Туре | Actual | Criteria | Units | Flag | |------------------------|----------------------|--------|----------|-------|--------------------| | A1-MW-04-SA2 (RES/TOT) | Sampling To Analysis | 222.75 | 24.00 | HOURS | J(all detects) | | A1-MW-05-SA2 (RES/TOT) | | 220.00 | 24.00 | HOURS | R(all non-detects) | | A1-MW-49-SA2 (RES/TOT) | | 226.00 | 24.00 | HOURS | , | | A1-MW-50-SA2 (RES/TOT) | | 225.00 | 24.00 | HOURS | | | A1-MW-51-SA2 (RES/TOT) | | 223.75 | 24.00 | HOURS | | | A1-MW-52-SA2 (RES/TOT) | | 220.75 | 24.00 | HOURS | | | A1-PZ-19-SA2 (RES/TOT) | | 221.75 | 24.00 | HOURS | | Project Name and Number: 4663.3803 - CTO 17/E 38038 Y 1991 38 AM ADR version 1.9.0.325 Page 1 of 1 # Method Blank Outlier Report Lab Reporting Batch ID: 280-116898-1 **Laboratory: TA DEN** EDD Filename: 280-116898-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9056
Matrix: AQ | | | | | |----------------------------
------------------------|---------|--------------|--| | Method Blank
Sample ID | Analysis Date | Analyte | Result | Associated Samples | | MB 280-437370/6 | 11/13/2018 12:25:00 PM | Sulfate | 0.3332 mg/L | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-MW-51-SA2
A1-MW-52-SA2
A1-PZ-19-SA2 | | MB 280-437371/6 | 11/13/2018 12:25:00 PM | NITRATE | 0.04530 mg/L | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-MW-51-SA2
A1-MW-52-SA2
A1-PZ-19-SA2 | # Reporting Limit Outliers Lab Reporting Batch ID: 280-116898-1 Laboratory: TA DEN EDD Filename: 280-116898-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: 8260B Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |---------------|---------------------------------------|-------------|----------------|--------------------|------------|--------------|-----------------| | A1-MW-50-SA2 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.564
0.780 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-50-SA2D | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.630
0.949 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-52-SA2 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.458
0.811 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-PZ-19-SA2 | TRICHLOROETHENE | J | 0.430 | 1.00 | LOQ | ug/L | J (all detects) | Method: 9056A Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|---------|-------------|--------|--------------------|------------|-------|-----------------| | A1-PZ-19-SA2 | NITRATE | JВ | 0.896 | 1.00 | LOQ | mg/L | J (all detects) | Method: SM3500 Fe B D Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|--------------|-------------|--------|--------------------|------------|-------|-----------------| | A1-MW-05-SA2 | Ferrous Iron | JHF | 0.119 | 0.200 | LOQ | mg/L | J (all detects) | | A1-MW-51-SA2 | Ferrous Iron | JHF | 0.0278 | 0.200 | LOQ | mg/L | J (all detects) | | A1-PZ-19-SA2 | Ferrous Iron | JHF | 0.0591 | 0.200 | LOQ | mg/L | J (all detects) | 12/21/2018 9:03:41 AM ADR version 1.9.0.325 Page 1 of 1 # Field Duplicate RPD Report Lab Reporting Batch ID: 280-116898-1 Laboratory: TA DEN EDD Filename: Prep280-116898-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: 8260B | Madix. AQ | ALM A BEN SHELL SHOWN TO THE PARTY OF PA | . Shir said premark 28 200 may 10 | e-volkelos al entitudio | Later designation of the St. | | |---------------------------------------|--|-----------------------------------|-------------------------|------------------------------|-----------------------| | | Concentra | ation (ug/L) | | | | | Analyte | nalyte A1-MW-50-SA2 A1-MW-50-SA2D | | Sample
RPD | eQAPP
RPD | Flag | | 1,1-DICHLOROETHENE
TRICHLOROETHENE | 0.564
0.780 | 0.630
0.949 | NC
NC | 30.00
30.00 | No Qualifiers Applied | 12/21/2018 10:51:22 AM ADR version 1.9.0.325 Page 1 of 1 VALIDATION COMPLETENESS WORKSHEET LDC #: 43888A1a ADR/\$tage 284 SDG #: 280-116898-1 Laboratory: Test America, Inc. 2nd Reviewer METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----------|----------------------------------| | 1. | Sample receipt/Technical holding times | AIA | | | II. | GC/MS Instrument performance check | A' | 3 | | III. | Initial calibration/ICV | AIA | 10AL = 15%. 101 = 20 % | | IV. | Continuing calibration | A A | CON = 20/50% | | V. | Laboratory Blanks | N | Not reviewed for ADR validation. | | VI. | Field blanks | | | | VII. | Surrogate spikes | | Not reviewed for ADR validation. | | VIII. | Matrix spike/Matrix spike duplicates | | Not reviewed for ADR validation. | | IX. | Laboratory control samples | | Not reviewed for ADR validation. | | Χ. | Field duplicates | <u> </u> | | | XI. | Internal standards | A | Not reviewed for ADR validation. | | XII. | Compound quantitation RL/LOQ/LODs | N | Not reviewed for ADR validation. | | XIII. | Target compound identification | | Not reviewed for ADR validation. | | XIV. | System performance | | Not reviewed for ADR validation. | | XV. | Overall assessment of data | <u> </u> | Not reviewed for ADR validation. | Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank OTHER: ** Indicates sample underwent Stage 4 validation | _ | Client ID | Lab ID | Matrix | Date | |----|-------------------------------|--------------------------|--------|----------| | 1 | A1-MW-04-SA2** | 280-116898-1** | Water | 11/12/18 | | 2 | A1-MW-05-SA2** | 280-116898-2** | Water | 11/12/18 | | 3 | A1-MW-49-SA2** | 280-116898-3** | Water | 11/12/18 | | 4 | A1-MW-50-SA2** | 280-116898-4** | Water | 11/12/18 | | 5 | A1-MW-50-SA2D** | 280-116898-5** | Water | 11/12/18 | | 3 | A1-MW-51-SA2** | 280-116898-6** | Water | 11/12/18 | | 7 | TB-20181112 | 280-116898-7 | Water | 11/12/18 | | 3 | A1-PZ-19-SA2** | 280-116898-8** | Water | 11/12/18 | | 9 | A1-MW-52-SA2** | 280-116898-9** | Water | 11/12/18 | | 10 | A1-MW-50-SA2MS | 280-116898-4MS | Water | 11/12/18 | | 11 | A1-MW-50-SA2MSD | 280-116898-4 M SD | Water | 11/12/18 | | 12 | | | | | | 13 | MB 280-498700/6
- 498747/4 | | | | ### LDC #: 43888A6 VALIDATION COMPLETENESS WORKSHEET ADR/Stage-4 | Date: | 17-70-1 | |---------------|---------| | Page: | [of [| | Reviewer: | | | 2nd Reviewer: | | SDG #: 280-116898-1 Laboratory: Test America, Inc. METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----------|---| | I. | Sample receipt/Technical holding times | SW | | | ll ll | Initial calibration | A | | | 111. | Calibration verification | Α | | | IV | Laboratory Blanks | SW | | | V | Field blanks | 7 | | | VI. | Matrix Spike/Matrix Spike Duplicates | A | Not reviewed for ADR validation. M5/M5D | | VII. | Duplicate sample analysis | Α | Not reviewed for ADR validation. DUP | | VIII. | Laboratory control samples | Α | Not reviewed for ADR validation. LCS/LCSD | | IX. | Field duplicates | 7 | | | X. | Sample result verification | Α | Not reviewed for ADR validation. | | _xı_ | Overall assessment of data | <u> </u> | Not reviewed for ADR validation | Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank OTHER: ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |-----|-----------------|-----------------|--------|----------| | 1 | A1-MW-04-SA2** | 280-116898-1** | Water | 11/12/18 | | 2 | A1-MW-05-SA2** | 280-116898-2** | Water | 11/12/18 | | 3 | A1-MW-49-SA2** | 280-116898-3** | Water | 11/12/18 | | 4 | A1-MW-50-SA2** | 280-116898-4** | Water | 11/12/18 | | 5 | A1-MW-51-SA2 | 280-116898-6 | Water | 11/12/18 | | 6 | A1-PZ-19-SA2** | 280-116898-8** | Water | 11/12/18 | | 7 | A1-MW-52-SA2** | 280-116898-9** | Water | 11/12/18 | | 8 | A1-MW-50-SA2MS | 280-116898-4MS | Water | 11/12/18 | | 9 | A1-MW-50-SA2MSD | 280-116898-4MSD | Water | 11/12/18 | | 10 | A1-MW-50-SA2DUP | 280-116898-4DUP |
Water | 11/12/18 | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15_ | PBW | | | | | Notes | | - With a significant state of the same |
 | | |-------|--|--|------|--| | | | | | | | | | |
 | | LDC#: 43888A6 #### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: __of __ Reviewer: __MG 2nd reviewer: ___ All circled methods are applicable to each sample. | Samula ID | Bankvin | | |-----------------|----------|---| | Sample ID | Matrix | Parameter (5+3) | | $\rightarrow 7$ | <u>~</u> | pH) TDS CDF (NO3) NO3 SO3 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 (Fe+3) | | QC8→10 | ↓ | PH TDS CI)F (NO3)NO2 (SO4)PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | PH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | ph TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | ph TDS CLF NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | ph TDS CLF NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | | | L | | ph TDS CLE NO, NO, SO, PO, ALK CN NH, TKN TOC CR6+ CIO, | | Comments: | | |-----------|--| | | | LDC #: 43888A6 # VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u> Page: of Reviewer: MG 2nd reviewer: | thod: | er temperatures | 9040C | | 3500 Fe B | | | | |--|--|-------------------|------------------|------------------|---|---|-----------| | | <u>, in the second of second</u> | 1 | 300 | Ferrous | | | | | rameters: | | PH | | Iron | | | | | chnical holding ti | me: | 24 hr | | 24 hr | | | | | Sample ID | Sampling
date | Analysis
date | Analysis
date | Analysis
date | Analysis
date | Analysis
date | Qualifier | | Ŷ | 11:40 | 14:43
11-23-18 | (11 days) | | | | J/UJ/P | | 2 | 11-12-18 | 13:27 | (14) | , | | | (| | 3 | 11-12-18
08:33
11-12-18
09:35 | 13:36 | (14) | | | | | | Ч | 11-13-18 | 11-23-18 | (11) | | | | | | 5 | 10:46 | 15:33 | (11) | | | | | | 6 | 19:43 | 13:32 | (14) | | · | | | | 7 | 13: 39
11-12-18 | 11-26-18 | (11) | | | | J | | Wasanin and Carlos | | | | | | | | | | | | | | | · | | | | il: 40 | | | 18: 30 | | | | | <u> </u> | (1-12-18
14:24 | | | 11-91-18 | (9 days) | | J/R/P | | 2 | 11-12-18 | | | | $\langle -+ \rangle$ | | | | 3 | 11-12-18 | | | | , | | | | 4 | 11-13-18 | | | | | · · · · · · · · · · · · · · · · · · · | | | 5 | 11-12-18 | | | | | | | | <u> </u> | 11-12-18 13:39 11-12-18 | | | | | | | | | 11-12-18 | | | \ \ \ | () | | 1 | | | | | | | | ***** | - | | *************************************** | - | | | | | | | | | | | | | | | | | | - | | | | | | | | | | LDC #: 43888A6 # VALIDATION FINDINGS WORKSHEET Blanks | | Page:_ | l_of_L | |-----|-----------|--------| | | Reviewer: | MG | | 2nd | Reviewer: | | METHOD:Inorganics, Method See Cover Conc. units: mg/L Associated Samples: all (NO3-N: 2x dil, SO4: 20x dil, >5x or ND) | Analyte | Blank ID | Blank ID | Blank | | | | | | | |---------|----------|-------------------|--------------|------------|---|--|--|--|--| | | РВ | ICB/CCB
(mg/L) | Action Limit | No Qual's. | | | | | | | NO3-N | 0.04530 | 0.04526 | 0.4526 | | | | | | | | SO4 | 0.3332 | 0.3841 | 38.41 | | i | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". # Quality Control Outlier Reports 280-116942-1 # QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-116942-1 EDD Filename: 280-116942-1 Laboratory: TA DEN eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Sample ID | Туре | Actual | Criteria | Units | Flag | |------------------------|----------------------|-----------|------------|---------|-----------------------| | 16-HS-03-SA2 (RES/TOT) | Sampling To Analysis | 316.00 | 24.00 | HOURS | J (all detects) | | 16-MW-06-SA2 (RES/TOT) | | 318.50 | 24.00 | HOURS | , | | 16-MW-08-SA2 (RES/TOT) | | 314.75 | 24.00 | HOURS | | | 16-MW-09-SA2 (RES/TOT) | | 314.50 | 24.00 | HOURS | | | A1-MW-18-SA2 (RES/TOT) | | 317.50 | 24.00 | HOURS | | | A1-MW-19-SA2 (RES/TOT) | | 316.25 | 24.00 | HOURS | | | A1-MW-53-SA2
(RES/TOT) | | 312.75 | 24.00 | HOURS | | | Method: 9056A | | | The second | Prej | paration Method: METI | | Matrix: AQ | | 4 /4 (6) | (see | | | | Sample ID | Type | Actual | Criteria | Units | Flag | | A1-MW-18-SA2 (RES/TOT) | Sampling To Analysis | 62.25 | 48.00 | HOURS | J(all detects) | | | | 62.50 | l 48.00 l | HOURS I | UJ(all non-detects) | | A1-MW-18- | SA2 (RES/TOT) | Sampling To Analysis | 62.25
62.50 | 48.00
48.00 | HOURS
HOURS | J(all detects)
UJ(all non-detects) | |-----------|---------------|----------------------|----------------|----------------|----------------|---------------------------------------| | Method: | SM3500 Fe B D | | in the sale of | | Pr | eparation Method: METHOD | | Matrix: | AO | | | | | | | Sample ID | Type | Actual | Criteria | Units | Flag | |---------------------------|----------------------|--------|----------|-------|--------------------| | 16-HS-03-SA2 (RES/TOT) | Sampling To Analysis | 198.50 | 24.00 | HOURS | J(all detects) | | 16-MW-06-SA2 (RES/TOT) | | 200.75 | 24.00 | HOURS | R(all non-detects) | | 16-MW-08-SA2 (RES/TOT) | | 197.50 | 24.00 | HOURS | , | | 16-MW-09-SA2 (RES/TOT) | | 196.75 | 24.00 | HOURS | | | 16-MW-09-SA2DUP (RES/TOT) | | 196.75 | 24.00 | HOURS | | | 16-MW-09-SA2MS (RES/TOT) | | 196.75 | 24.00 | HOURS | | | 16-MW-09-SA2MSD (RES/TOT) | | 196.75 | 24.00 | HOURS | | | A1-MW-18-SA2 (RES/TOT) | | 200.00 | 24.00 | HOURS | | | A1-MW-19-SA2 (RES/TOT) | | 199.25 | 24.00 | HOURS | | | A1-MW-53-SA2 (RES/TOT) | | 195.50 | 24.00 | HOURS | | ADR version 1.9.0.325 Page 1 of 1 # Matrix Spike/Matrix Spike Duplicate Outlier Report Lab Reporting Batch ID: 280-116942-1 Laboratory: TA DEN EDD Filename: 280-116942-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9056A
Matrix: AQ | | Control (FE) | | | | | Particle Landson | |---|----------|--------------|-----------|--------------|-----------------|-----------------------|---| | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | 16-MW-06-SA2MS
16-MW-06-SA2MSD
(16-MW-06-SA2) | Sulfate | 80 | 74 | 87.00-112.00 | - | Sulfate | J (all detects)
UJ (all non-detects) | | Wethod: SM3500 Fe B D Watrix: AQ | | | | | | | | | | |---|--------------|----------|-----------|--------------|-----------------|-----------------------|---------------------------------------|--|--| | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | | | 16-MW-09-SA2MS
16-MW-09-SA2MSD
(16-MW-09-SA2) | Ferrous Iron | 53 | 51 | 85.00-113.00 | - | Ferrous Iron | J(all detects)
UJ(all non-detects) | | | 12/21/2018 9:07:56 AM ADR version 1.9.0.325 Page 1 of 1 # Reporting Limit Outliers Lab Reporting Batch ID: 280-116942-1 Laboratory: TA DEN EDD Filename: 280-116942-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: | 8260B | A STATE OF THE STA | | | Olasie is in it | | 3179 W | | | |---------|-------|--|--|---------|-----------------|--|--------|--|--| | Matrix: | AQ | | | WINE TO | | | | | | | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|-------------------|-------------|--------|--------------------|------------|-------|-----------------| | 16-MW-06-SA2 | TRICHLOROETHENE | j | 0.195 | 1.00 | LOQ | ug/L | J (all detects) | | 16-MW-08-SA2 | TETRACHLOROETHENE | J | 0.538 | 1.00 | LOQ | ug/L | J (all detects) | | 16-MW-09-SA2 | TETRACHLOROETHENE | J | 0.271 | 1.00 | LOQ | ug/L | J (all detects) | | A1-MW-19-SA2 | TRICHLOROETHENE | J | 0.545 | 1.00 | LOQ | ug/L | J (all detects) | | LDC #:_ 43888B1a | _ VALIDATION COMPLETENESS WORKSHEET | |---------------------|-------------------------------------| | SDG #: 280-116942-1 | ADR | Laboratory: Test America, Inc. METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | | |-------|--|-----|----------------------------|--------| | I. | Sample receipt/Technical holding times | A/A | | | | II. | GC/MS Instrument performance check | A'L | | | | 111. | Initial calibration/ICV | AIA | 1CAL & 15%
COV & 20/50% | 19620% | | IV. | Continuing calibration | A | acr = 20/50% | | | V. | Laboratory Blanks | N | | | | VI. | Field blanks | N | | | | VII. | Surrogate spikes | N | | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | | IX. | Laboratory control samples | N | | | | X. | Field duplicates | N | | | | XI. | Internal standards | MA | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | XIII. | Target compound identification | N | | | | XIV. | System performance | N | | | | XV. | Overall assessment of data | N | | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|--------------|--------|----------| | 1_ | 16-HS-03-SA2 | 280-116942-1 | Water | 11/13/18 | | 2 | 16-MW-06-SA2 | 280-116942-2 | Water | 11/13/18 | | 3 | 16-MW-08-SA2 | 280-116942-3 | Water | 11/13/18 | | 4 | 16-MW-09-SA2 | 280-116942-4 | Water | 11/13/18 | | 5 | A1-MW-18-SA2 | 280-116942-5 | Water | 11/13/18 | | 6 | A1-MVV-19-SA2 | 280-116942-6 | Water | 11/13/18 | | 7 | TB-20181113 | 280-116942-7 | Water | 11/13/18 | | 8 | A1-MW-53-SA2 | 280-116942-8 | Water | 11/13/18 | | 9 | 16-HS-063-SA2D | 280-116942-9 | Water | 11/13/18 | | 10 | | | | | | 11 | | | | | | 12 | MB 280-438817/4 | | | | | 13 | | | | | (H, AA, S only) #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 43888B6 **ADR** Date: 12-20-18 Page: I of I Reviewer: 2nd Reviewer: SDG #: 280-116942-1 Laboratory: Test America, Inc. METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----|---| | I. | Sample receipt/Technical holding times | SW | HT outfor all pH, Fet?; NO3 out for #5 | | 11 | Initial calibration | A | , | | 111. | Calibration verification | Α | | | IV | Laboratory Blanks | SW | ICB/CCB only | | V | Field blanks | 7 | | | VI. | Matrix Spike/Matrix Spike Duplicates | N | MS/MSD (#8/9: SO4 fails #11/12: Fe+2 fails) | | VII. | Duplicate sample analysis | N | DUP | | VIII. | Laboratory control samples | N | LCS/LCSD | | IX. | Field duplicates | 2 | | | X. | Sample result verification | N | | | XI | Overall assessment of data | N | | Note: A = Acceptable SW = See worksheet N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|-------------------------|--------|----------| | 1 | 16-HS-03-SA2 | 280-116942-1 | Water | 11/13/18 | | 2 | 16-MW-06-SA2 | 280-116942-2 | Water | 11/13/18 | | 3 | 16-MW-08-SA2 | 280-116942-3 | Water | 11/13/18 | | 4 | 16-MW-09-SA2 | 280-116942-4 | Water | 11/13/18 | | 5 | A1-MW-18-SA2 | 280-116942-5 | Water | 11/13/18 | | 6 | A1-MW-19-SA2 | 280-116942-6 | Water | 11/13/18 | | 7 | A1-MW-53-SA2 | 280-116942-8 | Water | 11/13/18 | | 8 | 16-MW-06-SA2MS | 280-116942-2 M S | Water | 11/13/18 | | 9 | 16-MW-06-SA2MSD | 280-116942-2MSD | Water | 11/13/18 | | 10 | 16-MW-06-SA2DUP |
280-116942-2DUP | Water | 11/13/18 | | 11 | 16-MW-09-SA2MS | 280-116942-4MS | Water | 11/13/18 | | 12 | 16-MW-09-SA2MSD | 280-116942-4MSD | Water | 11/13/18 | | 13 | 16-MW-09-SA2DUP | 280-116942-4DUP | Water | 11/13/18 | | 14 | PBWI | | | | | 15 | PBW2 | | | | | Notes: |
 | ., | | | | |--------|------|----|------|--|--| | | | | | | | | | | |
 | | | | | | | | | | LDC#. 4388886 #### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: lof l Reviewer: MG 2nd reviewer: All circled methods are applicable to each sample. | Sample ID | <u> Matrix</u> | Parameter () | |-----------|----------------|---| | 1→7 | W | (PH) TDS (CI) F (NO3) NO2 SO2 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 (Fe+2) | | QC 8→10 | | pH TDS CI)F NO3 NO2 SO3 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | 11-13 | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 (Fe+2) | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | ph tds ci f NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | ph TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | ph tds ci f No3 No2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | ph tds ci f No3 No2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | ph tds ci f No3 No2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk cn ⁻ Nh ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CLE NO, NO, SO, PO, ALK CN: NH, TKN TOC CR6+ ClO, | | Comments: | | |-----------|--| | | | LDC #: 43888B6 # VALIDATION FINDINGS WORKSHEET Blanks | | Page:_ | of | | |-----|------------|--------|--| | | Reviewer: | MG | | | 2nd | Reviewer C | \sim | | METHOD:Inorganics, Method See Cover Conc. units: mg/L Associated Samples: 1-4,6 (various dilutions, >5x) | Analyte | Blank ID | Blank ID | | | | | | | | |---------|----------|-------------------|--------------|------------|--|--|--|--|--| | | РВ | ICB/CCB
(mg/L) | Action Limit | No Qual's. | | | | | | | SO4 | | 0.6931 | 3.466 | | | | | | | Conc. units: mg/L Associated Samples: 2,3,4,7 (various dilutions, >5x) | Analyte | Blank ID | Blank ID | Blank | | | | | | | |---------|----------|-------------------|--------------|------------|--|--|--|--|--| | | РВ | ICB/CCB
(mg/L) | Action Limit | No Qual's. | | | | | | | CI | | 0.3086 | 1.543 | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". # Quality Control Outlier Reports 280-117007-1 # QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-117007-1 Laboratory: TA DEN EDD Filename: 280-117007-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9040C Preparation Method: METHOD Matrix: AQ | | | | | | | | | |--|----------------------|--|---|--|-----------------|--|--|--| | Sample ID | Туре | Actual | Criteria | Units | Flag | | | | | A1-MW-07-SA2 (RES/TOT)
A1-MW-23-SA2 (RES/TOT)
A1-MW-25-SA2 (RES/TOT)
A1-MW-27-SA2 (RES/TOT)
A1-MW-54-SA2 (RES/TOT)
A1-MW-55-SA2 (RES/TOT) | Sampling To Analysis | 363.25
362.25
359.75
359.25
356.75
361.00 | 24.00
24.00
24.00
24.00
24.00
24.00
24.00 | HOURS
HOURS
HOURS
HOURS
HOURS
HOURS | J (all detects) | | | | Method: SM3500 Fe B D Matrix: AQ | Sample ID | Туре | Actual | Criteria | Units | Flag | |---|----------------------|--|---|--|--------------------------------------| | A1-MW-07-SA2 (RES/TOT)
A1-MW-23-SA2 (RES/TOT)
A1-MW-25-SA2 (RES/TOT)
A1-MW-27-SA2 (RES/TOT)
A1-MW-54-SA2 (RES/TOT)
A1-MW-54-SA2DUP (RES/TOT)
A1-MW-54-SA2MS (RES/TOT) | Sampling To Analysis | 177.50
176.50
174.25
173.50
171.25
171.25 | 24.00
24.00
24.00
24.00
24.00
24.00
24.00 | HOURS
HOURS
HOURS
HOURS
HOURS
HOURS | J(all detects)
R(all non-detects) | | A1-MW-54-SA2MSD (RES/TOT)
A1-MW-55-SA2 (RES/TOT) | | 171.25
171.25
175.50 | 24.00
24.00 | HOURS
HOURS | | **17/5-3/80 % Septima** AM ADR version 1.9.0.325 Page 1 of 1 ### Matrix Spike/Matrix Spike Duplicate Outlier Report Lab Reporting Batch ID: 280-117007-1 Laboratory: TA DEN EDD Filename: 280-117007-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: SM3500 Fe B D Matrix: AQ QC Sample ID (Associated MS MSD %R RPD Affected Samples) Compound %R %R Limits (Limits) Compounds Flag A1-MW-54-SA2MS 85.00-113.00 Ferrous Iron 35 Ferrous Iron A1-MW-54-SA2MSD (A1-MW-54-SA2) J (all detects) UJ (all non-detects) Project Name and Number: 4663.3803 - CTO 17F3803 Yuma 12/21/2018 9:10:27 AM ADR version 1.9.0.325 Page 1 of 1 # Reporting Limit Outliers Lab Reporting Batch ID: 280-117007-1 Laboratory: TA DEN EDD Filename: 280-117007-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: 8260B Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|---------------------------------------|-------------|----------------|--------------------|------------|--------------|-----------------| | A1-MW-07-SA2 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.357
0.826 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-25-SA2 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.273
0.539 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | LDC #: 43888C1a | VALIDATION COMPLETENESS WORKSHEET | |--------------------------------|--| | SDG #: 280-117007-1 | ADR | | Laboratory: Test America, Inc. | | 2nd Reviewer: METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|----------------------| | 1. | Sample receipt/Technical holding times | AIA | | | II. | GC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | AIA | 1041 £ 15? 101 £ 202 | | IV. | Continuing calibration | A | Ca & 20/50 2 | | V. | Laboratory Blanks | N | | | VI. | Field blanks | N | | | VII. | Surrogate spikes | N | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | IX. | Laboratory control samples | N | | | X. | Field duplicates | N | | | XI. | Internal standards | NA | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|---------------------|-----------------|--------|----------| | 1 | A1-MW-07-SA2 | 280-117007-1 | Water | 11/14/18 | | 2 | A1-MW-23-SA2 | 280-117007-2 | Water | 11/14/18 | | 3 | A1-MW-25-SA2 | 280-117007-3 | Water | 11/14/18 | | 4 | A1-MW-27-SA2 | 280-117007-4 | Water | 11/14/18 | | 5 | A1-MW-55-SA2 | 280-117007-5 | Water | 11/14/18 | | 6 | TB-20181114 | 280-117007-6 | Water | 11/14/18 | | 7 | A1-MW-54-SA2 | 280-117007-7 | Water | 11/14/18 | | 8 | A1-MW-07-SA2MS | 280-117007-1MS | Water | 11/14/18 | | 9 | A1-MW-07-SA2MSD | 280-117007-1MSD | Water | 11/14/18 | | 10 | | | | | | 11 | MB 280 - 43 8841 /6 | | | | | 12 | | | | | | 13 | | | | | (H, AA, S only) # **VALIDATION COMPLETENESS WORKSHEET** SDG #: 280-117007-1 Laboratory: Test America, Inc. LDC #: 43888C6 ADR Reviewer: M 2nd Reviewer: METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----|---------------------------| | I. | Sample receipt/Technical holding times | SW | HT out for all pH. Fe+2 | |
11 | Initial calibration | A | | | III. | Calibration verification | A | | | IV | Laboratory Blanks | SW | ICB/CCB only | | V | Field blanks | N | | | VI. | Matrix Spike/Matrix Spike Duplicates | N | MS/MSD (#7/8: Fe+2 fails) | | VII. | Duplicate sample analysis | N | DUP | | VIII. | Laboratory control samples | N | LCS/LCSD | | IX. | Field duplicates | N | | | X. | Sample result verification | N | | | xı_ | Overall assessment of data | | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|-----------------|--------|----------| | 1 | A1-MW-07-SA2 | 280-117007-1 | Water | 11/14/18 | | 2 | A1-MW-23-SA2 | 280-117007-2 | Water | 11/14/18 | | 3 | A1-MW-25-SA2 | 280-117007-3 | Water | 11/14/18 | | 4 | A1-MW-27-SA2 | 280-117007-4 | Water | 11/14/18 | | 5 | A1-MW-55-SA2 | 280-117007-5 | Water | 11/14/18 | | 6 | A1-MW-54-SA2 | 280-117007-7 | Water | 11/14/18 | | 7 | A1-MW-54-SA2MS | 280-117007-7MS | Water | 11/14/18 | | 8 | A1-MW-54-SA2MSD | 280-117007-7MSD | Water | 11/14/18 | | 9 | A1-MW-54-SA2DUP | 280-117007-7DUP | Water | 11/14/18 | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | PBW | | | | | Notes: | | | - | |--------|------|--|---| | | | | | | |
 | | | LDC#: 43888C6 #### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: of Reviewer: 2nd reviewer: All circled methods are applicable to each sample. | Samula ID | | | |-----------|--|---| | Sample ID | Matrix | Parameter (F+2) | | 1->6 | ~
~ | (pH) TDS (C) F(NO3) NO2 (SO2) PO4 ALK CN NH3 TKN TOC CR6+ CIO4 (Fe+2) | | QC 7→9 | _ • | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 (Fe+3) | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk CN Nh ₃ TKN toc CR ⁶⁺ Cio ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | ph TDS CLF NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | | | | ······································ | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | ph TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | PH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | PH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO, NO, SO, PO, ALK CN NH, TKN TOC CR6+ CIO, | | Comments: | | |-----------|--| | | | LDC #: 43888C6 # VALIDATION FINDINGS WORKSHEET Blanks | Page:_ | of | |---------------|----| | Reviewer: | MG | | 2nd Reviewer: | | METHOD:Inorganics, Method See Cover Conc. units: mg/L Associated Samples: 1-5 (10x dil, >5x) | Analyte | Blank ID | Blank ID | Blank | | | | | | | |-------------|----------|-------------------|--------------|------------|--|--|--|--|--| | 1. 12
1. | РВ | ICB/CCB
(mg/L) | Action Limit | No Qual's. | | | | | | | CI | | 0.2558 | 12.79 | | | | | | | Conc. units: mg/L Associated Samples: 6 (10x dil, >5x) | Analyte | Blank ID | Blank ID | | | | | | | | |---------|----------|-------------------|--------------|----------|---|--|--|--|--| | | РВ | ICB/CCB
(mg/L) | Action Limit | No Qual. | | | | | | | Cl | | 0.2618 | 13.09 | | L | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". # Quality Control Outlier Reports 280-117103-1 # QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-117103-1 Laboratory: TA DEN EDD Filename: 280-117103-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | 1 / 1 1 1 mm | | BREIDE GOOD FRANCISCO FRANCISCO AND MANAGEMENT OF STANKING AN OPEN STANKING AND STA | | |--|---|--|-----------------| | Actual | Criteria | Units | Flag | | 340.75
341.00
338.75
338.75
339.75
335.50
337.75 | 24.00
24.00
24.00
24.00
24.00
24.00
24.00 | HOURS HOURS HOURS HOURS HOURS HOURS HOURS | J (all detects) | | | 340.75
341.00
338.75
338.75
339.75
335.50 | 340.75 24.00
341.00 24.00
338.75 24.00
338.75 24.00
339.75 24.00
335.50 24.00 | 340.75 | Matrix: AQ | Sample ID | <i>Typ</i> e | Actual | Criteria | Units | Flag | |--|----------------------|--|--|-------------------------------------|--------------------------------------| | A1-MW-11-SA2 (RES/TOT)
A1-MW-13-SA2 (RES/TOT)
A1-MW-14-SA2 (RES/TOT)
A1-MW-15-SA2 (RES/TOT)
A1-MW-31-SA2 (RES/TOT)
A1-MW-37-SA2 (RES/TOT) | Sampling To Analysis | 153.50
154.25
151.75
152.50
148.25
150.75 | 24.00
24.00
24.00
24.00
24.00
24.00 | HOURS HOURS HOURS HOURS HOURS HOURS | J(all detects)
R(all non-detects) | # Method Blank Outlier Report Lab Reporting Batch ID: 280-117103-1 Laboratory: TA DEN EDD Filename: 280-117103-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9056
Matrix: AQ | | | | | |----------------------------|-----------------------|---------------------|----------------------------|--| | Method Blank
Sample ID | Analysis Date | Analyte | Result | Associated
Samples | | MB 280-437914/6 | 11/16/2018 5:36:00 PM | CHLORIDE
Sulfate | 0.2635 mg/L
0.3386 mg/L | A1-MW-11-SA2
A1-MW-13-SA2
A1-MW-14-SA2
A1-MW-15-SA2
A1-MW-31-SA2
A1-MW-37-SA2 | | MB 280-437915/6 | 11/16/2018 5:36:00 PM | NITRATE | 0.04638 mg/L | A1-MW-11-SA2
A1-MW-13-SA2
A1-MW-14-SA2
A1-MW-15-SA2
A1-MW-31-SA2
A1-MW-37-SA2 | # Reporting Limit Outliers Lab Reporting Batch ID: 280-117103-1 Laboratory: TA DEN EDD Filename: 280-117103-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: 8260B Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |---------------|---------------------------------------|-------------|----------------|--------------------|------------|--------------|-----------------| | A1-MW-14-\$A2 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.635
0.728 |
1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-15-SA2 | TRICHLOROETHENE | J | 0.426 | 1.00 | LOQ | ug/L | J (all detects) | | A1-MW-37-SA2 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.379
0.914 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-37-SA2D | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.373
0.909 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | Method: SM3500 Fe B D Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|--------------|-------------|--------|--------------------|------------|-------|-----------------| | A1-MW-37-SA2 | Ferrous Iron | J HF | 0.156 | 0.200 | LOQ | mg/L | J (all detects) | # Field Duplicate RPD Report Lab Reporting Batch ID: 280-117103-1 Laboratory: TA DEN EDD Filename: Prep280-117103-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: 8260B Matrix: AQ | | Concentr | | | | | |---------------------------------------|----------------|----------------|---------------|----------------|-----------------------| | Analyte | A1-MW-37-SA2 | A1-MW-37-SA2D | Sample
RPD | eQAPP
RPD | Flag | | 1,1-DICHLOROETHENE
TRICHLOROETHENE | 0.379
0.914 | 0.373
0.909 | NC
NC | 30.00
30.00 | No Qualifiers Applied | | LDC #: 43888D1a | VALIDATION COMPLETENESS WORKSHEET | |--------------------------------|--| | SDG #: 280-117103-1 | ADR | | Laboratory: Test America, Inc. | | Reviewer: 4 2nd Reviewer: METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | | |-------|--|-----|-------------|---------| | I. | Sample receipt/Technical holding times | A,A | | | | II. | GC/MS Instrument performance check | A' | | | | III. | Initial calibration/ICV | AIA | CAL = 15? | 101520% | | IV. | Continuing calibration | A | CN & 20/50? | | | V. | Laboratory Blanks | N | 1 | | | VI. | Field blanks | N | | | | VII. | Surrogate spikes | N | | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | | IX. | Laboratory control samples | N | | | | X. | Field duplicates | N | | | | XI. | Internal standards | MA | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | XIII. | Target compound identification | N | | | | XIV. | System performance | N | | | | XV. | Overall assessment of data | N | | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | | | T | | |----|------------------|--------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 1 | A1-MW-11-SA2 | 280-117103-1 | Water | 11/15/18 | | 2 | A1-MW-13-SA2 | 280-117103-2 | Water | 11/15/18 | | 3 | A1-MW-14-SA2 | 280-117103-3 | Water | 11/15/18 | | 4 | A1-MW-15-SA2 | 280-117103-4 | Water | 11/15/18 | | 5 | A1-MW-37-SA2 | 280-117103-5 | Water | 11/15/18 | | 6 | A1-MW-37-SA2D | 280-117103-6 | Water | 11/15/18 | | 7 | TB-20181115 | 280-117103-7 | Water | 11/15/18 | | 8 | A1-MW-31-SA2 | 280-117103-8 | Water | 11/15/18 | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | MB 280-43 8823/9 | | | | | 13 | | | | | H, AA, S only) #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 43888D6 SDG #: 280-117103-1 **ADR** Date: 17 -20-18 Page: __of__ Reviewer: M 2nd Reviewer: ∠ METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----|------------------------| | 1. | Sample receipt/Technical holding times | SW | HT out for all pH Feta | | 11 | Initial calibration | A | • | | III. | Calibration verification | A | | | IV | Laboratory Blanks | SW | ICB/CCB only | | V | Field blanks | 7 | , | | VI. | Matrix Spike/Matrix Spike Duplicates | N | client specified | | VII. | Duplicate sample analysis | N | DUP | | VIII. | Laboratory control samples | N | LCS/LCSD | | IX. | Field duplicates | N | | | X. | Sample result verification | N | | | _xı_ | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet Laboratory: Test America, Inc. ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|-----------------|--------|----------| | 1 | A1-MW-11-SA2 | 280-117103-1 | Water | 11/15/18 | | 2 | A1-MW-13-SA2 | 280-117103-2 | Water | 11/15/18 | | 3 | A1-MW-14-SA2 | 280-117103-3 | Water | 11/15/18 | | 4 | A1-MW-15-SA2 | 280-117103-4 | Water | 11/15/18 | | 5 | A1-MW-37-SA2 | 280-117103-5 | Water | 11/15/18 | | 6 | A1-MW-31-SA2 | 280-117103-8 | Water | 11/15/18 | | 7 | A1-MW-14-SA2DUP | 280-117103-3DUP | Water | 11/15/18 | | 8 | | | | | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | PBW | | | | LDC #: 43888D6 ## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: __of __ Reviewer: __MG 2nd reviewer: ___ All circled methods are applicable to each sample. | Sample ID | <u> Matrix</u> | Parameter (CO) | |-----------|----------------|---| | 1->6 | W | (pH) TDS(CI) F (NO3) NO3 (SO3) PO4 ALK CN NH3 TKN TOC CR8+ CIO4 (Fe+3) | | ac 7 | 4 | TDS CI F NO3 NO2 SO4 PO4 ALK CN- NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | - | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CLE NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | | | Comments: |
 |
 |
 | | |-----------|------|------|------|--| | |
 |
 |
 | | LDC #: 43888D6 NO3-N ## VALIDATION FINDINGS WORKSHEET Blanks METHOD:Inorganics, Method See Cover | Conc. units | s: <u>mg/L</u> | | | | Asse | ociated Sar | nples: <u>all</u> | (20x dil, > | 5x) | | | | | |---------------------|---|-------------------|--------------|------------|--------------|-------------|-------------------|-------------|-----|--|--|--|--| | Analyte | Blank ID | Blank ID | Blank | | | | | | | | | | | | | РВ | ICB/CCB
(mg/L) | Action Limit | No Qual's. | | | | | | | | | | | CI | | 0.2982 | 29.82 | | | | | | | | | | | | SO4 | | 0.4094 | 40.94 | | | | | | | | | | | | Conc. units | Conc. units: mg/L Associated Samples: 1-5 (>5x) | | | | | | | | | | | | | | Analyte | Blank ID | Blank ID | Blank | РВ | ICB/CCB
(mg/L) | Action Limit | No Qual's. | | | | | | | | | | | NO3-N | РВ | | Action Limit | No Qual's. | | | | | | | | | | | | PB
mg/L | (mg/L) | | | ssociated Sa | mples: 6 | (>5x) | | | | | | | | NO3-N | | (mg/L) | | | ssociated Sa | mples: 6 | (>5x) | | | | | | | | NO3-N Conc. units: | mg/L | (mg/L)
0.04805 | 0.2402 | | ssociated Sa | mples: 6 | (>5x) | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". 0.04749 0.2374 # Quality Control Outlier Reports 280-117110-1 ## QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 280-117110-1 Laboratory: TA DEN EDD Filename: 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 9040C
Matrix: AQ | | | Prep | aration Method: METHO | | |--|----------------------|------------------|----------------|-----------------------|------------------------| | Sample ID | Туре | Actual | Criteria | Units | Flag | | A1-MW-01-SA2 (RES/TOT)
A1-MW-42-SA2 (RES/TOT) | Sampling To Analysis | 318.00
316.75 | 24.00
24.00 | HOURS
HOURS | J (all detects) | | Method: SM3500 Fe B D
Matrix: AQ | | | |
Prep | aration Method: METHOI | | Sample ID | Type | Actual | Criteria | Units | Flag | |--|----------------------|--|---|---|--------------------------------------| | A1-MW-01-SA2 (RES/TOT) A1-MW-42-SA2 (RES/TOT) A1-MW-42-SA2DUP (RES/TOT) A1-MW-42-SA2MS (RES/TOT) A1-MW-42-SA2MSD (RES/TOT) | Sampling To Analysis | 130.25
129.25
129.25
129.25
129.25 | 24.00
24.00
24.00
24.00
24.00 | HOURS
HOURS
HOURS
HOURS
HOURS | J(all detects)
R(all non-detects) | ADR version 1.9.0.325 Page 1 of 1 #### Surrogate Outlier Report Lab Reporting Batch ID: 280-117110-1 Laboratory: TA DEN EDD Filename: 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: 8260E
Matrix: AQ | 3 | | | | | |------------------------------|-----------------------|----------------------|----------------------|-----------------------|-----------------| | Sample ID
(Analysis Type) | Surrogate | Sample
% Recovery | % Recovery
Limits | Affected
Compounds | Flag | | EB-20181116 | 1,2-DICHLOROETHANE-D4 | 122 | 81.00-118.00 | All Target Analytes | J (all detects) | 12/21/2018 9:19:11 AM ADR version 1.9.0.325 Page 1 of 1 ## Matrix Spike/Matrix Spike Duplicate Outlier Report Lab Reporting Batch ID: 280-117110-1 Laboratory: TA DEN EDD Filename: 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver | Method: SM3500 Fe
Matrix: AQ | ВЪ | | | | | | | |---|--------------|----------|-----------|--------------|-----------------|-----------------------|--| | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | A1-MW-42-SA2MS
A1-MW-42-SA2MSD
(A1-MW-42-SA2) | Ferrous Iron | 27 | 27 | 85.00-113.00 | - | Ferrous Iron | J (all detects)
R (all non-detects) | | Method: 8260B
Matrix: AQ | | | | | | | | |---|--------------------|----------|-----------|--------------|-----------------|-----------------------|----------------| | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | A1-MW-01-SA2MSD
(A1-MW-01-SA2) | 1,1-DICHLOROETHENE | - | - | 71.00-131.00 | 22 (20.00) | 1,1-DICHLOROETHENE | J(all detects) | 12/21/2018 9:19:13 AM ADR version 1.9.0.325 Page 1 of 1 ## Reporting Limit Outliers Lab Reporting Batch ID: 280-117110-1 Laboratory: TA DEN EDD Filename: 280-117110-1 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Method: 8260B Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|---------------------------------------|-------------|----------------|--------------------|------------|--------------|-----------------| | A1-MW-42-SA2 | 1,1-DICHLOROETHENE
TRICHLOROETHENE | J | 0.238
0.367 | 1.00
1.00 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | LDC #: 43888E1a | VALIDATION COMPLETENESS WORKSHEET | |--------------------------------|-----------------------------------| | SDG #: 280-117110-1 | ADR | | Laboratory: Test America, Inc. | <u> </u> | Reviewer: 2nd Reviewer: METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|-------------------------| | 1. | Sample receipt/Technical holding times | AIA | | | II. | GC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | A'A | 1CAL E 152 101 \(20 \) | | IV. | Continuing calibration | L'A | CCV & 20/503 | | V. | Laboratory Blanks | N | | | VI. | Field blanks | N | TB | | VII. | Surrogate spikes | N | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | IX. | Laboratory control samples | N | | | X. | Field duplicates | | | | XI. | Internal standards | WA | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |---|-----------------|-----------------|--------|----------| | 1 | A1-MW-01-SA2 | 280-117110-1 | Water | 11/16/18 | | 2 | A1-MW-42-SA2 | 280-117110-2 | Water | 11/16/18 | | 3 | TB-20181116 | 280-117110-3 | Water | 11/16/18 | | 4 | EB-20181116 | 280-117110-4 | Water | 11/16/18 | | 5 | A1-MW-01-SA2MS | 280-117110-1MS | Water | 11/16/18 | | 6 | A1-MW-01-SA2MSD | 280-117110-1MSD | Water | 11/16/18 | | 7 | | | | | | 8 | | | | | | 9 | | | | | Notes: ## VALIDATION COMPLETENESS WORKSHEET ADR SDG #: 280-117110-1 Laboratory: Test America, Inc. 4388E6 LDC #:__ | Date: <u>I</u> | 9-40-18 | |----------------|---------| | Page:_ | _ofl_ | | Reviewer:_ | MG | | 2nd Reviewer:_ | | METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----|---------------------------| | 1. | Sample receipt/Technical holding times | SW | HT out for all pH Fe+2 | | - 11 | Initial calibration | Α | • | | III. | Calibration verification | A | | | IV | Laboratory Blanks | SW | ICB/CCB only | | V | Field blanks | 2 | | | VI. | Matrix Spike/Matrix Spike Duplicates | N | MS/MSD (#3/4: Fe+2 fails) | | VII. | Duplicate sample analysis | N | DUP | | VIII. | Laboratory control samples | N | LCS/LCSD | | IX. | Field duplicates | N | | | X. | Sample result verification | N | | | ΧI | Overall assessment of data | N | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|-----------------|-----------------|--------|----------| | 1 | A1-MW-01-SA2 | 280-117110-1 | Water | 11/16/18 | | 2 | A1-MW-42-SA2 | 280-117110-2 | Water | 11/16/18 | | 3 | A1-MW-42-SA2MS | 280-117110-2MS | Water | 11/16/18 | | 4 | A1-MW-42-SA2MSD | 280-117110-2MSD | Water | 11/16/18 | | 5 | A1-MW-42-SA2DUP | 280-117110-2DUP | Water | 11/16/18 | | 6 | | | | | | 7 | | | | | | 8 | | | | | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | PBW | | | | | Notes: | | |
 | | |--------|--|------|------|--| | | | | | | | | |
 | | | | | | | | | LDC#: 43888E6 #### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference Page: of Reviewer: MG 2nd reviewer: All circled methods are applicable to each sample. | Sample ID | <u> Matrix</u> | Parameter Control of the | |-----------|----------------|---| | 1,2 | W | (pH)TDS(CI)F(NO3)NO2(SO4)PO4 ALK CN- NH3 TKN TOC CR6+ CIO4(Fe+2) | | QC3-5 | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 (Fe+2) | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | ph TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | |
| | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | PH TDS CLF NO3 NO2 SO4 PO4 ALK CN- NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLE NO, NO, SO, PO, ALK CN' NH, TKN TOC CR6+ CIO, | | Comments: |
 | | |-----------|------|--| | | | | | |
 | | LDC #: 43888E6 ## VALIDATION FINDINGS WORKSHEET Blanks | | Page:_ | of | |-----|-----------|----| | | Reviewer: | MG | | 2nd | Reviewer: | | METHOD:Inorganics, Method See Cover Conc. units: mg/L Associated Samples: 2 (20x dil, >5x) | Analyte | Blank ID | Blank ID | Blank | | | | |
 | | |---|----------|-------------------|--------------|------------|--|--|--|------|--| | Total Control of the | РВ | ICB/CCB
(mg/L) | Action Limit | No Qual's. | | | | | | | CI | | 0.6147 | 61.47 | | | | | | | | SO4 | | 0.3987 | 39.87 | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". # Quality Control Outlier Reports 1803615 ## **Reporting Limit Outliers** Lab Reporting Batch ID: 1803615 Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD EDD Filename: 1803615 Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |---------------|---------------|-------------|--------------------|--------------------|------------|--------------|-----------------| | A1-MW-04-SA2 | PFOA | J | 0.00646 | 0.00881 | LOQ | ug/L | J (all detects) | | A1-MW-05-SA2 | PFHxS | J, Q | 0.00359 | 0.00864 | LOQ | ug/L | J (all detects) | | A1-MW-50-SA2 | PFHpA | J, Q | 0.00474 | 0.00894 | LOQ | ug/L | J (all detects) | | A1-MW-50-SA2D | PFHpA | J | 0.00494 | 0.00874 | LOQ | ug/L | J (all detects) | | A1-MW-52-SA2 | PFOS | J | 0.00356 | 0.00872 | LOQ | ug/L | J (all detects) | | A1-PZ-19-SA2 | PFHpA
PFOS | J
J, Q | 0.00548
0.00321 | 0.00884
0.00884 | LOQ
LOQ | ug/L
ug/L | J (all detects) | #### Field Duplicate RPD Report Lab Reporting Batch ID: 1803615 EDD Filename: Prep1803615 Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method: 537 MOD Matrix: AQ | | Concentra | ation (ug/L) |] | ······································ | | |---------|--------------|---------------|---------------|--|-----------------------| | Analyte | A1-MW-50-SA2 | A1-MW-50-SA2D | Sample
RPD | eQAPP
RPD | Flag | | PFBS | 0.0250 | 0.0264 | 5 | 30.00 | | | PFHpA | 0.00474 | 0.00494 | NC | 30.00 | | | PFHxA | 0.0806 | 0.0829 | 3 | 30.00 | No Qualifiers Applied | | PFHxS | 0.0367 | 0.0355 | 3 | 30.00 | | | PFOA | 0.00947 | 0.00878 | 8 | 30.00 | | 12/21/2018 10:58:54 AM ADR version 1.9.0.325 Page 1 of 1 | LDC #: 43888K96 | VALIDATION COMPLETENESS WORKSHEET | |---------------------------------|-----------------------------------| | SDG #: 1803615 | | | Laboratory: Vista Analytical La | boratory | 2nd Reviewer: METHOD: LC/MS Perfluoroalkyl & Polyfluoroalkyl Substances (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|--| | l. | Sample receipt/Technical holding times | AIA | | | II. | LC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | AIA | COLE 36% Individual £36% 164 236% true cone. | | IV. | Continuing calibration/ISC | A | Cal & 36%, true cone. | | V | Laboratory Blanks | N | Not reviewed for ADR validation. | | VI. | Field blanks | | | | VII. | Matrix spike/Matrix spike duplicates | | Not reviewed for ADR validation. | | VIII. | Laboratory control samples | | Not reviewed for ADR validation. | | IX. | Field duplicates | | | | X. | Labeled Compounds | À | Not reviewed for ADR validation. | | XI. | Compound quantitation RL/LOQ/LODs | H | Not reviewed for ADR validation. | | XII. | Target compound identification | | Not reviewed for ADR validation. | | XIII. | System performance | | Not reviewed for ADR validation. | | XIV. | Overall assessment of data | | Not reviewed for ADR validation. | Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate OTHER: FB = Field blank TB = Trip blank EB = Equipment blank SW = See worksheet ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |----|--|---------------|--------|----------| | 1_ | A1-MW-04-SA2** | 1803615-01** | Water | 11/12/18 | | 2 | A1-MW-05-SA2** | 1803615-02** | Water | 11/12/18 | | 3 | A1-MW-49-SA2** | 1803615-03** | Water | 11/12/18 | | 4 | A1-MW-50-SA2** | 1803615-04** | Water | 11/12/18 | | 5 | A1-MW-50-SA2D** | 1803615-05** | Water | 11/12/18 | | 6 | A1-MW-51-SA2** | 1803615-06** | Water | 11/12/18 | | 7 | A1-MW-52-SA2** | 1803615-07** | Water | 11/12/18 | | 8 | FRB-20181112 | 1803615-08 | Water | 11/12/18 | | တ | P2-
A1- MPV -19-SA2** | 1803615-09** | Water | 11/12/18 | | 10 | A1-MW-50-SA2MS | 1803615-04MS | Water | 11/12/18 | | 11 | A1-MW-50-SA2MSD | 1803615-04MSD | Water | 11/12/18 | | 12 | | | | | | 13 | | | | | | 14 | 38 K00 91- BUKI | | | | | 15 | | | | | # Quality Control Outlier Reports 1803626 ## **Reporting Limit Outliers** Lab Reporting Batch ID: 1803626 Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista EDD Filename: 1803626 Method: 537 MOD Matrix: AQ | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|--------------|-------------|--------------------|--------------------|------------|--------------|-----------------| | 16-MW-06-SA2 | PFOS | J | 0.00582 | 0.00835 | LOQ | ug/L | J (all detects) | | 16-MW-09-SA2 | PFOA
PFOS | J | 0.00449
0.00503 | 0.00852
0.00852 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-18-SA2 | PFOA | J | 0.00309 | 0.00856 | LOQ | ug/L | J (all detects) | | A1-MW-19-SA2 | PFDA
PFNA | J | 0.00721
0.00398 | 0.00861
0.00861 | LOQ
LOQ | ug/L
ug/L | J (all detects) | | A1-MW-53-SA2 | PFOS | J, Q | 0.00400 | 0.00841 | LOQ | ug/L | J (all detects) | 1/2/2019 6:17:06 AM ADR version 1.9.0.325 Page 1 of 1 #### Field Duplicate RPD Report Lab Reporting Batch ID: 1803626 Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista EDD Filename: 1803626 Method: 537 MOD Matrix: AQ | | Concentra | Concentration (ug/L) | | | | |---------|--------------|----------------------|---------------|--------------
--| | Analyte | 16-HS-03-SA2 | 16-HS-03-SA2D | Sample
RPD | eQAPP
RPD | Flag | | PFBS | 1.34 | 1.39 | 4 | 30.00 | Common Control C | | PFHpA | 0.405 | 0.412 | 2 | 30.00 | | | PFHxA | 10.3 | 11.7 | 13 | 30.00 | No Qualifiers Applied | | PFHxS | 0.324 | 0.312 | 4 | 30.00 | | | PFOA | 0.0206 | 0.0200 | 3 | 30.00 | | 12/20/2018 1:48:42 PM ADR version 1.9.0.325 Page 1 of 1 | LDC #:_ | 43888L96 | VALIDATION COMPLETENESS WORKSHEET | |----------|---------------|-----------------------------------| | SDG #:_ | 1803626 | ADR | | Laborato | ory: Vista An | lytical Laboratory | Date: 12/14/18 Page: 1 of 1 Reviewer: 000 2nd Reviewer: METHOD: LC/MS Perfluoroalkyl & Polyfluoroalkyl Substances (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-------|---------------------------------------| | I. | Sample receipt/Technical holding times | AA | | | H. | LC/MS Instrument performance check | l'A'L | | | III. | Initial calibration/ICV | AIA | Prividual = 302 IN=302 | | IV. | Continuing calibration/ISC | A' | CONSOL | | V. | Laboratory Blanks | N | · · · · · · · · · · · · · · · · · · · | | VI. | Field blanks | | | | VII. | Matrix spike/Matrix spike duplicates | N | · | | VIII. | Laboratory control samples | N | | | IX. | Field duplicates | | | | X. | Labeled Compounds | WA | | | XI. | Compound quantitation RL/LOQ/LODs | N _ | | | XII. | Target compound identification | N | | | XIII. | System performance | N | | | XIV. | Overall assessment of data | N | | Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank | | Client ID | Lab ID | Matrix | Date | |-----|---------------|------------|--------|----------| | 1 | 16-HS-03-SA2 | 1803626-01 | Water | 11/13/18 | | 2 | 16-MW-06-SA2 | 1803626-02 | Water | 11/13/18 | | 3 | 16-MW-08-SA2 | 1803626-03 | Water | 11/13/18 | | 4 | 16-MW-09-SA2 | 1803626-04 | Water | 11/13/18 | | 5 | A1-MW-18-SA2 | 1803626-05 | Water | 11/13/18 | | 3 | A1-MW-19-SA2 | 1803626-06 | Water | 11/13/18 | | 7 | FRB-20181113 | 1803626-07 | Water | 11/13/18 | | 3 | A1-MW-53-SA2 | 1803626-08 | Water | 11/13/18 | | 9 | 16-HS-03-SA2D | 1803626-09 | Water | 11/13/18 | | 10 | | | | | | 11_ | | | | | | Note | Notes: | | | | | | | | |------|--------|--|--|--|--|--|--|--| # Quality Control Outlier Reports 1803659 ## **Reporting Limit Outliers** Lab Reporting Batch ID: 1803659 Laboratory: Vista EDD Filename: 1803659 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista | Method: | 537 MOD | | | | | and the second | |---------|---------|----------------|------|--|---|----------------| | Matrix: | AQ | Million de mai | H-14 | The state of s | | | | | 1 | | | 1 | J | | | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | |--------------|---------|-------------|---------|--------------------|------------|-------|-----------------| | A1-MW-23-SA2 | PFHxS | J | 0.00594 | 0.00849 | LOQ | ug/L | J (all detects) | | LDC #: 43888M96 | VALIDATION COMPLETENESS WORKSHEET | Date: 12/19/18 | |---|---|--| | SDG #: 1803659 | ADR | Page: \ of \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Laboratory: Vista Analytica | al Laboratory | Reviewer: | | METHOD: LC/MS Perfluo | roalkyl & Polyfluoroalkyl Substances (EPA Method 537) | 2nd Reviewer: | | The samples listed below validation findings worksh | were reviewed for each of the following validation areas. Validation fireets. | ndings are noted in attached | | | Validation Area | | Comments | |-------|--|-----|-------------------------| | 1. | Sample receipt/Technical holding times | A,A | | | 11. | LC/MS Instrument performance check | A | | | 111. | Initial calibration/ICV | A A | COVE 30% True value 30% | | IV. | Continuing calibration/ISC | A | CON & 30% True value | | V. | Laboratory Blanks | N | | | VI. | Field blanks | N | | | VII. | Matrix spike/Matrix spike duplicates | N | | | VIII. | Laboratory control samples | N | | | IX. | Field duplicates | N | | | X. | Labeled Compounds | MA | | | XI. | Compound quantitation RL/LOQ/LODs | N | | | XII. | Target compound identification | N | | | XIII. | System performance | N | | | XIV. | Overall assessment of data | N | | | Note: | A = Acceptable N = Not provided/applicable SW = See worksheet | ND = No compounds detected
R = Rinsate
FB = Field blank | D = Duplicate
TB = Trip blank
EB = Equipment blank | SB=Sou
OTHER | ırce blank
: | |-----------------|---|---|--|-----------------|-----------------| | | Client ID | | Lab ID | Matrix | Date | | 1 | A1-MW-07-SA2 | | 1803659-01 | Water | 11/14/18 | | 2 | A1-MW-23-SA2 | 1984-1984 - C. Sara - C. | 1803659-02 | Water | 11/14/18 | | 3 | A1-MW-25-SA2 | | 1803659-03 | Water | 11/14/18 | | 4 | A1-MW-27-SA2 | t | 1803659-04 | Water | 11/14/18 | | 5 | A1-MW-55-SA2 | | 1803659-05 | Water | 11/14/18 | | 6 | A1-MW-54-SA2 | | 1803659-06 | Water | 11/14/18 | | 7 | FRB-20181114 | | 1803659-07 | Water | 11/14/18 | | 8 | | | | | | | 9 | | | | | | | 10 | | | | | | | Notes: | B8K0144-B1K4 | | | | | | $\vdash \vdash$ | po.co.iquijica | | | | | # Quality Control Outlier Reports 1803676 ## QC Outlier Report: HoldingTimes Lab Reporting Batch ID: 1803676 Laboratory: Vista eQAPP Name: SW RAC
6_CTO 3803 YUMA - Vista EDD Filename: 1803676 Method: 537 MOD Preparation Method: Gen Prep | Matrix: AQ | | | | | | | | | | | |---------------------|------------------------|--------|----------|-------|----------------------|--|--|--|--|--| | Sample ID | Type | Actual | Criteria | Units | Flag | | | | | | | A1-MW-11-SA2 (RES) | Sampling To Extraction | 15.00 | 14.00 | DAYS | J (all detects) | | | | | | | A1-MW-13-SA2 (RES) | | 15.00 | 14.00 | DAYS | UJ (all non-detects) | | | | | | | A1-MW-14-SA2 (RES) | | 15.00 | 14.00 | DAYS | | | | | | | | A1-MW-15-SA2 (RES) | | 15.00 | 14.00 | DAYS | | | | | | | | A1-MW-31-SA2 (RES) | | 15.00 | 14.00 | DAYS | | | | | | | | A1-MW-37-SA2 (RES) | | 15.00 | 14.00 | DAYS | | | | | | | | A1-MW-37-SA2D (RES) | | 15.00 | 14.00 | DAYS | | | | | | | | FRB-20181115 (RES) | | 15.00 | 14.00 | DAYS | | | | | | | Project Name and Number: 4663.3803 - CTO Page 1 of 1 ADR version 1.9.0.325 12/20/2018 1:52:41 PM ## Lab Control Spike/Lab Control Spike Duplicate Outlier Report Lab Reporting Batch ID: 1803676 Laboratory: Vista EDD Filename: 1803676 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista | Method: 537 MOD Matrix: AQ | | | | | | | | | | |---|----------|-----------|------------|--------------|-----------------|-----------------------|-----------------|--|--| | QC Sample ID
(Associated
Samples) | Compound | LCS
%R | LCSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | | | B8K0153-BS1
(A1-MW-11-SA2
A1-MW-13-SA2
A1-MW-14-SA2
A1-MW-15-SA2
A1-MW-31-SA2
A1-MW-37-SA2
A1-MW-37-SA2
FRB-20181115) | PFTeDA | 140 | - | 70.00-130.00 | - | PFTeDA | J (all detects) | | | ## Reporting Limit Outliers Lab Reporting Batch ID: 1803676 Laboratory: Vista EDD Filename: 1803676 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista | Method: 537 MG | OD Comments | BOOK STORES | | Mary 1 | | 12-12-13. | 1144 | |----------------|-------------|-------------|---------|--------------------|------------|-----------|-----------------| | Matrix: AQ | | | | | | Kata Kata | | | SampleID | Analyte | Lab
Qual | Result | Reporting
Limit | RL
Type | Units | Flag | | A1-MW-31-SA2 | PFOA | J | 0.00388 | 0.00855 | LOQ | ug/L | J (all detects) | #### Field Duplicate RPD Report Lab Reporting Batch ID: 1803676 Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista EDD Filename: 1803676 Method: 537 MOD Matrix: AQ | | Concentra | Concentration (ug/L) | | | | | |---------|--------------|----------------------|---------------|--------------|-----------------------|--| | Analyte | A1-MW-37-SA2 | A1-MW-37-SA2D | Sample
RPD | eQAPP
RPD | Flag | | | PFBS | 0.151 | 0.150 | 1 | 30.00 | | | | PFHpA | 0.0856 | 0.0830 | 3 | 30.00 | | | | PFHxA | 0.520 | 0.529 | 2 | 30.00 | No Control A III | | | PFHxS | 0.438 | 0.429 | 2 | 30.00 | No Qualifiers Applied | | | PFOA | 0.0599 | 0.0555 | 8 | 30.00 | | | | PFOS | 0.0288 | 0.0275 | 5 | 30.00 | | | 12/20/2018 1:52:48 PM ADR version 1.9.0.325 Page 1 of 1 | LDC #: 43888N96 | VALIDATION COMPLETENESS WORKSHEET | |-----------------|--| | SDG #: 1803676 | ADR | 2nd Reviewer: Laboratory: Vista Analytical Laboratory METHOD: LC/MS Perfluoroalkyl & Polyfluoroalkyl Substances (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | | Comments | | |-------|--|-------|----------|------------------|--------| | I. | Sample receipt/Technical holding times | AIS | W | | | | 11. | LC/MS Instrument performance check | Á | | | | | JH1. | Initial calibration/ICV | A', A | Y~ | Individual £30 6 | 101£38 | | IV. | Continuing calibration/ISC | SM | CW = 306 | True value | | | V. | Laboratory Blanks | N N | | | | | VI. | Field blanks | N | | | | | VII. | Matrix spike/Matrix spike duplicates | N | - | | | | VIII. | Laboratory control samples | N | | | | | IX. | Field duplicates | N | | | | | X. | Labeled Compounds | мA | | | | | XI. | Compound quantitation RL/LOQ/LODs | N | | | | | XII. | Target compound identification | N | | | | | XIII. | System performance | N | | | | | XIV. | Overall assessment of data | N | | | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |----|---------------|------------|--------|----------| | 1 | A1-MW-11-SA2 | 1803676-01 | Water | 11/15/18 | | 2 | A1-MW-13-SA2 | 1803676-02 | Water | 11/15/18 | | 3 | A1-MW-14-SA2 | 1803676-03 | Water | 11/15/18 | | 1 | A1-MW-15-SA2 | 1803676-04 | Water | 11/15/18 | | 5 | A1-MW-37-SA2 | 1803676-05 | Water | 11/15/18 | | 3 | A1-MW-37-SA2D | 1803676-06 | Water | 11/15/18 | | 7 | FRB-20181115 | 1803676-07 | Water | 11/15/18 | | 3 | A1-MW-31-SA2 | 1803676-08 | Water | 11/15/18 | | 9 | | | | | | 10 | | | | | | 11 | | | | | | Note | S |
 |
 | | |------|---------------|------|------|--| | | 88 KO153-BUKI | | | | | | | | | | | | | | | | #### TARGET COMPOUND WORKSHEET #### **METHOD: PFAS** | WETHOD. ITAG | | | |------------------------|--|--| | A. PFHxA | | | | B. PFHpA | | | | C. PFOA | | | | D. PFNA | | | | E. PFDA | | | | F. PFUnA | | | | G. PFDoA | | | | H. PFTriA | | | | I. PFTeDA | | | | J. PFBS | | | | K. PFHxS | | | | L. PFHpS | | | | M. PFOS | | | | N. PFDS | | | | O. FOSA | | | | P. PFBA | | | | Q. PFPeA | | | | R. 6:2FTS | | | | S. 8:2FTS | | | | T. MeFOSAA | | | | U. EtFOSAA | | | | V. Combined PFOAS/PFOS | LDC #: 43888 N96 #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration** | 1 of) | |-------| | 06 | | | | | METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) Ptease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A Was a continuing calibration standard analyzed after every 10 injections for each instrument? Were all continuing calibration percent differences (%D) ≤30 %? | # | Date | Standard ID | Compound | Finding %D
(Limit: <u>≤</u> 30.0%) | Associated Samples | Qualifications | |---|----------|-------------|----------|---------------------------------------|--------------------|----------------| | | 12/03/18 | 181203 MI_3 | I | 42.4 | All (ND) | J/UJ/A | | | 707/10 | | | | | 700,71 | _ | <u> </u> | 1 | - | | | | | | | | | | | | · | <u> </u> | 1 | # Quality Control Outlier Reports 1803678 ## Matrix Spike/Matrix Spike Duplicate Outlier Report Lab Reporting Batch ID: 1803678 Laboratory: Vista EDD Filename: 1803678 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista | Method: 537 MOD
Matrix: AQ | | | | | | | | |---|----------|----------|--------------|--------------|-----------------|-----------------------|-----------------| | QC Sample ID
(Associated
Samples) | Compound | MS
%R | MSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | A1-MW-01-SA2MS
A1-MW-01-SA2MSD
(A1-MW-01-SA2) | PFTeDA | 139 | - | 70.00-130.00 | 31.7 (30.00) | PFTeDA | J (all detects) | ## Lab Control Spike/Lab Control Spike Duplicate Outlier Report Lab Reporting Batch ID: 1803678 Laboratory: Vista EDD Filename: 1803678 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista | Method: 537 MOD
Matrix: AQ | | | | | The state of s | | | |--|----------|-----------|------------|--------------
--|-----------------------|-----------------| | QC Sample ID
(Associated
Samples) | Compound | LCS
%R | LCSD
%R | %R
Limits | RPD
(Limits) | Affected
Compounds | Flag | | B8K0153-BS1
(A1-MW-01-SA2
A1-MW-42-SA2
EB-20181116
FRB-20181116) | PFTeDA | 140 | - | 70.00-130.00 | - | PFTeDA | J (all detects) | | LDC #: 43888096 | VALIDATION COMPLETENESS WORKSHEET | Date: 12/19/18 | | | | | |--|---|----------------------------|--|--|--|--| | SDG #: 1803678 | ADR | Page: <u> </u> of <u> </u> | | | | | | Laboratory: Vista Analytical La | boratory | Reviewer: | | | | | | | | 2nd Reviewer: | | | | | | METHOD: LC/MS Perfluoroal | kyl & Polyfluoroalkyl Substances (EPA Method 537) | | | | | | | The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | | | | | | | | Validation Area | | Comments | |-------|--|-----|---------------------------------| | l. | Sample receipt/Technical holding times | AIA | | | II. | LC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | ΑŻΑ | te ry Individual £30% (OV £30%) | | IV. | Continuing calibration/ISC | SW | COVE30% True value | | V. | Laboratory Blanks | N | | | VI. | Field blanks | N | FRB=3 EB=4 | | VII. | Matrix spike/Matrix spike duplicates | N | | | VIII. | Laboratory control samples | N | | | IX. | Field duplicates | N | | | X. | Labeled Compounds | wA | | | XI. | Compound quantitation RL/LOQ/LODs | N | | | XII. | Target compound identification | N | | | XIII. | System performance | N | | | XIV. | Overall assessment of data | N | | Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank | | Client ID | Lab ID | Matrix | Date | |----|-----------------|---------------|----------|----------| | 1 | A1-MW-01-SA2 | 1803678-01 | Water | 11/16/18 | | 2 | A1-MW-42-SA2 | 1803678-02 | Water | 11/16/18 | | 3 | FRB-20181116 | 1803678-03 | Water | 11/16/18 | | 4 | EB-20181116 | 1803678-04 | Water | 11/16/18 | | 5 | A1-MW-01-SA2MS | 1803678-01MS | Water | 11/16/18 | | 6 | A1-MW-01-SA2MSD | 1803678-01MSD | Water | 11/16/18 | | 7 | | | | | | 8 | | | | | | 9 | | | | | | 10 | | <u> </u> | <u> </u> | | #### TARGET COMPOUND WORKSHEET #### **METHOD: PFAS** | WETHOD, PPAS | · · · · · · · · · · · · · · · · · · · | | |------------------------|---------------------------------------|--| | A. PFHxA | | | | B. PFHpA | | | | C. PFOA | | | | D. PFNA | | | | E. PFDA | | | | F. PFUnA | | | | G. PFDoA | | | | H. PFTriA | | | | I. PFTeDA | | | | J. PFBS | | | | K. PFHxS | | | | L. PFHpS | | | | M. PFOS | | | | N. PFDS | | | | O. FOSA | | | | P. PFBA | | | | Q. PFPeA | | | | R. 6:2FTS | | | | S. 8:2FTS | | | | T. MeFOSAA | | | | U. EtFOSAA | | | | V. Combined PFOAS/PFOS | | | | | | | | | | | | | | | | | | | LDC#:_438880096 #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration** 2nd Reviewer: METHOD: LC/MS PFAS (EPA Method 537M) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a continuing calibration standard analyzed after every 10 injections for each instrument? Were all continuing calibration percent differences (%D) ≤30 %? | | N N/A Were all continuing calibration percent differences (%D) ≤30 %? | | | | | | | |---|---|-------------|----------|-------------------------------|--------------------------|--------------------|----------------| | # | Date | Standard ID | Compound | Finding %D
(Limit: <30.0%) | Finding RRF
(Limit:) | Associated Samples | Qualifications | | | 12/03/18 | 181203 MI_2 | I | 42.4 | | All (MD) | 5/UJ/A | · | 1700 | # Enclosure II Manual Stage 2B and Stage 4 Data Validation Reports # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 **LDC Report Date:** December 20, 2018 Parameters: Volatiles Validation Level: Stage 4 **Laboratory:** TestAmerica, Inc. Sample Delivery Group (SDG): 280-116898-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | A1-MW-04-SA2 | 280-116898-1 | Water | 11/12/18 | | A1-MW-05-SA2 | 280-116898-2 | Water | 11/12/18 | | A1-MW-49-SA2 | 280-116898-3 | Water | 11/12/18 | | A1-MW-50-SA2 | 280-116898-4 | Water | 11/12/18 | | A1-MW-50-SA2D | 280-116898-5 | Water | 11/12/18 | | A1-MW-51-SA2 | 280-116898-6 | Water | 11/12/18 | | A1-PZ-19-SA2 | 280-116898-8 | Water | 11/12/18 | | A1-MW-52-SA2 | 280-116898-9 | Water | 11/12/18 | | A1-MW-50-SA2MS | 280-116898-4MS | Water | 11/12/18 | | A1-MW-50-SA2MSD | 280-116898-4MSD | Water | 11/12/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified
as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. ### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. ### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample TB-20181112 was identified as a trip blank. No contaminants were found. ### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. ### X. Field Duplicates Samples A1-MW-50-SA2 and A1-MW-50-SA2D were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | ition (ug/L) | | | | |--------------------|--------------|---------------|----------------|------|--------| | Compound | A1-MW-50-SA2 | A1-MW-50-SA2D | RPD (Limits) | Flag | A or P | | 1,1-Dichloroethene | 0.564 | 0.630 | Not calculable | - | - | | Trichloroethene | 0.780 | 0.949 | Not calculable | - | - | RPDs were not calculated when sample results in one or both samples were less than 5x the limit of quantitation (LOQ). ### XI. Internal Standards All internal standard areas and retention times were within QC limits. ### XII. Compound Quantitation All compound quantitations met validation criteria. All compounds reported below the limit of quantitation (LOQ) were qualified as follows: | Sample | Finding | Flag | A or P | |---|---------------------------------------|-----------------|--------| | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-MW-50-SA2D
A1-MW-51-SA2
A1-PZ-19-SA2
A1-MW-52-SA2 | All compounds reported below the LOQ. | J (all detects) | Α | # XIII. Target Compound Identifications All target compound identifications met validation criteria. # XIV. System Performance The system performance was acceptable. ### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to results below the LOQ, data were qualified as estimated in eight samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. # MCAS Yuma, CTO 17F3803 Volatiles - Data Qualification Summary - SDG 280-116898-1 | Sample | Compound | Flag | A or P | Reason | |---|---------------------------------------|-----------------|--------|-----------------------| | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-MW-50-SA2D
A1-MW-51-SA2
A1-PZ-19-SA2
A1-MW-52-SA2 | All compounds reported below the LOQ. | J (all detects) | А | Compound quantitation | # MCAS Yuma, CTO 17F3803 Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-116898-1 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 Volatiles - Field Blank Data Qualification Summary - SDG 280-116898-1 No Sample Data Qualified in this SDG | LDC | #: | 43888A1a | |-----|----|----------| | | | | # VALIDATION COMPLETENESS WORKSHEET SDG #: 280-116898-1 Laboratory: Test America, Inc. ADR/Stage/2B 4 2nd Reviewer:_ METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|--| | l. | Sample receipt/Technical holding times | A/A | | | H | GC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | A'A | 1041 \(15\) 10\ \(20\) \(20\) \(50\) \(\) | | IV. | Continuing calibration | A | CO1 = 20/50 % | | V. | Laboratory Blanks | A | Not reviewed for ADR validation. | | VI. | Field blanks | MO | TB = 7 | | VII. | Surrogate spikes | Á | Not reviewed for ADR validation. | | VIII. | Matrix spike/Matrix spike duplicates | A | Not reviewed for ADR validation. | | IX. | Laboratory control samples | Á | Natroviewed for ADR validation. | | X. | Field duplicates | SW | D = 4/5 | | XI. | Internal standards | A | N et reviewed for ADR validatio n. | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for ADR validation. | | XIII. | Target compound identification | A | Not reviewed for ADR validation. | | XIV. | System performance | A | Not reviewed for ADR validation. | | XV. | Overall assessment of data | A | New feviewed for ADR validation. | Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank OTHER: ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |---------------|-------------------------------|-----------------|--------|----------| | 1 | A1-MW-04-SA2** | 280-116898-1** | Water | 11/12/18 | | 2 | A1-MW-05-SA2** | 280-116898-2** | Water | 11/12/18 | | 3 | A1-MW-49-SA2** | 280-116898-3** | Water | 11/12/18 | | +4
+5 | A1-MW-50-SA2** | 280-116898-4** | Water | 11/12/18 | | ∔
5 | A1-MW-50-SA2D** | 280-116898-5** | Water | 11/12/18 | | 6 2 | A1-MW-51-SA2** | 280-116898-6** | Water | 11/12/18 | | -2 | TB-20181112 | 280-116898-7 | Water | 11/12/18 | | ¥ 2 | A1-PZ-19-SA2** | 280-116898-8** | Water | 11/12/18 | | +9 | A1-MW-52-SA2** | 280-116898-9** | Water | 11/12/18 | | 10 | A1-MW-50-SA2MS | 280-116898-4MS | Water | 11/12/18 | | 11 | A1-MW-50-SA2MSD | 280-116898-4MSD | Water | 11/12/18 | | 12 7 | MB 280-438700/6
- 438747/4 | | | | | 13 | - 438747/4 | | | | ### VALIDATION FINDINGS CHECKLIST Page: 1_of_2 Reviewer: JVG 2nd Reviewer: Method: Volatiles (EPA SW 846 Method 8260B) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|-----------|-------------------| | I. Technical holding times | | | | | | Were all technical holding times met? | / | | | | | Was cooler temperature criteria met? | | | | | | II. GC/MS Instrument performance check | | | 有意 | | | Were the BFB performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | / | | | | | IIIa. Initial calibration | | r | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | | | | Were all percent relative standard deviations (%RSD) \leq 30%/15% and relative response factors (RRF) \geq 0.05? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05? | | | | | | V. Laboratory Blanks | | ı | ı | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | / | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks were identified in this SDG? | | , | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | | | Were all surrogate percent
recovery (%R) within QC limits? | / | | ļ | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | | | | # VALIDATION FINDINGS CHECKLIST Page: 2 of 2 Reviewer: JVG 2nd Reviewer: | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|----|--| | VIII. Matrix spike/Matrix spike duplicates | | | | 17 E September 1 | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX, Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | ***** | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | 用 | | | Were field duplicate pairs identified in this SDG? | | : | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% to +100% of the associated calibration standard? | | | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | | | | XII. Compound quantitation | | | | 100 mm - | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | 7.0 | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | / | | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | ### **TARGET COMPOUND WORKSHEET** ### **METHOD: VOA** | WILLITOD. VOA | | | | | | |------------------------------|---------------------------------|--|-----------------------------------|----------------------------|------------| | A. Chloromethane | AA. Tetrachloroethene | AAA. 1,3,5-Trimethylbenzene | AAAA. Ethyl tert-butyl ether | A1. 1,3-Butadiene | A2. | | B. Bromomethane | BB. 1,1,2,2-Tetrachloroethane | BBB. 4-Chlorotoluene | BBBB. tert-Amyl methyl ether | B1. Hexane | B2. | | C. Vinyl choride | CC. Toluene | CCC. tert-Butylbenzene | CCCC. 1-Chlorohexane | C1. Heptane | C2. | | D. Chloroethane | DD. Chlorobenzene | DDD. 1,2,4-Trimethylbenzene | DDDD. Isopropyl alcohol | D1. Propylene | D2. | | E. Methylene chloride | EE. Ethylbenzene | EEE. sec-Butylbenzene | EEEE. Acetonitrile | E1. Freon 11 | E2. | | F. Acetone | FF. Styrene | FFF. 1,3-Dichlorobenzene | FFFF. Acrolein | F1. Freon 12 | F2. | | G. Carbon disulfide | GG. Xylenes, total | GGG. p-lsopropyltoluene | GGGG. Acrylonitrile | G1. Freon 113 | G2. | | H. 1,1-Dichloroethene | HH. Vinyl acetate | HHH. 1,4-Dichlorobenzene | HHHH. 1,4-Dioxane | H1. Freon 114 | H2. | | I. 1,1-Dichloroethane | II. 2-Chloroethylvinyl ether | III. n-Butylbenzene | IIII. Isobutyl alcohol | I1. 2-Nitropropane | 12. | | J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane | JJJ. 1,2-Dichlorobenzene | JJJJ. Methacrylonitrile | J1. Dimethyl disulfide | J2. | | K. Chloroform | KK. Trichlorofluoromethane | KKK. 1,2,4-Trichlorobenzene | KKKK. Propionitrile | K1. 2,3-Dimethyl pentane | K2. | | L 1,2-Dichloroethane | LL. Methyl-tert-butyl ether | LLL. Hexachlorobutadiene | LLLL. Ethyl ether | L1. 2,4-Dimethyl pentane | L2. | | M. 2-Butanone | MM. 1,2-Dibromo-3-chloropropane | MMM. Naphthalene | MMMM. Benzyl chloride | M1. 3,3-Dimethyl pentane | M2. | | N. 1,1,1-Trichloroethane | NN. Methyl ethyl ketone | NNN. 1,2,3-Trichlorobenzene | NNNN. lodomethane | N1. 2-Methylpentane | N2. | | O. Carbon tetrachloride | OO. 2,2-Dichloropropane | OOO. 1,3,5-Trichlorobenzene | OOOO.1,1-Difluoroethane | O1. 3-Methylpentane | O2. | | P. Bromodichloromethane | PP. Bromochloromethane | PPP. trans-1,2-Dichloroethene | PPPP. Tetrahydrofuran | P1. 3-Ethylpentane | P2. | | Q. 1,2-Dichloropropane | QQ. 1,1-Dichloropropene | QQQ. cis-1,2-Dichloroethene | QQQQ. Methyl acetate | Q1. 2,2-Dimethylpentane | Q2. | | R. cis-1,3-Dichloropropene | RR. Dibromomethane | RRR. m,p-Xylenes | RRRR. Ethyl acetate | R1. 2,2,3- Trimethylbutane | R2. | | S. Trichloroethene | SS. 1,3-Dichloropropane | SSS. o-Xylene | SSSS. Cyclohexane | S1. 2,2,4-Trimethylpentane | S2. | | T. Dibromochloromethane | TT. 1,2-Dibromoethane | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methylcyclohexane | T1. 2-Methylhexane | T2. | | U. 1,1,2-Trichloroethane | UU. 1,1,1,2-Tetrachloroethane | UUU. 1,2-Dichlorotetrafluoroethane | UUUU. Allyl chloride | U1. Nonanai | U2. | | V. Benzene | VV. Isopropylbenzene | VVV. 4-Ethyltoluene | VVVV. Methyl methacrylate | V1. 2-Methylnaphthalene | V2. | | W. trans-1,3-Dichloropropene | WW. Bromobenzene | WWW. Ethanol | WWWW. Ethyl methacrylate | W1. Methanol | W2. | | X. Bromoform | XX. 1,2,3-Trichloropropane | XXX. Di-isopropyl ether | XXXX. cis-1,4-Dichloro-2-butene | X1. 1,2,3-Trimethylbenzene | X2. | | Y. 4-Methyl-2-pentanone | YY. n-Propylbenzene | YYY. tert-Butanol | YYYY. trans-1,4-Dichloro-2-butene | Y1. | Y2. | | Z. 2-Hexanone | ZZ. 2-Chlorotoluene | ZZZ. tert-Butyl alcohol | ZZZZ. Pentachloroethane | Z1. | Z2. | ### VALIDATION FINDINGS WORKSHEET Field Duplicates Page: 1 of 1 Reviewer: JVG 2nd Reviewer: METHOD: GCMS VOA (EPA SW 846 Method 8260B) YN NA Were field duplicate pairs identified in this SDG? N NA Were target analytes detected in the field duplicate pairs? | | Concentra | tion (ug/L) | | | |----------|-----------|-------------|---------------|---------------------------------| | Compound | 4 | 5 | RPD
(≤30%) | Qualifications
(Parent only) | | Н | 0.564 | 0.630 | NC | | | S | 0.780 | 0.949 | NC | | V:\Josephine\FIELD DUPLICATES\43888A1a ttech yuma.wpd LDC #: 43888A1a # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification Page: _1_ of _1_ Reviewer: ____JVG__ 2nd Reviewer: ______ METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ A_x = Area of Compound A_{is} = Area of associated internal standard average RRF = sum of the RRFs/number of standards C_x = Concentration of compound C_{is} = Concentration of internal standard %RSD = 100 * (S/X) S= Standard deviation of the RRFs X = Mean of the RRFs | # | Standard ID | Calibration
Date | Compound (IS) | Reported
RRF
(RRF 10 std) | Recalculated
RRF
(RRF 10 std) | Reported
Average RRF
(Initial) | Recalculated
Average RRF
(Initial) | Reported
%RSD | Recalculated
%RSD | |---|------------------|---------------------|---|---------------------------------|-------------------------------------|--------------------------------------|--|------------------|----------------------| | 1 | ICAL
GC MSV G | 10/29/2018 | Trichloroethene (IS1) Tetrachloroethene (IS2) | 0.4141
1.5494 | 0.4141
1.5494 |
0.3989
1.4974 | 0.3989
1.4974 | 3.0
2.5 | 3.0
2.5 | | 2 | ICAL
GC MSV Z | 11/3/2018 | Trichloroethene (IS1) Tetrachloroethene (IS2) | 0.4665
1.6975 | 0.4665
1.6975 | 0.4837
1.7599 | 0.4837
1.7599 | 6.8
5.9 | 6.8 | LDC # <u>43888A1</u>a # **VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification** | Page: | <u>1_</u> of <u>1</u> | |----------------|-----------------------| | Reviewer:_ | JVG_ | | 2nd Reviewer:_ | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: Where: % Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard | # | Standard ID | Calibration
Date | Compound (IS) | Average RRF
(Initial) | Reported
RRF
(CCV) | Recalculated
RRF
(CCV) | Reported
% D | Recalculated
%D | |---|-------------------|---------------------|---|--------------------------|--------------------------|------------------------------|-----------------|--------------------| | 1 | G2197
GC MSV G | 11/26/2018 | Trichloroethene (IS1) Tetrachloroethene (IS2) | 0.3989
1.4974 | 0.4216
1.5171 | 0.4216
1.5171 | 5.7
1.3 | 5.7
1.3 | | 2 | Z3472
GC MSV Z | 11/26/2018 | Trichloroethene (IS1) Tetrachloroethene (IS2) | 0.4837
1.7599 | 0.5081
1.7106 | 0.5081
1.7106 | 5.0
2.8 | 5.0
2.8 | LDC#:_ 43888 AIA # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | _1_of_1_ | | |---------------|----------|--| | Reviewer:_ | JVG | | | 2nd reviewer: | | | | | | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) | The percent recoveries | (%R | of surro | gates wer | e recalculated | for the co | mpounds | identified | below usir | g the following | calculation: | |------------------------|-----|----------|-----------|----------------|------------|---------|------------|------------|-----------------|--------------| |------------------------|-----|----------|-----------|----------------|------------|---------|------------|------------|-----------------|--------------| % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | 10,0 | 10.1 | 101 | 101 | 9 | | 1,2-Dichloroethane-d4 | | 9.22 | 92 | 97 | | | Toluene-d8 | | 10.3 | 163 | 107 | | | Bromofluorobenzene | 7 | 10.1 | 101 | 101 | 1 | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | LDC#: 42888 Ala # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification Page: 1 of 1 Reviewer: JVG 2nd Reviewer: METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration MSDC = Matrix spike duplicate concentration MS/MSD sample: _____ to /11 | | | ike | Sample | Spiked Sample | | Matrix Spike | | Matrix Spike Duplicate | | MS/MSD | | | |--------------------|-------------|------|--|---------------|-----------------------|--------------|------------------|------------------------|------------------|----------|--------------|--| | Compound | Add
(Ug) | Jと) | Concentration (45/L) | | Concentration
(以ん) | | Percent Recovery | | Percent Recovery | | RPD | | | | MS | MSD | ###################################### | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | | 1,1-Dichloroethene | 5.00 | 5,00 | D. 56.4 | 5,549 | 5.972 | 100 | 100 | 108 | 108 | 7 | 7 | | | Trichloroethene | 1 | | 0, 780 | 5,580 | 5.935 | 96 | 96 | 163 | 107 | ş | 6 | | | Benzene | | | | | | | | | | | | | | Toluene | | | | | | | | | | | | | | Chlorobenzene | | | | | | | | | | | | | | Comments: <u>Refer to l</u> | Matrix Spike/Matrix Spike Duplicates findings worksheet for its | t of qualifications and associated samples when rej | ported results do not agree | |-----------------------------|---|---|-----------------------------| | within 10.0% of the re | ecalculated results. | <u> </u> | | | | | | | | | | | | LDC #:_ 93 888 A1a ## **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** Page: 1 of 1 Reviewer: JVG 2nd Reviewer:____ METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS ID: ____ US 280-438700/4 | Compound | Spike
Added
(いらん)) | | Spiked Sample
Concentration
(| | I CS Percent Recovery | | I CSD Percent Recovery | | I CS/I CSD
RPD | | |--------------------|--------------------------|------|-------------------------------------|------|---------------------------------------|---------|------------------------|---------|-------------------|--------------| | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | 1,1-Dichloroethene | 5,00 | NA | 4.874 | M | 97 | 97 | | | | | | Trichloroethene | 5.00 | V | 5,029 | | 161 | 161 | | | | | | Benzene | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | Toluene | | | | | | - | | | | | | Chlorobenzene | | | | | | | | | | | | Comments: Refer to Laboratory | Control Sample findings worksheet for list of qualification | ns and associated samples when reporte | ed results do not agree within 10.0% | |-------------------------------|---|--|--------------------------------------| | of the recalculated results. | | | | | | | | | | | | | | LDC #: 43 888 A1A # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification Page: 1 of 1 Reviewer: JVG 2nd reviewer: METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Y N N/A Y N N/A Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? Concentration = $\overline{(A_{is})(RRF)(V_o)(\%S)}$ Area of the characteristic ion (EICP) for the A_x compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms (ng) RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) V_o or grams (g). Dilution factor. Df Percent solids, applicable to soils and solid matrices %S Example: Sample I.D. 4, 7CE: Conc. = (13951)(12.5)(560722)(0.3989)(1)= 0.780 ug/L | # | Sample ID | Compound | Reported
Concentration
(以 (L) | Calculated
Concentration
() | Qualification | |----------|-----------|----------|---------------------------------------|------------------------------------|---------------| | | | | 0.780 | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | , | , | | | | | | | | | | | |
| | | | | | | | | | · | | | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma, CTO 17F3803 **LDC Report Date:** January 2, 2019 Parameters: Wet Chemistry Validation Level: Stage 4 Laboratory: TestAmerica, Inc. Sample Delivery Group (SDG): 280-116898-1 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | A1-MW-04-SA2 | 280-116898-1 | Water | 11/12/18 | | A1-MW-05-SA2 | 280-116898-2 | Water | 11/12/18 | | A1-MW-49-SA2 | 280-116898-3 | Water | 11/12/18 | | A1-MW-50-SA2 | 280-116898-4 | Water | 11/12/18 | | A1-PZ-19-SA2 | 280-116898-8 | Water | 11/12/18 | | A1-MW-52-SA2 | 280-116898-9 | Water | 11/12/18 | | A1-MW-50-SA2MS | 280-116898-4MS | Water | 11/12/18 | | A1-MW-50-SA2MSD | 280-116898-4MSD | Water | 11/12/18 | | A1-MW-50-SA2DUP | 280-116898-4DUP | Water | 11/12/18 | ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056A Ferrous Iron by Standard Method 3500-Fe B pH by EPA SW 846 Method 9040C All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met with the following exceptions: | Sample | Analyte | Total Time From
Sample Collection
Until Analysis | Required Holding Time
From Sample Collection
Until Analysis | Flag | A or P | |--|--------------|--|---|---------------------|--------| | A1-MW-04-SA2
A1-MW-50-SA2
A1-MW-52-SA2 | pH | 11 days | 24 hours | J (all detects) | . P | | A1-MW-05-SA2
A1-MW-49-SA2
A1-PZ-19-SA2 | рН | 14 days | 24 hours | J (all detects) | Р | | A1-MW-04-SA2
A1-MW-49-SA2
A1-MW-52-SA2 | Ferrous Iron | 9 days | 24 hours | R (all non-detects) | Р | | A1-MW-05-SA2
A1-MW-50-SA2
A1-PZ-19-SA2 | Ferrous Iron | 9 days | 24 hours | J (all detects) | Р | ### II. Initial Calibration All criteria for the initial calibration of each method were met. # **III. Continuing Calibration** Continuing calibration frequency and analysis criteria were met for each method when applicable. ### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Analyte | Maximum
Concentration | Associated
Samples | |-----------------|-------------------------|-----------------------------|---------------------------------| | PB (prep blank) | Nitrate as N
Sulfate | 0.04530 mg/L
0.3332 mg/L | All samples in SDG 280-116898-1 | | ICB/CCB | Nitrate as N
Sulfate | 0.04526 mg/L
0.3841 mg/L | All samples in SDG 280-116898-1 | Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks. ### V. Field Blanks No field blanks were identified in this SDG. ### VI. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### VII. Duplicate Sample Analysis Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. ### **VIII. Laboratory Control Samples** Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### IX. Field Duplicates No field duplicates were identified in this SDG. ### X. Sample Result Verification All sample result verifications were acceptable. All analytes reported below the limit of quantitation (LOQ) were qualified as follows: | Sample | Finding | Flag | A or P | |--|--------------------------------------|-----------------|--------| | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-PZ-19-SA2
A1-MW-52-SA2 | All analytes reported below the LOQ. | J (all detects) | A | ### XI. Overall Assessment of Data The analysis was conducted within all specifications of the methods. Due to technical holding time, data were rejected in three samples. Due to technical holding time and results below the LOQ, data were qualified as estimated in six samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. # MCAS Yuma, CTO 17F3803 Wet Chemistry - Data Qualification Summary - SDG 280-116898-1 | Sample | Analyte | Flag | A or P | Reason | |--|--------------------------------------|---------------------|--------|----------------------------| | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-PZ-19-SA2
A1-MW-52-SA2 | pH | J (all detects) | Р | Technical holding times | | A1-MW-04-SA2
A1-MW-49-SA2
A1-MW-52-SA2 | Ferrous Iron | R (all non-detects) | Р | Technical holding times | | A1-MW-05-SA2
A1-MW-50-SA2
A1-PZ-19-SA2 | Ferrous Iron | J (all detects) | Р | Technical holding times | | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-PZ-19-SA2
A1-MW-52-SA2 | All analytes reported below the LOQ. | J (all detects) | А | Sample result verification | # MCAS Yuma, CTO 17F3803 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-116898-1 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-116898-1 No Sample Data Qualified in this SDG #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 43888A6 ADR/Stage 4 SDG #: 280-116898-1 Date: 12-20-18 Reviewer: MC 2nd Reviewer: METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----------|---| | I. | Sample receipt/Technical holding times | SW | | | Ш | Initial calibration | A | | | 111. | Calibration verification | A | | | IV | Laboratory Blanks | SW | | | V | Field blanks | N | | | VI. | Matrix Spike/Matrix Spike Duplicates | A | Not reviewed for ADR validation. M5/M5D | | VII. | Duplicate sample analysis | A | Not reviewed for ADR validation. DUP | | VIII. | Laboratory control samples | A | Not reviewed for ADR validation. LCS/LCSD | | IX. | Field duplicates | N | | | Χ. | Sample result verification | <u> </u> | Not reviewed for ADR validation. | | Χı | Overall assessment of data | <u> </u> | Not reviewed for ADR validation. | A = Acceptable Note: N = Not
provided/applicable Laboratory: Test America, Inc. SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank D = Duplicate SB=Source blank OTHER: ** Indicates sample underwent Stage 4 validation | | T Stage 4 Validation | T | | | |-------------|----------------------|-----------------|--------|-------------| | | Client ID | Lab ID | Matrix | Date | | 1 | A1-MW-04-SA2** | 280-116898-1** | Water | 11/12/18 | | 2 | A1-MW-05-SA2** | 280-116898-2** | Water | 11/12/18 | | 3 | A1-MW-49-SA2** | 280-116898-3** | Water | 11/12/18 | | 4 | A1-MW-50-SA2** | 280-116898-4** | Water | 11/12/18 | | 5 | A4-MV-51-SA2 | 280-116898-6 | Water | 11/12/18 | | 6 | A1-PZ-19-SA2** | 280-116898-8** | Water | 11/12/18 | | 7 | A1-MW-52-SA2** | 280-116898-9** | Water | 11/12/18 | | 8 | A1-MW-50-SA2M6 | 280-116898-4MS | Water | 11/12/18 | | 9 | A1-MW-56-SA2MSD | 280-116898-4MSD | Water | 11/12/18 | | 10 | A4-MW-50-SA2DUP | 280-116898-4DUP | Water | 11/12/18 | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | PBW | | | | | Notes | | | |-------|------|------| | | | | | |
 |
 | | | | | # VALIDATION FINDINGS CHECKLIST Page: 1 of 2 Reviewer: MG 2nd Reviewer: Method:Inorganics (EPA Method Seccover) | Validation Area | Yes | No | NA | Findings/Comments | |--|------------|----------|----------|-------------------| | I. Technical holding times | | | | | | All technical holding times were met. | | V | | | | Cooler temperature criteria was met. | / | | | | | II. Calibration | | | | | | Were all instruments calibrated daily, each set-up time? | / | | | | | Were the proper number of standards used? | V | | | | | Were all initial calibration correlation coefficients > 0.995? | / | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | / | | | | | Were titrant checks performed as required? (Level IV only) | | | / | | | Were balance checks performed as required? (Level IV only) | | | V | | | III. Blanks | | | | | | Was a method blank associated with every sample in this SDG? | V | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | ✓ | | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | √ | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | 1 | | | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | ✓ | | | | | V. Laboratory control samples | | | | | | Was an LCS anaylzed for this SDG? | / | | | | | Was an LCS analyzed per extraction batch? | 1 | ļ | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | V | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | Were performance evaluation (PE) samples performed? | | 1 | | | | Were the performance evaluation (PE) samples within the acceptance limits? | | | / | | ### **VALIDATION FINDINGS CHECKLIST** Page: 2 of 2 Reviewer: MG 2nd Reviewer: | Validation Area | Yes | No | NA | Findings/Comments | |---|----------|----|----------|-------------------| | VII. Sample Result Verification | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | V | | | | | Were detection limits < RL? | | | | | | VIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | / | | | | | IX. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | / | | | | Target analytes were detected in the field duplicates. | | | / | | | X. Field blanks | | | | | | Field blanks were identified in this SDG. | | / | | | | Target analytes were detected in the field blanks. | | | 1 | | # VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference All circled methods are applicable to each sample. | Sample ID | Matrix | Parameter | |-------------------|---------------------------|---| | $1 \rightarrow 7$ | Watrix | pH TDS CI) F (NO3) NO, SO3 PO4 ALK CN NH3 TKN TOC CR8+ CIO4 Fe+3 | | QC8->10 | $\frac{\sim}{\downarrow}$ | ph TDS CIF (NO ₃)NO ₂ (SO ₄)PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | 0 7 10 | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR CIO ₄ | | | | pH TDS CLF NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | · | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | ····· | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ ClO ₄ | | | | ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄ | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 | | | | pH TDS CLE NO, NO, SO, PO, ALK CN. NH, TKN TOC CR6+ CIO. | | Comments: | | |-----------|--| | | | | | | # VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u> Page: ___of __ Reviewer: ______ 2nd reviewer: _____ | circled dates have ex
N N/A Were all | samples preser | ved as applicab | le to each meth | od? | | | | |---|-------------------|-------------------------------|-----------------|-----------|--------------|----------|--| | N N/A Were all cool | er temperatures | vithin validation | criteria? | / | | | | | ethod: | | 9040C | SM | 3500 Fe B | | | | | arameters: | | рН | | Ferrous | | | | | echnical holding ti | me: | 24 hr | | 24 hr | | | | | | Sampling | Analysis | Analysis | Analysis | Analysis | Analysis | | | Sample ID | date | date | date | date | date | date | Qualifier | | Î | 11-12-18 | 14:43
11-23-18 | (11 days) | | | <i>i</i> | J/UJ/P (| | 2 | 14:24 | 13:27 | (14) | | | | (| | 3 | 11-12-18 | 13:36 | (14) | | | | | | Ч | 11-12-18 | 11-23-18 | (11) | | | | | | -6 | 10:46 | 15:33 | (ii) | | | | | | 6 | 18:43 | 13:32 | (14) | | | | | | 7 | 13: 39 | 11-26-18
15:23
11-23-18 | (11 | | | | | | | 11-12-18 | 11-03-18 | ('' 1 | á á | ii: 40 | | | 18:30 | <i>i</i> . \ | | | | 1 | 11-12-18
14:24 | | | 11-21-18 | (9 days) | | J/R/P () | | 2 | 11-12-18 | | | | (| | C | | 3 | 11-12-18 | | | | () | | | | 4 | 11-12-18 | | | | () | | | | - 5 | 10:46 | | | | () | | | | 6 | 12:43 | | | | () | | | | 7 | 13:39 | | | | (↓) | () | I | I | I | | | .1 | # VALIDATION FINDINGS WORKSHEET Blanks | Page:_ | <u>l_of_l_</u> | |---------------|----------------| | Reviewer: | | | 2nd Reviewer: | | METHOD:Inorganics, Method See Cover Conc. units: mg/L Associated Samples: all (NO3-N: 2x dil, SO4: 20x dil, >5x or ND) | Analyte | Blank ID | Blank ID | Blank | | | | | | | |---------|----------|-------------------|--------------|------------|--|--|--|--|--| | | РВ | ICB/CCB
(mg/L) | Action Limit | No Qual's. | | | | | | | NO3-N | 0.04530 | 0.04526 | 0.4526 | | | | | | | | SO4 | 0.3332 | 0.3841 | 38.41 | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". # VALIDATION FINDINGS WORKSHEET <u>Initial and Continuing Calibration Calculation Verification</u> | | Page:_ | Lof_ | |-----|-----------|------| | | Reviewer: | MG |
 2nd | Reviewer: | | | METHOD: Inorganics, Method See Cover | | |---|---| | The correlation coefficient (r) for the calibration ofC_l | was recalculated. Calibration date: 9-1-18 | | An initial or continuing calibration verification percent recover | ry (%R) was recalculated for each type of analysis using the following formula: | | %R = Found x 100 Where, Found = concentration of each and | alyte measured in the analysis of the ICV or CCV solution | | Type of Analysis | Analyte | Standard ID | Conc. | | Area
True (units) | Recalculated
r or %R | Reported | Ac | ceptable
(Y/N) | |--------------------------|---------|-------------|----------|--------------|----------------------|---------------------------------------|----------|----|-------------------| | Initial calibration | | Blank | _ | | | | | | | | initial Galleration | | Standard 1 | î.0 (m | g/L) | 17320827 | | | | | | | | Standard 2 | 2.5 (| 1) | 46063990 | | | | | | | CI | Standard 3 | 5.0 (|) | 94576246 | `
 | r= 1.000 | | . / | | | | Standard 4 | 60.0 (|) | 1 169 98 7193 | r = 1.000 | | · | Y | | | | Standard 5 | 120.0 (|) | 2305131911 | | | | ľ | | | | Standard 6 | 200.0 (| () | 3845262113 | | | | | | | | Standard 7 | _ | | | | | | | | Calibration verification | Ferrous | 1830 | (,, | ^ () | - (mal) | | | | | | | Iron | ICV | 1.045 | 18 h | 1.00 (mg/L) | 104 | 105 | | | | Calibration verification | | 1052 | 6 | ma 1 | (imal) | · · · · · · · · · · · · · · · · · · · | | | | | | NO3- N | CCV | 4.85 | "g/5 | 5.00 (mg/1) | 97 | 97 | | | | Calibration verification | S04 | 1646
CCV | 102.2 (M | ng/L) | 100 (mg/L) | 102 | 102 | J | | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the | |---| | ecalculated results | | | ### VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | Page:_ | <u>l</u> of <u>l</u> | |---------------|----------------------| | Reviewer: | MG | | 2nd Reviewer: | | | METHOD: Inorganics | Method | ક્લ | cover | | |--------------------|--------|-----|-------|--| | | | | | | Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = Found \times 100$ True Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = \underline{|S-D|} \times 100$ Where, S = Original sample concentration (S+D)/2 D = Control of the second section of the second Duplicate sample concentration | Sample ID | Type of Analysis | Element | Found / S
(units) | True / D
(units) | Recalculated
%R / RPD | Reported
%R / RPD | Acceptable
(Y/N) | |-----------|---------------------------|---------|----------------------|---------------------|--------------------------|----------------------|---------------------| | 1830 | Laboratory control sample | Ferrous | | | | | | | LCS | | Ivon | 2.13 (mg/L) | 2.00 (mg/L) | 106 | 106 | Y | | 1801 | Matrix spike sample | | (SSR-SR) | 500 (mg/1) | | | . | | 8 | | CI | 512 (mg/L) | 500 (0/L) | 102 | 102 | | | 1794/1743 | Duplicate sample | | | fin a 15 | | | | | 10 | | 504 | 894 (mg/L) | 866 (mg/L) | 3 | 3 | | | Comments: Refer to appropriate v | worksheet for list of qualifications and asso | ociated samples when reported results | do not agree within 10.0% of the recalculated results. | |----------------------------------|---|--|--| | | | And the state of t | 12/20/20/20 | | | | | | # **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification | Page:_ | 1_of_[_ | |---------------|---------| | Reviewer: | MG | | 2nd reviewer: | | | METHOD: Inor | organics, Method | | |--|---|---| | YN N/A
YN N/A
YN N/A
Compound (an | ralifications below for all questions answered "N". Not applicable questions answered "N". Not applicable questions are results been reported and calculated correctly? Are results within the calibrated range of the instruments? Are all detection limits below the CRQL? results for #1. 504 not verified using the following equation: | ons are identified as "N/A"reported with a positive detect were | | Concentration = $y = mx + b$
Where $m = 14353830$
b = -373056
$dil = 30 \times$ | Recalculation: $\left(\frac{x}{20}\right) - 2720$ $843.78 \text{ mg/L} = x$ | 56 | | # | Sample ID | Analyte | Reported
Concentration
(mg/L) | Calculated
Concentration
((L) | Acceptable
(Y/N) | |---|-----------|-----------------|--|---------------------------------------|---------------------| | | | 50 ₄ | 847 | 844 | Y | | 2 | 2 | ferrous Ivon | 0.119 | 0.119 | | | 3 | 3 | PH | 7.9 (su) | 7.9 (50) | | | 4 | Ч | NO3-N | 3.26 | 3.18 | | | 5 | 6 | Ferrous Iron | 0.0591 | 0.0591 | | | 6 | 7 | рН | 8.0 (SU) | 8,0 (5 0) | Note: | | | |-------|------|--| | |
 | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma, CTO 17F3803 **LDC Report Date:** December 20, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B & 4 Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1846366 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | A1-MW-04-SA2** | L1846366-01** | Water | 11/12/18 | | A1-MW-05-SA2** | L1846366-02** | Water | 11/12/18 | | A1-MW-49-SA2** | L1846366-03** | Water | 11/12/18 | | A1-MW-50-SA2** | L1846366-04** | Water | 11/12/18 | | A1-MW-50-SA2D | L1846366-05 | Water | 11/12/18 | | A1-MW-51-SA2** | L1846366-06** | Water | 11/12/18 | | A1-PZ-19-SA2** | L1846366-07** | Water | 11/12/18 | | A1-MW-52-SA2** | L1846366-08** | Water | 11/12/18 | | A1-MW-50-SA2MS | L1846366-04MS | Water | 11/12/18 | | A1-MW-50-SA2MSD | L1846366-04MSD | Water | 11/12/18 | ^{**}Indicates sample underwent Stage 4 validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the
following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks No field blanks were identified in this SDG. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates Samples A1-MW-50-SA2** and A1-MW-50-SA2D were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | ation (ng/L) | | | | |-------------|----------------|---------------|--------------|------|--------| | Compound | A1-MW-50-SA2** | A1-MW-50-SA2D | RPD (Limits) | Flag | A or P | | 1,4-Dioxane | 592 | 591 | 0 (≤30) | - | - | #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1846366 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1846366 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1846366 No Sample Data Qualified in this SDG | LDC #: 43888F2b | VALIDATION COMPLETENESS WORKSHEET | |--|-------------------------------------| | SDG #: L1846366 | A DR/ Stage 4 <u>/</u> ች | | Laboratory: <u>Alpha Analytical, Inc</u> | | 2nd Reviewer: METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|----------------------------------| | l. | Sample receipt/Technical holding times | AA | | | 11. | GC/MS Instrument performance check | A | | | 111. | Initial calibration/ICV | AIA | 10AL = 15? 101 = 202 | | IV. | Continuing calibration | A | en ∈ 20/50% | | V. | Laboratory Blanks | Δ | Not reviewed for ADR validation. | | VI. | Field blanks | N | | | VII. | Surrogate spikes | A | Net-reviewed for ADR-validation. | | VIII. | Matrix spike/Matrix spike duplicates | A | Not reviewed for ADR validation. | | IX. | Laboratory control samples | À | Nat-reviewed for ADR validation. | | X. | Field duplicates | ŚW | D = 4/5 | | XI. | Internal standards | A | Not reviewed for ADR validation. | | XII. | Compound quantitation RL/LOQ/LODs | Δ | Not reviewed for ADR varidation. | | XIII. | Target compound identification | Ä | Not reviewed for ADR validation. | | XIV. | System performance | A | Not reviewed for ADR validation. | | XV. | Overall assessment of data | A | Not reviewed for ADR validation. | A = Acceptable Note: N = Not provided/applicable ND = No compounds detected D = Duplicate SB=Source blank OTHER: SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank ** Indicates sample underwent Stage 4 validation | | Client ID | Lab ID | Matrix | Date | |----------------------------|--------------------|----------------|--------|----------| | +
1 | A1-MW-04-SA2** | L1846366-01** | Water | 11/12/18 | | * 2 | A1-MW-05-SA2** | L1846366-02** | Water | 11/12/18 | | #
3 | A1-MW-49-SA2** | L1846366-03** | Water | 11/12/18 | | 4 | A1-MW-50-SA2** | L1846366-04** | Water | 11/12/18 | | ‡
5 | A1-MW-50-SA2D | L1846366-05 | Water | 11/12/18 | | +
6
+
7
+
8 | A1-MW-51-SA2** | L1846366-06** | Water | 11/12/18 | | 7 | A1-PZ-19-SA2** | L1846366-07** | Water | 11/12/18 | | 8 | A1-MW-52-SA2** | L1846366-08** | Water | 11/12/18 | | 9 | A1-MW-50-SA2MS | L1846366-04MS | Water | 11/12/18 | | 10 | A1-MW-50-SA2MSD | L1846366-04MSD | Water | 11/12/18 | | 11 | | | | | | 12 | | | | | | 13 | NG 11809 11-1 BLAK | | | | LDC # 43888 F 2b VALIDATION FINDINGS CHECKLIST Page: 1 of 2 Reviewer: JVG 2nd Reviewer: SvoA Method: PAH (EPA SW 846 Method 8270D-SIM) | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|------|------
--| | I. Technical holding times | | | | | | Were all technical holding times met? | / | | | | | Was cooler temperature criteria met? | | | | | | II. GC/MS Instrument performance check (Not required) | | 40.0 | | | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | Illa. Initial calibration | | 1,2 | 77.7 | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) \geq 0.05? | / | | | في عليان المنظمة | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ? | | | | | | IIIb. Initial Calibration Verification | | | 8.7 | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | en e | | Were all percent differences (%D) ≤30% or percent recoveries (%R) 70-130%? | | | | | | IV. Continuing calibration | T | L | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | and the second s | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | | | | And the second s | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | / | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | / | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes | | | | | | Were all surrogate percent differences (%R) within QC limits? | / | | | | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | | | / | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | _ | · | LDC# 43888 F 26 ### VALIDATION FINDINGS CHECKLIST Page: 2 of 2 Reviewer: JVG 2nd Reviewer: | Validation Area | Yes | No | NA | Findings/Comments | |--|------|--------|-----|--| | VIII. Matrix spike/Matrix spike duplicates | | | | ge en | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | / | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | 1 | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | ı — | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | / | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | 2012 | | | | | Were field duplicate pairs identified in this SDG? | / | - | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | I | | | And the second of o | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | / | | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | t je s | | | | XII. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | / | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | / | | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | person (Later Company of Property Company of | | System performance was found to be acceptable. | / | | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | LDC #: 43888F2b ## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | Page: _ | <u>1</u> of <u>1</u> | |---------------|----------------------| | Reviewer: _ | JVG | | 2nd Reviewer: | | METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ A_x = Area of Compound A_{is} = Area of associated internal standard average RRF = sum of the RRFs/number of standards C_x = Concentration of compound, C_{is} = Concentration of internal standard %RSD = 100 * (S/X) S= Standard deviation of the RRFs, X = Mean of the RRFs | | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |---|-------------|-------------|-------------|----------|-----------|--------------|-------------|--------------|----------|--------------| | | | Calibration | | | RRF | RRF | Average RRF | Average RRF | %RSD | %RSD | | # | Standard ID | Date | Compour | nd (IS) | (500 std) | (500 std) | (Initial) | (Initial) | | | | 1 | ICAL | 11/15/2018 | 1,4-Dioxane | (DXN-d8) | 1.428 | 1.428 | 1.407 | 1.407 | 3.61 | 3.60 | | | MS16 | | | | | | | | | | ## LDC #: 4 2888 F26 VALIDATION FINDINGS WORKSHEET **Surrogate
Results Verification** Page: 1 of 1 Reviewer: JVG 2nd reviewer:_ METHOD: GC/MS-PAH (EPA SW 846 Method 8270D-SIM) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found | Sample ID: | SS = Surrogate Spiked | | | | | | | | |--------------------------------|-----------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|--|--|--| | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | | | | | Nitrobenzene-d5 1,4-Ditxane-d8 | 500 | 126.288 | 25 | 25 | 0 | | | | | 2-Fluorobiphenyl | | | | | | | | | | Terphenyl-d14 | | | | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | Sample ID:_____ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | ### **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | | Page:_ | <u>1_of_1_</u> | | |-----|-----------|----------------|---| | | Reviewer: | JVG | | | 2nd | Reviewer: | 2 | _ | SVOA METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration MSDC = Matrix spike duplicate concentration MS/MSD samples: __ | Compound | Ad | oike
ded
/レ) | Sample
Concentration
() () | Spiked Sample
Concentration | | ncentration | | Matrix Spike Duplicate | | MS/MSD | | | |----------------|--------|--------------------|-----------------------------------|--------------------------------|--|-------------|----------|------------------------|----------|----------|---------|--| | Compound | (VIO) | 101 | 1.79.4 | 119 | <u>/ [] </u> | Percent I | Recovery | Percent F | Recovery | R | RPD | | | | MS | MSD | | MS | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | | Acenaphthene | | | | | | | | | | | | | | Pyrene | | , | | | 1 | | | | | | | | | 1.4-Dioxane-ds | 5000 | 5000 | 592 | 6560 | G760 | 119 | 119 | 123 | 123 | 3 | 3 | · | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated san | nples when reported results do not agree within | |--|---| | 10.0% of the recalculated results. | | | | | | | | | | | | LDC # | 43868 | Fzb | |--------|-------|-----| | 1 DC # | 47000 | 120 | #### **VALIDATION FINDINGS WORKSHEET** ### Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page:_ | 1_of_1_ | |---------------|---------------| | Reviewer:_ | JVG | | 2nd Reviewer: | $\overline{}$ | SVA METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS/LCSD samples: WG11 80911- 2/3 | | Sı | pike | Sp | oike | | LCS LCSD | | LCS/LCSD
RPD | | | |--------------|------|------|------|------------------|----------|----------|------------------|-----------------|----------|--------------| | Compound | (ng | lded | | ntration
う /し | | | Percent Recovery | | | | | | ICS | LCSD | ıcs | LCSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Acenaphthene | | | | | | | | | | | | Pyrene | | | , | | | | | | | | | 14-Dioxane | 5000 | 5000 | 5780 | 5890 | 116 | 116 | 118 | 118 | 2 | 2 | | , | · | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples whe | |--| | reported results do not agree within 10.0% of the recalculated results. | | | | | | | LDC#: 43888 F26 ### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: | _1_of_1_ | |---------------|----------| | Reviewer: | JVG | | 2nd reviewer: | | | - | 7/ | SVDA METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM) Factor of 2 to account for GPC cleanup | $\left(Y\right)$ | N | N/A | |-------------------|---|-----| | (Y) | N | N/A | 2.0 Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Conce | entratio | on = $(A_{\bullet})(I_{s})(V_{\bullet})(DF)(2.0)$
$(A_{s})(RRF)(V_{o})(V_{i})(\%S)$ | Example: | |----------------|----------|--|---------------------------------------| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D. 1, 4-Dioxane | | A_{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | • • • • • • • • • • • • • • • • • • • | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = $(9071)(500)(5m)()$ | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | | | V_{l} | = | Volume of extract injected in microliters (ul) | = 4311 ng/L | | V_{t} | - = | Volume of the concentrated extract in microliters (ul) | | | Df | = | Dilution Factor. | | | %S | =, | Percent solids, applicable to soil and solid matrices only. | | | # | Sample ID | Compound | Reported
Concentration
(Y6/L) | Calculated
Concentration
() | Qualification | |---|-----------|----------|-------------------------------------|---|---------------| | | | | ¢310 | *************************************** | | | | | | | | | | | · | ## Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma, CTO 17F3803 **LDC Report Date:** December 20, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1846592 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | | | | | | 16-HS-03-SA2 | L1846592-01 | Water | 11/13/18 | | 16-MW-06-SA2 | L1846592-02 | Water | 11/13/18 | | 16-MW-08-SA2 | L1846592-03 | Water | 11/13/18 | | 16-MW-09-SA2 | L1846592-04 | Water | 11/13/18 | | A1-MW-18-SA2 | L1846592-05 | Water | 11/13/18 | | A1-MW-19-SA2 | L1846592-06 | Water | 11/13/18 | | A1-MW-53-SA2 | L1846592-07 | Water | 11/13/18 | | 16-HS-03-SA2D | L1846592-08 | Water | 11/13/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the
USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks No field blanks were identified in this SDG. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates Samples 16-HS-03-SA2 and 16-HS-03-SA2D were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentration (ng/L) | | | | | |-------------|----------------------|---------------|--------------|------|--------| | Compound | 16-HS-03-SA2 | 16-HS-03-SA2D | RPD (Limits) | Flag | A or P | | 1,4-Dioxane | 5330 | 6120 | 14 (≤30) | - | - | #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1846592 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1846592 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1846592 No Sample Data Qualified in this SDG | LDC #: 43888G2b | VALIDATION COMPLETEN | NESS WORKSHEET | |-----------------------------------|--|----------------| | SDG #: L1846592 | ABR | Stage2B | | Laboratory: Alpha Analytical, Inc | <u>. </u> | Je 1 | Date: 12/14/8 Page: 1 of 1 Reviewer: 000 2nd Reviewer: 000 METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | | |------------|--|-----|------------------------------|------------| | l. | Sample receipt/Technical holding times | AIA | | | | <u>II.</u> | GC/MS Instrument performance check | A' | | | | III. | Initial calibration/ICV | AIA | 1CAL = 15%.
COV = 20/50%. | 101 5 50 3 | | IV. | Continuing calibration | A | CON = 20/50 % | | | V. | Laboratory Blanks | Αĸ | | | | VI. | Field blanks | 1 | | | | VII. | Surrogate spikes | мA | | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | | IX. | Laboratory control samples | MA | us B | | | X. | Field duplicates | SN | p = 1/8 | | | XI. | Internal standards | MA | , | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | XIII. | Target compound identification | N | | | | XIV. | System performance | N | | | | XV. | Overall assessment of data | νA | | | Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank | | Client ID | Lab ID | Matrix | Date | |-----|---------------|---|--------|----------| | 1+ | 16-HS-03-SA2 | L1846592-01 | Water | 11/13/18 | | 2 | 16-MW-06-SA2 | L1846592-02 | Water | 11/13/18 | | 3+ | 16-MW-08-SA2 | L1846592-03 | Water | 11/13/18 | | 4 4 | 16-MW-09-SA2 | L1846592-04 | Water | 11/13/18 | | 5 | A1-MW-18-SA2 | L1846592-05 | Water | 11/13/18 | | 6 | A1-MW-19-SA2 | L1846592-06 | Water | 11/13/18 | | 7 | A1-MW-53-SA2 | L1846592-07 | Water | 11/13/18 | | 8 | 16-HS-03-SA2D | L1846592-08 | Water | 11/13/18 | | 9 | | *************************************** | | | | 10 | | | | | Notes: - WG 11809N-1 BLANK LDC#: 43888G2b MNA #### VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> Page: 1_of_1 Reviewer: __JVG 2nd Reviewer: ___ METHOD: GCMS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM) YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs? | | Concentra | Concentration (ng/L) | | | |-------------|-----------|----------------------|---------------|---------------------------------| | Compound | 1 | 8 | RPD
(≤30%) | Qualifications
(Parent only) | | 1,4-Dioxane | 5330 | 6120 | 14 | | V:\Josephine\FIELD DUPLICATES\43888G2b ttech yuma.wpd ## Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 **LDC Report Date:** December 20, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B **Laboratory:** Alpha Analytical, Inc. Sample Delivery Group (SDG): L1846856 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | A1-MW-07-SA2 | L1846856-01 | Water | 11/14/18 | | A1-MW-23-SA2 | L1846856-02 | Water | 11/14/18 | | A1-MW-25-SA2 | L1846856-03 | Water | 11/14/18 | | A1-MW-27-SA2 | L1846856-04 | Water | 11/14/18 | | A1-MW-55-SA2 | L1846856-05 | Water | 11/14/18 | | A1-MW-54-SA2 | L1846856-06 | Water | 11/14/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA)
SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks No field blanks were identified in this SDG. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1846856 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1846856 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1846856 No Sample Data Qualified in this SDG | SDG # | #:43888H2b | | ETENES
ADR St | SS WORKSHEE
~5€2\$ | 1 | Date: 12/19 Page: 1_of_ Reviewer: 5/19 Reviewer: | |-----------------------|--|----------------|------------------|--|--------|--| | The sa | AOD: GC/MS 1,4-Dioxane (EPA SW 846 amples listed below were reviewed for eation findings worksheets. | | · | dation areas. Valida | | | | | Validation Area | | | Com | nments | | | I. | Sample receipt/Technical holding times | AIA | | | | | | II. | GC/MS Instrument performance check | A | | | | | | III. | Initial calibration/ICV | AIA | ICAL | = 20/50% | | 101 £ 202 | | IV. | Continuing calibration | I A I | COV | = 20/50% | | | | V. | Laboratory Blanks | MA | | | | | | VI. | Field blanks | N | | | | | | VII. | Surrogate spikes | AM | | Annual Co. | | | | VIII. | Matrix spike/Matrix spike duplicates | N N | | | | *** ********************************** | | IX. | Laboratory control samples | MA | LCS | 10 | | | | X. | Field duplicates | N | | | | | | XI. | Internal standards | ĸА | Mark of | | | | | XII. | Compound quantitation RL/LOQ/LODs | N N | | - | | | | XIII. | Target compound identification | N | | | | | | XIV. | System performance | N | | | | | | XV. | Overall assessment of data | MA | | - Committee of the Comm | | | | Note: | N = Not provided/applicable R = Rir | No compounds o | detected | D = Duplicate
TB = Trip blank
EB = Equipment bl | OTHER | irce blank
: | | | Client ID | | | Lab ID | Matrix | Date | | | A1-MW-07-SA2 | | | L1846856-01 | Water | 11/14/18 | | 2 | A1-MW-23-SA2 | | | L1846856-02 | Water | 11/14/18 | | 2
+
3
+
4 | A1-MW-25-SA2 | | | L1846856-03 | Water | 11/14/18 | | †
4 | A1-MW-27-SA2 | | | L1846856-04 | Water | 11/14/18 | | 5 | A1-MW-55-SA2 | | | L1846856-05 | Water | 11/14/18 | | - | A1-MW-54-SA2 | | | L1846856-06 | Water | 11/14/18 | | 7 | | | | | | | | 8 | | | | | | | | <u>ا و</u> | | | | | | | | Notes: | | | | | | | | <u>- '</u> | WG1181575-1 BLANK | | | | | | ## Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma, CTO 17F3803 **LDC Report Date:** December 20, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1847243 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | A1-MW-11-SA2 | L1847243-01 | Water | 11/15/18 | | A1-MW-13-SA2 | L1847243-02 | Water | 11/15/18 | | A1-MW-14-SA2 | L1847243-03 | Water | 11/15/18 | | A1-MW-15-SA2 | L1847243-04 | Water | 11/15/18 | | A1-MW-37-SA2 | L1847243-05 | Water | 11/15/18 | | A1-MW-37-SA2D | L1847243-06 | Water | 11/15/18 | | A1-MW-31-SA2 | L1847243-07 | Water | 11/15/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term
Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks No field blanks were identified in this SDG. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates Samples A1-MW-37-SA2 and A1-MW-37-SA2D were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | Concentration (ng/L) | | | | |-------------|--------------|----------------------|--------------|------|--------| | Compound | A1-MW-37-SA2 | A1-MW-37-SA2D | RPD (Limits) | Flag | A or P | | 1,4-Dioxane | 13100 | 13200 | 1 (≤30) | - | - | #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1847243 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1847243 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1847243 No Sample Data Qualified in this SDG | LDC #: 4388812b VALIDATION COMPLETENESS WORKSHEET Date: 12/14, | | | | | | | |--|---|-----|---|---|--|--| | SDG# | | | | | | | | Laboratory. Alpha Analytical, Inc. / Reviewer. 3 V | | | | | | | | | IOD: GC/MS 1,4-Dioxane (EPA SW 846 amples listed below were reviewed for ea | | , | 2nd Reviewer: dings are noted in attached | | | | validat | tion findings worksheets. | | | | | | | | Validation Area Comments | | | | | | | 1. | Sample receipt/Technical holding times | AIA | | | | | | 11. | GC/MS Instrument performance check | ľΔ | | | | | | | Validation Area | | Comments | |-------|--|-----|-----------------------| | I. | Sample receipt/Technical holding times | A/A | | | II. | GC/MS Instrument performance check | Á | | | 111. | Initial calibration/ICV | AID | 1CAL \$ 15% 10/ 50 %. | | IV. | Continuing calibration | A' | Car & 20/56? | | V. | Laboratory Blanks | Аĸ | | | VI. | Field blanks | N | | | VII. | Surrogate spikes | νA | | | VIII. | Matrix spike/Matrix spike duplicates | N | | | IX. | Laboratory control samples | w A | LCS/D | | X. | Field duplicates | SM | D = 5/6 | | XI. | Internal standards | МА | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | XIII. | Target compound identification | N | | | XIV. | System performance | N | | | XV. | Overall assessment of data | мA | | A = Acceptable N = Not provided/applicable SW = See worksheet Note: ND = No compounds detected R = Rinsate FB = Field blank SB=Source blank OTHER: D = Duplicate TB = Trip blank EB = Equipment blank | | Client ID | Lab ID | Matrix | Date | |---|-----------------|-------------|--------|----------| | 1 | A1-MW-11-SA2 | L1847243-01 | Water | 11/15/18 | | 2 | A1-MW-13-SA2 | L1847243-02 | Water | 11/15/18 | | 3 | A1-MW-14-SA2 | L1847243-03 | Water | 11/15/18 | | 4 | A1-MW-15-SA2 | L1847243-04 | Water | 11/15/18 | | 5 | A1-MW-37-SA2 | L1847243-05 | Water | 11/15/18 | | 6 | A1-MW-37-SA2D D | L1847243-06 | Water | 11/15/18 | | 7 | A1-MW-31-SA2 | L1847243-07 | Water | 11/15/18 | | 8 | | | | | | 9 | | | | | Notes: | WG1181805-1 BLANK | | | | |-------------------|--|--|--| | | | | | | | | | | LDC#: 4388812b #### VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u> Page: 1 of 1 Reviewer: JVG 2nd Reviewer: **METHOD**: GCMS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM) Y N NA Were field duplicate pairs identified in this SDG? YNNA Were target analytes detected in the field duplicate pairs? | | Concentra | tion (ng/L) | | | |-------------|-----------|-------------|---------------|---------------------------------| | Compound | 5 | 6 | RPD
(≤30%) | Qualifications
(Parent only) | | 1,4-Dioxane | 13100 | 13200 | 1 | | V:\Josephine\FIELD DUPLICATES\43888I2b ttech yuma.wpd # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** MCAS Yuma, CTO 17F3803 **LDC Report Date:** December 20, 2018 Parameters: 1,4-Dioxane Validation Level: Stage 2B Laboratory: Alpha Analytical, Inc. Sample Delivery Group (SDG): L1847316 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | A1-MW-01-SA2 | L1847316-01 | Water | 11/16/18 | | A1-MW-42-SA2 | L1847316-02 | Water | 11/16/18 | | EB-20181116 | L1847316-03 | Water | 11/16/18 | | A1-MW-01-SA2MS | L1847316-01MS | Water | 11/16/18 | | A1-MW-01-SA2MSD | L1847316-01MSD | Water | 11/16/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was
not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: 1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0%. Average relative response factors (RRF) were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0%. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample EB-20181116 was identified as an equipment blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Stage 2B validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Stage 2B validation. #### XIV. System Performance Raw data were not reviewed for Stage 2B validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. MCAS Yuma, CTO 17F3803 1,4-Dioxane - Data Qualification Summary - SDG L1847316 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1847316 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1847316 No Sample Data Qualified in this SDG | DG# | :43888J2b VALIDAT
:L1847316
atory:_Alpha_Analytical, Inc | | LETENESS WORKSH
ADR Stage 215 | IEET | Rev | Date <u>l ک/ ۹</u>
Page: <u> </u> of_
viewer: <u> </u> | |-----------|---|--|--|-----------|-----------------------|--| | IETH | OD: GC/MS 1,4-Dioxane (EPA SW 8 | | , | alidation | 2nd Rev | viewer: | | | ion findings worksheets. | T T | Towning validation areas. Ve | | | ica in attaci | | | Validation Area | | | Comme | nts | | | <u>l.</u> | Sample receipt/Technical holding times | AIA | | | | | | 11. | GC/MS Instrument performance check | A | | | | | | Ш. | Initial calibration/ICV | AA | 1CAL = 15% | | 10 | N 5 20 3 | | IV. | Continuing calibration | A' | ICAL = 15?. | 50% | | | | V. | Laboratory Blanks | MA | , , , , , , , , , , , , , , , , , , , | | | | | VI. | Field blanks | MD | B=3 | | | | | VII. | Surrogate spikes | κA | | | | | | VIII. | Matrix spike/Matrix spike duplicates | μÄ | | | | | | IX. | Laboratory control samples | ΑN | VCS | | | | | Χ. | Field duplicates | N | | | | | | XI. | Internal standards | AM | | | | | | XII. | Compound quantitation RL/LOQ/LODs | Ŋ | | | | | | XIII. | Target compound identification | N | | | | | | XIV. | System performance | N | | | | | | XV. | Overall assessment of data | KA | | | | | | ote: | N = Not provided/applicable R = | = No compounds
Rinsate
= Field blank | detected D = Duplicate
TB = Trip blar
EB = Equipme | nk | SB=Source
OTHER: | blank | | | Client ID | | I ah ID | | Matrix | Date | A1-MW-01-SA2 L1847316-01 Water 11/16/18 A1-MW-42-SA2 L1847316-02 Water 11/16/18 EB-20181116 L1847316-03 Water 11/16/18 L1847316-01MS 11/16/18 A1-MW-01-SA2MS Water A1-MW-01-SA2MSD L1847316-01MSD Water 11/16/18 6 Notes: | WG1181887-18LANK | | | |------------------|--|--| | | | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: MCAS Yuma, CTO 17F3803 LDC Report Date: January 2, 2019 Parameters: Perfluoroalkyl & Polyfluoroalkyl Substances Validation Level: Stage 4 Laboratory: Vista Analytical Laboratory Sample Delivery Group (SDG): 1803615 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | A1-MW-04-SA2 | 1803615-01 | Water | 11/12/18 | | A1-MW-05-SA2 | 1803615-02 | Water | 11/12/18 | | A1-MW-49-SA2 | 1803615-03 | Water | 11/12/18 | | A1-MW-50-SA2 | 1803615-04 | Water | 11/12/18 | | A1-MW-50-SA2D | 1803615-05 | Water | 11/12/18 | | A1-MW-51-SA2 | 1803615-06 | Water | 11/12/18 | | A1-MW-52-SA2 | 1803615-07 | Water | 11/12/18 | | FRB-20181112 | 1803615-08 | Water | 11/12/18 | | A1-PZ-19-SA2 | 1803615-09 | Water | 11/12/18 | | A1-MW-50-SA2MS | 1803615-04MS | Water | 11/12/18 | | A1-MW-50-SA2MSD | 1803615-04MSD | Water | 11/12/18 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. - U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during
data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was checked and the requirements were met. #### III. Initial Calibration and Initial Calibration Verification Initial calibration was performed as required by the method. A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990. For each calibration standard, all compounds were less than or equal to 30% of their true value. The signal to noise (S/N) ratio was within validation criteria for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 30.0% for all compounds. The signal to noise (S/N) ratio was within validation criteria for all compounds. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample FRB-20181112 was identified as a field rinsate blank. No contaminants were found. #### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### **VIII. Ongoing Precision Recovery** Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### IX. Field Duplicates Samples A1-MW-50-SA2 and A1-MW-50-SA2D were identified as field duplicates. No results were detected in any of the samples with the following exceptions: | | Concentra | Concentration (ug/L) | | | | | |----------|--------------|----------------------|----------------|------------|----------|--| | Compound | A1-MW-50-SA2 | A1-MW-50-SA2D | RPD (Limits) | Flag | A or P | | | PFTeDA | 0.0250 | 0.0264 | 5 (≤30) | - | - | | | PFHxA | 0.0806 | 0.0829 | 3 (≤30) | - | - | | | PFHpA | 0.00474 | 0.00494 | Not calculable | - | - | | | PFHxS | 0.0367 | 0.0355 | 3 (≤30) | · <u>-</u> | <u>-</u> | | | PFOA | 0.00947 | 0.00878 | Not calculable | - | - | | RPDs were not calculated when sample results in one or both samples were less than 5x the limit of quantitation (LOQ). #### X. Labeled Compounds All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits. #### XI. Compound Quantitation All compound quantitations met validation criteria. The laboratory indicated that the parent/product transition ion ratios met laboratory requirements with the following exceptions: | Sample | Compound | Finding | |--|---|---| | A1-MW-05-SA2
A1-MW-50-SA2
A1-PZ-19-SA2 | All compounds
qualified 'Q' by the
laboratory | The parent/product transition ion ratio was outside of the 70-130% laboratory limits. | Since there are no established transition ion ratio requirements in the validation documents for this project, using professional judgment, no data were qualified. All compounds reported below the limit of quantitation (LOQ) were qualified as follows: | Sample | Finding | Flag | A or P | |---|---------------------------------------|-----------------|--------| | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-MW-50-SA2D
A1-MW-51-SA2
A1-MW-52-SA2
A1-PZ-19-SA2 | All compounds reported below the LOQ. | J (all detects) | A | #### XII. Target Compound Identifications All target compound identifications met validation criteria. #### XIII. System Performance The system performance was acceptable. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to results below the LOQ, data were qualified as estimated in eight samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. ### MCAS Yuma, CTO 17F3803 Perfluoroalkyl & Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1803615 | Sample | Compound | Flag | A or P | Reason | |--|---------------------------------------|-----------------|--------|-----------------------| | A1-MW-04-SA2
A1-MW-05-SA2
A1-MW-49-SA2
A1-MW-50-SA2
A1-MW-51-SA2
A1-MW-51-SA2
A1-PZ-19-SA2 | All compounds reported below the LOQ. | J (all detects) | А | Compound quantitation | #### MCAS Yuma, CTO 17F3803 Perfluoroalkyl & Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1803615 No Sample Data Qualified in this SDG MCAS Yuma, CTO 17F3803 Perfluoroalkyl & Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1803615 No Sample Data Qualified in this SDG # LDC #: 43888K96 VALIDATION COMPLETENESS WORKSHEET SDG #: 1803615 ADR/Stage 4 Laboratory: Vista Analytical Laboratory Date: 12/14/18 Page: 1 of 1 Reviewer: 5/4 2nd Reviewer: **METHOD:** LC/MS Perfluoroalkyl & Polyfluoroalkyl Substances (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|--------------------------------------| | I. | Sample receipt/Technical holding times | A,A | | | II. | LC/MS Instrument performance check | A | | | III. | Initial calibration/ICV | AIA | COVE 30% Trans value | | IV. | Continuing calibration/ISC | A | COV & 30% Thate value | | V. | Laboratory Blanks | A | Not reviewed for ADR validation. | | VI. | Field blanks | ND | FRB = 8 | | VII. | Matrix spike/Matrix spike duplicates | A | Not reviewed for ADR validation. | | VIII. | Laboratory control samples | LA_ | Not reviewed for ADR validation. OPR | | IX. | Field duplicates | SW | D = 4/5 | | X. | Labeled Compounds | A | Not reviewed for ADR validation. | | XI. | Compound quantitation RL/LOQ/LODs | SVY | Not reviewed for ADR validation. | | XII. | Target compound identification | A | Not reviewed for ADR validation. | | XIII. | System performance | A | Not reviewed for ADR validation. | | XIV. | Overall assessment of data | A | Not reviewed for ADR validation. | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected D = Duplicate TB = Trip blank SB=Source blank OTHER: SW = See worksheet R = Rinsate FB = Field blank EB = Equipment blank FRB= Field Rinsate Blk ** Indicates sample underwent Stage 4 validation Client ID Lab ID Matrix Date + A1-MW-04-SA2** 1803615-01** Water 11/12/18 ₹ A1-MW-05-SA2** 1803615-02** Water 11/12/18 1803615-03** Water A1-MW-49-SA2** 11/12/18 A1-MW-50-SA2** 1803615-04** Water 11/12/18 A1-MW-50-SA2D** 1803615-05** Water 11/12/18 5 6 A1-MW-51-SA2** 1803615-06** Water 11/12/18 A1-MW-52-SA2** 1803615-07** Water 11/12/18 FRB-20181112 8 Water 1803615-08 11/12/18 A1-MW7-19-SA2** 1803615-09** Water 11/12/18 9 Water A1-MW-50-SA2MS 1803615-04MS 11/12/18 10 1803615-04MSD Water 11 A1-MW-50-SA2MSD 11/12/18 12 13 B8K0091-BK1 LDC#: 43888 K96 # VALIDATION FINDINGS CHECKLIST | Page:_ | <u></u> of ク | |---------------|--------------| | Reviewer: | DG | | 2nd Reviewer: | A | | | | Method: LCMS (EPA Method 537 Modified) | Metrica: Lowe (El // Metrica de / Medirea) | | | | | |---|--|--------------------------------
--|-------------------| | Validation Area | Yes | No | NA | Findings/Comments | | Technical holding times | ПА | | 100 A 20 | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. LC/MS Instrument performance check | | | | | | Were the instrument performance reviewed and found to be within the validation criteria? | | olombay year 9 de Caralina | | | | IIIa. Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990? | / | | | | | Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard? | / | | | | | Was the signal to noise (S/N) ratio for all compounds within the validation criteria? | | Addition | | | | IIIb. Initial Calibration Verification | | (17) 100 (17)
(17) 100 (17) | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | | | | | Were all percent differences (%D) ≤ 30%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) of the continuing calibration ≤ 30%? | | | | | | Was the signal to noise (S/N) ratio for all compounds within the validation criteria? | | | | | | Were all percent differences (%D) of the Instrument Sensitivity Check < 30%? | | | | | | V. Laboratory Blanks | | Translation (| | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? | | / | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | W-1358000000000000000000000000000000000000 | | All State of the S | | | VIII. Matrix spike/Matrix spike duplicates | | | ı | | | Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | | | | Was an LCS analyzed per extraction batch for this SDG? | / | | | | LDC #: \$3888 K96 # VALIDATION FINDINGS CHECKLIST Page: 2 of 7 Reviewer: 1 2nd Reviewer: 5 | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|------------|----|-------------------| | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | | | Were field duplicate pairs identified in this SDG? | / | | | | | Were target compounds detected in the field duplicates? | | | | | | XI. Labeled compounds | | 100 Cartes | | | | Were labeled compound percent recoveries (%R) within the QC limits? | | | | | | XII. Compound quantitation | | | | | | Did the laboratory reporting limits (RL) meet the QAPP RLs? | | - | | | | Did reported results include both branched and linear isomers? | | | | | | Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | | | | | | Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? | / | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | . / | | i | | ### TARGET COMPOUND WORKSHEET #### **METHOD: PFAS** | WIETHOD, FFAS | | | |------------------------|--|--| | A. PFHxA | | | | B. PFHpA | | | | C. PFOA | | | | D. PFNA | | | | E. PFDA | | | | F. PFUnA | | | | G. PFDoA | | | | H. PFTriA | | | | I. PFTeDA | | | | J. PFBS | | | | K. PFHxS | | | | L. PFHpS | | | | M. PFOS | | | | N. PFDS | | | | O. FOSA | | | | P. PFBA | | | | Q. PFPeA | | | | R. 6:2FTS | | | | S. 8:2FTS | | | | T. MeFOSAA | | | | U. EtFOSAA | | | | V. Combined PFOAS/PFOS | | | | | | | | | | | | | | | | | | | LDC#: 43888K96 #### **VALIDATION FINDINGS WORKSHEET** Field Duplicates Page: 1 of 1 Reviewer: JVG 2nd Reviewer: METHOD: LCMS PFAS (EPA Method 537M) YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs? Y/N NA | | Concentration (ug/L) | | RPD | | |----------|----------------------|---------|------|---------------------------------| | Compound | 4 | 4 5 | | Qualifications
(Parent only) | | J | 0.0250 | 0.0264 | 5 | | | Α | 0.0806 | 0.0829 | 3 | | | В | 0.00474 | 0.00494 | NC : | | | К | 0.0367 | 0.0355 | 3 | | | С | 0.00947 | 0.00878 | NC. | | V:\Josephine\FIELD DUPLICATES\43888K96 ttech yuma.wpd LDC #: 43888**1** # VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs | Page: | 1_of1_ | |---------------|--------| | Reviewer: | JVG | | 2nd Reviewer: | R | METHOD: LCMS PFAS (EPA Method 537M) Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | # | Samples | Compound | Finding | Qualifications | |---|---------|---|---|---| | | 2, 4, 9 | All compounds qualified "Q" by the lab. | The laboratory indicated that the parent/product transition ion ratio was outside of the 70-130% laboratory limits. | Since there are no established transition ion ratio requirements in the validation documents for this project, using professional judgment, no data were qualified. | · | | | | | | | | | | | | | | Comments: | See sample calculation verification worksheet for recalculations | | | |-----------|--|--|--| | _ | | | | | | | | | LDC #_43888K96_ # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | Page:_ | _1_of_2_ | |---------------|----------| | Reviewer:_ | JVG | | 2nd Reviewer: | <u> </u> | METHOD: LC/MS PFCs (EPA Method 537Mod) | Calibration | | | | (Y) | (X) | (X^2) | |-------------|------------|-----------|----------|----------------|-------------|-------------| | Date | Instrument | Compound | Standard | Response ratio | Conc. Ratio | Conc. Ratio | | 11/19/2018 | SCN960 | PFOA | 1 | 0.0327 | 0.02 | 0.00040 | | | | | 2 | 0.0593 | 0.04 | 0.0016 | | | | 13C2-PFOA | 3 | 0.1197 | 0.08 | 0.0064 | | | | | 4 | 0.2358 | 0.16 | 0.0256 | | | | | 5 | 0.5699 | 0.40 | 0.1600 | | | | | 6 | 1.0165 | 0.80 | 0.6400 | | | | | 7 | 5.1296 | 4.00 | 16.0000 | | | | | 8 | 10.3516 | 8.00 | 64.0000 | | | | | 9 | 25.6395 | 20.00 | 400.0000 | | | | | 10 | 51.9892 | 40.00 | 1600.0000 | | | | | _ | | | | | Regression Output | Calc | ulated | Reported WQR | | |------------------------------------|-----------|-----------|--------------|-------------| | Constant | С | 0.03180 | С | 0.1398430 | | Std Err of Y Est | | | | | | R Squared | | 0.9999917 | | 0.9999030 | | Degrees of Freedom | | | | | | | m1 | m2 |
m1 | m2 | | X Coefficient(s) | 1.2736124 | 0.0006421 | 1.2814700 | 0.000032442 | | Std Err of Coef. | | | | | | Correlation Coefficient | | 0.999996 | | | | Coefficient of Determination (r^2) | | 0.999992 | | | LDC#: 43888K96 # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification Page:_2_of_2_ Reviewer:__JVG__ 2nd Reviewer:____ METHOD: LC/MS PFCs (EPA Method 537Mod) | Calibration | | | | (Y) | (X) | |-------------|--------|-----------|----------|------------|------------| | Date | System | Compound | Standard | Area ratio | Conc ratio | | 11/19/2018 | SCN960 | PFOS | 1 | 0.02405 | 0.020 | | | | | 2 | 0.04028 | 0.040 | | | | | 3 | 0.00828 | 0.080 | | | | 13C8-PFOS | 4 | 0.15076 | 0.160 | | | | | 5 | 0.42475 | 0.400 | | | | | 6 | 0.84488 | 0.800 | | | | | 7 | 4.25487 | 4.000 | | | | | 8 | 8.43628 | 8.000 | | | | | 9 | 21.03584 | 20.000 | | | | | 10 | 43.32010 | 40.000 | | | | | | | | | Regression Output | Calculated | Reported WLR | |------------------------------------|------------|--------------| | Constant | -0.073380 | -0.0118865 | | Std Err of Y Est | | | | R Squared | 0.999854 | 0.999775 | | Degrees of Freedom | | | | X Coefficient(s) | 1.07855632 | 1.069710 | | Std Err of Coef. | | | | Correlation Coefficient | 0.999927 | | | Coefficient of Determination (r^2) | 0.999854 | 0.999775 | LDC # 43888K96 ## **VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification** | Page: _ | <u>1</u> _of_1_ | |---------------|-----------------| | Reviewer: | JVG | | 2nd Reviewer: | | METHOD: LC/MS PFAs (EPA Method 537Mod) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: Where: Cx = Concentration of compound, % Difference = 100 * (ave. RRF - RRF)/ave. | ave. RRF = initial calibration average RRF Ais = Area of associated internal standard RRF = (Ax)(Cis)/(Ais)(Cx) RRF = continuing calibration RRF Cis = Concentration of internal standard Ax = Area of compound | # | Standard ID | Calibration
Date | Comp | oound (IS) | Conc | Reported | Recalculated | Reported
% R | Recalculated
% R | |---|-------------|---------------------|------|-------------|------|----------|--------------|-----------------|---------------------| | 1 | 181120M1_58 | 11/20/2018 | PFOA | (13C2-PFOA) | 1.00 | 1.139 | 1.139 | 113.9 | 113.9 | | | | | PFOS | (13C8-PFOS) | 1.00 | 1.092 | 1.092 | 109.2 | 109.2 | # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | <u>l_ofl</u> | |----------------|--------------| | Reviewer: | JVG | | 2nd Reviewer:_ | \bigcirc | METHOD: LC/MS PFAS (EPA Method 537Mod) | The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compour | nds | |--|-----| | identified below using the following calculation: | | % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration MSDC = Matrix spike duplicate concentration MS/MSD samples: ____ | Spike
Added
(ぬんし) | | Sample
Conc
(hg / L) | Spiked Sample
Concentration
(ルノレ) | | Matrix Spike Percent Recovery | | Matrix Spike Duplicate Percent Recovery | | MS/MSD
RPD | | |-------------------------|-----------|-----------------------------|---|---------|---|-----------------|--|---|--|---| | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalc | | 0.05607 | 0-0863 | 0,00947 | 0.112 | 0.110 | 118 | 118 | 116 | 115 | 1.71 | 1.80 | | 1 | J | 0 | 0.0954 | 0.0910 | 110 | 16 | 102 | 105 | 4.65 | 9.72 | | | | · | Ms 0.6567 | Added (ng /L) | Added (ng /L) (ng /L) MS MSD 0.656 7 0-0863 0,00947 | Added (| Added (ng /L) (ng /L) (ng /L) MS MSD MS MSD 0.6567 0-0863 0, 0947 0.112 0.118 | Added (Mg /L) | Added (ng/L) Conc (ng/L) Concentration (ng/L) Percent Recovery MS MSD Reported Recalc 0.6567 0.0863 0.0947 0.112 0.118 118 1(8 | Added (Ng/L) Conc (Ng/L) Concentration (Ng/L) Percent Recovery Percent I MS MSD MSD Reported Recalc Reported 0.6567 0.0863 0.0947 0.112 0.118 118 118 116 | Added (Mg/L) Conc (Mg/L) Concentration (Mg/L) Percent Recovery Percent Recovery MS MSD MSD Reported Recalc Reported Recalc Reported Recalc 0.6567 0.0863 0.0947 0.112 0.118 18 16 16 | Added (Mg/L) Conc (Mg/L) Concentration (Mg/L) Percent Recovery Percent Recovery REPORTED MS MSD MSD Reported Recalc Reported Recalc Reported 0.6567 0.0863 0.0947 0.112 0.118 18 16 16 1.71 | | Comments: | Refer to Matrix | Spike/Matrix S | pike Duplicates | findings worksh | eet for list of | qualifications | and associated | samples wher | reported | results do not | |--------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|--------------|----------|---| | agree within | 10.0% of the re | calculated resu | lts. | | | | | | | | | | | | | | | | | | | *************************************** | LDC #: 4388K96 # **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/ Sample Duplicates Results Verification | Page: | of | | |---------------|-----|---| | Reviewer: | JVG | _ | | 2nd Reviewer: | | | METHOD: LC/MS PFCs (EPA Method 537Mod) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC | * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS/LCSD samples: __ B8K0091-1381 | Compound | Spike
Added
(以ら/レ) | | Conce | oike
ntration | | Recovery | | SD
Recovery | | CSD | |----------|--------------------------|--------|--------|------------------|----------|----------|----------|---|----------|--------| | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc | | PFOS | 0.0800 | 0.0860 | 0.0864 | NA | 108 | 168 | | | | | | PFOA | J | | 0.0949 | 1 | 119 | 117 | - | | | | | | | | | | | , | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | 1 | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualific | ations and associated samples | |---|-------------------------------| | when reported results do not agree within 10.0% of the recalculated results. | · | | | | | | | LDC #: 43888 K96 ### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification Page: 1_ of 1 Reviewer: __JVG 2nd reviewer: ___ METHOD: LC/MS PFAS (EPA Method 537M) (<u>Y N N/A</u> <u>Y N N/A</u> 2.0 Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported Example: results? | • | Concer | ntratio | $ n = \frac{(A_{\circ})(I_{\circ})(V_{\circ})(DF)(2.0)}{(A_{\circ})(RRF)(V_{\circ})(V_{\circ})(\%S)} $ | |---|-----------------|---------|--| | , | Ą _x | = | Area of the characteristic ion (EICP) for the compound to be measured | | , | A _{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | ١ | s | = | Amount of internal standard added in nanograms (ng) | | , | V _o | = | Volume or weight of sample extract in milliliters (ml) o grams (g). | | ١ | V _I | = | Volume of extract injected in microliters (ul) | | ١ | V_t | = | Volume of the concentrated extract in microliters (ul) | | I | Df | = | Dilution Factor. | | (| %S | = | Percent solids, applicable to soil and
solid matrices | Factor of 2 to account for GPC cleanup | Sample I.D. | · | V F VA | : | | |-------------|-----------|-------------|---------------|---------------| | (437) | (12.57] - | 3 24421 e - | 5 X 2 + 1.281 | 47× 1 0. Ba84 | Conc. = $\frac{(437)(12.5)}{(5070)} = 3.2442|e-9$ X = 0.73163find conc. = $\frac{(0.73163)(11)}{(0.113451)(1000)}$ = 0.00645 mg/L | # | Sample ID | Compound | Reported
Concentration
(仏ん/し) | Calculated
Concentration
() | Qualification | |---|-----------|----------|-------------------------------------|------------------------------------|---------------| | | | | 0.00646 | LOCATION-NAME | SITE_NAME | INSTALLATION_ID | LOCATION_TYPE | LOCATION_TYPE_DESC | SDG | COORD_X | COORD_Y | ANALYTICAL_METHOD_GRP_DESC | SAMPLE_NAME | SAMPLE_MATRIX | SAMPLE_MATRIC_DESC | COLLECT_DATE | |---------------|------------|-----------------|---------------|--------------------|---------|-------------|-------------|----------------------------|--------------|---------------|--------------------|--------------| | A1-MW-11 | SITE 00019 | YUMA_MCAS | WLM | Monitoring well | 1803676 | 440624.2445 | 605800.5662 | Perfluoroalkyl Compounds | A1-MW-11-SA2 | WG | GROUNDWATER | 11/15/2018 | | A1-MW-13 | SITE 00019 | YUMA_MCAS | WLM | Monitoring well | 1803676 | 441121.7924 | 605643.0455 | Perfluoroalkyl Compounds | A1-MW-13-SA2 | WG | GROUNDWATER | 11/15/2018 | | A1-MW-14 | SITE 00019 | YUMA_MCAS | WLM | Monitoring well | 1803676 | 440162.9948 | 605871.6126 | Perfluoroalkyl Compounds | A1-MW-14-SA2 | WG | GROUNDWATER | 11/15/2018 | | A1-MW-15 | SITE 00019 | YUMA_MCAS | WLM | Monitoring well | 1803676 | 440468.355 | 606147.1626 | Perfluoroalkyl Compounds | A1-MW-15-SA2 | WG | GROUNDWATER | 11/15/2018 | | A1-MW-31 | SITE 00019 | YUMA_MCAS | WLM | Monitoring well | 1803676 | 436610.1639 | 607254.3576 | Perfluoroalkyl Compounds | A1-MW-31-SA2 | WG | GROUNDWATER | 11/15/2018 | | A1-MW-37 | SITE 00019 | YUMA_MCAS | WLM | Monitoring well | 1803676 | 441675.7197 | 605691.9325 | Perfluoroalkyl Compounds | A1-MW-37-SA2 | WG | GROUNDWATER | 11/15/2018 |