

PRODUCT CODE:

8:2FTS

LOT NUMBER:

82FTS1118

COMPOUND:

Sodium 1H,1H,2H,2H-perfluorodecane sulfonate

STRUCTURE:

CAS #:

Not available

(8:2FTS anion)

MOLECULAR FORMULA:

C₁₀H₄F₁₇SO₃Na

 $47.9 \pm 2.4 \, \mu g/ml$

MOLECULAR WEIGHT:

550.16

CONCENTRATION:

 $50.0 \pm 2.5 \,\mu g/ml$ (Na salt)

SOLVENT(S):

Methanol

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

11/28/2018

EXPIRY DATE: (mm/dd/yyyy)

11/28/2023

RECOMMENDED STORAGE:

Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 11/29/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

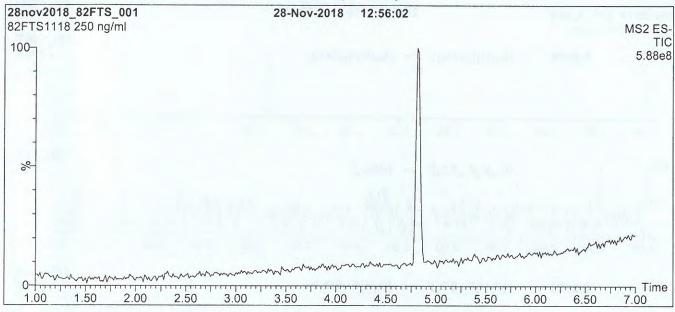
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

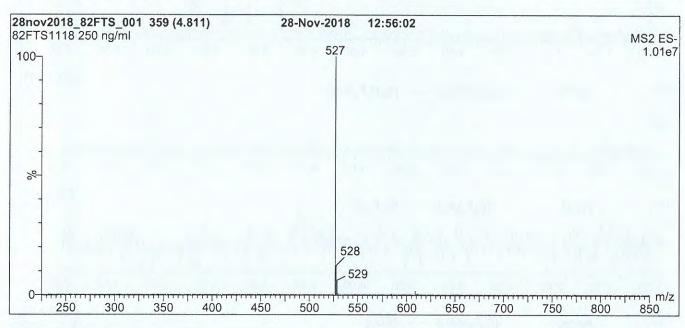
EXPIRY DATE / PERIOD OF VALIDITY:

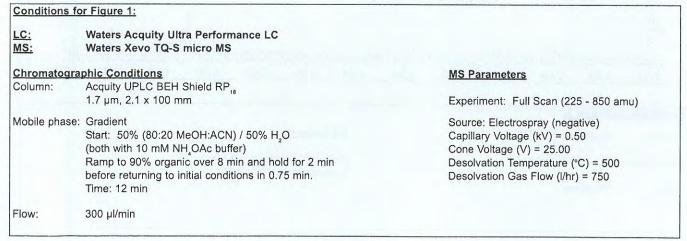
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

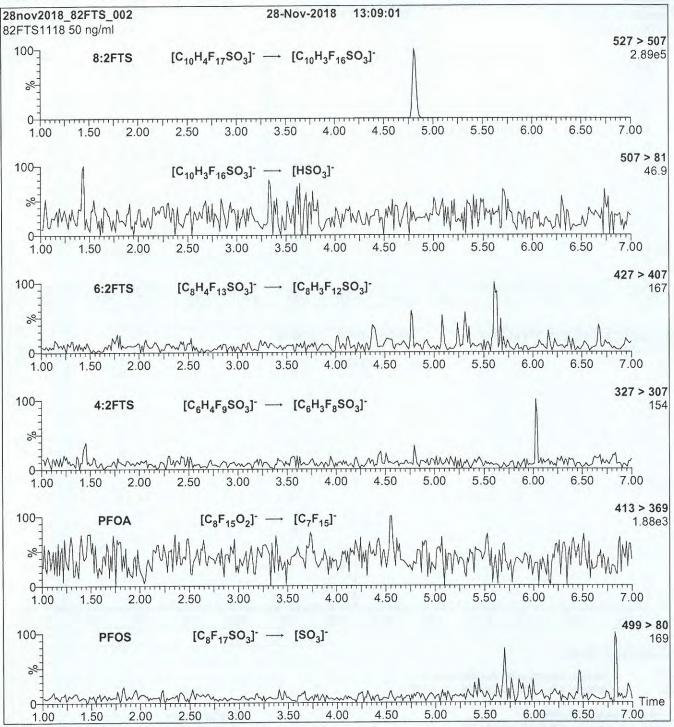
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.


QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).



ACCREDITED
SOTON
REFERENCE MATERIAL
PROPOUCER



Injection:

On-column (8:2FTS)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 2.74e-3 Collision Energy (eV) = 26

82FTS1118 (4 of 4)

SO2NH2

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

FOSA-I

LOT NUMBER:

FOSA0618I

COMPOUND:

Perfluoro-1-octanesulfonamide

STRUCTURE:

CAS #:

754-91-6

CONCENTRATION:

MOLECULAR FORMULA:

C,H,F,,NO,S 50 ± 2.5 µg/ml >98%

CHEMICAL PURITY:

LAST TESTED: (mm/dd/yyyy) 06/20/2018 EXPIRY DATE: (mm/dd/yyyy) 06/20/2023

RECOMMENDED STORAGE:

Refrigerate ampoule

MOLECULAR WEIGHT:

SOLVENT(S):

499.14

Isopropanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 06/25/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{x}(y)$, of a value y and the uncertainty of the independent parameters

$$x_i, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

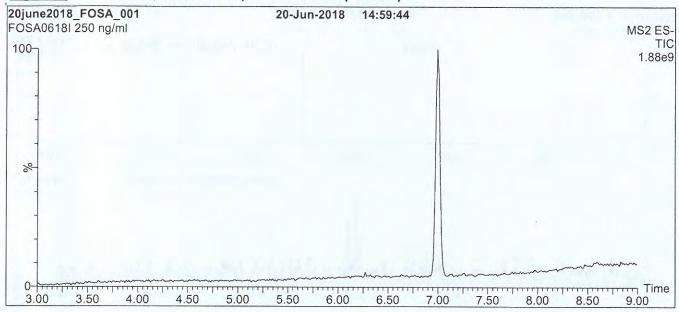
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

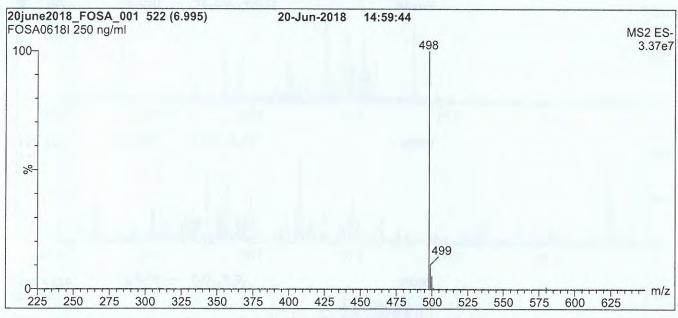
EXPIRY DATE / PERIOD OF VALIDITY:

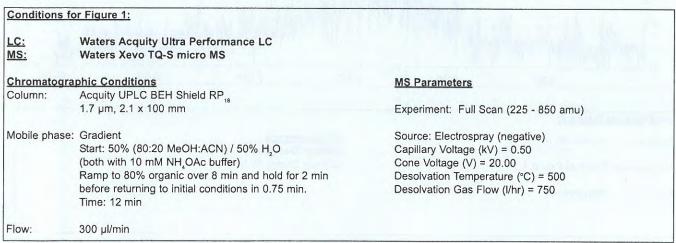
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

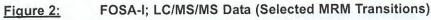
LIMITED WARRANTY:

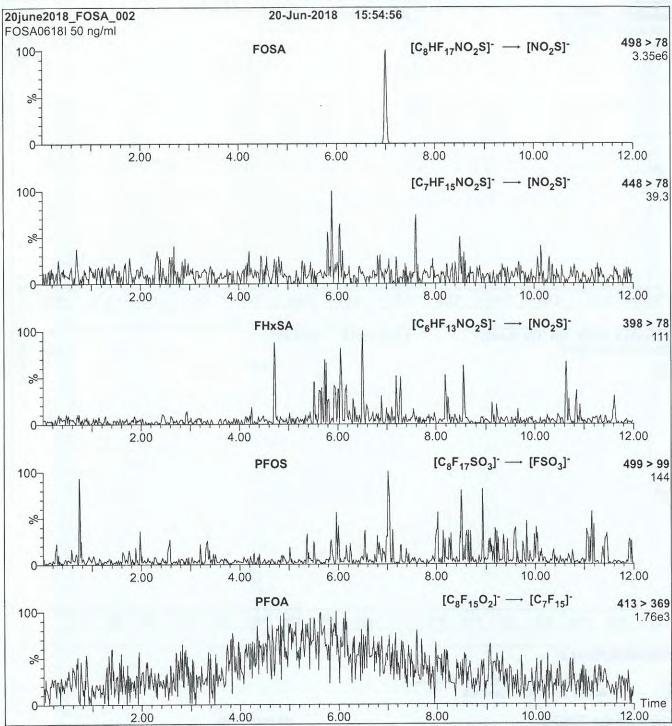
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.


QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).







9AZ568

Injection:

On-column (FOSA-I)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.43e-3

Collision Energy (eV) = 30

br-NMeFOSAA

N-Methylperfluorooctanesulfonamidoacetic Acid Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:

br-NMeFOSAA

LOT NUMBER:

brNMeFOSAA0118

CONCENTRATION:

50.0 ± 2.5 μg/ml

SOLVENT(S):

Methanol/Water (<1%)

DATE PREPARED: (mm/dd/yyyy)

01/10/2018

LAST TESTED: (mm/dd/yyyy)

01/17/2018

EXPIRY DATE: (mm/dd/yyyy)

01/17/2023

RECOMMENDED STORAGE:

Refrigerate ampoule

DESCRIPTION:

The chemical purity has been determined to be ≥98% N-methylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by 19F-NMR

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS Data (SIR)

Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl
 ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

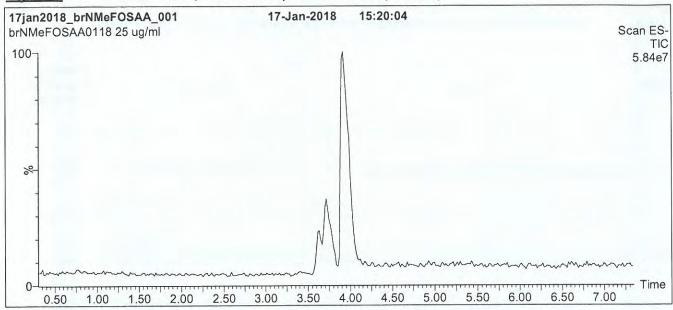
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

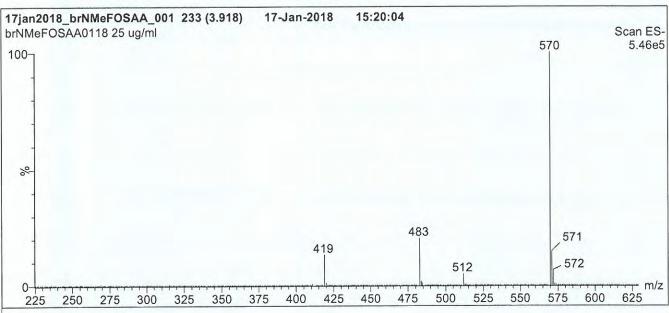
QUALITY MANAGEMENT:

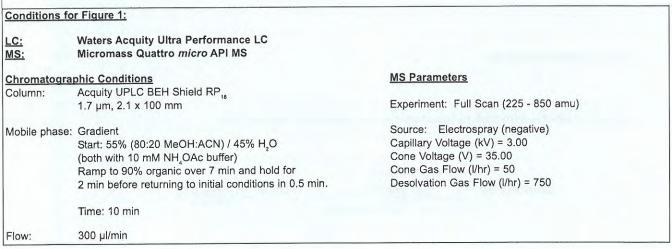
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

Table A: br-NMeFOSAA; Isomeric Components and Percent Composition (by 19F-NMR)*

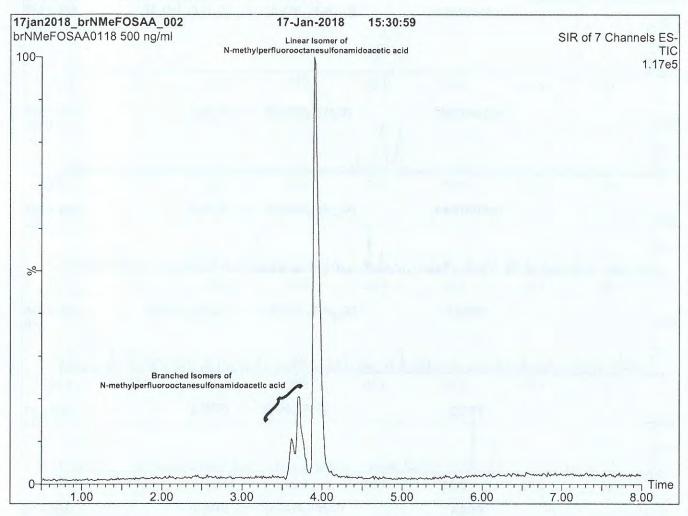
Isomer	Name	Structure	Percent Composition by ¹⁹ F-NMR
1	N-methylperfluoro-1-octanesulfonamidoacetic acid	CF ₃ (CF ₂) ₇ SO ₂ NCH ₂ CO ₂ H CH ₃	76.0
2	N-methylperfluoro-3-methylheptanesulfonamidoacetic acid	CF ₃ (CF ₂) ₃ CF(CF ₂) ₂ SO ₂ NCH ₂ CO ₂ H CF ₃ CH ₃	0.7
3	N-methylperfluoro-4-methylheptanesulfonamidoacetic acid	CF ₃ (CF ₂) ₂ CF(CF ₂) ₃ SO ₂ NCH ₂ CO ₂ H CF ₃ CH ₃	2.0
4	N-methylperfluoro-5-methylheptanesulfonamidoacetic acid	CF ₃ CF ₂ CF(CF ₂) ₄ SO ₂ NCH ₂ CO ₂ H CF ₃ CH ₃	6.0
5	N-methylperfluoro-6-methylheptanesulfonamidoacetic acid	$\begin{array}{ccc} \operatorname{CF_3CF(CF_2)_5SO_2NCH_2CO_2H} \\ \operatorname{CF_3} & \operatorname{CH_3} \end{array}$	14.0
6	N-methylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid	CF ₃ CF ₃ C(CF ₂) ₄ SO ₂ NCH ₂ CO ₂ H CF ₃ CH ₃	0.2
7	Other Unidentified Isomers		1.1

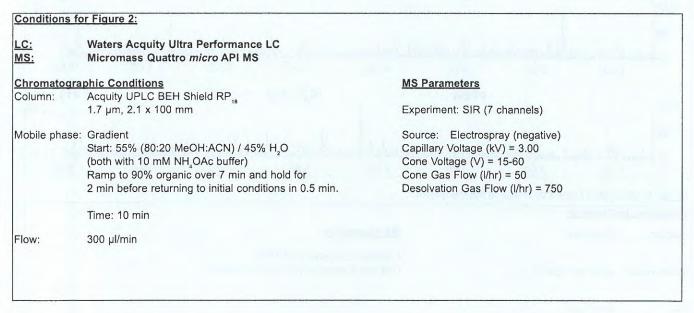

^{*} Percent of total N-methylperfluorooctanesulfonamidoacetic acid isomers only.

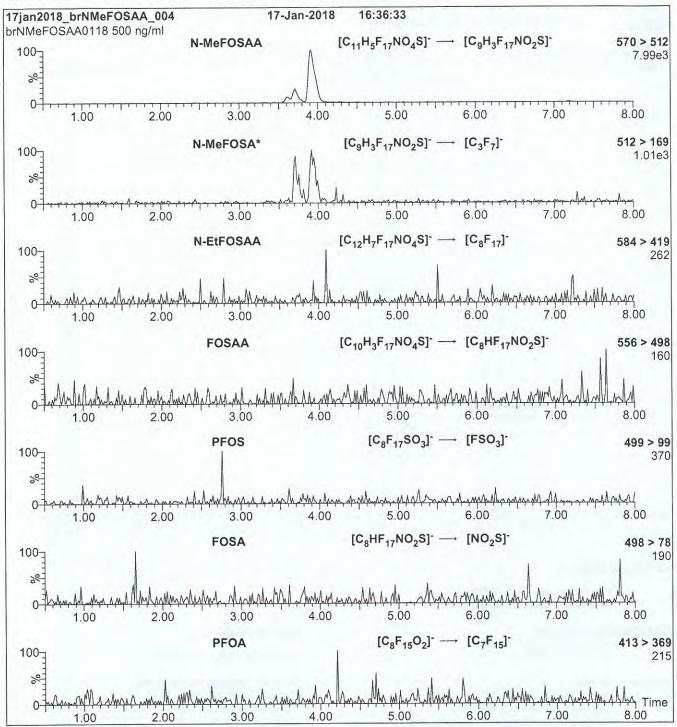

Certified By:

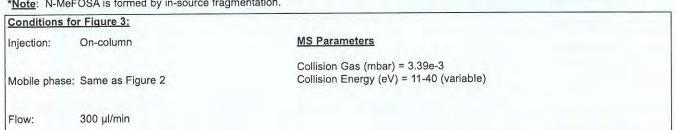

B.G. Chittim, General Manager

Date: 03/22/2018 (mm/dd/yyyy)









*Note: N-MeFOSA is formed by in-source fragmentation.

br-NEtFOSAA

N-Ethylperfluorooctanesulfonamidoacetic Acid Solution/Mixture of Linear and **Branched Isomers**

PRODUCT CODE:

br-NEtFOSAA

LOT NUMBER:

brNEtFOSAA0718

CONCENTRATION:

 $50.0 \pm 2.5 \,\mu g/ml$

SOLVENT(S):

Methanol/Water (<1%)

DATE PREPARED: (mm/dd/yyyy)

07/25/2018

LAST TESTED: (mm/dd/yyyy)

07/26/2018

EXPIRY DATE: (mm/dd/yyyy)

07/26/2023

RECOMMENDED STORAGE:

Refrigerate ampoule

DESCRIPTION:

The chemical purity has been determined to be ≥98% N-ethylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by 19F-NMR

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS Data (SIR)

Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester.
- Contains ~ 0.6% of perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

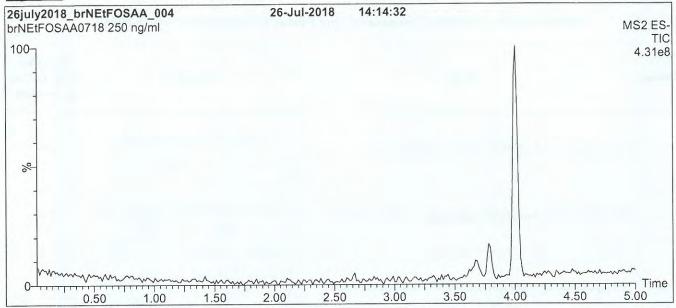
QUALITY MANAGEMENT:

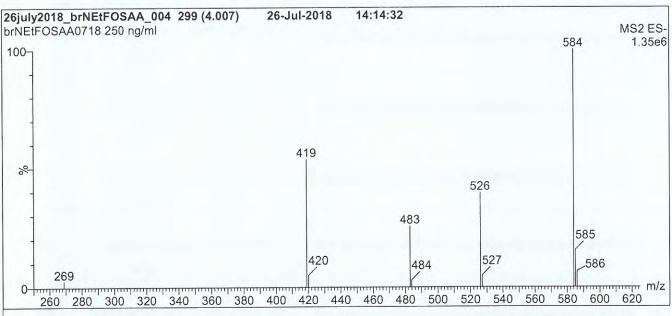
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

Table A: br-NEtFOSAA; Isomeric Components and Percent Composition (by 19F-NMR)*

Isomer	Name	Structure	Percent Composition by ¹⁹ F-NMR
1	N-ethylperfluoro-1-octanesulfonamidoacetic acid	CF ₃ (CF ₂) ₇ SO ₂ NCH ₂ CO ₂ H C ₂ H ₅	77.5
2	N-ethylperfluoro-3-methylheptanesulfonamidoacetic acid	$\begin{array}{cccc} {\rm CF_3(CF_2)_3CF(CF_2)_2SO_2NCH_2CO_2H} \\ {\rm CF_3} & {\rm C_2H_5} \end{array}$	2.3
3	N-ethylperfluoro-4-methylheptanesulfonamidoacetic acid	$\begin{array}{ccc} \operatorname{CF_3(CF_2)_2CF(CF_2)_3SO_2NCH_2CO_2H} \\ \operatorname{CF_3} & \operatorname{C_2H_5} \end{array}$	2.2
4	N-ethylperfluoro-5-methylheptanesulfonamidoacetic acid	$\begin{array}{ccc} \operatorname{CF_3CF_2CF(CF_2)_4SO_2NCH_2CO_2H} \\ \operatorname{CF_3} & \operatorname{C_2H_5} \end{array}$	5.4
5	N-ethylperfluoro-6-methylheptanesulfonamidoacetic acid	$\begin{array}{ccc} \operatorname{CF_3CF(CF_2)_5SO_2NCH_2CO_2H} \\ \operatorname{CF_3} & \operatorname{C_2H_5} \end{array}$	10.4
6	N-ethylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid	$\begin{array}{ccc} \operatorname{CF_3} & & \operatorname{CF_3} \\ \operatorname{CF_3C(CF_2)_4SO_2NCH_2CO_2H} \\ \operatorname{CF_3} & \operatorname{C_2H_5} \end{array}$	0.3
7	N-ethylperfluoro-4,5-dimethylhexanesulfonamidoacetic acid	$\begin{array}{c} CF_3 \\ CF_3 \\ CF_3 CFCF(CF_2)_3 SO_2 NCH_2 CO_2 H \\ CF_3 \\ CF_3 \\ C_2 H_5 \end{array}$	0.3
8	N-ethylperfluoro-3,5-dimethylhexanesulfonamidoacetic acid	$\begin{array}{c} CF_3\\ CF_3CFCF_2CF(CF_2)_2SO_2NCH_2CO_2H\\ CF_3 & C_2H_5 \end{array}$	0.3
9	Other Unidentified Isomers		1.3

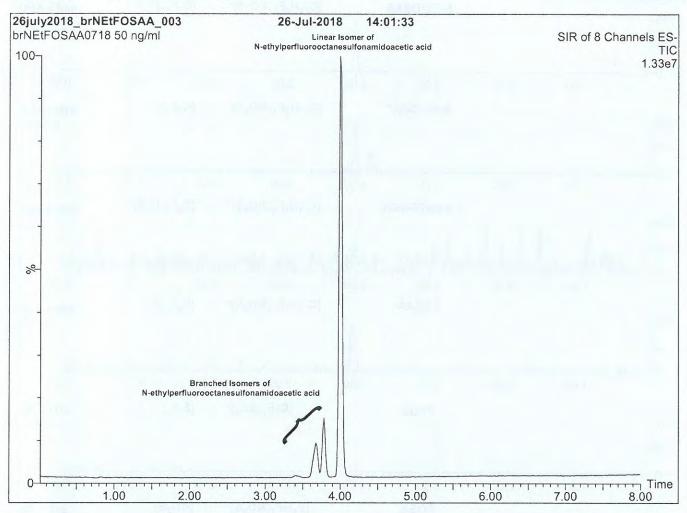
Percent of total N-ethylperfluorooctanesulfonamidoacetic acid isomers only.

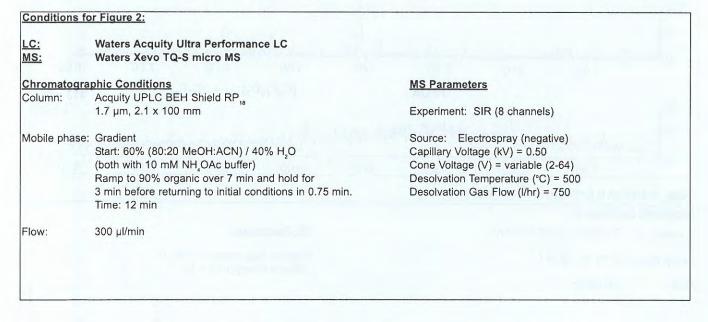

Certified By:

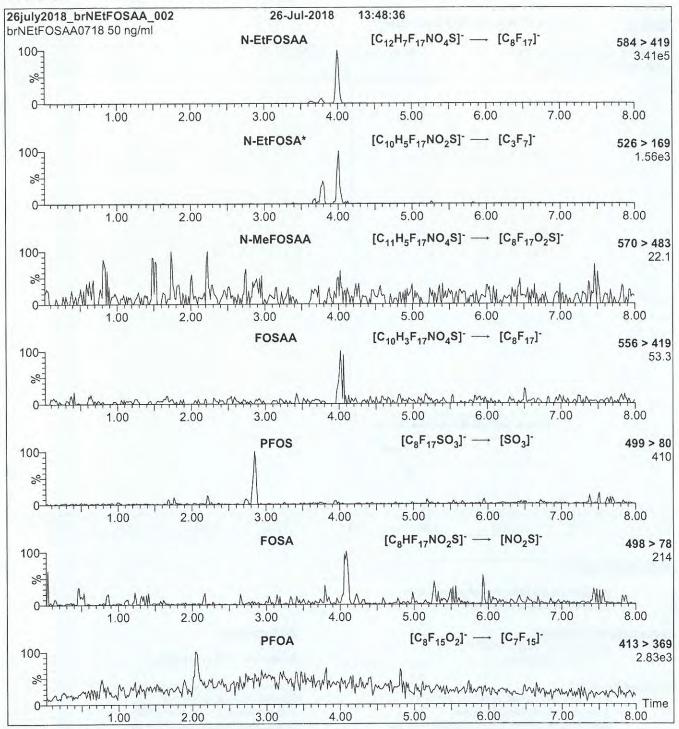

B.G. Chittim, General Manager

Date: 07/27/2018

Form#:13, Issued 2004-11-10 Revision#:5, Revised 2018-01-22






Conditions fo	r Figure 1:	
LC: MS:	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
Chromatogra	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ 1.7 μ m, 2.1 \times 100 mm	Experiment: Full Scan (250 - 850 amu)
Mobile phase:	Gradient Start: 60% (80:20 MeOH:ACN) / 40% H ₂ O (both with 10 mM NH ₄ OAc buffer) Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min. Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) = 0.50 Cone Voltage (V) = 64 Desolvation Temperature (°C) = 500 Desolvation Gas Flow (l/hr) = 750
Flow:	300 µl/min	

*Note: N-EtFOSA is formed by in-source fragmentation.

Conditions for Figure 3:Injection:On-column (br-NEtFOSAA)MS ParametersMobile phase:Same as Figure 1Collision Gas (mbar) = 3.76e-3
Collision Energy (eV) = 18Flow:300 μl/min

PRODUCT CODE:

N-MeFOSA-M

LOT NUMBER:

NMeFOSA0518M

COMPOUND:

N-methylperfluoro-1-octanesulfonamide

CAS #:

31506-32-8

STRUCTURE:

MOLECULAR FORMULA:

C₉H₄F₁₇NO₂S

CONCENTRATION:

 $50 \pm 2.5 \, \mu g/ml$

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

05/31/2018

EXPIRY DATE: (mm/dd/yyyy)

05/31/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

MOLECULAR WEIGHT:

SOLVENT(S):

513.17 Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 06/07/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$\mathbf{x_1},\,\mathbf{x_2},...\mathbf{x_n}$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

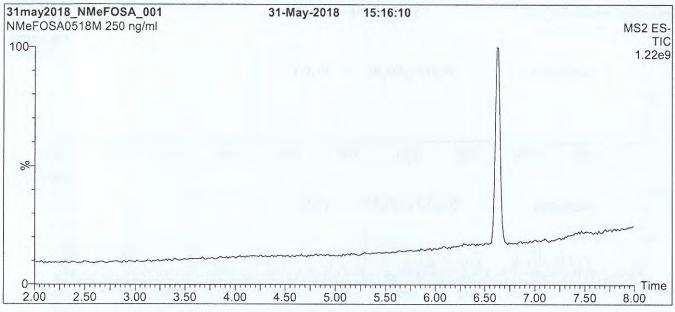
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

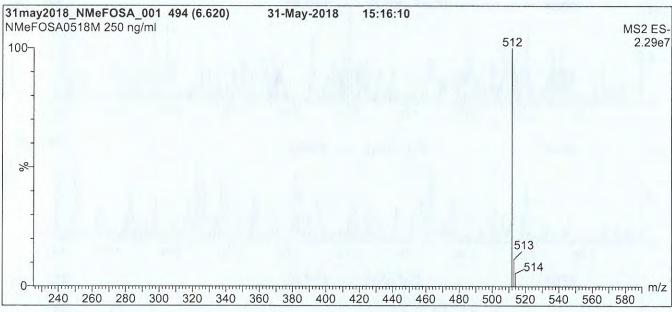
EXPIRY DATE / PERIOD OF VALIDITY:

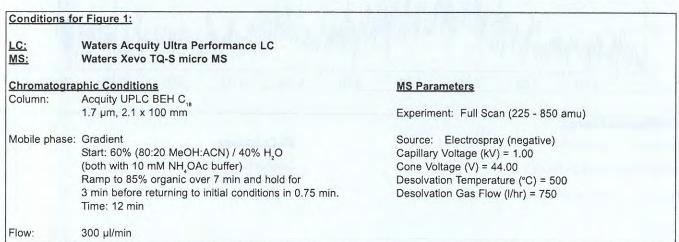
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

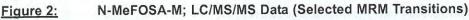
LIMITED WARRANTY:

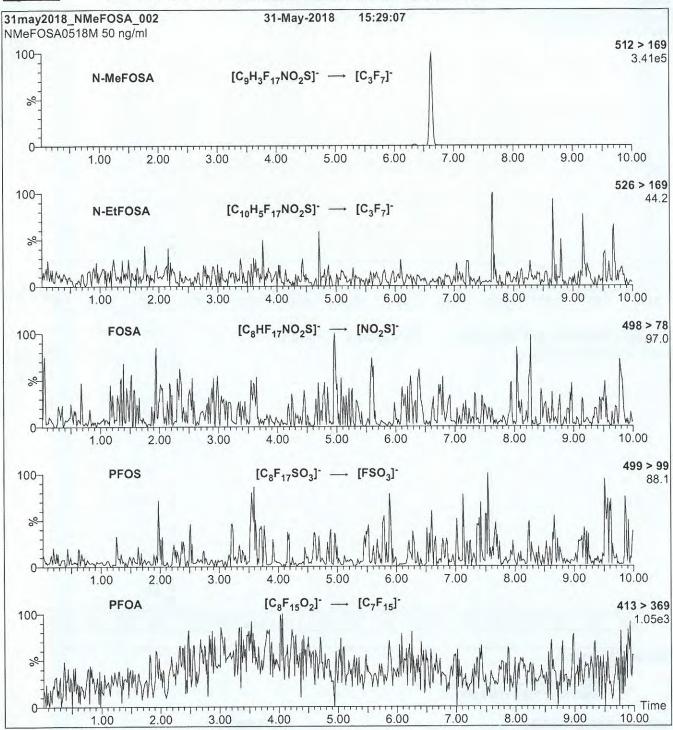
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

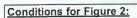

QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).









Injection: On-column (N-MeFOSA-M)

Mobile phase: Same as Figure 1

Flow: 300 µl/min

MS Parameters

Collision Gas (mbar) = 3.37e-3 Collision Energy (eV) = 24

PRODUCT CODE:

N-EtFOSA-M

LOT NUMBER:

NEtFOSA0518M

COMPOUND:

N-ethylperfluoro-1-octanesulfonamide

STRUCTURE:

CAS #:

4151-50-2

MOLECULAR FORMULA:

C,0H,F,NO,S

CONCENTRATION:

 $50 \pm 2.5 \, \mu g/ml$

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

05/31/2018

EXPIRY DATE: (mm/dd/yyyy)

05/31/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

MOLECULAR WEIGHT:

SOLVENT(S):

527.20 Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains ~ 0.5% branched isomers of N-ethylperfluorooctanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 06/12/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

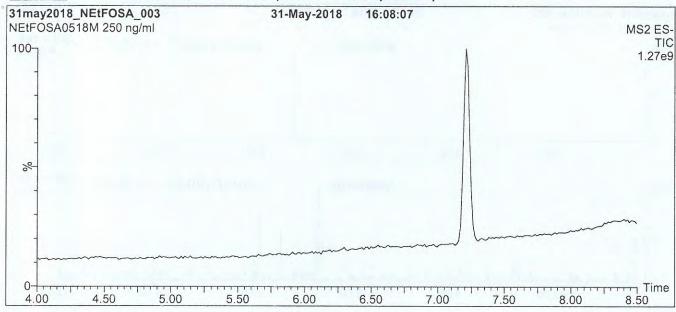
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

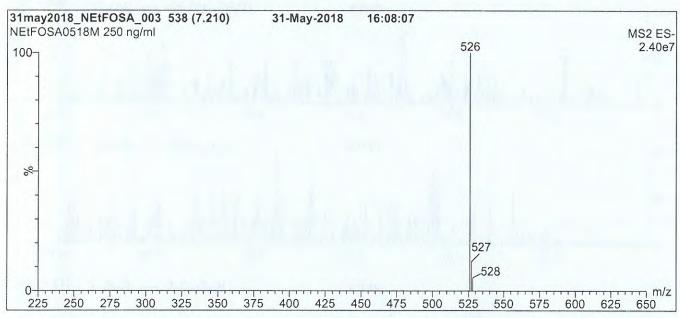
EXPIRY DATE / PERIOD OF VALIDITY:

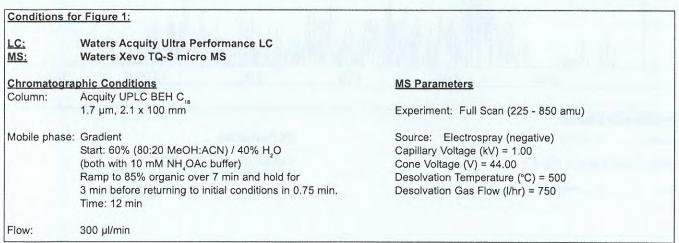
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

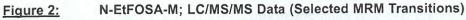
LIMITED WARRANTY:

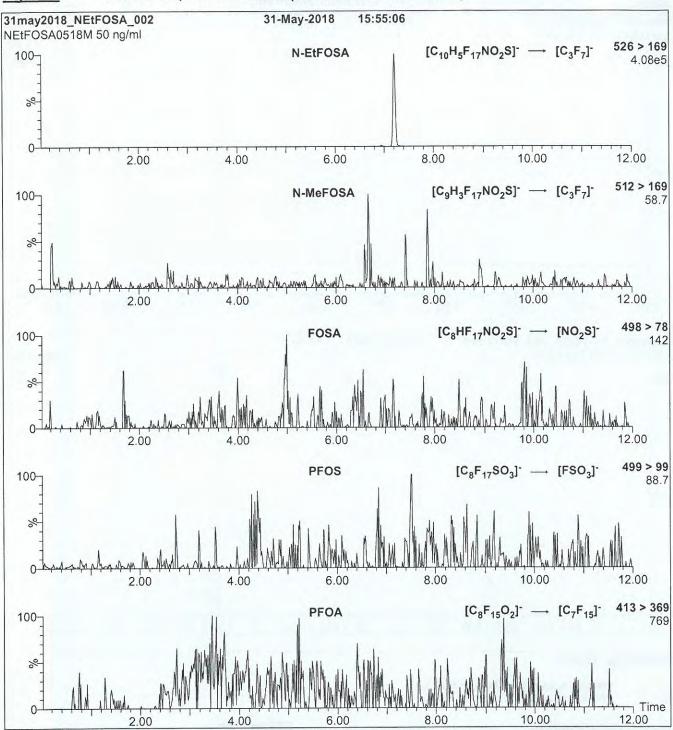
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

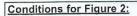

QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).









Injection: On-column (N-EtFOSA-M)

Mobile phase: Same as Figure 1

Flow: 300 µl/min

MS Parameters

Collision Gas (mbar) = 3.37e-3 Collision Energy (eV) = 24

PRODUCT CODE:

N-MeFOSE-M

LOT NUMBER:

NMeFOSE0418M

COMPOUND:

2-(N-methylperfluoro-1-octanesulfonamido)-ethanol

STRUCTURE:

CAS #:

24448-09-7

MOLECULAR FORMULA:

C,H,F,,NO,S

MOLECULAR WEIGHT:

SOLVENT(S):

557.22 Methanol

CONCENTRATION: CHEMICAL PURITY: $50 \pm 2.5 \, \mu g/ml$

>98%

LAST TESTED: (mm/dd/yyyy)

05/17/2018 (HRGC/LRMS)

05/03/2018 (LC/MS)

EXPIRY DATE: (mm/dd/yyyy)

05/17/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)

Figure 2: LC/MS Data (TIC and Mass Spectrum)

Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 05/25/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_i, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

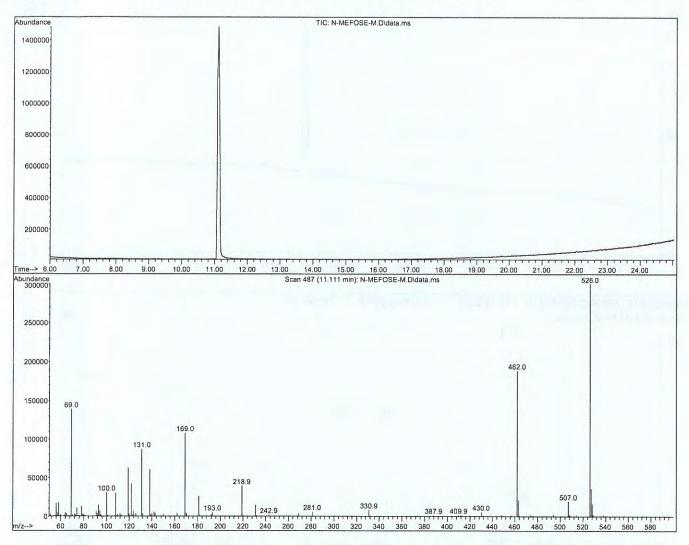
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.


QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

Figure 1: N-MeFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)

HRGC/LRMS:

Agilent 7890A (HRGC) Agilent 5975C (LRMS)

Chromatographic Conditions:

Column: 30 m DE

30 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W

Injector:

250 °C (Splitless Injection)

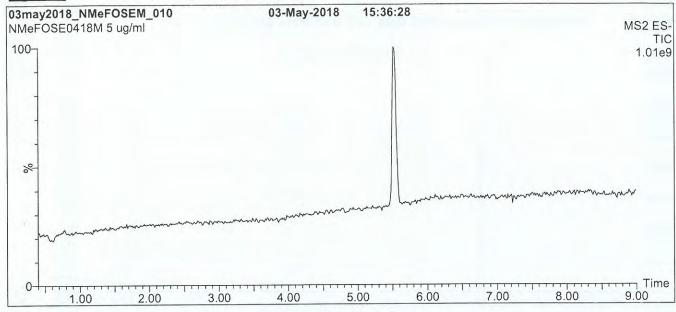
Oven:

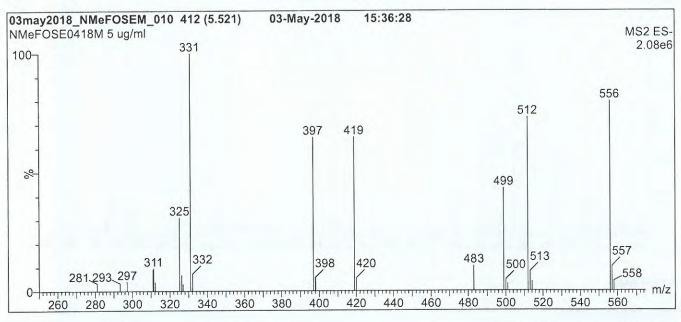
100 °C (5 min)

10 °C/min to 325 °C

325 °C (20 min)

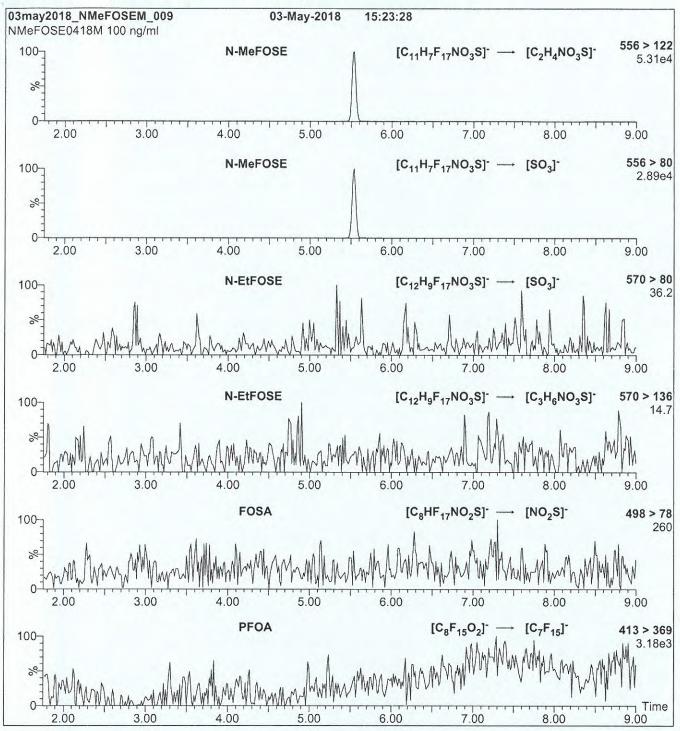
Ionization:

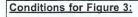

EI+


Detector:

250 °C

Full Scan (50-1000 amu)





LC: MS:	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
Chromatogra	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ₁₈	
	1.7 µm, 2.1 x 100 mm	Experiment: Full Scan (250 - 850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 65% MeOH / 35% H ₂ O	Capillary Voltage (kV) = 2.00
	Ramp to 85% organic over 8 min and hold for	Cone Voltage (V) = 65.00
	2 min before returning to initial conditions in 0.75 min.	Desolvation Temperature (°C) = 450
	Time: 12 min	Desolvation Gas Flow (I/hr) = 750
Flow:	300 µl/min	

Figure 3: N-MeFOSE-M; LC/MS/MS Data (Selected MRM Transitions)

Injection:

On-column (N-MeFOSE-M)

MS Parameters

Woolio pi

Mobile phase: Same as Figure 2

Collision Gas (mbar) = 3.47e-3 Collision Energy (eV) = 36

Flow:

300 µl/min

PRODUCT CODE:

N-EtFOSE-M

LOT NUMBER:

MOLECULAR WEIGHT:

SOLVENT(S):

NEtFOSE0518M

571.25

Methanol

COMPOUND:

2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol

STRUCTURE:

CAS #:

1691-99-2

MOLECULAR FORMULA:

C,2H,0F,17NO3S

CONCENTRATION:

 $50 \pm 2.5 \, \mu g/ml$

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

06/04/2018 (HRGC/LRMS)

05/30/2018 (LC/MS)

EXPIRY DATE: (mm/dd/yyyy)

06/04/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)

Figure 2: LC/MS Data (TIC and Mass Spectrum)

Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 06/04/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

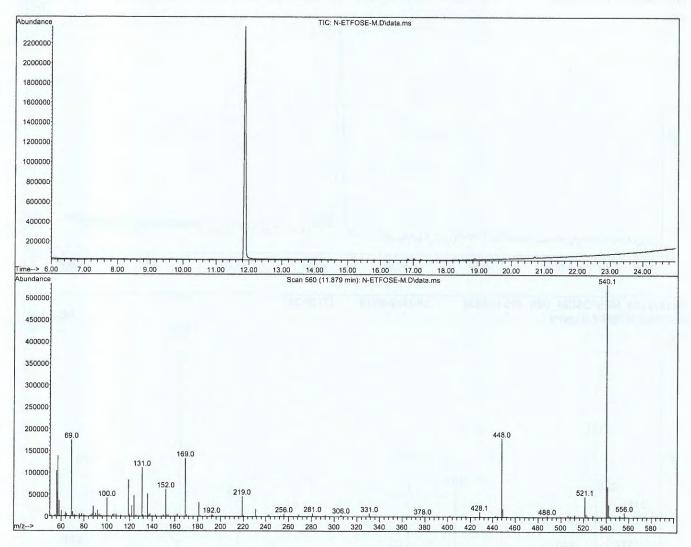
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.


QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

Figure 1: N-EtFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)

HRGC/LRMS:

Agilent 7890A (HRGC) Agilent 5975C (LRMS)

Chromatographic Conditions:

Column:

30 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W

Injector:

250 °C (Splitless Injection)

Oven:

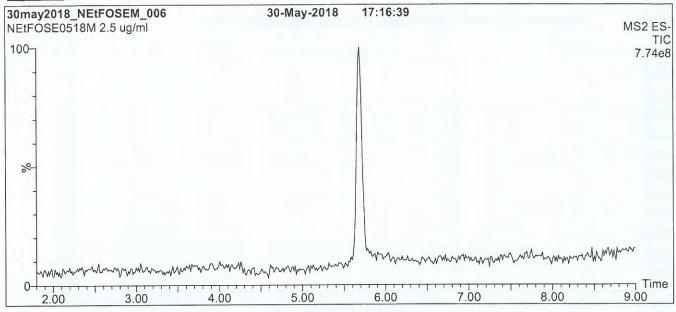
100 °C (5 min)

Oven.

10 °C/min to 325 °C

325 °C (20 min)

Ionization:


EI+

Detector:

250 °C

Full Scan (50-1000 amu)

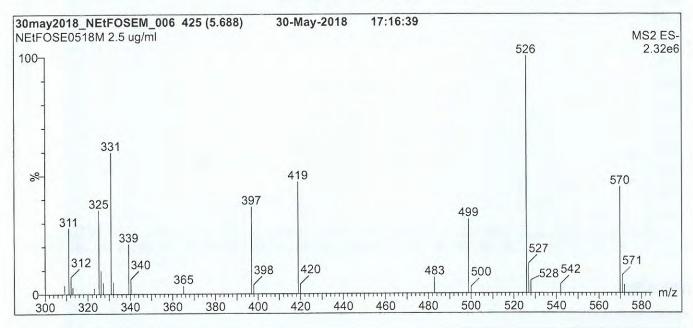
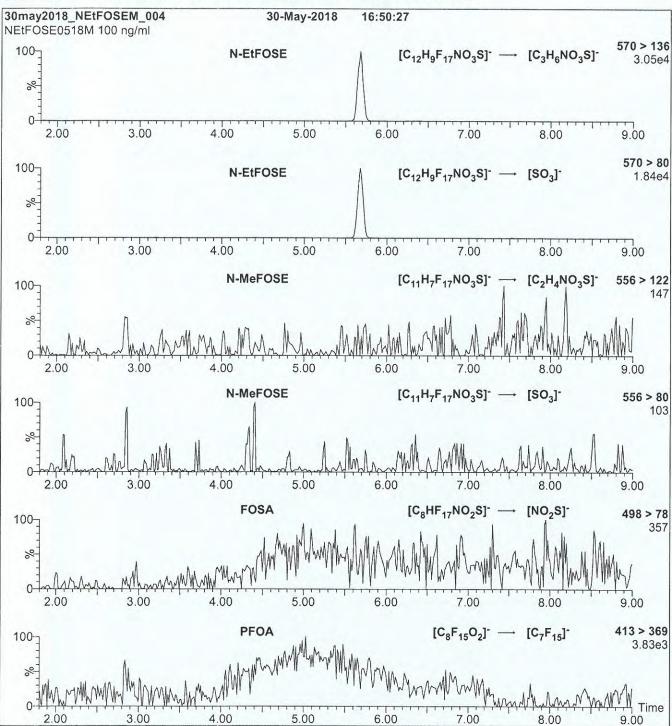
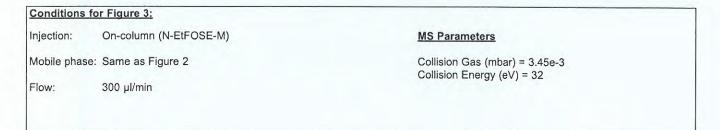




Figure 3: N-EtFOSE-M; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:

10:2FTS

LOT NUMBER:

102FTS0718

COMPOUND:

Sodium 1H,1H,2H,2H-perfluorododecane sulfonate

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

C₁₂H₄F₂₁SO₃Na

MOLECULAR WEIGHT:

650.18

CONCENTRATION:

 $50.0 \pm 2.5 \,\mu g/ml$ (Na salt)

 $48.2 \pm 2.4 \,\mu \text{g/ml}$ (10:2FTS anion)

SOLVENT(S):

Methanol

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

07/13/2018

EXPIRY DATE: (mm/dd/yyyy)

07/13/2021

RECOMMENDED STORAGE:

Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 07/16/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_x(y)$, of a value y and the uncertainty of the independent parameters

$$x_i, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

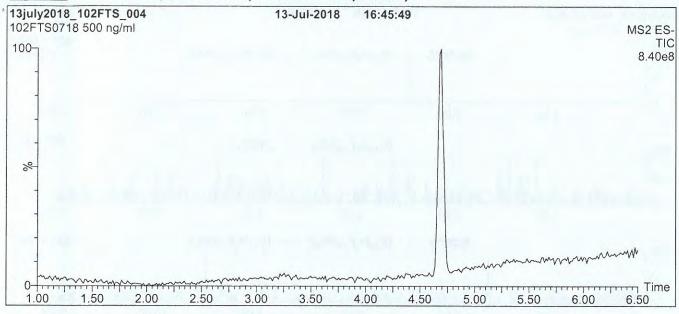
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

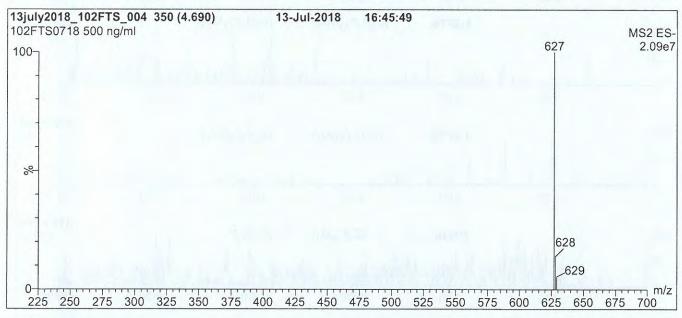
EXPIRY DATE / PERIOD OF VALIDITY:

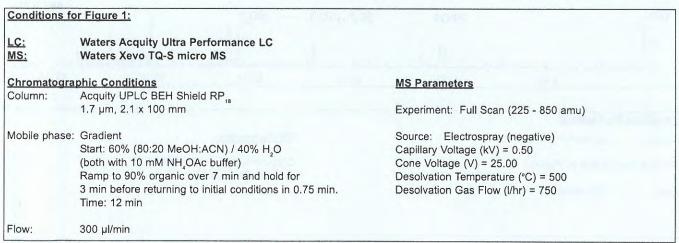
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

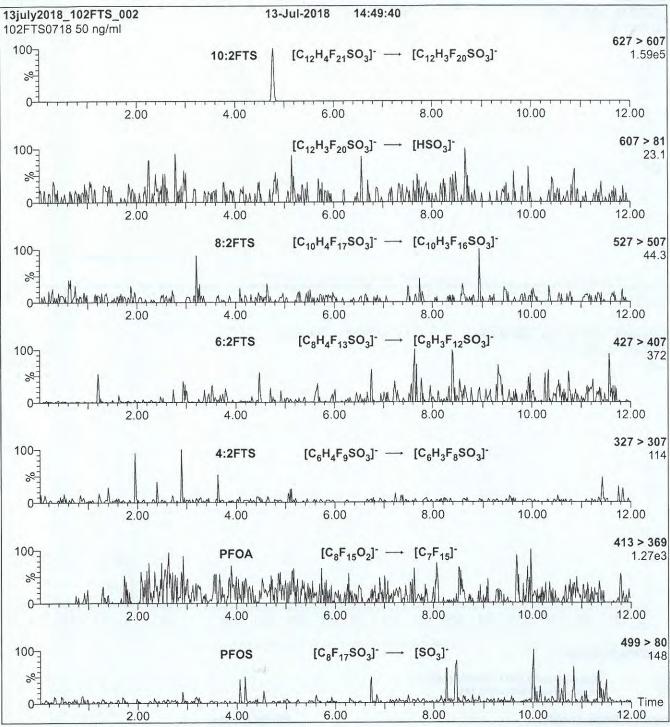
LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.


QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).





Injection:

On-column (10:2FTS)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.47e-3 Collision Energy (eV) = 25

Form#:27, Issued 2004-11-10 Revision#:5, Revised 2018-01-22

PRODUCT CODE:

HFPO-DA

LOT NUMBER:

HFPODA1018

COMPOUND:

2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoic acid

STRUCTURE:

CAS #:

13252-13-6

MOLECULAR FORMULA:

C.HF.O.

MOLECULAR WEIGHT:

330.05

CONCENTRATION:

 $50 \pm 2.5 \, \mu g/ml$

SOLVENT(S):

Methanol

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

10/24/2018

EXPIRY DATE: (mm/dd/yyyy)

10/24/2021

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Product is commercially known as GenX.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 10/29/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ... x_n$$
 on which it depends is:
$$u_c \left(y(x_1, x_2, ... x_n) \right) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

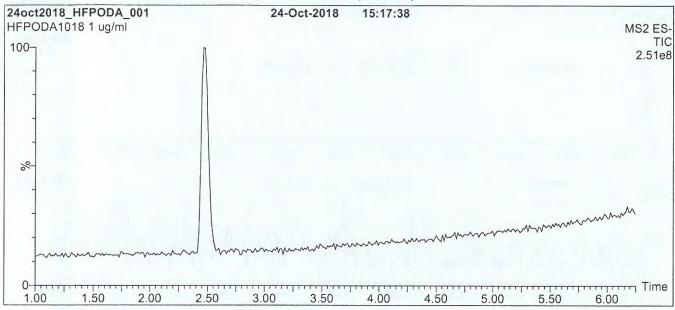
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

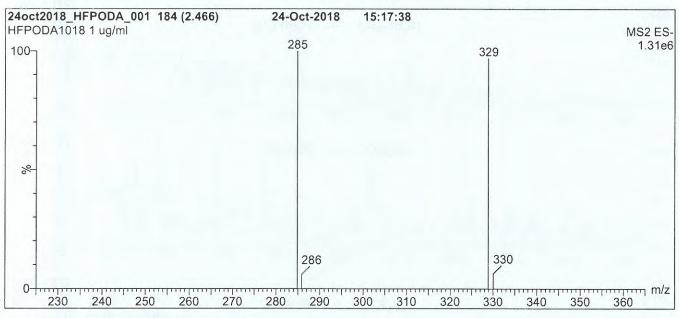
LIMITED WARRANTY:

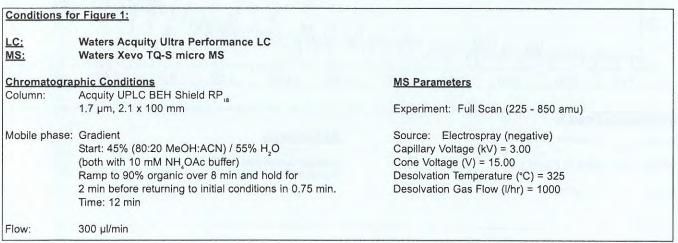
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

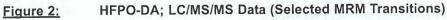
QUALITY MANAGEMENT:

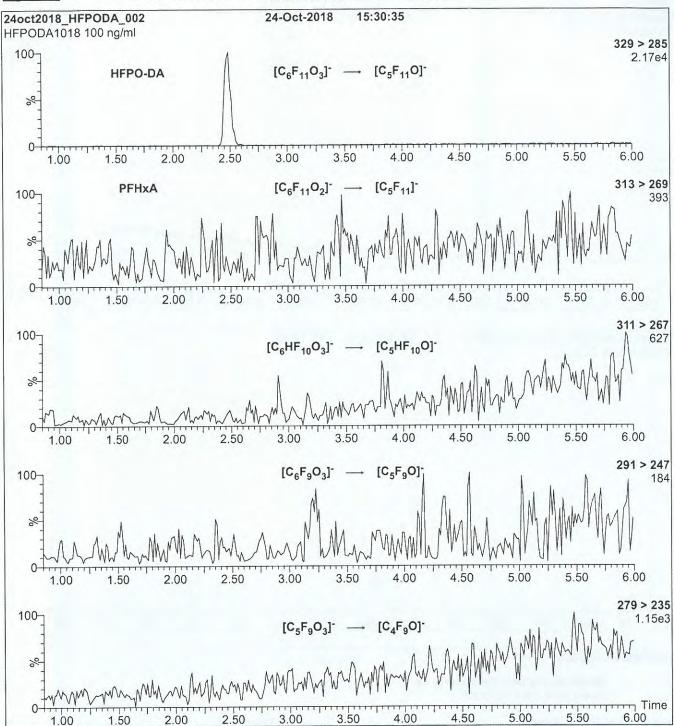
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


A C C R E D I T E D


ISOTOM


REFERENCE MATERIAL


PRODUCER



Injection:

On-column (HFPO-DA)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.02e-3 Collision Energy (eV) = 6

PRODUCT CODE:

11CI-PF3OUdS

LOT NUMBER:

11CIPF3OUdS1118

COMPOUND:

Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate

STRUCTURE:

CAS #:

83329-89-9

MOLECULAR FORMULA:

C₁₀F₂₀CISO₄K

MOLECULAR WEIGHT:

670.69

CONCENTRATION:

 $50.0 \pm 2.5 \,\mu g/ml$ (K Salt)

SOLVENT(S):

Methanol

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

11/23/2018

EXPIRY DATE: (mm/dd/yyyy)

11/23/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

47.1 ± 2.4 μg/ml (11CI-PF3OUdS anion)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

This compound is a minor component of the commercial formulation known as F-53B.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 11/28/2018

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Work Order 1902189 Revision 1

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

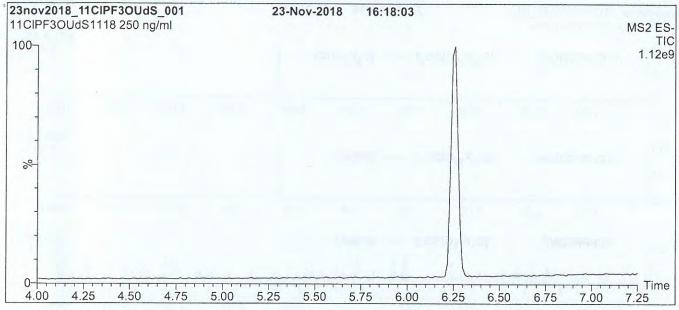
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

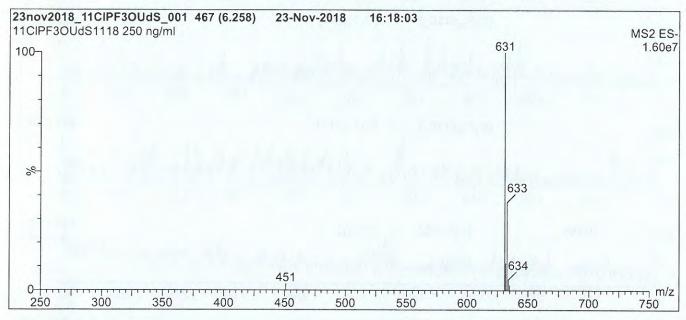
EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:


At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.


QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

ACCREDITED
SOLOSE
REFERENCE MATERIAL
PRODUCER

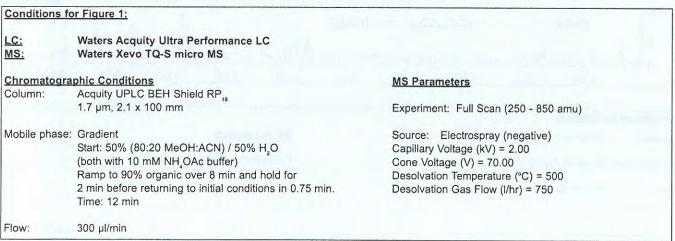
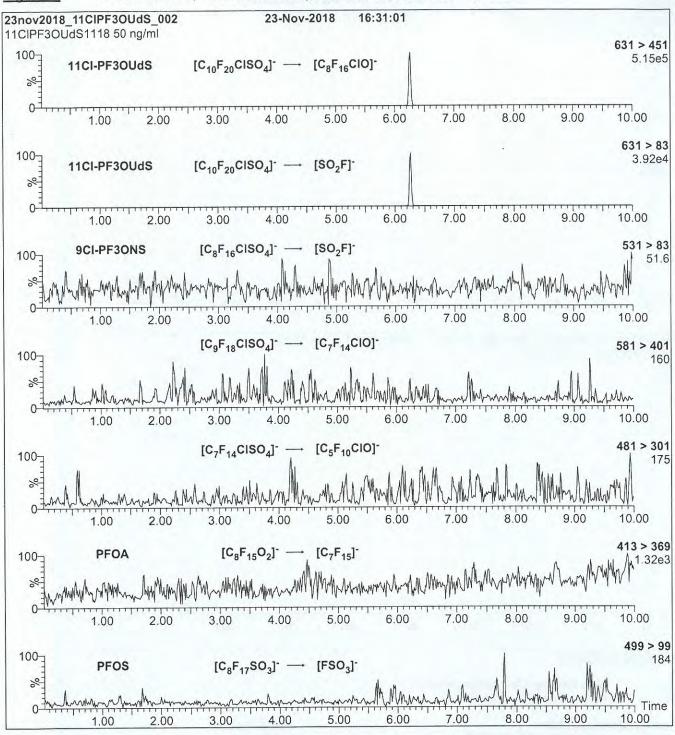
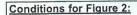




Figure 2: 11CI-PF3OUdS; LC/MS/MS Data (Selected MRM Transitions)

Injection:

On-column (11CI-PF3OUdS)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 2.84e-3 Collision Energy (eV) = 24

PRODUCT CODE:

9CI-PF3ONS

LOT NUMBER:

9CIPF3ONS1118

COMPOUND:

Potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate

STRUCTURE:

CAS #:

73606-19-6

MOLECULAR FORMULA:

C₈F₁₆CISO₄K

MOLECULAR WEIGHT:

570.67

CONCENTRATION:

50.0 ± 2.5 μg/ml (K Salt)

SOLVENT(S):

Methanol

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

11/22/2018

EXPIRY DATE: (mm/dd/yyyy)

11/22/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

 $46.6 \pm 2.3 \mu g/ml$ (9CI-PF3ONS anion)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

This compound is the major component of the commercial formulation known as F-53B.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 11/23/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

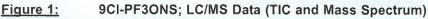
LIMITED WARRANTY:

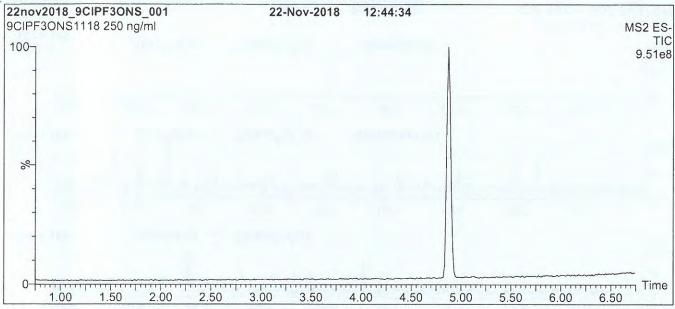
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

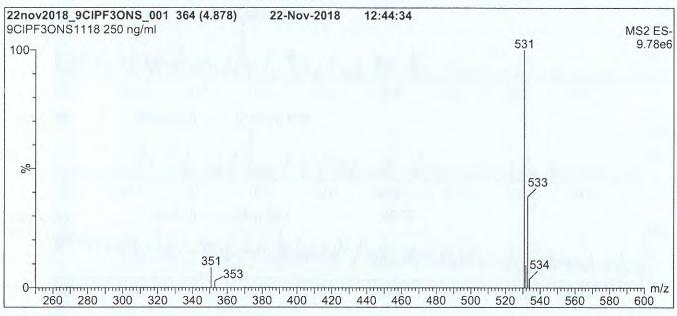
QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

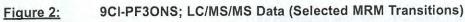
ACCREDITED

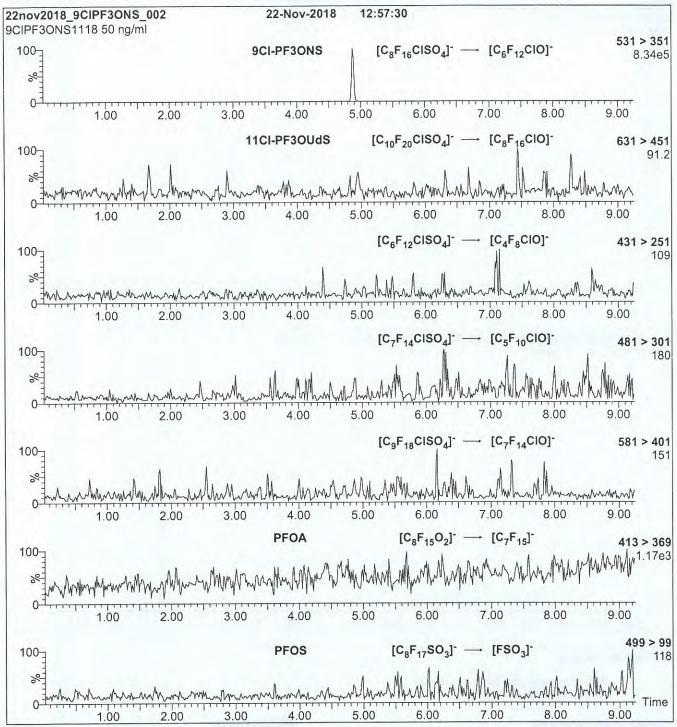

ISO17031

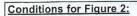

REFERENCE MATERIAL


PRODUCER

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com


9CIPF3ONS1118 (2 of 4) rev0



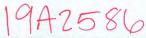


LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatogra	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP,	
	1.7 µm, 2.1 x 100 mm	Experiment: Full Scan (250 - 850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O	Capillary Voltage (kV) = 2.00
	(both with 10 mM NH OAc buffer)	Cone Voltage (V) = 70.00
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (°C) = 500
	2 min before returning to initial conditions in 0.75 min.	Desolvation Gas Flow (I/hr) = 750
	Time: 12 min	
Flow:	300 µl/min	

Form#:27, Issued 2004-11-10 Revision#:6, Revised 2018-08-14

Injection:

On-column (9CI-PF3ONS)


Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.16e-3 Collision Energy (eV) = 20

PRODUCT CODE:

NaDONA

LOT NUMBER:

MOLECULAR WEIGHT:

SOLVENT(S):

NaDONA0318

COMPOUND:

Sodium dodecafluoro-3H-4,8-dioxanonanoate

STRUCTURE:

CAS #:

958445-44-8

(ammonium salt)

400.05

Methanol

Water (<1%)

MOLECULAR FORMULA:

C,HF,,O,Na

CONCENTRATION:

 $50 \pm 2.5 \,\mu\text{g/ml}$ (Na Salt)

 $47.1 \pm 2.4 \mu g/ml$ (NaDONA anion)

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

03/26/2018

EXPIRY DATE: (mm/dd/yyyy)

03/26/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Product is commercially known as ADONA.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 12/14/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

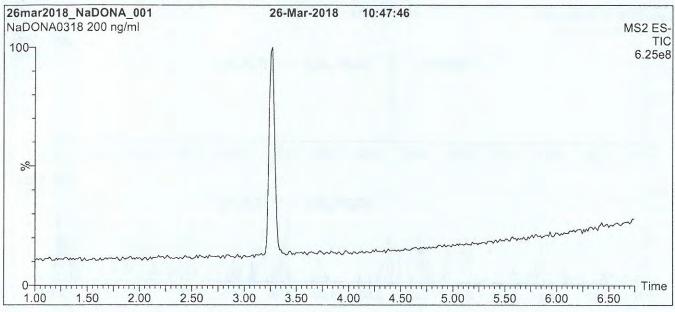
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

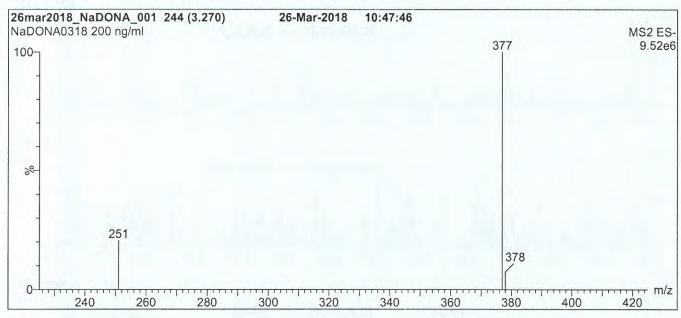
EXPIRY DATE / PERIOD OF VALIDITY:

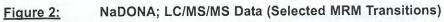
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

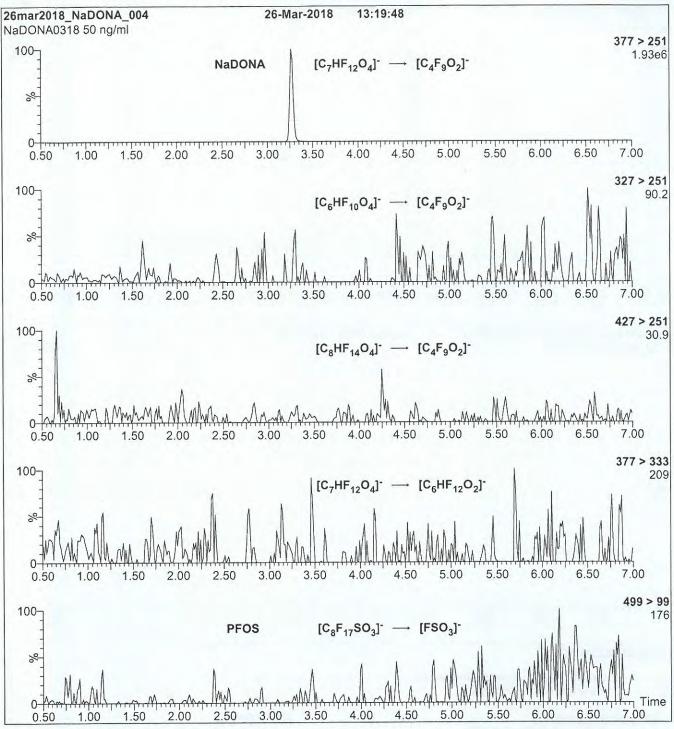
LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.


QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


ACCREDITED SOJOS REFERENCE MATERIAL PRODUCER



LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatogra	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP,	
	1.7 µm, 2.1 x 100 mm	Experiment: Full Scan (225 - 850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50% H,O	Capillary Voltage (kV) = 2.70
	(both with 10 mM NH ₂ OAc buffer)	Cone Voltage (V) = 20.00
	Ramp to 80% organic over 7 min and hold for	Desolvation Temperature (°C) = 500
	3 min before returning to initial conditions in 0.75 min.	Desolvation Gas Flow (I/hr) = 750
	Time: 12 min	and the second s
Flow:	300 µl/min	

Injection:

On-column (NaDONA)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.65e-3 Collision Energy (eV) = 10

PRODUCT CODE:

PFECHS

LOT NUMBER:

PFECHS0418

COMPOUND:

Potassium perfluoro-4-ethylcyclohexanesulfonate (isomeric mixture)

STRUCTURE:

CAS #: +K-03S

67584-42-3

SO3 K+

cis-isomer

trans-isomer

F₃CF₂C

MOLECULAR FORMULA:

C,F,SO,K

MOLECULAR WEIGHT:

500.22

CONCENTRATION:

 $50.0 \pm 2.5 \,\mu g/ml$ (K salt)

SOLVENT(S):

Methanol

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

04/04/2018

EXPIRY DATE: (mm/dd/yyyy)

04/04/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

46.1 ± 2.3 µg/ml (PFECHS anion)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains a mixture of the cis/trans isomers of PFECHS at a ratio of 2:3 (cis:trans).

Contains ~ 1.5% of other isomeric impurities.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 04/09/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{\varepsilon}(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

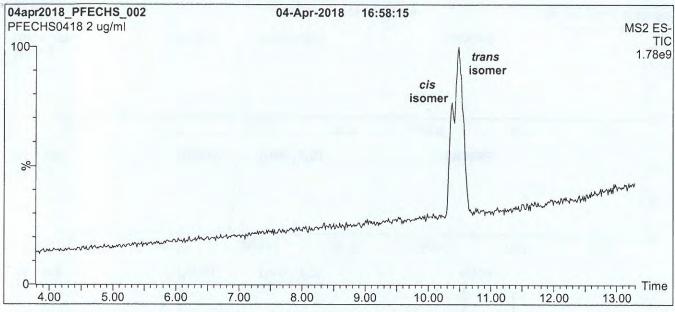
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

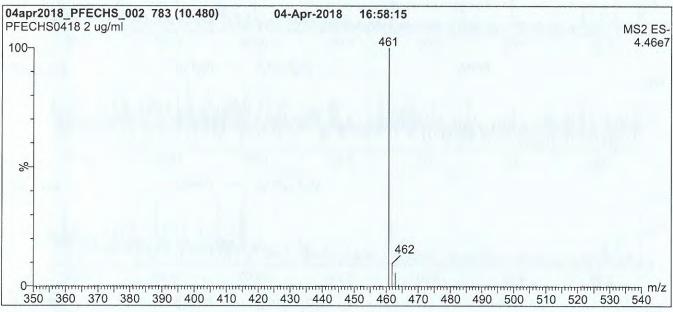
EXPIRY DATE / PERIOD OF VALIDITY:

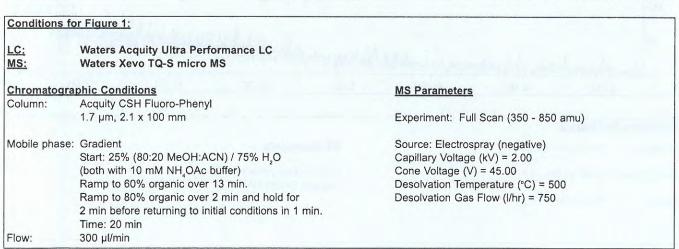
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

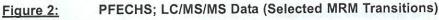
LIMITED WARRANTY:

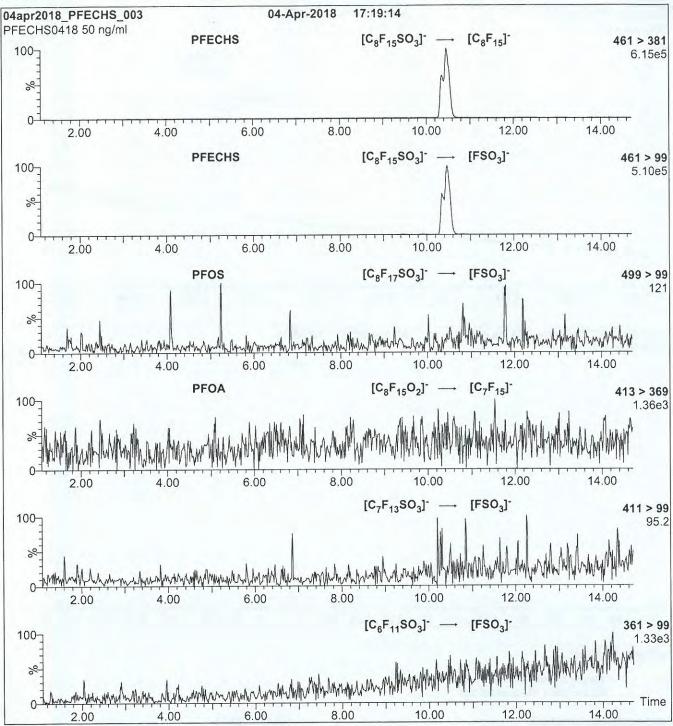
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

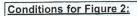

QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).









Injection: On-

On-column (PFECHS)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.37e-3 Collision Energy (eV) = 24

Form#:27, Issued 2004-11-10 Revision#:5, Revised 2018-01-22

PRODUCT CODE:

L-PFPrS

LOT NUMBER:

LPFPrS1217

COMPOUND:

Sodium perfluoro-1-propanesulfonate

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

C,F,SO,Na

MOLECULAR WEIGHT: SOLVENT(S):

272.07 Methanol

CONCENTRATION:

 $50.0 \pm 2.5 \,\mu g/ml$ (Na salt)

 $45.8 \pm 2.3 \,\mu\text{g/ml}$ (PFPrS anion)

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

12/14/2017

EXPIRY DATE: (mm/dd/yyyy)

12/14/2022

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 12/18/2017

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_i, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

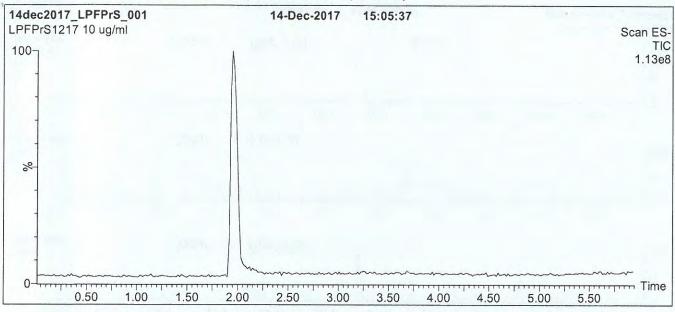
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

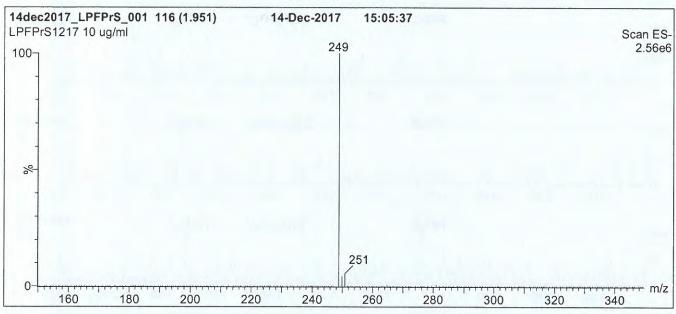
EXPIRY DATE / PERIOD OF VALIDITY:

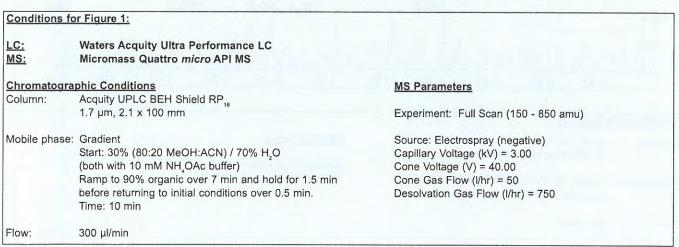
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

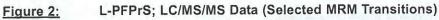
LIMITED WARRANTY:

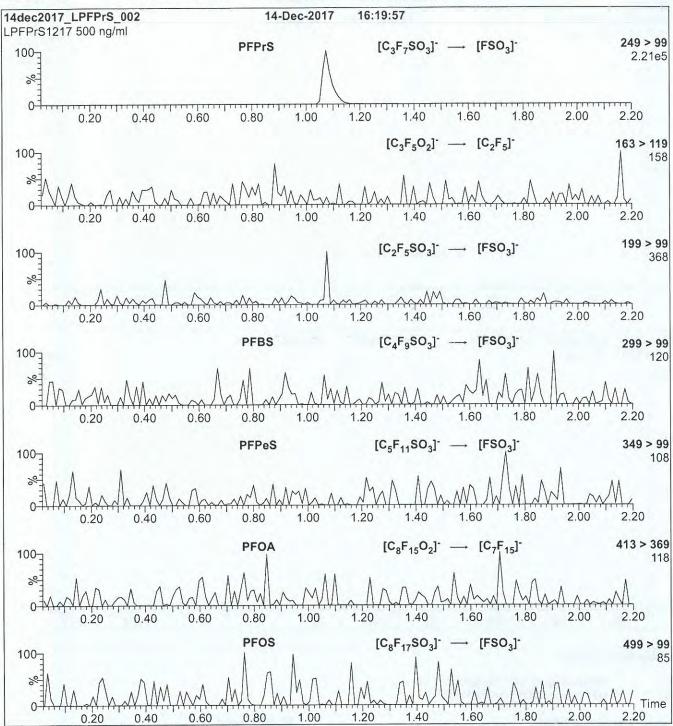
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.


QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).







Injection:

Direct loop injection

10 μl (500 ng/ml L-PFPrS)

Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O

(both with 10 mM NH₄OAc buffer)

Flow: 300 µl/min

MS Parameters

Collision Gas (mbar) = 3.43e-3 Collision Energy (eV) = 25

PRODUCT CODE:

L-PFDoS

LOT NUMBER:

MOLECULAR WEIGHT:

SOLVENT(S):

LPFDoS1218

COMPOUND:

Sodium perfluoro-1-dodecanesulfonate

STRUCTURE:

CAS #:

1260224-54-1

722.14

Methanol

MOLECULAR FORMULA:

C,F,SO,Na

 $50.0 \pm 2.5 \,\mu g/ml$ (Na salt)

 $48.4 \pm 2.4 \mu g/ml$ (PFDoS anion)

CHEMICAL PURITY:

CONCENTRATION:

>98%

LAST TESTED: (mm/dd/yyyy)

12/06/2018 12/06/2023

EXPIRY DATE: (mm/dd/yyyy) **RECOMMENDED STORAGE:**

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains ~ 0.2% of perfluoro-n-dodecanoic acid (PFDoA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 12/20/2018

19E2401

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$x_{i}, \ x_{2},...x_{n}$$
 on which it depends is:
$$u_{c}(y(x_{1},x_{2},...x_{n})) = \sqrt{\sum_{i=1}^{n}u(y,x_{i})^{2}}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

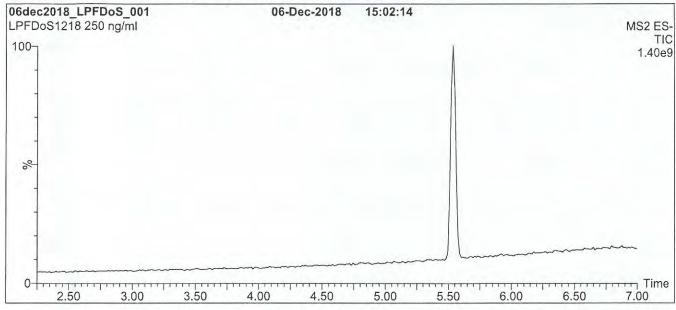
EXPIRY DATE / PERIOD OF VALIDITY:

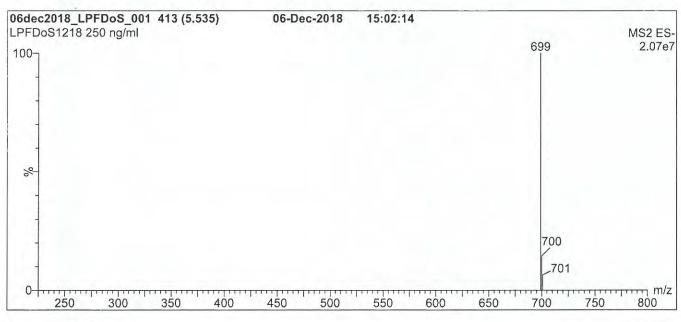
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

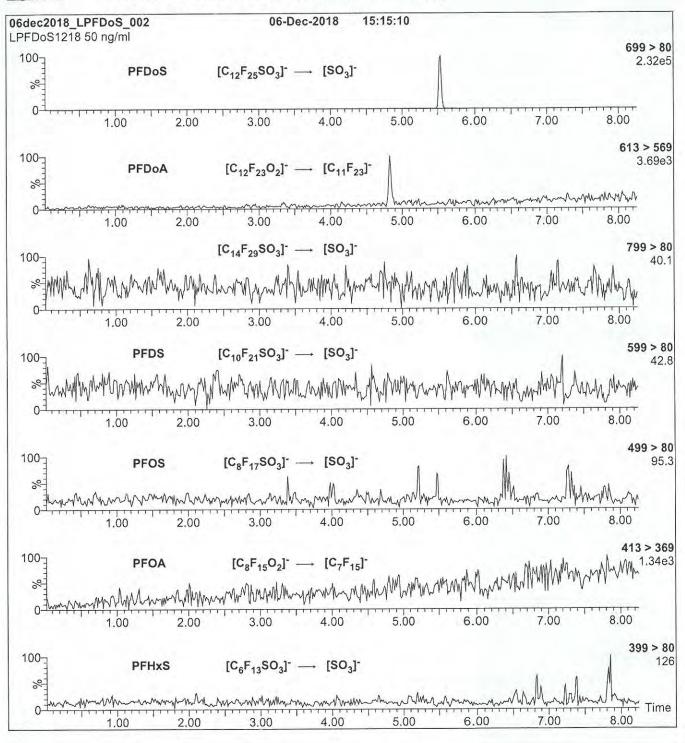
QUALITY MANAGEMENT:

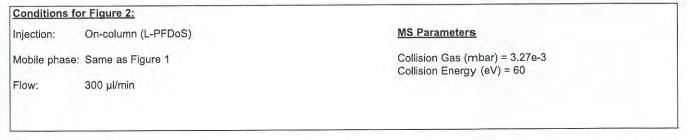

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).



ACCREDITED

REFERENCE MATERIAL
PRODUCER





Conditions 1	for Figure 1:	
LC:	Waters Acquity Ultra Performance LC	
LC: MS:	Waters Xevo TQ-S micro MS	
Chromatogr	raphic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP18	
	1.7 µm, 2.1 x 100 mm	Experiment: Full Scan (225 - 850 amu)
Mobile phase:	e: Gradient	Source: Electrospray (negative)
	Start: 60% (80:20 MeOH:ACN) / 40% H ₂ O	Capillary Voltage (kV) = 2.00
	(both with 10 mM NH, OAc buffer)	Cone Voltage (V) = 10.00
	Ramp to 90% organic over 7 min and hold for	Desolvation Temperature (°C) = 500
	3 min before returning to initial conditions in 0.75 min.	Desolvation Gas Flow (I/hr) = 1000
	Time: 12 min	And the standard Standard Standard
Flow:	300 µl/min	

19EZ401

Figure 2: L-PFDoS; LC/MS/MS Data (Selected MRM Transitions)

Analytical Standard Record

Vista Analytical Laboratory

19E2202

Standard	Description	Prepared	Prepared By	Expires	(mls)
18L2018	18O2-PFHxS	20-Dec-18	** Vendor **	22-Mar-23	1.06
18L2021	13C2-FOUEA	20-Dec-18	** Vendor **	14-Nov-19	1
18L2022	13C4-PFBA	20-Dec-18	** Vendor **	16-Feb-23	1
18L2023	13C6-PFDA	20-Dec-18	** Vendor **	20-Sep-23	1
18L2024	13C9-PFNA	20-Dec-18	** Vendor **	23-May-22	1
18L2025	13C7-PFUdA	20-Dec-18	** Vendor **	20-Sep-23	1
18L2026	13C5-PFHxA	20-Dec-18	** Vendor **	27-Sep-23	1
18L2028	13C4-PFOS	20-Dec-18	** Vendor **	11-Sep-23	1.05
18L2029	13C8-PFOA	20-Dec-18	** Vendor **	29-Jun-23	1.02

Description: PFC-RS Expires: 14-Nov-19 Standard Type: Reagent Prepared: 23-May-19 Solvent: MeOH Prepared By: Giana R. Bilotta Final Volume (mls): 40 Department: LCMS Vials: Last Edit: 28-May-19 09:02 by GRB 1

Expiration date set to expiration date of standard being used to create this one.	GRB 05/22/19		
18L2021 13C2-FOUEA EXP. 11/14/19	CAS Number	Concentration	Units
18O2-PFHxS		1.25	ug/mL
13C9-PFNA		1.25	ug/mL
13C8-PFOA		1.25	ug/mL
13C7-PFUnA		1.25	ug/mL
13C6-PFDA		1.25	ug/mL
13C5-PFHxA		1.25	ug/mL
13C4-PFOS		1.25	ug/mL
13C4-PFBA		1.25	ug/mL
13C2-FOUEA		1.25	ug/mL

PRODUCT CODE:

MPFHxS

LOT NUMBER:

MPFHxS0318

COMPOUND:

Sodium perfluoro-1-hexane[18O]sulfonate

CAS #:

1585941-14-5

STRUCTURE:

S18O216O-Na+

MOLECULAR FORMULA:

C₆F₁₃S¹⁸O₂¹⁶ONa

MOLECULAR WEIGHT:

426.10

CONCENTRATION:

 $50.0 \pm 2.5 \,\mu\text{g/ml}$ (Na salt)

SOLVENT(S):

Methanol

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

03/22/2018

EXPIRY DATE: (mm/dd/yyyy)

03/22/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

 $47.3 \pm 2.4 \,\mu\text{g/ml}$ (MPFHxS anion)

ISOTOPIC PURITY:

>94% (18O2)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

The response factor for MPFHxS (C₆F₁₃S¹⁸O₂¹⁶O⁻) has been observed to be up to 10% lower than for PFHxS (C₈F₁₃S¹⁶O₃-) when both compounds are injected together. This difference may vary between instruments.

Contains ~ 1.0% of sodium perfluoro-1-octane[180,]sulfonate (180,-PFOS) and ~ 0.3% of sodium perfluoro-1-heptane[18O₂]sulfonate (18O₂-PFHpS).

Due to the isotopic purity of the starting material ($^{18}O_2 > 94\%$), MPFHxS contains ~ 0.3% of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 06/07/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, u_c(y), of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ..., x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ..., x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

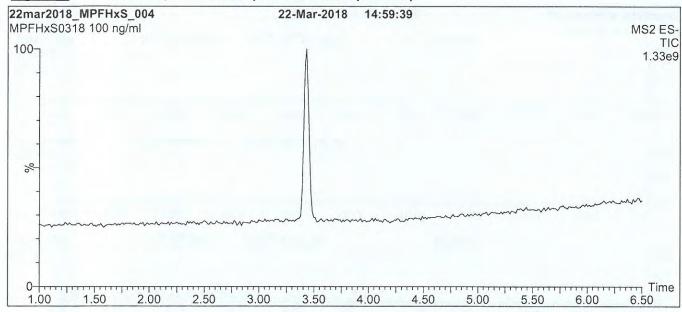
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

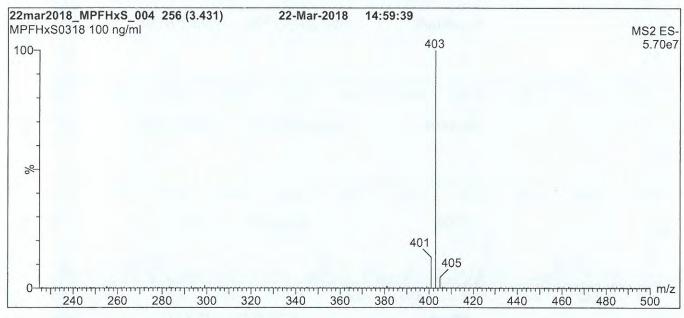
LIMITED WARRANTY:

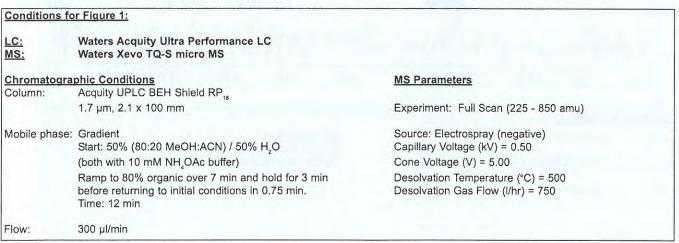
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

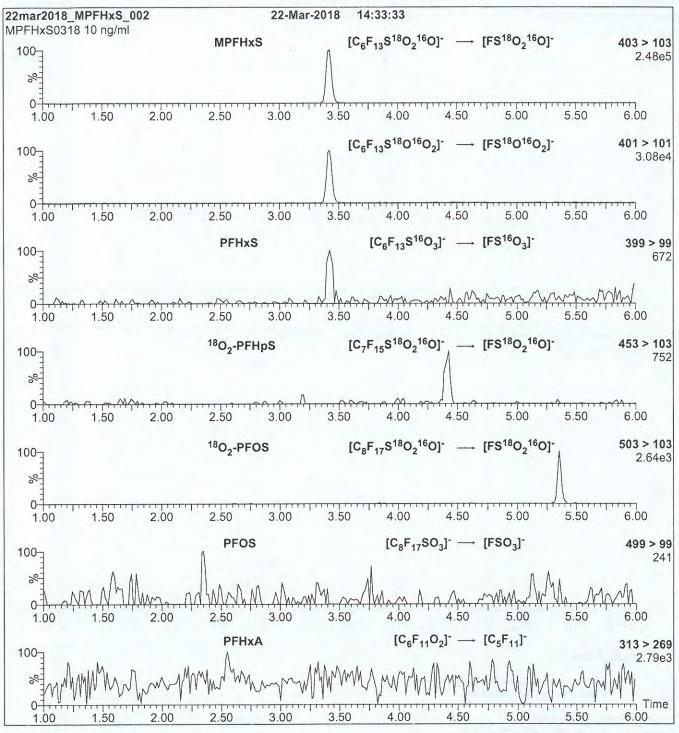
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

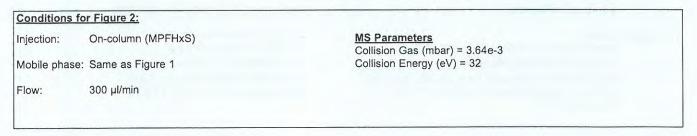





For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Form#:27, Issued 2004-11-10 Revision#:5, Revised 2018-01-22





PRODUCT CODE:

MFOUEA

LOT NUMBER:

MFOUEA1117

COMPOUND:

2H-Perfluoro-[1,2-13C,]-2-decenoic acid

CAS #:

Not available

STRUCTURE:

MOLECULAR FORMULA:

13C, 12C, H, F, O,

CONCENTRATION:

 $50 \pm 2.5 \, \mu g/ml$

>98%

CHEMICAL PURITY: LAST TESTED: (mm/dd/yyyy)

11/14/2017

EXPIRY DATE: (mm/dd/yyyy)

11/14/2019

RECOMMENDED STORAGE:

Refrigerate ampoule

MOLECULAR WEIGHT:

SOLVENT(S):

460.08

Anhydrous

Isopropanol

ISOTOPIC PURITY:

≥99% 13C

(1,2-13C₂)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2-13C,]-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 11/15/2017

1812021

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, u_c(y), of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ...x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

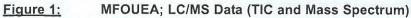
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

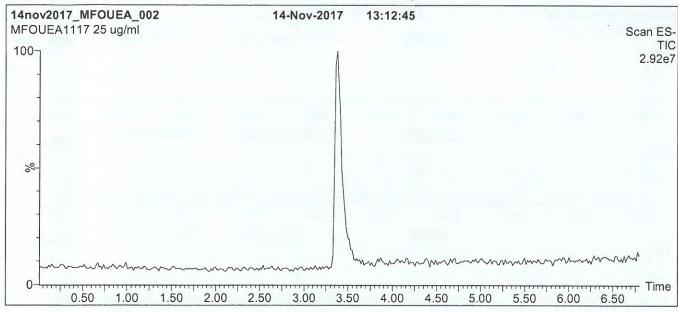
EXPIRY DATE / PERIOD OF VALIDITY:

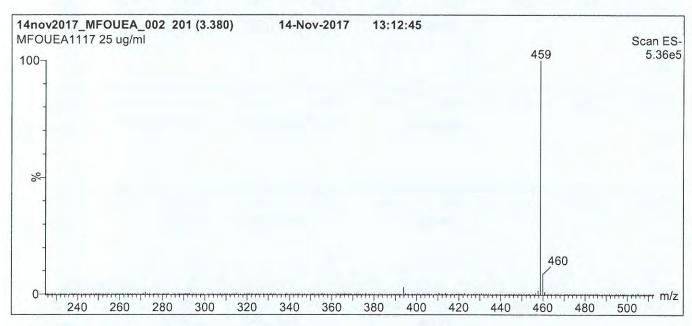
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

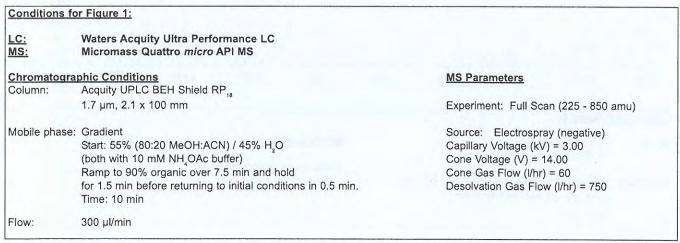
LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

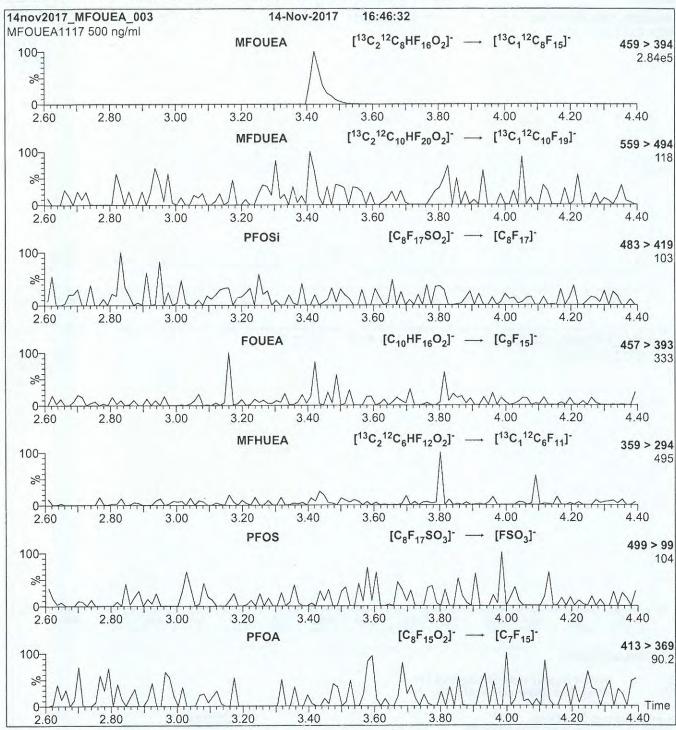

QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).





For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com



Injection:

Direct loop injection

10 µl (500 ng/ml MFOUEA)

Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O

(both with 10 mM NH,OAc buffer)

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 21

Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06

PRODUCT CODE:

MPFBA

COMPOUND:

Perfluoro-n-[1,2,3,4-13C] butanoic acid

STRUCTURE:

CAS #:

LOT NUMBER:

Not available

MPFBA0218

MOLECULAR FORMULA:

13C, HF, O,

CONCENTRATION:

50 ± 2.5 µg/ml

MOLECULAR WEIGHT:

218.01

SOLVENT(S):

Methanol

(1,2,3,4-13C₄)

Water (<1%) ISOTOPIC PURITY:

>99%13C

CHEMICAL PURITY: LAST TESTED: (mm/dd/yyyy) >98% 02/16/2018

EXPIRY DATE: (mm/dd/yyyy)

02/16/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 02/22/2018

18L2022

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, u_(y), of a value y and the uncertainty of the independent parameters

$$x_1, x_2, \dots x_n$$
 on which it depends is:
$$u_c \left(y(x_1, x_2, \dots x_n) \right) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

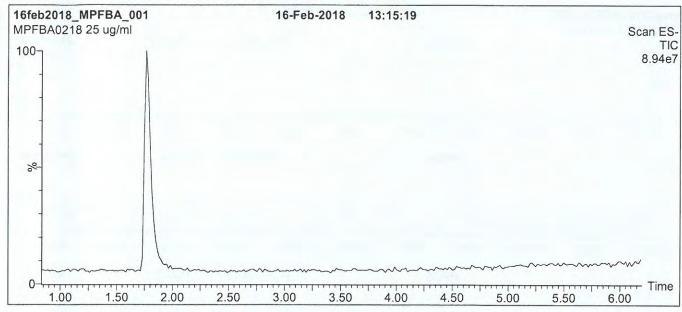
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

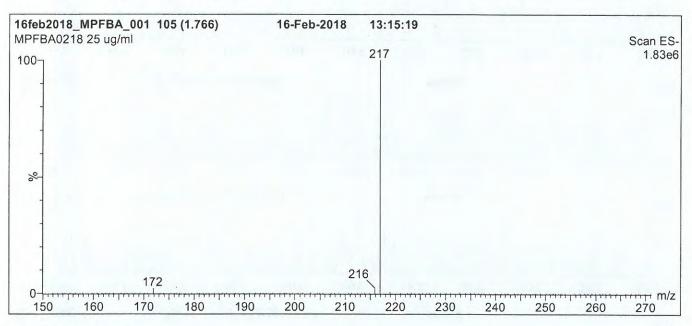
LIMITED WARRANTY:

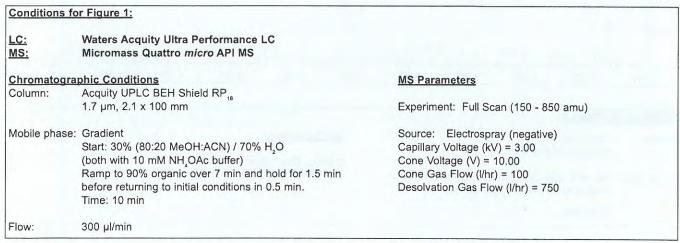
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

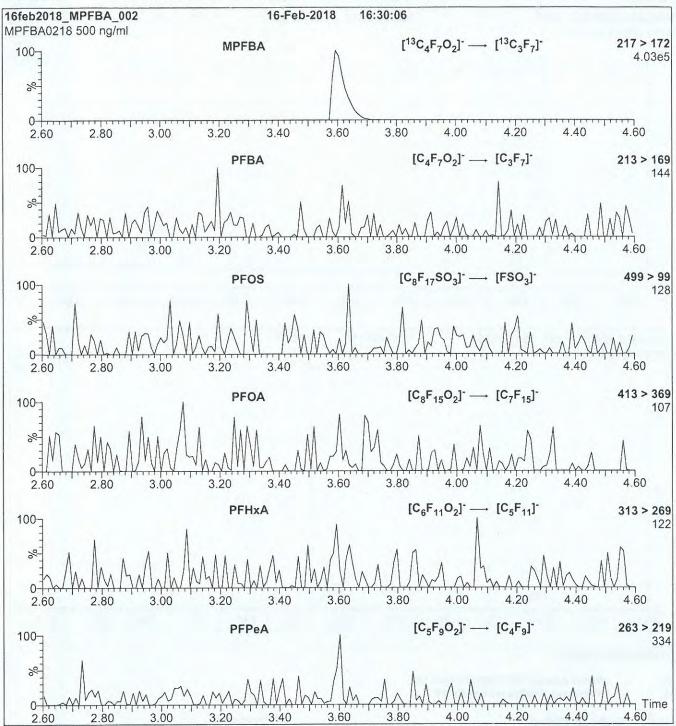
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).






For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Form#:27, Issued 2004-11-10 Revision#:5, Revised 2018-01-22



Injection: Direct loop injection

10 μl (500 ng/ml MPFBA)

Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O

(both with 10 mM NH OAc buffer)

Flow: 300 µl/min

MS Parameters

Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 10

PRODUCT CODE:

M6PFDA

LOT NUMBER:

M6PFDA0918

COMPOUND:

Perfluoro-n-[1,2,3,4,5,6-13C₈]decanoic acid

CAS #:

Not available

STRUCTURE:

MOLECULAR FORMULA:

¹³C₆ ¹²C₄HF₁₉O₂

CONCENTRATION:

 $50 \pm 2.5 \, \mu g/ml$

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

09/20/2018

EXPIRY DATE: (mm/dd/yyyy)

09/20/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

MOLECULAR WEIGHT:

ISOTOPIC PURITY:

SOLVENT(S):

520.04 Methanol

Water (<1%)

>99% 13C

 $(1,2,3,4,5,6^{-13}C_{6})$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{x}(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2,...x_n$$
 on which it depends is:

$$u_c(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

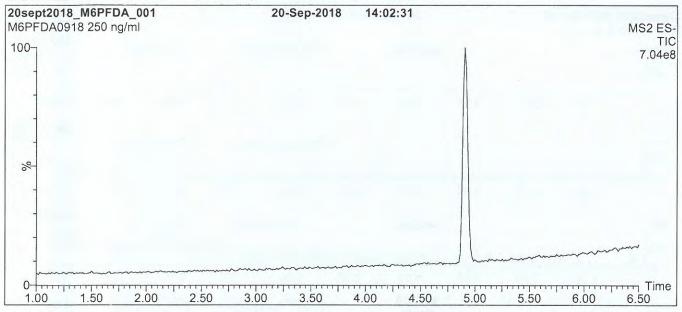
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

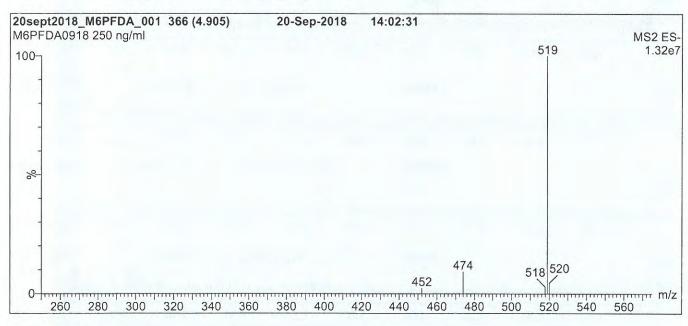
LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

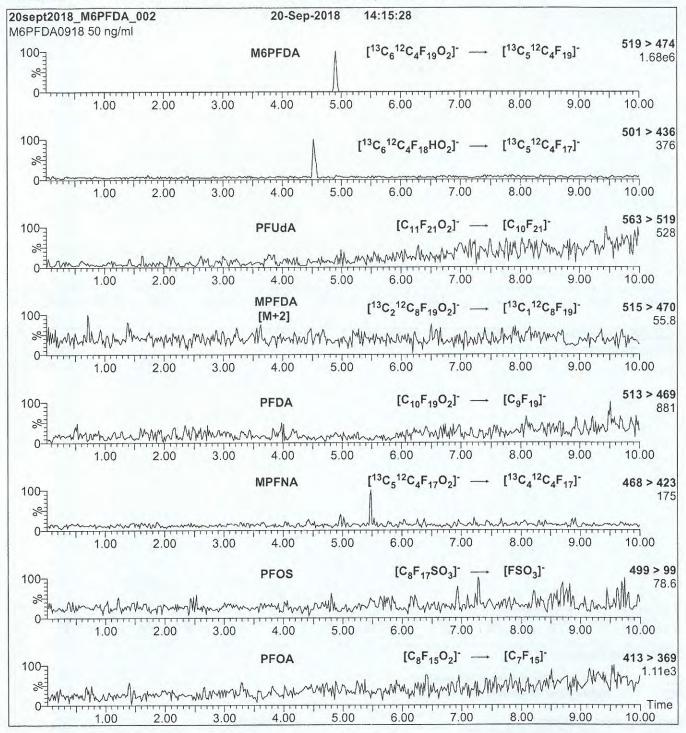
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

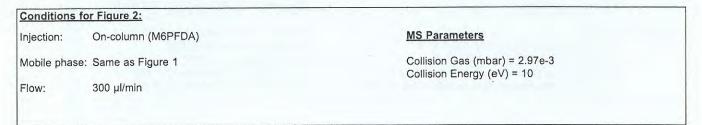




For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Form#:27, Issued 2004-11-10 Revision#:6, Revised 2018-08-14 8L2023





Conditions for	or Figure 1:	5.4
LC: MS:	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
Chromatogra	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP,	
	1.7 µm, 2.1 x 100 mm	Experiment: Full Scan (250 - 850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O	Capillary Voltage (kV) = 2.00
	(both with 10 mM NH ₂ OAc buffer)	Cone Voltage (V) = 10.00
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (°C) = 500
	2 min before returning to initial conditions in 0.75 min.	Desolvation Gas Flow (I/hr) = 1000
	Time: 12 min	
Flow:	300 µl/min	

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:

M9PFNA

COMPOUND:

Perfluoro-n-[13C]nonanoic acid

LOT NUMBER:

M9PFNA0517

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

13C, HF, O,

CONCENTRATION:

 $50 \pm 2.5 \,\mu g/ml$

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

05/23/2017

EXPIRY DATE: (mm/dd/yyyy)

05/23/2022

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

MOLECULAR WEIGHT:

SOLVENT(S):

473.01 Methanol

Water (<1%)

ISOTOPIC PURITY:

≥99% ¹³C

(13C_q)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

• Contains ~ 0.9% of ${}^{13}C_5{}^{12}C_4HF_{17}O_2$ (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date:

05/25/2017 (mm/dd/yyyy)

862024

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, u_c(y), of a value y and the uncertainty of the independent parameters

$$\mathbf{x_1}, \, \mathbf{x_2}, ... \mathbf{x_n}$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

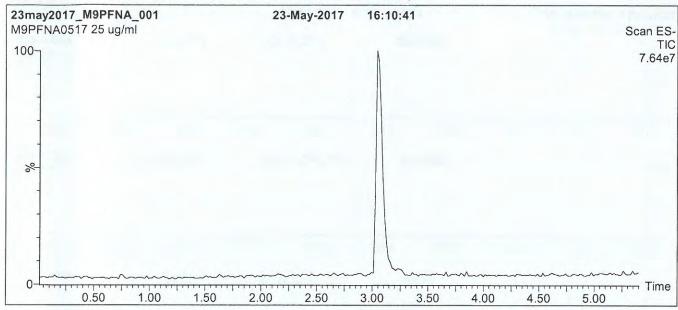
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

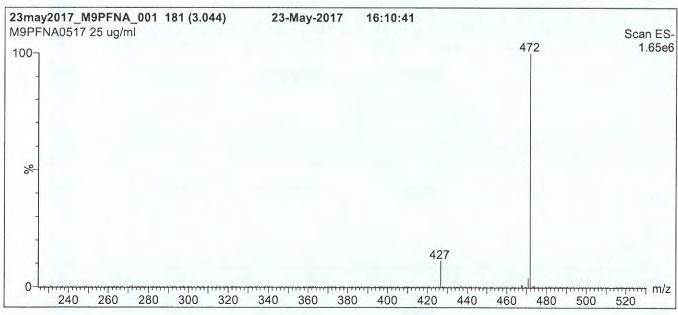
LIMITED WARRANTY:

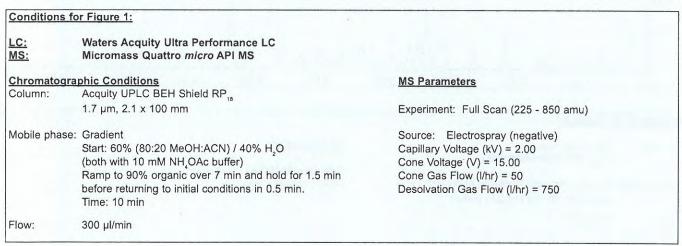
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

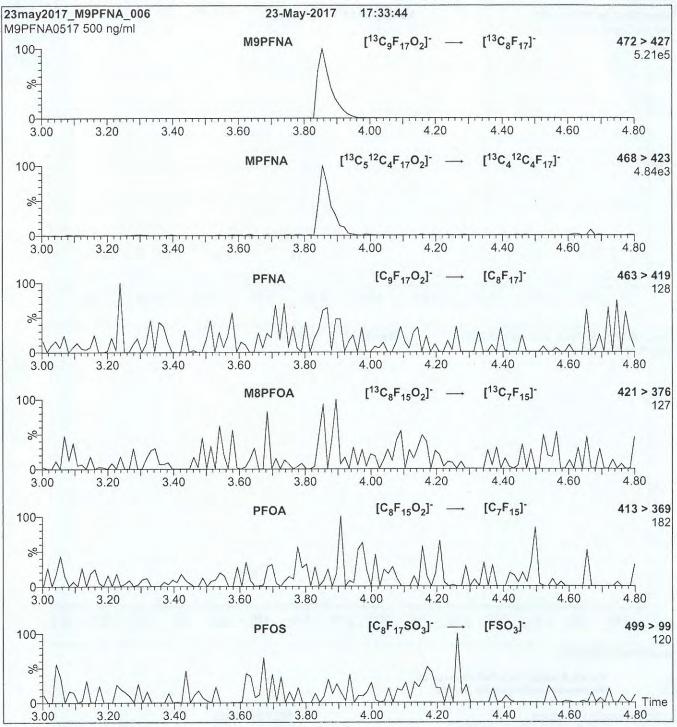
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).






For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 M9PFNA0517 (2 of 4) rev0



Injection:

Direct loop injection

10 μl (500 ng/ml M9PFNA)

Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O

(both with 10 mM NH,OAc buffer)

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.20e-3 Collision Energy (eV) = 11

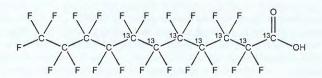
Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06

PRODUCT CODE:

M7PFUdA

LOT NUMBER:

M7PFUdA0918


COMPOUND:

STRUCTURE:

Perfluoro-n-[1,2,3,4,5,6,7-13C₇]undecanoic acid

CAS #:

Not available

MOLECULAR FORMULA:

13C, 12C, HF, O,

MOLECULAR WEIGHT:

571.04

CONCENTRATION:

 $50 \pm 2.5 \,\mu g/ml$

SOLVENT(S):

Methanol

CHEMICAL PURITY:

>98%

ISOTOPIC PURITY:

Water (<1%) ≥99% 13C

LAST TESTED: (mm/dd/yyyy)

09/20/2018

 $(1,2,3,4,5,6,7^{-13}C_7)$

EXPIRY DATE: (mm/dd/yyyy)

09/20/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 09/27/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ...x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ..., x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

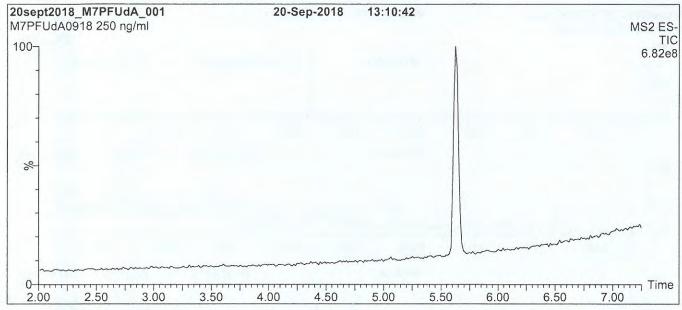
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

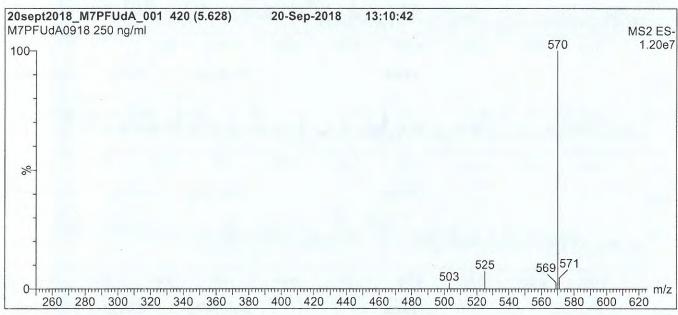
LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

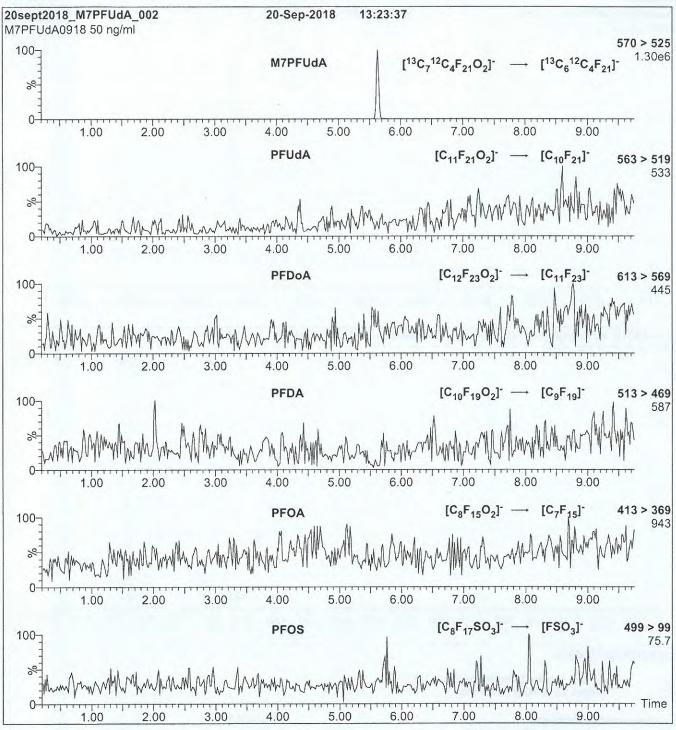
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

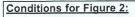




For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Form#:27, Issued 2004-11-10 Revision#:6, Revised 2018-08-14 18L2025





Conditions fo	r Figure 1:	
LC: MS:	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
Chromatogra	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ₁₈ 1.7 μm, 2.1 x 100 mm	Experiment: Full Scan (250 - 850 amu)
Mobile phase:	Gradient Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O (both with 10 mM NH ₄ OAc buffer) Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min. Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) = 2.00 Cone Voltage (V) = 10.00 Desolvation Temperature (°C) = 500 Desolvation Gas Flow (I/hr) = 1000
Flow:	300 µl/min	

Injection:

On-column (M7PFUdA)

MS Parameters

Mobile phase: Same as Figure 1

Collision Gas (mbar) = 2.97e-3 Collision Energy (eV) = 12

Flow:

Form#:27, Issued 2004-11-10 Revision#:6, Revised 2018-08-14

300 μl/min

PRODUCT CODE:

M5PFHxA

LOT NUMBER:

M5PFHxA0918

COMPOUND:

Perfluoro-n-[1,2,3,4,6-13C] hexanoic acid

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

¹³C₅¹²C₁HF₁₁O₂

CONCENTRATION:

MOLECULAR WEIGHT:

319.02

 $50 \pm 2.5 \, \mu g/ml$

SOLVENT(S):

Methanol

ISOTOPIC PURITY:

Water (<1%) >99% 13C

(1,2,3,4,6-13C₆)

CHEMICAL PURITY: LAST TESTED: (mm/dd/yyyy)

09/27/2018

>98%

EXPIRY DATE: (mm/dd/yyyy)

09/27/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 10/01/2018

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA

519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Form#:27, Issued 2004-11-10 Revision#:6. Revised 2018-08-14 M5PFHxA0918 (1 of 4)

1812026

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, u_x(y), of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ..., x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ..., x_n)) = \sqrt{\sum_{i=1}^n u(y_i, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

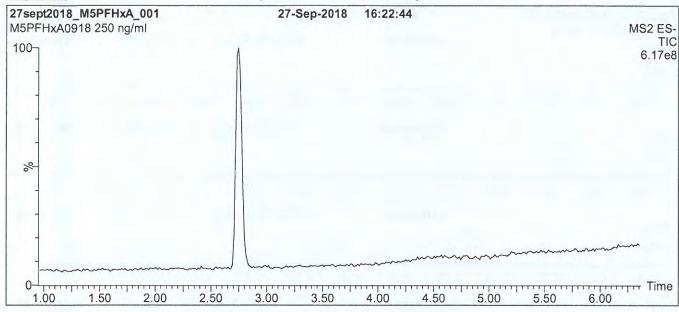
EXPIRY DATE / PERIOD OF VALIDITY:

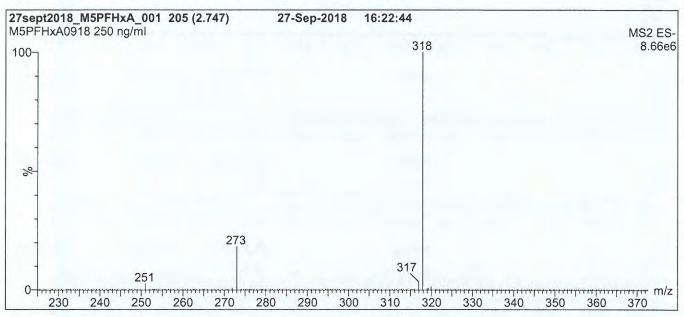
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

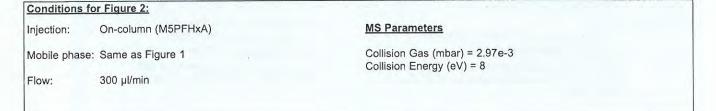
QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).



For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com





LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatogra	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ₁₈	
	1.7 µm, 2.1 x 100 mm	Experiment: Full Scan (225 - 850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
The second second	Start: 40% (80:20 MeOH:ACN) / 60% H ₂ O	Capillary Voltage (kV) = 2.00
	(both with 10 mM NH ₄ OAc buffer)	Cone Voltage (V) = 10.00
	Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min.	Desolvation Temperature (°C) = 500 Desolvation Gas Flow (l/hr) = 1000
	Time: 12 min	
Flow:	300 µl/min	

PRODUCT CODE:

MPFOS

LOT NUMBER:

MPFOS0918

COMPOUND:

Sodium perfluoro-1-[1,2,3,4-13C] octanesulfonate

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

13C, 12C, F, SO, Na

CONCENTRATION:

 $50.0 \pm 2.5 \,\mu g/ml$ (Na salt)

 $47.8 \pm 2.4 \,\mu\text{g/ml}$ (MPFOS anion)

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

09/11/2018

EXPIRY DATE: (mm/dd/yyyy)

09/11/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

MOLECULAR WEIGHT:

SOLVENT(S):

526.08 Methanol

ISOTOPIC PURITY:

>99% 13C

 $(1,2,3,4^{-13}C_4)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains ~ 0.3% Sodium perfluoro-1-[1,2,3-13C]heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 09/14/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, u_c(y), of a value y and the uncertainty of the independent parameters

$$x_i, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

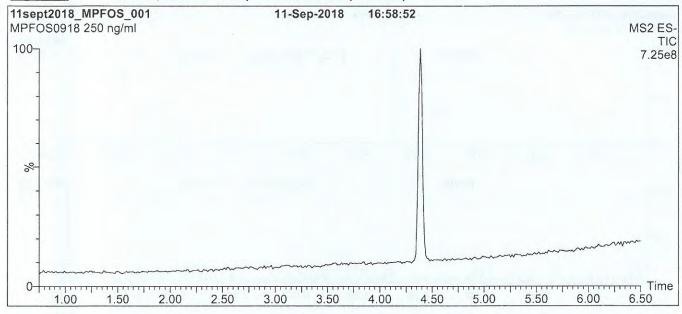
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

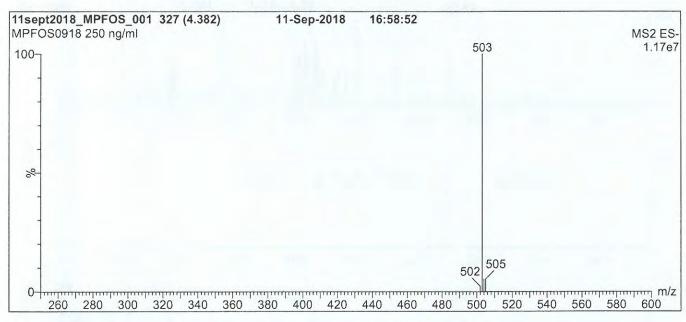
LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).




ACCREDITED
BOTTOS
REFERENCE MATERIAL
PRODUCER

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Form#:27, Issued 2004-11-10 Revision#:6, Revised 2018-08-14

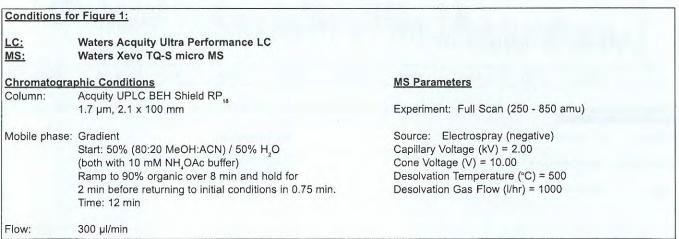
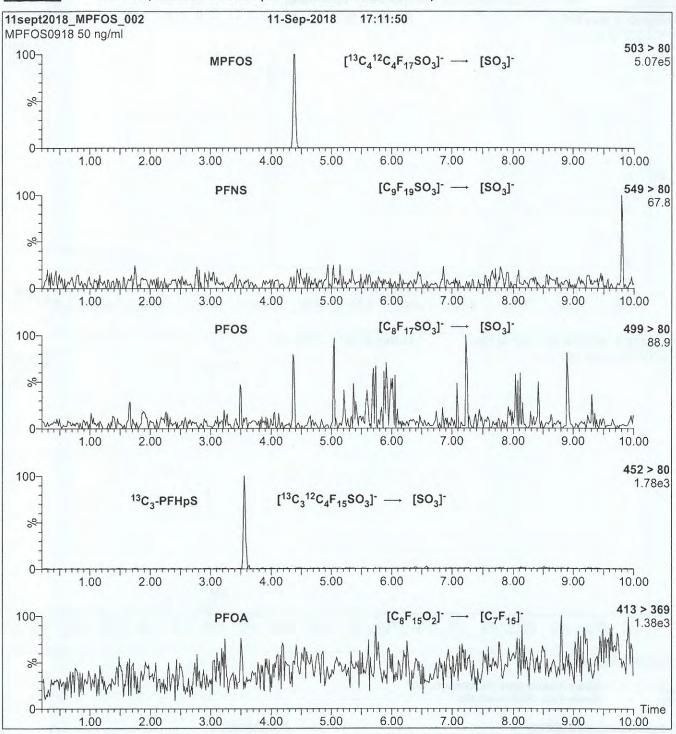
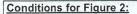




Figure 2: MPFOS; LC/MS/MS Data (Selected MRM Transitions)

Injection:

On-column (MPFOS)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 2.99e-3 Collision Energy (eV) = 42

PRODUCT CODE:

M8PFOA

COMPOUND:

Perfluoro-n-[13Cg]octanoic acid

LOT NUMBER:

M8PFOA0618

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

13C8HF15O2

CONCENTRATION:

49 ± 2.45 µg/ml

CHEMICAL PURITY:

97.9% (M8PFOA)

2.1% (MPFOA [M+4])

LAST TESTED: (mm/dd/yyyy)

06/29/2018

EXPIRY DATE: (mm/dd/yyyy)

06/29/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

MOLECULAR WEIGHT:

SOLVENT(S):

422.01

Methanol

Water (<1%)

ISOTOPIC PURITY:

≥99% ¹³C

(13Cg)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

Contains < 0.1% of native perfluoro-n-octanoic acid (PFOA) and ~ 1.9% of [M+4] perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: _07/03/2018

1812029

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ..., x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ..., x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

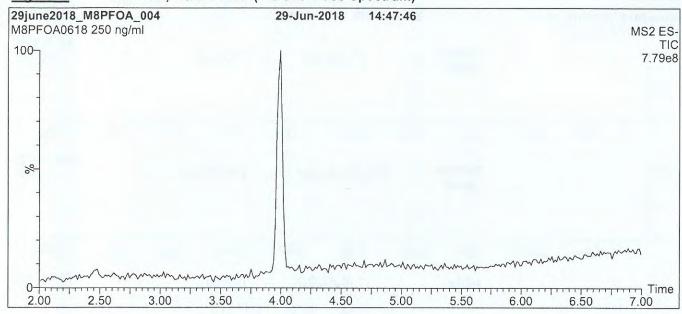
EXPIRY DATE / PERIOD OF VALIDITY:

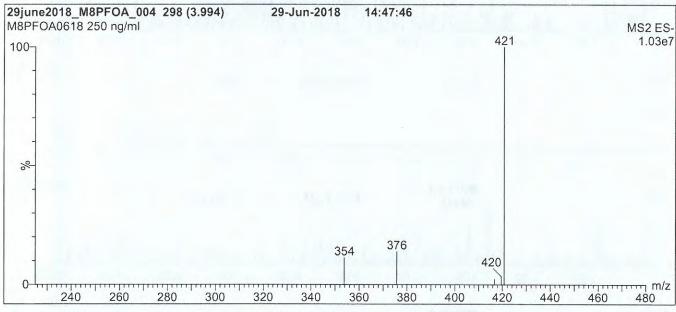
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

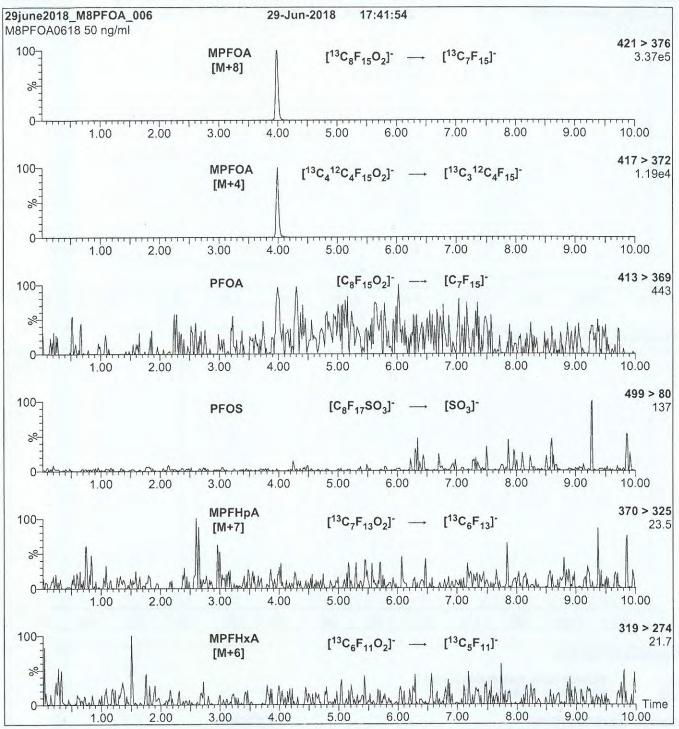
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

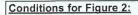
QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).



For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com





Conditions f	or Figure 1:	
LC: MS:	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
Chromatogra	aphic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP	
	1.7 µm, 2.1 x 100 mm	Experiment: Full Scan (225 - 850 amu)
Mobile phase:	: Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O	Capillary Voltage (kV) = 0.50
	(both with 10 mM NH ₂ OAc buffer)	Cone Voltage (V) = 14.00
	Ramp to 80% organic over 8 min and hold for	Desolvation Temperature (°C) = 500
	2 min before returning to initial conditions in 0.75 min.	Desolvation Gas Flow (I/hr) = 750
	Time: 12 min	()
Flow:	300 µl/min	

Injection:

On-column (M8PFOA)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 8

Form#:27, Issued 2004-11-10 Revision#:5, Revised 2018-01-22

Analytical Standard Record

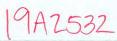
Vista Analytical Laboratory

19G1702

Parent Stand	Parent Standards used in this standard:				
Standard	Description	Prepared	Prepared By	Expires	(mls)
19A2532	13C2-FOUEA	25-Jan-19	** Vendor **	14-Nov-19	1
19A2533	13C4-PFBA	25-Jan-19	** Vendor **	16-Feb-23	1
19A2534	13C6-PFDA	25-Jan-19	** Vendor **	20-Sep-23	1
19A2535	13C9-PFNA	25-Jan-19	** Vendor **	08-Sep-23	1
19A2536	13C7-PFUdA	25-Jan-19	** Vendor **	20-Sep-23	1
19A2537	13C5-PFHxA	25-Jan-19	** Vendor **	27-Sep-23	1
19A2538	18O2-PFHxS	25-Jan-19	** Vendor **	22-Mar-23	1.06
19A2539	13C4-PFOS	25-Jan-19	** Vendor **	11-Sep-23	1.05
19A2540	13C8-PFOA	25-Jan-19	** Vendor **	29-Jun-23	1.02

Description: PFC-RS
Standard Type: Reagent
Solvent: MeOH
Final Volume (mls): 40

1


Vials:

Expires: 16-Jul-21
Prepared: 17-Jul-19
Prepared By: Brittany M. Lamb

Department: LCMS

Last Edit: 17-Jul-19 08:49 by BML

Analyte	CAS Number	Concentration	Units
18O2-PFHxS		1.25	ug/mL
13C9-PFNA		1.25	ug/mL
13C8-PFOA		1.25	ug/mL
13C7-PFUnA		1.25	ug/mL
13C6-PFDA		1.25	ug/mL
13C5-PFHxA		1.25	ug/mL
13C4-PFOS		1.25	ug/mL
13C4-PFBA		1.25	ug/mL
13C2-FOUEA		1.25	ug/mL

PRODUCT CODE:

MFOUEA

LOT NUMBER:

MFOUEA1117

COMPOUND:

2H-Perfluoro-[1,2-13C,]-2-decenoic acid

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

13C212C8H2F16O2

50 ± 2.5 µg/ml

MOLECULAR WEIGHT:

SOLVENT(S):

460.08

Anhydrous Isopropanol

≥99% ¹³C

CONCENTRATION:

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

11/14/2017

EXPIRY DATE: (mm/dd/yyyy) **RECOMMENDED STORAGE:** 11/14/2019 Refrigerate ampoule **ISOTOPIC PURITY:**

(1,2-13C₂)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2-13C_a]-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 11/15/2017

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Work Order 1902189 Revision 1

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

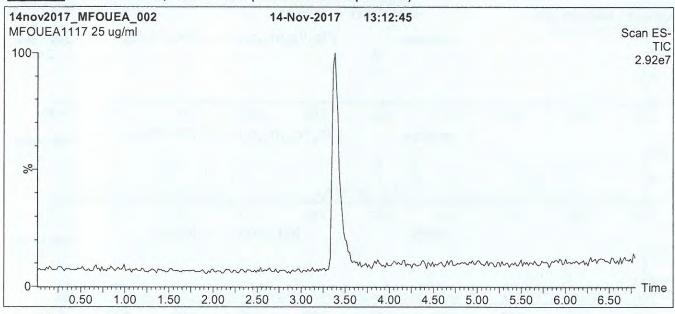
EXPIRY DATE / PERIOD OF VALIDITY:

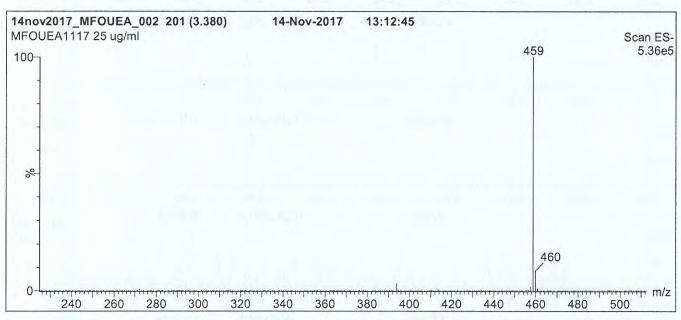
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

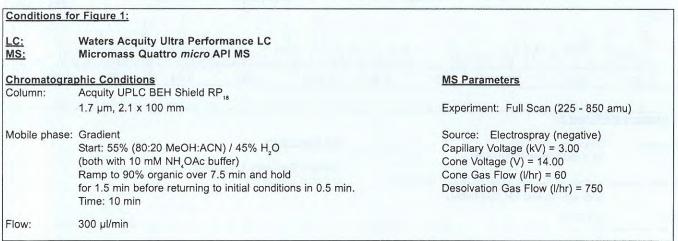
LIMITED WARRANTY:

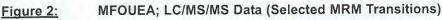
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

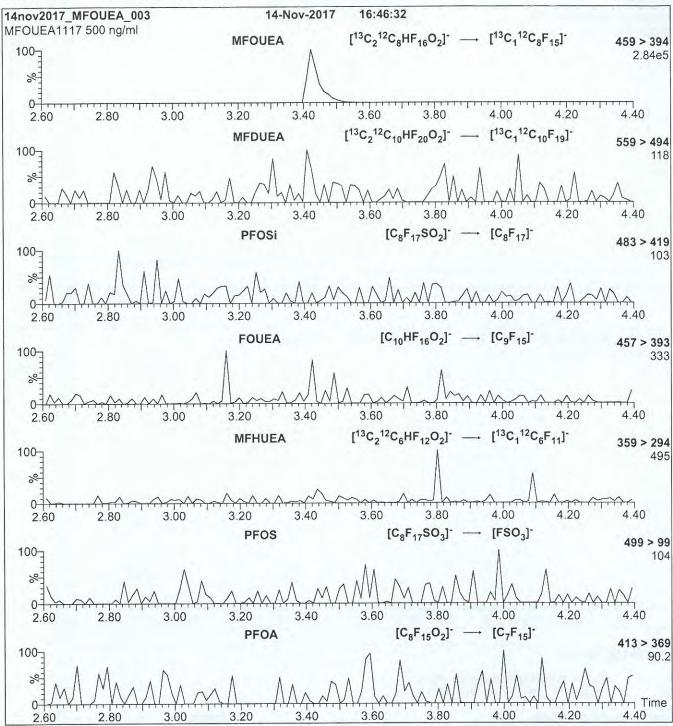
QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).






9AZ53Z





Injection:

Direct loop injection

10 µl (500 ng/ml MFOUEA)

Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O

(both with 10 mM NH,OAc buffer)

Flow: 300 µl/min

MS Parameters

Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 21

Form#:27, Issued 2004-11-10 Revision#:4, Revised 2017-03-06

PRODUCT CODE:

MPFBA

LOT NUMBER:

MPFBA0218

COMPOUND:

Perfluoro-n-[1,2,3,4-13C] butanoic acid

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

CONCENTRATION:

13C, HF, O,

50 ± 2.5 µg/ml

MOLECULAR WEIGHT:

218.01

SOLVENT(S):

Methanol Water (<1%)

CHEMICAL PURITY: >98%

ISOTOPIC PURITY: ≥99%13C

 $(1,2,3,4^{-13}C_{\lambda})$

LAST TESTED: (mm/dd/yyyy) EXPIRY DATE: (mm/dd/yyyy)

02/16/2018 02/16/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 02/22/2018

19AZ533

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{o}(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

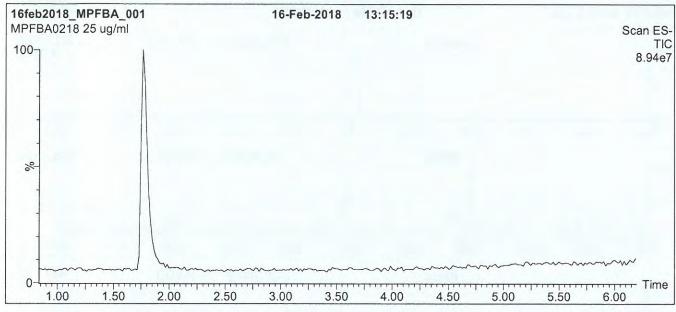
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

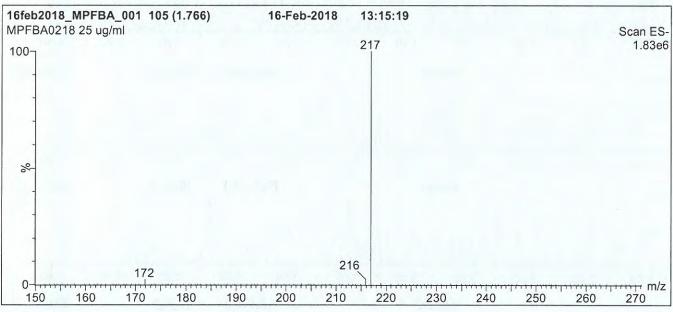
EXPIRY DATE / PERIOD OF VALIDITY:

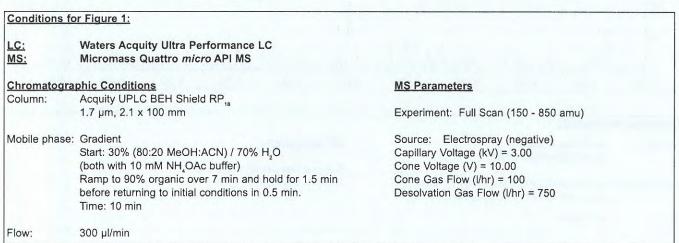
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

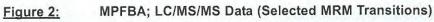
LIMITED WARRANTY:

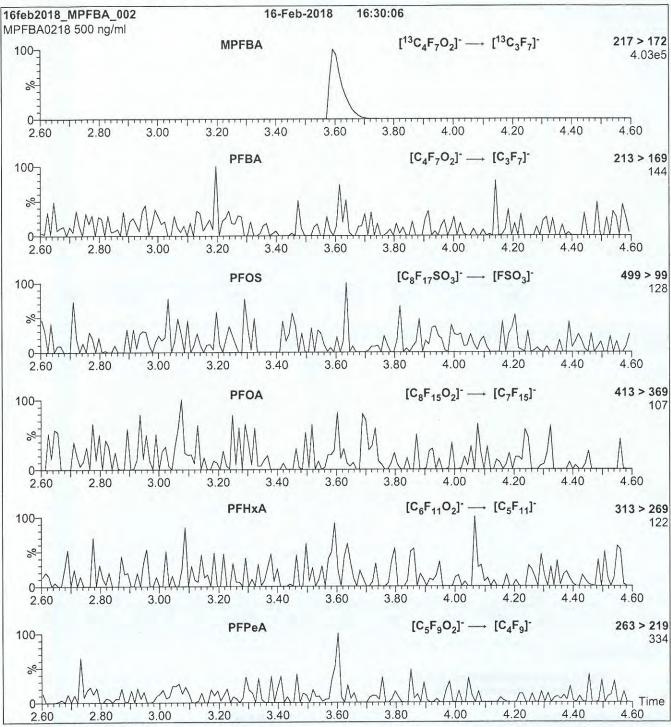
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.


QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).







Conditions for Figure 2:

Injection: Direct loop injection

10 μl (500 ng/ml MPFBA)

Mobile phase: Isocratic 80% (80:20 MeOH:ACN) / 20% H₂O

(both with 10 mM NH,OAc buffer)

Flow: 300 µl/min

MS Parameters

Collision Gas (mbar) = 3.31e-3 Collision Energy (eV) = 10

PRODUCT CODE:

M6PFDA

LOT NUMBER:

M6PFDA0918

COMPOUND:

Perfluoro-n-[1,2,3,4,5,6-13C₆]decanoic acid

STRUCTURE:

CAS #:

Not available

F C C C 13 13 C 13 13 C

MOLECULAR FORMULA:

13C, 12C, HF, O,

MOLECULAR WEIGHT:

520.04

CONCENTRATION:

 $50 \pm 2.5 \, \mu g/ml$

SOLVENT(S):

Methanol Water (<1%)

CHEMICAL PURITY:

>98%

ISOTOPIC PURITY:

>99% 13C

LAST TESTED: (mm/dd/yyyy)

09/20/2018

(1,2,3,4,5,6-13C_e)

EXPIRY DATE: (mm/dd/yyyy)

09/20/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 10/03/2018

19AZ534

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

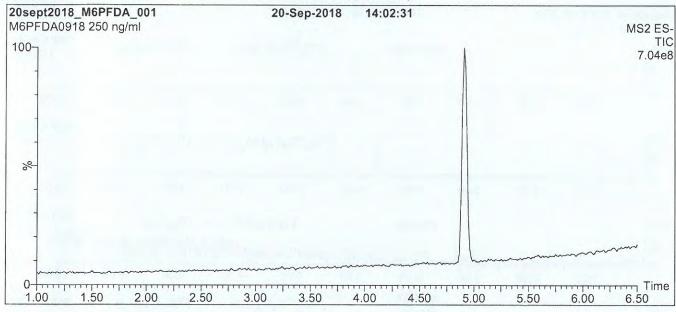
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

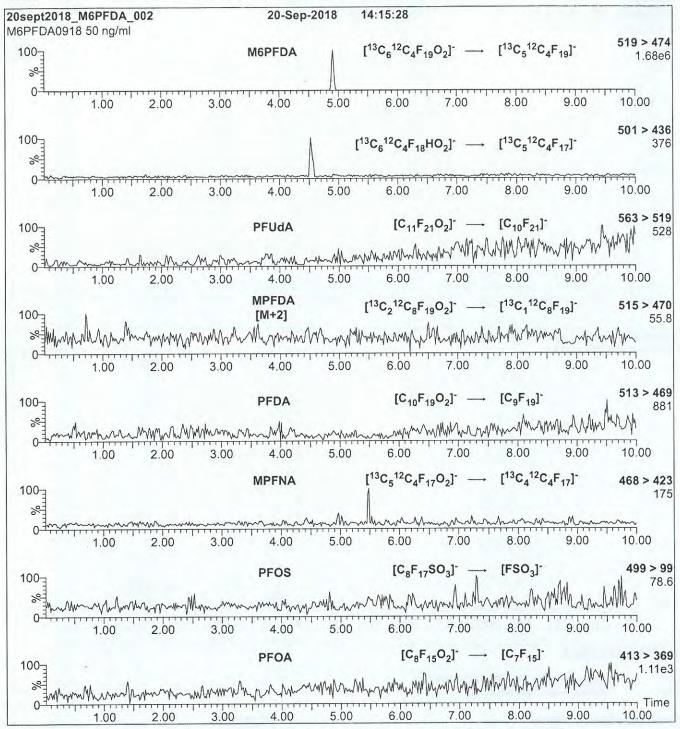
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

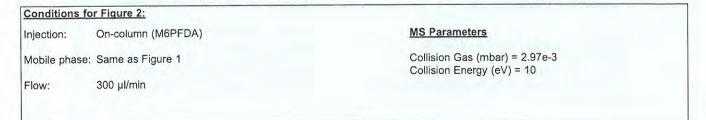


ACCREDITED

ISOITOS

REFERENCE MATERIAL





Conditions for Figure 1:		Access
LC: MS:	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
		MO D
Column:	aphic Conditions Acquity UPLC BEH Shield RP	MS Parameters
Column.	1.7 µm, 2.1 x 100 mm	Experiment: Full Scan (250 - 850 amu)
Mobile phase:	: Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50% H ₂ O	Capillary Voltage (kV) = 2.00
	(both with 10 mM NH ₄ OAc buffer)	Cone Voltage (V) = 10.00
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (°C) = 500
	2 min before returning to initial conditions in 0.75 min.	Desolvation Gas Flow (I/hr) = 1000
	Time: 12 min	The state of the s
Flow:	300 µl/min	

PRODUCT CODE:

M9PFNA

LOT NUMBER:

M9PFNA0918

COMPOUND:

Perfluoro-n-[13C]nonanoic acid

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

13C HF 17O,

MOLECULAR WEIGHT:

ISOTOPIC PURITY:

473.01

CONCENTRATION:

50 ± 2.5 µg/ml

SOLVENT(S):

Methanol

Water (<1%) >99% 13C

(13C_o)

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

09/08/2018

EXPIRY DATE: (mm/dd/yyyy)

09/08/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

Contains ~ 1.0% of ¹³C₅¹²C₄HF₁₇O₂ (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 09/19/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_i, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

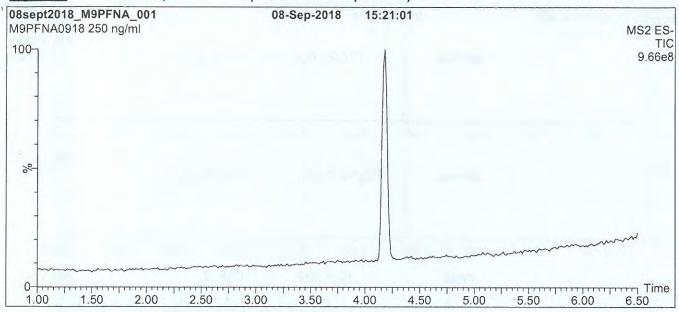
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

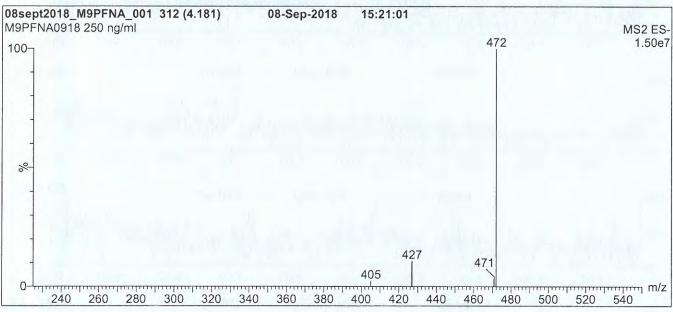
LIMITED WARRANTY:

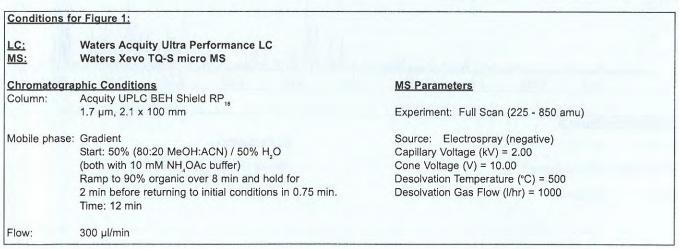
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

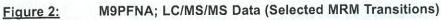
QUALITY MANAGEMENT:

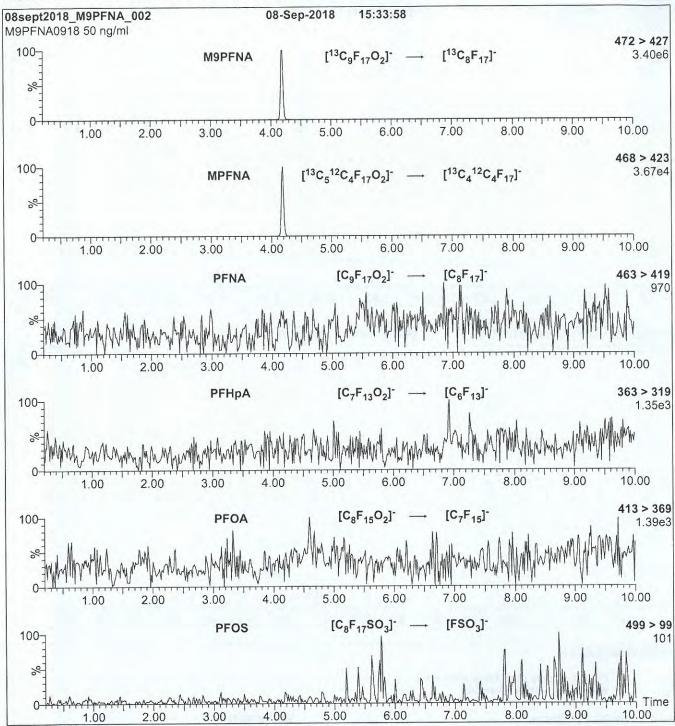
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


ACCREDITED


SOTOM


REFERENCE MATERIAL


PRODUCER



Injection: On-column (M9PFNA)

Mobile phase: Same as Figure 1

Flow: 300 µl/min

MS Parameters

Collision Gas (mbar) = 2.95e-3 Collision Energy (eV) = 10

PRODUCT CODE:

M7PFUdA

LOT NUMBER:

M7PFUdA0918

COMPOUND: STRUCTURE: Perfluoro-n-[1,2,3,4,5,6,7-13C,]undecanoic acid

CAS #:

Not available

MOLECULAR FORMULA:

CONCENTRATION:

13C, 12C, HF, O,

 $50 \pm 2.5 \,\mu g/ml$

MOLECULAR WEIGHT:

SOLVENT(S):

571.04

Methanol

Water (<1%)

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

09/20/2018

EXPIRY DATE: (mm/dd/yyyy)

09/20/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

ISOTOPIC PURITY:

≥99% 13C

 $(1,2,3,4,5,6,7^{-13}C_7)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 09/27/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

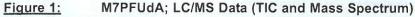
EXPIRY DATE / PERIOD OF VALIDITY:

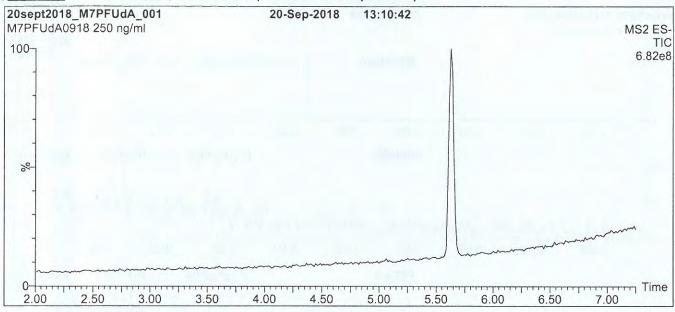
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

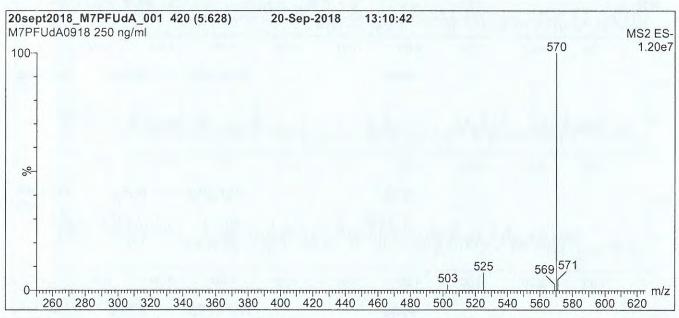
LIMITED WARRANTY:

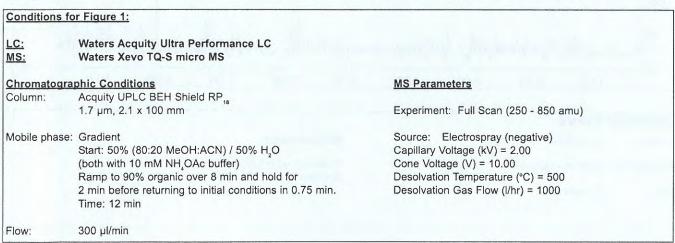
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

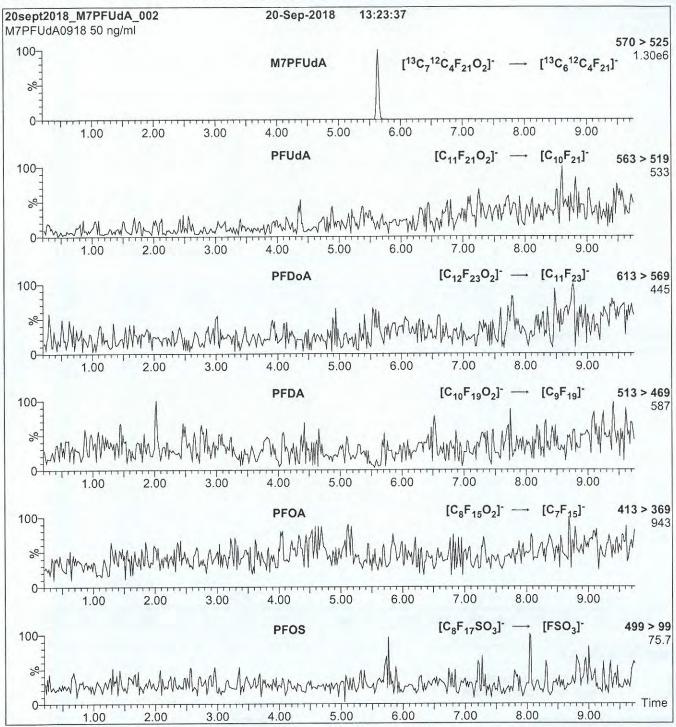

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).




A C C R E D I T E D


SOTIONAL
REFERENCE MATERIAL
PRODUCER

19AZ536



Injection: On-column (M7PFUdA)

Mobile phase: Same as Figure 1

Flow: 300 µl/min

MS Parameters

Collision Gas (mbar) = 2.97e-3 Collision Energy (eV) = 12

PRODUCT CODE:

M5PFHxA

LOT NUMBER:

M5PFHxA0918

COMPOUND:

Perfluoro-n-[1,2,3,4,6-13C,]hexanoic acid

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

CONCENTRATION:

13C, 12C, HF, O,

 $50 \pm 2.5 \,\mu g/ml$

MOLECULAR WEIGHT:

SOLVENT(S):

319.02 Methanol Water (<1%)

CHEMICAL PURITY: LAST TESTED: (mm/dd/yyyy) >98%

ISOTOPIC PURITY:

≥99% 13C

EXPIRY DATE: (mm/dd/yyyy)

09/27/2018 09/27/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

(1,2,3,4,6-13C_E)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 10/01/2018

19AZ537

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

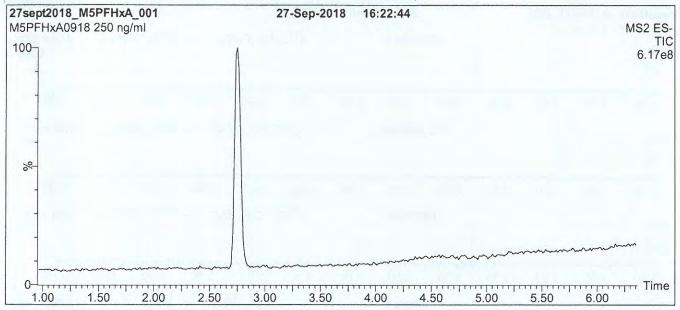
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

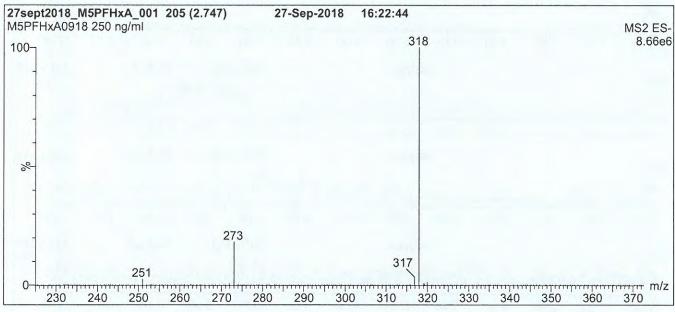
EXPIRY DATE / PERIOD OF VALIDITY:

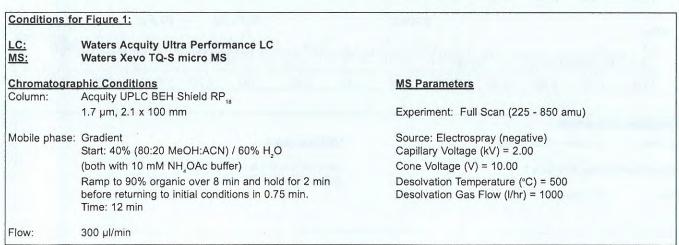
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

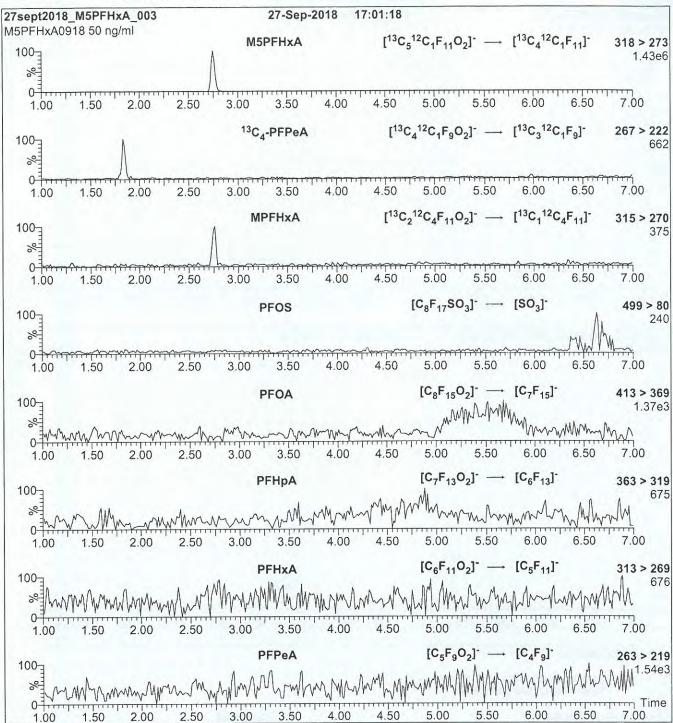
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

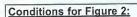

QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).



ACCREDITED
SOTON
REFERENCE MATERIAL
PRODUCER





Injection: On-column (M5PFHxA)

Off Column (Mor 1 1 Mar.

Mobile phase: Same as Figure 1

Flow: 300 µl/min

MS Parameters

Collision Gas (mbar) = 2.97e-3 Collision Energy (eV) = 8

PRODUCT CODE:

MPFHxS

LOT NUMBER:

MPFHxS0318

COMPOUND:

Sodium perfluoro-1-hexane[18O2]sulfonate

STRUCTURE:

CAS #:

1585941-14-5

S18O216O-Na+

MOLECULAR FORMULA:

C₆F₁₃S¹⁸O₂¹⁶ONa

MOLECULAR WEIGHT:

426.10

CONCENTRATION:

 $50.0 \pm 2.5 \,\mu g/ml$ (Na salt)

SOLVENT(S):

Methanol

>94% (18O2)

CHEMICAL PURITY:

>98%

03/22/2018

LAST TESTED: (mm/dd/yyyy) EXPIRY DATE: (mm/dd/yyyy)

03/22/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

 $47.3 \pm 2.4 \mu g/ml$ (MPFHxS anion)

ISOTOPIC PURITY:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The response factor for MPFHxS (C₆F₁₃S¹⁸O₂¹⁶O⁻) has been observed to be up to 10% lower than for PFHxS (C₆F₁₃S¹⁶O₃) when both compounds are injected together. This difference may vary between instruments.
- Contains ~ 1.0% of sodium perfluoro-1-octane[18O2]sulfonate (18O2-PFOS) and ~ 0.3% of sodium perfluoro-1-heptane[18O₂]sulfonate (18O₂-PFHpS).
- Due to the isotopic purity of the starting material (18O, >94%), MPFHxS contains ~ 0.3% of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 06/07/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_x(y)$, of a value y and the uncertainty of the independent parameters

$$x_i, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

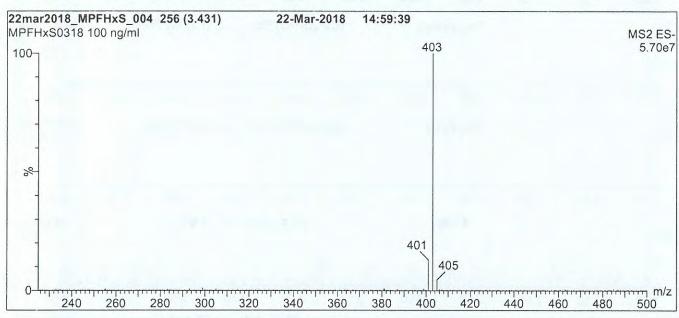
EXPIRY DATE / PERIOD OF VALIDITY:

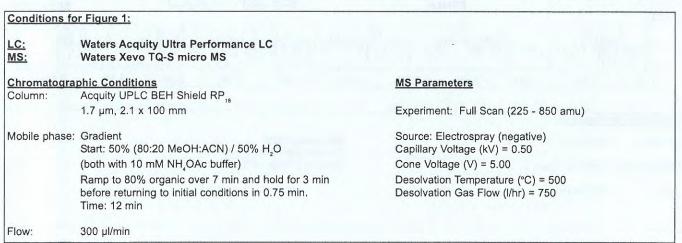
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

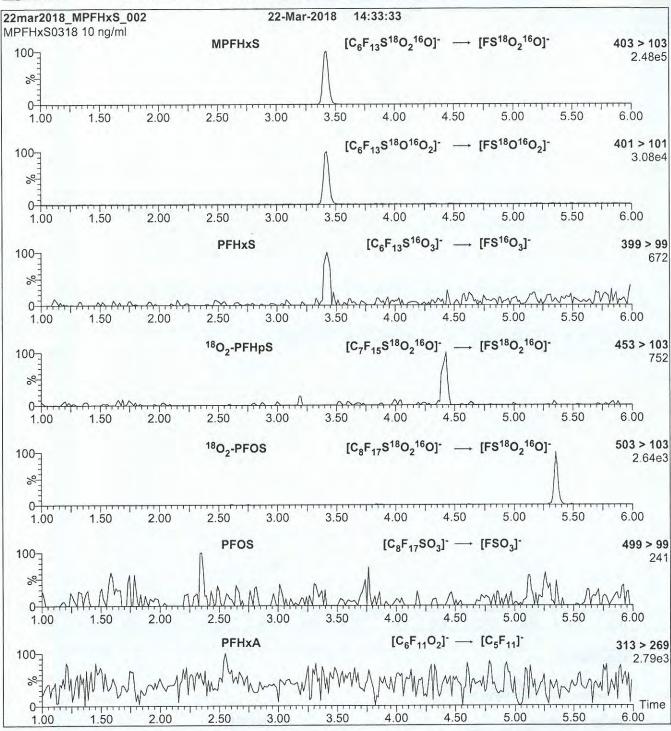
LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:


This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).







Injection:

On-column (MPFHxS)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.64e-3

Collision Energy (eV) = 32

PRODUCT CODE:

MPFOS

LOT NUMBER:

MPFOS0918

COMPOUND:

Sodium perfluoro-1-[1,2,3,4-13C] octanesulfonate

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

13C₄12C₄F₁₇SO₃Na

MOLECULAR WEIGHT:

526.08

CONCENTRATION:

50.0 ± 2.5 μg/ml (Na salt)

SOLVENT(S):

Methanol

CHEMICAL PURITY:

>98%

LAST TESTED: (mm/dd/yyyy)

09/11/2018

EXPIRY DATE: (mm/dd/yyyy)

09/11/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

 $47.8 \pm 2.4 \mu g/ml$ (MPFOS anion)

ISOTOPIC PURITY:

>99% 13C (1,2,3,4-13C₄)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains ~ 0.3% Sodium perfluoro-1-[1,2,3-13C,]heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 09/14/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, u(y), of a value y and the uncertainty of the independent parameters

$$x_1, x_2,...x_n$$
 on which it depends is:
$$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

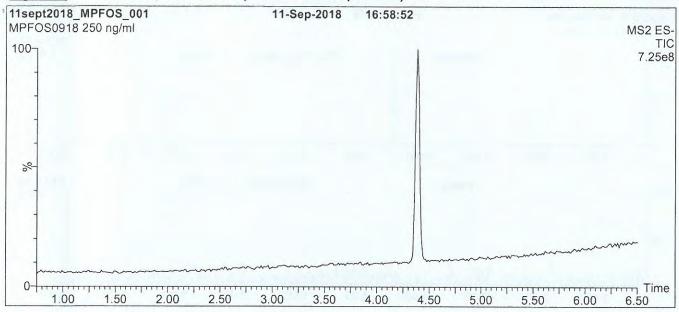
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

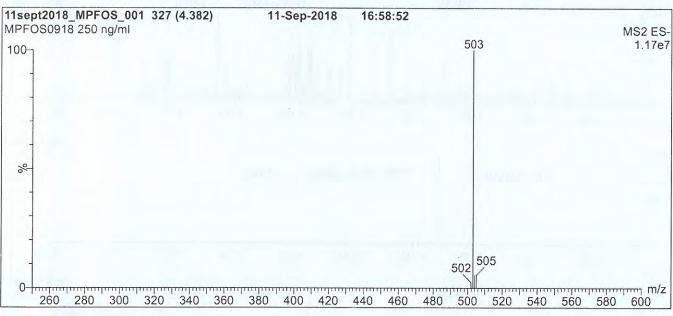
LIMITED WARRANTY:

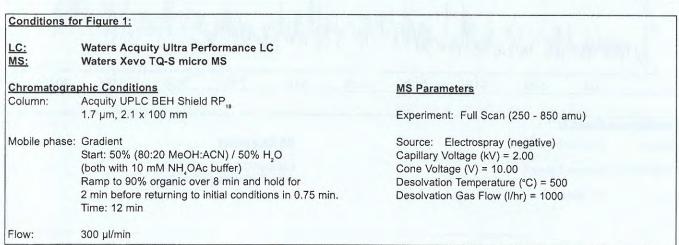
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

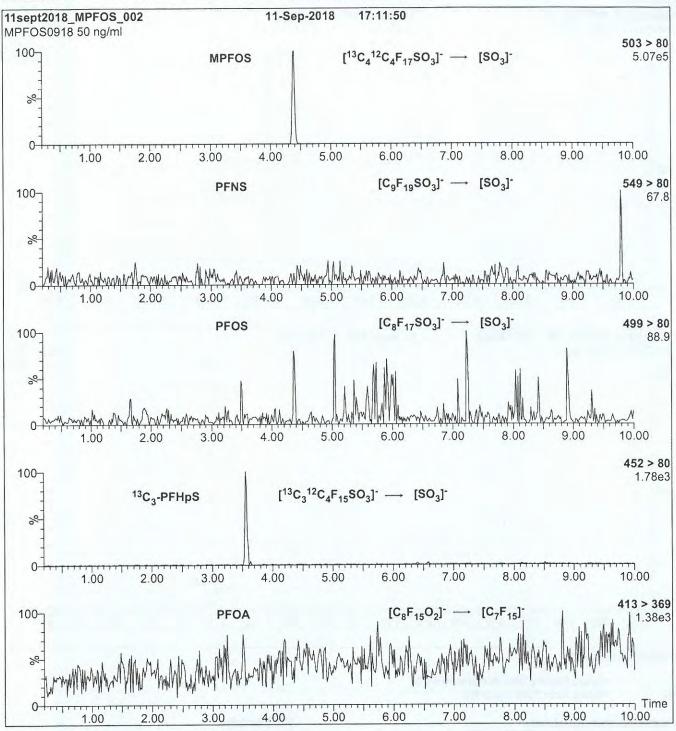
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).






For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Form#:27, Issued 2004-11-10 Revision#:6, Revised 2018-08-14



Injection:

On-column (MPFOS)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 2.99e-3 Collision Energy (eV) = 42

PRODUCT CODE:

M8PFOA

LOT NUMBER:

M8PFOA0618

COMPOUND:

Perfluoro-n-[13C] octanoic acid

STRUCTURE:

CAS #:

Not available

MOLECULAR FORMULA:

13C8HF15O2

CONCENTRATION:

49 ± 2.45 µg/ml

CHEMICAL PURITY:

97.9% (M8PFOA)

2.1% (MPFOA [M+4])

LAST TESTED: (mm/dd/yyyy)

06/29/2018

EXPIRY DATE: (mm/dd/yyyy)

06/29/2023

RECOMMENDED STORAGE:

Store ampoule in a cool, dark place

MOLECULAR WEIGHT:

422.01

SOLVENT(S):

Methanol Water (<1%)

ISOTOPIC PURITY:

≥99% ¹³C

(13C₈)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

Contains < 0.1% of native perfluoro-n-octanoic acid (PFOA) and ~ 1.9% of [M+4] perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: 07/03/2018

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$x_1, x_2, ... x_n$$
 on which it depends is:
$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

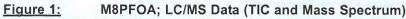
EXPIRY DATE / PERIOD OF VALIDITY:

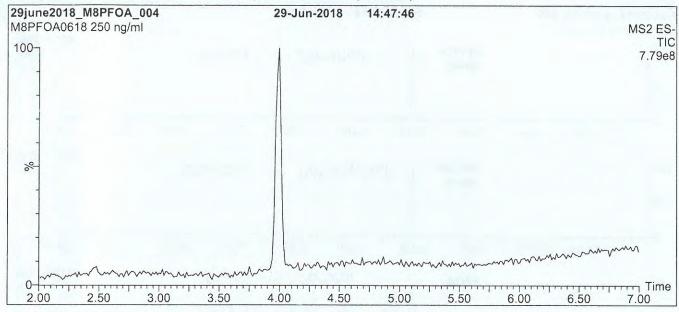
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

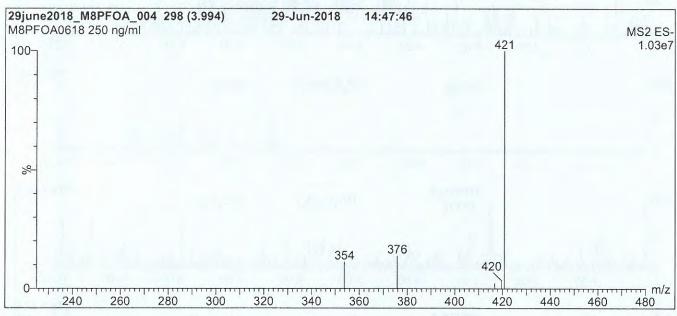
LIMITED WARRANTY:

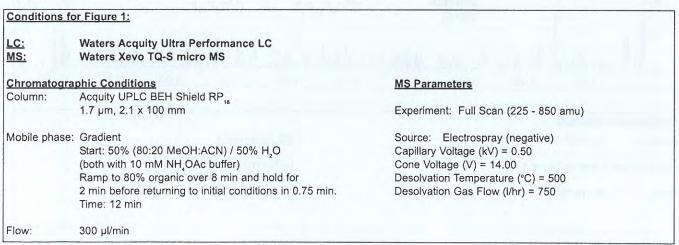
At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

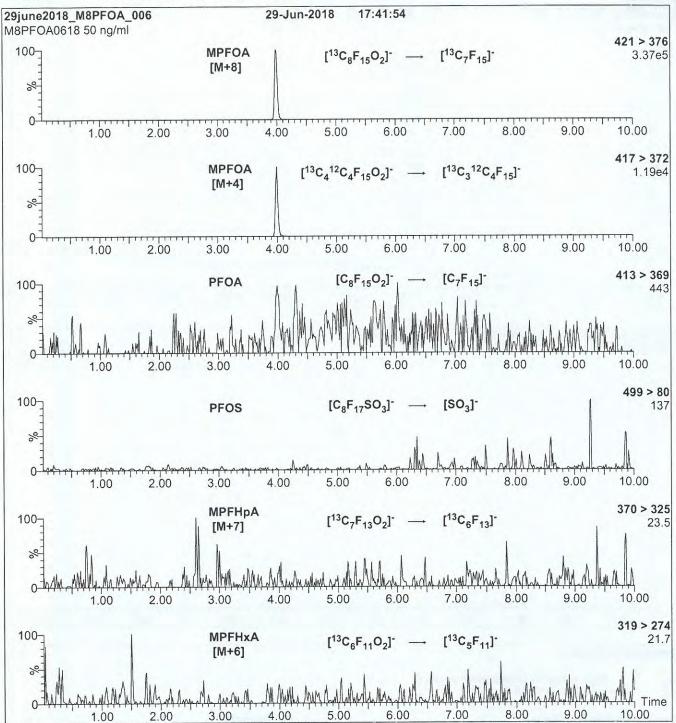

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

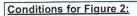





For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

M8PFOA0618 (2 of 4)





Injection:

On-column (M8PFOA)

Mobile phase: Same as Figure 1

Flow:

300 µl/min

MS Parameters

Collision Gas (mbar) = 3.39e-3 Collision Energy (eV) = 8

```
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "375-73-
5","PFBS","0.981","ug/kg","U","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "307-24-
4","PFHxA","8.09","ug/kg","","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "375-85-
9","PFHpA","0.842","ug/kg","J","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "355-46-
4","PFHxS","10.7","ug/kg","","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5","537 MOD","RES","1902189-01","Vista","335-67-
1","PFOA","19.9","ug/kg","","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "375-95-
1","PFNA","0.981","ug/kg","U","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "1763-23-
1","PFOS","15.8","ug/kg","","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "335-76-
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "2355-31-
9","NMeFOSAA","0.981","ug/kg","U","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "2991-50-
6","NEtFOSAA","0.981","ug/kg","U","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "2058-94-
8","PFUnA","0.981","ug/kg","U","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5","537 MOD","RES","1902189-01","Vista","307-55-
1","PFDoA","0.981","ug/kg","U","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "72629-94-
8","PFTrDA","0.981","ug/kg","U","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5","537 MOD","RES","1902189-01","Vista","376-06-
7","PFTeDA","0.981","ug/kg","U","0.981","CRDL","","TRG","","1.96","CRDL","YES","0.829"
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C3-PFBS", "13C3-
PFBS","63.6","%R","","","CRDL","","IS","63.6","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C2-PFHxA", "13C2-PFHx
PFHxA","80.7","%R","","","CRDL","","IS","80.7","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C4-PFHpA", "13C4-
PFHpA","89.3","%R","","","CRDL","","IS","89.3","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C3-PFHxS", "13C3-
PFHxS","76.1","%R","","","CRDL","","IS","76.1","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C2-PFOA", "13C2-
PFOA","84.8","%R","","","CRDL","","IS","84.8","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C5-PFNA", "13C5-
PFNA","73.3","%R","","","CRDL","","IS","73.3","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C8-PFOS", "13C8-
PFOS","83.1","%R","","","CRDL","","IS","83.1","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C2-PFDA", "13C2-
PFDA", "56.0", "%R", "", "", "CRDL", "", "IS", "56.0", "", "", "CRDL", "", ""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "50.8", "%R", "", "", "CRDL", "", "IS", "50.8", "", "", "CRDL", "", ""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","60.0","%R","","","CRDL","","IS","60.0","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C2-PFUnA", "13C2-PFUN
PFUnA","58.2","%R","","","CRDL","","IS","58.2","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C2-PFDoA", "13C2-
PFDoA","50.3","%R","","","CRDL","","IS","50.3","","","CRDL","",""
"SAOA-B03-SO-5-5.5", "537 MOD", "RES", "1902189-01", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","65.7","%R","","","CRDL","","IS","65.7","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "375-73-
5","PFBS","0.986","ug/kg","U","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "307-24-
4","PFHxA","4.71","ug/kg","","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "375-85-
9", "PFHpA", "0.986", "ug/kg", "U", "0.986", "CRDL", "", "TRG", "", "1.97", "CRDL", "YES", "0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "355-46-
4","PFHxS","1.98","ug/kg","","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "335-67-
1","PFOA","3.74","ug/kg","","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "375-95-
1","PFNA","0.986","ug/kg","U","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "1763-23-
1","PFOS","1.73","ug/kg","J","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "335-76-
2","PFDA","0.986","ug/kg","U","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5","537 MOD","RES","1902189-02","Vista","2355-31-
9","NMeFOSAA","0.986","ug/kg","U","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5","537 MOD","RES","1902189-02","Vista","2991-50-
6","NEtFOSAA","0.986","ug/kg","U","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "2058-94-
8","PFUnA","0.986","ug/kg","U","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "307-55-
1","PFDoA","0.986","ug/kg","U","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5","537 MOD","RES","1902189-02","Vista","72629-94-
8","PFTrDA","0.986","ug/kg","U","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "376-06-
7","PFTeDA","0.986","ug/kg","U","0.986","CRDL","","TRG","","1.97","CRDL","YES","0.833"
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C3-PFBS", "13C3-
PFBS","74.5","%R","","","CRDL","","IS","74.5","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C2-PFHxA", "13C2-
PFHxA","87.5","%R","","","CRDL","","IS","87.5","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C4-PFHpA", "13C4-PF
PFHpA","99.9","%R","","","CRDL","","IS","99.9","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C3-PFHxS", "13C3-
PFHxS","87.7","%R","","","CRDL","","IS","87.7","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C2-PFOA", "13C2-
PFOA", "88.6", "%R", "", "", "CRDL", "", "IS", "88.6", "", "", "CRDL", "", ""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C5-PFNA", "13C5-
PFNA","78.4","%R","","","CRDL","","IS","78.4","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C8-PFOS", "13C8-
PFOS","84.6","%R","","","CRDL","","IS","84.6","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C2-PFDA", "13C2-
PFDA","55.9","%R","","","CRDL","","IS","55.9","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "50.6", "%R", "", "", "CRDL", "", "IS", "50.6", "", "", "CRDL", "", ""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "60.5", "%R", "", "CRDL", "", "IS", "60.5", "", "", "CRDL", "", ""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C2-PFUnA", "13C2-
PFUnA","59.0","%R","","","CRDL","","IS","59.0","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C2-PFDoA", "13C2-
PFDoA","47.7","%R","H","","CRDL","","IS","47.7","","","CRDL","",""
"SAOA-B03-SO-20-20.5", "537 MOD", "RES", "1902189-02", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","70.1","%R","","","CRDL","","IS","70.1","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "375-73-
5","PFBS","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "307-24-
4","PFHxA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "375-85-
9", "PFHpA", "0.999", "ug/kg", "U", "0.999", "CRDL", "", "TRG", "", "", "2.00", "CRDL", "YES", "0.844"
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "355-46-
4","PFHxS","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "335-67-
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "375-95-
1","PFNA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "1763-23-
1", "PFOS", "0.999", "ug/kg", "U", "0.999", "CRDL", "", "TRG", "", "", "2.00", "CRDL", "YES", "0.844"
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "335-76-
2","PFDA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B03-SO-56-56.5","537 MOD","RES","1902189-03","Vista","2355-31-
"SAOA-B03-SO-56-56.5","537 MOD","RES","1902189-03","Vista","2991-50-
6", "NEtFOSAA", "0.999", "ug/kg", "U", "0.999", "CRDL", "", "TRG", "", "", "2.00", "CRDL", "YES", "0.844", "0.999", "CRDL", "VES", "VES", "0.999", "CRDL", "VES", "VE
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "2058-94-
8","PFUnA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "307-55-
1","PFDoA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "72629-94-
8","PFTrDA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "376-06-
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C3-PFBS", "13C3-
PFBS","67.4","%R","","","CRDL","","IS","67.4","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C2-PFHxA", "13C2-
PFHxA","84.7","%R","","","CRDL","","IS","84.7","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C4-PFHpA", "13C4-
PFHpA","90.1","%R","","","CRDL","","IS","90.1","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C3-PFHxS", "13C3-
PFHxS","83.7","%R","","","CRDL","","IS","83.7","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C2-PFOA", "13C2-
PFOA","93.9","%R","","","CRDL","","IS","93.9","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C5-PFNA", "13C5-
PFNA","73.9","%R","","","CRDL","","IS","73.9","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C8-PFOS", "13C8-
PFOS","93.8","%R","","","CRDL","","IS","93.8","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C2-PFDA", "13C2-
PFDA","54.2","%R","","","CRDL","","IS","54.2","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","49.7","%R","H","","CRDL","","IS","49.7","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "50.6", "%R", "", "CRDL", "", "IS", "50.6", "", "", "CRDL", "", ""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C2-PFUnA", "13C2-
PFUnA","65.4","%R","","","CRDL","","IS","65.4","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C2-PFDoA", "13C2-
PFDoA","46.9","%R","H","","CRDL","","IS","46.9","","","CRDL","",""
"SAOA-B03-SO-56-56.5", "537 MOD", "RES", "1902189-03", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","69.0","%R","","","CRDL","","IS","69.0","","","CRDL","",""
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","375-73-
5","PFBS","0.0769","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","307-24-
4","PFHxA","1.23","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","375-85-
9","PFHpA","0.0681","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","355-46-
4","PFHxS","0.134","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW", "537 MOD", "RES", "1902189-04", "Vista", "335-67-
1","PFOA","0.0548","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW", "537 MOD", "RES", "1902189-04", "Vista", "375-95-
1","PFNA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","1763-23-
1","PFOS","0.117","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","335-76-
2","PFDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","2355-31-
9","NMeFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","2991-50-
6","NEtFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","2058-94-
8","PFUnA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","307-55-
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","72629-94-
8","PFTrDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW", "537 MOD", "RES", "1902189-04", "Vista", "376-06-
7","PFTeDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293"
"SAOA-B03-GW", "537 MOD", "RES", "1902189-04", "Vista", "13C3-PFBS", "13C3-
PFBS","111","%R","","","CRDL","","IS","111","","","CRDL","",""
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","13C2-PFHxA","13C2-
PFHxA","96.0","%R","","","CRDL","","IS","96.0","","","CRDL","",""
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","13C4-PFHpA","13C4-
PFHpA","104","%R","","","CRDL","","IS","104","","","CRDL","",""
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","13C3-PFHxS","13C3-
PFHxS","104","%R","","","CRDL","","IS","104","","","CRDL","",""
"SAOA-B03-GW", "537 MOD", "RES", "1902189-04", "Vista", "13C2-PFOA", "13C2-
PFOA","89.8","%R","","","CRDL","","IS","89.8","","","CRDL","",""
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","13C5-PFNA","13C5-
PFNA","95.2","%R","","","CRDL","","IS","95.2","","","CRDL","",""
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","13C8-PFOS","13C8-
PFOS","105","%R","","","CRDL","","IS","105","","","CRDL","",""
"SAOA-B03-GW", "537 MOD", "RES", "1902189-04", "Vista", "13C2-PFDA", "13C2-
PFDA","79.3","%R","","","CRDL","","IS","79.3","","","CRDL","",""
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","d3-MeFOSAA","d3-
MeFOSAA","75.7","%R","","","CRDL","","IS","75.7","","","CRDL","",""
"SAOA-B03-GW", "537 MOD", "RES", "1902189-04", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","75.7","%R","","","CRDL","","IS","75.7","","","CRDL","",""
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","13C2-PFUnA","13C2-
PFUnA","70.5","%R","","","CRDL","","IS","70.5","","","CRDL","",""
"SAOA-B03-GW", "537 MOD", "RES", "1902189-04", "Vista", "13C2-PFDoA", "1
PFDoA","71.4","%R","","","CRDL","","IS","71.4","","","CRDL","",""
"SAOA-B03-GW","537 MOD","RES","1902189-04","Vista","13C2-PFTeDA","13C2-
```

```
PFTeDA","65.4","%R","","","CRDL","","IS","65.4","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "375-73-
5","PFBS","0.0227","ug/L","","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW","537 MOD","RES","1902189-05","Vista","307-24-
4","PFHxA","0.222","ug/L","","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW","537 MOD","RES","1902189-05","Vista","375-85-
9","PFHpA","0.0369","ug/L","","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "355-46-
4","PFHxS","0.218","ug/L","","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "335-67-
1", "PFOA", "0.0554", "ug/L", "", "0.00509", "CRDL", "", "TRG", "", "", "0.0102", "CRDL", "YES", "0.00349", "CRDL", "Ug/L", 
"NAOA-B03-GW","537 MOD","RES","1902189-05","Vista","375-95-
1","PFNA","0.00450","ug/L","J","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "1763-23-
1","PFOS","0.337","ug/L","","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "335-76-
2","PFDA","0.00673","ug/L","J","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW","537 MOD","RES","1902189-05","Vista","2355-31-
9","NMeFOSAA","0.00509","ug/L","U","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "2991-50-
6","NEtFOSAA","0.00509","ug/L","U","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW","537 MOD","RES","1902189-05","Vista","2058-94-
8","PFUnA","0.00509","ug/L","U","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "307-55-
1", "PFDoA", "0.00509", "ug/L", "U", "0.00509", "CRDL", "", "TRG", "", "", "0.0102", "CRDL", "YES", "0.00349"
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "72629-94-
8","PFTrDA","0.00509","ug/L","U","0.00509","CRDL","","TRG","","","0.0102","CRDL","YES","0.00349"
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "376-06-
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C3-PFBS", "13C3-
PFBS","89.1","%R","","","CRDL","","IS","89.1","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C2-PFHxA", "13C2-
PFHxA","88.1","%R","","","CRDL","","IS","88.1","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C4-PFHpA", "13C4-
PFHpA","92.3","%R","","","CRDL","","IS","92.3","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C3-PFHxS", "13C3-
PFHxS","90.6","%R","","","CRDL","","IS","90.6","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C2-PFOA", "13C2-
PFOA", "89.8", "%R", "", "", "CRDL", "", "IS", "89.8", "", "", "CRDL", "", ""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C5-PFNA", "13C5-
PFNA", "86.6", "%R", "", "", "CRDL", "", "IS", "86.6", "", "", "CRDL", "", ""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C8-PFOS", "13C8-
PFOS","94.4","%R","","","CRDL","","IS","94.4","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C2-PFDA", "13C2-
PFDA","72.5","%R","","","CRDL","","IS","72.5","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","62.3","%R","","","CRDL","","IS","62.3","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "68.3", "%R", "", "", "CRDL", "", "IS", "68.3", "", "", "CRDL", "", ""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C2-PFUnA", "13C2-
PFUnA","69.1","%R","","","CRDL","","IS","69.1","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C2-PFDoA", "13C2-
PFDoA","60.5","%R","","","CRDL","","IS","60.5","","","CRDL","",""
"NAOA-B03-GW", "537 MOD", "RES", "1902189-05", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","57.0","%R","","","CRDL","","IS","57.0","","","CRDL","",""
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","375-73-
5","PFBS","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","307-24-
4","PFHxA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","375-85-
9","PFHpA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "355-46-
4","PFHxS","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "335-67-
1","PFOA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "375-95-
1","PFNA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "1763-23-
1","PFOS","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","335-76-
2","PFDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","2355-31-
9","NMeFOSAA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "2991-50-
6","NEtFOSAA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","2058-94-
8","PFUnA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","307-55-
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","72629-94-
8","PFTrDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "376-06-
7","PFTeDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00851","CRDL","YES","0.00291"
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "13C3-PFBS", "13C3-
PFBS","92.2","%R","","","CRDL","","IS","92.2","","","CRDL","",""
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "13C2-PFHxA", "13C2-
PFHxA","95.7","%R","","","CRDL","","IS","95.7","","","CRDL","",""
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","13C4-PFHpA","13C4-
PFHpA","93.8","%R","","","CRDL","","IS","93.8","","","CRDL","",""
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "13C3-PFHxS", "13C3-
PFHxS","104","%R","","","CRDL","","IS","104","","","CRDL","",""
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","13C2-PFOA","13C2-
PFOA","92.0","%R","","","CRDL","","IS","92.0","","","CRDL","",""
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","13C5-PFNA","13C5-
PFNA","88.1","%R","","","CRDL","","IS","88.1","","","CRDL","",""
"EB-07152019-GW","537 MOD","RES","1902189-06","Vista","13C8-PFOS","13C8-
PFOS","84.7","%R","","","CRDL","","IS","84.7","","","CRDL","",""
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "13C2-PFDA", "13C2-
PFDA","80.5","%R","","","CRDL","","IS","80.5","","","CRDL","",""
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","77.1","%R","","","CRDL","","IS","77.1","","","CRDL","",""
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","77.2","%R","","","CRDL","","IS","77.2","","","CRDL","",""
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "13C2-PFUnA", "13C2-
PFUnA","73.2","%R","","","CRDL","","IS","73.2","","","CRDL","",""
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "13C2-PFDoA", "13C2-
PFDoA","73.0","%R","","","CRDL","","IS","73.0","","","CRDL","",""
"EB-07152019-GW", "537 MOD", "RES", "1902189-06", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","77.5","%R","","","CRDL","","IS","77.5","","","CRDL","",""
 "FRB-07152019","537 MOD","RES","1902189-07","Vista","375-73-
5","PFBS","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
"FRB-07152019","537 MOD","RES","1902189-07","Vista","307-24-
4","PFHxA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "375-85-
9","PFHpA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
"FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "355-46-
4","PFHxS","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
 "FRB-07152019","537 MOD","RES","1902189-07","Vista","335-67-
1", "PFOA", "0.00431", "ug/L", "U", "0.00431", "CRDL", "", "TRG", "", "", "0.00863", "CRDL", "YES", "0.00295", "CRDL", "YES", "YES", "CRDL", "YES", "
 "FRB-07152019","537 MOD","RES","1902189-07","Vista","375-95-
 1","PFNA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "1763-23-
1","PFOS","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "335-76-
2","PFDA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "2355-31-
9","NMeFOSAA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "2991-50-
6","NEtFOSAA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "2058-94-
8","PFUnA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
 "FRB-07152019","537 MOD","RES","1902189-07","Vista","307-55-
1","PFDoA","0.00431","ug/L","U","0.00431","CRDL","","TRG","","","0.00863","CRDL","YES","0.00295"
"FRB-07152019","537 MOD","RES","1902189-07","Vista","72629-94-
"FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "376-06-
7", "PFTeDA", "0.00431", "ug/L", "U", "0.00431", "CRDL", "", "TRG", "", "", "0.00863", "CRDL", "YES", "0.00295", "CRDL", "YES", 
"FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "13C3-PFBS", "13C3-
PFBS","101","%R","","","CRDL","","IS","101","","","CRDL","",""
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "13C2-PFHxA", "13C2-
PFHxA","92.0","%R","","","CRDL","","IS","92.0","","","CRDL","",""
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "13C4-PFHpA", "13C4-
PFHpA","93.3","%R","","","CRDL","","IS","93.3","","","CRDL","",""
"FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "13C3-PFHxS", "13C3-
PFHxS", "95.2", "%R", "", "CRDL", "", "IS", "95.2", "", "", "CRDL", "", ""
"FRB-07152019","537 MOD","RES","1902189-07","Vista","13C2-PFOA","13C2-
PFOA", "88.8", "%R", "", "", "CRDL", "", "IS", "88.8", "", "", "CRDL", "", ""
"FRB-07152019","537 MOD","RES","1902189-07","Vista","13C5-PFNA","13C5-
PFNA","86.9","%R","","","CRDL","","IS","86.9","","","CRDL","",""
"FRB-07152019","537 MOD","RES","1902189-07","Vista","13C8-PFOS","13C8-
PFOS","84.4","%R","","","CRDL","","IS","84.4","","","CRDL","",""
"FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "13C2-PFDA", 
PFDA","77.0","%R","","","CRDL","","IS","77.0","","","CRDL","",""
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","62.8","%R","","","CRDL","","IS","62.8","","","CRDL","",""
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","67.0","%R","","","CRDL","","IS","67.0","","","CRDL","",""
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "13C2-PFUnA", "13C2-
PFUnA","73.2","%R","","","CRDL","","IS","73.2","","","CRDL","",""
"FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "13C2-PFDoA", "13C2-
PFDoA","68.7","%R","","","CRDL","","IS","68.7","","","CRDL","",""
 "FRB-07152019", "537 MOD", "RES", "1902189-07", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","74.0","%R","","","CRDL","","IS","74.0","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "375-73-
5","PFBS","0.979","ug/kg","U","0.979","CRDL","","TRG","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "307-24-
4","PFHxA","0.979","ug/kg","U","0.979","CRDL","","TRG","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "375-85-
9", "PFHpA", "0.979", "ug/kg", "U", "0.979", "CRDL", "", "TRG", "", "1.96", "CRDL", "YES", "0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "355-46-
4","PFHxS","0.979","ug/kg","U","0.979","CRDL","","TRG","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "335-67-
1","PFOA","0.979","ug/kg","U","0.979","CRDL","","TRG","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "375-95-
1","PFNA","0.979","ug/kg","U","0.979","CRDL","","TRG","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "1763-23-
1","PFOS","1.27","ug/kg","J","0.979","CRDL","","TRG","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "335-76-
2","PFDA","0.979","ug/kg","U","0.979","CRDL","","TRG","","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5","537 MOD","RES","1902189-08","Vista","2355-31-
9","NMeFOSAA","0.979","ug/kg","U","0.979","CRDL","","TRG","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5","537 MOD","RES","1902189-08","Vista","2991-50-
6","NEtFOSAA","0.979","ug/kg","U","0.979","CRDL","","TRG","","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5","537 MOD","RES","1902189-08","Vista","2058-94-
8","PFUnA","0.979","ug/kg","U","0.979","CRDL","","TRG","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "307-55-
1", "PFDoA", "0.979", "ug/kg", "U", "0.979", "CRDL", "", "TRG", "", "1.96", "CRDL", "YES", "0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "72629-94-
8","PFTrDA","0.979","ug/kg","U","0.979","CRDL","","TRG","","1.96","CRDL","YES","0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "376-06-
7", "PFTeDA", "0.979", "ug/kg", "U", "0.979", "CRDL", "", "TRG", "", "1.96", "CRDL", "YES", "0.827"
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C3-PFBS", "13C3-
PFBS","75.1","%R","","","CRDL","","IS","75.1","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C2-PFHxA", "13C2-
PFHxA","80.8","%R","","","CRDL","","IS","80.8","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C4-PFHpA", "13C4-
PFHpA", "93.0", "%R", "", "", "CRDL", "", "IS", "93.0", "", "", "CRDL", "", ""
"NON-B03-SO-1-1.5","537 MOD","RES","1902189-08","Vista","13C3-PFHxS","13C3-
PFHxS","103","%R","","","CRDL","","IS","103","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C2-PFOA", "13C2-PFO
PFOA","92.4","%R","","","CRDL","","IS","92.4","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C5-PFNA", "13C5-
PFNA","76.8","%R","","","CRDL","","IS","76.8","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C8-PFOS", "13C8-
PFOS","102","%R","","","CRDL","","IS","102","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C2-PFDA", "13C2-
PFDA","53.4","%R","","","CRDL","","IS","53.4","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "52.4", "%R", "", "", "CRDL", "", "IS", "52.4", "", "", "CRDL", "", ""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "56.8", "%R", "", "", "CRDL", "", "IS", "56.8", "", "", "CRDL", "", ""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C2-PFUnA", "13C2-
PFUnA","70.3","%R","","","CRDL","","IS","70.3","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C2-PFDoA", "13C2-
PFDoA","56.2","%R","","","CRDL","","IS","56.2","","","CRDL","",""
"NON-B03-SO-1-1.5", "537 MOD", "RES", "1902189-08", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","75.3","%R","","","CRDL","","IS","75.3","","","CRDL","",""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "375-73-
5","PFBS","0.971","ug/kg","U","0.971","CRDL","","TRG","","1.94","CRDL","YES"."0.821"
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "307-24-
4","PFHxA","0.971","ug/kg","U","0.971","CRDL","","TRG","","1.94","CRDL","YES","0.821"
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "375-85-
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "355-46-
4","PFHxS","0.971","ug/kg","U","0.971","CRDL","","TRG","","1.94","CRDL","YES","0.821"
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "335-67-
1","PFOA","0.971","ug/kg","U","0.971","CRDL","","TRG","","1.94","CRDL","YES","0.821"
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "375-95-
1","PFNA","0.971","ug/kg","U","0.971","CRDL","","TRG","","1.94","CRDL","YES","0.821"
"NON-B03-SO-15-15.5","537 MOD","RES","1902189-09","Vista","1763-23-
1", "PFOS", "1.81", "ug/kg", "J", "0.971", "CRDL", "", "TRG", "", "1.94", "CRDL", "YES", "0.821"
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "335-76-
2","PFDA","0.971","ug/kg","U","0.971","CRDL","","TRG","","1.94","CRDL","YES","0.821"
"NON-B03-SO-15-15.5","537 MOD","RES","1902189-09","Vista","2355-31-
"NON-B03-SO-15-15.5","537 MOD","RES","1902189-09","Vista","2991-50-
6","NEtFOSAA","0.971","ug/kg","U","0.971","CRDL","","TRG","","","1.94","CRDL","YES","0.821"
"NON-B03-SO-15-15.5","537 MOD","RES","1902189-09","Vista","2058-94-
8","PFUnA","0.971","ug/kg","U","0.971","CRDL","","TRG","","1.94","CRDL","YES","0.821"
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "307-55-
1","PFDoA","0.971","ug/kg","U","0.971","CRDL","","TRG","","1.94","CRDL","YES","0.821"
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "72629-94-
8","PFTrDA","0.971","ug/kg","U","0.971","CRDL","","TRG","","1.94","CRDL","YES","0.821"
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "376-06-
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C3-PFBS", "13C3-
PFBS","76.6","%R","","","CRDL","","IS","76.6","","","CRDL","",""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C2-PFHxA", "13C2-
PFHxA","89.8","%R","","","CRDL","","IS","89.8","","","CRDL","",""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C4-PFHpA", "13C4-PFH
PFHpA","85.9","%R","","","CRDL","","IS","85.9","","","CRDL","",""
"NON-B03-SO-15-15.5","537 MOD","RES","1902189-09","Vista","13C3-PFHxS","13C3-
PFHxS","104","%R","","","CRDL","","IS","104","","","CRDL","",""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C2-PFOA", "13C2-
PFOA","94.1","%R","","","CRDL","","IS","94.1","","","CRDL","",""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C5-PFNA", "13C5-
PFNA","71.8","%R","","","CRDL","","IS","71.8","","","CRDL","",""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C8-PFOS", "13C8-P
PFOS", "96.6", "%R", "", "", "CRDL", "", "IS", "96.6", "", "", "CRDL", "", ""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C2-PFDA", "13C2-
PFDA","54.3","%R","","","CRDL","","IS","54.3","","","CRDL","",""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "56.6", "%R", "", "", "CRDL", "", "IS", "56.6", "", "", "CRDL", "", ""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "59.0", "%R", "", "CRDL", "", "IS", "59.0", "", "", "CRDL", "", ""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C2-PFUnA", "13C2-
PFUnA","70.3","%R","","","CRDL","","IS","70.3","","","CRDL","",""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C2-PFDoA", "13C2-PFD
PFDoA","57.8","%R","","","CRDL","","IS","57.8","","","CRDL","",""
"NON-B03-SO-15-15.5", "537 MOD", "RES", "1902189-09", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","77.8","%R","","","CRDL","","IS","77.8","","","CRDL","",""
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","375-73-
5","PFBS","0.00486","ug/L","J","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","307-24-
4","PFHxA","0.0998","ug/L","","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","375-85-
9", "PFHpA", "0.0821", "ug/L", "", "0.00394", "CRDL", "", "TRG", "", "", "0.00790", "CRDL", "YES", "0.00271", "CRDL", "Ug/L", "Ug/L"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","355-46-
4","PFHxS","0.147","ug/L","","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "335-67-
1", "PFOA", "0.0932", "ug/L", "", "0.00394", "CRDL", "", "TRG", "", "", "0.00790", "CRDL", "YES", "0.00271", "CRDL", "YES", "YES",
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","375-95-
1","PFNA","0.0914","ug/L","","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","1763-23-
1","PFOS","0.982","ug/L","","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","335-76-
2","PFDA","0.00277","ug/L","J","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","2355-31-
9","NMeFOSAA","0.00394","ug/L","U","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","2991-50-
6","NEtFOSAA","0.00394","ug/L","U","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","2058-94-
8","PFUnA","0.00394","ug/L","U","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","307-55-
1", "PFDoA", "0.00394", "ug/L", "U", "0.00394", "CRDL", "", "TRG", "", "", "0.00790", "CRDL", "YES", "0.00271", "CRDL", "YES", "CRDL", "YES", "CRDL", "YES", "CRDL", "YES", "CRDL", "YES", "CRDL", "YES", "
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","72629-94-
8","PFTrDA","0.00394","ug/L","U","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","376-06-
7","PFTeDA","0.00394","ug/L","U","0.00394","CRDL","","TRG","","","0.00790","CRDL","YES","0.00271"
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "13C3-PFBS", "13C3-
PFBS","96.2","%R","","","CRDL","","IS","96.2","","","CRDL","",""
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "13C2-PFHxA", "13C2-
PFHxA","89.0","%R","","","CRDL","","IS","89.0","","","CRDL","",""
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "13C4-PFHpA", "13C4-
PFHpA","87.9","%R","","","CRDL","","IS","87.9","","","CRDL","",""
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "13C3-PFHxS", "13C3-
PFHxS","102","%R","","","CRDL","","IS","102","","","CRDL","",""
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","13C2-PFOA","13C2-
PFOA","79.0","%R","","","CRDL","","IS","79.0","","","CRDL","",""
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","13C5-PFNA","13C5-
PFNA","75.6","%R","","","CRDL","","IS","75.6","","","CRDL","",""
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","13C8-PFOS","13C8-
PFOS","87.6","%R","","","CRDL","","IS","87.6","","","CRDL","",""
"NON-B03-GW","537 MOD","RES","1902189-10","Vista","13C2-PFDA","13C2-
PFDA","65.7","%R","","","CRDL","","IS","65.7","","","CRDL","",""
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "56.0", "%R", "", "", "CRDL", "", "IS", "56.0", "", "", "CRDL", "", ""
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "53.6", "%R", "", "CRDL", "", "IS", "53.6", "", "", "CRDL", "", ""
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "13C2-PFUnA", "13C2-
PFUnA","57.9","%R","","","CRDL","","IS","57.9","","","CRDL","",""
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "13C2-PFDoA", "13C2-
PFDoA","41.6","%R","H","","CRDL","","IS","41.6","","","CRDL","",""
"NON-B03-GW", "537 MOD", "RES", "1902189-10", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","27.2","%R","H","","CRDL","","IS","27.2","","","CRDL","",""
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","375-73-
5","PFBS","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","307-24-
4","PFHxA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","375-85-
9","PFHpA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","355-46-
4","PFHxS","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","335-67-
1", "PFOA", "0.00420", "ug/L", "U", "0.00420", "CRDL", "", "TRG", "", "", "0.00842", "CRDL", "YES", "0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","375-95-
1","PFNA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW", "537 MOD", "RES", "1902189-11", "Vista", "1763-23-
1","PFOS","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","335-76-
2","PFDA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","2355-31-
9","NMeFOSAA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","2991-50-
6","NEtFOSAA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","2058-94-
8","PFUnA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","307-55-
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","72629-94-
8","PFTrDA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW", "537 MOD", "RES", "1902189-11", "Vista", "376-06-
7","PFTeDA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00842","CRDL","YES","0.00288"
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","13C3-PFBS","13C3-
PFBS","94.8","%R","","","CRDL","","IS","94.8","","","CRDL","",""
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","13C2-PFHxA","13C2-
PFHxA","92.3","%R","","","CRDL","","IS","92.3","","","CRDL","",""
"EB-07162019-GW", "537 MOD", "RES", "1902189-11", "Vista", "13C4-PFHpA", "13C4-
PFHpA","94.7","%R","","","CRDL","","IS","94.7","","","CRDL","",""
"EB-07162019-GW", "537 MOD", "RES", "1902189-11", "Vista", "13C3-PFHxS", "13C3-
PFHxS","99.0","%R","","","CRDL","","IS","99.0","","","CRDL","",""
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","13C2-PFOA","13C2-
PFOA","88.8","%R","","","CRDL","","IS","88.8","","","CRDL","",""
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","13C5-PFNA","13C5-
PFNA","84.2","%R","","","CRDL","","IS","84.2","","","CRDL","",""
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","13C8-PFOS","13C8-
PFOS","92.0","%R","","","CRDL","","IS","92.0","","","CRDL","",""
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","13C2-PFDA","13C2-
PFDA","74.2","%R","","","CRDL","","IS","74.2","","","CRDL","",""
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","d3-MeFOSAA","d3-
MeFOSAA","62.0","%R","","","CRDL","","IS","62.0","","","CRDL","",""
"EB-07162019-GW", "537 MOD", "RES", "1902189-11", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "68.7", "%R", "", "CRDL", "", "IS", "68.7", "", "", "CRDL", "", ""
"EB-07162019-GW","537 MOD","RES","1902189-11","Vista","13C2-PFUnA","13C2-
PFUnA","72.0","%R","","","CRDL","","IS","72.0","","","CRDL","",""
"EB-07162019-GW", "537 MOD", "RES", "1902189-11", "Vista", "13C2-PFDoA", "13C2-
PFDoA","70.4","%R","","","CRDL","","IS","70.4","","","CRDL","",""
"EB-07162019-GW", "537 MOD", "RES", "1902189-11", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","79.7","%R","","","CRDL","","IS","79.7","","","CRDL","",""
"NAOA-B06-GW","537 MOD","RES","1902189-12","Vista","375-73-
5","PFBS","0.166","ug/L","","0.00400","CRDL","","TRG","","","0.00802","CRDL","YES","0.00275"
"NAOA-B06-GW","537 MOD","RES","1902189-12","Vista","307-24-
4", "PFHxA", "0.932", "ug/L", "", "0.00400", "CRDL", "", "TRG", "", "", "0.00802", "CRDL", "YES", "0.00275", "CRDL", "YES", "VES", "VES"
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "375-85-
9", "PFHpA", "0.615", "ug/L", "", "0.00400", "CRDL", "", "TRG", "", "", "0.00802", "CRDL", "YES", "0.00275", "CRDL", "YES", "CRDL", "YES", "0.00275", "CRDL", "YES", "YES",
"NAOA-B06-GW", "537 MOD", "DL", "1902189-12", "Vista", "355-46-
4","PFHxS","4.77","ug/L","D","0.0200","CRDL","","TRG","","","0.0401","CRDL","YES","0.0137"
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "335-67-
1","PFOA","0.571","ug/L","","0.00400","CRDL","","TRG","","","0.00802","CRDL","YES","0.00275"
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "375-95-
"NAOA-B06-GW","537 MOD","RES","1902189-12","Vista","1763-23-
1","PFOS","0.0433","ug/L","","0.00400","CRDL","","TRG","","","0.00802","CRDL","YES","0.00275"
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "335-76-
2","PFDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00802","CRDL","YES","0.00275"
"NAOA-B06-GW","537 MOD","RES","1902189-12","Vista","2355-31-
9","NMeFOSAA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00802","CRDL","YES","0.00275"
"NAOA-B06-GW","537 MOD","RES","1902189-12","Vista","2991-50-
6","NEtFOSAA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00802","CRDL","YES","0.00275"
"NAOA-B06-GW","537 MOD","RES","1902189-12","Vista","2058-94-
8","PFUnA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00802","CRDL","YES","0.00275"
"NAOA-B06-GW","537 MOD","RES","1902189-12","Vista","307-55-
1", "PFDoA", "0.00400", "ug/L", "U", "0.00400", "CRDL", "", "TRG", "", "", "0.00802", "CRDL", "YES", "0.00275", "CRDL", "YES", "Y
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "72629-94-
8","PFTrDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00802","CRDL","YES","0.00275"
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "376-06-
7","PFTeDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00802","CRDL","YES","0.00275"
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C3-PFBS", "13C3-
PFBS","122","%R","","","CRDL","","IS","122","","","CRDL","",""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C2-PFHxA", "13C2-
PFHxA","96.8","%R","","","CRDL","","IS","96.8","","","CRDL","",""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C4-PFHpA", "13C4-
PFHpA","99.0","%R","","","CRDL","","IS","99.0","","","CRDL","",""
"NAOA-B06-GW","537 MOD","DL","1902189-12","Vista","13C3-PFHxS","13C3-
PFHxS","116","%R","D","","CRDL","","IS","116","","","CRDL","",""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C2-PFOA", "13C2-
PFOA","96.2","%R","","","CRDL","","IS","96.2","","","CRDL","",""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C5-PFNA", "13C5-
PFNA","95.7","%R","","","CRDL","","IS","95.7","","","CRDL","",""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C8-PFOS", "13C8-
PFOS","106","%R","","","CRDL","","IS","106","","","CRDL","",""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C2-PFDA", "13C2-
PFDA","89.5","%R","","","CRDL","","IS","89.5","","","CRDL","",""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "64.7", "%R", "", "", "CRDL", "", "IS", "64.7", "", "", "CRDL", "", ""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "62.8", "%R", "", "CRDL", "", "IS", "62.8", "", "", "CRDL", "", ""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C2-PFUnA", "13C2-
PFUnA","73.9","%R","","","CRDL","","IS","73.9","","","CRDL","",""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C2-PFDoA", "13C2-
PFDoA","59.6","%R","","","CRDL","","IS","59.6","","","CRDL","",""
"NAOA-B06-GW", "537 MOD", "RES", "1902189-12", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","31.0","%R","H","","CRDL","","IS","31.0","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "375-73-
5","PFBS","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019","537 MOD","RES","1902189-13","Vista","307-24-
4","PFHxA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "375-85-
9","PFHpA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "355-46-
4","PFHxS","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019","537 MOD","RES","1902189-13","Vista","335-67-
"FRB-07162019","537 MOD","RES","1902189-13","Vista","375-95-
1","PFNA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "1763-23-
1","PFOS","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "335-76-
2","PFDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "2355-31-
9","NMeFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "2991-50-
6","NEtFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "2058-94-
8","PFUnA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "307-55-
1","PFDoA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00855","CRDL","YES","0.00293"
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "72629-94-
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "376-06-
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C3-PFBS", "13C3-
PFBS","88.9","%R","","","CRDL","","IS","88.9","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C2-PFHxA", "13C2-
PFHxA","91.7","%R","","","CRDL","","IS","91.7","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C4-PFHpA", "13C4-
PFHpA","92.8","%R","","","CRDL","","IS","92.8","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C3-PFHxS", "13C3-
PFHxS", "91.0", "%R", "", "CRDL", "", "IS", "91.0", "", "", "CRDL", "", ""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C2-PFOA", "13C2-
PFOA", "90.0", "%R", "", "CRDL", "", "IS", "90.0", "", "", "CRDL", "", ""
"FRB-07162019","537 MOD","RES","1902189-13","Vista","13C5-PFNA","13C5-
PFNA","83.7","%R","","","CRDL","","IS","83.7","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C8-PFOS", "13C8-
PFOS","91.5","%R","","","CRDL","","IS","91.5","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C2-PFDA", 
PFDA","76.2","%R","","","CRDL","","IS","76.2","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","64.0","%R","","","CRDL","","IS","64.0","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","69.5","%R","","","CRDL","","IS","69.5","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C2-PFUnA", "13C2-
PFUnA","75.0","%R","","","CRDL","","IS","75.0","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C2-PFDoA", "13C2-
PFDoA","72.2","%R","","","CRDL","","IS","72.2","","","CRDL","",""
"FRB-07162019", "537 MOD", "RES", "1902189-13", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA", "80.1", "%R", "", "", "CRDL", "", "IS", "80.1", "", "", "CRDL", "", ""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "375-73-
5","PFBS","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "307-24-
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "375-85-
9","PFHpA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"\\"EB-07162019","537 MOD","RES","1902189-14","Vista","355-46-
4","PFHxS","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "335-67-
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "375-95-
1","PFNA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "1763-23-
1","PFOS","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "335-76-
2","PFDA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "2355-31-
9","NMeFOSAA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "2991-50-
6","NEtFOSAA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"
"EB-07162019","537 MOD","RES","1902189-14","Vista","2058-94-
8","PFUnA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "307-55-
1","PFDoA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289" "EB-07162019","537 MOD","RES","1902189-14","Vista","72629-94-
8", "PFTrDA", "0.00420", "ug/L", "U", "0.00420", "CRDL", "", "TRG", "", "", "0.00843", "CRDL", "YES", "0.00289"
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "376-06-
7","PFTeDA","0.00420","ug/L","U","0.00420","CRDL","","TRG","","","0.00843","CRDL","YES","0.00289"
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C3-PFBS", "13C3-
PFBS","94.4","%R","","","CRDL","","IS","94.4","","","CRDL","",""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C2-PFHxA", "13C2-
PFHxA","94.9","%R","","","CRDL","","IS","94.9","","","CRDL","",""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C4-PFHpA", "13C4-
PFHpA","99.0","%R","","","CRDL","","IS","99.0","","","CRDL","",""
"EB-07162019","537 MOD","RES","1902189-14","Vista","13C3-PFHxS","13C3-
PFHxS", "96.0", "%R", "", "CRDL", "", "IS", "96.0", "", "", "CRDL", "", ""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C2-PFOA", "13C2-
PFOA","92.0","%R","","","CRDL","","IS","92.0","","","CRDL","",""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C5-PFNA", "13C5-
PFNA", "90.9", "%R", "", "CRDL", "", "IS", "90.9", "", "", "CRDL", "", ""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C8-PFOS", "13C8-
PFOS","91.6","%R","","","CRDL","","IS","91.6","","","CRDL","",""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C2-PFDA", "13C2-
PFDA","84.7","%R","","","CRDL","","IS","84.7","","","CRDL","",""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","71.4","%R","","","CRDL","","IS","71.4","","","CRDL","",""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","72.5","%R","","","CRDL","","IS","72.5","","","CRDL","",""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C2-PFUnA", "1
PFUnA","76.5","%R","","","CRDL","","IS","76.5","","","CRDL","",""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C2-PFDoA", "13C2-
PFDoA","77.3","%R","","","CRDL","","IS","77.3","","","CRDL"."",""
"EB-07162019", "537 MOD", "RES", "1902189-14", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","82.1","%R","","","CRDL","","IS","82.1","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "375-73-
5","PFBS","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "307-24-
4","PFHxA","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "375-85-
9","PFHpA","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "355-46-
4","PFHxS","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "335-67-
1","PFOA","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "375-95-
1","PFNA","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "1763-23-
1", "PFOS", "0.994", "ug/kg", "U", "0.994", "CRDL", "", "TRG", "", "1.99", "CRDL", "YES", "0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "335-76-
2","PFDA","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "2355-31-
9","NMeFOSAA","0.994","ug/kg","U","0.994","CRDL","","TRG","","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "2991-50-
6","NEtFOSAA","0.994","ug/kg","U","0.994","CRDL","","TRG","","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "2058-94-
8","PFUnA","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "307-55-
1", "PFDoA", "0.994", "ug/kg", "U", "0.994", "CRDL", "", "TRG", "", "", "1.99", "CRDL", "YES", "0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "72629-94-
8","PFTrDA","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "376-06-
7","PFTeDA","0.994","ug/kg","U","0.994","CRDL","","TRG","","1.99","CRDL","YES","0.840"
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C3-PFBS", "13C3-
PFBS","66.3","%R","","","CRDL","","IS","66.3","","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C2-PFHxA", "13C2-
PFHxA","85.8","%R","","","CRDL","","IS","85.8","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C4-PFHpA", "13C4-
PFHpA","93.1","%R","","","CRDL","","IS","93.1","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C3-PFHxS", "13C3-
PFHxS","77.6","%R","","","CRDL","","IS","77.6","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C2-PFOA", "13C2-
PFOA", "83.5", "%R", "", "", "CRDL", "", "IS", "83.5", "", "", "CRDL", "", ""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C5-PFNA", "13C5-
PFNA","76.6","%R","","","CRDL","","IS","76.6","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C8-PFOS", "13C8-
PFOS","92.7","%R","","CRDL","","IS","92.7","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C2-PFDA", "13C2-
PFDA","57.6","%R","","","CRDL","","IS","57.6","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","47.8","%R","H","","CRDL","","IS","47.8","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "58.7", "%R", "", "CRDL", "", "IS", "58.7", "", "", "CRDL", "", ""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C2-PFUnA", "13C2-
PFUnA","59.8","%R","","","CRDL","","IS","59.8","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C2-PFDoA", "13C2-
PFDoA","47.4","%R","H","","CRDL","","IS","47.4","","","CRDL","",""
"NAOA-B04-SO-69-69.5", "537 MOD", "RES", "1902189-15", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","61.1","%R","","","CRDL","","IS","61.1","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "375-73-
5","PFBS","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "307-24-
4","PFHxA","1.35","ug/kg","J","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "375-85-
9","PFHpA","1.22","ug/kg","J","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5","537 MOD","RES","1902189-16","Vista","355-46-
4","PFHxS","16.7","ug/kg","","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "335-67-
1","PFOA","13.2","ug/kg","","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "375-95-
1","PFNA","1.36","ug/kg","J","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "1763-23-
1","PFOS","129","ug/kg","","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "335-76-
2","PFDA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "2355-31-
9","NMeFOSAA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "2991-50-
6","NEtFOSAA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5","537 MOD","RES","1902189-16","Vista","2058-94-
8","PFUnA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5","537 MOD","RES","1902189-16","Vista","307-55-
1", "PFDoA", "0.998", "ug/kg", "U", "0.998", "CRDL", "", "TRG", "", "", "2.00", "CRDL", "YES", "0.844"
"SAOA-B02-SO-5-5.5","537 MOD","RES","1902189-16","Vista","72629-94-
8","PFTrDA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "376-06-
7","PFTeDA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C3-PFBS", "13C3-
PFBS","84.1","%R","","","CRDL","","IS","84.1","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C2-PFHxA", "13C2-PFHx
PFHxA","87.2","%R","","","CRDL","","IS","87.2","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C4-PFHpA", "13C4-PFHP
PFHpA","90.6","%R","","","CRDL","","IS","90.6","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C3-PFHxS", "13C3-PFHx
PFHxS","111","%R","","","CRDL","","IS","111","","","CRDL","",""
"SAOA-B02-SO-5-5.5","537 MOD","RES","1902189-16","Vista","13C2-PFOA","13C2-
PFOA","88.2","%R","","","CRDL","","IS","88.2","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C5-PFNA", "13C5-
PFNA","76.7","%R","","","CRDL","","IS","76.7","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C8-PFOS", "13C8-
PFOS","101","%R","","","CRDL","","IS","101","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C2-PFDA", "13C2-
PFDA","49.8","%R","H","","CRDL","","IS","49.8","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "54.2", "%R", "", "", "CRDL", "", "IS", "54.2", "", "", "CRDL", "", ""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "50.1", "%R", "", "CRDL", "", "IS", "50.1", "", "CRDL", "", ""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C2-PFUnA", "13C2-
PFUnA","67.1","%R","","","CRDL","","IS","67.1","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C2-PFDoA", "13C2-
PFDoA","49.1","%R","H","","CRDL","","IS","49.1","","","CRDL","",""
"SAOA-B02-SO-5-5.5", "537 MOD", "RES", "1902189-16", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","68.6","%R","","","CRDL","","IS","68.6","","","CRDL","",""
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "375-73-
 5","PFBS","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
"SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "307-24-
4","PFHxA","2.85","ug/kg","","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
"SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "375-85-
9", "PFHpA", "1.53", "ug/kg", "J", "0.998", "CRDL", "", "TRG", "", "", "2.00", "CRDL", "YES", "0.843", "CRDL", "Ug/kg", "Ug/kg"
"SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "355-46-
4","PFHxS","18.1","ug/kg","","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
"SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "335-67-
1","PFOA","21.5","ug/kg","","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "375-95-
1","PFNA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "1763-23-
1","PFOS","181","ug/kg","","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "335-76-
2","PFDA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
"SAOA-B02-SO-20-20.5","537 MOD","RES","1902189-17","Vista","2355-31-
"SAOA-B02-SO-20-20.5","537 MOD","RES","1902189-17","Vista","2991-50-
6","NEtFOSAA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "2058-94-
 8","PFUnA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
"SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "307-55-
1","PFDoA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
"SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "72629-94-
8","PFTrDA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "376-06-
7","PFTeDA","0.998","ug/kg","U","0.998","CRDL","","TRG","","","2.00","CRDL","YES","0.843"
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C3-PFBS", "13C3-
PFBS","81.7","%R","","","CRDL","","IS","81.7","","","CRDL","",""
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C2-PFHxA", "13C2-
PFHxA","85.0","%R","","","CRDL","","IS","85.0","","","CRDL","",""
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C4-PFHpA", "13C4-
PFHpA","90.9","%R","","","CRDL","","IS","90.9","","","CRDL","",""
"SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C3-PFHxS", "13C3-
PFHxS", "98.2", "%R", "", "CRDL", "", "IS", "98.2", "", "", "CRDL", "", ""
 "SAOA-B02-SO-20-20.5","537 MOD","RES","1902189-17","Vista","13C2-PFOA","13C2-
PFOA","95.8","%R","","","CRDL","","IS","95.8","","","CRDL","",""
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C5-PFNA", "13C5-
PFNA","73.5","%R","","","CRDL","","IS","73.5","","","CRDL","",""
"SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C8-PFOS", "13C8-
PFOS","94.3","%R","","","CRDL","","IS","94.3","","","CRDL","",""
"SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C2-PFDA", "13C2-
PFDA","56.2","%R","","","CRDL","","IS","56.2","","","CRDL","",""
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "51.4", "%R", "", "", "CRDL", "", "IS", "51.4", "", "", "CRDL", "", ""
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "55.9", "%R", "", "CRDL", "", "IS", "55.9", "", "", "CRDL", "", ""
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C2-PFUnA", "13C2-
PFUnA","71.9","%R","","","CRDL","","IS","71.9","","","CRDL","",""
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C2-PFDoA", "13C2-
PFDoA","52.2","%R","","","CRDL","","IS","52.2","","","CRDL","",""
 "SAOA-B02-SO-20-20.5", "537 MOD", "RES", "1902189-17", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","79.7","%R","","","CRDL","","IS","79.7","","","CRDL","",""
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "375-73-
5","PFBS","0.911","ug/kg","J","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "307-24-
4","PFHxA","2.83","ug/kg","","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "375-85-
"SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "355-46-
4","PFHxS","1.71","ug/kg","J","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "335-67-
1","PFOA","1.05","ug/kg","J","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "375-95-
1","PFNA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "1763-23-
1","PFOS","7.11","ug/kg","","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "335-76-
2","PFDA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "2355-31-
9","NMeFOSAA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "2991-50-
6","NEtFOSAA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
"SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "2058-94-
8","PFUnA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "307-55-
1","PFDoA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
 "SAOA-B02-SO-56-56.5","537 MOD","RES","1902189-18","Vista","72629-94-
8","PFTrDA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "376-06-
7","PFTeDA","0.999","ug/kg","U","0.999","CRDL","","TRG","","","2.00","CRDL","YES","0.844"
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C3-PFBS", "13C3-
PFBS","72.2","%R","","","CRDL","","IS","72.2","","","CRDL","",""
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C2-PFHxA", "13C2-
PFHxA","82.0","%R","","","CRDL","","IS","82.0","","","CRDL","",""
"SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C4-PFHpA", "13C4-PF
PFHpA","88.0","%R","","","CRDL","","IS","88.0","","","CRDL","",""
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C3-PFHxS", "13C3-
PFHxS", "82.3", "%R", "", "", "CRDL", "", "IS", "82.3", "", "", "CRDL", "", ""
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C2-PFOA", "13C2-
PFOA", "86.9", "%R", "", "", "CRDL", "", "IS", "86.9", "", "", "CRDL", "", ""
"SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C5-PFNA", "13C5-
PFNA","77.8","%R","","","CRDL","","IS","77.8","","","CRDL","",""
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C8-PFOS", "13C8-
PFOS","92.2","%R","","","CRDL","","IS","92.2","","","CRDL","",""
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C2-PFDA", "13C2-
PFDA","58.6","%R","","","CRDL","","IS","58.6","","","CRDL","",""
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "51.7", "%R", "", "", "CRDL", "", "IS", "51.7", "", "", "CRDL", "", ""
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "54.9", "%R", "", "CRDL", "", "IS", "54.9", "", "", "CRDL", "", ""
"SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C2-PFUnA", "13C2-PF
PFUnA","60.7","%R","","","CRDL","","IS","60.7","","","CRDL","",""
"SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C2-PFDoA", "13C2-
PFDoA","45.8","%R","H","","CRDL","","IS","45.8","","","CRDL","",""
 "SAOA-B02-SO-56-56.5", "537 MOD", "RES", "1902189-18", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","65.0","%R","","","CRDL","","IS","65.0","","","CRDL","",""
"FRB-07172019","537 MOD","RES","1902189-19","Vista","375-73-
5","PFBS","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019","537 MOD","RES","1902189-19","Vista","307-24-
4","PFHxA","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "375-85-
9","PFHpA","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "355-46-
4","PFHxS","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019","537 MOD","RES","1902189-19","Vista","335-67-
"FRB-07172019","537 MOD","RES","1902189-19","Vista","375-95-
1","PFNA","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "1763-23-
1","PFOS","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "335-76-
2","PFDA","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "2355-31-
9","NMeFOSAA","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "2991-50-
6","NEtFOSAA","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "2058-94-
8","PFUnA","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019","537 MOD","RES","1902189-19","Vista","307-55-
1","PFDoA","0.00410","ug/L","U","0.00410","CRDL","","TRG","","","0.00819","CRDL","YES","0.00281"
"FRB-07172019","537 MOD","RES","1902189-19","Vista","72629-94-
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "376-06-
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "13C3-PFBS", "13C3-
PFBS","89.2","%R","","","CRDL","","IS","89.2","","","CRDL","",""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "13C2-PFHxA", "13C2-
PFHxA","91.9","%R","","","CRDL","","IS","91.9","","","CRDL","",""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "13C4-PFHpA", "13C4-
PFHpA","91.9","%R","","","CRDL","","IS","91.9","","","CRDL","",""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "13C3-PFHxS", "13C3-
PFHxS","90.8","%R","","","CRDL","","IS","90.8","","","CRDL","",""
"FRB-07172019","537 MOD","RES","1902189-19","Vista","13C2-PFOA","13C2-
PFOA", "90.1", "%R", "", "CRDL", "", "IS", "90.1", "", "CRDL", "", ""
"FRB-07172019","537 MOD","RES","1902189-19","Vista","13C5-PFNA","13C5-
PFNA","78.9","%R","","","CRDL","","IS","78.9","","","CRDL","",""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "13C8-PFOS", "13C8-
PFOS","91.0","%R","","","CRDL","","IS","91.0","","","CRDL","",""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "13C2-PFDA", 
PFDA","72.8","%R","","","CRDL","","IS","72.8","","","CRDL","",""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","65.2","%R","","","CRDL","","IS","65.2","","","CRDL","",""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "68.3", "%R", "", "", "CRDL", "", "IS", "68.3", "", "", "CRDL", "", ""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "13C2-PFUnA", "13C2-
PFUnA","72.5","%R","","","CRDL","","IS","72.5","","","CRDL","",""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "13C2-PFDoA", "13C2-
PFDoA","72.8","%R","","","CRDL","","IS","72.8","","","CRDL","",""
"FRB-07172019", "537 MOD", "RES", "1902189-19", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","75.8","%R","","","CRDL","","IS","75.8","","","CRDL","",""
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "375-73-
5","PFBS","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "307-24-
4", "PFHxA", "0.00417", "ug/L", "U", "0.00417", "CRDL", "", "TRG", "", "", "0.00834", "CRDL", "YES", "0.00286", "CRDL", "YES", "
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "375-85-
9","PFHpA","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286" "EB-07172019","537 MOD","RES","1902189-20","Vista","355-46-
4","PFHxS","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "335-67-
1", "PFOA", "0.00417", "ug/L", "U", "0.00417", "CRDL", "", "TRG", "", "", "0.00834", "CRDL", "YES", "0.00286"
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "375-95-
1","PFNA","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "1763-23-
1","PFOS","0.0123","ug/L","","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "335-76-
2","PFDA","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "2355-31-
9","NMeFOSAA","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "2991-50-
6","NEtFOSAA","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
"EB-07172019","537 MOD","RES","1902189-20","Vista","2058-94-
8","PFUnA","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "307-55-
1","PFDoA","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286" "EB-07172019","537 MOD","RES","1902189-20","Vista","72629-94-
8","PFTrDA","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "376-06-
7","PFTeDA","0.00417","ug/L","U","0.00417","CRDL","","TRG","","","0.00834","CRDL","YES","0.00286"
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C3-PFBS", "13C3-
PFBS","99.2","%R","","","CRDL","","IS","99.2","","","CRDL","",""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C2-PFHxA", "13C2-
PFHxA","95.7","%R","","","CRDL","","IS","95.7","","","CRDL","",""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C4-PFHpA", "13C4-
PFHpA","97.9","%R","","","CRDL","","IS","97.9","","","CRDL","",""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C3-PFHxS", "13C3-
PFHxS","101","%R","","","CRDL","","IS","101","","","CRDL","",""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C2-PFOA", "
PFOA","92.2","%R","","","CRDL","","IS","92.2","","","CRDL","",""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C5-PFNA", "13C5-
PFNA","84.3","%R","","","CRDL","","IS","84.3","","","CRDL","",""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C8-PFOS", "13C8-
PFOS","101","%R","","","CRDL","","IS","101","","","CRDL","",""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C2-PFDA", "13C2-
PFDA","74.4","%R","","","CRDL","","IS","74.4","","","CRDL","",""
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "65.5", "%R", "", "", "CRDL", "", "IS", "65.5", "", "", "CRDL", "", ""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","65.4","%R","","","CRDL","","IS","65.4","","","CRDL","",""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C2-PFUnA", "1
PFUnA","72.7","%R","","","CRDL","","IS","72.7","","","CRDL","",""
"EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C2-PFDoA", "1
PFDoA","60.1","%R","","","CRDL","","IS","60.1","","","CRDL"."".""
 "EB-07172019", "537 MOD", "RES", "1902189-20", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","73.9","%R","","","CRDL","","IS","73.9","","","CRDL","",""
"B9G0224-BLK1", "537 MOD", "RES", "B9G0224-BLK1", "Vista", "375-73-
5","PFBS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","307-24-
4","PFHxA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","375-85-
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","355-46-
4","PFHxS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","335-67-
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","375-95-
1","PFNA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0224-BLK1", "537 MOD", "RES", "B9G0224-BLK1", "Vista", "1763-23-
1","PFOS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0224-BLK1", "537 MOD", "RES", "B9G0224-BLK1", "Vista", "335-76-
2","PFDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","2355-31-
9","NMeFOSAA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","2991-50-
6","NEtFOSAA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","2058-94-
8","PFUnA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","307-55-
"B9G0224-BLK1", "537 MOD", "RES", "B9G0224-BLK1", "Vista", "72629-94-
"B9G0224-BLK1", "537 MOD", "RES", "B9G0224-BLK1", "Vista", "376-06-
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C3-PFBS","13C3-
PFBS","91.7","%R","","","CRDL","","IS","91.7","","","CRDL","",""
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C2-PFHxA","13C2-
PFHxA","91.7","%R","","","CRDL","","IS","91.7","","","CRDL","",""
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C4-PFHpA","13C4-
PFHpA","97.6","%R","","","CRDL","","IS","97.6","","","CRDL","",""
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C3-PFHxS","13C3-
PFHxS","95.6","%R","","","CRDL","","IS","95.6","","","CRDL","",""
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C2-PFOA","13C2-
PFOA","86.7","%R","","","CRDL","","IS","86.7","","","CRDL","",""
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C5-PFNA","13C5-
PFNA","84.8","%R","","","CRDL","","IS","84.8","","","CRDL","",""
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C8-PFOS","13C8-
PFOS", "85.2", "%R", "", "", "CRDL", "", "IS", "85.2", "", "", "CRDL", "", ""
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C2-PFDA","13C2-
PFDA","73.1","%R","","","CRDL","","IS","73.1","","","CRDL","",""
"B9G0224-BLK1", "537 MOD", "RES", "B9G0224-BLK1", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","72.7","%R","","","CRDL","","IS","72.7","","","CRDL","",""
"B9G0224-BLK1", "537 MOD", "RES", "B9G0224-BLK1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","76.2","%R","","","CRDL","","IS","76.2","","","CRDL","",""
"B9G0224-BLK1", "537 MOD", "RES", "B9G0224-BLK1", "Vista", "13C2-PFUnA", "13C2-
PFUnA","79.3","%R","","","CRDL","","IS","79.3","","","CRDL","",""
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C2-PFDoA","13C2-
PFDoA","72.7","%R","","","CRDL","","IS","72.7","","","CRDL","",""
"B9G0224-BLK1","537 MOD","RES","B9G0224-BLK1","Vista","13C2-PFTeDA","13C2-
```

```
PFTeDA","61.3","%R","","","CRDL","","IS","61.3","","","CRDL","",""
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","375-73-
5","PFBS","0.0755","ug/L","","0.00400","CRDL","","SPK","94.3","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","307-24-
4","PFHxA","0.0779","ug/L","","0.00400","CRDL","","SPK","97.4","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "375-85-
9","PFHpA","0.0760","ug/L","","0.00400","CRDL","","SPK","95.0","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "355-46-
4","PFHxS","0.0858","ug/L","","0.00400","CRDL","","SPK","107","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "335-67-
1","PFOA","0.0778","ug/L","","0.00400","CRDL","","SPK","97.2","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "375-95-
1", "PFNA", "0.0801", "ug/L", "", "0.00400", "CRDL", "", "SPK", "100", "", "0.00800", "CRDL", "YES", "0.00274", "CRDL", "Ug/L", "Ug/
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","1763-23-
1","PFOS","0.0755","ug/L","","0.00400","CRDL","","SPK","94.4","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","335-76-
2","PFDA","0.0817","ug/L","","0.00400","CRDL","","SPK","102","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","2355-31-
9","NMeFOSAA","0.0827","ug/L","","0.00400","CRDL","","SPK","103","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","2991-50-
6","NEtFOSAA","0.0859","ug/L","","0.00400","CRDL","","SPK","107","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","2058-94-
8","PFUnA","0.0791","ug/L","","0.00400","CRDL","","SPK","98.8","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "307-55-
1","PFDoA","0.0793","ug/L","","0.00400","CRDL","","SPK","99.1","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "72629-94-
8","PFTrDA","0.0674","ug/L","","0.00400","CRDL","","SPK","84.2","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "376-06-
7","PFTeDA","0.0776","ug/L","","0.00400","CRDL","","SPK","96.9","","0.00800","CRDL","YES","0.00274"
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "13C3-PFBS", "13C3-
PFBS","101","%R","","","CRDL","","IS","101","","","CRDL","",""
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","13C2-PFHxA","13C2-
PFHxA","93.8","%R","","","CRDL","","IS","93.8","","","CRDL","",""
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","13C4-PFHpA","13C4-
PFHpA","91.7","%R","","","CRDL","","IS","91.7","","","CRDL","",""
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","13C3-PFHxS","13C3-
PFHxS","103","%R","","","CRDL","","IS","103","","","CRDL","",""
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","13C2-PFOA","13C2-
PFOA","83.8","%R","","","CRDL","","IS","83.8","","","CRDL","",""
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","13C5-PFNA","13C5-
PFNA","78.4","%R","","","CRDL","","IS","78.4","","","CRDL","",""
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "13C8-PFOS", "13C8-
PFOS","83.8","%R","","","CRDL","","IS","83.8","","","CRDL","",""
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","13C2-PFDA","13C2-
PFDA","72.5","%R","","","CRDL","","IS","72.5","","","CRDL","",""
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA", "62.0", "%R", "", "", "CRDL", "", "IS", "62.0", "", "", "CRDL", "", ""
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "64.4", "%R", "", "CRDL", "", "IS", "64.4", "", "", "CRDL", "", ""
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","13C2-PFUnA","13C2-
PFUnA","76.2","%R","","","CRDL","","IS","76.2","","","CRDL","",""
"B9G0224-BS1", "537 MOD", "RES", "B9G0224-BS1", "Vista", "13C2-PFDoA", "13C2-
PFDoA","69.1","%R","","","CRDL","","IS","69.1","","","CRDL","",""
"B9G0224-BS1","537 MOD","RES","B9G0224-BS1","Vista","13C2-PFTeDA","13C2-
```

```
PFTeDA","52.3","%R","","","CRDL","","IS","52.3","","","CRDL","",""
"B9G0224-BSD1", "537 MOD", "RES", "B9G0224-BSD1", "Vista", "375-73-
5","PFBS","0.0801","ug/L","","0.00400","CRDL","","SPK","100","6.01","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","307-24-
4","PFHxA","0.0811","ug/L","","0.00400","CRDL","","SPK","101","4.01","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","375-85-
9","PFHpA","0.0739","ug/L","","0.00400","CRDL","","SPK","92.4","2.79","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","355-46-
4","PFHxS","0.0820","ug/L","","0.00400","CRDL","","SPK","102","4.58","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","335-67-
1", "PFOA", "0.0763", "ug/L", "", "0.00400", "CRDL", "", "SPK", "95.4", "1.93", "0.00800", "CRDL", "YES", "0.00274", "CRDL", "YES", "YES"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","375-95-
1","PFNA","0.0785","ug/L","","0.00400","CRDL","","SPK","98.2","1.91","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","1763-23-
1","PFOS","0.0831","ug/L","","0.00400","CRDL","","SPK","104","9.52","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1", "537 MOD", "RES", "B9G0224-BSD1", "Vista", "335-76-
2","PFDA","0.0815","ug/L","","0.00400","CRDL","","SPK","102","0.322","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","2355-31-
9","NMeFOSAA","0.0815","ug/L","","0.00400","CRDL","","SPK","102","1.46","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","2991-50-
6","NEtFOSAA","0.0840","ug/L","","0.00400","CRDL","","SPK","105","2.33","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","2058-94-
8","PFUnA","0.0800","ug/L","","0.00400","CRDL","","SPK","100","1.13","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","307-55-
1","PFDoA","0.0773","ug/L","","0.00400","CRDL","","SPK","96.6","2.60","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","72629-94-
8","PFTrDA","0.0616","ug/L","","0.00400","CRDL","","SPK","77.1","8.90","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","376-06-
7","PFTeDA","0.0799","ug/L","","0.00400","CRDL","","SPK","99.9","2.98","0.00800","CRDL","YES","0.00274"
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","13C3-PFBS","13C3-
PFBS","95.6","%R","","","CRDL","","IS","95.6","","","CRDL","",""
"B9G0224-BSD1", "537 MOD", "RES", "B9G0224-BSD1", "Vista", "13C2-PFHxA", "13C2-
PFHxA","98.6","%R","","","CRDL","","IS","98.6","","","CRDL","",""
"B9G0224-BSD1", "537 MOD", "RES", "B9G0224-BSD1", "Vista", "13C4-PFHpA", "13C4-
PFHpA","99.2","%R","","","CRDL","","IS","99.2","","","CRDL","",""
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","13C3-PFHxS","13C3-
PFHxS","96.5","%R","","","CRDL","","IS","96.5","","","CRDL","",""
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","13C2-PFOA","13C2-
PFOA", "85.4", "%R", "", "", "CRDL", "", "IS", "85.4", "", "", "CRDL", "", ""
"B9G0224-BSD1", "537 MOD", "RES", "B9G0224-BSD1", "Vista", "13C5-PFNA", "13C5-
PFNA","82.8","%R","","","CRDL","","IS","82.8","","","CRDL","",""
"B9G0224-BSD1", "537 MOD", "RES", "B9G0224-BSD1", "Vista", "13C8-PFOS", "13C8-
PFOS", "85.8", "%R", "", "CRDL", "", "IS", "85.8", "", "", "CRDL", "", ""
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","13C2-PFDA","13C2-
PFDA","75.3","%R","","","CRDL","","IS","75.3","","","CRDL","",""
"B9G0224-BSD1", "537 MOD", "RES", "B9G0224-BSD1", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","60.5","%R","","","CRDL","","IS","60.5","","","CRDL","",""
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","d5-EtFOSAA","d5-
EtFOSAA", "63.2", "%R", "", "CRDL", "", "IS", "63.2", "", "", "CRDL", "", ""
"B9G0224-BSD1", "537 MOD", "RES", "B9G0224-BSD1", "Vista", "13C2-PFUnA", "13C2-
PFUnA","78.9","%R","","","CRDL","","IS","78.9","","","CRDL","",""
"B9G0224-BSD1", "537 MOD", "RES", "B9G0224-BSD1", "Vista", "13C2-PFDoA", "13C2-
PFDoA","72.9","%R","","","CRDL","","IS","72.9","","","CRDL","",""
"B9G0224-BSD1","537 MOD","RES","B9G0224-BSD1","Vista","13C2-PFTeDA","13C2-
```

```
PFTeDA","53.0","%R","","","CRDL","","IS","53.0","","","CRDL","",""
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","375-73-
5","PFBS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","307-24-
4","PFHxA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","375-85-
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","355-46-
4","PFHxS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1", "537 MOD", "RES", "B9G0251-BLK1", "Vista", "335-67-
1","PFOA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1", "537 MOD", "RES", "B9G0251-BLK1", "Vista", "375-95-
1","PFNA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","1763-23-
1","PFOS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","335-76-
2","PFDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","2355-31-
9","NMeFOSAA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","2991-50-
6","NEtFOSAA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","2058-94-
8","PFUnA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","307-55-
1","PFDoA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","72629-94-
"B9G0251-BLK1", "537 MOD", "RES", "B9G0251-BLK1", "Vista", "376-06-
"B9G0251-BLK1", "537 MOD", "RES", "B9G0251-BLK1", "Vista", "13C3-PFBS", "13C3-
PFBS","93.6","%R","","","CRDL","","IS","93.6","","","CRDL","",""
"B9G0251-BLK1", "537 MOD", "RES", "B9G0251-BLK1", "Vista", "13C2-PFHxA", "13C2-
PFHxA","92.9","%R","","","CRDL","","IS","92.9","","","CRDL","",""
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","13C4-PFHpA","13C4-
PFHpA","107","%R","","","CRDL","","IS","107","","","CRDL","",""
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","13C3-PFHxS","13C3-
PFHxS","92.3","%R","","","CRDL","","IS","92.3","","","CRDL","",""
"B9G0251-BLK1", "537 MOD", "RES", "B9G0251-BLK1", "Vista", "13C2-PFOA", "13C2-
PFOA","89.0","%R","","","CRDL","","IS","89.0","","","CRDL","",""
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","13C5-PFNA","13C5-
PFNA","78.1","%R","","","CRDL","","IS","78.1","","","CRDL","",""
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","13C8-PFOS","13C8-
PFOS","99.0","%R","","","CRDL","","IS","99.0","","","CRDL","",""
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","13C2-PFDA","13C2-
PFDA","67.5","%R","","","CRDL","","IS","67.5","","","CRDL","",""
"B9G0251-BLK1", "537 MOD", "RES", "B9G0251-BLK1", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","77.2","%R","","","CRDL","","IS","77.2","","","CRDL","",""
"B9G0251-BLK1", "537 MOD", "RES", "B9G0251-BLK1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","74.3","%R","","","CRDL","","IS","74.3","","","CRDL","",""
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","13C2-PFUnA","13C2-
PFUnA","67.8","%R","","","CRDL","","IS","67.8","","","CRDL","",""
"B9G0251-BLK1","537 MOD","RES","B9G0251-BLK1","Vista","13C2-PFDoA","13C2-
PFDoA","77.2","%R","","","CRDL","","IS","77.2","","","CRDL","",""
"B9G0251-BLK1", "537 MOD", "RES", "B9G0251-BLK1", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","66.2","%R","","","CRDL","","IS","66.2","","","CRDL","",""
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "375-73-
5","PFBS","0.0830","ug/L","","0.00400","CRDL","","SPK","104","","0.00800","CRDL","YES","0.00274"
"B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "307-24-
4","PFHxA","0.0894","ug/L","","0.00400","CRDL","","SPK","112","","0.00800","CRDL","YES","0.00274"
"B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "375-85-
9","PFHpA","0.0883","ug/L","","0.00400","CRDL","","SPK","110","","0.00800","CRDL","YES","0.00274"
"B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "355-46-
4","PFHxS","0.0907","ug/L","","0.00400","CRDL","","SPK","113","","0.00800","CRDL","YES","0.00274"
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "335-67-
1", "PFOA", "0.0878", "ug/L", "", "0.00400", "CRDL", "", "SPK", "110", "", "0.00800", "CRDL", "YES", "0.00274", "CRDL", "Ug/L", "Ug/
 "B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","375-95-
 1","PFNA","0.0867","ug/L","","0.00400","CRDL","","SPK","108","","0.00800","CRDL","YES","0.00274"
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "1763-23-
1","PFOS","0.0830","ug/L","","0.00400","CRDL","","SPK","104","","0.00800","CRDL","YES","0.00274"
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "335-76-
2","PFDA","0.0859","ug/L","","0.00400","CRDL","","SPK","107","","0.00800","CRDL","YES","0.00274"
 "B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","2355-31-
9","NMeFOSAA","0.0907","ug/L","","0.00400","CRDL","","SPK","113","","0.00800","CRDL","YES","0.00274"
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "2991-50-
6","NEtFOSAA","0.0893","ug/L","","0.00400","CRDL","","SPK","112","","0.00800","CRDL","YES","0.00274"
 "B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","2058-94-
 8","PFUnA","0.0874","ug/L","","0.00400","CRDL","","SPK","109","","0.00800","CRDL","YES","0.00274"
"B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","307-55-
1","PFDoA","0.0849","ug/L","","0.00400","CRDL","","SPK","106","","0.00800","CRDL","YES","0.00274"
"B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","72629-94-
8","PFTrDA","0.0743","ug/L","","0.00400","CRDL","","SPK","92.9","","0.00800","CRDL","YES","0.00274"
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "376-06-
7", "PFTeDA", "0.0868", "ug/L", "", "0.00400", "CRDL", "", "SPK", "109", "", "0.00800", "CRDL", "YES", "0.00274", "CRDL", "YES", 
 "B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","13C3-PFBS","13C3-
PFBS","96.9","%R","","","CRDL","","IS","96.9","","","CRDL","",""
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "13C2-PFHxA", "13C2-
PFHxA","94.6","%R","","","CRDL","","IS","94.6","","","CRDL","",""
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "13C4-PFHpA", "13C4-
PFHpA","94.1","%R","","","CRDL","","IS","94.1","","","CRDL","",""
 "B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","13C3-PFHxS","13C3-
PFHxS", "93.5", "%R", "", "CRDL", "", "IS", "93.5", "", "", "CRDL", "", ""
"B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","13C2-PFOA","13C2-
PFOA", "89.9", "%R", "", "CRDL", "", "IS", "89.9", "", "", "CRDL", "", ""
"B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","13C5-PFNA","13C5-
PFNA", "86.2", "%R", "", "", "CRDL", "", "IS", "86.2", "", "", "CRDL", "", ""
"B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","13C8-PFOS","13C8-
PFOS","89.4","%R","","","CRDL","","IS","89.4","","","CRDL","",""
"B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "13C2-PFDA", 
PFDA","73.3","%R","","","CRDL","","IS","73.3","","","CRDL","",""
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","75.0","%R","","","CRDL","","IS","75.0","","","CRDL","",""
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "81.9", "%R", "", "CRDL", "", "IS", "81.9", "", "CRDL", "", ""
 "B9G0251-BS1", "537 MOD", "RES", "B9G0251-BS1", "Vista", "13C2-PFUnA", "13C2-
PFUnA","79.1","%R","","","CRDL","","IS","79.1","","","CRDL","",""
"B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","13C2-PFDoA","13C2-
PFDoA","76.4","%R","","","CRDL","","IS","76.4","","","CRDL","",""
 "B9G0251-BS1","537 MOD","RES","B9G0251-BS1","Vista","13C2-PFTeDA","13C2-
```

```
PFTeDA","61.1","%R","","","CRDL","","IS","61.1","","","CRDL","",""
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","375-73-
5","PFBS","0.0814","ug/L","","0.00400","CRDL","","SPK","102","1.93","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","307-24-
4","PFHxA","0.0887","ug/L","","0.00400","CRDL","","SPK","111","0.846","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","375-85-
9","PFHpA","0.0872","ug/L","","0.00400","CRDL","","SPK","109","1.22","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "355-46-
4","PFHxS","0.0918","ug/L","","0.00400","CRDL","","SPK","115","1.17","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "335-67-
1","PFOA","0.0903","ug/L","","0.00400","CRDL","","SPK","113","2.81","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "375-95-
1","PFNA","0.0865","ug/L","","0.00400","CRDL","","SPK","108","0.295","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","1763-23-
1","PFOS","0.0820","ug/L","","0.00400","CRDL","","SPK","102","1.19","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","335-76-
2","PFDA","0.0928","ug/L","","0.00400","CRDL","","SPK","116","7.75","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","2355-31-
9","NMeFOSAA","0.0883","ug/L","","0.00400","CRDL","","SPK","110","2.61","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","2991-50-
6","NEtFOSAA","0.0939","ug/L","","0.00400","CRDL","","SPK","117","4.92","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","2058-94-
8","PFUnA","0.0879","ug/L","","0.00400","CRDL","","SPK","110","0.607","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","307-55-
1","PFDoA","0.0846","ug/L","","0.00400","CRDL","","SPK","106","0.374","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "72629-94-
8","PFTrDA","0.0683","ug/L","","0.00400","CRDL","","SPK","85.4","8.46","0.00800","CRDL","YES","0.00274"
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "376-06-
7", "PFTeDA", "0.0903", "ug/L", "", "0.00400", "CRDL", "", "SPK", "113", "3.97", "0.00800", "CRDL", "YES", "0.00274", "CRDL", "YES", "YES", "CRDL", "YES", "
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "13C3-PFBS", "13C3-
PFBS","90.8","%R","","","CRDL","","IS","90.8","","","CRDL","",""
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "13C2-PFHxA", "13C2-
PFHxA","91.6","%R","","","CRDL","","IS","91.6","","","CRDL","",""
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","13C4-PFHpA","13C4-
PFHpA","88.8","%R","","","CRDL","","IS","88.8","","","","CRDL","",""
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","13C3-PFHxS","13C3-
PFHxS","82.7","%R","","","CRDL","","IS","82.7","","","CRDL","",""
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "13C2-PFOA", "13C2-
PFOA","83.1","%R","","","CRDL","","IS","83.1","","","CRDL","",""
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","13C5-PFNA","13C5-
PFNA","70.0","%R","","","CRDL","","IS","70.0","","","CRDL","",""
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "13C8-PFOS", "13C8-
PFOS","86.2","%R","","","CRDL","","IS","86.2","","","CRDL","",""
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "13C2-PFDA", "13C2-
PFDA","62.1","%R","","","CRDL","","IS","62.1","","","CRDL","",""
"B9G0251-BSD1", "537 MOD", "RES", "B9G0251-BSD1", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","66.9","%R","","","CRDL","","IS","66.9","","","CRDL","",""
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","d5-EtFOSAA","d5-
EtFOSAA", "67.7", "%R", "", "CRDL", "", "IS", "67.7", "", "", "CRDL", "", ""
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","13C2-PFUnA","13C2-
PFUnA","69.6","%R","","","CRDL","","IS","69.6","","","CRDL","",""
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","13C2-PFDoA","13C2-
PFDoA","68.5","%R","","","CRDL","","IS","68.5","","","CRDL","",""
"B9G0251-BSD1","537 MOD","RES","B9G0251-BSD1","Vista","13C2-PFTeDA","13C2-
```

```
PFTeDA","46.4","%R","H","","CRDL","","IS","46.4","","","CRDL","",""
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "375-73-
5","PFBS","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","307-24-
4","PFHxA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","375-85-
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","355-46-
4","PFHxS","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","335-67-
1","PFOA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","375-95-
1","PFNA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "1763-23-
1","PFOS","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "335-76-
2","PFDA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","2355-31-
9","NMeFOSAA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","2991-50-
6","NEtFOSAA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","2058-94-
8","PFUnA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","307-55-
1","PFDoA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "72629-94-
8","PFTrDA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "376-06-
7","PFTeDA","1.00","ug/kg","U","1.00","CRDL","","TRG","","","2.00","CRDL","YES","0.845"
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","13C3-PFBS","13C3-
PFBS","77.5","%R","","","CRDL","","IS","77.5","","","CRDL","",""
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","13C2-PFHxA","13C2-
PFHxA","90.9","%R","","","CRDL","","IS","90.9","","","CRDL","",""
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","13C4-PFHpA","13C4-
PFHpA","102","%R","","","CRDL","","IS","102","","","CRDL","",""
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","13C3-PFHxS","13C3-
PFHxS","92.4","%R","","","CRDL","","IS","92.4","","","CRDL","",""
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "13C2-PFOA", "13C2-
PFOA","91.5","%R","","","CRDL","","IS","91.5","","","CRDL","",""
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","13C5-PFNA","13C5-
PFNA","79.4","%R","","","CRDL","","IS","79.4","","","CRDL","",""
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","13C8-PFOS","13C8-
PFOS","102","%R","","","CRDL","","IS","102","","","CRDL","",""
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "13C2-PFDA", "13C2-
PFDA","56.7","%R","","","CRDL","","IS","56.7","","","CRDL","",""
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","52.9","%R","","","CRDL","","IS","52.9","","","CRDL","",""
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "57.5", "%R", "", "CRDL", "", "IS", "57.5", "", "", "CRDL", "", ""
"B9G0264-BLK1", "537 MOD", "RES", "B9G0264-BLK1", "Vista", "13C2-PFUnA", "13C2-
PFUnA","61.7","%R","","","CRDL","","IS","61.7","","","CRDL","",""
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","13C2-PFDoA","13C2-
PFDoA","49.6","%R","H","","CRDL","","IS","49.6","","","CRDL","",""
"B9G0264-BLK1","537 MOD","RES","B9G0264-BLK1","Vista","13C2-PFTeDA","13C2-
```

```
PFTeDA","69.1","%R","","","CRDL","","IS","69.1","","","CRDL","",""
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "375-73-
5","PFBS","12.6","ug/kg","","1.00","CRDL","","SPK","126","","2.00","CRDL","YES","0.845"
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","307-24-
4","PFHxA","13.0","ug/kg","","1.00","CRDL","","SPK","130","","2.00","CRDL","YES","0.845"
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "375-85-
9","PFHpA","9.29","ug/kg","","1.00","CRDL","","SPK","92.9","","2.00","CRDL","YES","0.845"
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "355-46-
4","PFHxS","10.3","ug/kg","","1.00","CRDL","","SPK","103","","2.00","CRDL","YES","0.845"
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "335-67-
1","PFOA","11.2","ug/kg","","1.00","CRDL","","SPK","112","","2.00","CRDL","YES","0.845"
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "375-95-
1","PFNA","10.5","ug/kg","","1.00","CRDL","","SPK","105","","2.00","CRDL","YES","0.845"
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","1763-23-
1","PFOS","9.24","ug/kg","","1.00","CRDL","","SPK","92.4","","2.00","CRDL","YES","0.845"
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "335-76-
2","PFDA","11.9","ug/kg","","1.00","CRDL","","SPK","119","","2.00","CRDL","YES","0.845"
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","2355-31-
9","NMeFOSAA","10.5","ug/kg","","1.00","CRDL","","SPK","105","","2.00","CRDL","YES","0.845"
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","2991-50-
6","NEtFOSAA","11.0","ug/kg","","1.00","CRDL","","SPK","110","","2.00","CRDL","YES","0.845"
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","2058-94-
8","PFUnA","10.2","ug/kg","","1.00","CRDL","","SPK","102","","2.00","CRDL","YES","0.845"
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "307-55-
1", "PFDoA", "9.10", "ug/kg", "", "1.00", "CRDL", "", "SPK", "91.0", "", "2.00", "CRDL", "YES", "0.845"
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "72629-94-
8","PFTrDA","9.75","ug/kg","","1.00","CRDL","","SPK","97.5","","2.00","CRDL","YES","0.845"
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "376-06-
7","PFTeDA","11.1","ug/kg","","1.00","CRDL","","SPK","111","","2.00","CRDL","YES","0.845"
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "13C3-PFBS", "13C3-
PFBS","69.1","%R","","","CRDL","","IS","69.1","","","CRDL","",""
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","13C2-PFHxA","13C2-
PFHxA","69.3","%R","","","CRDL","","IS","69.3","","","CRDL","",""
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","13C4-PFHpA","13C4-
PFHpA","87.0","%R","","","CRDL","","IS","87.0","","","CRDL","",""
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","13C3-PFHxS","13C3-
PFHxS","84.2","%R","","","CRDL","","IS","84.2","","","CRDL","",""
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "13C2-PFOA", 
PFOA", "81.7", "%R", "", "", "CRDL", "", "IS", "81.7", "", "", "CRDL", "", ""
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","13C5-PFNA","13C5-
PFNA","75.9","%R","","","CRDL","","IS","75.9","","","CRDL","",""
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "13C8-PFOS", "13C8-
PFOS","94.6","%R","","","CRDL","","IS","94.6","","","CRDL","",""
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","13C2-PFDA","13C2-
PFDA","50.7","%R","","","CRDL","","IS","50.7","","","CRDL","",""
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","d3-MeFOSAA","d3-
MeFOSAA", "62.5", "%R", "", "", "CRDL", "", "IS", "62.5", "", "", "CRDL", "", ""
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "66.9", "%R", "", "CRDL", "", "IS", "66.9", "", "", "CRDL", "", ""
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","13C2-PFUnA","13C2-
PFUnA","56.9","%R","","","CRDL","","IS","56.9","","","CRDL","",""
"B9G0264-BS1", "537 MOD", "RES", "B9G0264-BS1", "Vista", "13C2-PFDoA", "13C2-
PFDoA","58.4","%R","","","CRDL","","IS","58.4","","","CRDL","",""
"B9G0264-BS1","537 MOD","RES","B9G0264-BS1","Vista","13C2-PFTeDA","13C2-
```

```
PFTeDA","70.6","%R","","","CRDL","","IS","70.6","","","CRDL","",""
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "375-73-
5","PFBS","12.1","ug/kg","","0.998","CRDL","","SPK","121","","2.00","CRDL","YES","0.843"
"NON-B03-SO-1-1.5MS","537 MOD","RES","B9G0264-MS1","Vista","307-24-
4","PFHxA","11.4","ug/kg","","0.998","CRDL","","SPK","114","","2.00","CRDL","YES","0.843"
"NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "375-85-
9","PFHpA","9.58","ug/kg","","0.998","CRDL","","SPK","96.0","","2.00","CRDL","YES","0.843"
"NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "355-46-
4","PFHxS","8.49","ug/kg","","0.998","CRDL","","SPK","83.3","","2.00","CRDL","YES","0.843"
"NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "335-67-
1", "PFOA", "10.0", "ug/kg", "", "0.998", "CRDL", "", "SPK", "99.2", "", "2.00", "CRDL", "YES", "0.843", "CRDL", "SPK", "SPK",
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "375-95-
1","PFNA","9.84","ug/kg","","0.998","CRDL","","SPK","98.3","","2.00","CRDL","YES","0.843"
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "1763-23-
1","PFOS","10.2","ug/kg","","0.998","CRDL","","SPK","89.8","","2.00","CRDL","YES","0.843"
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "335-76-
2","PFDA","10.6","ug/kg","","0.998","CRDL","","SPK","105","","2.00","CRDL","YES","0.843"
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "2355-31-
9","NMeFOSAA","12.6","ug/kg","","0.998","CRDL","","SPK","126","","2.00","CRDL","YES","0.843"
 "NON-B03-SO-1-1.5MS","537 MOD","RES","B9G0264-MS1","Vista","2991-50-
 6","NEtFOSAA","12.8","ug/kg","","0.998","CRDL","","SPK","128","","2.00","CRDL","YES","0.843"
"NON-B03-SO-1-1.5MS","537 MOD","RES","B9G0264-MS1","Vista","2058-94-
 8","PFUnA","9.79","ug/kg","","0.998","CRDL","","SPK","98.1","","2.00","CRDL","YES","0.843"
"NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "307-55-
1","PFDoA","9.00","ug/kg","","0.998","CRDL","","SPK","90.2","","2.00","CRDL","YES","0.843"
"NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "72629-94-
8","PFTrDA","9.05","ug/kg","","0.998","CRDL","","SPK","90.7","","2.00","CRDL","YES","0.843"
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "376-06-
7", "PFTeDA", "9.19", "ug/kg", "", "0.998", "CRDL", "", "SPK", "92.1", "", "2.00", "CRDL", "YES", "0.843", "CRDL", "", "SPK", "92.1", "", "2.00", "CRDL", "YES", "0.843", "CRDL", "", "SPK", "92.1", "", "2.00", "CRDL", "YES", "0.843", "CRDL", "", "SPK", "92.1", "", "2.00", "CRDL", "YES", "0.843", "CRDL", "", "SPK", "92.1", "", "2.00", "CRDL", "YES", "0.843", "CRDL", "", "SPK", "92.1", "", "2.00", "CRDL", "YES", "0.843", "CRDL", "YES", "YES", "CRDL", "YES", "YES",
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C3-PFBS", "13C3-
PFBS","69.1","%R","","","CRDL","","IS","69.1","","","CRDL","",""
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C2-PFHxA", "13C2-
PFHxA","81.2","%R","","","CRDL","","IS","81.2","","","CRDL","",""
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C4-PFHpA", "13C4-
PFHpA","90.4","%R","","","CRDL","","IS","90.4","","","CRDL","",""
"NON-B03-SO-1-1.5MS","537 MOD","RES","B9G0264-MS1","Vista","13C3-PFHxS","13C3-
PFHxS","95.1","%R","","","CRDL","","IS","95.1","","","CRDL","",""
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C2-PFOA", "13C2-
PFOA", "91.3", "%R", "", "", "CRDL", "", "IS", "91.3", "", "", "CRDL", "", ""
"NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C5-PFNA", "13C5-
PFNA","76.7","%R","","","CRDL","","IS","76.7","","","CRDL","",""
"NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C8-PFOS", "13C8-
PFOS","88.5","%R","","","CRDL","","IS","88.5","","","CRDL","",""
"NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C2-PFDA", "13C2-
PFDA","54.9","%R","","","CRDL","","IS","54.9","","","CRDL","",""
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "d3-MeFOSAA", "d3-
MeFOSAA","57.0","%R","","CRDL","","IS","57.0","","","CRDL","",""
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA", "58.5", "%R", "", "CRDL", "", "IS", "58.5", "", "", "CRDL", "", ""
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C2-PFUnA", "13C2-PF
PFUnA","73.6","%R","","","CRDL","","IS","73.6","","","CRDL","",""
"NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C2-PFDoA", "13C2-PF
PFDoA","61.1","%R","","","CRDL","","IS","61.1","","","CRDL","",""
 "NON-B03-SO-1-1.5MS", "537 MOD", "RES", "B9G0264-MS1", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","78.3","%R","","","CRDL","","IS","78.3","","","CRDL","",""
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "375-73-
 5","PFBS","12.1","ug/kg","","0.988","CRDL","","SPK","122","0.823","1.98","CRDL","YES","0.835"
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "307-24-
4","PFHxA","12.0","ug/kg","","0.988","CRDL","","SPK","121","5.96","1.98","CRDL","YES","0.835"
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "375-85-
9","PFHpA","10.2","ug/kg","","0.988","CRDL","","SPK","103","7.04","1.98","CRDL","YES","0.835"
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "355-46-
4","PFHxS","9.95","ug/kg","","0.988","CRDL","","SPK","98.9","17.1","1.98","CRDL","YES","0.835"
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "335-67-
1","PFOA","10.2","ug/kg","","0.988","CRDL","","SPK","102","2.78","1.98","CRDL","YES","0.835"
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "375-95-
1","PFNA","10.9","ug/kg","","0.988","CRDL","","SPK","110","11.2","1.98","CRDL","YES","0.835"
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "1763-23-
1","PFOS","10.3","ug/kg","","0.988","CRDL","","SPK","91.3","1.66","1.98","CRDL","YES","0.835"
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "335-76-
2","PFDA","10.8","ug/kg","","0.988","CRDL","","SPK","109","3.74","1.98","CRDL","YES","0.835"
 "NON-B03-SO-1-1.5MSD","537 MOD","RES","B9G0264-MSD1","Vista","2355-31-
9","NMeFOSAA","12.5","ug/kg","","0.988","CRDL","","SPK","126","0","1.98","CRDL","YES","0.835"
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "2991-50-
6","NEtFOSAA","12.4","ug/kg","","0.988","CRDL","","SPK","126","1.57","1.98","CRDL","YES","0.835"
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "2058-94-
8", "PFUnA", "10.6", "ug/kg", "", "0.988", "CRDL", "", "SPK", "107", "8.68", "1.98", "CRDL", "YES", "0.835"
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "307-55-
1","PFDoA","9.50","ug/kg","","0.988","CRDL","","SPK","96.1","6.33","1.98","CRDL","YES","0.835"
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "72629-94-
8","PFTrDA","10.6","ug/kg","","0.988","CRDL","","SPK","108","17.4","1.98","CRDL","YES","0.835"
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "376-06-
7", "PFTeDA", "9.08", "ug/kg", "", "0.988", "CRDL", "", "SPK", "91.9", "0.217", "1.98", "CRDL", "YES", "0.835", "CRDL", "YES", "V. "Y. "YES", "V. "YES", "V. "YES", "V. "YES", "V. "YES", "V. "Y. "YES", "V. "YE
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C3-PFBS", "13C3-
PFBS","71.9","%R","","","CRDL","","IS","71.9","","","CRDL","",""
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C2-PFHxA", "13C2-
PFHxA","81.1","%R","","","CRDL","","IS","81.1","","","CRDL","",""
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C4-PFHpA", "13C4-
PFHpA","90.0","%R","","","CRDL","","IS","90.0","","","CRDL","",""
"NON-B03-SO-1-1.5MSD","537 MOD","RES","B9G0264-MSD1","Vista","13C3-PFHxS","13C3-PFHxS","90.3","%R","","","CRDL","","IS","90.3","","","CRDL","",""
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C2-PFOA", "13C
PFOA", "89.3", "%R", "", "", "CRDL", "", "IS", "89.3", "", "", "CRDL", "", ""
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C5-PFNA", "13C5-
PFNA","76.9","%R","","","CRDL","","IS","76.9","","","CRDL","",""
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C8-PFOS", "13C8-
PFOS","87.5","%R","","","CRDL","","IS","87.5","","","CRDL","",""
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C2-PFDA", "13C2-
PFDA","50.6","%R","","","CRDL","","IS","50.6","","","CRDL","",""
MeFOSAA", "54.5", "%R", "", "", "CRDL", "", "IS", "54.5", "", "", "CRDL", "", ""
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","57.5","%R","","","CRDL","","IS","57.5","","","CRDL","",""
"NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C2-PFUnA", "13C2-
PFUnA","68.3","%R","","","CRDL","","IS","68.3","","","CRDL","",""
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C2-PFDoA", "13C2-
PFDoA","59.2","%R","","","CRDL","","IS","59.2","","","CRDL","",""
 "NON-B03-SO-1-1.5MSD", "537 MOD", "RES", "B9G0264-MSD1", "Vista", "13C2-PFTeDA", "13C2-
```

```
PFTeDA","85.8","%R","","","CRDL","","IS","85.8","","","CRDL","",""
"4663.3803","CTO 17F3803 Yuma","SAOA-B03-SO-5-5.5","07/11/2019 16:00","SO","1902189-01","","","","537
MOD", "Gen Prep", "RES", "08/01/2019 12:42", "08/06/2019
14:23","Vista","COA","DRY","","1","","","5.66","B9G0264","B9G0264","S9H0009","S9H0009","1902189","07/19/
2019 09:23","08/09/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","SAOA-B03-SO-20-20.5","07/11/2019 16:30","SO","1902189-02","","","","537
MOD", "Gen Prep", "RES", "08/01/2019 12:42", "08/06/2019
14:34","Vista","COA","DRY","","1","","","16.20","B9G0264","B9G0264","S9H0009","S9H0009","1902189","07/1
9/2019 09:23","08/09/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","SAOA-B03-SO-56-56.5","07/11/2019 17:50","SO","1902189-03","","","","537
MOD", "Gen Prep", "RES", "08/01/2019 12:42", "08/05/2019
15:36","Vista","COA","DRY","","1","","","15.20","B9G0264","B9G0264","S9H0009","S9H0009","1902189","07/1
9/2019 09:23","08/09/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","SAOA-B03-GW","07/11/2019 18:20","AQ","1902189-04","","","","537
MOD", "Gen Prep", "RES", "07/25/2019 07:49", "07/28/2019
23:35","Vista","COA","","","1","","","","B9G0251","B9G0251","S9G0074","S9G0074","1902189","07/19/2019
09:23","08/09/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","NAOA-B03-GW","07/15/2019 15:55","AQ","1902189-05","","","","537
MOD", "Gen Prep", "RES", "07/25/2019 07:49", "07/29/2019
00:18","Vista","COA","","","1","","","","B9G0251","B9G0251","S9G0074","S9G0074","1902189","07/19/2019
09:23","08/09/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","EB-07152019-GW","07/15/2019 17:10","AQ","1902189-06","","","","537
MOD", "Gen Prep", "RES", "07/24/2019 06:20", "07/26/2019
11:27","Vista","COA","","","1","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","07/19/2019
09:23","08/09/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","FRB-07152019","07/15/2019 17:15","AQ","1902189-07","","","","537
MOD", "Gen Prep", "RES", "07/24/2019 06:20", "07/26/2019
11:38","Vista","COA","","","1","","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","07/19/2019
09:23","08/09/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","NON-B03-SO-1-1.5","07/16/2019 07:50","SO","1902189-08","","","","537
MOD", "Gen Prep", "RES", "08/01/2019 12:42", "08/05/2019
15:47","Vista","COA","DRY","","1","","","","0.79","B9G0264","B9G0264","S9H0009","S9H0009","1902189","07/19/
2019 09:23","08/09/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","NON-B03-SO-15-15.5","07/16/2019 08:20","SO","1902189-09","","","","537
MOD", "Gen Prep", "RES", "08/01/2019 12:42", "08/05/2019
2019 09:23","08/09/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","NON-B03-GW","07/16/2019 10:30","AQ","1902189-10","","","","537
```

- 15:57","Vista","COA","DRY","","1","","","","3.77","B9G0264","B9G0264","S9H0009","S9H0009","1902189","07/19/
- MOD", "Gen Prep", "RES", "07/25/2019 07:49", "07/29/2019
- 00:28","Vista","COA","","","1","","","","B9G0251","B9G0251","S9G0074","S9G0074","1902189","07/19/2019 09:23","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","EB-07162019-GW","07/16/2019 10:40","AQ","1902189-11","","","","537 MOD", "Gen Prep", "RES", "07/24/2019 06:20", "07/26/2019
- 11:48","Vista","COA","","","1","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","07/19/2019 09:23","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","NAOA-B06-GW","07/16/2019 16:00","AQ","1902189-12","","","","537 MOD", "Gen Prep", "DL", "07/25/2019 07:49", "07/29/2019
- 19:24","Vista","COA","","","5","","","","","B9G0251","B9G0251","S9G0074","S9G0074","1902189","07/19/2019 09:23","08/09/2019 00:00"
- "4663.3803", "CTO 17F3803 Yuma", "NAOA-B06-GW", "07/16/2019 16:00", "AQ", "1902189-12", "", "", "", "537 MOD", "Gen Prep", "RES", "07/25/2019 07:49", "07/29/2019
- 00:39", "Vista", "COA", "", "", "", "", "", "", "B9G0251", "B9G0251", "S9G0074", "S9G0074", "1902189", "07/19/2019", "S9G0074", "S9G0075", "S09:23","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","FRB-07162019","07/16/2019 17:30","AQ","1902189-13","","","","537

```
MOD", "Gen Prep", "RES", "07/24/2019 06:20", "07/26/2019 11:59" "Vista" "COA" "" "" "" "" "" "" "" "" "R9G0224" "R9G0224" "S9G0067" "S9G0067" "1902189" "
```

- 11:59","Vista","COA","","","1","","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","07/19/2019 09:23","08/09/2019 00:00"
- "4663.3803", "CTO 17F3803 Yuma", "EB-07162019", "07/16/2019 18:00", "AQ", "1902189-14", "", "", "537 MOD", "Gen Prep", "RES", "07/24/2019 06:20", "07/26/2019
- 12:10","Vista","COA","","","1","","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","07/19/2019 09:23","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","NAOA-B04-SO-69-69.5","07/17/2019 09:45","SO","1902189-15","","","","537 MOD","Gen Prep","RES","08/01/2019 12:42","08/06/2019
- 14:44", "Vista", "COA", "DRY", "", "1", "", "14.00", "B9G0264", "B9G0264", "S9H0009", "S9H0009", "1902189", "07/1 9/2019 09:23", "08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","SAOA-B02-SO-5-5.5","07/17/2019 14:25","SO","1902189-16","","","","537 MOD","Gen Prep","RES","08/01/2019 12:42","08/05/2019
- 16:18","Vista","COA","DRY","","1","","","15.10","B9G0264","B9G0264","S9H0009","S9H0009","1902189","07/1 9/2019 09:23","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","SAOA-B02-SO-20-20.5","07/17/2019 14:45","SO","1902189-17","","","","537 MOD","Gen Prep","RES","08/01/2019 12:42","08/05/2019
- 16:29", "Vista", "COA", "DRY", "", "1", "", "", "11.30", "B9G0264", "B9G0264", "S9H0009", "S9H0009", "1902189", "07/1 9/2019 09:23", "08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","SAOA-B02-SO-56-56.5","07/17/2019 15:45","SO","1902189-18","","","","537 MOD","Gen Prep","RES","08/01/2019 12:42","08/06/2019
- 14:55", "Vista", "COA", "DRY", "", "1", "", "", "21.80", "B9G0264", "B9G0264", "S9H0009", "S9H0009", "1902189", "07/1 9/2019 09:23", "08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","FRB-07172019","07/17/2019 16:00","AQ","1902189-19","","","","537 MOD","Gen Prep","RES","07/24/2019 06:20","07/26/2019
- 12:20","Vista","COA","","","1","","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","07/19/2019 09:23","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","EB-07172019","07/17/2019 18:20","AQ","1902189-20","","","","537 MOD","Gen Prep","RES","07/24/2019 06:20","07/26/2019
- 12:31","Vista","COA","","","1","","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","07/19/2019 09:23","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","B9G0224-BLK1","","AQ","B9G0224-BLK1","MB","","","537 MOD","Gen Prep","RES","07/24/2019 06:20","07/26/2019
- 11:06","Vista","COA","","","1","","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","","08/09/2019 00:00"
- "4663.3803", "CTO 17F3803 Yuma", "B9G0224-BS1", "", "AQ", "B9G0224-BS1", "LCS", "", "", "537 MOD", "Gen Prep", "RES", "07/24/2019 06:20", "07/26/2019
- 10:45","Vista","COA","","","1","","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","B9G0224-BSD1","","AQ","B9G0224-BSD1","LCSD","","","537 MOD","Gen Prep","RES","07/24/2019 06:20","07/26/2019
- 10:55","Vista","COA","","","1","","","","B9G0224","B9G0224","S9G0067","S9G0067","1902189","","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","B9G0251-BLK1","","AQ","B9G0251-BLK1","MB","","","537 MOD","Gen Prep","RES","07/25/2019 07:49","07/28/2019
- 23:25","Vista","COA","","","","","","","","","B9G0251","B9G0251","S9G0074","S9G0074","1902189","","08/09/2019 00:00"
- "4663.3803", "CTO 17F3803 Yuma", "B9G0251-BS1", "", "AQ", "B9G0251-BS1", "LCS", "", "", "537 MOD", "Gen Prep", "RES", "07/25/2019 07:49", "07/28/2019
- 23:04","Vista","COA","","","1","","","","","B9G0251","B9G0251","S9G0074","S9G0074","1902189","","08/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","B9G0251-BSD1","","AQ","B9G0251-BSD1","LCSD","","","537 MOD","Gen Prep","RES","07/25/2019 07:49","07/28/2019
- 23:14", "Vista", "COA", "", "", "1", "", "", "", "B9G0251", "B9G0251", "S9G0074", "S9G0074", "1902189", "", "08/09/2019, "1902189", "19028", "190289", "190289", "190289", "19

00:00"

- "4663.3803", "CTO 17F3803 Yuma", "B9G0264-BLK1", "", "SO", "B9G0264-BLK1", "MB", "", "", "537 MOD", "Gen Prep", "RES", "08/01/2019 12:42", "08/06/2019
- 14:13","Vista","COA","DRY","","1","","","100.00","B9G0264","B9G0264","S9H0009","S9H0009","1902189","","0 8/09/2019 00:00"
- "4663.3803", "CTO 17F3803 Yuma", "B9G0264-BS1", "", "SO", "B9G0264-BS1", "LCS", "", "", "537 MOD", "Gen Prep", "RES", "08/01/2019 12:42", "08/08/2019
- 01:48","Vista","COA","DRY","","1","","","100.00","B9G0264","B9G0264","S9H0009","S9H0009","1902189","","0 8/09/2019 00:00"
- "4663.3803","CTO 17F3803 Yuma","NON-B03-SO-1-1.5MS","08/01/2019 12:42","SO","B9G0264-
- MS1","MS","","","537 MOD","Gen Prep","RES","08/01/2019 12:42","08/05/2019
- 14:43","Vista","COA","DRY","","1","","","100.00","B9G0264","B9G0264","S9H0009","S9H0009","1902189","","0 8/09/2019 00:00"
- "4663,3803", "CTO 17F3803 Yuma", "NON-B03-SO-1-1.5MSD", "08/01/2019 12:42", "SO", "B9G0264-
- MSD1","MSD","","","537 MOD","Gen Prep","RES","08/01/2019 12:42","08/05/2019
- 14:54","Vista","COA","DRY","","1","","","100.00","B9G0264","B9G0264","S9H0009","S9H0009","1902189","","0 8/09/2019 00:00"

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Tetra Tech EC, Inc. 17885 Von Karman Avenue, Suite 500 Irvine, CA 92614 ATTN: Ms. Lisa Bienkowski Lisa.Bienkowski@tetratech.com August 26, 2019

SUBJECT: Revised MCAS Yuma, CTO 17F3803, Data Validation

Dear Ms. Bienkowski,

Enclosed is the revised validation report for the fraction listed below. Please replace the previously submitted report with the enclosed revised report.

Corrected the sample ID

LDC Project #45706RV1:

SDG # Fraction

1902014 Perfluoroalkyl & Polyfluoroalkyl Substances

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona; May 2019
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1; 2017
- USEPA National Functional Guidelines for Superfund Organic Methods Data Review; January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Project Manager/Senior Chemist

heisting Rink

LDC

Tetra Tech EC, Inc. 17885 Von Karman Avenue, Suite 500 Irvine, CA 92614 ATTN: Ms. Lisa Bienkowski Lisa.Bienkowski@tetratech.com August 23, 2019

SUBJECT: MCAS Yuma, CTO 17F3803, Data Validation

Dear Ms. Bienkowski,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on August 12, 2019. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #45706:

SDG # Fraction

1902014, 1902097 1902189 Perfluoroalkyl & Polyfluoroalkyl Substances

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona; May 2019
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1; 2017
- USEPA National Functional Guidelines for Superfund Organic Methods Data Review;
 January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

heisting Rink

Project Manager/Senior Chemist

4,149 pages-ADV 2 WEEK TAT Attachment 1 Stage 4 LDC #45706 (Tetra Tech-EC, IncIrvine, CA / MCAS Yuma, CTO 3803) PO# 116481																																							
	Stage 4			L	.DC	C #4	457	'06	(Te	etra	а То	ech	1-E	C, I	nc.	Irv	vin	е, (CA	/ M	IC/	AS	Yuı	ma	, C	ТО	38	03)								P	O# 1	164	319
LDC	DATE SDG# REC'D		(3) DATE DUE	PFAs (537)																																		3000	
Matrix	: Water/Soil			W	s	W	s	W	s	W	s	W	S	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	S	W	S	W	S
Α	1902014	08/12/19	08/26/19	5	5																																		
В	1902097	08/12/19	08/26/19	8	12																																		
С	1902189	08/12/19	08/26/19	11	9)																					
															-																								
																																				\Box			
																																				П			
																																				П			
					Г																															П			
		†		T	Г	Т																T							-							\Box	\dashv		
		<u> </u>			H																															П			
				\vdash	H											_	\vdash			\vdash		\vdash	H							\vdash						\dashv	_		
					H																		H							H						\Box			
					H										-								H													\dashv			
		+		┢	H												┢			H		┢			\vdash					H	H					\dashv	-		
		 		┢	┢	\vdash		-	┢	 					-		\vdash	_	┢	\vdash		┢	H		\vdash			-	_		_	\vdash				\dashv	-	-	_
\vdash		+		H	H												-			H	-	H	H	 			\vdash		_		_	\vdash				\dashv		_	
-		+			H				\vdash								\vdash	H		H		H	Н	-						H	\vdash					\dashv		_	
				-	H										= 4		-						H												-	\dashv	_	-	
															- 4		-																			\dashv			
		-		\vdash	\vdash																			_			\vdash				_					\vdash	_		
		1		\vdash	\vdash	\vdash	_		_	_						_	_				ļ	\vdash		-			\vdash				_					\dashv	_		
\vdash				_	\vdash	_			_								_													Ш	_	_				\square			
igwdapsilon																								_												Щ			
				<u> </u>	_		_								- 1		<u> </u>					_		<u> </u>												\square	ļ		
																																				Ш			
															-12																								
Total	T/CR			24	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS Yuma, CTO 17F3803

LDC Report Date:

August 26, 2019

Parameters:

Perfluoroalkyl & Polyfluoroalkyl Substances

Validation Level:

Stage 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1902014

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CAOA-B03-SO-4-4.5	1902014-01	Soil	07/03/19
CAOA-B03-SO-20-20.5	1902014-02	Soil	07/03/19
FRB-07032019	1902014-03	Water	07/03/19
EB-07032019	1902014-04	Water	07/03/19
CAOA-B01-SO-0-0.5	1902014-05	Soil	07/08/19
CAOA-B04-SO-0-0.5	1902014-06	Soil	07/08/19
CAOA-B01-SO-20-20.5	1902014-07	Soil	07/08/19
FRB-07082019	1902014-08	Water	07/08/19
CAOA-B01-GW	1902014-09	Water	07/08/19
EB-07082019	1902014-10	Water	07/08/19
CAOA-B01-SO-0-0.5MS	1902014-05MS	Soil	07/08/19
CAOA-B01-SO-0-0.5MSD	1902014-05MSD	Soil	07/08/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona (May 2019), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

For each calibration standard, all compounds were within 70-130% of their true value.

The signal to noise (S/N) ratio was within validation criteria for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples EB-07032019 and EB-07082019 were identified as equipment blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples in this SDG
EB-07032019	07/03/19	PFHxA PFOS	0.00623 ug/L 0.0852 ug/L	CAOA-B03-SO-4-4.5
EB-07082019	07/08/19	PFHxA PFOS	0.0164 ug/L 0.0217 ug/L	CAOA-B01-SO-0-0.5 CAOA-B04-SO-0-0.5

Samples FRB-07032019 and FRB-07082019 were identified as field reagent blanks. No contaminants were found.

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for contaminants) than the concentrations found in the associated field blanks.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Ongoing Precision Recovery

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	%R (Limits)	Affected Compound	Flag	A or P
CAOA-B03-SO-4-4.5	d3-MeFOSAA d5-EtFOSAA 13C2-PFDoA	42.2 (50-150) 46.3 (50-150) 49.5 (50-150)	PFDoA PFTrDA MeFOSAA EtFOSAA	J (all detects) UJ (all non-detects)	Р

Sample	Labeled Compound	%R (Limits)	Affected Compound	Flag	A or P
CAOA-B03-SO-20-20.5	13C2-PFDoA 13C2-PFTeDA	43.2 (50-150) 30.5 (50-150)	PFDoA PFTrDA PFTeDA	J (all detects) UJ (all non-detects)	Р
CAOA-B01-SO-0-0.5	13C2-PFDoA	43.6 (50-150)	PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects)	Р
CAOA-B04-SO-0-0.5	d3-MeFOSAA	48.3 (50-150)	MeFOSAA	UJ (all non-detects)	Р
CAOA-B01-SO-20-20.5	13C3-PFBS d3-MeFOSAA d5-EtFOSAA 13C2-PFDoA	48.9 (50-150) 36.1 (50-150) 37.5 (50-150) 42.8 (50-150)	PFBS PFDoA PFTrDA MeFOSAA EtFOSAA	UJ (all non-detects)	Р
CAOA-B01-GW	13C2-PFTeDA	32.4 (50-150)	PFTeDA	UJ (all non-detects)	Р

XI. Compound Quantitation

All compound quantitations met validation criteria.

All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

Sample	Finding	Flag	A or P
CAOA-B03-SO-4-4.5 CAOA-B03-SO-20-20.5 EB-07032019 CAOA-B01-SO-0-0.5 CAOA-B04-SO-0-0.5 CAOA-B01-SO-20-20.5 CAOA-B01-GW	All compounds reported below the LOQ.	J (all detects)	А

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to labeled compound %R and results below the LOQ, data were qualified as estimated in seven samples.

The quality control criteria reviewed, considered acceptable.	other than those discussed above, were met and are

MCAS Yuma, CTO 17F3803 Perfluoroalkyl & Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1902014

Sample	Compound	Flag	A or P	Reason
CAOA-B03-SO-4-4.5	PFDoA PFTrDA MeFOSAA EtFOSAA	J (all detects) UJ (all non-detects)	P	Labeled compounds (%R)
CAOA-B03-SO-20-20.5	PFDoA PFTrDA PFTeDA	J (all detects) UJ (all non-detects)	Р	Labeled compounds (%R)
CAOA-B01-SO-0-0.5	PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects)	Р	Labeled compounds (%R)
CAOA-B04-SO-0-0.5	MeFOSAA	UJ (all non-detects)	Р	Labeled compounds (%R)
CAOA-B01-SO-20-20.5	PFBS PFDoA PFTrDA MeFOSAA EtFOSAA	UJ (all non-detects)		Labeled compounds (%R)
CAOA-B01-GW	PFTeDA	UJ (all non-detects)	Р	Labeled compounds (%R)
CAOA-B03-SO-4-4.5 CAOA-B03-SO-20-20.5 EB-07032019 CAOA-B01-SO-0-0.5 CAOA-B04-SO-0-0.5 CAOA-B01-SO-20-20.5 CAOA-B01-GW	All compounds reported below the LOQ.	J (all detects)	А	Compound quantitation

MCAS Yuma, CTO 17F3803

Perfluoroalkyl & Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1902014

No Sample Data Qualified in this SDG

MCAS Yuma, CTO 17F3803

Perfluoroalkyl & Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1902014

No Sample Data Qualified in this SDG

SDG #: 1902014

Stage 4

Laboratory: Vista Analytical Laboratory

Reviewer:_ 2nd Reviewer:

METHOD: LC/MS Perfluoroalkyl & Polyfluoroalkyl Substances (EPA Method 537) ✓)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments	
1.	Sample receipt/Technical holding times	AIA			
11.	LC/MS Instrument performance check	A			
111	Initial calibration/ICV	AIA	r [~]	Individual £36%	10530%
IV.	Continuing calibration/ISC	A	CU = 30%		
V.	Laboratory Blanks	Á			
VI.	Field blanks	SW	FRB=3 8	EB=4 10	
VII.	Matrix spike/Matrix spike duplicates	A	1	•	
VIII.	Laboratory control samples	A	LCS/D	6PR	
IX.	Field duplicates	N			
X.	Labeled Compounds	SN			
Xi.	Compound quantitation RL/LOQ/LODs	A			
XII.	Target compound identification	A			
XIII.	System performance	A			
XIV.	Overall assessment of data	A			

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

★ ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

_	Client ID	Lab ID	Matrix	Date	
1	CAOA-B03-SO-4-4.5	1902014-01	Soil	07/03/19	
<u> </u>	CAOA-B03-SO-20-20.5	1902014-02	Soil	07/03/19	
2	FRB-07032019	1902014-03	Water	07/03/19	
~	EB-07032019	1902014-04	Water	07/03/19	
	CAO-B01-SO-0-0.5	1902014-05	Soil	07/08/19	
	CAO-B04-SO-0-0.5	1902014-06	Soil	07/08/19	
	CAO-B07-SO-20-20.5	1902014-07	Soil	07/08/19	
- 2	FRB-07082019	1902014-08	Water	07/08/19	
	CAOA-B01-GW	1902014-09	Water	07/08/19	
0 7	EB-07082019	1902014-10	Water	07/08/19	
1	CAO-B01-SO-0-0.5MS	1902014-05MS	Soil	07/08/19	
2	CAO-B01-SO-0-0.5MSD	1902014-05MSD	Soil	07/08/19	
3		·			
4					
5 <i>]</i>	B9G0189-BEK1				

LDC #: 45 706 A96

VALIDATION FINDINGS CHECKLIST

Page:_	1 of 2
Reviewer:	JVG
2nd Reviewer:	
_	

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	100	110		· manigo-o-minorito
Were all technical holding times met?	/			
Was cooler temperature criteria met?	/			
II. LC/MS Instrument performance check	l			
Were the instrument performance reviewed and found to be within the validation criteria?				
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?	\			
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?	/			
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?	/			
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?	/			
IV. Continuing calibration			···	
Was a continuing calibration analyzed prior to sample analysis, after every 10 samples and at the end of the analytical sequence?	/			
Were all percent differences (%D) of the continuing calibration < 30%?	/			
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?	/			
Were all percent differences (%D) of the Instrument Sensitivity Check < 30%?				
V. Laboratory Blanks	,			
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed for each matrix and concentration?	/			
Was there contamination in the laboratory blanks?	<u> </u>			
VI. Field blanks			,	
Were field blanks identified in this SDG?	/			
Were target compounds detected in the field blanks?	/			
VIII. Matrix spike/Matrix spike duplicates			_	
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			

LDC #: 45706 A96

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: JVG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch for this SDG?				·
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates			_	
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?				<u></u>
XI. Labeled compounds			,	
Were labeled compound percent recoveries (%R) within the QC limits?	·			
XII. Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?				
Did reported results include both branched and linear isomers?	/			
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?	/			
XIV. System performance		<i>,</i>	=	
System performance was found to be acceptable.				
XIII. Overall assessment of data		,		
Overall assessment of data was found to be acceptable	7			

VALIDATION FINDINGS WORKSHEET

METHOD: Perfluorinated Alkyl Acids (EPA Method 537)

A. PFBA	375-22-4
B. PFPeA	2706-90-3
C. PFBS	375-73-5
D. PFHxA	307-24-4
E. PFHpA	375-85-9
F. PFHxS .	355-46-4
G. PFOA	335-67-1
H. PFHpS	375-92-8
I. PFNA	375-95-1
J. PFOSA	754-91-6
K. PFOS	1763-23-1
L. PFDA	335-76-2
M. PFUnA	2058-94-8
N. PFDS	335-77-3
O. PFDoA	307-55-1
P. MeFOSA	31506-32-8
Q. PFTrDA	72629-94-8
R. PFTeDA	376-06-7
S. EtFOSA	4151-50-2
T. MeFOSE	24448-09-7
U. EtFOSE	1691-99-2
V. MeFOSAA	2355-31-9
W. EtFOSAA	2991-50-6

Notes:	 		 	

LDC #: 45 706 A 96

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:	<u> </u> _of!
Reviewer:	JVG
2nd Reviewer:_	

METHOD: LC/MS PFAS (EPA Method 537)

YNN/A Were field blanks identified in this SDG?

Y/N N/A Were target compounds detected in the field blanks?

Blank units: いらん Associated sample units: いらんg Sampling date: 07ん3/19

Field blank type: (circle one) Trip Blank/Field Blank / Rinsate / Other: EB Associated Samples: (75x)

	Compound	Blank ID	Sample Identification					
		4						
4	D _	0.00623						
7	K	0.0852						

Blank units: 45 /L Associated sample units: 49 /kg
Sampling date: 07 /02 /19
Field blank type: (circle one) Field Blank / Rinsate / Other: 45 Associated Samples: 4

	Blank ID		Sample Identification						
	10	(5×)							
D	0.0164	0.082							
K	0.0217	D. 1085							
	D K	D 0.0164	D 0.0164 0.082	D 0.0164 0.082	D 0.0164 0.082	D 0.0164 0.082	D 6.0164 0.082	D 0.0164 0.082	D 0.0164 0.082

LDC #: 45 766 A96

VALIDATION FINDINGS WORKSHEET <u>Labeled Compound</u>

Page: 1 of 1

Reviewer: JVG

2nd Reviewer: _____

METHOD: LC/MS PFAS (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

.Y(N)N/	A Were al	I labeled compounds wi	ithin -50 to +150%	of the associated	calibration standard?
---------	-----------	------------------------	--------------------	-------------------	-----------------------

Labeled Compound	%R	Limits (%)	Qualifications
3-V	42.2	50-150	J/NJP (qual V
5- W	46.3		1 W
2-0	49.5		00
C2-0	43.2		0,6
C2-R	30.5		Ŕ
3c2-6	43.6		0,6
3-V	48.3		V
6C3-C	48.9		C
3- ٧	36.1		✓
5 - W	37. 5		W
3C2 - 0	42.8		0,6
3C2-R	32,4		R
13-V	35,4		V
75-W	41.5		W
3C2-0	42.6		0,0
13-V	38 🕱		NQ (QC)
15- W	38.8		
d3 - v d5 - W	41.4 45.9		
	ls- W	15-W 38.8 33-V 41.4 45-W 45.9	15-W 38.8 13-V 41.4 15-W 45.9

LDC#: 45706A96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _of_	
Reviewer:JVG	
2nd Reviewer:	

Calibration Date	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio					
7/16/2019	SCN945	PFOA	0.25	0.04382	3.125					
			0.5	0.08680	6.250					
	190716M2-CRV		1	0.17268	12.500					
		13C2-PFOA	2	0.30178	25.000					
								5	0.77418	62.500
						10	1.61096	125.000		
					50	8.04664	625.000			
			100	15.41406	1250.000					
		250	38.92819	3125.000						
			500	81.23690	6250.000					

Regression Output	Calculated	Reported WLR
Constant	-0.164148	0.041757
Std Err of Y Est		
R Squared	0.999672	0.999501
Degrees of Freedom		
X Coefficient(s)	0.01290950	1.994320
Std Err of Coef.		
Correlation Coefficient	0.999836	
Coefficient of Determination (r^2)	0.999672	0.999501

LDC#:_45706A96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

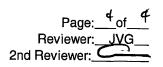
Page: 2 of 4
Reviewer: JVG_
2nd Reviewer:

Calibration Date	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio
		Compound	Otalidard	Alea fallo	Cont ratio
7/16/2019	SCN945	PFOS	0.25	0.00849	3.125
			0.5	0.03458	6.250
			1	0.08285	12.500
	190716M2-CRV	13C8-PFOS	2	0.19007	25.000
			5	0.47672	62.500
			10	1.01888	125.000
			50	5.18689	625.000
			100	10.13946	1250.000
			250	24.80748	3125.000
			500	52.54048	6250.000

Regression Output	Calculated	Reported WLR	
Constant	-0.122693	-0.149993	
Std Err of Y Est			
R Squared	0.999493	0.999286	
Degrees of Freedom			
X Coefficient(s)	0.00833418	1.287160	
Std Err of Coef.			
Correlation Coefficient	0.999747		
Coefficient of Determination (r^2)	0.999493	0.999286	

LDC#:_45706A96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification


Page: <u> ? of </u>
Reviewer:JVG
2nd Reviewer:

Calibration Date	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio		
			Staridard	Area ratio	Conc ratio		
7/22/2019	SCN945	PFOA	0.25	0.03165	3.125		
			0.5	0.06647	6.250		
	190722M1-CRV		1	0.11573	12.500		
		13C2-PFOA	2	0.23840	25.000		
					5	0.63338	62.500
				10	1.21526	125.000	
			50	6.28315	625.000		
				100	11.97011	1250.000	
; 			250	28.74840	3125.000		
			500	61.12986	6250.000		

Regression Output	Calculated	Reported WLR
Constant	-0.075937	0.037722
Std Err of Y Est		
R Squared	0.999429	0.999184
Degrees of Freedom		
X Coefficient(s)	0.00968201	1.502070
Std Err of Coef.		
Correlation Coefficient	0.999714	
Coefficient of Determination (r^2)	0.999429	0.999184

LDC#:_45706A96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Calibration Date	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio			
7/22/2019	SCN945	PFOS	0.25	0.01898	3.125			
			0.5	0.05101	6.250			
	190722M1-CRV		1	0.07006	12.500			
		13C8-PFOS	2	0.15729	25.000			
						5	0.40492	62.500
				10	0.84884	125.000		
			50	4.45203	625.000			
	}			100	8.49765	1250.000		
			250	20.93435	3125.000			
			500	43.12088	6250.000			

Regression Output	Calculated	Reported WLR
Constant	-0.029639	-0.019750
Std Err of Y Est		
R Squared	0.999855	0.999659
Degrees of Freedom		
VO. (1) 1 (1)	0.0000000	4.00000
X Coefficient(s)	0.00686606	1.069000
Std Err of Coef.		
Correlation Coefficient	0.999927	
Coefficient of Determination (r^2)	0.999855	0.999659

LDC # _45706A96_

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page:	1_of_1_
Reviewer:_	JVG
2nd Reviewer:_	0

METHOD: LC/MS PFCs (EPA Method 537Mod)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

Cx = Concentration of compound,

% Difference = 100 * (ave. RRF - RRF)/ave. RRF ave. RRF = initial calibration average RRF

Ais = Area of associated internal standard

RRF = (Ax)(Cis)/(Ais)(Cx)

RRF = continuing calibration RRF

Cis = Concentration of internal standard

Ax = Area of compound

#	Standard ID	Calibration Date	Con	npound (IS)	Conc	Reported	Recalculated	Reported % R	Recalculated % R
1	190719M1-39	7/19/2019	PFOA	(13C2-PFOA)	1.000	1.007	1.007	100.7	100.7
	ISC		PFOS	(13C8-PFOS)	1.000	0.910	0.910	91.0	91.0
2	190719M1-57	7/19/2019	PFOA	(13C2-PFOA)	10.000	9.758	9.758	97.6	97.6
	CS3		PFOS	(13C8-PFOS)	10.000	8.996	8.996	90.0	90.0
3	090721M2-6	7/21/2019	PFOA	(13C2-PFOA)	1.000	0.771	0.771	77.1	77.1
	ISC		PFOS	(13C8-PFOS)	1.000	0.866	0.866	86.6	86.6
4	090722M1-58	7/22/2019	PFOA	(13C2-PFOA)	10.000	9.867	9.867	98.7	98.7
	CS3		PFOS	(13C8-PFOS)	10.000	10.110	10.110	101.1	101.1

LDC #: 45 706 A-96

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page:_	<u>\</u> of)
Reviewer:	JVG
2nd Reviewer:_	0

METHOD: LC/MS PFAS (EPA Method 537Mod)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples:

Compound		ike ded k.)	Sample Conc (hg/(ct)	Spiked Sample Concentration (الام) الحر)		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
	MS	MSD		MS	MSD	Reported	Recaic	Reported	Recalc	Reported	Recalc
PFOA	9,936	9-89	0	1043	10.8	103	105	801	110	4.74	4.74
PFOS		1	1, 154	11.003	10.76	98.9	99.7	97.3	926	1.63	1.63
	<u> </u>										
			<u> </u>								

		plicates findings wo	orkshee	<u>et for list d</u>	of qualifications and associated samples when reported results do not
agree within	10.0% of the recalculated results.				
	Mu 1	· KPD based	n	28	
	2	- Roundin	off	558MEN	
		7	- /-		

LDC #: 45 706 A96

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: 1_of 1_

Reviewer: JVG 2nd Reviewer:

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: 39G0189-BS1

Compound	Spike Added Mg /kc/		Spike Concentration (195 kJ				Concentration		Concentration		Concentration		LC Percent I			SD Recovery	LCS/I	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.								
PFOA	10.0	M	10.4	MA	104	104												
PFOS		+	8.91	<i>V</i>	89.1	89-1												
						•												
				<u>-</u>														
									-									
	, , ,																	

Comments:	Refer to Laborator	y Control Sample/Laboratory	Control Sample D	uplicates findings	worksheet for lis	t of qualifications an	d associated s	samples when
reported res	ults do not agree w	rithin 10.0% of the recalculate	ed results.					

LCSCLC.wpd

LDC #: 4 5706 A 96

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1_of_1 Reviewer: JVG 2nd reviewer:

METHOD: LC/MS PFAS (EPA Method 537M)

Factor of 2 to account for GPC cleanup

2.0

only.

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported

Conce	entratio	on = <u>(A,)(I,)(V,)(DF)(2.0)</u> (A _{Is})(RRF)(V _s)(V _s)(%S)	Example:
\mathbf{A}_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	Conc. = \[\left(\frac{322}{2940} \times 12.5 \right) - (-\varphi. 14993) \] = 1.1624
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (2940 = 1.1624
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	(1.28716
V_{i}	=	Volume of extract injected in microliters (ul)	final come. = 1.1624)(1mb)
V_{t}	=	Volume of the concentrated extract in microliters (ul)	find one. = (1.1624)(1ml) (1.67g)(6.941)
Df	=	Dilution Factor.	= 1.154 ug /kg
%S	=	Percent solids, applicable to soil and solid matrices	- 1,137 kg /kg

#	Sample ID	Compound	Reported Concentration (Mの/k-cy	Calculated Concentration ()	Qualification
			1, 15		
			,		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS Yuma, CTO 17F3803

LDC Report Date:

August 23, 2019

Parameters:

Perfluoroalkyl & Polyfluoroalkyl Substances

Validation Level:

Stage 4

Laboratory:

Vista Analytical Laboratory

Sample Delivery Group (SDG): 1902097

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
SAOA-B10-SO-1-1.5	1902097-01	Soil	07/09/19
SAOA-B10-SO-20-20.5	1902097-02	Soil	07/09/19
SAOA-B10-GW	1902097-03	Water	07/09/19
SAOA-B10-GW-D	1902097-04	Water	07/09/19
EB-07092019	1902097-05	Water	07/09/19
NON-B02-SO-1-1.5	1902097-06	Soil	07/09/19
FRB-07092019	1902097-07	Water	07/09/19
NON-B02-SO-15-15.5	1902097-08	Soil	07/09/19
SAOA-B01-SO-5-5.5	1902097-09	Soil	07/10/19
SAOA-B01-SO-20-20.5	1902097-10	Soil	07/10/19
SAOA-B01-SO-36-36.5	1902097-11	Soil	07/10/19
NON-B01-SO-1-1.5	1902097-12	Soil	07/10/19
NON-B01-SO-15-15.5	1902097-13	Soil	07/10/19
EB-07102019	1902097-14	Water	07/10/19
FRB-07102019	1902097-15	Water	07/10/19
NON-B01-SO-73-73.5	1902097-16	Soil	07/11/19
NON-B04-SO-0.5-1	1902097-17	Soil	07/11/19
NON-B04-SO-4.5-5	1902097-18	Soil	07/11/19
EB-07112019	1902097-19	Water	07/11/19
FRB-07112019	1902097-20	Water	07/11/19
NON-B02-SO-1-1.5MS	1902097-06MS	Soil	07/09/19
NON-B02-SO-1-1.5MSD	1902097-06MSD	Soil	07/09/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona (May 2019), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

For each calibration standard, all compounds were within 70-130% of their true value.

The signal to noise (S/N) ratio was within validation criteria for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples EB-07092019, EB-07102019, and EB-07112019 were identified as equipment blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples in this SDG
EB-07102019	07/10/19	PFHxA PFHpA PFHxS PFOA PFOS	0.0594 ug/L 0.0185 ug/L 0.0122 ug/L 0.00671 ug/L 0.0706 ug/L	SAOA-B01-SO-5-5.5 NON-B01-SO-1-1.5
EB-07112019	07/11/19	PFOS	0.0201 ug/L	NON-B04-SO-0.5-1 NON-B04-SO-4.5-5

Samples FRB-07092019, FRB-07102019, and FRB-07112019 were identified as field reagent blanks. No contaminants were found.

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for contaminants) than the concentrations found in the associated field blanks.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Ongoing Precision Recovery

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples SAOA-B10-GW and SAOA-B10-GW-D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concent	ration (ug/L)			
Compound	SAOA-B10-GW	SAOA-B10-GW-D	RPD (Limits)	Flag	A or P
PFHxA	0.0401	0.0275	Not calculable	-	-
PFHpA	0.00352	0.00817U	Not calculable	-	-
PFHxS	0.0422	0.0365	Not calculable	-	-

	Concentration (ug/L)				
Compound	SAOA-B10-GW	SAOA-B10-GW-D	RPD (Limits)	Flag	A or P
PFOA	0.00776	0.00604	Not calculable	-	-
PFOS	0.180	0.144	22 (≤30)	-	-

Not calculable = One or both results were less than 5x the limit of quantitation.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	%R (Limits)	Affected Compound	Flag	A or P
SAOA-B10-GW	13C2-PFTeDA	20.1 (50-150)	PFTeDA	UJ (all non-detects)	Р
SAOA-B10-GW-D	13C2-PFTeDA	28.0 (50-150)	PFTeDA	UJ (all non-detects)	Р
NON-B01-SO-15-15.5	d3-MeFOSAA 13C2-PFDoA	44.0 (50-150) 46.2 (50-150)	MeFOSAA PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р

XI. Compound Quantitation

All compound quantitations met validation criteria.

All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

Sample	Finding	Flag	A or P
SAOA-B10-SO-1-1.5 SAOA-B10-SO-20-20.5 SAOA-B10-GW SAOA-B10-GW-D NON-B02-SO-15-15.5 SAOA-B01-SO-5-5.5 SAOA-B01-SO-20-20.5 NON-B01-SO-15-15.5 EB-07102019 NON-B01-SO-73-73.5 NON-B04-SO-0.5-1 NON-B04-SO-4.5-5	All compounds reported below the LOQ.	J (all detects)	Α

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to labeled compound %R and results below the LOQ, data were qualified as estimated in twelve samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803 Perfluoroalkyl & Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1902097

Sample	Compound	Flag	A or P	Reason
SAOA-B10-GW SAOA-B10-GW-D	PFTeDA	UJ (all non-detects)	Р	Labeled compounds (%R)
NON-B01-SO-15-15.5	MeFOSAA PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р	Labeled compounds (%R)
SAOA-B10-SO-1-1.5 SAOA-B10-SO-20-20.5 SAOA-B10-GW SAOA-B10-GW-D NON-B02-SO-15-15.5 SAOA-B01-SO-5-5.5 SAOA-B01-SO-20-20.5 NON-B01-SO-15-15.5 EB-07102019 NON-B01-SO-73-73.5 NON-B04-SO-0.5-1 NON-B04-SO-4.5-5	All compounds reported below the LOQ.	J (all detects)	А	Compound quantitation

MCAS Yuma, CTO 17F3803

Perfluoroalkyl & Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1902097

No Sample Data Qualified in this SDG

MCAS Yuma, CTO 17F3803

Perfluoroalkyl & Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1902097

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Laboratory: Vista Analytical Laboratory

LDC #: 45706B96

SDG #: 1902097

Reviewer: 2nd Reviewer:

METHOD: LC/MS Perfluoroalkyl & Polyfluoroalkyl Substances (EPA Method 537)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIA	
II.	LC/MS Instrument performance check	A	
III.	Initial calibration/ICV	AA	Individual 536% ICN =30%
IV.	Continuing calibration/ISC	A	CC1 = 302
V.	Laboratory Blanks	A	
VI.	Field blanks	SW	日 = 美 14.19 FRB=7.15.20
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples	A	LCS MOPR
IX.	Field duplicates	SW	D = 3/4
X.	Labeled Compounds	2M	
XI.	Compound quantitation RL/LOQ/LODs	4	
XII.	Target compound identification	A	
XIII.	System performance	A	
XIV.	Overall assessment of data	À	

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

₹ ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 1	SAOA-B10-SO-1-1.5	1902097-01	Soil	07/09/19
١ 2	SAOA-B10-SO-20-20.5	1902097-02	Soil	07/09/19
} 3	SAOA-B10-GW	1902097-03	Water	07/09/19
1 4	SAOA-B10-GW-D D	1902097-04	Water	07/09/19
5	EB-07092019	1902097-05	Water	07/09/19
6	NON-B02-SO-1-1.5	1902097-06	Soil	07/09/19
7	FRB-07092019	1902097-07	Water	07/09/19
8 1	NON-B02-SO-15-15.5	1902097-08	Soil	07/09/19
9 1	SAOA-B01-SO-5-5.5	1902097-09	Soil	07/10/19
10]	SAOA-B01-SO-20-20.5	1902097-10	Soil	07/10/19
11 1	SAOA-B01-SO-36-36.5	1902097-11	Soil	07/10/19
12 1	Bo! NON -N1 -SO-1-1.5	1902097-12	Soil	07/10/19
13 /	NON-B01-SO-15-15.5	1902097-13	Soil	07/10/19
14	EB-07102019	1902097-14	Water	07/10/19
-/ 15	FRB-07102019	1902097-15	Water	07/10/19

LDC #:_	45706B96	VALIDATION COMPLETENESS WORKSHEET
SDG #:	1902097	Stage 4

Laboratory: Vista Analytical Laboratory

Stage 4

Date: 08/14/4
Page: 10f 2
Reviewer: 10/4
2nd Reviewer: 6

METHOD: LC/MS Perfluoroalkyl & Polyfluoroalkyl Substances (EPA Method 537)

	Client ID	Lab ID	Matrix	Date
16	NON-B01-SO-73-73.5	1902097-16	Soil	07/11/19
17 1	NON-B04-SO-0.5-1	1902097-17	Soil	07/11/19
18 1	NON-B04-SO-4.5-5	1902097-18	Soil	07/11/19
19	EB-07112019	1902097-19	Water	07/11/19
20	FRB-07112019	1902097-20	Water	07/11/19
21	NON-B02-SO-1-1.5MS	1902097-06MS	Soil	07/09/19
22	NON-B02-SO-1-1.5MSD	1902097-06MSD	Soil	07/09/19
23				
24				
25				
26				
27				

LDC #: 45706 \$96

VALIDATION FINDINGS CHECKLIST

Page: 1_of 2 Reviewer: JVG 2nd Reviewer:

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
Illa. Initial calibration	`			
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) ≤ 20%?	W			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?			_	
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?				
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤ 30%?	/			
IV. Continuing calibration				
Was a continuing calibration analyzed prior to sample analysis, after every 10 samples and at the end of the analytical sequence?				
Were all percent differences (%D) of the continuing calibration ≤ 30%?	/			
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?	/			
Were all percent differences (%D) of the Instrument Sensitivity Check < 30%?				
V. Laboratory Blanks			_	
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?		/	<u> </u>	
VI. Field blanks		·	_	
Were field blanks identified in this SDG?	/			
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent	/			

LDC #: 45 706 BG6

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: JVG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments					
IX. Laboratory control samples									
Was an LCS analyzed per extraction batch for this SDG?									
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?									
X. Field duplicates									
Were field duplicate pairs identified in this SDG?									
Were target compounds detected in the field duplicates?									
XI. Labeled compounds									
Were labeled compound percent recoveries (%R) within the QC limits?		/							
XII. Compound quantitation									
Did the laboratory reporting limits (RL) meet the QAPP RLs?									
Did reported results include both branched and linear isomers?	7								
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?	/								
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?									
XIII. Target compound identification			-						
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?									
XIV. System performance									
System performance was found to be acceptable.	/								
XIII. Overall assessment of data									
Overall assessment of data was found to be acceptable.									

VALIDATION FINDINGS WORKSHEET

METHOD: Perfluorinated Alkyl Acids (EPA Method 537)

WETTOD. I emuoninated Alkyl Acids (Li A Me	31104 007 /
A. PFBA	375-22-4
B. PFPeA	2706-90-3
C. PFBS	375-73-5
D. PFHxA	307-24-4
E. PFHpA	375-85-9
F. PFHxS .	355-46-4
G. PFOA	335-67-1
H. PFHpS	375-92-8
I. PFNA	375-95-1
J. PFOSA	754-91-6
K. PFOS	1763-23-1
L. PFDA	335-76-2
M. PFUnA	2058-94-8
N. PFDS	335-77-3
O. PFDoA	307-55-1
P. MeFOSA	31506-32-8
Q. PFTrDA	72629-94-8
R. PFTeDA	376-06-7
S. EtFOSA	4151-50-2
T. MeFOSE	24448-09-7
U. EtFOSE	1691-99-2
V. MeFOSAA	2355-31-9
W. EtFOSAA	2991-50-6

Notes:_						

LDC #: 45706 \$96

VALIDATION FINDINGS WORKSHEET Field Blanks

Reviewer: 2nd Reviewer:

METHOD: LC/MS PFAS (EPA Method 537)

Y N N/A Were field blanks identified in this SDG?

Y/N N/A Were target compounds detected in the field blanks?

Blank units:

Associated sample units:

Sampling date:

07/10/19

9 12 (> SX) EB Field blank type: (circle one) Trip Blank/Field Blank / Rinsate / Other: Associated Samples:

Compound	Blank ID	Sample Identification								
	14	(5x)								
D	0.0594	0.297								
E	0,0185	0.0925								
F	0.0122	0.06								
G	0,00671	0.03355								
K	0,0706	0.01412								
							[

Blank units: 49 /L Associated sample units: 49 /L Sampling date: 67 /1 /10 Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples:

ield blank type. (choic on		I			ied Samples.						
Compound	Blank ID		Sample Identification								
	19	(2x)									
K	0.0201	0.1005									
		,			-						

LDC#: 45706B96

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer: JVG 2nd Reviewer:_

Y/N NA

METHOD: LCMS PFAS (EPA Method 537M)
YN NA
Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs?

	Concentra	ation (ug/L)		Qualifications (Parent only)
Compound	3	4	RPD (≤30%)	
D	0.0401	0.0275	NC	
Е	0.00352	0.00817U	NC	
F	0.0422	0.0365	NC	
G	0.00776	0.00604	NC	
κ	0.180	0.144	22	

NC (<5XLOQ)

V:\Josephine\FIELD DUPLICATES\45706B96 ttech yuma1.wpd

LDC #: 45706 \$96

VALIDATION FINDINGS WORKSHEET <u>Labeled Compound</u>

Page:_	of
Reviewer:_	JVG
2nd Reviewer:_	

METHOD: LC/MS PFAS (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". \(\frac{\sqrt{N} \ N/A}{\sqrt{N} \ N/A} \) Were all labeled compounds within -50 to +150% of the associated calibration standard?

#	Date	Sample ID	Labeled Compound	%R	Limits (%)	Qualifications
		3 (NO)	13C2-R	20.1	50-150	J/UJ/A (qual R
		4		28.0		R
		13	d3 - V	44.0		V
\dashv		X	BC2-0	46.2		, a
		B960185_B1k1	13C2-R	41.5		R
		B960190- BLKI	d3- * √	47.8		
			ds_ W	48.4 48.3		W
			13C2-M 13C2-O	46.4		M 0,6
_						

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	1_of_~
Reviewer:_	_JVG
2nd Reviewer:_	

Calibration Date	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio
7/22/2019	SCN945	PFOA	0.25	0.03165	3.125
			0.5	0.06647	6.250
	190722M1-CRV		1	0.11573	12.500
		13C2-PFOA	2	0.23840	25.000
			5	0.63338	62.500
			10	1.21526	125.000
			50	6.28315	625.000
		•	100	11.97011	1250.000
			250	28.74840	3125.000
			500	61.12986	6250.000

Regression Output	Calculated	Reported WLR	
Constant	-0.075937	0.037722	
Std Err of Y Est			
R Squared	0.999429	0.999184	
Degrees of Freedom			
X Coefficient(s)	0.00968201	1.502070	
Std Err of Coef.			
Correlation Coefficient	0.999714		
Coefficient of Determination (r^2)	0.999429	0.999184	

LDC#: 45706B96

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	20f_2
Reviewer:_	_JVG
2nd Reviewer:_	_

Calibration				(Y)	(X)
Date	System	Compound	Standard	Area ratio	Conc ratio
7/22/2019	SCN945	PFOS	0.25	0.01898	3.125
•			0.5	0.05101	6.250
	190722M1-CRV		1	0.07006	12.500
		13C8-PFOS	2	0.15729	25.000
			5	0.40492	62.500
			10	0.84884	125.000
			50	4.45203	625.000
			100	8.49765	1250.000
			250	20.93435	3125.000
			500	43.12088	6250.000
	L				

Regression Output	Calculated	Reported WLR	
Constant	-0.029639	-0.019750	
Std Err of Y Est			
R Squared	0.999855	0.999659	
Degrees of Freedom			
X Coefficient(s)	0.00686606	1.069000	
Std Err of Coef.			
Correlation Coefficient	0.999927		
Coefficient of Determination (r^2)	0.999855	0.999659	

LDC # <u>45706A96</u>

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: _	1_of_1_
Reviewer:_	JVG
2nd Reviewer:_	9

METHOD: LC/MS PFCs (EPA Method 537Mod)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

Cx = Concentration of compound,

% Difference = 100 * (ave. RRF - RRF)/ave. RRF ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

Ais = Area of associated internal standard Cis = Concentration of internal standard

RRF = (Ax)(Cis)/(Ais)(Cx)

Ax = Area of compound

#	Standard ID	Calibration Date	Con	npound (IS)	Conc	Reported	Recalculated	Reported % R	Recalculated % R
1	190722M1-15	7/22/2019	PFOA	(13C2-PFOA)	10.000	7.479	7.479	74.8	74.8
	ICV		PFOS	(13C8-PFOS)	9.240	7.500	7.559	81.1	81.8
2	190723M2-26	7/23/2019	PFOA	(13C2-PFOA)	10.000	10.038	10.038	100.4	100.4
	CS3		PFOS	(13C8-PFOS)	10.000	9.871	9.871	98.7	98.7
3	190724M1-6	7/24/2019	PFOA	(13C2-PFOA)	10.000	10.073	10.073	100.7	100.7
	ISC		PFOS	(13C8-PFOS)	10.000	9.968	9.968	99.7	99.7

	45	706	£96
LDC #:_			, ,,

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:	<u>\</u> of
Reviewer:	JVG′
2nd Reviewer	

METHOD: LC/MS PFAS (EPA Method 537Mod)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

SA = Spike added

Where: SSC = Spiked sample concentration

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: 21/27

Compound	Sp Add (Ug)	ike ded	Sample Conc (45/kg	Conce	Sample ntration		Spike Recovery	Matrix Spik Percent F			MSD.
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
PFOA	10.0	10,0	3,02	12.8	13,5	97.8	97.8	105	105	7.16	7.10
PFOS	L	7	2,57	12.7	13.9	101	ιδ	lid	113	12.1	12, 1
				-4							

Comments:	Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not
agree within	n 10.0% of the recalculated results.
	RPD based on 9. R
······································	

LDC #: 45706 B96

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: 1_of 1_

Reviewer: JVG

2nd Reviewer:

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: \$9 G0195-BS1 /BSD 1

		Spike Added		Spike Concentration		s	LC	SD	LCS/	LCSD
Compound	fu.	3/1		5/1	Percent F	Recovery	Percent I	Recovery	RPD	
Patricipal Property of Property Control	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
PFOA	0.08	0.08	0.6791	0.0855	98.9	98.9	167	(07	767	7.87
PFOS			0.6776	0-0899	96.9	96. 9	117	112	14.7	14.5
		-								

Comments:	Refer to Laborator	y Control Sample/La	boratory Control	<u>l Sample Duplica</u>	<u>ites findings wo</u>	<u>orksheet for list (</u>	of qualifications and	associated s	samples when
reported res	ults do not agree w	ithin 10.0% of the re	calculated result	ts.	- "				

LDC #: 45 706 \$ 96

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: LC/MS PFAS (EPA Method 537M)

Y N N/A Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported

results?

Concentration =	$(A_{r})(I_{r})(V_{r})(DF)(2.0)$
(A	(RRF)(V ₂)(V ₁)(%S)

A_x = Area of the characteristic ion (EICP) for the compound to be measured

A_{is} = Area of the characteristic ion (EICP) for the specific internal standard

I_s = Amount of internal standard added in nanograms (ng)

V_o = Volume or weight of sample extract in milliliters (ml) or grams (g).

V_I = Volume of extract injected in microliters (ul)

V_t = Volume of the concentrated extract in microliters (uI)

Df = Dilution Factor.

%S = Percent solids, applicable to soil and solid matrices only.

2.0 = Factor of 2 to account for GPC cleanup

Example:

Conc. =
$$(45200 \times 12.5) - (-0.01975)$$
 = 92462

#	Sample ID	Compound	Reported Concentration (나ဌ /۱۲-۱)	Calculated Concentration ()	Qualification
			916		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: MCAS Yuma, CTO 17F3803

LDC Report Date: August 23, 2019

Parameters: Perfluoroalkyl & Polyfluoroalkyl Substances

Validation Level: Stage 4

Laboratory: Vista Analytical Laboratory

Sample Delivery Group (SDG): 1902189

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
SAOA-B03-SO-5-5.5	1902189-01	Soil	07/11/19
SAOA-B03-SO-20-20.5	1902189-02	Soil	07/11/19
SAOA-B03-SO-56-56.5	1902189-03	Soil	07/11/19
SAOA-B03-GW	1902189-04	Water	07/11/19
NAOA-B03-GW	1902189-05	Water	07/15/19
EB-07152019-GW	1902189-06	Water	07/15/19
FRB-07152019	1902189-07	Water	07/15/19
NON-B03-SO-1-1.5	1902189-08	Soil	07/16/19
NON-B03-SO-15-15.5	1902189-09	Soil	07/16/19
NON-B03-GW	1902189-10	Water	07/16/19
EB-07162019-GW	1902189-11	Water	07/16/19
NAOA-B06-GW	1902189-12	Water	07/16/19
FRB-07162019	1902189-13	Water	07/16/19
EB-07162019	1902189-14	Water	07/16/19
NAOA-B04-SO-69-69.5	1902189-15	Soil	07/17/19
SAOA-B02-SO-5-5.5	1902189-16	Soil	07/17/19
SAOA-B02-SO-20-20.5	1902189-17	Soil	07/17/19
SAOA-B02-SO-56-56.5	1902189-18	Soil	07/17/19
FRB-07172019	1902189-19	Water	07/17/19
EB-07172019	1902189-20	Water	07/17/19
NON-B03-SO-1-1.5MS	1902189-08MS	Soil	07/16/19
NON-B03-SO-1-1.5MSD	1902189-08MSD	Soil	07/16/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona (May 2019), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

For each calibration standard, all compounds were within 70-130% of their true value.

The signal to noise (S/N) ratio was within validation criteria for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

The signal to noise (S/N) ratio was within validation criteria for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples EB-07152019-GW, EB-07162019-GW, EB-07162019, EB-07172019, and EB-07112019 (from SDG 1902097) were identified as equipment blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples in this SDG
EB-07172019	07/17/19	PFOS	0.0123 ug/L	SAOA-B02-SO-5-5.5
EB-07112019	07/11/19	PFOS	0.0201 ug/L	SAOA-B03-SO-5-5.5

Samples FRB-07152019, FRB-07162019, and FRB-07172019 were identified as field reagent blanks. No contaminants were found.

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for contaminants) than the concentrations found in the associated field blanks.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Ongoing Precision Recovery

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	%R (Limits)	Affected Compound	Flag	A or P
SAOA-B03-SO-20-20.5	13C2-PFDoA	47.7 (50-150)	PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects)	Р
SAOA-B03-SO-56-56.5	d3-MeFOSAA 13C2-PFDoA	49.7 (50-150) 46.9 (50-150)	MeFOSAA PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р

Sample	Labeled Compound	%R (Limits)	Affected Compound	Flag	A or P
NON-B03-GW	13C2-PFDoA 13C2-PFTeDA	41.6 (50-150) 27.2 (50-150)	PFDoA PFTrDA PFTeDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р
NAOA-B06-GW	13C2-PFTeDA	31.0 (50-150)	PFTeDA	UJ (all non-detects)	Р
NAOA-B04-SO-69-69.5	d3-MeFOSAA 13C2-PFDoA	47.8 (50-150) 47.4 (50-150)	MeFOSAA PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р
SAOA-B02-SO-5-5.5	13C2-PFDA 13C2-PFDoA	49.8 (50-150) 49.1 (50-150)	PFDA PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р
SAOA-B02-SO-56-56.5	13C2-PFDoA	45.8 (50-150)	PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects)	Р

XI. Compound Quantitation

All compound quantitations met validation criteria.

All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

Sample	Finding	Flag	A or P
SAOA-B03-SO-5-5.5 SAOA-B03-SO-20-20.5 NAOA-B03-GW NON-B03-SO-1-1.5 NON-B03-SO-15-15.5 NON-B03-GW SAOA-B02-SO-5-5.5 SAOA-B02-SO-20-20.5 SAOA-B02-SO-56-56.5	All compounds reported below the LOQ.	J (all detects)	A

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to labeled compound %R and results below the LOQ, data were qualified as estimated in twelve samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803 Perfluoroalkyl & Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1902189

Sample	Compound	Flag	A or P	Reason
SAOA-B03-SO-20-20.5 SAOA-B02-SO-56-56.5	PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects)	Р	Labeled compounds (%R)
SAOA-B03-SO-56-56.5 NAOA-B04-SO-69-69.5	MeFOSAA PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р	Labeled compounds (%R)
NON-B03-GW	PFDoA PFTrDA PFTeDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р	Labeled compounds (%R)
NAOA-B06-GW	PFTeDA	UJ (all non-detects)	Р	Labeled compounds (%R)
SAOA-B02-SO-5-5.5	PFDA PFDoA PFTrDA	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р	Labeled compounds (%R)
SAOA-B03-SO-5-5.5 SAOA-B03-SO-20-20.5 NAOA-B03-GW NON-B03-SO-1-1.5 NON-B03-SO-15-15.5 NON-B03-GW SAOA-B02-SO-5-5.5 SAOA-B02-SO-20-20.5 SAOA-B02-SO-56-56.5	All compounds reported below the LOQ.	J (all detects)	А	Compound quantitation

MCAS Yuma, CTO 17F3803

Perfluoroalkyl & Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1902189

No Sample Data Qualified in this SDG

MCAS Yuma, CTO 17F3803

Perfluoroalkyl & Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1902189

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 45706C96 SDG #: 1902189

Stage 4

Laboratory: Vista Analytical Laboratory

2nd Reviewer

METHOD: LC/MS Perfluoroalkyl & Polyfluoroalkyl Substances (EPA Method 537 м))

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A /sut	
II.	LC/MS Instrument performance check	Á	
III.	Initial calibration/ICV	A A	m Individual ≤ 30% 100 ≤ 36%
IV.	Continuing calibration/ISC	A A	CO1 = 20 h
V.	Laboratory Blanks	A	
VI.	Field blanks	SW	EB = 6, 11, 14, 20 FRB = 7, 13, 19 EB -07112019 (1902097)
VII.	Matrix spike/Matrix spike duplicates	A	EB-07112019 (1902097)
VIII.	Laboratory control samples	A	LCS/D OPR
IX.	Field duplicates	N	
X.	Labeled Compounds	SW	
XI.	Compound quantitation RL/LOQ/LODs	A	
XII.	Target compound identification	A	
XIII.	System performance	A	
XIV.	Overall assessment of data	A	

Note:

A = Acceptable

★ND = No compounds detected R = Rinsate

D = Duplicate TB = Trip blank SB=Source blank OTHER:

N = Not provided/applicable SW = See worksheet

FB = Field blank

EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1+	SAOA-B03-SO-5-5.5	1902189-01	Soil	07/11/19
2	SAOA-B03-SO-20-20.5	1902189-02	Soil	07/11/19
3	SAOA-B03-SO-56-56.5	1902189-03	Soil	07/11/19
∔ 4	SAOA-B03-GW	1902189-04	Water	07/11/19
∔ 5	NAOA-B03-GW	1902189-05	Water	07/15/19
16	EB-07152019-GW ✓	1902189-06	Water	07/15/19
7	FRB-07152019	1902189-07	Water	07/15/19
1 8	NON-B03-SO-1-1.5	1902189-08	Soil	07/16/19
9	NON-B03-SO-15-15.5	1902189-09	Soil	07/16/19
‡ 10	NON-B03-GW	1902189-10	Water	07/16/19
11	EB-07162019-GW	1902189-11	Water	07/16/19
1 2	NAOA-B06-GW	1902189-12	Water	07/16/19
_ 13	FRB-07162019	1902189-13	Water	07/16/19
14	EB-07162019	1902189-14	Water	07/16/19
15	NAOA-B04-SO-69-69.5	1902189-15	Soil	07/17/19

17/5x

LDC	#:	45706C96

VALIDATION COMPLETENESS WORKSHEET

Stage 4

SDG #: 1902189 Laboratory: Vista Analytical Laboratory Page: Vof Vof Reviewer: V4

METHOD: LC/MS Perfluoroalkyl & Polyfluoroalkyl Substances (EPA Method 537)

Client ID	Lab ID	Matrix	Date
SAOA-B02-SO-5-5.5	1902189-16	Soil	07/17/19
SAOA-B02-SO-20-20.5	1902189-17	Soil	07/17/19
SAOA-B02-SO-56-56.5	1902189-18	Soil	07/17/19
FRB-07172019	1902189-19	Water	07/17/19
EB-07172019_	1902189-20	Water	07/17/19
NON-B03-SO-1-1.5MS	1902189-08MS	Soil	07/16/19
NON-B03-SO-1-1.5MSD	1902189-08MSD	Soil	07/16/19
	-		
B9G0264-BIK1			
	SAOA-B02-SO-5-5.5 SAOA-B02-SO-20-20.5 SAOA-B02-SO-56-56.5 FRB-07172019 EB-07172019 NON-B03-SO-1-1.5MS NON-B03-SO-1-1.5MSD	SAOA-B02-SO-5-5.5 1902189-16 SAOA-B02-SO-20-20.5 1902189-17 SAOA-B02-SO-56-56.5 1902189-18 FRB-07172019 1902189-19 EB-07172019_ 1902189-20 NON-B03-SO-1-1.5MS 1902189-08MS NON-B03-SO-1-1.5MSD 1902189-08MSD	SAOA-B02-SO-5-5.5 1902189-16 Soil SAOA-B02-SO-20-20.5 1902189-17 Soil SAOA-B02-SO-56-56.5 1902189-18 Soil FRB-07172019 1902189-19 Water EB-07172019

(extra ded w/in 19 days)

LDC#:____45706C96

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: JVG
2nd Reviewer:

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
Illa. Initial calibration			. =	
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Were all analytes within 70-130% or percent differences (%D) ≤30% of their true value for each calibration standard?	/			
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30%?	/			
IV. Continuing calibration				
Was a continuing calibration analyzed prior to sample analysis, after every 10 samples and at the end of the analytical sequence?	/			
Were all percent differences (%D) of the continuing calibration ≤ 30%?	/			
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?	/			
Were all percent differences (%D) of the Instrument Sensitivity Check < 30%?	/			
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?		/		
VI. Field blanks				
Were field blanks identified in this SDG?	/			
Were target compounds detected in the field blanks?	/			
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent		1		

LDC #: 45 706 C96

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: JVG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch for this SDG?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/	<u> </u>	
Were target compounds detected in the field duplicates?			/	/
XI. Labeled compounds				
Were labeled compound percent recoveries (%R) within the QC limits?				
XII. Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?				
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?				
XIV. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: Perfluorinated Alkyl Acids (EPA Method 537)

A. PFBA	375-22-4
B. PFPeA	2706-90-3
C. PFBS	375-73-5
D. PFHxA	307-24-4
E. PFHpA	375-85-9
F. PFHxS .	355-46-4
G. PFOA	335-67-1
H. PFHpS	375-92-8
I. PFNA	375-95-1
J. PFOSA	754-91-6
K. PFOS	1763-23-1
L. PFDA	335-76-2
M. PFUnA	2058-94-8
N. PFDS	335-77-3
O. PFDoA	307-55-1
P. MeFOSA	31506-32-8
Q. PFTrDA	72629-94-8
R. PFTeDA	376-06-7
S. EtFOSA	4151-50-2
T. MeFOSE	24448-09-7
U. EtFOSE	1691-99-2
V. MeFOSAA	2355-31-9
W. EtFOSAA	2991-50-6

Notes:	 			 	

LDC #: 45701 C96

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: __lof__l Reviewer: __JVG

									2nd Revi	ewer:
METHOD: LC/MS PFAS (BY N N/A Were field Were targed blank units: 40 / L Sampling date: 07 / √ / Field blank type: (circle of the color	blanks identifice to compounds Associated sa	ed in this SDO detected in th mple units: _	e field blanks	? er: 忠	Λορο	ociated Sampl	الا معن لجم	, -18 (N	D m >5x)	
Compound	Blank ID	Teld Dialik / I	illisate / Othe	JI		ample Identifica			<i>,</i>	
77	20									
k	0.0123									
			<u> </u>					1		
Blank units: USL Ass Sampling date: 7/II/ Field blank type: (circle o	sociated samp [14] ne) Field Blank	ole units: ∪ / Rinsate / O	11-8 ther:	Associa	ted Samples:		(75k)			
Compound	Blank ID				S	ample Identifica	ation			
	EB-07	13010								
K	0.0201									
									-	

LDC #: 45 706 C96

VALIDATION FINDINGS WORKSHEET <u>Labeled Compound</u>

Page: \ of \ \
Reviewer: \ JVG

2nd Reviewer: \ \

METHOD: LC/MS PFAS (EPA Method 537M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Date	Sample ID	Sample ID Compound %R		Labeled Sample ID Compound %R Limits (%)		Limits (%)	Qualifications J/UJ/P (qual Q		
	2 (HD)	1302-0	47.7	50-150					
	3	13-V	49.7						
		1302-0	46.9						
	10	1302-0	41.6						
	10	13c2-R	27.2						
	12	13C2-R	31.0						
	15	d3- V	47.8						
		1302-0	47.4		0				
	16	1302- L	49.8						
		1362-0	49.1		0				
	18	1302-0	45.8		0				
	BQG 0264- BULL	1302-8	49.6						
	<u> </u>			-					

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:___of__8 Reviewer:__JVG__ 2nd Reviewer:___

Calibration				(Y)	(X)
Date	System	Compound	Standard	Area ratio	Conc ratio
7/22/2019	SCN945	PFOA	0.25	0.03165	3.125
	·		0.5	0.06647	6.250
	190722M1-CRV		1	0.11573	12.500
		13C2-PFOA	2	0.23840	25.000
in .			5	0.63338	62.500
			10	1.21526	125.000
			50	6.28315	625.000
			100	11.97011	1250.000
			250	28.74840	3125.000
			500	61.12986	6250.000

Regression Output	Calculated	Reported WLR
Constant	-0.075937	0.037722
Std Err of Y Est		
R Squared	0.999429	0.999184
Degrees of Freedom		
X Coefficient(s)	0.00968201	1.502070
Std Err of Coef.		
Correlation Coefficient	0.999714	
Coefficient of Determination (r^2)	0.999429	0.999184

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 2 of 8

Reviewer: JVG 2

2nd Reviewer: 2

Calibration Date	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio
Date	Oystein	Compound	Standard	Area ratio	Concratio
7/22/2019	SCN945	PFOS	0.25	0.01898	3.125
			0.5	0.05101	6.250
	190722M1-CRV		1	0.07006	12.500
		13C8-PFOS	2	0.15729	25.000
			5	0.40492	62.500
			10	0.84884	125.000
			50	4.45203	625.000
			100	8.49765	1250.000
			250	20.93435	3125.000
			500	43.12088	6250.000

Regression Output	Calculated	Reported WLR
Constant	-0.029639	-0.019750
Std Err of Y Est		
R Squared	0.999855	0.999659
Degrees of Freedom		
X Coefficient(s)	0.00686606	1.069000
Std Err of Coef.		
Correlation Coefficient	0.999927	
Coefficient of Determination (r^2)	0.999855	0.999659

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_5 of_6 Reviewer:_JVG_ 2nd Reviewer:_

Calibration Date	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio
			1	Area fallo	
7/28/2019	SCN945	PFOA	0.25	0.03296	3.125
i			0.5	0.06066	6.250
	190728M1-CRV			0.12264	12.500
		13C2-PFOA	2	0.24413	25.000
			5	0.59743	62.500
			10	1.26346	125.000
			50	5.75055	625.000
			100	12.09280	1250.000
			250	27.48101	3125.000
			500	57.22712	6250.000

Regression Output	Calculated	Reported WLR
Constant	0.044209	0.101179
Std Err of Y Est		
R Squared	0.999626	0.999104
Degrees of Freedom		
X Coefficient(s)	0.00909328	1.425740
Std Err of Coef.		
Correlation Coefficient	0.999813	
Coefficient of Determination (r^2)	0.999626	0.999104

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 4 of 8 Reviewer: __JVG___2nd Reviewer: ___

Calibration Date	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio
7/28/2019	SCN945	PFOS	0.25	0.01731	3.125
			0.5	0.03195	6.250
	190728M1-CRV		1	0.08040	12.500
		13C8-PFOS	2	0.17206	25.000
			5	0.39523	62.500
			10	0.86270	125.000
			50	4.40816	625.000
			100	9.07360	1250.000
			250	21.45917	3125.000
			500	43.77193	6250.000
,					

Regression Output	Calculated	Reported WLR
Constant	0.006692	-0.0602577
Std Err of Y Est		
R Squared	0.999891	0.999675
Degrees of Freedom		
X Coefficient(s)	0.00698389	1.092800
Std Err of Coef.		
Correlation Coefficient	0.999945	
Coefficient of Determination (r^2)	0.999891	0.999675

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 5 of 6
Reviewer: JVG
2nd Reviewer:

Calibration	O. ortono	0	Oten dend	(Y)	(X)
Date	System	Compound	Standard	Area ratio	Conc ratio
8/2/2019	SCN945	PFOA	0.25	0.04358	3.125
			0.5	0.07776	6.250
	190802M1-CRV		1	0.13222	12.500
		13C2-PFOA	2	0.29802	25.000
			5	0.75591	62.500
			10	1.51881	125.000
			50	7.32513	625.000
			100	14.71139	1250.000
			250	37.14547	3125.000
			500	74.48904	6250.000

Regression Output	Calculated	Reported WLR
Constant	-0.032022	0.031716
Std Err of Y Est		
R Squared	0.99993	0.999947
Degrees of Freedom		
X Coefficient(s)	0.01191336	1.856760
Std Err of Coef.		
Correlation Coefficient	0.999996	
Coefficient of Determination (r/2)	0.99993	0.999947

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:__6_of__8 Reviewer:__JVG__ 2nd Reviewer:__

Calibration				(Y)	(X)
Date	System	Compound	Standard	Area ratio	Conc ratio
8/2/2019	SCN945	PFOS	0.25	0.03165	3.125
			0.5	0.02844	6.250
	190802M1-CRV		1	0.08730	12.500
		13C8-PFOS	2	0.19110	25.000
			5	0.47341	62.500
			10	0.93333	125.000
			50	4.90193	625.000
			100	9.82558	1250.000
			250	23.44797	3125.000
			500	55.35387	6250.000
		. 101/1-10			

Regression Output	Calculated	Reported WLR
Constant	-0.405593	-0.2277060
Std Err of Y Est		
R Squared	0.995896	0.994423
Degrees of Freedom		
X Coefficient(s)	0.00864919	1.298410
Std Err of Coef.		
Correlation Coefficient	0.997946	
Coefficient of Determination (r^2)	0.995896	0.994423

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_7_of__
Reviewer:_ JVG__
2nd Reviewer:____

Calibration				(Y)	(X)
Date	System	Compound	Standard	Area ratio	Conc ratio
8/6/2019	SCN945	PFOA	0.25	0.03014	3.125
			0.5	0.05590	6.250
	190806M1-CRV		1	0.11413	12.500
		13C2-PFOA	2	0.22835	25.000
			5	0.56072	62.500
			10	1.12453	125.000
			50	5.30908	625.000
			100	11.15698	1250.000
			250	27.54228	3125.000
			500	54.94986	6250.000

Regression Output	Calculated	Reported WLR
Constant	0.004342	0.037145
Std Err of Y Est		
R Squared	0.999983	0.999901
Degrees of Freedom		
X Coefficient(s)	0.00879704	1.374720
Std Err of Coef.		
Correlation Coefficient	0.999992	
Coefficient of Determination (r/2)	0.999983	0.999901

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:
One of Solution of Solu

Calibration				(Y)	(X)
Date	System	Compound	Standard	Area ratio	Conc ratio
8/6/2019	SCN945	PFOS	0.25	0.01937	3.125
			0.5	0.04171	6.250
	190806M1-CRV		1	0.06852	12.500
		13C8-PFOS	2	0.17654	25.000
			5	0.42663	62.500
			10	0.77173	125.000
			50	3.98623	625.000
			100	8.45885	1250.000
			250	21.61890	3125.000
			500	44.36255	6250.000

Regression Output	Calculated	Reported WLR	
Constant	-0.135582	-0.0536139	
Std Err of Y Est			
R Squared	0.999773	0.999142	
Degrees of Freedom			
X Coefficient(s)	0.00707804	1.088080	
Std Err of Coef.			
Correlation Coefficient	0.999886		
Coefficient of Determination (r^2)	0.999773	0.999142	

LDC # <u>45706C96</u>

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: _1_of_1 Reviewer: _JVG_ 2nd Reviewer:_____

METHOD: LC/MS PFCs (EPA Method 537Mod)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF ave. RRF = initial calibration average RRF

RRF = (Ax)(Cis)/(Ais)(Cx) RRF = continuing calibration RRF

Ax = Area of compound

Cx = Concentration of compound,

Ais = Area of associated internal standard

Cis = Concentration of internal standard

		Calibration			Conc	Reported	Recalculated	Reported % R	Recalculated % R
#	Standard ID	Date	Con	npound (IS)					
1	190726M1-4	7/26/2019	PFOA	(13C2-PFOA)	1.000	0.950	0.950	95.0	95.0
	ISC		PFOS	(13C8-PFOS)	1.000	0.991	0.991	99.1	99.1
2	190728M1-33	7/28/2019	PFOA	(13C2-PFOA)	10.000	10.906	10.906	109.1	109.1
	CS3		PFOS	(13C8-PFOS)	10.000	9.673	9.673	96.7	96.7
3	190805M1-22	8/5/2019	PFOA	(13C2-PFOA)	10.000	10.868	10.868	108.7	108.7
	CS3		PFOS	(13C8-PFOS)	10.000	8.845	8.845	88.5	88.5
4	090806M1-19	8/6/2019	PFOA	(13C2-PFOA)	10.000	8.000	8.000	80.0	80.0
	CS3		PFOS	(13C8-PFOS)	9.240	7.036	7.036	76.2	76.2

LDC #: 45706 C96

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	l_of	1
Reviewer:_	JVG	
2nd Reviewer		

METHOD: LC/MS PFAS (EPA Method 537Mod)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: _____ 21 /22

Compound	Ad	oike ded اُحر)	Sample Conc (45/te)	Spiked Sample Concentration () /k)		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
PFOA	1.98	9-88	0	9.996	10.237	99.2	100	107	107	2.78	78
PFOS	1		1.27	10.2167	16.293	89.8	89.6	91.3	91.3	1-66	1-66
		,							77.1		
-											
								.:			
								<u> </u>	V		

Comments: Refer to Matrix Spike/Matrix Spike Duplicate	es findings worksheet for list of qualifications and associated samples when reported results do not
agree within 10.0% of the recalculated results.	
	RPDs build a 22 R
-	Roundin off issues
	8 10

LDC #: 45 706 C96

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: 1 of 1 Reviewer: JVG 2nd Reviewer:

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: B9G0264-BS1

	Spike		Spike Spike		LCS		LCSD		LCS/LCSD	
Compound	(Mg	Added (Mg Ard)		Concentration		Percent Recovery		Percent Recovery		סי
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
PFOA	16.0	M	11.7	M	112	112				
PFOS			9.24	l	92.4	92.4				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples wh	<u>en</u>
reported results do not agree within 10.0% of the recalculated results.	

LDC #: \$5706 C 96

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: LC/MS PFCs (EPA Method 537Mod)

1	\widehat{Y}	N	N/A
'	Y/	N	N/A

%S

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported

results?

			1
Cond	centratio	on = $(A_{,b}(I_{s})(V_{,b})(DF)(2.0)$ $(A_{is})(RRF)(V_{o})(V_{,b})(%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	16
Is	=	Amount of internal standard added in nanograms (ng)	Conc.
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	4
V_{i}	=	Volume of extract injected in microliters (ul)	*
V_{t}	=	Volume of the concentrated extract in microliters (ul)	
Дf	=	Dilution Factor.	Giant co

Percent solids, applicable to soil and solid matrices

ĺ	Sample I.D
	Conc. (4480)(12,5)) - (-0.0536)
	= 16.0825
1	Final cone = (16.0825)(1000 nL) = 15.79

only.

2.0 = Factor of 2 to account for GPC cleanup

Reported Concentration (15 kg)

Reported Concentration (15 kg)

Outlification

Sample ID

Compound

IS. 8

LOCATION-NAME	SITE_NAME	INSTALLATION_ID	LOCATION_TYPE	LOCATION_TYPE_DESC	SDG	COORD_X	COORD_Y	ANALYTICAL_METHOD_GRP_DESC	SAMPLE_NAME	SAMPLE_MATRIX	SAMPLE_MATRIC_DESC
NAOA-B03	SITE 00019	YUMA_MCAS	ВН	BOREHOLE	1902189	440165.383	607326.920	Perfluoroalkyl Compounds	NAOA-B03-GW	WG	GROUNDWATER
NAOA-B06	SITE 00019	YUMA_MCAS	ВН	BOREHOLE	1902189	442533.349	604929.086	Perfluoroalkyl Compounds	NAOA-B06-GW	WG	GROUNDWATER
NON-B03	SITE 00019	YUMA_MCAS	ВН	BOREHOLE	1902189	443302.528	597912.609	Perfluoroalkyl Compounds	NON-B03-GW	WG	GROUNDWATER
SAOA-B03	SITE 00019	YUMA_MCAS	ВН	BOREHOLE	1902189	440232.279	601352.774	Perfluoroalkyl Compounds	SAOA-B03-GW	WG	GROUNDWATER

7/15/2019 7/16/2019 7/16/2019

7/11/2019