Asbestos Awareness Training
Introduction to Asbestos Awareness Training

This Asbestos course will meet the training requirements specified in the Asbestos Hazard Emergency Response Act (AHERA) and all of the Occupational Safety and Health Administration's (OSHA's) Asbestos standards for individuals that contact asbestos containing materials (ACMs), but do not disturb the matrix of the ACM. The course is often referred to as Asbestos Awareness Training or OSHA Class IV Asbestos Training. The employer must additionally provide site specific information about the presence, location and quantity of ACMs in the building(s) where the employee works.

Additional training beyond this course is needed for individuals that disturb asbestos containing materials by such tasks as drilling, sanding, cutting, chipping or otherwise handling an ACM that is not intact.
Why Have This Training?

The purpose of the session is to provide a basic overview of asbestos and its associated hazards in addition to satisfying the employee training requirements under 29 CFR 1926.1101(k)(8), "Occupational Exposure to Asbestos." The scope and content of this course and manual is limited to the information essential to this requirement.

This course is best suited for the following individuals:

- Maintenance or custodial employees that work in a building or on a ship that contains ACMs;
- A construction manager, engineer or tradesman that works in pre-1981 buildings or buildings with known ACMs;
- Supervisors or administrative staff that work in buildings with ACMs;
- Managers that own or manage pre-1981 buildings or buildings with known ACMs;
- Anyone who wants a base knowledge about asbestos.
Why Me?

On August 10, 1994, the Occupational Safety and Health Administration (OSHA) issued new regulations covering asbestos. These regulations became effective on October 10, 1995. As a part of the new regulations, it is required to present "awareness training" to maintenance and custodial personnel who may come in contact with asbestos-containing materials.

This does not imply that any of you will be doing asbestos work. On the contrary, this training is being presented in the hope that you may avoid any exposure by becoming more aware of the locations and types of asbestos.
Course Objectives

Upon completion of this Asbestos Awareness Training Course, you should:

• Know the origin of asbestos and its properties
• Be able to identify potential asbestos containing materials
• Understand the health effects associated with asbestos exposure
• Know the roles of the primary agencies that regulate asbestos
• Understand the limits of asbestos survey information
• Be capable of recognizing asbestos hazards
• Be qualified to perform OSHA Class IV asbestos work
• Be able to work safely in a building with ACMs
What is Asbestos?

Asbestos is a naturally occurring mineral. It differs from other minerals in its crystal development. The crystal formation of asbestos is in the form of long thin fibers. Asbestos is divided into two mineral groups - Serpentine and Amphibole. Serpentines have a sheet or layered structure where amphiboles have a chain-like structure.

Asbestos minerals have the following characteristics in common:

- Separate into smaller and smaller fiber bundles when disturbed or handled
- Resistant to heat, bacteria and chemicals
- Great tensile strength and stiffness
- Excellent electrical and thermal insulator
- Very good noise insulator
- Resistant to the effects of friction and wear

Asbestos fibers are also virtually indestructible. They are resistant to chemicals and heat, and they are very stable in the environment. They do not evaporate into air or dissolve in water, and they are not broken down over time.
Where is Asbestos Mined?

Deposits of asbestos are found throughout the world, primarily Canada, the former Soviet Union and South Africa. Three common types of asbestos are chrysotile, amosite and crocidolite.

- Chrysotile is the most commonly used type of asbestos and accounts for approximately 90% of the asbestos in buildings in the United States today. Chrysotile is mined in Canada and the Soviet Union.
- Amosite is the second most common type to be found in buildings. Amosite is mined primarily in Transvaal, South Africa.
- Crocidolite is the third most common asbestos type and is the strongest asbestos fiber. Crocidolite is mined in South Africa and Australia.

In 1998, the largest producer of asbestos in the world was Russia, while Canada was the second largest producer. Canada is the largest provider of asbestos to the United States. Most of the Canadian asbestos is mined in Quebec.
What Does Asbestos Look Like?

Chrysotile is white asbestos with fine silky fibers. It is the only member of the serpentine group. Chrysotile is pictured below (left). Amosite is known as brown asbestos and is used in heat insulation materials. It is a member of the amphibole group. Amosite is pictured below (center). Crocidolite is known as blue asbestos, which is an asbestos used in specialized high temperature applications. It is a member of the amphibole group. Crocidolite is pictured below (right).
Why is Asbestos Used?

- Asbestos is not an invention of modern science. Asbestos is a mineral that is as soft and flexible as cotton or flax, yet it is fireproof.
- The Ancient Greeks named the mineral asbestos, meaning inextinguishable. The harmful biological effects were also observed by the Greeks. The Greek geographer Strabo and the Roman naturalist Pliny the Elder both mentioned a sickness of the lungs in the slaves that wove asbestos into cloth. Although they noticed this sickness in those who worked with asbestos, they were in such awe of asbestos's magical properties that they ignored this.
- Asbestos was used for the wicks of the eternal flames of the vestal virgins, as the funeral dress for the cremation of kings, and as napkins. Supposedly the Romans would clean asbestos napkins by throwing them into a fire. They were particularly impressed that the asbestos cloth would come out of the fire whiter than when it went in; hence, their name for asbestos, amiantus, meaning unpolluted.
- The fibers are strong, durable, and resistant to heat and fire. They are also long, thin and flexible, so that they can even be woven into cloth. Because of these qualities, asbestos has been used in thousands of consumer, industrial, maritime, automotive, scientific and building products. During the twentieth century, some 30 million tons of asbestos were used in industrial sites, homes, schools, shipyards and commercial buildings in the United States.
Where is Asbestos Found?

Asbestos only required minor refining prior to its use in manufacturing, it was a very inexpensive and effective constituent of many products. One of the sectors that utilized asbestos most frequently was the construction industry. Asbestos was added to building materials to give them strength, fire retardancy, color and, in some cases, simply as filler. As a consequence virtually all buildings constructed prior to 1980 contain some form of asbestos building product. The use of asbestos in most products was banned in the early 1970’s but, some manufacturers that produce products such as brake linings and clutch facings, have found no other effective replacement for asbestos.

Much has been made by the asbestos industry of the fire proofing or enhanced safety properties of the mineral. The 1970 Fire Precautions Act encouraged heavy use of asbestos insulation board.
Where is Asbestos Found?

The main use, however, had nothing to do with fire protection: 70% of asbestos in Western Europe has been used for reinforcing asbestos cement in construction. Cement mixed with about 15% asbestos fiber makes a rigid sheet less than five millimeters thick. If iron was used instead, the sheet would have to be three centimeters thick in order to have the same strength. Without asbestos, rigid cement pipes need to be three centimeters thick and only one meter long to avoid breaking. With asbestos, pipes can be produced at a thickness of only one centimeter. For construction companies, asbestos saves on the amount of cement used and on transport costs. Its lightness makes it easier to handle - always providing that the health risks are discounted.
Where is Asbestos Found?

Main uses of asbestos in buildings include:

Sprayed coatings on steel work, concrete walls and ceilings, for fire protection and insulation: Sprayed coatings are probably the most lethal way in which asbestos is used. It was common for many sprayed asbestos products to contain up to 85% asbestos, much of it Crocidolite (blue asbestos). Between 1935 and 1971, it was used extensively in public buildings for acoustic and thermal insulation and fire protection of structural steel work. It was common in system-built council housing; in boiler houses and ceilings to balconies and walkways. It is not unusual to find this material to be soft, friable and therefore extremely dangerous.

Lagging: insulation on pipework, boilers and ducts. Lagging is frequently just as deadly. It was used around heating pipes and boilers especially in factories, hospitals, and other public buildings. It has been found to give very high dust levels in service ducts where it is easily disturbed during maintenance activities.
Where is Asbestos Found?

Insulation boards: in partitions, fire doors, and ceiling tiles. Common brand names are Asbestolux, Turnabestos, LDR, and Marinite: During the 1950s, 1960s, and 1970s Amosite (brown asbestos) was the main type in insulation boards which were used in stairways, curtain walling, partitions, and fire proof panels. They are found in system-built council housing, hotels and schools. Other uses include heating ducts, linings to doors and meter cupboards, and in heating units. Insulation boards from this period typically contain 16-25% asbestos. Often they have a soft grayish appearance.

Asbestos cement products: sheeting on walls and roofs, tiles, cold water tanks, gutters, pipes and in decorative plaster finishes: These have been extensively used in buildings and mainly contain Chrysotile (white asbestos) in concentrations of about 10%. Asbestos slates, tiles and linings behind fires are of similar composition. Fibers are released from such materials with age, when the material is damaged, and during routine maintenance activities such as drilling, sanding, wire brushing, machine sawing. All these activities can produce dangerous concentrations of asbestos dust.
What Makes an Asbestos Product Dangerous?

What makes an asbestos product dangerous is its friability. Products which contain asbestos, that when dry, can easily be crumbled or powdered by hand are considered friable. Examples of friable products are: mechanical insulation, sprayed insulation (fire resistant, acoustic, thermal, condensation control, decorative millboards).

Products where the asbestos is bound in a tight matrix and will not easily shed asbestos fibers under normal day to day use are considered to be non-friable. Examples of non-friable products are: roof shingles, asbestos cement pipes, caulking compounds, floor tiles, joint cements, and welding rods.

Other products that may fall in either category, depending on their condition, are textiles and papers. Friable sprayed or trowelled asbestos insulating formulations applied for fire protection, thermal or acoustic insulation were used until 1974. Mechanical insulation was applied to pipes, boilers, etc. until the late 1970's. Acoustic or decorative finishes which were sprayed or trowelled in place were also applied until the late 1970's. Table on the next page shows common asbestos products, how easily they are friable, and their dates of use.
What Makes an Asbestos Product Dangerous?

<table>
<thead>
<tr>
<th>Building Product</th>
<th>Friability</th>
<th>Dates of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical insulation</td>
<td>high</td>
<td>1926 to the mid 1970's</td>
</tr>
<tr>
<td>Spray insulation</td>
<td>high</td>
<td>1935 to 1974</td>
</tr>
<tr>
<td>Texture coat</td>
<td>moderate to high</td>
<td>1950 to the mid 1970's</td>
</tr>
<tr>
<td>Floor tile</td>
<td>low</td>
<td>1950 to the mid 1970's</td>
</tr>
<tr>
<td>Drywall taping compound</td>
<td>low to moderate</td>
<td>1945 to the mid 1970's</td>
</tr>
<tr>
<td>Cement pipe</td>
<td>low</td>
<td>1935 to present</td>
</tr>
<tr>
<td>Brake linings</td>
<td>low</td>
<td>1940 to present</td>
</tr>
<tr>
<td>Duct wrap</td>
<td>moderate to high</td>
<td>1920 to the mid 1970's</td>
</tr>
<tr>
<td>Textiles/gaskets</td>
<td>low to moderate</td>
<td>1920 to the mid 1970's</td>
</tr>
<tr>
<td>Roofing material</td>
<td>low</td>
<td>1920 to the mid 1970's</td>
</tr>
<tr>
<td>Ceiling tiles</td>
<td>low to moderate</td>
<td>1950's to the 1970's</td>
</tr>
<tr>
<td>Cement board</td>
<td>low</td>
<td>1930 to present</td>
</tr>
</tbody>
</table>
Introduction to Exposure

The most dangerous asbestos fibers are too small to be visible. They can become airborne when asbestos-containing materials are disturbed or during improper removal. Asbestos is only dangerous if it becomes airborne; however, asbestos fibers are extremely aerodynamic. Small diameter fibers and particles may remain suspended in the air for a long time and be carried long distances by wind or water before settling down. Larger diameter fibers and particles tend to settle more quickly.

Asbestos fibers are not able to move through soil. Asbestos fibers are generally not broken down to other compounds and will remain virtually unchanged over long periods. Because of these two qualities asbestos dust that is generated from the disturbance of asbestos containing materials can pose a risk of exposure to the following people:

- workers in the area during disturbance;
- occupants of the building in the area during the disturbance;
- if asbestos dust is not cleaned up and it is redisturbed, any one in the area may be exposed until the dust settles, which can take several hours.
How does Asbestos Get Into the Body?

Of course, if asbestos were to stay in the environment and not get into our body we wouldn't have anything to worry about. It is when the asbestos gains entry to our body that it can create a problem for our health. This will be explained later. How does asbestos get into our bodies to create the problems associated with the toxin?

The routes of entry are the ways in which a toxic chemical can enter the body. Chemicals are easily swallowed or inhaled, and many chemicals are readily absorbed through the skin upon contact. The fourth route of entry is deliberate or accidental injection of the chemical under the skin through use of a hypodermic, or as a result of an accident.

While asbestos fibers may gain entry into the body through ingestion, inhalation is by far the major route. Asbestos fibers have no odor, and those that you may inhale cannot be seen by the naked eye.
The Respiratory System

Your respiratory system includes the mouth, nose, wind pipe (trachea), bronchi and lungs. The lungs are located within the pleural cavity. Lying within the cavity and covering the lungs is a lining called the pleural mesothelium.

The lungs contain air sacks called alveoli. The alveoli are the sites where oxygen is absorbed into the blood and carbon dioxide is removed from the blood.

The diagram to the right shows the respiratory system and how asbestos fibers might travel through the system.
Your Body Defenses

Your body’s respiratory system has defense mechanisms that work to keep foreign particles from causing damage. Amazingly, estimates indicate that these mechanisms are 95 to 98 percent effective. Examples of some defense mechanisms and their functions are:

- The mouth and nose filter out very large particles.
- Coated bronchi filter out smaller particles.
- Cilia, which are hair-like protrusions on cells lining the airways (bronchial tree), move particles up to the back of the mouth where they are swallowed or expelled.
- The smallest particles that are not previously trapped may travel to the alveoli in the lower respiratory system. Here they may be attacked by large cells, known as macrophages, which try to digest them. Because asbestos is a mineral fiber, the macrophages are often not successful.

Coughing is a defense mechanism for our body.
How Does Asbestos Hurt Me?

Most of the information about asbestos diseases comes from studying workers in the various asbestos industries. The bulk of the data comes from World War II shipbuilding activities and the asbestos industries in the United States and England. Exposure to very high levels of airborne asbestos typical of the asbestos workplace prior to 1972 has been linked with the following diseases:

- **Asbestosis** is a chronic disease in which lungs become scarred (fibrosis) as a result of a biological reaction to the inhalation of asbestos fibers. Scarring causes thickening of the walls of the lungs and a reduction in the capacity for transfer of oxygen to the bloodstream. Victims usually die from heart failure, as the heart overworks in an attempt to deliver the required oxygen to the body. Asbestosis usually results after exposure to high concentrations of fibers over a long period of time. Symptoms usually occur 15 to 35 years after the first exposure.

- **Mesothelioma** is a cancer of the covering of the lung or lining of the chest or abdominal cavities. It is the rarest form of the asbestos-related diseases. This disease is always rapidly fatal, usually within a year after diagnosis. The latency period is usually 25 to 30 years for Mesothelioma.

- **Lung Cancer** is now responsible for roughly one half of the deaths that occur from past asbestos exposures. Lung cancer usually begins as a tumor in the lower lobes of the lungs. Generally, the earliest symptom is the development of a persistent cough or change in chronic cough. Later symptoms include loss of appetite, weight loss, pain and general weakness. Other cancers have been noted in a very small number of individuals who are occupationally exposed to asbestos. These tumors are usually cancers of the gastrointestinal tract.
Can I make It Better or Worse?

Smoking is a major risk factor for disease. When coupled with asbestos exposure, smoking can greatly increase the risk of developing some asbestos-related diseases. It is not a risk factor for mesothelioma. Smoking weakens the lungs, contributing to the negative health effects of asbestos exposure. Smoking alone can cause lung cancer. Asbestos exposure alone can also cause lung cancer. Taken together, asbestos and smoking multiply the risk of lung cancer significantly (a “synergistic” effect).

The combination of asbestos exposure and smoking greatly increases the risk of developing lung cancer. Asbestos workers are approximately five times more likely to develop lung cancer than the general population. Smokers are ten times more likely to develop lung cancer than the general population. A person who works with asbestos and also smokes is likely to have a 90 times greater risk of contracting lung cancer.
Not smoking is an important aspect of preventing disease. Evidence suggests that asbestos-exposed workers who quit smoking can reduce their risk of developing lung cancer by as much as 50% within five years of quitting.
For many years, asbestos was considered a "miracle mineral." It was used because it is fireproof, and resistant to acid and corrosion. Asbestos fibers are so tiny you need a microscope to see them. You can breathe them in easily without knowing it, whether they are in the air or on your clothes.

As we have seen, asbestos can cause serious lung and breathing diseases which can take as long as 15 to 35 years to show up. Smokers who are exposed to asbestos are as much as 90 times more likely to get certain lung diseases than nonsmokers. Today, a great deal is known about the health hazards that result from overexposure to asbestos. It is very important for your health to work safely with asbestos.
What is an ACM?

- ACM is the acronym for "asbestos containing materials". The Environmental Protection Agency defines ACM as any material containing more than one percent (1%) asbestos as determined using the method specified in Appendix A, Subpart F, 40 CFR Part 763, Section 1, Polarized Light Microscopy (PLM).

- **Friable asbestos-containing material (ACM)**, is any material containing more than one percent (1%) asbestos that, when dry, can be crumbled, pulverized or reduced to powder by hand pressure. Non-friable ACM is any material containing more than one percent (1%) asbestos that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure. EPA also defines two categories of non-friable ACM: Category I and Category II non-friable ACM.

- **Category I non-friable ACM** is any asbestos-containing packing, gasket, resilient floor covering or asphalt roofing product which contains more than one percent (1%) asbestos. Category I non-friable ACM must be inspected and tested for friability if it is in poor condition. Asbestos-containing packing, gaskets, resilient floor coverings and asphalt roofing materials must be removed before demolition only if they are in poor condition and are friable.
What is an ACM?

Category II non-friable ACM is any material, excluding Category I non-friable ACM, containing more than one percent (1%) asbestos that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure. Category II non-friable ACMs (cement siding, transite board shingles, etc.) subjected to intense weather conditions such as thunderstorms, high winds or prolonged exposure to high heat and humidity may become "weathered" to a point where they become friable.

"Regulated Asbestos-Containing Material" (RACM) is (a) friable asbestos material, (b) Category I non-friable ACM that has become friable, (c) Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting or abrading, or (d) Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of demolition or renovation operations.
How do I Recognize ACM?

Due to their high tensile strength, incombustibility, corrosion and friction resistance and other properties, such as acoustical and thermal insulation abilities, asbestos fibers have been incorporated into over thirty-six hundred (3600) commercial products. Thermal system, fireproofing and acoustical insulation materials have been used extensively in the construction industry.

As specified in the U.S. Environmental Protection Agency document entitled, "Managing Asbestos In Place - A Building Owner's Guide to Operations and Maintenance Programs for Asbestos-Containing Materials", dated July 1990, the following materials are considered suspect asbestos-containing materials:
How do I Recognize ACM?

- Cement Pipes
- Cement Wallboard
- Cement Siding
- Asphalt Floor Tile
- Vinyl Sheet Flooring
- Vinyl Floor Tile
- Flooring Backing
- Construction Mastics
- Acoustical/Decorative Plaster
- Textured Paints/Coatings
- Elevator Brake Shoes
- HVAC Duct Insulation
- Boiler Insulation
- Breeching Insulation
- Duct Flexible Connectors
- Cooling Towers
- Pipe Insulation
- Heating/Electrical Ducts
- Electrical Panel Partitions
- Electrical Cloth
- Ceiling Titles/Lay-in Panels
- Sprayed/Blown-in Insulation
- Fireproofing Materials
- Taping Compounds
- Wall Packing Materials
- High Temperature Gaskets
- Lab Hoods/Benches/Gloves
- Fire Blankets/Curtains
- Fire Doors
- Elevator Equipment Panels
- Electric Wiring Insulation
- Chalkboards
- Roof Shingles/Felts
- Base Flashing
- Thermal Paper Products
- Caulking/Putty/Adhesive
- Wallboard
- Joint/Spackling Compounds
- Vinyl Wall Coverings
How do I Recognize ACM?

Although the use of asbestos in thermal, surfacing and fire proofing materials was banned in 1973, buildings constructed as late as 1980 have been found to contain asbestos building materials. In several old buildings it may have already been determined that materials contain asbestos. In these cases the materials may be labeled to warn workers. The label may look something like this:

CONTAINS ASBESTOS FIBERS

AVOID CREATING DUST

CANCER & LUNG DISEASE HAZARD

AVOID BREATHING AIRBORNE ASBESTOS FIBERS
When do ACMs Become Dangerous?

As was stated earlier, asbestos-containing materials that can be reduced to powder by hand pressure are considered to be friable. Some non-friable materials may become friable if they are cut, drilled or damaged by water. Friable materials are more likely to release fibers into the air where they can be a source of exposure to you.

The presence of asbestos alone in a building does not mean that the building occupants are necessarily endangered. As long as asbestos-containing materials remain in good condition, exposure is unlikely.

When building maintenance, repair, renovation or other activities disturb or damage ACM, asbestos fibers can be released creating a potential hazard to building occupants. Some asbestos fibers can take up to 80 hours to settle. An airborne asbestos fiber can move laterally with air currents and contaminate spaces distant from the point of release. Next several pages describe different ways of fiber release.
When do ACMs Become Dangerous?

• ** Fallout:**
 Old and/or deteriorated asbestos fibers may become airborne due to damage or destruction of the bonding agents used to hold the asbestos product together. Fallout may result in fibers being deposited on horizontal surfaces over time due to humidity, vibration or aging.
When do ACMs Become Dangerous?

Contact:
Striking, cutting, drilling, etc. may release fibers into the environment. Air erosion is also a form of contact and may release fibers to the environment from damaged or exposed material.
When do ACMs Become Dangerous?

Reentrainment:
Sweeping, dusting or unfiltered vacuuming of settled dust may result in asbestos fibers being re-suspended into the atmosphere.
What Regulations Apply to Me Concerning Asbestos?

Asbestos is regulated on several levels - federal, state and local. On the federal level asbestos is regulated by two agencies - the Environmental Protection Agency (EPA) and the Department of Labor (DOL) under the Occupational Safety and Health Act (OSHA). As was mentioned earlier, this Class IV training is a result of OSHA regulations that came out in 1995. EPA regulations have influenced OSHA asbestos training requirements. For removal of non-intact ("friable") asbestos in buildings, EPA requires "accreditation" training for workers and competent persons ("supervisors"). Training required for removal is identical to that required by OSHA for Class I and II work, but it must be obtained from an EPA-approved course provider. Class III and IV training is based on EPA "AHERA" requirements for schools. The regulations concerning Class IV workers are found in 29 CFR Part 1910.1001 (j)(7), 29 CFR Part 1915.1001(k)(9), and 29 CFR Part 1926.1101(k)(9).

While each state or local government may have more stringent regulations concerning asbestos, it is important for Navy personnel to follow the Navy guidelines dealing with asbestos. These are found in OPNAV Instruction 5100.23(series), Chapter 17. As the chapter begins, "The provisions of this chapter apply to industrial and construction activities and supplement the Department of Labor (DOL) Standards, references 17-1 through 17-3." It is important to note that it is not enough to just be familiar with the federal regulations.
What Can I do to Help?

When ACM degrades or is damaged, it may release asbestos into the air. Here are some things you can do to keep this from happening:

- Avoid touching or disturbing ACM on ceilings, pipes or boilers.
- Do not drill, sand or scrape materials that contain ACM.
- Do not attempt to clean any material that appears to contain asbestos.
- Contact your supervisor immediately to arrange proper cleaning of any material that you suspect may contain asbestos.
- Clean-up of asbestos containing materials should only be done using a High Efficiency Particulate Air (HEPA) vacuum and/or wet methods by properly trained personnel.
What Can I do to Help?

In order to minimize the potential for exposure to asbestos during floor care, the following practices are recommended:

• Never sand or scrape asphalt or vinyl flooring that contains asbestos.

• Always strip floor finishes using wet methods and the lowest abrasion pads possible. (Never use coarse black pads on asbestos flooring.) Always use speeds less than 300 revolutions per minute (rpm).

• Burnish or dry-buff asbestos containing flooring only if it has enough finish so that the pad cannot contact the asbestos-containing material.

• Do not dust, dry sweep or vacuum dirt or debris in an area that contains damaged thermal asbestos insulation, surfacing or deteriorated ACM. Use only wet methods or HEPA filtered vacuums.
What Can I do to Help?

Roles of custodial and maintenance personnel:

• Become familiar with the health hazards associated with ACM.
• Be aware of areas that could potentially contain ACM.
• Assist in the prevention of activities which disturb the ACM (i.e. hanging plants or pictures, pushing furniture against it, etc.).
• Report any evidence of disturbance or damage.
• Environmental and/or Safety and Health personnel will arrange to have any disturbed ACM properly cleaned up.
• Periodically inspect and report any dust or debris from ACM, change in appearance of ACM, or any improper action which could potentially damage the ACM.

If you see ACM that has been damaged or disturbed, contact your supervisor or call your NAVOSH official.
The End

You have completed Asbestos Awareness Training.